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Abstract— We consider energy-aware scheduling in a multi-
server system with N classes of jobs. Jobs arrive randomly
and are queued according to their class. Servers operate asyn-
chronously over their own timelines. Each server can be in either
the active state or the idle state. At the beginning of each active
period, a server chooses a processing mode from a collection of
options that affect: (i) which classes of jobs are served, (ii) the
service times, and (iii) the energy incurred. After processing, the
server chooses an amount of time to remain idle. The goal is
to make decisions over time that minimize time average power
subject to stabilizing all queues. This is related to a non-convex
optimization problem with fractional terms that have different
denominators in the objective function and in the constraints.
Such problems are generally intractable. However, the system
has physical properties with special structure. Exploiting these
properties, we develop a novel online algorithm that solves the
problem. The algorithm does not require knowledge of the arrival
rates. It can push time average power arbitrarily close to optimal,
with a corresponding tradeoff in average queue size.

I. INTRODUCTION

We consider a processing system with N classes of jobs and
S servers. Jobs of each class arrive randomly and are stored in
separate queues to await service. Servers act asynchronously
over variable length frames. At the beginning of the rth frame
for server s, the server chooses a processing mode ms[r] from
a collection of mode options. The processing mode determines
the number of jobs of each class that it serves on frame r, the
duration of time required for service, and the resulting energy
expenditure. After processing, the server chooses an amount
of idle time Is[r]. The server is put to sleep during this time to
save power. The chosen idle time can be 0, so that the server
can have back-to-back busy periods. After the (possibly 0)
idle time, the server wakes up and a new frame is begun. An
example timeline for one particular server s is shown in Fig.
1.

Each server makes these decisions separately according to
its own timeline. That is, the service frame boundaries for
each server are not synchronized, and different servers can
start and end their frames at different times (see Fig. 2). For
example, one server might finish three frames before another
server finishes one. The servers can be heterogenous, having
different mode selection options with different energy and
delay performance. Further, some servers might be restricted
from serving certain classes of jobs. The goal is to design an
algorithm for dynamically making decisions at each server to
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Fig. 1. The timeline for one server s.
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Fig. 2. Asynchronous timelines for 3 servers S1, S2, and S3.

minimize total average power expenditure subject to stabilizing
each of the N queues.

This problem is important for energy-aware computing in
systems with multiple processors. For example, work in [1][2]
shows that processors can use methods such as frequency and
voltage scaling to adjust service times and energies. There is
much recent interest in developing scheduling algorithms that
exploit these capabilities (see, for example, [3][4][5][6][7][8]).
However, this prior work uses either single servers or synchro-
nized service decisions, often with fixed-length timeslots.

The problem in the current paper is challenging because it
involves a coupling between service decisions that are made
over multiple timelines. The decisions at a particular server
cannot be changed until the next frame begins for that server.
This can be viewed as a system with multiple embedded
Markov chains that are coupled through the common objective
of supporting all traffic while using minimum average power.
However, an attempt to use Markov chain theory reveals a
seemingly intractable state space. Indeed, even modeling the
active/idle state of each server involves 2S states. Further,
this exponential state space is still an incomplete description
because it does not include the residual amount of time for
each server to reach the end of its current frame.

We show that the problem can be viewed more simply
in terms of an optimization involving ratios of averages of
system quantities. The problem is non-linear and non-convex.
However, it has a special structure that we exploit. Using this
structure, we develop a simple dynamic algorithm to solve
the problem. The algorithm stabilizes all queues whenever
possible. Further, it is parameterized by a constant V > 0,
and yields average power within O(1/V ) of the minimum
average power required for stability, with an average queue
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size tradeoff that is O(V ). That is, average power can be
pushed arbitrarily close to optimal, with a tradeoff in average
queue size. The algorithm suffers no curse of dimensionality,
has polynomial delays and convergence times, and can be
implemented online in a distributed manner at each server.
The algorithm does not require knowledge of the job arrival
rates, and naturally adapts if these rates change.

Our recent work [8] considers the single-server version of
this problem, using the theory of Lyapunov optimization for
renewal systems from [9]. The single-server case is related
to finding an online solution to a linear fractional program.
The current paper treats the multi-server case, where servers
operate asynchronously over multiple timelines. This results
in more complex optimization problems with fractional terms
that have different denominators in both the objective function
and in the constraints. The asynchronous operation treated in
this paper is conceptually related to asynchronous optimization
routines in [10][11] that treat different (and typically convex)
problems. While [11] treats a network of queues, it still as-
sumes all decisions are made according to a common timeline
of fixed length slots, which cannot capture the fundamental
complexities of the asynchronous behavior in our model.

Two aspects of our solution draw from techniques developed
for restless bandit and multi-armed bandit systems. First, this
paper uses a drift-plus-penalty ratio technique similar to a
technique developed in [12][13] for analyzing restless bandit
systems. Second, our solution requires penalties to be viewed
as being continuously accumulated over time via integration of
a penalty rate function. This is inspired by a similar treatment
of rewards for multi-armed bandit problems in [14].

II. PROBLEM FORMULATION

Consider a system with N classes of jobs and S server
stations. Jobs of each class arrive randomly according to
independent Poisson processes with rates λ1, . . . , λN . These
jobs are stored in separate queues according to their class. Let
Qn(t) represent the number of class n jobs queued at time t.
The system operates in continuous time, and so the time index
t takes values in the set of non-negative real numbers. The
value of Qn(t) is a non-negative integer for all n ∈ {1, . . . , N}
and for all t ≥ 0. Assume the system is initially empty at time
t = 0, so that Qn(0) = 0 for all n ∈ {1, . . . , N}.

Each server s ∈ {1, . . . , S} makes decisions over renewal
frames (see Fig. 1). The first frame is labeled as frame 0
and starts at time 0. Successive frames can start at different
times for each server. Consider the frames for a particular
server s. At the beginning of each frame r ∈ {0, 1, 2, . . .},
server s chooses a processing mode ms[r] within a set Ms

of mode options. The sets Ms can be different for each
s ∈ {1, . . . , S}, and are possibly infinite. The processing mode
ms[r] determines values µsn[r] for each n ∈ {1, . . . , N},
representing the number of class n jobs that can be served
by s on frame r. It also determines the duration of time Ds[r]
required for service, and the processing energy eprocs [r] that is

incurred. These are given by general functions of ms[r]:

µsn[r] = µ̂sn(ms[r])

Ds[r] = D̂s(ms[r])

eprocs [r] = êprocs (ms[r])

If server s is restricted from serving a certain class b, then
µ̂sb(ms) = 0 for all ms ∈ Ms. At the end of the processing
time, server s chooses an idle time Is[r] within an interval
[0, Imaxs ], for some given non-negative value Imaxs . Assume
the idle state expends energy at a rate pidles for some constant
pidles ≥ 0. Let es[r] be the total energy expended by server s
on frame r, and let Ts[r] be the total frame size. These are
given by functions ês(ms[r], Is[r]) and T̂s(ms[r], Is[r]):

es[r] = ês(ms[r], Is[r])
M
= êproc(ms[r]) + pidles Is[r] (1)

Ts[r] = T̂s(ms[r], Is[r])
M
= D̂s(ms[r]) + Is[r] (2)

where the symbol “M
=” represents “defined to be equal to.”

A. Mode Selection Assumptions

Assume that all service times are bounded by constants
Dmin
s and Dmax

s , where 0 < Dmin
s ≤ Dmax

s , so that:

Dmin
s ≤ D̂s(ms) ≤ Dmax

s ∀ms ∈Ms

All frame sizes Ts[r] are thus bounded, so that:

Dmin
s ≤ Ts[r] ≤ Dmax

s + Imaxs ∀r ∈ {0, 1, 2, . . .}

Further assume the number of jobs served and the energy
expenditures are upper bounded by constants µmaxsn and emaxs :

0 ≤ µ̂sn(ms) ≤ µmaxsn ∀ms ∈Ms

0 ≤ ês(ms) ≤ emaxs ∀ms ∈Ms

Finally, assume that each set Ms contains an option nulls
where no jobs are served, so that:

µ̂sn(nulls) = 0 , D̂s(nulls) = Dmin
s ∀n ∈ {1, . . . , N}

This is useful at times such as t = 0 when the system is empty.

B. Queueing

Define Rs(t) as the number of full frames that server s has
completed up to time t. This is an integer-valued function that
is non-decreasing, has initial value Rs(0) = 0, and increases
by 1 upon completion of each frame in server s. Define R(t)
as the sum process:

R(t) =
∑S
s=1Rs(t)

The function R(t) is also non-decreasing and integer valued.
It can increase by more than 1 if multiple servers complete
their frames at the same time. The intervals over which R(t)
is constant are called sub-frames. Define tk as the start of the
kth sub-frame, where k ∈ {0, 1, 2, . . .}, and where t0 = 0.
Each time tk > 0 marks a time when at least one server
s ∈ {1, . . . , S} finishes a renewal frame and begins another
(see Fig. 2). Define δk as the size of sub-frame k:

δk
M
=tk+1 − tk ∀k ∈ {0, 1, 2, . . .}
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The queuing process Qn(t) is integer valued and decreases
in discrete jumps immediately when packets are selected for
service. Now define a related non-integer process Q̃n(t) that
can be viewed as unfinished work, with dynamics:

Q̃n(tk+1) = max[Q̃n(tk)−bn[tk, tk+1)+an[tk, tk+1), 0] (3)

where an[tk, tk+1) is the number of arrivals to queue n
during the interval [tk, tk+1), and bn[tk, tk+1) is the fractional
amount of service offered during this interval. This fractional
amount of offered service is computed by multiplying the
interval size δk by the sum of the effective service rates of all
servers serving class n jobs during this interval. Specifically,
the effective service rate γsn(tk) allocated by server s to class
n jobs at time tk is defined as the ratio µsn[r]/Ts[r], where
r = Rs(tk) is the server s frame that overlaps with time tk:

γsn(tk)M
=
µsn[Rs(tk)]

Ts[Rs(tk)]
=

µ̂sn(ms[Rs(tk)])

T̂s(ms[Rs(tk)], Is[Rs(tk)])

For simplicity of notation, define msk and Isk as the decisions
made by server s for the frame that overlaps with time tk:

msk
M
=ms[Rs(tk)] , Isk

M
=Is[Rs(tk)] (4)

The bn[tk, tk+1) values are then defined:

bn[tk, tk+1)M
=δk

S∑
s=1

µ̂sn(msk)

T̂s(msk, Isk)
(5)

Each queue can easily update its Q̃n(tk) values via (3).
Further, it can be shown that Q̃n(tk) closely tracks the actual
queue value Qn(tk), so that for all tk we have:

Q̃n(tk)−
S∑
s=1

µmaxsn ≤ Qn(tk) ≤ Q̃n(tk) +

S∑
s=1

µmaxsn

Therefore, stabilizing the Q̃n(tk) processes ensures that all
actual queue processes are also stable. Formally, we say that
Q̃n(tk) is mean rate stable if limk→∞ E[Q̃n(tk)]/k = 0.

C. The Effective Penalty Rate

Define the effective penalty rate for server s on frame r to
be the ratio of the total energy incurred on the frame to the
total frame size: es[r]/Ts[r]. Define penalty rate function ps(t)
as the effective penalty rate associated with server s during the
current frame:

ps(t)
M
=es[Rs(t)]/Ts[Rs(t)]

The accumulated penalty due to server s up to time t is thus:∫ t
0
ps(τ)dτ

Because ps(t) is constant over any frame for server s, the
integral of ps(t) over the duration of a full frame r is equal to
the energy es[r] expended over that frame. If server s begins
a new frame at time tk, then the accumulated penalty up to
time tk is the sum of the energies expended on each frame:∫ tk

0
ps(τ)dτ =

∑Rs(tk)−1
r=0 es[r]

D. Time Averages

Consider an algorithm that makes decisions ms[r], Is[r] for
each s ∈ {1, . . . , S} and each frame r ∈ {0, 1, 2, . . .}. For
simplicity in this subsection, assume that, with probability 1,
the algorithm yields well defined frame averages es, T s, µsn,
as defined below:

es
M
= limR→∞

1
R

∑R−1
r=0 es[r] (6)

T s
M
= limR→∞

1
R

∑R−1
r=0 Ts[r] (7)

µsn
M
= limR→∞

1
R

∑R−1
r=0 µsn[r] (8)

Let R be a positive integer. The empirical average power
expended by server s over the first R frames is equal to the
total energy expenditure divided by the total time:∑R−1

r=0 es[r]∑R−1
r=0 Ts[r]

=
1
R

∑R−1
r=0 es[r]

1
R

∑R−1
r=0 Ts[r]

Taking a limit as R → ∞ gives the following expression for
time average power at server s:

lim
R→∞

∑R−1
r=0 es[r]∑R−1
r=0 Ts[r]

=
es

T s

That is, the time average power (energy per unit time) is equal
to the ratio of the average energy per frame to the average
frame size. This simple observation is often used in renewal-
reward theory [15].

Similarly, the time average rate that server s serves class n
jobs (in jobs per unit time) is equal to:

lim
R→∞

∑R−1
r=0 µsn[r]∑R−1
r=0 Ts[r]

=
µsn
T s

Because all queues must be stabilized, the total time average
rate of serving each queue n must be at least λn. Thus, the
minimum power required to stabilize the system is defined by
the following problem that optimizes ratios of time averages:

Minimize:
∑S
s=1

es
T s

Subject to:
∑S
s=1

µsn

T s
≥ λn ∀n ∈ {1, . . . , N}

ms[r] ∈Ms ∀s ∈ S,∀r ∈ {0, 1, . . .}
0 ≤ Is[r] ≤ Imaxs ∀s ∈ S,∀r ∈ {0, 1, . . .}

where we define S M
={1, . . . , S}.

Because the es[r], Ts[r], µsn[r] values are deterministically
bounded for all r, if the limits (6)-(8) hold with probability
1, the bounded moment convergence theorem ensures they are
the same as their frame average expectations [8]. That is:

limR→∞
1
R

∑R−1
r=0 E [es[r]] = es

Similarly, the frame average expectations of Ts[r] and µsn[r]
are equal to T s and µsn, respectively. This motivates our use
of frame average expectations in later sections.
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III. OPTIMALITY OVER RANDOMIZED ALGORITHMS

For each s ∈ {1, . . . , S}, define the following vector-valued
function:

vs(ms, Is)

= (ês(ms, Is), Ts(ms, Is), µs1(ms, Is), . . . , µsN (ms, Is))

Define As as the set of all vectors (es, Ts, µs1, . . . , µsN ) that
can be achieved as vectors vs(ms, Is) for some ms, Is that
satisfy ms ∈ Ms, 0 ≤ Is ≤ Imaxs . That is, As is the set of
all vectors that can be achieved over one frame, considering
all decision options available to server s. Define Conv(As) as
the closure of the convex hull of set As, being a closed and
bounded set. This set can be viewed as the closure of the set of
all expected vectors achievable in one frame by a randomized
choice over the control decisions.

Now define Λ as the closure of the set of all (non-negative)
rate vectors λ = (λ1, . . . , λN ) for which there exists an
algorithm that makes all queues mean rate stable. For each
λ ∈ Λ, define popt(λ) as the infimum time average power
expenditure achievable over the class of algorithms that make
all queues mean rate stable when the arrival vector is λ.

Theorem 1: A non-negative rate vector λ is in the set Λ if
and only if there exist vectors:

(es, Ts, µs1, . . . , µsN ) ∈ Conv(As)

for each s ∈ {1, . . . , S} such that:

S∑
s=1

µsn
Ts
≥ λn ∀n ∈ {1, . . . , N}

Theorem 2: For any λ ∈ Λ, the value popt(λ) is equal to
the solution of the following problem:

Minimize:
∑S
s=1

es
Ts

(9)

Subject to:
∑S
s=1

µsn

Ts
≥ λn ∀n ∈ {1, . . . , N} (10)

(es, Ts, µs1, . . . , µsN ) ∈ Conv(As) ∀s ∈ S(11)
The proofs of Theorems 1 and 2 are omitted for brevity (see

[9] for a related result).

A. Relation to Fractional Programming

Suppose Ms has a finite number of options for each s ∈
{1, . . . , S}. Then As is closed and bounded, as is Conv(As).
It can be shown that the problem (9)-(11) is equivalent to
finding values qs(ms) for each ms ∈ Ms, representing the
probability that server s chooses option ms, together with
constants Is ∈ [0, Imaxs ], to solve:

Minimize:
∑S
s=1

[
pidles Is+

∑
ms∈Ms

qs(ms)ê
proc
s (ms)

Is+
∑

ms∈Ms
qs(ms)D̂s(ms)

]
Subject to:

∑S
s=1

[ ∑
ms∈Ms

qs(ms)µ̂sn(ms)

Is+
∑

ms∈Ms
qs(ms)D̂s(ms)

]
≥ λn

∀n ∈ {1, . . . , N}
qs(ms) ≥ 0 ∀s ∈ S,ms ∈Ms∑

ms∈Ms
qs(ms) = 1 ∀s ∈ S

0 ≤ Is ≤ Imaxs ∀s ∈ S

The above problem is reminiscent of a linear fractional
program. Linear fractional programs have linear constraints
and a non-linear objective function with an affine numerator
and denominator. Efficient offline methods for solving them
are known, see, for example, [16] for general optimizations
and [17][18] for applications to embedded Markov chains.
An online solution is provided in [8][9]. The above prob-
lem is more complex due to fractional terms with different
denominators appearing in both the objective function and
in the constraints. Such problems are generally intractable.
However, the above problem has the special structure that all
fractional terms associated with the same server s have the
same denominator. We use this to construct a novel online
solution. Our resulting algorithm, presented in the next section,
also works when the sets Ms are infinite and when the rates
λn are unknown.

IV. THE DYNAMIC ALGORITHM

Our algorithm is parameterized by a constant V > 0 that
affects a performance tradeoff. Define S(tk) as the set of
servers that begin renewal frames at time tk. For example,
S(t0) = {1, . . . , S}, since all servers begin frames at time
t0 = 0. In general, S(tk) can be a strict subset of {1, . . . , S},
often consisting of only one server. The following algorithm
is implemented in a distributed fashion at each server:
• At each time tk, each server s ∈ S(tk) observes the

queues Q̃1(tk), . . . , Q̃N (tk) and chooses msk and Isk,
defined in (4), as the solution to the following problem:

Minimize: V ês(msk,Isk)−
∑N

n=1 Q̃n(tk)µ̂sn(msk)

T̂s(msk,Isk)
(12)

Subject to: msk ∈Ms , 0 ≤ Isk ≤ Imaxs (13)

breaking ties arbitrarily.
• Update queues Q̃n(tk) for each n ∈ {1, . . . , N} accord-

ing to (3).
The above algorithm can be viewed as a generalization

of the max-weight rule for queue stability from [19]. This
generalization allows multiple asynchronous servers and treats
joint stability and average power minimization.

A. The Isk and msk decisions
Here we more precisely specify the decisions msk and

Isk that solve (12)-(13). The definitions of T̂s(ms, Is) and
ês(ms, Is) in (1)-(2) imply that (12) is equivalent to:

V (êprocs (msk) + pidles Isk)−
∑N
n=1 Q̃n(tk)µ̂sn(msk)

D̂s(msk) + Isk

By fixing msk and taking a derivative of the above with respect
to Isk, it is easy to see that the above expression is non-
decreasing in Isk whenever:

V êprocs (msk) ≤ V D̂s(msk)pidles +

N∑
n=1

Q̃n(tk)µ̂sn(msk)

and is non-increasing in Isk otherwise. Define I∗sk(msk) as
the optimal Isk to choose, given a particular msk. Then:

I∗sk(msk) =


0 if V êprocs (msk) ≤ V D̂s(msk)pidles

+
∑N
n=1 Q̃n(tk)µ̂sn(msk)

Imaxs otherwise
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Thus, it suffices to choose msk ∈ Ms to minimize the
following expression (breaking ties arbitrarily):

V (êprocs (msk) + pidles I∗s (msk))−
∑N
n=1 Q̃n(tk)µ̂sn(msk)

D̂s(msk) + I∗s (msk)

If Ms is a finite set of options, as is typically the case, then
we simply evaluate the above expression for each option and
choose the minimizing one. In more complex cases whereMs

is an infinite set, the infimum of the above expression may not
be achievable over msk ∈ Ms. Fortunately, the next section
incorporates approximate minimization, where the msk and
Isk decisions result in an expression that differs by an additive
constant from the infimum. Finally, because it is sufficient to
come within an additive constant of the infimum, one can use
the actual queue values Qn(tk) in (12), rather than Q̃n(tk).

B. C-Additive Approximations

Define Q̃(tk)M
=(Q̃1(tk), . . . , Q̃N (tk)) as the queue vector at

time tk. Define val(Q̃(tk)) as the infimum objective function
value for the problem (12)-(13). An algorithm for making
decisions at each server over time is called a C-additive
approximation if for a given constant C ≥ 0, the following
holds for all times tk and all servers s ∈ S(tk):

V ês(msk, Isk)−
∑N
n=1 Q̃n(tk)µ̂sn(msk)

T̂s(msk, Isk)
≤ val(Q̃(tk)) +C

where msk, Isk are defined in (4). A 0-additive approximation
is an algorithm that chooses decisions that exactly solve (12)-
(13) on every sub-frame.

C. Performance Analysis

Define a Lyapunov function L(tk) by:

L(tk)M
=

1
2

∑N
n=1 Q̃n(tk)2

Define ∆(tk)M
=L(tk+1)− L(tk).

Lemma 1: For each tk, we have:

∆(tk) ≤ B(tk) +

N∑
n=1

Q̃n(tk)(an[tk, tk+1)− bn[tk, tk+1)) (14)

where B(tk) is defined:

B(tk)M
=

1
2

∑N
n=1(an[tk, tk+1)− bn[tk, tk+1))2

Proof: This follows immediately by squaring (3) and using
the fact that max[x, 0]2 ≤ x2.

Lemma 2: Suppose we use a C-additive approximation.
Then for each time tk and each server s ∈ S(tk), that is,
each server s that begins a new renewal frame at time tk, the
the decisions msk and Isk satisfy:

V ês(msk, Isk)−
∑N
n=1 Q̃n(tk)µ̂sn(msk)

T̂s(msk, Isk)

≤ C +
V es −

∑N
n=1 Q̃n(tk)µsn
Ts

for all vectors (es, Ts, µs1, . . . , µsN ) ∈ Conv(As).

Proof: Recall that As is the set of all vectors
(es, Ts, µs1, . . . , µsN ) achievable for server s by decisions
ms ∈ S and Is ∈ [0, Imaxs ]. Thus, by definition of val(Q̃(tk)):

val(Q̃(tk)) = inf
vs∈As

[
V es −

∑N
n=1 Q̃n(tk)µsn
Ts

]
By the definition of a C-additive approximation, we have for
each time tk and each server s ∈ S(tk):

V ês(msk, Isk)−
∑N
n=1 Q̃n(tk)µ̂sn(msk)

T̂s(msk, Isk)

≤ C + inf
vs∈As

[
V es −

∑N
n=1 Q̃n(tk)µsn
Ts

]
It can be shown that the infimum over vectors in As on the
right-hand-side of the above inequality is the same as the
infimum over vectors in Conv(As) (see [8]), which in turn is
equal to the infimum over the closure of Conv(As) (because
the infimum of a continuous function over a set is equal to
the infimum of the function over the closure of the set).

Lemma 3: Suppose we use a C-additive approximation.
Then there is a finite constant G > 0, independent of
the V parameter, such that for any vectors that satisfy
(es, Ts, µs1, . . . , µsN ) ∈ Conv(As) for all s ∈ {1, . . . , S},
and for each time tk, we have:

E

[
∆(tk) + V

S∑
s=1

∫ tk+1

tk

ps(t)dt

]
≤ E [δk] (G+ CS)

+V E [δk]

S∑
s=1

es
Ts

+

N∑
n=1

E [δkQn(tk)] [λn −
S∑
s=1

µsn
Ts

]

The constant G is related to the bounds µmaxsn , Dmin
s , Dmax

s ,
Imaxs and the rates λ1, . . . , λN . While G can be explicitly
computed, we omit this computation for brevity.

Proof: (Lemma 3) First note that the penalty rate function
ps(t) is constant over the sub-frame [tk, tk+1). During this
frame the server s uses decisions msk and Isk, and so:∫ tk+1

tk

ps(t)dt = δk
ês(msk, Isk)

T̂s(msk, Isk)

where we recall that δk = tk+1 − tk. Using this equality with
(14) gives the following drift-plus-penalty bound:

∆(tk) + V

S∑
s=1

∫ tk+1

tk

ps(t)dt

≤ B(tk) + δk

S∑
s=1

[
V ês(msk, Isk)

T̂s(msk, Isk)

]

+

N∑
n=1

Q̃n(tk)(an[tk, tk+1)− bn[tk, tk+1))

= B(tk) +

N∑
n=1

Q̃n(tk)an[tk, tk+1)

+δk

S∑
s=1

[
V ês(msk, Isk)−

∑N
n=1 Q̃n(tk)µ̂sn(msk)

T̂s(msk, Isk)

]
(15)
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where the final equality uses the definition of bn[tk, tk+1)
in (5). Now consider any vectors (es, Ts, µs1, . . . , µsN ) ∈
Conv(As) for s ∈ {1, . . . , S}. Fix a server s ∈ {1, . . . , S},
and define tsk as the time at which s begun the frame that
overlaps with time tk (so that tsk ≤ tk). Then by Lemma 2:

V ês(msk, Isk)−
∑N
n=1 Q̃n(tsk)µ̂sn(msk)

T̂s(msk, Isk)

≤ C +
V es −

∑N
n=1 Q̃n(tsk)µsn
Ts

(16)

Define θsn as an upper bound on the amount of service to
queue n during the interval [tsk, tk):

θsn
M
=(Dmax

s + Imaxs )
∑S
s=1

µmax
sn

Dmin
s

We thus have for all n, s, k:

Q̃n(tsk)− θsn ≤ Q̃n(tk) ≤ Q̃n(tsk) + an[tsk, tk)

Using this enables one to replace the Q̃n(tsk) values in (16)
with Q̃n(tk) values, while appropriately adding a fudge-factor.
This can be used in (15). By taking expectations and using
the fact that arrivals are Poisson and E [an[tk, tk+1)] = δkλn,
one can complete the derivation by computing the bound G
(computation omitted for brevity).

Theorem 3: Suppose λ ∈ Λ and we use a C-additive
approximation of the dynamic algorithm from Section IV.
Then all queues are mean rate stable, and:

(a) For all k > 0, average power satisfies:∑S
s=1 E

[∫ tk
0
ps(t)dt

]
E [tk]

≤ popt(λ) +
G+ CS

V

(b) If λ is interior to Λ, so that there is an ε > 0 such that
(λ1 + ε, . . . , λN + ε) ∈ Λ, then for all k > 0:∑N

n=1 E
[∫ tk

0
Q̃n(t)dt

]
E [tk]

≤
N∑
n=1

λn +
G+ CS +G0V

ε

for some non-negative constants G, G0 that are independent
of V and ε.

Proof: By Theorem 2, there exist vectors
(e∗s, T

∗
s , µ

∗
s1, . . . , µ

∗
sN ) ∈ Conv(As) such that:∑S

s=1 e
∗
s/T

∗
s = popt(λ) and

∑S
s=1 µ

∗
sn/T

∗
s ≥ λn for

all n ∈ {1, . . . , N}. Using these vectors in Lemma 3 gives:

E
[
∆(tk) + V

∑S
s=1

∫ tk+1

tk
ps(t)dt

]
≤ E [δk] (G+ CS)

+V E [δk] popt(λ)

Summing the above over all k ∈ {0, . . . ,K − 1} and using
the fact that E

[∑K−1
k=0 ∆(tk)

]
= E [L(tK)]− 0 ≥ 0 yields:

V
∑S
s=1 E

[∫ tK
0

ps(t)dt
]
≤ E [tK ] (G+CS)+V E [tK ] popt(λ)

from which the power bound of part (a) follows by rearranging
terms. That all queues are mean rate stable follows because
the drift of the quadratic Lyapunov function is bounded by a
constant [9]. We omit the proof of part (b) for brevity.

Theorem 3 shows that our algorithm can push average
power within O(1/V ) of optimality, with an O(V ) tradeoff
in average queue size.

V. CONCLUSIONS

This work develops a dynamic scheduling method for dis-
tributed control of multiple asynchronous servers. We showed
that the problem involves optimizing ratios of time averages,
and results in a challenging non-convex optimization problem
with fractional terms (with different denominators) in the ob-
jective function and in the constraints. However, we exploited
the physical structure of the system and developed an online
algorithm that solves the problem without knowledge of the
arrival rates. Finally, we note that the technique can be viewed
as a computational algorithm for purely deterministic problems
with similar structure, and may be useful in other contexts.
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