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Reversible Models for Wireless Multi-Channel
Multiple Access
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Abstract—This paper presents a network layer model for
a wireless multiple access system with both persistent and
nonpersistent users. There is a single access point with multiple
identical channels. Each user who wants to send a file first scans
a subset of the channels to find one that is idle. If at least one
idle channel is found, the user transmits a file over that channel.
If no idle channel is found, a persistent user will repeat the
access attempt at a later time, while a nonpersistent user will
leave. This is a useful mathematical model for situations where a
group of persistent users stay near an access point for an extended
period of time while nonpersistent users come and go. Users have
heterogeneous activity behavior, file upload rates, and service
durations. The system is a complex multi-dimensional Markov
chain. The steady state probabilities are found by exploiting a
latent reversibility property and leveraging a discrete Fourier
transform. This enables simple expressions for throughput and
blocking probability.

I. INTRODUCTION

Modern wireless multiple access networks provide a broad
frequency spectrum that can be divided into a large number
of channels. These channels can be used to simultaneously
support traffic from multiple users. However, it is not trivial to
keep track of the idle/busy state of each channel. This problem
is even more difficult when users have dynamic behavior. For
example, in internet-of-things applications, users may arrive
randomly, send a small burst of data, and then leave. There
is no time to coordinate a channel-sharing schedule. Further,
scanning the state of all channels before transmission can incur
a large time and energy overhead [1]. Wideband techniques for
sensing many channels simultaneously are treated in [2] [3]
[4]. Narrowband techniques for sensing one channel at a time
are in [5] [6] [7] [8] [9] [10] [11] [12]. Multi-channel scanning
for fast contention resolution is explored in [13] [14] [15].

This paper considers a simple network model of multi-
channel multiple access and studies the resulting network
dynamics. We assume there are m identical channels. To
reduce the time and energy cost of spectrum sensing, we
assume each user randomly scans only a subset of s channels,
where 1 ≤ s ≤ m. The probability of finding an available
channel depends on s and on the number of channels that
are currently busy. The value of s can be set according to
the particular narrowband (small s) or wideband (large s)
sensing techniques used, leveraging work such as in [1]- [12].
Even under this simple model, the network state dynamics
are complex. Users are heterogeneous, can be in different
activity states, and can have different file size parameters.
The network state includes which users are active and what
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activity states they are in. The state space is ginormous: It
grows exponentially with the number of users and can easily be
larger than the number of atoms in the galaxy. It is important
to develop simple mathematical models for these complex
networks.

This paper considers a continuous time Markov chain model
for these networks. While the number of states is very large,
the model has a hidden reversibility property that enables exact
computation of the steady state probabilities. To develop the
method, Section II first treats a simple situation where all
users are nonpersistent, meaning that each user arrives and
has only one file to send before departing. This situation
allows a simple expression for network throughput that holds
for multiple classes of nonpersistent users, each class having
different file size and arrival rate parameters.

A more complex scenario with both persistent users and
nonpersistent users is treated in Section III. A persistent user
is a user that remains close to the wireless access point for
a long duration of time, repeatedly sends many files, but
has random activity patterns described by a simple 3-state
diagram (see Fig. 1). The activity states for each user can
have different transition rate parameters. Fortunately, the same
reversibility technique can be used to compute the exact steady
state probabilities. Unfortunately, in this scenario it is not
clear how to sum over the (overwhelmingly large) number
of states to compute throughput and blocking probabilities.
This is a known challenge of reversible systems in other
contexts. Indeed, in reversible networks of truncated M/M/∞
queues, it can be shown that steady state probabilities can be
computed up to a scaling constant B, but calculating B to
within a reasonable approximation can be NP-hard in general
[16] (see also [17] for factor graph approximation methods).
It is not obvious if the model of the current paper admits
efficient computation. This was a significant challenge in the
development of this work. Fortunately, this paper overcomes
this challenge by showing the network model has structure that
admits computation of the desired throughput and blocking
probabilities in polynomial time. Our solution carefully sums
over all (exponentially many) probabilities by invoking a
transform domain argument via a discrete Fourier transform.

A. Network model

Consider a wireless system with a single access point that
has m identical channels, where m is a positive integer. Each
channel can support one file transmission, so that up to m files
can be transmitted simultaneously. Different types of users
want to upload files to the access point. To do this, they first
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need to find an idle channel. At the start of every upload
attempt, a user randomly scans a subset of the channels in
hopes of finding at least one channel that is idle. Let s be the
size of the subset that is scanned and assume that 1 ≤ s ≤ m.
Example numbers are m = 50 and s = 5, so that every user
randomly scans 5 of the 50 channels. If an idle channel is
found, the user sends a single file over that channel (if multiple
idle channels are found, the choice of which one to use is
made arbitrarily). If no idle channel is found, the users react
differently depending on their type: Persistent users try again
later, while nonpersistent users leave and do not return.

An example of this situation is when the access point is
in a fixed location, such as in a coffee shop. Persistent users
are customers who find a table at the coffee shop, stay for an
extended period of time, and use their wireless devices during
their stay. Non-persistent users either walk past the coffee shop
without entering, or enter only for a short time (perhaps to
place a take-out order).

The system operates in continuous time over the timeline
t ≥ 0. A channel j ∈ {1, . . . ,m} is said to be busy at time t
if it is currently being used, that is, if there is a user that is
transmitting a file over that channel. Let B(t) ∈ {0, 1, . . . ,m}
be the total number of channels that are busy at time t. Suppose
a user who is not currently transmitting attempts to access the
network at a time t for which B(t) = b. This user scans a
random subset of s channels to determine which (if any) are
not being used, with all subsets equally likely. Let θ(b) denote
the conditional probability that a user successfully finds an
idle channel, given that B(t) = b. We assume only that θ(b)
satisfies the following basic properties:

0 ≤ θ(b) ≤ 1 ∀b ∈ {0, 1, 2, . . . ,m} (1)
θ(b) > 0 ∀b ∈ {0, 1, 2, . . . ,m− 1} (2)
θ(m) = 0 (3)

Requirement (1) ensures θ(b) is a valid probability for each
b ∈ {0, 1, 2, . . . ,m}; requirement (2) ensures that it is possible
to utilize all m channels simultaneously; requirement (3)
enforces the physical constraint that the system cannot support
more than m active channels simultaneously.

For example, if s = m, so that all channels are scanned, then
we have θ(b) = 1 if b < m and θ(m) = 0. This is a nontrivial
special case because the network dynamics are still complex
in this case. However, it is useful to use smaller values of s
to reduce the time and energy required for scanning. If s = 1,
so that only one channel is scanned, and if this channel is
independently and uniformly selected over all m channels,
then θ(b) = 1−b/m for all b ∈ {0, 1, . . . ,m}. More generally,
if s ∈ {1, . . . ,m}, and a random subset of s distinct channels
is scanned independently and uniformly over all subsets of
size s, it can be shown that:

θ(b) =

{
1 if b ∈ {0, 1, . . . , s− 1}
1−

(
b
m

) (
b−1
m−1

)
· · ·
(
b−(s−1)
m−(s−1)

)
if b ∈ {s, . . . ,m}

(4)
An interesting feature of this model is that the probability
of successfully finding an idle channel at time t depends
only on B(t), not on which types of users are using each
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Fig. 1. A state diagram showing the idle, waiting, and transmitting states for
persistent user j ∈ {1, . . . , n}.

channel. However, B(t) is not enough to describe the state
of the system: The full system state is described by a multi-
dimensional Continuous Time Markov Chain (CTMC).

Section II considers the case when all users are nonpersis-
tent, meaning that each user arrives and attempts to send one
file before it leaves. Section III treats the more complex case
with both persistent and nonpersistent users. Each persistent
user j ∈ {1, . . . , n} has a 3-state activity process with idle,
waiting, and transmitting states (see Fig. 1). The transition
rates between the three states can be different for each user. It
is important to emphasize that the 3-state process shown for a
single persistent user j in Fig. 1 is not a complete description
of a Markov chain. That is because the transition rate for the
W → T transition is ujθ(B(t)), a multiplication of the user
j attempt rate uj with the success probability θ(B(t)). Here,
B(t) is the time-varying number of busy channels. Therefore,
the user-j transition rate for W → T itself depends on the
state of all other users.

B. Related work

Our system model is similar to recent work in [18] that
also treats multi-channel systems that scan a subset of the m
available channels before transmission. The work in [18] also
assumes that users are in one of three states (idle, probing,
transmitting), which is similar to our 3-state persistent user
structure. The work in [18] does not solve the resulting steady
state probabilities, rather, it develops mean-field results that
are asymptotically accurate when all users have identical pa-
rameters and when the network size scales to infinity, in which
case a limiting ordinary differential equation (ODE) governs
large scale behavior. Related mean field analysis and limiting
ODE analysis are considered for Aloha-type systems in [19]
and CSMA-type systems in [20], again assuming a large
system limit and homogeneous conditions. In contrast, our
work provides the exact steady state values for the continuous
time Markov chain for any system size and for heterogeneous
user parameters. It also treats the case when both persistent
and nonpersistent users are present. It should be emphasized
that our work exploits a latent reversibility property that does
not exist in the model of [18]. In particular the 3-state user
dynamics of [18] can roughly be viewed as similar to those of
Fig. 1 with the exception that there is no W → I transition,
and the T →W transition is replaced with a T → I transition.
Intuitively it is clear that if it is possible to have a transition
I → W but impossible to have a transition in the opposite
direction, then reversibility fails. It is not clear if exact steady
state behavior can be obtained when reversibility fails; that
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remains an important open question and mean field analysis
is a central technique for those situations.

Recent work that uses a distributed multi-armed bandit
approach to drive users towards a utility optimal configuration
is in [21] and a related regret analysis for a distributed 2-
user protocol is in [22]. A general theory of reversibility
in Markov chains is described in [23] and reversibility for
truncated M/M/∞ systems is in [24] (see also [16] [17]).
The Markov chain we consider in Section II has a structure
similar to (but not the same as) the open migration processes
described in [23].

Our model of persistent users accounts for heterogeneous
human user activity, where users can be in various states
depending on their activity patterns. The topic of mathematical
models for human-based activity patterns for wireless commu-
nication is of recent interest. For example, related Markov-
based models of human user activity and human response
times are treated in [25] for wireless scheduling; related 2-state
user activity models are used in [26] to treat file downloading
as a constrained restless bandit problem.

C. Our contributions

The first main contribution is the presentation of a math-
ematical model for the dynamics of multi-channel wireless
networks. The model allows users to have heterogenous file
size and arrival parameters, which is useful for treating human-
based activity patterns. The model captures the ginormous
state space of the network. However, our analysis leverages
a hidden reversibility property that, we show, allows exact
analysis of the steady state probabilities. The second main
contribution is our polynomial-time computation formula that
leverages Fourier theory to sum over an exponentially-large
number of probabilities to obtain individual blocking proba-
bility and throughput for each user.

II. NON-PERSISTENT USERS

This section considers the simple case where all users are
nonpersistent. Each user arrives once and makes one attempt
to access a channel. If the access is successful then the user
transmits its file, else it leaves and does not return. Assume
there are k classes of such users, where k is a positive integer.
Users from each class i ∈ {1, ..., k} arrive according to
independent Poisson processes with rates λ1, . . . , λk. Each
user has one file to send. File service times are independent.
Files of class i have service times that are exponentially
distributed with parameter µi. Assume that λi > 0 and µi > 0
for all i ∈ {1, . . . , k}. The different classes can be used
to represent different communities of users who may have
different arrival rate and file size parameters.

A. Markov chain model

The system can be modeled as a continuous time Markov
chain (CTMC) with vector state X(t) = (X1(t), ..., Xk(t)),
where Xi(t) is the number of type i files currently transmitting
at time t. The state space S is given by the set of all vectors
(x1, ..., xk) that have nonnegative integer components such

that
∑k
i=1 xi ≤ m, where m is the number of channels

(assume m is a positive integer). Let B(t) =
∑n
i=1Xi(t) be

the number of busy channels. A user that arrives to the system
scans a subset of the channels to find one that is idle. For each
b ∈ {0, 1, ...,m} define θ(b) as the conditional probability that
a newly arriving user finds an available channel, given that
B(t) = b. The θ(b) values are assumed to satisfy (1)-(3).

To completely describe the Markov chain structure of this
system, it remains to specify the transition rates. The tran-
sition rates qw,z between two states w = (x1, ..., xk) and
z = (y1, ..., yk) are as follows: Fix an integer j ∈ {1, ..., k}
and define ej = (0, 0, ..., 0, 1, 0, ..., 0) as the vector that is 1
in entry j and zero in all other entries. Let x = (x1, ..., xk)
and x+ ej = (x1, ..., xj + 1, .., xk) be two states in the state
space S. Then
• Transition rate x→ x+ ej is given by

qx,x+ej = λjθ
(∑k

i=1 xi

)
This is the product of the arrival rate λj with the success
probability given that the new user scans when the system
state is x = (x1, ..., xk).

• Transition rate x+ ej → x is given by

qx+ej ,x = (xj + 1)µj

This is because there are currently (xj + 1) jobs of
type j that are actively using channels, and each has an
exponential service rate equal to µj .

Since the system state can change by at most one at any
instant of time, there are no other types of transitions and so
qw,z = 0 for states w, z ∈ S that do not have the above form.
It is not difficult to see that the Markov chain is irreducible,
so that it is possible to get from any state of the state space S
to any other state in S (the requirement (2) and the fact that
λi > 0 for all i ∈ {1, . . . , k} ensure this).

B. Basic Markov chain theory

This subsection recalls basic Markov chain theory (see, for
example, [23] [27] [24]). Consider a continuous time Markov
chain (CTMC) with a finite or countably infinite state space
S and transition rates qw,z ≥ 0 for all w, z ∈ S. Assume
that qw,w = 0 for all w ∈ S . The states of S can be viewed
as nodes of a graph; the links of the graph are defined by
state-pairs (w, z) such that qw,z > 0; the CTMC is said to be
irreducible if this graph has a path from every node to every
other node. A probability mass function over the state space
S is a vector (p(w))w∈S that satisfies p(w) ≥ 0 for all w ∈ S
and

∑
w∈S p(w) = 1. The goal is to find a mass function that

satisfies the following global balance equations:

p(w)
∑
z∈S

qw,z =
∑
z∈S

p(z)qz,w ∀w ∈ S (5)

It is well known that if the CTMC is irreducible and has a
finite state space, then there is exactly one probability mass
function (p(w))w∈S that solves (5), and this is the steady state
mass function.
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Fig. 2. A birth-death-like state diagram of a single user class i ∈ {1, . . . , k}.

An irreducible CTMC is said to be reversible if there
exists a probability mass function (p(w))w∈S that satisfies the
following detailed balance equations:

p(w)qw,z = p(z)qz,w ∀w, z ∈ S (6)

It is well known that if a probability mass function (p(w))w∈S
solves the detailed balance equations, then it also satisfies
the global balance equations and hence is the unique steady
state. However, not all CTMCs are reversible. That is, not all
CTMCs have steady states that satisfy (6).

C. Steady state for nonpersistent users

It is not immediately apparent whether or not the Markov
chain for our system of nonpersistent users is reversible.
Fortunately, the system is similar to an open migration process
with reversibility properties as described in [23]. An open
migration process is a system with k colonies that can be
described by a Markov chain of the type (X1(t), ..., Xk(t)),
where Xi(t) is the current population of colony i, transitions
between states occur when a single member of colony i moves
to colony j, and transition rates for such events depend only
on the current population Xi. Such a migration process can
almost be used to model the multi-access system of interest
because the number of type i jobs currently using channels can
intuitively be viewed as the population of “colony i.” However,
the multi-access system is not a migration system because the
transition structure is different and transition rates depend on
the sum population x1 + ... + xk. Nevertheless, reversibility
properties can be established. To this end, define

ρi = λi/µi ∀i ∈ {1, ..., k}

ρ =

k∑
i=1

ρi

The technique behind the next theorem is to guess a
probability mass function and then show the guess satisfies
(6). The structure of the guess is not obvious. However, to
gain intuition, note that we constructed our guess for the
probability of state (x1, . . . , xk) by observing the “birth-death-
like” structure of the system in Fig. 2 and guessing that
steady state is a product of terms that include factors of
the type ρxii /xi! (which are also factors in the steady state
mass function of a 1-dimensional M/M/∞ queue) as well
as factors that multiply the chain of success probabilities θ(r)
over all r ∈ {0, . . . , x1 + ...+ xk − 1}. Once a good guess is
made, it is not difficult to verify the guess satisfies the detailed
balance equations.

Theorem 1: Under this nonpersistent user model with any
success probability function θ(b) that satisfies (1)-(3) we have

a) The CTMC is reversible and the unique steady state
distribution is, for all (x1, . . . , xk) ∈ S:

p(x1, ..., xk) = A ·

(−1+x1+...+xk∏
r=0

θ(r)

)
k∏
i=1

ρxii
xi!

(7)

where A is the positive constant that makes the probabilities
sum to 1, and we use the convention that

∏−1
r=0 θ(r) = 1.

b) The steady state probability that b channels are in use is

P

[
k∑
i=1

Xi = b

]
= A ·

(
b−1∏
r=0

θ(r)

)
ρb

b!
∀b ∈ {0, 1, . . . ,m}

where (X1, ..., Xk) represents a random state vector with
distribution equal to the steady state distribution.

c) The constant A is equal to

A = p(0, 0, ..., 0) =
1∑m

b=0

(∏b−1
r=0 θ(r)

)
ρb

b!

(8)

Proof: Define the mass function p(x) according to (7). It
suffices to show that this p(x) mass function satisfies (6). Since
there are only two types of possible transitions, it suffices to
show that

p(x)λjθ
(∑k

i=1 xi

)
= p(x+ ej)(xj + 1)µj ∀x, x+ ej ∈ S

Substituting the guess p(x) defined in (7) verifies the above
equations hold. The guess is correct. This proves part (a).

To prove (b), we have

P

[
k∑
i=1

Xi = b

]
=

∑
x∈S:(x1+...+xk)=b

p(x)

=
∑

x∈S:(x1+...+xk)=b

A ·

(
b−1∏
r=0

θ(r)

)
k∏
i=1

ρxii
xi!

= A ·

(
b−1∏
r=0

θ(r)

) ∑
x∈S:(x1+...+xk)=b

(
k∏
i=1

ρxii
xi!

)
︸ ︷︷ ︸

(ρ1+...+ρk)b/b!

where we have used the multinomial expansion:

(ρ1 + . . .+ ρk)
b =

∑
x∈S:(x1+...+xk)=b

(
b!

x1!x2!...xk!

) k∏
i=1

ρxii

This proves (b). Part (c) immediately follows from part (b).
The success probability of each newly arriving job depends

on the current state of the system and not on the class of
that job. Since jobs of each class arrive as Poisson arrivals,
and Poisson arrivals see time averages (“PASTA,” see, for
example, [24]), it follows that jobs of all classes i ∈ {1, ..., k}
have the same long term success probability for finding an
available channel. Define φ as this long term success proba-
bility. Specifically, if (x1, ..., xk) represents a random vector
with distribution given by the steady state distribution p(x) in
Theorem 1, then φ is defined

φ = P [success] =
∑
x∈S

P [success|(x1, ..., xk) = x]p(x)
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With this definition of the success probability φ, the long term
rate of accepted jobs of type i is λiφ jobs/time, and the long
term rate of dropped jobs of type i is λi(1 − φ) jobs/time.
Remarkably, the value of φ depends only on ρ, not on the
individual ρi values, as shown in the following corollary.

Corollary 1: For any function θ(b) that satisfies (1)-(3), the
long term success probability φ is given by

φ = A ·
∑m
b=0

(∏b
r=0 θ(r)

)
ρb

b! (9)

where A is the constant defined in (8).
Proof: The long term success probability is given by

φ = P [success]

=

m∑
b=0

P
[
success|

∑k
i=1Xi = b

]
︸ ︷︷ ︸

θ(b)

P

[
k∑
i=1

Xi = b

]

and the result follows by substituting P
[∑k

i=1Xi = b
]

from
part (b) of Theorem 1.

Corollary 1 shows that the success probability φ depends
only on the conditional success probabilities θ(b) and on the
loading parameter ρ =

∑k
i=1 λi/µi. This means that we can

understand the success probability through the single param-
eter ρ, regardless of the number of classes k of nonpersistent
users and regardless of the specific λi and µi parameters for
each class i ∈ {1, . . . , k}. Notice that, by Little’s theorem,
ρ =

∑k
i=1 λi/µi is equal to the steady state average number

of actively transmitting users there would be in a virtual system
with infinite resources: The virtual system has an infinite
number of servers, each new file of the virtual system receives
its own server with probability 1, and no files are dropped.

D. Plots for example cases
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Fig. 3. Success probability for nonpersistent traffic with m = 10 channels.

Fig. 3 plots the success probability φ versus s (the number
of channels that each user scans) for the case of m = 10
channels and using the θ(b) probabilities given in (4). The
values ρ ∈ {2, 3, 5, 10, 15} are shown. The case ρ = 10 is
when the average number of active users in a virtual system
with infinite resources is equal to 10, the number of channels
in the actual system. This can be viewed as a threshold case:
When ρ exceeds m (as plotted for the case ρ = 15 in Fig. 3)

0 10 20 30 40 50 60 70 80 90 100

s  (number of channels scanned)

0.4

0.5

0.6

0.7

0.8

0.9

1

  
(s

u
c
c
e
s
s
 p

ro
b
a
b
ili

ty
)

Non-persistent traffic (m=100 channels)

=50

=150

=100

=30

=20

Fig. 4. Success probability for nonpersistent traffic with m = 100 channels.

then success probability is necessarily strictly less than 1 even
when the number of channels sensed is equal to m. On the
other hand, by choosing s = 2 we obtain a success probability
above 0.8 when ρ ∈ {2, 3, 5}.

Better performance is obtained when the number of chan-
nels is increased while the ρ values are increased by the
same factor: Fig. 4 shows performance for the case m = 100
channels, with corresponding ρ values that maintain the same
ratio of ρ/m as in the first figure. It can be seen that success
probability increases to near 1 when the loading is small
(ρ/m ≤ 1/2). In all of the plots of Figs. 3-4 it can be seen that
success probability is relatively flat for large values of s: A
considerable amount of energy can be saved by just scanning
a small subset of the total number of channels.

III. PERSISTENT AND NONPERSISTENT USERS

Fix n as a positive integer and suppose that, in addition
to the k classes of nonpersistent users, there are n individual
persistent users with activity states Aj(t) ∈ {I,W, T} and
behavior parameters αj , βj , uj , vj , as shown in Fig. 1. The
k classes of nonpersistent users have parameters λi and µi
for all i ∈ {1, . . . , k}. The values of all parameters λi, µi,
αj , βj , uj , vj for i ∈ {1, . . . , k} and j ∈ {1, . . . , n} are
assumed to be positive.

Recall that Xi(t) is the current number of nonpersistent
users of type i transmitting, for i ∈ {1, . . . , k}. The system
state is W (t) = (X1(t), . . . , Xk(t);A1(t), . . . , An(t)). The
total number of busy channels is

B(t) =

k∑
i=1

Xi(t) +

n∑
j=1

1{Aj(t)=T}

where 1{Aj(t)=T} is an indicator function that is 1 if persistent
user j is transmitting at time t, and 0 else. Let θ(b) be a
success probability function defined for b ∈ {0, 1, . . . ,m} that
satisfies (1)-(3) (an example θ(b) function is in (4)). As before,
if any user attempts access at a time t such that B(t) = b,
its conditional success probability is θ(b). Notice from Fig. 1
that the transition rates for the W → T transitions of each
persistent user depend on the current value of B(t).
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A. Markov chain model

Let S be the state space of the system: This is the set
of all vectors w = (x; a), where x = (x1, . . . , xk) and
a = (a1, . . . , an), such that xi ∈ {0, 1, 2, . . .} for all
i ∈ {1, . . . , k}, aj ∈ {I,W, T} for all j ∈ {1, . . . , n}, and

k∑
i=1

xi +

n∑
j=1

1{aj=T} ≤ m

For simplicity of notation, for each w ∈ S define busy(w) as
the number of busy channels associated with state w:

busy(w) =
k∑
i=1

xi +

n∑
j=1

1{aj=T}

To completely describe the transition rates of this CTMC, let
w = (x; a) and z = (y; b) be two distinct states in S. There
are three types of transitions that can occur between states w
and z:
• Non-persistent user i ∈ {1, . . . , k} (xi ↔ xi+1): Recall

that ei = (0, ..., 0, 1, 0, ..., 0) is a vector of size k with a
1 in component i and zeros in all other components.

– Transitions (x; a)→ (x+ ei; a) have rate

qw,z = λiθ(busy(w))

– Transitions (x+ ei; a)→ (x; a) have rate

qz,w = (xi + 1)µi

• Persistent user j ∈ {1, . . . , n} (I ↔W , see Fig. 1):
– Transitions

(x, a1, . . . , aj−1, I, aj+1, . . . , an)

→ (x, a1, . . . , aj−1,W, aj+1, . . . , an)

have rate qw,z = αj .
– Transitions

(x, a1, . . . , aj−1,W, aj+1, . . . , an)

→ (x, a1, . . . , aj−1, I, aj+1, . . . , an)

have rate qz,w = βj .
• Persistent user j ∈ {1, . . . , n} (W ↔ T , see Fig. 1):

– Transitions

(x, a1, . . . , aj−1,W, aj+1, . . . , an)

→ (x, a1, . . . , aj−1, T, aj+1, . . . , an)

have rate qw,z = ujθ(busy(w)).
– Transitions

(x0, a1, . . . , aj−1, T, aj+1, . . . , an)

→ (x0, a1, . . . , aj−1,W, aj+1, . . . , an)

have rate qz,w = vj .
It is not difficult to show that the CTMC is irreducible.
Indeed, every state can reach the state (0, I, I, I, ..., I) from a
sequence of transitions that includes no new arrivals, has each
transmitting user finish, and has all persistent users eventually
move to the Idle state. Likewise, the state (0, I, I, I, ..., I) can
reach every state in S.

B. Steady state probabilities

Motivated by the “birth-death-like” structure of the per-
sistent user dynamics shown in Fig. 1 and by the structure
of the steady state probabilities for the nonpersistent user
case, we make the following guess about steady state: With
w = (x1, . . . , xk; a1, . . . , an) we guess that for all w ∈ S:

p(w) = B ·

busy(w)−1∏
r=0

θ(r)

( k∏
i=1

ρxii
xi!

)

×
n∏
j=1

(
αj
βj

)1{aj=W}
(
αjuj
βjvj

)1{aj=T}

(10)

where ρi = λi/µi for all i ∈ {1, . . . , k} and B is a constant
that makes all probabilities sum to 1.

Theorem 2: The CTMC for this system with persistent
and nonpersistent users is reversible and the steady state
distribution is given by (10).

Proof: It suffices to show that p(w) defined by (10)
satisfies the detailed balance equations. The proof is omitted
for brevity (see [28]).

The steady state probabilities in the above theorem can be
simplified by aggregating all nonpersistent users. Consider a
state w = (x1, . . . , xk; a1, . . . , an) ∈ S. Define x =

∑k
i=1 xi

as the number of nonpersistent users associated with this state.
Define q(x; a1, . . . , an) as the steady state probability that the
total number of nonpersistent users is x and the state of the
persistent users is (a1, . . . , an). Define a = (a1, . . . , an) and
define

busyp(a) =
∑n
j=1 1{aj=T}

where the p subscript emphasizes that busyp(a) counts the
number of busy persistent users from the vector a =
(a1, . . . , an). In particular, the total number of busy channels
for a vector (x, a) is x+ busyp(a). A vector (x, a) is said to
be a legitimate vector if x + busyp(a) ≤ m. The next result
allows the aggregatated steady state to be written purely in
terms of ρ.

Corollary 2: For this system with persistent and nonpersis-
tent users we have for all legitimate vectors (x, a1, . . . , an):

q(x; a1, . . . , an)

= B ·

x+busy
p
(a)−1∏

r=0

θ(r)


×

n∏
j=1

(
αj
βj

)1{aj=W}
(
αjuj
βjvj

)1{aj=T} ρx

x!
(11)

where B is the same constant used in Theorem 2, ρ =∑k
i=1 ρi, and ρi = λi/µi for i ∈ {1, . . . , k}.

Proof: Omitted for brevity (see [28]).

C. Solution complexity

The formulas (10) and (11) establish steady state probabil-
ities for a very large number of system states. The number of
states grows exponentially in the problem size. For example,
just considering the 3 possibilities I,W, T for each persistent
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user, we find the number of states is at least 3min[n,m]. If
min[n,m] ≥ 180 then 3min[n,m] ≥ 1085, meaning that the
number of states is larger than the current estimate for the
number of atoms in the universe. Thus, it is not immediately
clear how to compute the constant B, and how to use the
formulas (10) and (11) to calculate things such as the marginal
fraction of time that persistent user 1 is busy, the throughput
and success probability of persistent user 1, and the throughput
and success probabilities of the different classes of nonpersis-
tent users. For some problems that involve reversible networks,
such as the admission control problems in [24], it can be
shown that even calculating the proportionality constant B to
within a reasonable approximation is NP-hard [16] (see also
[17] for factor graph approximation methods). Fortunately, our
problem has enough structure to allow efficient (polynomial
time) computation of all of these things via a discrete Fourier
transform. That is developed next.

D. Calculating B
Define

g = min[m,n]

We can sum the probabilities in (11) by grouping states
into those that have b persistent users that are busy, for
b ∈ {0, 1, . . . , g}, and x nonpersistent users:

1 =

g∑
b=0

m−b∑
x=0

∑
a:busy

p
(a)=b

q(x, a1, . . . , an)

= B

g∑
b=0

m−b∑
x=0

ρx

x!

(
x+b−1∏
r=0

θ(r)

)

×
∑

a:busy
p
(a)=b

n∏
j=1

(
αj
βj

)1{aj=W}
(
αjuj
βjvj

)1{aj=T}

= B

g∑
b=0

m−b∑
x=0

ρx

x!

(
x+b−1∏
r=0

θ(r)

)
cb (12)

where we define cb for all b ∈ {0, 1, . . . , n}

cb =
∑

a:busy
p
(a)=b

n∏
j=1

(
αj
βj

)1{aj=W}
(
αjuj
βjvj

)1{aj=T}

(13)

Notice that these cb values are defined for all b ∈ {0, 1, . . . , n},
even if the number of persistent users n is larger than the
number of channels m (so that only c0, . . . , cm are used in
(12)).

It is difficult to obtain the value of cb by a direct summation
in (13) because there are so many terms. However, we can
construct a related polynomial function f(z) defined for all
complex numbers z ∈ C:

f(z) =

n∏
j=1

[
1 +

(
αj
βj

)
+ z

(
αjuj
βjvj

)]
For any given z ∈ C, the value f(z) can be easily computed as
a product of n (complex-valued) terms. We make the crucial
observation:

f(z) =

n∑
b=0

cbz
b

This motivates a discrete Fourier transform approach: Define
i =
√
−1 and define

Ct = f(e
−2πit
n+1 ) =

n∑
b=0

cbe
−2πibt
n+1 ∀t ∈ {0, 1, . . . , n}

The sequence {Ct}nt=0 is the discrete Fourier transform of
{cb}nb=0. The inverse transform gives

cb =
1

n+ 1

n∑
t=0

Cte
2πitb
n+1 ∀b ∈ {0, 1, . . . , n}

Of course, these values of cb only need to be computed for b ∈
{0, 1, . . . , g} for use in (12). These findings are summarized
in the following lemma.

Lemma 1: (Calculating B) The value B in Theorem 2 and
Corollary 2 is

B =
1∑g

b=0

∑m−b
x=0

ρx

x!

(∏x+b−1
r=0 θ(r)

)
cb

(14)

where g = min[n,m] and cb is defined

cb =
1

n+ 1

n∑
t=0

Cte
2πitb
n+1 ∀b ∈ {0, 1, . . . , g} (15)

with i =
√
−1 and with Ct given by

Ct =

n∏
j=1

[
1 +

(
αj
βj

)
+ e

−2πit
n+1

(
αjuj
βjvj

)]
∀t ∈ {0, 1, . . . , n}

Proof: The proof is contained in the development imme-
diately preceding the lemma.

E. Performance for the individual persistent users

Fix j ∈ {1, . . . , n}. Define P [Ij ], P [Wj ] and P [Tj ] as the
steady state probability that persistent user j is idle, waiting,
or transmitting, respectively (see Fig. 1). Define performance
variables γj and φj as follows:
• γj is the throughput of persistent user j. This is the rate

at which this user successfully accesses a channel of the
multi-access system. Because all files that successfully
access a channel are eventually served, γj is also the rate
of file service for persistent user j and so

γj = P [Tj ]vj (16)

• φj is the success ratio of persistent user j. This is the rate
of access successes divided by the rate of access attempts:

φj =
γj

P [Wj ]uj
(17)

The next two lemmas show that: (i) These values can be
obtained in terms of P [Ij ]; (ii) The probability P [Ij ] can be
computed via the discrete Fourier transform.

Lemma 2: For persistent user j ∈ {1, . . . , n} we have

P [Wj ] = P [Ij ](αj/βj)

P [Tj ] = 1− P [Ij ](1 + (αj/βj))

γj = vj − vjP [Ij ](1 + (αj/βj))

φj =
vjβj − vjP [Ij ](βj + αj)

ujαjP [Ij ]
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Proof: We use an argument similar to cut set equations
for CTMCs (in this case we use cuts on the incompletely
described CTMC of Fig. 1): Consider the 3-state picture of
Fig. 1 associated with persistent user j. The total number
of transitions I → W is always within 1 of the number of
transitions W → I . Hence, the long term time average rate of
transitions I → W (in units of transitions/time) is the same
as the long term rate for transitions W → I:

P [Ij ]αj = P [Wj ]βj =⇒ P [Wj ] = P [Ij ](αj/βj)

On the other hand we know P [Ij ] + P [Wj ] + P [Tj ] = 1 and
so

P [Tj ] = 1− P [Ij ](1 + (αj/βj))

The resulting values of γj and φj are obtained by (16) and
(17).

Lemma 3: For each persistent user j ∈ {1, . . . , n}, the value
of P [Ij ] is

P [Ij ] = B
∑min[n−1,m]
b=0

∑m−b
x=0

(∏x+b−1
r=0 θ(r)

)
ρx

x! cj,b (18)

where B is given in (14), ρ =
∑k
i=1(λi/µi), and cj,b is defined

by

cj,b =
1

n

n−1∑
t=0

∏
l∈{1,...,n}\j

[
1 +

(
αl
βl

)
+ e

−2πit
n

(
αlul
βlvl

)]
e

2πitb
n

∀b ∈ {0, 1, . . . ,min[n− 1,m]} (19)

Proof: Omitted for brevity (see [28]).

F. Performance for nonpersistent users

Recall that nonpersistent users arrive according to inde-
pendent Poisson arrival processes. Since Poisson arrivals see
time averages (PASTA), it holds that the fraction of time that
nonpersistent users of class i ∈ {1, . . . , k} see a system with
y busy channels is the same for all classes i and is equal to
the long term fraction of time that there are y busy channels.
Hence, all nonpersistent users see the same access success
probability, call it φ0, and we can show (details omitted for
brevity, see [28]):

φ0 = B
∑m
y=0

∑min[y,n]
b=0

ρy−b

(y−b)! (
∏y
r=0 θ(r)) cb

IV. VALIDATION ON TEST CASES

This section validates the results of the previous section (ob-
tained by the discrete Fourier transform) by considering simple
example cases and comparing to simulated performance.

A. Three identical persistent users

Consider the following test case with m = 5 channels and
where each user scans a subset s = 2 of these channels. There
is one class of nonpersistent traffic with λ1 = 1 and µ1 = 2, so
that ρ = 1/2. There are three persistent users with identical
parameters αj = α, βj = β, uj = u, vj = v for all j ∈
{1, 2, 3} with

α = 1;β = 1;u = 5; v = 10

We compare the exact success probabilities φ0, φ1, φ2, φ3 and
the persistent user state probabilities P [Ij ], P [Wj ], P [Tj ]
obtained by the formulas in the previous section with simula-
tion values. The exact values were calculated using complex
number multiplication in MATLAB (the imaginary parts of
all real-valued quantities were indeed found to be zero in
the MATLAB computation). The simulation was conducted
in MATLAB over a period of 107 transitions of the CTMC.
Access attempts that fail were also counted as transitions, even
though these transitions did not change the state of the CTMC.

Tables I-II report the results. The data from these tables
shows a good agreement between theory and simulation.

Type Success prob Simulated Exact
Non-persistent φ0 0.9530 0.9527

Persistent φ1 0.9676 0.9674
Persistent φ2 0.9675 0.9674
Persistent φ3 0.9670 0.9674

TABLE I
A COMPARISON OF SIMULATED AND EXACT VALUES FOR SUCCESS

PROBABILITY.

Persistent Users P [Ij ] P [Wj ] P [Tj ]
User 1 Simulation 0.4028 0.4024 0.1948
User 2 Simulation 0.4021 0.4030 0.1949
User 3 Simulation 0.4035 0.4019 0.1946

Exact 0.4026 0.4026 0.1947
TABLE II

A COMPARISON OF SIMULATED AND EXACT VALUES FOR STATE
PROBABILITIES.

B. Two classes of persistent users (three in each class)
This test case considers m = 10 channels and s = 2. This

test case considers two classes of persistent users (as defined
by the αj , βj , uj , vj parameters) with three users in each class:
• Persistent class A: α = 1;β = 1;u = 5; v = 10
• Persistent class B: α = 1;β = 1;u = 5; v = 1

In particular, class A persistent users have the same parameters
as the previous subsection, while class B persistent users have
file that take 10 times longer to serve. There is a single
nonpersistent class with parameters λ1 = 1, µ1 = 1 (so that
ρ = 1).

As before, we compare the exact theoretical values from
the previous section with simulated values obtained over a
simulation with 107 transitions. The results are shown in
Tables III-V. Again there is good agreement between theory
and simulation. Notice that class B persistent users spend
much more time in the transmitting state. These users also
have a slightly higher access success probability. Intuitively,
this is because the average time that a class B user spends
transmitting a file over a channel is 10 times longer than
class A users and nonpersistent users. Thus, when a class B
user wants to access a channel, this particular class B user is
certainly not currently occupying a channel, which is one less
channel-hogger to worry about.

C. Scaling the number of channels
We now consider scaling the network size by a scale param-

eter k ∈ {1, 2, . . . , 10}. The number of channels scanned is
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Type Success prob Simulated Exact
Non-persistent φ0 0.8819 0.8822
Persistent A φ1 0.8940 0.8937
Persistent A φ2 0.8938 0.8937
Persistent A φ3 0.8939 0.8937
Persistent B φ4 0.9213 0.9209
Persistent B φ5 0.9206 0.9209
Persistent B φ6 0.9207 0.9209

TABLE III
TWO CLASSES OF PERSISTENT USERS: A COMPARISON OF SIMULATED

AND EXACT VALUES FOR SUCCESS PROBABILITY.

Persistent Class A P [Ij ] P [Wj ] P [Tj ]
User 1 Simulation 0.4086 0.4090 0.1823
User 2 Simulation 0.4094 0.4084 0.1822
User 3 Simulation 0.4093 0.4082 0.1825

Exact 0.4087 0.4087 0.1826
TABLE IV

TWO CLASSES OF PERSISTENT USERS: A COMPARISON OF STATE
PROBABILITIES FOR CLASS A PERSISTENT USERS.

fixed at s = 2. For each k ∈ {1, 2, . . . , 10} there are m = 20k
channels (so the number of channels increases from 20 to 200).
There are three classes of users and the number of users in
each class increases linearly with k:
• Non-persistent users: There is a single class of nonper-

sistent users with µ1 = 1 and λ1 = 3k (so ρ = 3k).
• Type A persistent users: There are 5k persistent users of

Class A, defined by parameters:

[αA, βA, uA, vA] = [0.5, 0.5, 5, 10]

• Type B persistent users: There are 5k persistent users of
Class B, defined by parameters:

[αB , βB , uB , vB ] = [0.5, 0.5, 5, 1]

Notice that Type B persistent users and Non-persistent users
have the same average file size of 1/µ1 = 1/vB = 1,
while Type A persistent users have average file size that is
10 times smaller (1/vA = 1/10). The data is plotted in
Fig. 5. The solid curves of Fig. 5 represent exact values
calculated by the formulas of the previous section, while the
diamonds correspond to simulated values over a simulation of
107 transitions.

V. CONCLUSION

This paper considers a Markov chain model for wireless
multi-channel multiple access with heterogenous users. When
all users are nonpersistent and send at most one file, a simple
expression for success probability was derived that depends
only on m, s, and the system loading ρ =

∑k
i=1 λi/µi, where

k is the (arbitrarily large) number of user classes and λi, µi

Persistent Class B P [Ij ] P [Wj ] P [Tj ]
User 4 Simulation 0.1507 0.1509 0.6984
User 5 Simulation 0.1533 0.1512 0.6955
User 6 Simulation 0.1515 0.1510 0.6976

Exact 0.1514 0.1514 0.6972
TABLE V

TWO CLASSES OF PERSISTENT USERS: A COMPARISON OF STATE
PROBABILITIES FOR CLASS B PERSISTENT USERS.
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Fig. 5. Success probability versus network size. The solid curves are com-
puted from the exact formula; the diamonds show corresponding simulated
values for simulations over 107 transitions of the CTMC. The number of
channels scanned is fixed at s = 2.

are the arrival rate and file size parameters of each class. The
case with both persistent and nonpersistent users was also
analyzed. Each persistent user has its own activity parameters
and behaves according to a 3-state process with idle, waiting,
and transmitting states. The exact steady state values were
also derived in this setting. An efficient method for summing
over the overwhelmingly large number of state probabilities to
obtain the individual performance of each user was developed
using a discrete Fourier transform.
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