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An updated version of these notes is on the following clickable link:
https://ee.usc.edu/stochastic-nets/docs/multi-access-renewal-theory.pdf

I. INTRODUCTION

These notes discuss multiple access techniques for data networks. This is part of the course material for the graduate course
EE 550 at USC. First, the notes describe a result of renewal theory that follows directly from the law of large numbers. Next,
the renewal theory result is applied to calculate throughput and energy expenditure in multiple access scenarios. A discussion of
Robbins-Monro iterations for dynamically adjusting a transmit probability for basic multiple access scenarios is also discussed.
The appendices of these notes contain details that may be of independent interest but are not required for the course.

A. Some references

Additional material on probability, Markov chains, and renewal theory is in [1][2]. A stabilized version of slotted Aloha is
investigated in [3] for the case of an infinite number of users (all with one packet) when the number of users N [t] is unknown.
There, an estimate N̂ [t] is used. The estimate is dynamically adjusted at the end of every slot based on idle/success/collision
feedback. Multi-packet reception techniques using ZigZag and SigSag decoding are in [4][5], see also MAC protocols in
[6][7]. Other “Coded-MAC” strategies that yield provably efficient random access schemes for multi-channel systems are in
[8][9][10][11][12][13][14][15][16].

II. PROBABILITY REVIEW

A probability space is defined by a triplet (Ω,F , P ) where: Ω is a nonempty set called the sample space; F is a collection
of subsets of Ω that satisfies the three properties of a sigma algebra on Ω (see Appendix A); P : F → [0, 1] is a function that
satisfies the three axioms of probability (see Appendix A). The function P is called a probability measure.

If A ⊆ Ω then Ac = {ω ∈ Ω : ω /∈ A}. The empty set is the subset of Ω with no elements and is denoted φ. It holds that
φ ⊆ Ω; Ωc = φ; φc = Ω. Since F has the three properties of a sigma algebra on Ω, it can be shown that (see Appendix A):
• Ω ∈ F .
• φ ∈ F .
• If A ∈ F then Ac ∈ F .
• The union of a finite or countably infinite number of sets in F is again a set in F .
• The intersection of a finite or countably infinite number of sets in F is again a set in F .
Elements of Ω are called outcomes. Thus, ω ∈ Ω if and only if ω is an outcome. Elements of F are called events. Thus, a

set A is an event if and only if A ∈ F . Since all elements of F are subsets of Ω, it holds that

(A ∈ F) =⇒ (A ⊆ Ω)

The reverse implication is only true in the special case when F is the set of all subsets of Ω. All events A ∈ F have probabilities
P [A]. Subsets of Ω that are not in F are not events, do not have probabilities, and are called nonmeasurable sets.

A. Random variables

Fix a probability space (Ω,F , P ). A random variable is a function X : Ω → R that satisfies the following measurability
property:1

{ω ∈ Ω : X(ω) ≤ x} ∈ F ∀x ∈ R (1)

The measurability property (1) automatically holds in the special case when F is the set of all subsets of Ω, and so every
function X : Ω→ R is a random variable in this special case.

1Fix X : Ω → R. It can be shown that X satisfies (1) if and only if {ω ∈ Ω : X(ω) ∈ B} ∈ F for all sets B ∈ B(R), where B(R) is the standard
Borel sigma algebra on R, defined as the smallest sigma algebra on R that contains all intervals of the type (−∞, x] for x ∈ R. The sigma algebra B(R)
is known to contain all finite or countably infinite subsets of R; all open subsets of R; all closed subsets of R; all subsets of R that can be obtained by a
countable procedure of complements, unions, or intersections of sets in B(R). Subsets of R that are not in B(R) are called non-Borel sets. Non-Borel sets
typically do not arise in practice but can be proven to exist using the axiom of choice.

https://viterbi-web.usc.edu/~mjneely/
https://ee.usc.edu/stochastic-nets/docs/multi-access-renewal-theory.pdf


NEELY, EE 550, UNIVERSITY OF SOUTHERN CALIFORNIA, SPRING 2024 2

It is convenient to denote the set {ω ∈ Ω : X(ω) ≤ x} with the compressed notation {X ≤ x}. If X is a random variable, the
measurability property implies that for each x ∈ R, the set {X ≤ x} is a valid event, hence it has a probability. The cumulative
distribution function (CDF) FX is defined by collecting these probabilities into a function. Indeed, define FX : R→ [0, 1] by

FX(x) = P [X ≤ x] ∀x ∈ R

where P [X ≤ x] is compressed notation for P [{X ≤ x}], that is

P [X ≤ x] = P [{X ≤ x}] = P [{ω ∈ Ω : X(ω) ≤ x}]
A probability experiment has one probability space (Ω,F , P ) and may involve many random variables Y,Z, {Xi}∞i=1 on

that same probability space, so they are all functions from Ω to R:

Y : Ω→ R
Z : Ω→ R
Xi : Ω→ R ∀i ∈ {1, 2, 3, . . .}

and their measurability property is with respect to the same sigma algebra F . The particular outcome ω ∈ Ω determines the
particular numerical values of all random variables on the space:

Y (ω), Z(ω), X1(ω), X2(ω), X3(ω), X4(ω)

and so on. Unless otherwise stated, when multiple random variables are considered together, it is implicitly assumed they are
associated with the same probability experiment and hence are on the same probability space.2

If Y and Z are random variables the measurability property (1) ensures

{Y ≤ 4.5} ∈ F , {Z ≤ −2} ∈ F

Since the intersection of two sets in F is again a set in F , we conclude

{Y ≤ 4.5} ∩ {Z ≤ −2} ∈ F

Note that
{Y ≤ 4.5} ∩ {Z ≤ −2} = {ω ∈ Ω : Y (ω) ≤ 4.5 and Z(ω) ≤ −2}

It follows that {Y ≤ 4.5} ∩ {Z ≤ −2} is an event, so it has a valid probability P [{Y ≤ 4.5} ∩ {Z ≤ −2}]. For simplicity of
notation we often remove the braces and replace the intersection symbol with a comma (which means “and”):

P [Y ≤ 4.5, Z ≤ −2] = P [{Y ≤ 4.5} ∩ {Z ≤ −2}] = P [{ω ∈ Ω : Y (ω) ≤ 4.5 and Z(ω) ≤ −2}]
Similarly, if {Xi}∞i=1 is a sequence of random variables then for each i ∈ {1, 2, 3, . . .} and for each xi ∈ R, the measurability

property ensures
{Xi ≤ xi} ∈ F

The intersection of a finite number of events is again an event, so for any positive integer n we have

∩ni=1{Xi ≤ xi} ∈ F

In particular, ∩ni=1{Xi ≤ xi} is an event and so it has a probability. The joint cumulative distribution function (joint CDF)
FX1,...,Xn is defined by collecting these probabilities into a function. Define FX1,...,Xn : Rn → [0, 1] by

FX1,...,Xn(x1, ..., xn) = P [∩ni=1{Xi ≤ xi}] ∀(x1, ..., xn) ∈ Rn

B. Independence of random variables
Fix (Ω,F , P ) as a probability space. Fix n as a positive integer. Random variables X1, X2, ..., Xn are defined as mutually

independent if

P [∩ni=1{Xi ≤ xi}] =

n∏
i=1

P [Xi ≤ xi] ∀(x1, . . . , xn) ∈ Rn

This is equivalent to the joint CDF factoring into a product of marginal CDFs:

FX1,...Xn(x1, . . . , xn) = FX1
(x1)FX2

(x2) · · ·FXn(xn) ∀(x1, ..., xn) ∈ Rn

Random variables in an infinite sequence {Xi}∞i=1 are defined to be mutually independent if X1, . . . , Xn are mutually
independent for each positive integer n.

2A single probability experiment may involve multiple steps. Typically, a single homework problem involves a single probability experiment. For example,
if a homework problem involves randomly throwing twelve darts, then random variables X,Y, Z that appear in the problem are understood to be associated
with that probability experiment. If another homework problem involves picking apples from a bin, the letters X,Y, Z can be reused to have a different
meaning for that different probability experiment. It does not make sense to talk about the probability that “Y is less than or equal to 4.5 and Z is less than
or equal to −2” unless the random variables Y and Z are part of the same probability experiment (meaning they are on the same probability space).
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C. Operations on measurable functions

It can be shown that basic operations on random variables preserve the measurability property. Specifically, fix (Ω,F , P )
as a probability space. The sum or product of a finite number of random variables on this space produces another random
variable on this space. A linear combination of a finite number of random variables on this space is another random variable
on this space. For example, if {Xi}∞i=1 is a sequence of random variables, then for each positive integer n we can define
another random variable Mn : Ω→ R by

Mn =
1

n

n∑
i=1

Xi

meaning that

Mn(ω) =
1

n

n∑
i=1

Xi(ω) ∀ω ∈ Ω

More generally, it is known that continuous functions preserve measurability. Indeed, fix n as a positive integer and let
h : Rn → R be any continuous function. Let X1, . . . , Xn be random variables. Define Y = h(X1, . . . , Xn), so that

Y (ω) = h(X1(ω), . . . , Xn(ω)) ∀ω ∈ Ω

It can be shown that Y satisfies the measurability property and hence Y is a random variable.3

D. Intuitive interpretation

Let (Ω,F , P ) be a probability space. Let X : Ω→ R and Y : Ω→ R be random variables. Let A be an event. An event is
a subset of Ω that is in the collection F . We often say things such as “if event A is true” or “if event A is false.” How can a
subset be “true” or “false”? It cannot. When we say “event A is true” we are imagining a situation where nature “randomly”
selects an outcome ω ∈ Ω according to the probability measure P . With this thought experiment, “event A is true” has the
interpretation “the randomly selected outcome ω is in the set A.” Similarly “event {X ≤ 4.5−Y } is true” has the interpretation
“the randomly selected outcome ω satisfies X(ω) ≤ 4.5−Y (ω).” Probability theory does not rely on such thought experiments.
In fact, probability theory never defines the concept of “randomly choosing an outcome.” However, such thought experiments
are important for using probability theory to understand real world scenarios such as flipping coins or rolling dice, where the
probability measure P is thoughtfully constructed to assign values to each event A according to our intuitive understanding
of the “likelihood” of that event. The three axioms of probability (in Appendix A) also correspond to this intuition.

E. Summarizing exercises 1 (multiple choice)

1) In a probability triplet (Ω,F , P ), the set Ω is the
a) set of probabilities
b) set of events
c) sample space
d) set of expectations

2) In a probability triplet (Ω,F , P ), the collection F is the
a) set of outcomes
b) set of events
c) sample space
d) set of expectations

3) For a probability space (Ω,F , P ), every event
a) is a subset of Ω
b) is a set in the collection F
c) has a probability
d) all of the above

4) In a probability triplet (Ω,F , P ), if F is the set of all subsets of Ω then
a) all functions X : Ω→ R are random variables.
b) we cannot define random variables
c) all events have one outcome
d) some events are not in F

5) If X is a random variable then {X ≤ 5.6} is
a) an event

3More generally, if X1, . . . , Xn are random variables and h : Rn → R is a “Borel measurable function” then Y = h(X1, ..., Xn) is a random variable.
The precise definition of a Borel measurable function h : Rn → R requires the concept of the Borel sigma algebra B(Rn) and is omitted for brevity. It can
be shown that all functions h : Rn → R with at most finite or countably many points of discontinuity are Borel measurable.
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b) an outcome
c) a real number
d) a function of ω

6) If {X ≤ 5.6} is an event, then {X > 5.6} is an event because
a) all subsets of Ω are events
b) all events are subsets of Ω
c) the number 5.6 is special
d) the complement of an event is also an event

7) If {X ≤ 5.6} and {Y ≤ 8.3} are both events then {X ≤ 5.6} ∩ {Y ≤ 8.3} is an event because
a) the intersection of two events is also an event
b) the union of events is also an event
c) all subsets of Ω are events
d) 8.3− 5.6 = 2.7

8) If A is an event and P [A] = 0 then
a) A must be the empty set
b) A is not necessarily the empty set
c) We can apply the central limit theorem to the set A
d) We can take expectations of the set A

9) If X and Y are random variables on some probability space, then X + Y is a random variable because
a) a sum of two random variables is again a random variable
b) a linear combination of two random variables is again a random variable
c) a continuous function of two random variables is again a random variable
d) all of the above

10) If X and Y are random variables that have the same CDF function, then they must be independent.
a) True
b) False

11) If Y and Z are random variables then {Y + eZ ≤ Z} ∈ F because
a) all subsets of Ω are events
b) Y + eZ − Z is a random variable and hence satisfies the measurability property (1)
c) Y is a function of Z
d) Y and Z are functions of ω

12) Let {Xi}∞i=1 be independent and identically distributed (i.i.d.) random variables on some probability space. If the
probability experiment produces a particular outcome ω∗ ∈ Ω then
a) the first random variable takes the value X1(ω∗) but the values of {X2, X3, X4, . . .} remain unknown
b) the random variables take the values {X1(ω∗), X2(ω∗), X3(ω∗), X4(ω∗), . . .}
c) the single-outcome set {ω∗} must be an event
d) if {ω∗} ∈ F then P [{ω∗}] > 0

F. Summarizing exercises 2

Fix a probability space (Ω,F , P ). Let X,Y, Z be random variables on this space.
1) Does X necessarily have a CDF?
2) Do X and Y necessarily have a joint CDF FX,Y ?
3) Do X,Y, Z necessarily have a joint CDF FX,Y,Z?
4) Is 4X − Y + 2.1Z a random variable?
5) Is X + 2Y + 8Z a random variable?
6) Is X + eY a random variable?
7) Is Y Z

X2+1 a random variable?
8) Is {X ≤ 3} ∈ F?
9) Is {X > 3} ∈ F?

10) Is {X ∈ (2, 5]} ∈ F?
11) Is { 13 (X + Y + Z) ≤ 8} ∈ F?
12) Is {eX + cos(Y + Z) > 2X} ∈ F?
13) Is {cos(X + Y ) ≤ 0} ∪ {e4(X+Z) > 3} ∈ F?
14) Is ∩∞i=1{cos(iX + Y ) ≤ Z

i } ∈ F?
15) Fix A ∈ F and define the indicator function 1A : Ω→ R by

1A(ω) =

{
1 if ω ∈ A
0 else .
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Is 1A a random variable?
16) For A ∈ F , is X1A + Y a random variable?
17) For A ∈ F and B ∈ F , is X1A + eY 1B +XY a random variable?
18) Fix C ⊆ Ω such that C /∈ F . Is the indicator function 1C a random variable?
19) Argue that for any a, b ∈ R we have {X ∈ (a, b]} ∈ F .
20) Argue that {X = 2.3} ∈ F by observing {X = 2.3} = ∩∞i=1{X ∈ (2.3− 1/i, 2.3]}.
21) Is {X < 2.3} ∈ F?
22) Is {X ∈ {2.3, 4.1, 9}} ∈ F?
23) Is {XY ≤ 8} ∪ {XY = 9.1} ∈ F?
24) Is {XY ≤ 7Z} ∩ {Y Z > 4}c ∈ F?
25) Is ∪∞i=1{X = 1/i} ∈ F?
26) Suppose X is a random variable that has a continuous CDF. Show that P [X = x] = 0 for all x ∈ R. Hint: Fix x ∈ R

and observe {X = x} ⊆ {X ∈ (x− δ, x]} for all δ > 0.
27) Suppose (Ω,F , P ) is a probability space such that all single-outcome subsets of the sample space are events, that is,
{ω} ∈ F for all ω ∈ Ω. Suppose there is a random variable X : Ω→ R that has a continuous CDF.
a) Show that P [{ω}] = 0 for all ω ∈ Ω.
b) Show that Ω is an uncountably infinite set.

28) Fix probability space (Ω,F , P ). Suppose that {ω} ∈ F for all ω ∈ Ω. Suppose {Ai}∞i=1 is a sequence of mutually
independent events such that P [Ai] = 1/2 for all i ∈ {1, 2, 3, ...}.
a) Show that P [{ω}] = 0 for all ω ∈ Ω.
b) Show that Ω is an uncountably infinite set.

29) Fix probability space (Ω,F , P ). For each ω ∈ Ω define

p(ω) = inf
A∈F :ω∈A

{P [A]}

a) In the special case when {ω} ∈ F for all ω ∈ Ω, show that P [{ω}] = p(ω) for all ω ∈ Ω.
b) In the general case, show that for all ω ∈ Ω there is an A ∈ F such that ω ∈ A and P [A] = p(ω).

G. Conditioning and expectation

Basic probability concepts such as a partition of the sample space, conditional probability, expectation, and variance are
reviewed in Appendix E. This includes the law of total probability, the law of total expectation, and linearity of expectation:

P [A] =

∞∑
i=1

P [A|Bi]P [Bi]

E [X] =

∞∑
i=1

E [X|Bi]P [Bi]

E

[
n∑
i=1

aiXi

]
=

n∑
i=1

aiE [Xi]

where X is a random variable with finite expectation; A is an event; {Bi}∞i=1 is a collection of events that partition the sample
space; X1, ..., Xn are (possibly dependent) random variables with finite expectations; a1, ..., an are real numbers.

H. Indicator random variable

Let A be an event. Define the binary-valued random variable 1A by

1A =

{
1 if A is true
0 else

In particular, 1A(ω) = 1 if and only if ω ∈ A. The random variable 1A is called an indicator random variable or indicator
function.

I. Bernoulli trials

Fix p ∈ (0, 1]. Let {Ai}∞i=1 be a sequence of mutually independent events with

P [Ai] = p ∀i ∈ {1, 2, 3, ...}

This type of sequence is called i.i.d. Bernoulli trials. Intuitively we can imagine a sequence of independent “trials” or “mini-
experiments,” where each trial i can either be successful or not successful. The event Ai is the event that trial i is successful.
That is, trial i is called a success if and only if event Ai is true.
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• Bernoulli random variable (X ∼ Bern(p)): Define X as an indicator function that is 1 if and only if the first Bernoulli
trial is successful:

X = 1A1

Then

X ∈ {0, 1}
P [X = 1] = p, P [X = 0] = 1− p
E [X] = p

V ar(X) = p(1− p)

• Geometric random variable (X ∼ Geom(p)): Define X as the number of trials until the first success. Then4

X ∈ {1, 2, 3, ...}
P [X = k] = p(1− p)k−1 ∀k ∈ {1, 2, 3, ...}
E [X] = 1/p

V ar(X) =
1− p
p2

• Binomial random variable (X ∼ Binom(n, p)): Fix n as a positive integer. Let X be the number of successes within the
first n trials:

X =

n∑
i=1

1Ai

Then

X ∈ {0, 1, 2, ..., n}

P [X = k] =

(
n

k

)
pk(1− p)n−k ∀k ∈ {0, 1, ..., n}

E [X] = np

V ar(X) = np(1− p)

J. Computing expectations

Assume:
• h : R→ R and g : R2 → R be measurable functions.
• X and Y are discrete random variables that take values in the finite or countably infinite sets X and Y , respectively.
• U and V are continuous random variables with joint PDF fU,V (u, v) and marginal PDFs fU (u) and fV (v).
• E [h(X)], E [g(X,Y )], E [h(U)], E [g(U, V )], E [g(X,V )] are finite.

4One might view X as an extended random variable X : Ω → R ∪ {∞} if there are some outcomes ω ∈ Ω for which X(ω) = ∞ (meaning there are
never any successes). These outcomes, taken together, have collective probability P [X = ∞] = 1 −

∑∞
i=1 P [X = i] = 1 −

∑∞
i=1 p(1 − p)i−1 = 0.

Alternatively, one could modify the sample space Ω by removing all outcomes ω ∈ {X =∞}. This does not change any probability or expectation because
P [X =∞] = 0. In general, if there is a single event A such that P [A] = 0, one can remove all outcomes in A from the sample space as follows: Define
the new sample space Ω̃ = Ω \ A, the new sigma algebra of events F̃ = {B ∈ F : B ∩ A = φ}, the new probability measure P̃ : Ω̃ → [0, 1] given by
P̃ [B] = P [B] for all B ∈ F̃ . One can verify F̃ is a sigma algebra, P̃ satisfies the three axioms of probability, and all remaining events have the same
probability as before. Note that removing all outcomes from a single zero-probability event is not the same as removing all outcomes that are contained in
some zero-probability event (the latter might remove everything).
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It can be shown:

E [h(X)] =
∑
x∈X

h(x)P [X = x]

E [g(X,Y )] =
∑
x∈X

∑
y∈Y

g(x, y)P [X = x, Y = y]

E [h(U)] =

∫ ∞
−∞

h(u)fU (u)du

E [g(U, V )] =

∫ ∞
−∞

∫ ∞
−∞

g(u, v)fU,V (u, v)dudv

E [g(X,V )] =
∑
x∈X

[∫ ∞
−∞

g(x, v)fV |X=x(v|x)dv

]
P [X = x] (2)

=

∫ ∞
−∞

[∑
x∈X

g(x, v)P [X = x|V = v]

]
fV (v)dv (3)

If {Bi}∞i=1 are events that partition the sample space and W is any random variable with finite expectation then

E [W ] =

∞∑
i=1

E [W |Bi]P [Bi]

Similarly if W has finite expectation:

E [W ] =
∑
x∈X

E [W |X = x]P [X = x]

E [W ] =

∫ ∞
−∞

E [W |U = u] fU (u)du

E [W ] =

∫ ∞
−∞

∫ ∞
−∞

E [W |U = u, V = v] fU,V (u, v)dudv

E [W ] =
∑
x∈X

[∫ ∞
−∞

E [W |X = x, V = v] fV |X=x(v|x)dv

]
P [X = x] (4)

=

∫ ∞
−∞

[∑
x∈X

E [W |X = x, V = v]P [X = x|V = v]

]
fV (v)dv (5)

The above formulas can be applied, for example, to compute E [f(R,S)] (for some given measurable function f and some
given random variables R,S) by defining W = f(R,S) and using the fact that a measurable function of a finite number of
random variables is again a random variable.

The formulas (2), (3), (4), (5) are given in the above form for simplicity. They implicitly assume the conditional expectations
are well defined and that summations and integrations are taken only over regions of positive support. For example, it is
understood that the formulas (2) and (4) can be modified to

∑
x∈X :P [X=x]>0. The formulas can be formally derived by using,

for any event A such that P [A] > 0 and any v ∈ R such that the PDF of V is continuous at v and fV (v) > 0:

P [A|V = v] =
fV |A(v)P [A]

fV (v)
, fV |A(v) =

P [A|V = v]fV (v)

P [A]

and so when X is discrete and P [X = x] > 0:

fV |X=x(v|x) =
P [X = x|V = v]fV (v)

P [X = x]
(6)
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For example, temporarily ignoring technical issues of “divide by zero” and “PDF continuity,” we have

E [g(X,V )] =
∑
x∈X

E [g(X,V )|X = x]P [X = x]

=
∑
x∈X

E [g(x, V )|X = x]P [X = x]

=
∑
x∈X

[∫ ∞
−∞

g(x, v)fV |X=x(v|x)dv

]
P [X = x] (7)

(a)
=
∑
x∈X

[∫ ∞
−∞

g(x, v)
P [X = x|V = v]fV (v)

P [X = x]
dv

]
P [X = x]

=
∑
x∈X

[∫ ∞
−∞

g(x, v)P [X = x|V = v]fV (v)dv

]
(b)
=

∫ ∞
−∞

[∑
x∈X

g(x, v)P [X = x|V = v]

]
fV (v)dv (8)

where equality (a) uses (6); equality (b) switches the order of summation and integration and is formally justified by the
Fubini-Tonelli theorem of measure theory (and the fact that E [g(X,V )] is finite). Observe that (7) is identical to formula
(2); (8) is identical to formula (3). The derivation of formulas (4) and (5) is similar. It should be emphasized that the above
derivation is “stylized” because it ignores conditions for (6) to make sense (P [X = x] > 0, fV (v) > 0, the PDF fV is
continuous at v). In most cases when these formulas are applied, the PDFs or conditional PDFs are continuous or piecewise
continuous over a region of positive support. The integrals and summations can be taken over appropriate terms and intervals.

The formula (6) treats the case when X is discrete type and V is continuous type. When U, V are continuous with joint
PDF fU,V (u, v) the formula becomes fV |U (v|u) =

fU|V (u|v)fV (v)

fU (u) via the definition fU |V (u|v) =
fU,V (u,v)
fV (v) .

K. Exercises (computing expectations)

The following multiple choice problems can be solved by computer. For example, to verify that
∑∞
i=1 i(1/2)i = 2 see:

https://www.wolframalpha.com/input?i=sum+i*%281%2F2%29%5Ei%2C+i%3D1..%5Cinfty
The problems ask you to compute expectations. Assume X,Y, U, V are mutually independent random variables and
• X and Y are discrete type with X ∼ Geom(1/2), Y ∼ Unif{1, 2, 3}.
• U and V are continuous type with U ∼ Exp(2) and V ∼ Unif [0, 1].

1) E [X]
a) 3
b) 2
c) 2.01
d) -4

2) E [XY ]
a) 4
b) 3.01
c) 3
d) 0.5

3) E [X cos(X)]
a) 0.8763390100
b) -0.3222562303
c) 2.5489534553
d) 0.7427489902

4) E [cos(X + Y )]
a) 0.5001128203
b) -0.0034884486
c) 0.4784639274
d) -0.3820557339

https://www.wolframalpha.com/input?i=sum+i*%281%2F2%29%5Ei%2C+i%3D1..%5Cinfty
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5) E
[
X+cos(XY 2)

1+X2

]
a) 0.2117893563
b) -1.3378566408
c) 0.3256249016
d) 0.3899440031

6) E [U ]
a) 3
b) 2
c) 1/2
d) 1/π

7) E
[
U2 + U

]
a) 3
b) 4
c) 5
d) 1

8) E
[
U cos(U) sin(U2)

]
a) 0.334671
b) 0.224671
c) 0.114671
d) 0.004671

9) E [cos(U + V )]
a) 0.48930
b) 0.58930
c) 0.68930
d) 0.10334

10) E
[

U
1+V 2

]
a) 0.39270
b) 0.12124
c) 0.00001
d) 0.29938

11) E [cos(X + V )]
a) -0.11874
b) -0.24863
c) 0.34998
d) 0

12) E
[

X
1+V 2

]
a) 1.5708
b) 1.9903
c) 1.1001
d) 2.3202

13) Suppose E [W |X = k] = k2 for all relevant k. E [W ] =?
a) 5.5
b) 6
c) 6.5
d) 7

14) Suppose E [W |X = k] = cos(k + 4.5) for all relevant k. E [W ] =?
a) 0.101136
b) 0.205982
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c) -0.490835
d) 0.573531

15) Suppose E
[
W 2|X = n, Y = m

]
= exp(−(n+m)) for all relevant n,m. E

[
W 2
]

=?
a) 0.2098740
b) 0.0415488
c) 0.0539852
d) 0.0659552

16) Suppose E [W |U = u, V = v] = uv for all relevant u, v. E [W ] =?
a) 1/2
b) 1/4
c) 1/8
d) 1/16

17) Suppose E [W |U = u, V = v] = cos(u+ v2) for all relevant u, v. E [W ] =?
a) 0.599512
b) 0.699512
c) 0.399512
d) 0.299512

18) Suppose E
[
eW |X = n, V = v

]
= nv for all relevant n, v. E

[
eW
]

=?
a) 0.89887
b) 0.78994
c) 1
d) 0.93032

19) Suppose E [W |X = n, V = v] = cos(n+ v) for all relevant n, v. E [W ] =?
a) 0.36561
b) -0.18879
c) 0.19454
d) -0.24863

20) Give a formula for E [r(U, V,W )] given a measurable function r and a joint PDF fU,V,W (u, v, w).

21) Let A be an event and suppose P [A|X = x] is known for all relevant x. Give a formula for P [A]. Design and solve a
problem of this type.

22) Let A be an event and suppose P [A|X = x, Y = y] is known for all relevant x, y. Give a formula for P [A]. Design and
solve a problem of this type.

23) Let A be an event and suppose P [A|U = u] is known for all relevant u. Give a formula for P [A]. Design and solve a
problem of this type.

24) Let A be an event and suppose P [A|U = u, V = v] is known for all relevant u, v. Give a formula for P [A]. Design and
solve a problem of this type.

25) Let A be an event and suppose P [A|X = x, V = v] is known for all relevant x, v. Give a formula for P [A]. Design and
solve a problem of this type.

L. Make your own examples

1) Give an example of random variables X,Y that are dependent.
2) Give an example of random variables X,Y such that X ∼ Unif [0, 1], Y is continuous type, and E [Y |X = x] = 3x for

all x ∈ [0, 1]. Are X and Y independent?
3) Give an example of random variables X,Y such that X ∼ Unif [0, 1], Y is discrete type, and E [Y |X = x] = 3x for all

x ∈ [0, 1]. Are X and Y independent?
4) Give an example of random variables X,Y such that X ∼ Unif [0, 1], and E [Y |X = x] = x2 for all x ∈ [0, 1]. Are X

and Y independent?
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5) Give an example of a random variable X such that E [X] is finite but E
[
X2
]

=∞.
6) Give an example of a random variable such that E [X] = DNE (Does Not Exist).
7) Give an example of a continuous type random variable with E [X] = 1 and V ar(X) = 3.
8) Give an example of a discrete type random variable with E [X] = 1 and V ar(X) = 3.
9) Give an example of a random variable X with E [X] = 0, E

[
X2
]

= 8, E
[
X4
]

= 65.
10) Is it possible to construct a random variable X with E [X] = 0, E

[
X2
]

= 8, E
[
X4
]

= 60?
11) Give an example of dependent random variables X,Y such that X ∈ {0, 1} and E [Y |X = x] = 0 for all x ∈ {0, 1}.
12) Give an example of random variables X,Y that are uncorrelated but not independent.
13) Give an example of something interesting that involves random variables.

III. CONVERGENCE

A. Convergence surely, almost surely, and in probability

Fix a probability space (Ω,F , P ). Let {Yi}∞i=1 be a sequence of random variables. Fix c ∈ R.
Definition 1: We say Yn → c surely if

lim
n→∞

Yn(ω) = c ∀ω ∈ Ω

Definition 2: We say Yn → c almost surely (also called convergence with probability 1) if

P
[{
ω ∈ Ω : lim

n→∞
Yn(ω) = c

}]
= 1

Definition 3: We say Yn → c in probability if for all ε > 0 we have

lim
n→∞

P [|Yn − c| ≥ ε] = 0

The set {ω ∈ Ω : limn→∞ Yn(ω) = c} used in Definition 2 is formally shown to be in F in Appendix D. With respect to
these types of convergence, in Appendix C it is shown that:

surely =⇒ almost surely =⇒ in probability

Convergence to a constant c can be used to define convergence to a random variable Y . We say Yn → Y surely if and
only if (Yn − Y ) → 0 surely. Similarly, Yn → Y almost surely if and only if (Yn − Y ) → 0 almost surely; Yn → Y in
probability if and only if (Yn − Y ) → 0 in probability. It can be shown that if Yn converges to Y in probability then a
property called convergence in distribution holds: limn→∞ FYn(y) = FY (y) for all y ∈ R at which FY is continuous, where
FYn(y) = P [Yn ≤ y] and FY (y) = P [Y ≤ y] are the CDF functions for Yn and Y .

B. Law of large numbers (LLN)

Random variables {Xi}∞i=1 are said to be independent and identically distributed (i.i.d.) if they are mutually independent
and if all random variables have the same marginal CDF, so that

FXi(x) = FX1(x) ∀x ∈ R,∀i ∈ {1, 2, 3, . . .}

Theorem 1: (Law of Large Numbers – LLN) If {Xi}∞i=1 are i.i.d. random variables with finite mean µ (so E [Xi] = µ for
all i ∈ {1, 2, 3, . . .}), then

lim
n→∞

1

n

n∑
i=1

Xi = µ almost surely

Proof: A proof for the special case when the random variables have a finite variance is given in Appendix C. A full proof
that allows V ar(Xi) =∞ is given in [17].

The above theorem requires the random variables Xi to have a finite mean, but allows them to have a possibly infinite
variance. This version of the LLN is often called the strong law of large numbers because it treats convergence almost surely.
The almost sure convergence in Theorem 1 means that if we define A as the set of all outcomes in the sample space for which
the limit converges to µ, then P [A] = 1. That is

A =

{
ω ∈ Ω : lim

n→∞

1

n

n∑
i=1

Xi(ω) = µ

}
and P [A] = 1. Defining Ac = Ω \A as the complement of set A, it follows that P [Ac] = 0. The set Ac contains all outcomes
for which the limit either does not exist, or the limit exists but is not equal to µ. The set Ac may contain uncountably many
outcomes, so it is remarkable that the LLN ensures P [Ac] = 0.
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Appendix C shows that convergence almost surely implies the weaker convergence in probability: For all ε > 0 we have

lim
n→∞

P

[∣∣∣∣∣µ− 1

n

n∑
i=1

Xi

∣∣∣∣∣ ≥ ε
]

= 0 (9)

In many applications, the i.i.d. random variables {Xi}∞i=1 not only have finite mean µ, but they have finite variance σ2 (so
E [Xi] = µ and V ar(Xi) = σ2 for all i ∈ {1, 2, 3, . . .}). In this case it holds by linearity of expectation and basic properties
of variance that

E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi] = µ ∀n ∈ {1, 2, 3, . . .}

V ar

(
1

n

n∑
i=1

Xi

)
=

1

n2
V ar

(
n∑
i=1

Xi

)
(a)
=

1

n2

n∑
i=1

V ar(Xi) =
σ2

n
∀n ∈ {1, 2, 3, . . .}

where step (a) uses the fact that the variance of a sum of pairwise uncorrelated random variables is the sum of variances. It
follows that the mean of 1

n

∑n
i=1Xi is always µ, while its variance converges to 0 as n→∞. This provides a great deal of

intuition for the LLN. Further, the fact that the variance converges to zero can be used, together with the Markov/Chebyshev
inequality, to directly prove the weak convergence result given in (9). More work is required to prove the stronger result for
almost sure convergence given in Theorem 1 (see Appendix C and [17]).

C. Applying the LLN twice (motivation for renewal theory)

If A and B are events that satisfy P [A] = 1 and P [B] = 1, the axioms of probability can be used to show that A ∩ B is
an event that satisfies P [A∩B] = 1. This can be immediately used in the following important example: Let {Xi}∞i=1 be i.i.d.
random variables with finite mean 5.7. Let {Ti}∞i=1 be i.i.d. random variables with mean 17.1. So

E [Xi] = 5.7 ∀i ∈ {1, 2, 3, . . .}
E [Ti] = 17.1 ∀i ∈ {1, 2, 3, . . .}

Further assume each Ti is surely positive, so that Ti(ω) > 0 for all i ∈ {1, 2, 3, . . .} and all ω ∈ Ω. In this example, the random
variables {Xi}∞i=1 are assumed to be i.i.d. amongst themselves; the random variables {Ti}∞i=1 are i.i.d. amongst themselves.
However, there can be arbitrary dependencies between the Xi and Tj variables. For example, we might have Ti = cos(Xi) + 5
for all i ∈ {1, 2, 3, . . .}.

For each positive integer n, define the random variable Zn by

Zn =

∑n
i=1Xi∑n
i=1 Ti

The random variables Ti are assumed to be positive to avoid the undefined case of division by zero.
Does Zn converge to anything? If so, does it converge almost surely? To answer this question, let us first fix a particular

ω∗ ∈ Ω to see what happens. For this fixed ω∗ we know that {Xi(ω
∗)}∞i=1 and {Ti(ω∗)}∞i=1 and {Zn(ω∗)}∞n=1 are just

deterministic sequences of real numbers. Now suppose our fixed ω∗ just so happens to be an outcome that satisfies

lim
n→∞

1

n

n∑
i=1

Xi(ω
∗) = 5.7 (10)

lim
n→∞

1

n

n∑
i=1

Ti(ω
∗) = 17.1 (11)

Then we can conclude:

lim
n→∞

Zn(ω∗)
(a)
= lim

n→∞

∑n
i=1Xi(ω

∗)∑n
i=1 Ti(ω

∗)

(b)
= lim

n→∞

1
n

∑n
i=1Xi(ω

∗)
1
n

∑n
i=1 Ti(ω

∗)

(c)
=

5.7

17.1
(12)

where in (12), the equality (a) uses the definition of Zn; the equality (b) multiplies and divides by 1/n; the equality (c) uses
the basic calculus fact that the ratio of well defined limits is equal to the limit of the ratio. Therefore, if our particular ω∗ just
so happens to satisfy both (10) and (11), then we can conclude

lim
n→∞

Zn(ω∗) =
5.7

17.1
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Of course, in a real problem, the outcome ω ∈ Ω is chosen randomly by nature (according to the probability measure P ). How
likely is it that the particular ω chosen by nature satisfies both (10) and (11)? The LLN applied to the i.i.d. sequence {Xi}∞i=1

ensures that our randomly selected ω satisfies (10) with probability 1. The LLN applied to the i.i.d. sequence {Ti}∞i=1 ensures
that our randomly selected ω satisfies (11) with probability 1. Hence, our randomly selected ω satisfies both (10) and (11)
with probability 1. We formalize this argument in the following claim.

Claim: We have
Zn →

5.7

17.1
almost surely

Proof: Define the following events A,B,C:5

A =

{
ω ∈ Ω : lim

n→∞

1

n

n∑
i=1

Xi(ω) = 5.7

}

B =

{
ω ∈ Ω : lim

n→∞

1

n

n∑
i=1

Ti(ω) = 17.1

}

C =

{
ω ∈ Ω : lim

n→∞
Zn(ω) =

5.7

17.1

}
The LLN ensures P [A] = 1 and P [B] = 1. Thus, P [A∩B] = 1. However, if ω ∈ A∩B, we know (by the fact that the limit
of a ratio is the ratio of limits) that ω ∈ C. Indeed, just repeat the argument (12) but change ω∗ to ω. It follows that

A ∩B ⊆ C

Thus
P [A ∩B]︸ ︷︷ ︸

1

≤ P [C]

Since we already know the left-hand-side of the above inequality is 1, and P [C] cannot be larger than 1, it follows that
P [C] = 1. �

We have made good use of the following probability fact:

(P [A] = 1 and P [B] = 1) =⇒ (P [A ∩B] = 1)

The following is a generalized version of this fact that may be useful in related contexts:
Theorem 2: Let {Ai}∞i=1 be a countably infinite sequence of events.
a) If P [Ai] = 0 for all i ∈ {1, 2, 3, . . .} then P [∪∞i=1Ai] = 0.
b) If P [Ai] = 1 for all i ∈ {1, 2, 3, . . .} then P [∩∞i=1Ai] = 1.
Proof: To prove part (a), suppose P [Ai] = 0 for all i ∈ {1, 2, 3, . . .}. The union bound implies

P [∪∞i=1Ai] ≤
∞∑
i=1

P [Ai] =

∞∑
i=1

0 = 0

This proves part (a).
To prove part (b), suppose P [Ai] = 1 for all i ∈ {1, 2, 3, . . .}. It suffices to prove that

P [(∩∞i=1Ai)
c] = 0

We have by DeMorgan’s law
(∩∞i=1Ai)

c = ∪∞i=1A
c
i

Thus

P [(∩∞i=1Ai)
c] = P [∪∞i=1A

c
i ] ≤

∞∑
i=1

P [Aci ] = 0

which uses the fact that P [Aci ] = 0 for all i ∈ {1, 2, 3, . . .}.

5A representation in (64) of Appendix D formally proves the sets A,B,C are events.
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D. Exercises

For the following exercises, assume
• {Xi}∞i=1 are i.i.d. Bern(1/2)
• {Yi}∞i=1 are i.i.d. N(0, 1)
• {Zi}∞i=1 are i.i.d. Geom(1/5)
• {Wi}∞i=1 are i.i.d. Bern(p)
• The sequences {Xi}, {Yi}, {Zi}, {Wi} may depend on each other

1) The expectation of an indicator function is
a) 0
b) the variance of its inverse
c) an outcome
d) the probability the indicator function is 1

2) For insight into how closely 1
100

∑100
i=1Wi approximates p we can

a) discard half the samples
b) compute V ar( 1

100

∑100
i=1Wi)

c) assume Wi ∼ N(0, 1).
d) use the Slytherin theorem

3) The probability that both limn→∞
1
n

∑n
i=1Xi = 1/2 and limn→∞

1
n

∑n
i=1 Yi = 0 is

a) Unknown
b) 1
c) 0
d) 1/4

4) With prob 1 limn→∞
1
n

∑n
i=1 cos(Xi) =

a) 0
b) 0.2309
c) -0.3480
d) 0.7702

5) With prob 1 limn→∞
1
n

∑n
i=1(Yi + Zi) =

a) 5
b) 25
c) 1/10
d) 1

6) With prob 1 limn→∞

∑n
i=1Xi∑n
i=1 Zi

=

a) 1/20
b) 4
c) 1/10
d) Unknown

7) With prob 1 limn→∞

∑n
i=1(Xi+Yi)∑n
i=1(1+Y

2
i )

=

a) 2
b) 1/4
c) 1/8
d) 1/5

8) With prob 1 limn→∞
1
n

∑n
i=1XiYi =

a) 1/2
b) 1/3
c) 2
d) Unknown

9) With prob 1 limn→∞
1
8n

∑n
i=1X2i =



NEELY, EE 550, UNIVERSITY OF SOUTHERN CALIFORNIA, SPRING 2024 15

a) 1/8
b) 1/32
c) 1/2
d) 1/16

10) With prob 1 limn→∞

∑n
i=1 e

Xi∑n
i=1(1+Zi)

=

a) 0.2099
b) 0.3099
c) 0.4099
d) 0.5099

11) E
[

1
100

∑n
i=1 Yi

]
=

a) 5
b) 0
c) 10
d) 2.5

12) V ar( 1
100

∑n
i=1Xi) =

a) 1/400
b) 1/1600
c) 1/100
d) 2/350

13) V ar( 1
1000

∑1000
i=1 Zi) =

a) 0.02
b) 0.15
c) 0.90
d) 1.80

14) Explain why V ar( 1
100

∑100
i=1XiZi) is unknown.

E. Design your own examples

1) Fix p ∈ (0, 1). Give an example of a sequence {Vi}∞i=1 of Bern(p) random variables such that 1
n

∑n
i=1 Vi does not

converge to p almost surely as n→∞. Explain why the example requires p ∈ (0, 1) instead of p ∈ [0, 1].

2) Fix p ∈ [0, 1]. Give an example of a sequence {Vi}1000i=1 of Bern(p) random variables such that

V ar

(
1

1000

1000∑
i=1

Vi

)
=
p(1− p)

2

F. Exercises related to simulation

Suppose that a randomly formed network with a certain structure is connected with some unknown probability p. To estimate
p, we write a computer program that loops over iterations i ∈ {1, . . . , n}. At iteration i, a new network i with the desired
structure is randomly generated using multiple calls to a random number generator rand(). Then, a subroutine is run to determine
whether or not that particular network i is connected. Let Xi be a Bernoulli random variable that is 1 if network i is connected,
and 0 else. Define P̂n = 1

n

∑n
i=1Xi as an estimate of p based on these n samples.

1) {Xi}ni=1 are identically distributed because
a) They are independent
b) They are part of an infinite sequence
c) The same software is used to generate each network i
d) All of the networks i ∈ {1, ..., n} are connected

2) {Xi}ni=1 are mutually independent because
a) They are part of an infinite sequence
b) The same software is used to generate each network i
c) They have the same distribution
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d) Each call to rand() generates a random variable that is independent of the past

3) Which theorem relates to using P̂n as an estimate of p?
a) The law of large numbers
b) The law of total probability
c) The law of total expectation
d) DeMorgan’s law

4) Compute E
[
P̂n

]
and V ar(P̂n) for all n ∈ {1, 2, 3, ...}.

5) Fix n = 800. Give a numerical upper bound on the mean square error of the estimate P̂800. That is, compute an upper
bound on E

[
(P̂800 − p)2

]
. Your bound should be a number (not a function of p).

6) Fix n = 800. Use the Chebyshev inequality (see Appendix F) to find a 95% confidence interval for p based on 800
samples. That is, find a numerical value ε > 0 (that does not depend on p) so that P [p ∈ [P̂800 − ε, P̂800 + ε]] ≥ 0.95.

7) Fix n = 800. Use the Hoeffding inequality (see Appendix F) to find a 95% confidence interval for p based on 800
samples. That is, find a numerical value ε > 0 (that does not depend on p) so that P [p ∈ [P̂800 − ε, P̂800 + ε]] ≥ 0.95.
How does the size of the interval compare to the interval obtained by the Chebyshev inequality?

8) Using the Hoeffding inequality (see Appendix F), how many samples n are needed to obtain a 95% confidence interval
[P̂n − 0.01, P̂n + 0.01] for p?

G. Additional exercises

1) Fix (Ω,F , P ). Let X : Ω→ R be a random variable. Suppose X ∼ Geom(p) for some p ∈ [0, 1]. Define Yn = 2n1{X>n}
for n ∈ {1, 2, 3, ...}. Show that Yn → 0 surely. Compute E [Yn] and E

[
Y 2
n

]
for all n.

2) Fix (Ω,F , P ). For simplicity, assume {ω} ∈ F for all ω ∈ Ω. Let {Xi}∞i=1 be a sequence of random variables. Show
that in the special case when Ω is a finite or countably infinite set, then Xi → 0 in probability if and only if Xi → 0
almost surely.

IV. RENEWAL THEORY

0
T1 T2 T3 T4

G1

G2

G3 G4

time t

Fig. 1. A timeline showing back-to-back renewal frames with i.i.d. sizes {Ti}∞i=1 and i.i.d. rewards {Gi}∞i=1.

A general theory of renewal systems can be understood as a generalization of the example of Section III-C. Consider a
stochastic system where objects arrive over a continuous timeline t ≥ 0 (see Fig. 1). For simplicity, it is assumed that two
objects cannot arrive at the same time. One can imagine that each new arrival i brings a random reward Gi. Fig. 1 illustrates
the inter-arrival times {Ti}∞i=1 and the rewards {Gi}∞i=1. The inter-arrival times are assumed to surely be positive, that is

Ti(ω) > 0 ∀i ∈ {1, 2, 3, . . .},∀ω ∈ Ω

In many scenarios of interest the rewards Gi are nonnegative, but the general theory allows for general rewards that can
possibly take negative values. That is, the random variables Gi are allowed to take any sign (positive, negative, or zero).

An example scenario is when data packets arrive to a network at distinct instants of time. Defining Gi as the bit length of
packet i means that the sum reward up to a particular time is equal to the total number of bits that have arrived to the network.
Defining Gi = 1 for all i means that the sum reward up to a particular time is just the total number of packet arrivals up to
that time (counting each packet separately, regardless of its size).
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0
T1 T2 T3 T4

G1

G2

G3

G4

time t

R(t)

G1

G1+G2

Fig. 2. A timeline showing the reward process R(t) corresponding to Fig. 1. The height of each jump i is equal to the reward Gi. The corresponding N(t)
process is not shown, but is easily formed by making the height of each jump equal to 1 (rather than Gi).

We can define notation for the time of the ith arrival: Let Zn be the time of arrival n ∈ {1, 2, 3, . . .}, so

Z1 = T1

Z2 = T1 + T2

Z3 = T1 + T2 + T3

and so on, so that
Zn =

∑n
i=1 Ti

For real-valued time t ≥ 0, define N(t) as the random process that counts the total number of arrivals up to and including
time t. The process N(t) is called a counting process. Unless otherwise stated, it is assumed that N(0) = 0 (so we imagine
there are no arrivals at or before the starting time t = 0). The N(t) function is a nondecreasing “staircase” function that
increases by exactly one at the times Z1, Z2, Z3 and so on. If we happen to evaluate the N(t) function at the arrival times Zn
we obtain

N(Zn) = n ∀n ∈ {1, 2, 3, . . .}

which means that the number of arrivals at the time of the first arrival is 1; the number of arrivals at the time of the second
arrival is 2; and so on. What if we evaluate the N(t) function at a time t∗ that is in between two arrivals? For example,
suppose time t∗ satisfies Z5 < t∗ < Z6. Then exactly 5 arrivals have occured up to and including time t, so

N(t∗) = N(Z5) = 5

The function N(t) will not increase to 6 until time t = Z6, at which point it will never go lower than 6.
Let R(t) denote the total reward accumulated up to and including time t (see Fig. 2):

R(t) =

N(t)∑
i=1

Gi ∀t ≥ 0

Then R(0) = 0 and the R(t) function is piecewise constant, increasing (or decreasing) at the time of each new arrival i
according to the value of the reward Gi. Recall that there is an underlying probability space (Ω,F , P ) and that a particular
outcome ω ∈ Ω completely determines all {Ti(ω)}∞i=1 and {Gi(ω)}∞i=1 values. Therefore, a given outcome ω ∈ Ω completely
determines N(t) and R(t) for all t ≥ 0. We can explicitly represent this dependence on ω by using extended notation N(t, ω)
and R(t, ω). However, we shall hide the dependence on ω for simplicity of notation.

Definition 4: We say the process has a time average arrival rate λ and a time average reward rate α if λ and α are finite
constants that satisfy

lim
t→∞

N(t)

t
= λ almost surely (13)

lim
t→∞

R(t)

t
= α almost surely (14)

where we recall that the phrase “almost surely” is synonymous with “with probability 1.”
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Thus far we have not imposed any probability assumptions on the sequences {Ti}∞i=1 or {Gi}∞i=1 (such as i.i.d. assumptions).
In general, the limits in (13) and (14) are not guaranteed to exist with probability 1. However, if {Ti}∞i=1 are i.i.d. with a
finite mean, and if {Gi}∞i=1 are i.i.d. with a finite mean, then finite values of λ and α exist and can be easily calculated. For
notational purposes, it shall be useful to define T = T1 and G = G1 so that the finite means can be expressed as E [T ] and
E [G].

Theorem 3: (Renewal-reward) Supppose {Ti}∞i=1 are i.i.d. positive random variables with finite mean E [T ] > 0. Suppose
{Gi}∞i=1 are i.i.d. random variables with finite mean E [G]. Then

a) We surely have an infinite number of arrivals:

lim
t→∞

N(t) =∞ surely

b) The time average arrival rate satisfies

lim
t→∞

N(t)

t
=

1

E [T ]
almost surely

so that λ = 1/E [T ].
c) The time average rate of rewards satsifies

lim
t→∞

R(t)

t
=

E [G]

E [T ]
almost surely

so that α = E [G] /E [T ].
Proof: To prove part (a), since Ti : Ω → (0,∞) are surely positive real numbers for each i, the nth arrival comes at the

finite time
∑n
i=1 Ti. So for any positive integer n, we have N(t) ≥ n whenever t ≥

∑n
i=1 Ti. This proves part (a).

To prove part (b), fix t ≥ T1. Then N(t) ≥ 1 and t is in between two renewal times, so

N(t)∑
i=1

Ti ≤ t <
N(t)+1∑
i=1

Ti

Dividing both sides by the nonzero value N(t) gives

1

N(t)

N(t)∑
i=1

Ti ≤
t

N(t)
<

(
N(t) + 1

N(t)

) 1

N(t) + 1

N(t)+1∑
i=1

Ti

 (15)

The above holds for all t ≥ T1. Part (a) ensures N(t)→∞ surely, and so

lim
t→∞

N(t) + 1

N(t)
= 1 surely (16)

lim
t→∞

1

N(t)

N(t)∑
i=1

Ti = lim
n→∞

1

n

n∑
i=1

Ti = E [T ] almost surely (17)

lim
t→∞

1

N(t) + 1

N(t)+1∑
i=1

Ti = lim
n→∞

1

n

n∑
i=1

Ti = E [T ] almost surely (18)

where (17) and (18) hold by the LLN. The probability that the limits in (16), (17), (18) all hold simultaneously is 1. Taking
limits in (15) as t→∞ and substituting (16),(17),(18) yields

E [T ] ≤ lim
t→∞

t

N(t)
≤ E [T ] almost surely

This proves t/N(t)→ E [T ] almost surely. Since E [T ] > 0, it follows that N(t)/t→ 1/E [T ] almost surely.
To prove (c), fix t ≥ Z1. Then t > 0, N(t) ≥ 1, and

R(t)

t
=

∑N(t)
i=1 Gi
t

=

(
N(t)

t

) 1

N(t)

N(t)∑
i=1

Gi

 (19)

On the other hand, part (b) implies

lim
t→∞

N(t)

t
=

1

E [T ]
almost surely (20)
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while the LLN together with the fact that N(t)→∞ implies

lim
t→∞

1

N(t)

N(t)∑
i=1

Gi = E [G] almost surely (21)

Recall that if P [A] = 1 and P [B] = 1 then P [A ∩ B] = 1. Thus, the probability that the limits in (20) and (21) hold
simultaneously is 1. Taking a limit in (19) as t→∞ and substituting (20) and (21) yields

lim
t→∞

R(t)

t
=

(
1

E [T ]

)
E [G] almost surely

which proves part (c).

Theorem 3 has applications for analysis of renewal systems, being systems that “refresh” or “renew” or “regenerate”
themselves at particular instants of time. Such systems are also called regenerative systems. For these systems, the times
{Ti}∞i=1 are called the inter-renewal times, so Z1 = T1 is the time of the first renewal, Z2 = T1 +T2 is the time of the second
renewal, and so on. The period of time between renewal i − 1 and renewal i is called renewal frame i and has duration Ti.
The value Gi is the total reward earned on frame i. At the start of renewal frame i, the system resets and repeats its behavior
in an independent but identically distributed way. One can imagine computer software independently outputting a new random
vector (Ti, Gi) for each frame i ∈ {1, 2, 3, . . .} by running the same subroutine but having all sources of randomness in the
subroutine generated independently. Define T = T1 and G = G1. Each random vector (Ti, Gi) has the same distribution as
(T,G), so the joint CDF satisfies

P [Ti ≤ τ,Gi ≤ g] = FT,G(τ, g) ∀(τ, g) ∈ R2, ∀i ∈ {1, 2, 3, . . .}

Independence means that for all i ≥ 2, knowledge of what happened in previous frames does not affect the result of frame i:

P [Ti ≤ τ,Gi ≤ g|(G1, T1), . . . , (Gi−1, Ti−1)] = FT,G(τ, g) ∀(τ, g) ∈ R2

It is assumed that E [T ] and E [G] are finite. Since all random vectors (Ti, Gi) have the same distribution, it holds that

E [Ti] = E [T ] ∀i ∈ {1, 2, 3, . . .}
E [Gi] = E [G] ∀i ∈ {1, 2, 3, . . .}

These renewal systems fit the requirements of Theorem 3. This is because

({(Ti, Gi)}∞i=1 i.i.d.) =⇒ ({Ti}∞i=1 i.i.d. and {Gi}∞i=1 i.i.d.)

The converse implication does not always hold. Thus, Theorem 3 holds for renewal systems and also for some more general
systems. However, renewal systems are the most common and the most practical applications of Theorem 3.

A. Examples

Example 1: (Bit arrivals) Suppose that packets arrive to a communication network with i.i.d. inter-arrival times {Ti}∞i=1 that
are exponentially distributed with rate parameter λ > 0, so that

fT [t] =

{
λe−λt if t ≥ 0
0 otherwise

and E [Ti] = 1/λ seconds for all i ∈ {1, 2, 3, . . .}. Suppose packet bit sizes are given by an i.i.d. sequence {Bi}∞i=1 with
P [Bi = 1000] = P [Bi = 2000] = 1/2. Compute the long term bit rate in units of bits/second.

Solution: Renewals occur at packet arrival times. Let N(t) count the number of packets that arrive up to and including time
t. By the renewal-reward theorem we have (almost surely):

lim
t→∞

∑N(t)
i=1 Bi
t

=
E [B]

E [T ]
=

1500

1/λ
= 1500λ bits/sec

and so the long term bit rate is α = 1500λ bits/sec.

Example 2: (Cloud processing) A cloud device performs back-to-back computational tasks. Each new task i ∈ {1, 2, 3, . . .}
is independently a type A task with probability 1/4 and a type B task with probability 3/4. Type A tasks require 1 minute of
processing and bring cA dollars of revenue. Type B tasks independently require 1 minute of processing with probability 1/2,
and 2 minutes of processing with probability 1/2, and bring cB dollars of revenue. What is the long term profit rate α (in
units of dollars/minute)?
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Solution: Renewals occur upon each new task. Frames sizes are Ti and rewards are Gi:

Ti =

{
1 with prob (1/4) + (3/4)(1/2)
2 with prob (3/4)(1/2)

Gi =

{
cA with prob 1/4
cB with prob 3/4

Then with probability 1 we have

α = lim
k→∞

∑k
i=1Gi∑k
i=1 Ti

=
E [G1]

E [T1]
=

(1/4)cA + (3/4)cB
(5/8) + 2(3/8)

=
2cA + 6cB

11
dollars/min

εi

0 1
δi

1-εi 1-δi Idle Idle

Frame 1 Frame 2

(a) (b) time

ACTIVEIDLE
Active Active

Fig. 3. (a) The 2-state DTMC for user i ∈ {1, . . . , n}; (b) The timeline of active and idle periods. Active and idle periods have average durations 1/δi
and 1/εi, respectively. In terms of renewal theory, an active period followed by an idle period can be viewed as a renewal frame and has average frame size
1/δi + 1/εi.

Example 3: (Time averages for a DTMC) Consider a data network that operates in discrete time t ∈ {0, 1, 2, . . .}. The
system has multiple users i ∈ {1, . . . , n} that send data according to independent idle/active processes that are modeled by a
2-state DTMC shown in Fig. 3. When a user is in the active state on slot t, it sends one new packet into the network. When a
user is idle on slot t it sends nothing. Each user i ∈ {1, ..., n} has transition probabilities εi and δi as shown in the figure. For
simplicity, this problem treats only user, so we use transition probabilities ε ∈ (0, 1) and δ ∈ (0, 1) (for simplicity we suppress
the i subscript). Each renewal frame is defined by an active period followed by an idle period, as shown in Fig 3b. For each
frame i ∈ {1, 2, 3, . . .} define the frame size Ti = Bi + Ii, where Bi is the duration of the busy period of frame i and Ii is
the duration of the idle period of frame i. Define the reward Gi = Bi. The reward rate is then the total fraction of time the
system is busy:

fraction of time busy = lim
k→∞

[
Total time busy during k frames

Total time of k frames

]
= lim
k→∞

∑k
i=1Gi∑k
i=1 Ti

Compute the fraction of time busy using renewal-reward theory and compare to the steady state probability of being busy.
Solution: State 1 is the active state. We have with prob 1

fraction of time busy =
E [G1]

E [T1]
=

1/δ

1/δ + 1/ε
=

ε

ε+ δ

which is the same as the steady state probability of being in the active state (state 1).

Example 4: (Ratio of expectations) Consider a renewal system with i.i.d. vectors {(Ti, Gi)}∞i=1 given as follows: Let {Ti}∞i=1

be i.i.d. Unif [1, 9]. Let {Vi}∞i=1 be i.i.d. Unif [0, 1] and assume the processes {Ti}∞i=1 and {Vi}∞i=1 are independent. Define
Gi = T 3

i + Vi for i ∈ {1, 2, 3, . . .}. Define T = T1 and G = G1. What is the correct value of long term average reward
α = limt→∞R(t)/t?

a) α = E
[
G
T

]
= E

[
T 2
]

+ E [V ]E
[
1
T

]
= 91

3 + (0.5)( log(3)
4 ) = 30.471

b) α = E[G]
E[T ] = 205+0.5

5 = 41.1

Solution: The answer is (b) (by the renewal-reward theorem). While (a) and (b) give correct numerical values for E [G/T ]
and E [G] /E [T ], respectively, the value E [G/T ] is irrelevant. In particular, the correct answer is the ratio of expectations not
the expectation of the ratio. Thus, the answer only depends on the marginal distributions for T and G separately, rather than
the joint distribution for the random vector (T,G). Students who are not convinced are encouraged to simulate this example
on a computer over n iterations, where n is a large integer (say, n = 105 or n = 106), and compare the resulting values of∑n

i=1Gi∑n
i=1 Ti

and 1
n

∑n
i=1(Gi/Ti).
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B. Discrete time

So far we have treated continuous time systems that can be evaluated at any real number time t ≥ 0. Many systems are
designed to operate in slotted time with time steps that take integer values t ∈ {0, 1, 2, 3, . . .}. Such systems are called discrete
time systems. Renewal systems in discrete time can be viewed as a special case of continuous time renewal systems where
{(Ti, Gi)}∞i=1 are i.i.d. vectors, but where each random variable Ti is assumed to take a positive integer value. For example,
if we have

Ti =

 1 with prob 1/2
2 with prob 1/4
3 with prob 1/4

then each new renewal starts at an integer time T1, T1 +T2, T1 +T2 +T3, and so on. The time average rate of rewards satisfies

lim
t→∞

R(t)

t
=

E [G]

1(1/2) + 2(1/4) + 3(1/4)
= (4/7)E [G] almost surely

When viewed in continuous time, the functions R(t) and N(t) are assumed to hold their values fixed at the value of the latest
integer time. The above limit can also be viewed as taking t→∞ over the set of positive integers.

A special case of discrete time renewal systems is a system with 1-slot frame durations, so that Ti = 1 surely for all i ∈
{1, 2, 3, . . .}. In this case, rewards come i.i.d. every slot. For these systems, the rewards are often re-indexed as G(0), G(1), G(2)
and so on, instead of G1, G2, G3. Thus, the first slot is slot 0.

C. Extensions of renewal theory

Appendix B of these notes give the following extensions:
• Delayed renewal-reward theorem: The same limiting behavior holds when the random variables T1 and G1 associated

with frame 1 can deviate from the the i.i.d. behavior of {Ti}∞i=2 and {Gi}∞i=2.
• Renewal-reward with expectations: When the assumptions of Theorem 3 hold, can we also say:

lim
t→∞

E [N(t)]

t
=

1

E [T ]
?

lim
t→∞

E [R(t)]

t
=

E [G]

E [T ]
?

[The answer is “yes” but it is not easy to prove. The first limit is called the “Elementary renewal theorem” but its proof
is not elementary. The second limit is called the “Elementary renewal-reward theorem.”]6

• Reward sprinkling: Instead of assuming the full reward Gi arrives in bulk at the end of frame i, what happens if different
pieces of Gi are sprinkled over the duration of frame i? [The answer is subtle, as described in Appendix B. Fortunately,
for most practical systems of interest the answer for sprinkled rewards is the same as for nonsprinkled rewards.]

V. BASIC MAC MODEL: n USERS, EACH WITH INFINITE PACKETS TO SEND

Fix n as a positive integer. Suppose there are n network users that want to send data to a common access point. Suppose
the timeline is segmented into fixed length time slots. The time slot length is typically a fraction of a second in duration. All
users know the slot duration and are synchronized in time so that they agree when a new time slot begins. Each user has an
infinite amount of data to send. Assume the data of each user is packaged into an infinite sequence of fixed length packets.
The time slot duration is assumed to be sufficient for exactly one user to send exactly one packet.

Time slots are indexed by t ∈ {0, 1, 2, . . .}. At the start of a new time slot t, each user decides to send either one packet or
no packet. A packet that is sent by a particular user on slot t is successfully received at the access point if and only if there
are no other users that attempt to send packets on that same slot. If two or more users attempt to send packets on the same
slot then a collision occurs and no information is delivered to the access point. If nobody attempts to send a packet then an
idle occurs and again no information is delivered. Each user is assumed to know the success/idle/collision outcome at the end
of every slot. That is, it is assumed that each user receives 0/1/C feedback at the end of every slot:
• Idle [0]: No users sent a packet.
• Success [1]: Exactly one user sent a packet.
• Collision (C): Two or more users sent a packet.

Each user has some algorithm for making transmission decisions over time. This section focuses on the ideal scenario where
the feedback is perfectly known by all users by the end of each slot.

6Notice that we do not say limt→∞ E [N(t)] /t = 1/E [T ] holds “almost surely” because E [N(t)] /t is a deterministic function of t, so its limit is in
the usual sense of limits of real-valued functions as defined in basic calculus courses.
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A. Application scenarios, hidden terminals, and further questions

1) Wireless network: Suppose the n users each send data to the access point via their individual wireless devices. The
devices are synchronized according to common time slots. The Idle/Success/Collision feedback can be determined either by
having each user perform carrier sensing to determine channel activity (which suffers from a hidden terminal problem if
some users cannot hear transmissions of their peers), or by having the receiver explicitly send ACK/NACK information over
a control channel (which helps to combat hidden terminals while possibly creating an inefficiency if the control channel uses
the same spectrum resources as the data transmissions).

Questions: How can the devices maintain this time synchronization? What happens if there are timing offsets at each device?
How can each device receive the assumed 0/1/C feedback? Does the access point explicitly send this feedback, or can the
devices determine this feedback themselves by sensing the channel? Do these questions have technology-dependent answers?
What if there are hidden terminals so that some devices cannot hear when others are transmitting?

2) Shared cable network: Suppose the n users are computers that want to send data over a shared cable, sometimes called
a shared bus. Only one computer can use the cable at a time, else, the result is a garbled signal. This is a classical model for
“old-school” ethernet.7

As in the wireless case, the same questions of synchronization and feedback apply. Fortunately, the hidden terminal problem
disappears in this context: When one computer is transmitting, the signal propagates over the shared cable so that all other
devices (eventually) hear the transmission. The worst-case time required for a signal initiated by one computer to be detected
by another can be computed by calculating the time required for a signal to travel from one side of the cable to the other
while moving at the speed of light.

B. Throughput and fairness

For each i ∈ {1, . . . , n} and each t ∈ {0, 1, 2, . . .} define

Xi[t] =

{
1 if user i successfully sends a packet on slot t
0 otherwise (22)

X[t] =

n∑
i=1

Xi[t]

Notice that at most one user can be successful per slot and so for each i ∈ {1, . . . , n} we have

Xi[t] = 1 =⇒ Xj [t] = 0 ∀j 6= i

Thus
X[t] =

{
1 if some user was successful on slot t
0 if nobody was successful on slot t

For each positive integer T , define Xi[T ] and X[T ] as the throughput for user i and the total throughput, respectively, over
the first T slots:

Xi[T ] =
1

T

T−1∑
t=0

Xi[t] (packets/slot) ∀i ∈ {1, . . . , n}

X[T ] =
1

T

T−1∑
t=0

X[t] (packets/slot)

Since Xi[t] and X[t] are either 0 or 1 on each slot t, it is clear that

0 ≤ Xi[T ] ≤ 1 ∀i ∈ {1, . . . , n}
0 ≤ X[T ] ≤ 1

Define Xi and X as the limiting (infinite horizon) throughput:

Xi = limT→∞
1
T

∑T−1
t=0 Xi[t] (packets/slot) ∀i ∈ {1, . . . , N}

X = limT→∞
1
T

∑T−1
t=0 X[t] (packets/slot)

where the limits are assumed to exist (with probability 1) for simplicity. Assuming these infinite horizon limits exist, it is clear
that 0 ≤ Xi ≤ 1 and 0 ≤ X ≤ 1.

It is desirable to design algorithms for each user to ensure that the total throughput X is as large as possible, meaning
that it is as close to 1 as possible. One potential method is to have user 1 transmit on every slot t ∈ {0, 1, 2, . . .} and have

7Modern ethernet is organized differently using packet switches. Switches and related topics are considered later in the course.
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users {2, 3, ..., n} never transmit. This ensures that there are never any idle slots or collision slots, so that X[t] = 1 for all
t ∈ {0, 1, 2, . . .} and X = 1. There are two problems with this:

1) It is not clear how to determine which of the N users is user 1. Indeed, if there are n people in a room, how do we
determine which is person number 1? Also, how do we tell everyone that user 1 is the only one allowed to transmit?

2) While this strategy maximizes throughput (X = 1), it is unfair to users {2, 3, . . . , n}.
To address the second point, it is useful to have a quantifiable measure of fairness. We want fairness to be quantified in

terms of the vector of throughputs (X1, . . . , Xn), not just the sum throughput. Intuitively, we want the components of this
vector to be close to each other so that every user receives a similar throughput value. One standard measure of fairness is the
Jain fairness index:

F (X1, . . . , Xn) =
(
∑n
i=1Xi)

2

n
∑n
i=1X

2

i

It is implicitly assumed that the vector (X1, . . . , Xn) has at least one positive component (else the fairness index F reduces
to the undefined expression 0/0). As long as the throughput vector consists of nonnegative values and has at least one positive
component, it can be shown that

0 < F (X1, . . . , Xn) ≤ 1

A large fairness index (close to 1) is desirable because it means that the components of vector (X1, . . . , Xn) are close together.
This is illuminated in the following lemma.

Lemma 1: Fix N as a positive integer and define

Dn =

{
(x1, . . . , xn) : xi ≥ 0 ∀i ∈ {1, . . . , n},

n∑
i=1

xi > 0

}
Define F : Dn → R by

F (x1, . . . , xn) =
(
∑n
i=1 xi)

2

n
∑n
i=1 x

2
i

Then
a) 0 < F (x1, . . . , xn) ≤ 1 for all (x1, . . . , xn) ∈ Dn.
b) F (x1, . . . , xn) = 1 if and only if x1 = x2 = ... = xn.
Proof: Fix (x1, . . . , xn) ∈ Dn. Let I be a random variable that is uniform over the index set {1, . . . , n}, that is, P [I =

i] = 1/n for all i ∈ {1, . . . , n}. Define the random variable X = xI . The random variable X is bounded because 0 ≤ X ≤
max{x1, . . . , xn} and hence it has a finite mean and variance. By the law of total expectation we have

E [X] =

n∑
i=1

E [X|I = i] (1/n) =
1

n

n∑
i=1

xi

E
[
X2
]

=

n∑
i=1

E
[
X2|I = i

]
(1/n) =

1

n

n∑
i=1

x2i

and so

F (x1, ..., xn) =

(
1
n

∑n
i=1 xi

)2
1
n

∑n
i=1 x

2
i

=
E [X]

2

E [X2]
(23)

Since V ar(X) ≥ 0 we know E
[
X2
]
≥ E [X]

2 and so F (x1, . . . , xn) ≤ 1. This proves part (a).
To prove part (b), first observe that if x1 = x2 = ... = xn then F (x1, . . . , xn) = 1. Now suppose F (x1, . . . , x1) = 1. From

(23) we obtain

1 =
E [X]

2

E [X2]

which means E
[
X2
]

= E [X]
2, so V ar(X) = 0. However, V ar(X) = 0 can only occur if X takes a constant value with

probability 1, which is only possible if x1 = x2 = ... = xn.
Observe that if Xi = 1

n10100 for all i ∈ {1, . . . , n} then fairness index satisfies:

F (X1, . . . , Xn) = 1

while the throughput is extremely low:

X =

n∑
i=1

Xi =
1

10100
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Therefore, it is not enough to maximize the fairness alone. Also, it is not enough to maximize the throughput alone. We
want both the fairness and the throughput to be large. This is called a bicriteria optimization problem because we want to
maximize two different performance objectives (fairness and throughput). In most optimization scenarios, it is impossible to
maximize two different performance objectives at the same time. Thus, we must settle for a solution that obtains a desirable
tradeoff between the two objectives. However, in this case, we observe that if (X1, . . . , Xn) = (1/n, 1/n, . . . , 1/n) then both
throughput and fairness are maximized:

F (1/n, 1/n, ..., 1/n) = 1,

n∑
i=1

(1/n) = 1

Therefore, it is desirable to develop algorithms that yield a throughput vector that is close to the vector (1/n, 1/n, . . . , 1/n).

C. Round-robin

An easy way to achieve a throughput vector of (1/n, 1/n, . . . , 1/n) is the following round-robin scheme:
• User 1 transmits at time 0.
• User 2 transmits at time 1.
• ...
• User n transmits at time n− 1.
• Repeat.

In other words, user i ∈ {1, . . . , n} transmits at time slot t if and only if t mod n = i − 1. This ensures there is one and
only one user that transmits on each slot. Thus, there are no collisions and every slot has a successful packet transmission.
This scheme is desirable and is often implemented (when possible). However, it requires some preliminary coordination. How
can we know the number of users? How do the users know their user index i ∈ {1, . . . , n}? What happens if the number of
users changes over time?

D. Basic slotted Aloha with a common transmit probability p

Assume n ≥ 2, so that there is more than one user. The basic slotted Aloha protocol is for each user to independently
transmit with probability p on every slot t ∈ {0, 1, 2, . . .}. Let Y [t] denote the number of transmitters on a given slot t. Then
Y [t] ∈ {0, 1, . . . , n} and Y [t] ∼ Binomial(n, p) for each slot t, so

P [Y [t] = k] =

(
n

k

)
pk(1− p)n−k ∀k ∈ {1, 2, ..., n} (24)

E [Y (t)] = np (25)

Since the same procedure is independently repeated every slot, the random variables {Y [t]}∞t=0 are independent and identically
distributed (i.i.d.). Slot t yields an idle if Y [t] = 0; a success if Y [t] = 1; a collision if Y [t] ≥ 2. In particular, since X[t] is a
Bernoulli variable that is 1 if and only if there is a success on slot t, we have for all t ∈ {0, 1, 2, . . .}:

Success on slot t ⇐⇒ U [t] = 1 ⇐⇒ X[t] = 1

P [X[t] = 1] = np(1− p)n−1

P [X[t] = 0] = 1− np(1− p)n−1

E [X[t]] = np(1− p)n−1 (26)

Since {X[t]}∞t=0 are i.i.d. Bernoulli random variables, we have by the law of large numbers

X = lim
T→∞

1

T

T−1∑
t=0

X[t] = np(1− p)n−1 (with prob 1) (27)

We also observe that for each user i ∈ {1, . . . , n}, the sequence {Xi[t]}∞t=0 is i.i.d. Bernoulli and so

Xi = lim
T→∞

1

T

T−1∑
t=0

Xi[t] = E [Xi[0]] (with prob 1)

By symmetry, we have
E [X1[0]] = E [X2[0]] = ... = E [Xn[0]]

and so

E [X[0]] =

n∑
j=1

E [Xj [0]] = nE [Xi[0]] ∀i ∈ {1, . . . , n}
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Thus, E [Xi[0]] = E[X[0]]
n = p(1− p)n−1 (which uses (26)). That is,

Xi = p(1− p)n−1 ∀i ∈ {1, . . . , n} (with prob 1) (28)

E. Optimizing p for slotted Aloha
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Fig. 4. A plot of throughput versus p for slotted Aloha with 10 users. Note that p∗ = 1/10, λ∗ = (1− 1/10)9 ≈ 0.3874.

For any p > 0 the throughput Xi for user i, given in (28), is positive and is the same for all i ∈ {1, . . . , n}. Hence, slotted
Aloha yields a Jain fairness index of 1 for any commonly used transmit probability p > 0:

F (X1, . . . , Xn) = 1

However, the value of total throughput X = np(1− p)n−1 in (27) varies with p. Define λ as this total throughput value:

λ = np(1− p)n−1

Observe that if p = 0 or p = 1 then λ = 0. This is intuitively clear because if p = 0 then nobody ever transmits and every
slot is idle, while of p = 1 then everyone always transmits and so every slot is a collision (recall that n ≥ 2). A plot of the
curve np(1− p)n−1 is shown for the case n = 10 users in Fig. 4. The value of p ∈ [0, 1] can be optimized to give the largest
throughput for this particular scheme:

d(np(1− p)n−1)

dp
= 0 =⇒ n(1− p)n−1 − np(n− 1)(1− p)n−2 = 0

=⇒ p∗ = 1/n

Since the expected number of transmitters on a given slot is np (recall (25)), it is interesting that, at the optimal transmission
probability p∗ = 1/n, the expected number of transmitters is 1.

Let p∗n = 1/n denote this optimal value as a function of the number of users n ∈ {2, 3, 4, . . .}. For n users, this optimized
probability p∗n yields a total throughput λ∗n of

λ∗n = (1− 1/n)n−1

A plot of λ∗n versus n is shown in Fig. 5. It is insightful to observe how p∗n and λ∗n behave as n→∞:

lim
n→∞

p∗n = lim
n→∞

1/n = 0

lim
n→∞

λ∗n = lim
n→∞

(1− 1/n)n−1 = 1/e ≈ 0.367879

The latter limit can be computed by writing (1− 1/n)n−1 = (1− 1/n)n(1− 1/n)−1 and using the following basic fact from
calculus (for the case x = −1):
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Fact 1: (A basic limit)
lim
m→∞

(
1 +

x

m

)m
= ex ∀x ∈ R

Proof: Fix x ∈ R. Define ym = (1 + x/m)m and observe that ym > 0 for all sufficiently large m, so that log(ym) is well
defined for all sufficiently large m. Then

lim
m→∞

log(ym) = lim
m→∞

m log(1 + x/m)

= lim
m→∞

log(1 + x/m)

1/m

(a)
= lim

m→∞

−x/m2

1+x/m

−1/m2

= x

where (a) holds by L’Hopital’s rule. It follows that ym = elog(ym) → ex.
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Fig. 5. Optimized throughput λ∗n = (1− 1/n)n−1 versus number of users n for slotted Aloha.

F. Slotted Aloha with capture

Consider a slotted Aloha system with n ≥ 2 users and with 0/1/C feedback, but with the difference that once a packet is
successful, it transmits k − 1 additional times in a row, where k is a parameter that is specified in advance. All other users
are silent for these k − 1 transmissions. In particular, once a user is successful once, that use captures the channel and sends
a total burst of k packets in a row, where the last k − 1 packets suffer no contention with other users. This can be viewed as
a renewal system where renewal frames last for either 1 slot or k slots. Each user indepdendently transmits with probability p
at the start of each renewal and receives 0/1/C feedback at the end of that slot. We have three possibilities:
• Idle: No users transmit at the initial renewal slot. Renewal frames last one slot.
• Collision: Two or more users transmit at the initial renewal slot. Renewal frames last one slot.
• Success: Exactly one user transmits at the initial renewal slot. That use captures the channel for the next k − 1 slots.

Renewal frames last k slots and there are k successes.
Let Ti ∈ {1, k} be the size of each renewal frame i and let Gi be the total number of successes on renewal frame i. The total
system throughput λ is

λ = lim
k→∞

∑k
i=1Gi∑k
i=1 Ti

=
E [G1]

E [T1]
packets/slot (with prob 1)
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It remains only to compute the expectations E [G1] and E [T1] associated with frame 1:

E [G1] = kP [Success] = knp(1− p)n−1

E [T1] = kP [Success] + 1(1− P [Success]) = knp(1− p)n−1 + 1− np(1− p)n−1

Hence

λn =
knp(1− p)n−1

(k − 1)np(1− p)n−1 + 1

By system symmetry the individual throughput of each user i ∈ {1, . . . n} is λn/n.
Remarkably, for any given integers n ≥ 2, k ≥ 1, the expression for λ in the above boxed formula is again maximized over

all p ∈ [0, 1] when p∗ = 1/n.8 This yields throughput:

λ∗n =
k(1− 1/n)n−1

(k − 1)(1− 1/n)n−1 + 1

Taking n→∞ gives

lim
n→∞

λ∗n =
k

k − 1 + e

When k = 1 this reduces to the standard slotted Aloha throughput of 1/e. However, using a larger value of k results in
a significantly larger throughput. Throughput gains for various k are shown in the table below (Fig. 6). The table shows a
significant gain by moving from k = 1 to k = 2 to k = 3. The table also shows that when k = 106 the throughput is close
enough to 1 for all practical purposes. However, the value of k also affects system delay: If k is too large then a single lucky
user captures the channel for, say, an hour, while all other users wait! In practice, using k ∈ {2, ..., 5} is reasonable because
users are happy to wait a few extra slots to take advantage of their share of the increased throughput.

k λ∗ = k/(k − 1 + e)
1 1/e = 0.3679
2 0.5379
3 0.6358
4 0.6995
5 0.7442
10 0.8534
100 0.9831
106 0.999998

Fig. 6. Throughput of slotted Aloha with k-slot capture for various k values and large n (that is, n→∞).

Theoretically, it is interesting to note that for any fixed n ≥ 2 and any fixed p such that 0 < p < 1, throughput can still be
pushed to 1 by making k large:

lim
k→∞

knp(1− p)n−1

(k − 1)np(1− p)n−1 + 1
= 1

Overall, the capture concept allows total system throughput to increase. There are two disadvantages: First, delay can be
large when k is large. Second, the algorithm requires k to be known, and requires all users to closely monitor system behavior
so they can be aware of the start of new frames. This is difficult if new users arrive because they may not know where frames
start! One way to handle this is to have the access point send beacon signals at the start of every new frame. Another way is
for new users to silently listen to the system until they hear an idle or collision followed by k successes in a row.

G. ZigZag decoding

It is shown in [4] that it is often possible to reliably detect the number of colliding packets even if the data from those packets
cannot be retrieved. The ZigZag decoding idea, developed in [4], is a method that can decode two colliding packets in exactly
two time slots. Consider a situation where exactly two packets collide: The ZigZag feature automatically tells these same
two users to transmit the same packets again on the next slot (while all other users are silent). This surely produces another
collision on the next slot. However, random timing offsets between the transmissions, along with signal processing techniques,
enables the complete decoding of both packets after unraveling their entangled collisions from both slots. Implementation of
this idea was shown in [4] to significantly improve performance in multiple access systems. A soft-decision version called

8This is easily seen by assuming 0 < p < 1 and writing λ∗n = k
(k−1)+ 1

np(1−p)n−1

, which is maximized when np(1− p)n−1 is maximized.
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SigSag that improves error rates is in [5]. The analysis in this subsection is inspired by the ZigZag MAC analysis in [7] (see
also MAC protocols for other multi-packet reception scenarios in [6]).

Consider the following frame-based analysis in a multi-access system that uses ZigZag. Assume there are n users, all who
want to send an infinite number of fixed-length packets. The system operates over frames of size either 1 slot or 2 slots. Let
{(Tk, Gk)}∞k=1 be the process of rewards and frame durations. The value Tk is the size of frame k and the value Gk is the
number of successful packets sent to the receiver on frame k. At the start of each frame k, all users independently transmit
with probability p. Let Nk be the number of users who transmit at the start of frame k. Then
• If Nk = 0 then frame k is an idle and (Tk, Gk) = (1, 0).
• If Nk = 1 then frame k is a success and (Tk, Gk) = (1, 1).
• If Nk = 2 then frame k is a ZigZag and (Tk, Gk) = (2, 2).
• If Nk ≥ 3 then frame k is a collision and (Tk, Gk) = (1, 0).

What is the long term total throughput λ (in units of packets/slot)? By renewal-reward theory we have

λn =
E [G]

E [T ]
=
np(1− p)n−1 + 2

(
n
2

)
p2(1− p)n−2

1 +
(
n
2

)
p2(1− p)n−2

To consider throughput for large-n, fix θ > 0 and define p = θ/n (assuming n ≥ θ). Then

λ = lim
n→∞

λn =
θe−θ + θ2e−θ

1 + θ2

2 e
−θ

A plot of λ versus θ is given in Fig. 7. This is optimized at

θ∗ = 1.49951

λ∗ = 0.66884

Thus, the optimal transmission probability for each user is θ∗/n. Since θ∗ > 1, transmissions are more aggressive than those
for slotted Aloha (recall that θ = np is the expected number of transmitters at the start of a frame). This is intuitive because
collisions in this ZigZag scenario are less costly. In particular, collisions of exactly two packets are good! As expected, the
throughput of 0.66884 is significantly larger than the 1/e = 0.3679 throughput of slotted Aloha. A more detailed ZigZag
analysis incorporates the probability ε > 0 that a ZigZag frame fails to decode. The only change in the analysis is that the
expected reward in each frame is decreased by an amount O(ε).
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Fig. 7. Throughput of ZigZag versus θ (for large n). At optimality we have θ∗ = 1.49951 and λ∗ = 0.66884.

H. Carrier Sense Multiple Access (CSMA)

This subsection presents a refinement on slotted Aloha called (slotted) Carrier Sense Multiple Access (CSMA). Again assume
there are a fixed number of users n and that each user has an infinite number of packets to send. The idea is to assume that
all users can sense the channel to detect idle slots. The sensing time is assumed to be significantly smaller than a timeslot.
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Thus, if all users detect that a slot will be idle, that slot can be cut short to reduce time waste. Minimally, the sensing time
should be at least as large as the time required for a signal of one user to propagate to the location of another user. Thus, in
practice, the worst-case sensing time is sized according to an assumed worst-case distance between two users.

Suppose the time to transmit a packet is 1 timeslot. Suppose the worst-case time to sense the channel is β = 1/m for some
positive integer m ≥ 2, so that 0 < β < 1. The time unit β is called a “mini-slot.” This time β accounts for misalignment of
time clocks at different users as well as propagation delay of a signal. To understand the savings, we first compare slotted Aloha
with slotted CSMA in a simple sample path example. Suppose the first 7 events that occur in slotted Aloha are C, 0, 0, 0, 1, C, 1.
This takes a total of 7 time units and delivers exactly 2 packets. The same 7 events still occur in slotted CSMA, but now the
idle slots are reduced to β units of time. The total time taken in a CSMA implementation is 4 + 3β < 7, and the same number
of successes have occurred in this (smaller) period of time.

This gives intuition. However, to successfully implement CSMA we will need to pad the start of each transmission event
with an idle slot of size β to allow users time to detect the end of the previous event. Since there were four transmission
events (including two collisions and two successes) the padding will increase these slots by β for each (for a total of 4β more
time units) so the total time under CSMA is 4 + 7β. If β is significantly smaller than 1, then this value is still smaller than
the 7 units of time required for slotted Aloha.

System events now operate at the start of mini-slots of size β. There are variable-sized frames. The start of each renewal
frame is an idle mini-slot of size β where users sense the channel as idle (to detect the end of the previous frame). During
this time users also decide whether or not to transmit. If they decide to transmit, that transmission will start at the end of this
mini-slot and will last 1 unit of time (m mini-slots). The users get 0/1/C feedback, but feedback about idles [0] is obtained
within β units of time and the size and reward of each renewal frame is determined accordingly. The (size, reward) vector
(Ti, Gi) for renewal frame i is determined by the feedback:
• Success: Renewal size is β + 1 time units, 1 packet is delivered. (Ti, Gi) = (β + 1, 1).
• Collision: Renewal size is β + 1 time units, 0 packets are delivered. (Ti, Gi) = (β + 1, 0).
• Idle: Renewal size is β time units, 0 packets are delivered. (Ti, Gi) = (β, 0).

We also have:

P [Success] = np(1− p)n−1

P [Idle] = (1− p)n

P [Collision] = 1− (1− p)n − np(1− p)n−1

Let λ = limk→∞

∑k
i=1Gi∑k
i=1 Ti

be the total throughput in units of packets/time. By renewal-reward theory we have

λ =
E [G1]

E [T1]
(with prob 1)

It remains to calculate E [G1] and E [T1]:

E [G1] = P [Success] = np(1− p)n−1

E [T1] = β(1− p)n + (1 + β)(1− (1− p)n) = β + 1− (1− p)n

Thus,

λ =
np(1− p)n−1

β + 1− (1− p)n

For given β and n values, the probability p in the above expression can be optimized. For better intuition, suppose that we
use:

p = θ/n

for some θ ≥ 0 (again, θ = np is the expected number of transmitters at the start of a frame). We know that for usual slotted
Aloha, the optimal transmit probability is 1/n, and so assuming a probability that is proportional to 1/n (with proportionality
constant θ) is reasonable. Substituting p = θ/n into the above boxed expression gives:

λθ,n =
θ(1− θ/n)n−1

β + 1− (1− θ/n)n

where we use subscript (θ, n) to emphasize dependence on θ and n. Now suppose θ is held fixed while n→∞:

lim
n→∞

λθ,n =
θe−θ

β + 1− e−θ
=

θ

(β + 1)eθ − 1
(29)



NEELY, EE 550, UNIVERSITY OF SOUTHERN CALIFORNIA, SPRING 2024 30

where we have again used Fact 1. This limit for a large number of users is useful because now the total throughput is in terms
of only two parameters β and θ, rather than three parameters β, θ, n. Given β = 1/m ∈ (0, 1), the value of θ > 0 can be
optimized numerically (it is difficult to obtain a closed form result).

It has been noticed that if β is much smaller than 1 (β << 1), the expression on the right-hand-side of (29) is “approximately”
maximized by the following (see [2]):

θ∗ ≈
√

2β (β << 1)

λ∗ ≈ 1

1 +
√

2β
(β << 1)

Notice that if β → 0 then λ∗ → 1. Of course, the throughput can also be pushed to 1 via basic Aloha with capture, as described
in the previous subsection. However, the use of mini-slots can significantly reduce the delay.

To understand the approximate analysis, first suppose θ is very small so that a truncated Taylor expansion gives eθ ≈
1 + θ + θ2/2. The right-hand-side in (29) becomes

θ

(β + 1)eθ − 1︸ ︷︷ ︸
f(θ)

≈ θ

(β + 1)(1 + θ + θ2/2)− 1︸ ︷︷ ︸
f̃(θ)

where f(θ) is denotes the exact function and f̃(θ) is the approximating function. The maximizer of f̃(θ) over all θ > 0 is
found at the point of zero derivative:

d

dθ
f̃(θ) = 0 =⇒ [(β + 1)(1 + θ + θ2/2)− 1] = θ(β + 1)(1 + θ)

This is a quadratic equation in θ and the maximizer of f̃(θ) is

θ̃∗ =

√
2β√

1 + β

λ̃∗ = f̃(θ̃∗) =
1−

√
2β√
1+β

1− β

These values θ̃∗ and λ̃∗ give a better approximation than
√

2β and 1/(1 +
√

2β). However,
√

2β and 1/(1 +
√

2β) are simpler
expressions that have been historically used for CSMA rules of thumb. Note that when β ≈ 0 we have

√
2β/
√

1 + β ≈
√

2β.
The following table compares the approximations for various β values (Fig. 8).

β Numerical search for exact (θ∗, λ∗)

( √
2β√
1+β

,
1−

√
2β√

1+β

1−β

) (√
2β, 1

1+
√
2β

)
0.1 (0.3755, 0.6245) (0.4264, 0.6373) (0.4472, 0.6910)
0.05 (0.2807, 0.7193) (0.3086, 0.7278) (0.3162, 0.7597)

0.025 (0.2061, 0.7939) (0.2209, 0.7991) (0.2236, 0.8173)
0.01 (0.1345, 0.8655) (0.1407, 0.8680) (0.1414, 0.8761)

0.001 (0.0440, 0.9560) (0.0447, 0.9563) (0.0447, 0.9572)

Fig. 8. Comparison of exact and approximate (θ∗, λ∗) values for slotted CSMA for various mini-slot sizes β.

I. Collision Detection (CSMA/CD)

Now suppose that users can sense the carrier for early detection of idle slots, but they can also sense for early detection of
collision slots. Then collision slots can also be reduced. This gives rise to slotted CSMA/CD: The worst-case time to detect
idle and collision slots is assumed to be β = 1/m ∈ (0, 1) and time is again slotted with respect to mini-slots of size β. The
n users again independently transmit with probability p at the start of every renewal frame, but the new renewal structure is:
• Success: Renewal size is β + 1 time units, 1 packet is delivered. (Ti, Gi) = (β + 1, 1).
• Collision: Renewal size is 2β time units, 0 packets are delivered. (Ti, Gi) = (2β, 0).
• Idle: Renewal size is β time units, 0 packets are delivered. (Ti, Gi) = (β, 0).

The values of P [Success], P [Collision], P [Idle] are the same as in CSMA. By renewal-reward theory the throughput is:

λ =
E [G1]

E [T1]
=

P [Success]

(1 + β)P [Succ] + (2β)P [Collision] + βP [Idle]
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Similarly, we can let p = θ/n and let n→∞ to obtain

λ =
θe−θ

2β + θe−θ − βe−θ − βθe−θ︸ ︷︷ ︸
f(θ)

(30)

Intuitively, we expect that p∗ for CSMA/CD will be larger than the corresponding optimal transmit probability for CSMA
because collision detection means that collisions incur less cost: We should transmit more aggressively. The reader can verify
this is true via a numerical optimization.

Directly differentiating f(θ) as defined by the right-hand-side of the above inequality gives

d

dθ
f(θ) =

β(2eθ(θ − 1) + 1)

(θ − β(θ + 1− 2eθ))2

which, remarkably, attains the value 0 when
2eθ(θ − 1) + 1 = 0

which is independent of the value of β. A numerical search for the root gives

θ∗ = 0.7680

which is the maximizer of f(θ), and so

λ∗ = f(θ∗) ≈ 1

1 + 3.31β

Since θ = np is the expected number of transmitters at the start of a frame, at optimality we want the expected number of
transmitters to be θ∗ = 0.7680.

Comparing with the CSMA throughput from the previous section (which holds for β << 1):

λCSMA ≈
1

1 +
√

2β

λCSMA/CD ≈
1

1 + 3.31β

when β << 1 then
√

2β >> 3.31β and so the optimized throughput of CSMA/CD is indeed larger than that of CSMA.

J. Unslotted Aloha

Packet i-1 Packet i

time 

111

t Ti+1Ti

Collision

Ti+2
Fig. 9. A timing diagram for unslotted Aloha. Packet i arrives at time t and does not collide with either packet i − 1 or packet i + 1 (hence, Gi = 1).
However, packet i+ 1 collides with packet i+ 2 and so Gi+1 = Gi+2 = 0.

In many systems it is difficult to implement a time slot structure. Consider a system with n users, each user has infinitely
many packets to send, all packets take one unit of time, but there are no time slots. A user who transmits at some real-valued
time t ≥ 0 will overlap with another transmission in two possible ways:
• Overlap from the left: The packet collides with a previously transmitted packet. This takes place exactly when the previous

packet initiated its transmission less than 1 unit of time before.
• Overlap from the right: The packet collides with a future packet. This takes place exactly when the next packet is

transmitted less than one unit of time after.
For simplicity of analysis, we define a packet to collide if its transmission overlaps with any part of another transmission. For
simplicity it is assumed that no data is received if there is a collision. The fact that collisions can take place from both the
right and from the left will reduce throughput by a factor of two in comparison with slotted Aloha.
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To define unslotted Aloha, start the system at time t = 0. Suppose each user i ∈ {1, . . . , n} transmits according to an
independent Poisson process of rate µ/n, where µ > 0 is a parameter that shall be sized later to maximize throughput.9

It is known that n independent Poisson processes form a single Poisson process with the sum rate. Thus, the collective
transmission process is Poisson of rate µ. Let N(t) count the total arrivals up to time t, and let {Tk}∞k=1 denote the i.i.d.
exp(µ) inter-transmission times associated with N(t). Define the reward R(t) as the total number of successes:

R(t) =

N(t)∑
i=1

Gi

where Gi = 1 if and only if transmission i is a success (see Fig. 9):

Gi = 1{Ti>1}∩{Ti+1>1} ∀i ≥ 2 (31)

where 1A is a binary-valued indicator function that is 1 if and only if event A is true, and

P [Gi = 1] = P [Ti > 1]P [Ti+1 > 1] = e−µe−µ = e−2µ ∀i ≥ 2

where we restrict attention to i ≥ 2 because the first transmission cannot experience a collision from the left. The first
transmission does not impact the long term throughput and so one can guess:

lim
t→∞

R(t)

t
= µP [G2 = 1] = µe−2µ (w.p.1)

which is maximized over all µ > 0 at µ∗ = 1/2 to give

λ∗ =
1

2e

which is indeed exactly a factor of 2 less than the slotted Aloha throughput of 1/e.
How can this be rigorously derived? The main problem is that the random sequence {Gi}∞i=1 defined in (31) is not i.i.d. and

so renewal-reward theory cannot be directly used. However, we observe that the odd rewards {G2i−1}∞i=2 are i.i.d. amongst
themselves (excluding G1), and the even rewards {G2i}∞i=1 are i.i.d. amongst themselves. Define M(t) as the number of
complete pairs of rewards that occur up to time t and observe that

M(t)∑
i=1

(G2i−1 +G2i) ≤
N(t)∑
j=1

Gj ≤
M(t)+1∑
i=1

(G2i−1 +G2i)

Fix t ≥ T1 + T2 so that M(t) ≥ 1. Dividing both sides by t gives

1

t

M(t)∑
i=1

G2i−1 +
1

t

M(t)∑
i=1

G2i ≤
R(t)

t
≤ 1

t

M(t)+1∑
i=1

G2i−1 +
1

t

M(t)+1∑
i=1

G2i (32)

Since M(t) have i.i.d. frame sizes of expected size 2E [Ti] = 2/µ, and since the even rewards {G2i}∞i=1 are i.i.d. Bernoulli
random variables with expectation e−2µ, we have by standard renewal-reward theory

lim
t→∞

1

t

M(t)∑
i=1

G2i = lim
t→∞

1

t

M(t)+1∑
i=1

G2i =
E [G2]

2/µ
=

1

2
µe−2µ (w.p.1)

Similarly, since G1 has its own distribution but {G2i−1}∞i=2 are i.i.d. Bernoulli with expectation e−2µ, we have by the delayed
renewal-reward theorem

lim
t→∞

1

t

M(t)∑
i=1

G2i−1 = lim
t→∞

1

t

M(t)+1∑
i=1

G2i−1 =
E [G3]

2/µ
=

1

2
µe−2µ (w.p.1)

Using these in (32) confirms our guess:

lim
t→∞

R(t)

t
= µe−2µ (w.p.1.)

9Strictly speaking, a single user who transmits according to a Poisson process of rate µ/n may send a packet less than one unit of time from its own
previous transmission and hence could collide with itself. This happens a negligible fraction of time when n is large and so, for simplicity, we do not modify
the transmissions for these cases.
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K. Delayed feedback and parallel systems

Consider the slotted Aloha, k-slot capture, and ZigZag protocols, all of which use a fixed slot system (with no mini-slots).
Suppose the idle/success/collision feedback is sent directly from the receiver over a control channel. Suppose the feedback is
delayed, but the delay is at most m slots. In particular, suppose that feedback on transmissions of each slot t ∈ {0, 1, 2, . . .}
is received before the start of slot t + m. An easy way to exactly implement the protocol is to separate the system into m
parallel systems. System i ∈ {0, . . . ,m− 1} runs an exact version of the protocol over time slots

t ∈ {i, i+m, i+ 2m, i+ 3m, . . .}

Thus, when i 6= j, the different systems i and j use disjoint time slots. The m different systems do not interfere with each
other. The throughput of each system i ∈ {0, . . . ,m− 1} is equal to the throughput it would have without any feedback delay,
divided by m (because throughput is now measured in terms of successes per m slots, rather than successes per slot). Total
throughput (summed over all m systems) is exactly the same as it would be if there were no feedback delay. As a practical
detail, the value of m could be included in the feedback so that newly arriving users are informed about the value of m before
their first transmission.

L. Dynamically changing the transmit probability

The slotted Aloha idea of having everyone transmit with probability p is nice because it requires less coordination than
round-robin. Unfortunately there are still several problems:

1) How do we get everyone to agree to use the same probability p?
2) How can we use the optimal probability p∗ = 1/n when the number of users n is unknown?
3) What happens if the number of users n changes over time?
One way to resolve these issues is to have each network user form an estimate of either n or 1/n based on a window of

observed history.10 One heuristic method to estimate n is to use the formula

P [Idle] = (1− p)n (33)

which holds under the special case assumption that there are n users that independently transmit with probability p. Now,
that special case does not hold in the actual system. Thus, equation (33) is not intended to hold in the actual system. Rather,
equation (33) is used only to provide intuition: Suppose all users keep a running time average idle probability I[t], which is
the average number of idle slots within some window of past history (say, I[t] is the total number of idle slots in the last 10
transmissions, divided by 10, with a reasonable modified definition for slots t < 10). Each user i ∈ {1, . . . , n} knows its own
average transmission probability pi[t] (again averaged over the same window of history). Unfortunately, the pi[t] values may
be different across different users i ∈ {1, . . . , n}. Nevertheless if each user i approximates all other users as having the same
averaged probability, then user i can substitute its values for I[t] and pi[t] as replacements for P [Idle] and p in (33) to obtain
the following approximation:

I[t] ≈ (1− pi[t])n =⇒ n[t] ≈ log(I[t])

1− pi[t]
where n[t] is intended to be a (heuristic) approximation for the number of users in the network on slot t. This approximation
has singularities when I[t] = 0 and when pi[t] = 1 and so the approximation must be modified in those cases.

This is a simple and crude approximation. Consider an alternative max-likelihood approach: Suppose we observe the feedback
F [t] ∈ {0, 1, C} over the past 5 slots τ ∈ {t, t− 1, ..., t− 4} and we observe the following particular event A:

A = {(F [t− 4], F [t− 3], F [t− 2], F [t− 1], F [t]) = (0, 0, 1, 0, C)}

If we assume that on each slot t, all users i somehow use the same probabilities, so that pi[t] = p[t] for all i ∈ {1, . . . , n}
(for some value p[t]), then the probability P [A|n] for this event (assuming there were n users on each of the slots) is:

P [A|n] = (1− p[t− 4])n(1− p[t− 3])n(np[t− 2](1− p[t− 2])n−1)(1− p[t− 1])n(1− (1− p[t])n − np[t](1− p[t])n−1)

and the max likelihood estimator for n is:
n̂[t] = arg max

n∈{0,1,2,...}
P [A|n]

This is a more complex estimator but is (hopefully) more accurate. Of course, if users can have different transmit probabilities
on the same slot t, then the assumption p[t] = pi[t] for all i ∈ {1, . . . , n} is itself an approximation. Given that we are already
approximating, it may be reasonable to use a simpler approximation.

Another approach is for the users to implement some form of probability update (without attempting to estimate n or 1/n).
Each user i in the network on slot t can define a value pi[t] ∈ [0, 1] as the transmit probability it will use on slot t. After every

10Recall various types of estimators, such as MMSE, linear MMSE, Max a-priori, and Max-likelihood. Also recall that estimating a parameter n is not
always the same as estimating 1/n.
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slot t, each user i can observe the window of history (including the 0/1/C feedback for slot t) and define pi[t + 1] as either
higher, lower, or the same as pi[t]. Different update rules may lead to each different user having a different value of pi[t].
Most rules that are implemented are well reasoned heuristics that perform well in experiments (see also [3] for a mathematical
analysis that shows 1/e throughput for an estimation algorithm in a related slotted Aloha model).

For example, suppose all users agree in advance to use probabilities in the interval [pmin, pmax] for some values 0 ≤ pmin <
pmax ≤ 1. Then each user i may want to update pi[t+ 1] based on the 0/1/C feedback from slot t as follows:
• If slot t is a collision then decrease the transmit probability:

pi[t+ 1] = max[pi[t]− di[t], 0]

where di[t] is some nonnegative value that possibly depends on pi[t] and/or on other historical information.
• If slot t is an idle or success then increase the probability:

pi[t+ 1] = min[pi[t] + ai[t], 1]

where ai[t] is some nonnegative value that possibly depends on pi[t] and/or on other historical information.
Other rules might distinguish the “idle” and “success” cases, and still others may use more detailed information such as running
averages of collision and success history, rather than just the 0/1/C feedback from slot t.

Usually, one hopes that the rule for updating pi[t] has the property that if the number of users n is an unknown but fixed
quantity that never changes, then

lim
t→∞

pi[t] = 1/n ∀i ∈ {1, . . . , n}

Furthermore, if the number of users varies between 10 − 12 for the first minute, and then abruptly changes to vary between
20− 25 in the next minute, one hopes the algorithm will allow pi[t] to quickly converge to ≈ 1/10 for the first minute, and
then change to ≈ 1/20 in the next minute.

This sets the stage for a number of interesting computer experiments than can be conducted. Of course, when performing a
computer simulation, it is still useful to precisely define the mathematical model that is being simulated. This is explored in
the next section.

VI. MATHEMATICAL MODELS FOR DYNAMIC USER BEHAVIOR

Suppose we want to simulate a scheme for users to dynamically adjust their transmit probabilities pi[t], as discussed in
Section V-L. The basic setting that can be considered first is when the number of users n is fixed, never changes over time, but
is unknown to the users at time t = 0. This is an important scenario and can provide much intuition and insight into different
methods for updating the pi[t] probabilities. However, eventually one may want to consider the important scenario where the
number of users change. How should the changes be modeled? This section specifies three precise mathematical models.

A. Markov-based activity pattern

Suppose there are a fixed number of users n that never change. However, the users do not always want to send data. Suppose
that each user i ∈ {1, . . . , n} has an activity state Ai[t] ∈ {0, 1}. If Ai[t] = 1 then the user is active and wants to send data,
while Ai[t] = 0 means the user is idle (or “asleep”) and does not want to send data. For each user i ∈ {1, . . . , n}, the value
value Ai[t] typically stays 1 for long bursts of time t, and then switches to 0 for another long burst of time t. This models a
situation where the number of users stays fixed for a long period of time, but those users do not always want to send data.

No system lasts for an infinite amount of time. However, mathematical models that assume an infinite number of time slots
are often reasonable when a system is analyzed over a finite time that includes thousands of time slots. For example, imagine
a coffee shop where, for a period of 20 minutes, there are exactly n people sitting at tables. Because a timeslot for packet
transmission an be very small, there can be thousands of time slots during this 20 minute interval. The use of a binary activity
state Ai[t] for each user allows treatment of the real situation that the n people are not always using their wireless devices:
Sometimes they are talking (face to face) with each other; sometimes they are simply drinking coffee! Thus, the total number
of users that want to send data at a given time t can be defined as the random process N [t] =

∑n
i=1Ai[t]. If each active user

i knows the exact value of N [t] at the start of each new slot t, then it could set its transmit probability to p∗i [t] = 1/Ni[t],
which corresponds to the optimal common random transmit probability for slotted Aloha (as described in the previous section).
On the other hand, in general the users may not know N [t] and this scenario is useful for testing the robustness of various
dynamic probability schemes (such as those described in Section V-L).

To conduct a computer simulation of this situation, we need a mathematical model to describe how Ai[t] evolves for each
user i ∈ {1, . . . , n}. One simple but useful model is to assume that the activity state of each user evolves independently
according to a 2-state discrete time Markov chain (DTMC) with transition probabilities εi and δi, as shown in Fig. 3. It is
assumed that 0 < εi < 1 and 0 < δi < 1. At the end of each slot t the activity state of each user i ∈ {1, . . . , n} is updated
independently as follows:
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• If Ai[t] = 0 then independently flip a biased coin with P [HEADS] = εi and update:

Ai[t+ 1] =

{
1 if HEADS
0 otherwise

• If Ai[t] = 1 then independently flip a biased coin with P [HEADS] = δi and update:

Ai[t+ 1] =

{
0 if HEADS
1 otherwise

It is important to understand the mathematical properties of this activity process: The timeline for each user i can be decomposed
into IDLE slots and ACTIVE slots. The duration of each IDLE period is independent of history and is geometrically distributed
with parameter εi. Thus, the average duration of a user i IDLE slot is 1/εi. Similarly the duration of each user i ACTIVE
period i s independent of history and is geometrically distributed with parameter δi, having average size 1/δi. Using the cut-set
equations it is easy to determine the steady state probabilities πi(ACTIV E) and πi(IDLE) for each user i:

πi(ACTIV E) = lim
t→∞

P [Ai[t] = 1] =
εi

εi + δi

πi(IDLE) = lim
t→∞

P [Ai[t] = 0] =
δi

εi + δi

and these limits are the same regardless of the initial state Ai[0] ∈ {0, 1}. These steady state probabilities can also be shown
to satisfy

πi(ACTIV E) =
E [ACTIV Ei]

E [ACTIV Ei + IDLEi]

πi(IDLE) =
E [IDLEi]

E [ACTIV Ei + IDLEi]

where E [ACTIV Ei] = 1/δi and E [IDLEi] = 1/εi. These equations will be illuminated in terms of renewal theory as
discussed in the next section.

Under this model, the average number of users that are active on a given slot t is

E [N [t]] =

n∑
i=1

E [Ai[t]] =

n∑
i=1

P [Ai[t] = 1]

which uses the fact

Ai[t] ∈ {0, 1} =⇒ E [Ai[t]] = 1 · P [Ai[t] = 1] + 0 · P [Ai[t] = 0] = P [Ai[t] = 1]

The steady state average number of active users is thus:

lim
t→∞

E [N [t]] =

n∑
i=1

lim
t→∞

P [Ai[t] = 1]

=

n∑
i=1

εi
εi + δi

A simple simulation setting is when we use the same εi and δi parameters for all users i, so that εi = ε and δi = δ for
some values ε ∈ (0, 1) and δ ∈ (0, 1), where δ is chosen to obtain a desired average active period of 1/δ slots, ε is chosen to
obtain a desired average idle period of 1/δ slots, and the average number of active users is nε/(ε+ δ).

Consider a computer simulation of this model that uses some particular multi-access method at each user. Let Xi[t] ∈ {0, 1}
denote the user i success process on slot t, as defined in (22). Suppose the simulation runs for T = 100 × 103 slots. The
computer simulation allows us to compute the throughput vector (X1[T ], . . . , Xn[T ]) and the corresponding total throughput
X[T ] and the Jain fairness index F (X1[T ], . . . , Xn[T ]). If all users have a symmetric activity behavior, so that εi = ε and
δi = δ for all i ∈ {1, . . . , n}, then each user is active for the same fraction of time and it is a reasonable desire the vector
(X1, . . . , Xn) to have near-equal components (as indicated by a Jain fairness index that is close to 1). However, if the activity
behavior of the users is not symmetric then there is a major problem with the Jain fairness index itself: It is not fair! Specifically,
suppose there are three users with different steady state ACTIVE probabilities as follows:

π1(ACTIV E) = 0.9, π2(ACTIV E) = 0.5, π3(ACTIV E) = 0.1

Since user 3 is only active 10 percent of the time, the largest throughput that can be achieved by user 3 is 0.1. Therefore, the
most objectively fair throughput vector to strive for in this situation is:

(X1, X2, X3) = (0.45, 0.45, 0.1)
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Indeed, this gives the best possible total throughput X = X1 + X2 + X3 = 1; gives user 3 its largest possible throughput
X3 = 0.1; gives users 1 and 2 an equal share of the remaining throughput. However, the Jain fairness index yields:

F (0.45, 0.45, 0.1) =
(0.45 + 0.45 + 0.1)2

3(0.452 + 0.452 + 0.12)
≈ 0.803

The fact that the Jain fairness index is only 0.803 (not 1) incorrectly suggests that fairness can be improved.

B. Randomly arriving users that stay for a finite time

An alternative model is to assume that there are an infinite number of users that arrive over time according to a random
process. Each user arrives at a certain time slot, stays for a random amount of time, and then leaves (never to return). It is
assumed that the each user has an infinite amount of data that it wants to send while it is in the system (so that it always has
a packet to send when it is in the system). Let A[t] be the number of new arrivals on slot t ∈ {0, 1, 2, . . .}. For simplicity
assume that {A[t]}∞t=0 is i.i.d. over slots with some mass function P [A[t] = i] for i ∈ {0, 1, 2, . . .} that satisfies

∞∑
i=0

P [A[t] = i] = 1

Define λ as the average number of new arrivals per slot:

λ = E [A[t]] =

∞∑
i=0

iP [A[t] = i]

By the law of large numbers we know

lim
T→∞

1

T

T−1∑
t=0

A[t] = λ (with prob 1)

For example, one might use a Poisson mass function with parameter λ > 0 so that:

P [A[t] = i] =
λi

i!
e−λ ∀i ∈ {0, 1, 2, . . .}

Alternatively, one might use a Bernoulli mass function so that there can be at most one new arrival per slot:

P [A[t] = 1] = λ, P [A[t] = 0] = 1− λ

Assume that each arriving user i stays in the system for an independent amount of time slots Wi, where {Wi}∞i=1 is an
i.i.d. sequence of positive integers that is independent of the arrival sequence {A[t]}∞t=0. For simplicity of notation, let W be
an independent copy of W1. The simplest model is when W is a geometric random variable with parameter q, so that

P [W = k] = q(1− q)k−1 ∀k ∈ {1, 2, 3, . . .}

in which case

E [W ] =

∞∑
k=0

kq(1− q)k−1 = 1/q

This geometric staying time model is the easiest to simulate because of its memoryless property: At the end of every slot t,
each user that is currently in the system independently decides to leave with probability q (and to stay with probability 1− q).

Let N [t] be the number of users currently in the system on slot t. Define N as the time average:

N = lim
T→∞

1

T

T−1∑
t=0

N [t]

Can we mathematically compute N? This is a deep question and the answer is not obvious. It turns out that the answer is
“yes.” The answer does not require knowledge of the distribution of A[t] or the distribution of W , it only requires their average
values E [A[t]] = λ and E [W ] = 1/q. Indeed, a general queueing theory result called Little’s theorem (which shall be studied
in more detail later in the course) implies that, with probability 1,

N = λE [W ] = λ/q
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C. Queue-based models
Again suppose there are a fixed number of users n that never changes over time. However, instead of modeling the active/busy

behavior of the users according to 2-state DTMCs as in Section VI-A, suppose each user i ∈ {1, . . . , n} has data that it wants
to send arrive according to an independent arrival process. The arriving data for user i is stored in a queue at user i. The
effective number of users in the system is equal to the number of users that have non-empty queues.

Specifically, let Ai[t] be the number of new packets that arrive to user i on slot t. Assume that the processes {Ai[t]}∞t=0 are
independent across users i ∈ {1, . . . , n} and are i.i.d. over slots with some probability mass function P [Ai[t] = k] that may
be different for each user i and that satisfies the following for all slots t and all users i:

∞∑
k=0

P [Ai[t] = k] = 1

Define λi as the expected number of new arrivals for user i on a given slot:

λi = E [Ai[t]] =

∞∑
k=0

kP [Ai[t] = k]

By the law of large numbers we have

lim
T→∞

1

T

T−1∑
t=0

Ai[t] = λi (with prob 1) (34)

Define Xi[t] ∈ {0, 1} as in (22), so that Xi[t] = 1 if and only if user i successfully transmits a packet on slot t. Let Qi[t]
be a nonnegative integer that represents the queue backlog for user i on slot t. Assume the queue is initially empty, so that
Qi[0] = 0. The queue update equation is:11

Qi[t+ 1] = max[Qi[t]−Xi[t], 0] +Ai[t] ∀t ∈ {0, 1, 2, . . .} (35)

Since Qi[0], Xi[t] and Ai[t] are always nonnegative integers, the value of Qi[t] is a nonnegative integer for all t ∈ {0, 1, 2, . . .}.
If Qi[t] > 0 on slot t ∈ {0, 1, 2, . . .} then user i can attempt to transmit a packet (using some transmission probability pi[t]).
One can view the new packets arrivals Ai[t] as arriving either in the middle or at the end of a slot t, so that they cannot be used
for transmission on slot t. However, these new arrivals on slot t are added to the backlog and are available for transmission
on slot t+ 1. Let N [t] be the number of non-empty queues at the start of slot t:

N [t] =

n∑
i=1

1{Qi[t]>0}

where 1{Qi[t]>0} is called an indicator function that is 1 if Qi[t] > 0 and 0 else:

1{Qi[t]>0} =

{
1 if Qi[t] > 0
0 otherwise

The value N [t] is the number of users in the system on slot t that compete for access. Define N as its time average:

N = lim
T→∞

1

T

T−1∑
t=0

N [t]

Unlike the previous two models, the value of N now depends on the success history of the multi-access scheme. It is not
obvious how to compute N .

This queueing model adds a new mathematical topic of queue stability to the problem: The multi-access scheme needs to
be good enough to provide each user i enough successes so that the packets that go into queue i eventually also get served. If
there are not enough successes then the queue backlog can go to infinity! To see this, fix i ∈ {1, . . . , n}. From (35) we obtain

Qi[t+ 1] ≥ Qi[t]−Xi[t] +Ai[t] ∀t ∈ {0, 1, 2, . . .}

Thus
Qi[t+ 1]−Qi[t] ≥ Ai[t]−Xi[t] ∀t ∈ {0, 1, 2, . . .}

Fix T as a positive integer. Summing the above over t ∈ {0, 1, . . . , T − 1} gives

Qi[T ]−Qi[0]︸ ︷︷ ︸
0

≥
T−1∑
t=0

Ai[t]−
T−1∑
t=0

Xi[t]

11If we assume user i cannot transmit anything on slot t when Qi[t] = 0 then we necessarily have Xi[t] = 0 when Qi[t] = 0 and the queue update
equation (35) can be simplified to Qi[t + 1] = Qi[t] − Xi[t] + Ai[t]. We leave the update equation in the form (35) because it is sometimes useful to
consider Xi[t] as a virtual service opportunity that can take place even when the queue backlog is zero.
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Dividing both sides by T and using Qi[0] = 0 gives

Qi[T ]

T
≥ 1

T

T−1∑
t=0

Ai[t]−
1

T

T−1∑
t=0

Xi[t]

Taking a limit as T →∞ (assuming for simplicity that the limit exists) gives

lim
T→∞

Qi[T ]

T
≥ λi − lim

T→∞

1

T

T−1∑
t=0

Xi[t]︸ ︷︷ ︸
Xi

(with prob 1)

where we have used (34). Define Xi as the average success rate for user i, as defined in the underbrace of (36). Then

lim
T→∞

Qi[T ]

T
≥ λi −Xi (with prob 1) (36)

Since the limT→∞Qi[T ]/T ≥ 0, from (36) we must have

0 ≤ Xi ≤ λi ∀i ∈ {1, . . . , n} (37)

It follows from (36) that
Xi < λi =⇒ lim

T→∞
Qi[T ] =∞ (with prob 1)

The situation where the queue backlog grows to infinity with probability 1 is certainly an unstable situation! There are various
useful definitions of queue stability in the literature [18]. One of the simplest is the definition of rate stability given below.

Definition 5: A queue processs {Qi[t]}∞t=0 of the form (35) is said to be rate stable if

lim
T→∞

Qi[T ]

T
= 0 (with prob 1)

The inequality (36) implies that the queue is rate stable if and only if Xi = λi. In particular, if Xi < λi then queue i is
not rate stable. To ensure that all queues are stable, it is imperative that the average success rate Xi be equal to the arrival
rate λi for each user i. On the other hand, there is at most one successful transmission per slot and so

n∑
i=1

Xi[t] ≤ 1 =⇒
n∑
i=1

Xi ≤ 1

Thus, if
∑n
i=1 λi > 1, it is impossible to have λi = Xi for all i: Regardless of the multi-access policy, there must be some

queue that is unstable! This means that the sum demand for access exceeds the system capabilities: The only way to stabilize
the user queues is to start dropping data, so that the queue update equation (35) is modified to include an additional packet
dropping term.

Now consider a situation with three users and suppose (λ1, λ2, λ3) = (0.1, 0.2, 0.3). Suppose a multi-access strategy is used
that stabilizes all queues, so that (X1, X2, X3) = (λ1, λ2, λ3). This is the best possible throughput vector because it gives
each user a success rate equal to its data arrival rate. The total throughput is λ1 +λ2 +λ3 = 0.6. Even though this is less than
1, it cannot be improved. Further, the Jain fairness index is:

F (λ1, λ2, λ2) =
(0.1 + 0.2 + 0.3)2

3(0.12 + 0.22 + 0.32)
≈ 0.857

Even though this value is less than 1, it cannot be improved.

VII. A ROBBINS-MONRO APPROACH TO DYNAMICALLY ADJUSTING THE TRANSMIT PROBABILITY

Consider a simplification of the dynamic user models of the previous section: The number of users is a fixed but unknown
parameter n ∈ {2, 3, . . . ,m}. It is assumed that n ≥ 2 so that there are at least two users who compete for channel resources.
The value m represents a known maximum value on the number of users. Users transmit packets to an access point over
slotted time t ∈ {0, 1, 2, . . .}. We assume the idle/success/collision model where a success occurs on a slot t if and only if
exactly one user transmits on slot t.

If the number of users n were known, we could have all users independently transmit with probability p∗ = 1/n on each
slot and the total throughput of (1− 1/n)n−1 ≈ 1/e would be attained. Here we let S[t] be an estimate of n that is made on
slot t. For convenience, we allow S[t] to be a noninteger value, but we assume 0 ≤ S[t] ≤ m on every slot t. Every slot t,
the access point broadcasts the value p[t] = 1/S[t] as the common probability that all users should use that slot. The goal is
to design an estimation procedure that enables S[t] to converge closely to n as t → ∞. If convergence is fast enough, then,
intuitively, our scheme should also do well when the number of users n varies with time according to some random process
N [t] (such as the processes described in the previous section), provided that N [t] does not change too quickly and dramatically.

Dynamic procedures of this type are considered under related models in [19][20][21][3]. The method to be discussed in this
section is most closely related to the Robbins-Monro learning technique [22][23][24][25][26][27].
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A. Update structure

Consider the following update structure (similar to [20][21]): Fix constant ε > 0 (to be chosen later). On slot t = 0, arbitrarily
choose the initial estimate S[0] ∈ [2,m] (for example, choose S[0] = 2). Define S[t] for t > 0 according to the following
update equation:

S[t+ 1] = [S[t] + εJ [t]]
m
2 ∀t ∈ {0, 1, 2, . . .} (38)

where [·]m2 denotes a projection onto the interval [2,m], that is

[x]m2 =

 2 if x < 2
x if x ∈ [2,m]
m if x > m

and where J [t] is defined by

J [t] =

 −a[t] if slot t has an idle
b[t] if slot t has a success
c[t] if slot t has a collision

(39)

where a[t], b[t], c[t] are values that shall be chosen later. The value ε shall be called the stepsize and the function J [t] shall be
called the adjustment. Intuitively, if slot t has an idle then we assume the actual number of users is lower than our estimate
and so we make J [t] = −a[t] (typically a negative value so that our estimate will be reduced on slot t+ 1). On the other hand,
if slot t has a collision then we assume the actual number of users is larger than our estimate and so we make J [t] = c[t]
(typically a positive value so that our estimate will be increased on slot t+ 1). Finally, if we have a success then it is not clear
if we should increase or decrease our estimate, or keep it the same. Thus, we make J [t] = b[t] in this case, where b[t] is a
(possibly zero) value that we shall have the freedom to choose later. It shall be assumed that a[t], b[t], c[t] are either constants
or are deterministic functions of the current estimate S[t].

The goal is to size the values a[t], b[t], c[t] so that

E [J [t]|S[t]] ≤ 0 if S[t] ≥ n (40)
E [J [t]|S[t]] ≥ 0 if S[t] < n (41)

Intuitively, this means that the estimate S[t] tends to decrease when it is currently larger than the true number of users n, and
tends to increase otherwise. Of course, defining a[t] = b[t] = c[t] = 0 gives E [J [t]|S[t]] = 0 for all slots t and all S[t] ∈ [2,m],
so that (40)-(41) are satisfied. However, this choice does not help because the feedback adjustment J [t] is always zero and so
S[t] = S[0] for all t: there is no learning and no convergence to the true value n. Therefore, it is not enough that (40)-(41)
are satisfied, we shall require these to be satisfied with strict and sufficiently large inequality when S[t] 6= n.

B. Computing E [J [t]|S[t]]

Recall that on each slot t, all n users independently transmit with probability p[t] = 1/S[t]. The value p[t] is known to all
users because it is assumed the access point broadcasts this value to everyone. By definition of J [t] in (39) we have:

E [J [t]|S[t]] = −a[t](1− p[t])n + b[t]np[t](1− p[t])n−1 + c[t](1− (1− p[t])n − np[t](1− p[t])n−1)

where the above uses the assumption that a[t], b[t], c[t] are deterministic functions of the state S[t], and they act as known
constants when conditioning on S[t]. Collecting terms gives

E [J [t]|S[t]] = c[t]− (1− p[t])n(a[t] + c[t]) + np[t](1− p[t])n−1(b[t]− c[t])

C. A particular choice of a[t], b[t], c[t]

Observe that np[t]− 1 = n
S[t] − 1 > 0 if and only if S[t] < n. It makes sense to manipulate the above expression to get a

factor np[t]− 1,

E [J [t]|S[t]] =

c[t]− (1− p[t])n
(
a[t] + c[t] +

b[t]− c[t]
1− p[t]

)
︸ ︷︷ ︸

+ (np[t]− 1)(1− p[t])n−1 (b[t]− c[t])︸ ︷︷ ︸
The value S[t] is known, the value p[t] = 1/S[t] is known, but the value n is unknown. The goal is to choose a[t], b[t], c[t] as
deterministic functions of the known S[t] so the terms in the underbraces above yield a simple and useful expression. It shall
be useful to consider the following choices of a[t], b[t], c[t]:

a[t] = −1 + 2(1− p[t])−S[t]

b[t] = 1 + (1− p[t])−S[t]+1

c[t] = 1
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These are indeed deterministic functions of the known state S[t] (recall that p[t] = 1/S[t]). Note also that they are not functions
of the unknown parameter n (the algorithm could not be implemented otherwise). It can be shown that whenever 2 ≤ S[t] <∞,
these choices ensure:

2e− 1 ≤ a[t] ≤ 7

3 ≤ b[t] ≤ 1 + e

Under these choices we have:12

E [J [t]|S[t]] =
[
1− (1− p[t])n−S[t]

]
+ (np[t]− 1)(1− p[t])n−S[t]

=
(

1− (1− p[t])n−S[t]
)

+ p[t](n− S[t])(1− p[t])n−S[t] (42)

where the final equality uses p[t] = 1/S[t]. It can be shown that the right-hand-side of (42) satisfies (40)-(41) with strict
inequality when S[t] 6= n. Indeed, observe that 0 < p[t] < 1 for all t and consider the two cases:
• Suppose S[t] > n. Then (1− p[t])n−S[t] > 1 and (n− S[t]) < 0 and so(

1− (1− p[t])n−S[t]
)

+ p[t](n− S[t])(1− p[t])n−S[t] < 0

• Suppose S[t] < n. Then (1− p[t])n−S[t] < 1 and (n− S[t]) > 0 and so(
1− (1− p[t])n−S[t]

)
+ p[t](n− S[t])(1− p[t])n−S[t] > 0

D. The case n = 1

The algorithm S[t+ 1] = [S[t] + εJ [t]]m2 was developed under the assumption that n ≥ 2. This algorithm restricts to using
S[t] ≥ 2 for all t, and hence p[t] ≤ 1/2 on each slot t. A major shortcoming of this algorithm is that it does not adequately
treat the case n = 1. Indeed, if n = 1 then, since this algorithm yields p[t] ≤ 1/2 for all slots t, the throughput is at most 1/2.
However, if n = 1, a good algorithm should learn to nearly always transmit so that near-perfect throghput of 1 is achieved.

One approach is to simply change the interval of projection: Use the new interval [1,m] instead of the old interval [2,m].
The problem with this approach is that if S[t] = 1 then p[t] = 1/S[t] = 1 and the a[t] and b[t] constants defined in the previous
subsection have a singularity. In particular, observe that:

a[t] = −1 +
2

(1− 1
S[t] )

S[t]

and the denominator is 0 when S[t] = 1. Alternatively, one could take a projection onto the interval [1 + δ,m] for some value
δ that satisfies 0 < δ ≤ 1. In this case the a[t] coefficient satisfies:

2e− 1 ≤ a[t] = −1 +
2

(1− 1
S[t] )

S[t]
≤ −1 +

2

(1− 1
1+δ )1+δ

However, the right-hand-side bound can be very large when δ ≈ 0 because

lim
δ→0+

[
−1 +

2

(1− 1
1+δ )1+δ

]
=∞

The reason that we want to keep the coefficients a[t] and b[t] bounded by small values is that a bound on E
[
J [t]2

]
shall be

important for analytical guarantees (see Theorem 4 in the next subsection).
Another approach is to primarily use the iteration S[t + 1] = [S[t] + εJ [t]]m2 , but if the current estimate S[t] is close to 2

and we have not recently seen any collisions, we can heuristically guess that n = 1 and we can have an experimental slot that
uses p[t] = 1 to test this guess. If this experimental slot results in a success, we know that n = 1 and we can continue using
S[t] = 1 and p[t] = 1 indefinitely (until a collision occurs, where a collision indicates that the number of users has changed
from n = 1 to n > 1). Otherwise, if this experimental slot results in a collision, we know that n ≥ 2 and we continue to use
the iteration S[t+ 1] = [S[t] + εJ [t]]m2 until a long enough time has elapsed (with S[t] still close to 2) so that we want to try
another experimental slot to see if the number of users has changed to 1.

12We are unaware of similar choices of a[t], b[t], c[t] in the literature and we believe these are novel. For example, work in [20][21] uses fixed parameters
a, b, c, work in [19] uses a multiplicative update rule, work in [3] uses a different update structure, and most prior work considers a different model with an
infinite number of users, all with only one packet.
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E. Learning-based estimation of a parameter

The estimation procedure (38) falls into a general class of stochastic approximation algorithms. In particular, it is similar
to a classic Robbins-Monro approximation procedure [22] (see also [23][24][25][26][27]). In this subsection we present a
theorem that allows such estimation procedures to be analyzed. We consider a general problem of estimating an unknown
parameter s∗ that takes values in some known interval [smin, smax]. For example, in the multi-access problem we can use
smin = 2, smax = m, s∗ = n. Let {S[t]}∞t=0 be the sequence of estimates with initial condition S[0] ∈ [smin, smax] and
update equation:13

S[t+ 1] = [S[t] + εJ [t]]smaxsmin ∀t ∈ {0, 1, 2, . . .} (43)

where [x]smaxsmin is a projection onto the interval [smin, smax]; ε > 0 is a stepsize parameter to be chosen later; J [t] is some
type of adjustment function (compare (43) with (38) for the case smin = 2, smax = m, s∗ = n).

The estimates {S[t]}∞t=0 that arise from the update equation (43) can be analyzed when the conditional expectations of J [t],
given S[t], have certain structural bounds. Specifically, let g : R→ R be function that shall be called a bounding function. It
is assumed that g(x) has the following properties:

g(x) ≥ 0 if x < 0 (44)
g(x) ≤ 0 if x > 0 (45)

Suppose we can engineer an adjustment function J [t] that has the following property:

E [J [t]|S[t] = s] ≤ g(s− s∗) if s ≥ s∗ (46)
E [J [t]|S[t] = s] ≥ g(s− s∗) if s < s∗ (47)

A typical bounding function g(x) is piecewise linear:

g(x) =

{
−β1x if x ≤ 0
−β2x if x > 0

(48)

for some constants β1 > 0 and β2 > 0. Fig. 10 gives an example illustration of the inequalities (46)-(47) with respect to such
a piecewise linear bounding function g(x).

x

g(x)

s

g(s-s*)

0 s*

E[J[t]|S[t]=s]

(a) (b)

Fig. 10. (a) A plot of the piecewise linear bounding function g(x) from (48); (b) An illustration of inequalities (46)-(47).

Theorem 4: (Learning-based estimation of s∗) Fix constants ε > 0 and S[0] ∈ [smin, smax]. Suppose S[t] evolves according
to (43). Suppose there is a bounding function g(x) that satisfies (44)-(45) such that J [t] satisfies (46)-(47) for all slots
t ∈ {0, 1, 2, . . .}. Further suppose there is a real number c ≥ 0 such that

E
[
J [t]2

]
≤ c ∀t ∈ {0, 1, 2, . . .} (49)

Then
1

T

T−1∑
t=0

E [|(S[t]− s∗)g(S[t]− s∗)|] ≤ cε

2
+

(S[0]− s∗)2

2εT
∀T ∈ {1, 2, 3, . . .} (50)

In particular,
1

T

T−1∑
t=0

E [|(S[t]− s∗)g(S[t]− s∗)|] ≤ (c+ 1)ε

2
∀T ≥ (b− a)2

ε2

13To consider an unknown parameter s∗ that can take values in the entire real number line R, we use smin = −∞ and smax = ∞ so the update (43)
becomes S[t+ 1] = S[t] + εJ [t].
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Proof: Fix T as a positive integer and fix t ∈ {0, 1, . . . , T − 1}. We have

1

2
(S[t+ 1]− s∗)2 (a)

=
1

2
([S[t] + εJ [t]]ba − s∗)2

(b)
=

1

2
([S[t] + εJ [t]]ba − [s∗]ba)2

(c)

≤ 1

2
(S[t] + εJ [t]− s∗)2

=
1

2
(S[t]− s∗)2 +

ε2J [t]2

2
+ ε(S[t]− s∗)J [t]

where (a) holds by the update equation (43); (b) holds because s∗ ∈ [smin, smax] and so s∗ = [s∗]ba; (c) holds by the well
known convex analysis fact that the distance between the projections of two real numbers onto a closed interval [smin, smax]
is less than or equal to the original distance between these numbers. Taking expectations of the above gives

1

2
E
[
(S[t+ 1− s∗)2

]
− 1

2
E
[
(S[t]− s∗)2

]
≤ ε2c

2
+ εE [(S[t]− s∗)J [t]] (51)

where we have used (49). To compute E [(S[t]− s∗)J [t]] we condition on S[t] = s for two cases:
• Suppose s ≥ s∗. Then

E [(S[t]− s∗)J [t]|S[t] = s] = (s− s∗)E [J [t]|S[t] = s]

(a)

≤ (s− s∗)g(s− s∗)
(b)
= −|(s− s∗)g(s− s∗)|

where (a) uses (s− s∗) ≥ 0 and (46); (b) uses (s− s∗) ≥ 0 and (45).
• Suppose s < s∗. Then

E [(S[t]− s∗)J [t]|S[t] = s] = (s− s∗)E [J [t]|S[t] = s]

(a)

≤ (s− s∗)g(s− s∗)
(b)
= −|(s− s∗)g(s− s∗)|

(a) uses (s− s∗) < 0 and (47); (b) uses (s− s∗) < 0 and (44).
It follows that for all s ∈ [smin, smax] we have

E [(S[t]− s∗)J [t]|S[t] = s] ≤ −|(s− s∗)g(s− s∗)|

Thus
E [(S[t]− s∗)J [t]|S[t]] ≤ − |(S[t]− s∗)g(S[t]− s∗)|

Taking expectations of both sides of the above inequality and using the law of iterated expectations yields

E
[
(S[t]− s∗)2

]
≤ −E [|(S[t]− s∗)g(S[t]− s∗)|]

Substituting the above inequality into (51) gives

1

2
E
[
(S[t+ 1]− s∗)2

]
− 1

2
E
[
(S[t]− s∗)2

]
≤ ε2c

2
− εE [|(S[t]− s∗)g(S[t]− s∗)|]

Summing over all t ∈ {0, 1, . . . , T − 1} and using telescoping sums on the left-hand-side gives:14

1

2
E
[
(S[t]− s∗)2

]
− 1

2
(S[0]− s∗)2 ≤ Tε2c

2
− ε

T−1∑
t=0

E [|(S[t]− s∗)g(S[t]− s∗)|]

Rearranging terms proves (50).
Note that if the assumptions of the above theorem hold for the piecewise linear bounding function g(x) given in (48) then

1

T

T−1∑
t=0

E [|(S[t]− s∗)g(S[t]− s∗)|] ≤ β 1

T

T−1∑
t=0

E
[
(S[t]− s∗)2

]
14The term telescoping sum is used for an add-subtract scenario of the type

∑T−1
t=0 (h[t+1]−h(t)) = (��h(1)−h(0))+(h(2)−��h(1))+ ...+(����h(T − 1)−

����h(T − 2)) + (h(T )−����h(T − 1)) = h(T )− h(0).
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where β = min{β1, β2}. The expression 1
T

∑T−1
t=0 E

[
(S[t]− s∗)2

]
can be called the mean square error between the estimate

S[t] and the true value s∗ as the algorithm runs over T slots. In this special case, the above theorem says that we can choose
ε arbitrarily small to ensure the mean square error is at most O(ε), provided that we run the algorithm for a number of slots
proportional to 1/ε2. Note that a variable stepsize ε[t] can often be used to yield a faster convergence time, but such methods
are not adaptive to cases when s∗ can change over time.

F. Simulation

This subsection provides simulation results for the multi-access system using the estimation procedure (38)-(39) with the
parameters a[t], b[t], c[t] given in Section VII-C. We use m = 200 and S[0] = 2. To understand how the algorithm adapts to
changes in the number of users, we partition the time horizon of T slots into three phases. The number of users is constant
over each phase but changes abruptly in between phases. The algorithm does not know the phase structure or the number of
users in each phase, it simply adapts to the observed idle/success/collision information. We assume:
• The number of users in the first phase of the simulation is n = 67.
• The number of users in the second phase of the simulation is n = 42.
• The number of users in the third phase of the simulation is n = 91.
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Fig. 11. Case 1: Estimation S[t] versus time over the long timeline (3× 105 slots) and with ε = 0.05.
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Fig. 12. Case 1: Estimation S[t] versus time over the long timeline (3× 105 slots) and with ε = 0.01.

• Case 1 (T = 3× 105 slots): Fig. 11 and Fig. 12 show the results of S[t] versus time for the case ε = 0.05 and ε = 0.01,
respectively. The three dashed horizontal lines show the n = 67, n = 42, and n = 91 values which are optimal for the
first, second, and third phases, respectively. As shown in the figures, the case ε = 0.05 adapts more quickly to changes
but does not settle into the optimal values as precisely as the case ε = 0.01. The resulting average throughputs (averaged
over the entire timeline) are:

– ε = 0.05: Throughput X = 0.3675 (compare to 1/e = 0.3679).
– ε = 0.01: Throughput X = 0.3668 (compare to 1/e = 0.3679).

While these throughputs are very similar, the ε = 0.05 simulation surprisingly has slightly higher total throughput. This
is because, in the first phase, the ε = 0.01 simulation takes a long time to initially converge from S[0] = 2 to the value
n = 67 (shown as the red dashed horizontal line in Fig. 12), even though it eventually converges much more closely and
accurately than the ε = 0.05 simulation.
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• Case 2 (T = 3 × 104 slots): Here the simulation time is 10 times shorter in comparison to Case 1. We use the same
phase structure but with 10 time smaller phases, so the algorithm has less time to adapt. Fig. 13 and Fig. 14 show results
of S[t] versus time for the case ε = 0.05 and ε = 0.01. It is evident from the figures that the large stepsize ε = 0.05 is
able to adapt reasonably well within these smaller timescales, while the ε = 0.01 stepsize does not allow the algorithm
to converge to the correct number of users before this number changes. The resulting average throughputs (averaged over
the entire timeline) are significantly less than those of Case 1 because there is less time to adapt:

– ε = 0.05: Throughput X = 0.3626 (compare to 1/e = 0.3679).
– ε = 0.01: Throughput X = 0.3279 (compare to 1/e = 0.3679).
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Fig. 13. Case 2: Estimation S[t] versus time over the short timeline (3× 104 slots) and with ε = 0.05.
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Fig. 14. Case 2: Estimation S[t] versus time over the short timeline (3× 104 slots) and with ε = 0.01.

VIII. RANDOM ACCESS WITH RANDOMLY ARRIVING USERS (EACH WITH ONE PACKET)

Our random access analysis used a basic model with a fixed number of users n, all with an infinite number of packets to
send. This section treats the opposite scenario where there are an infinite number of randomly arriving users, but all users have
one and only one packet to send. They stay in the system only as long as it takes to successfully send the packet. Remarkably,
our understanding of the fixed-user scenario lends significant insight into this new scenario. Further, the throughput values
attained (for large n) under slotted Aloha, slotted CSMA, and slotted CSMA/CD are exactly the same as before.

The basic model is this:
• Fixed time slots t ∈ {0, 1, 2, . . .}.
• Users arrive according to a (continuous time) Poisson arrival process of rate λ, where 0 < λ ≤ 1. The memoryless

property of the Poisson arrival process means that the number of users Ad who arrive over an interval of time of size
d is independent of system behavior before the start of the interval. Further, Ad has the Poisson(λd) probability mass
function:

P [Ad = k] =
(λd)k

k!
e−λd ∀k ∈ {0, 1, 2, ...} (52)

It is assumed that λ ≤ 1 because the case λ > 1 cannot be stably supported since the maximum number of successes is
one packet per slot.

• All users who arrive in the middle of a slot or mini-slot wait until the next slot boundary to start their activity.
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A. Drift for discrete time Markov chains

The following drift result for Markov chains is useful. Suppose {Q(t)}∞t=0 is time-homogenous discrete time Markov chain
(DTMC) with positive integer state space S ∈ {0, 1, 2, . . .} and transition probabilities:

Pi,j = P [Q(t+ 1) = j|Q(t) = i] ∀i, j ∈ S

Define the drift in state n by
Dn = E [Q(t+ 1)−Q(t)|Q(t) = n] ∀n ∈ {0, 1, 2, . . .}

Lemma 2: (DTMC drift) Suppose the DTMC {Q(t)}∞t=0 is irreducible, meaning that it is a path of nonzero probability
between every two states i, j ∈ {0, 1, 2, . . .}. As a (non-crucial) technicality, also assume the DTMC is aperiodic.15

a) (Negative drift condition) Suppose there is an ε > 0 and a threshold state n∗ ∈ {0, 1, 2, . . .} such that the following
negative drift condition holds:

Dn ≤ −ε ∀n ≥ n∗

Further suppose Dn <∞ for all n ∈ {0, 1, 2, . . .}. Then the DTMC is stable, meaning it has a stationary distribution.
b) (Positive drift condition) Suppose there is a threshold state n∗ ∈ {0, 1, 2, . . .} such that the following positive drift

condition holds:
Dn > 0 ∀n ≥ n∗

Further suppose there is an integer k > 0 such that

Q(t+ 1)−Q(t) ≥ −k ∀t ∈ {0, 1, 2, . . .}

so that the DTMC cannot decrease by more than k from one slot to the next. Then the DTMC is unstable, meaning it does
not have a stationary distribution. In particular

lim
t→∞

P [Q(t) ≥ q] = 1 ∀q ∈ {0, 1, 2, . . .}
Proof: See Chapter 3 Appendix 3A.5 in [2].

B. Slotted Aloha for Poisson arrivals

The slotted Aloha protocol for Poisson arrivals is this:
• New users wait until the next slot and then transmit with probability 1:

– If the new user is successful (because it was the only transmission) then it leaves the system.
– If the new user is not successful (because at least one other user transmitted) then it joins the group of queued users.

• Queued users transmit independently each slot with probability pn, where index n is equal to the current number of
queued users. If a queued user is successful (because it was the only transmission) then it leaves the system.

Let Q(t) be the number of queued users in the system at the start of slot t. It should be emphasized that the queue is only
conceptual and consists of those distributed users in their various locations who have arrived to the system but have not yet
successfully transmitted their packet. Also, it is difficult for these users to know the value of Q(t). Therefore, the algorithm is
easier to implement if pn = p for all n, where p is some fixed value that does not depend on n. Unfortunately, we show that
using any fixed value p creates an unstable system. The system can be stabilized using pn proportional to 1/n. In practice,
stability is typically maintained when the unknown Q(t) is approximated using some reasonable estimation technique.

Using d = 1 in (52), the number of new arrivals A(t) in slot t has PMF

P [A(t) = k] =
λk

k!
e−λ ∀k ∈ {0, 1, 2, . . .}

and so

E [A(t)] =

∞∑
k=0

kP [A(t) = k] = λ

First assume pn = p for all n ∈ {0, 1, 2, . . .}, where p is a fixed transmission probability that satisfies 0 < p < 1. The
process {Q(t)}∞t=0 can be seen to be a discrete time Markov chain (DTMC) with state space S = {0, 1, 2, . . .} and transition
probabilities Pij for i, j ∈ S computed by considering the probability of having k new arrivals in a slot. Specifically

P0,0 = P [A(t) ∈ {0, 1}|Q(t) = 0] = e−λ + λe−λ

15For a general DTMC, a stationary probability distribution (πi)i∈S is a PMF that satisfies πj =
∑
i∈S πiPij for all j ∈ S. A stationary distribution

can exist even when the DTMC is periodic. For any irreducible DTMC with a finite or countably infinite state space, if a stationary distribution exists then
it must be unique, and the time average fraction of time being in each state i converges to πi (with probability 1) regardless of the intitial state Q(0). If, in
addition, the DTMC is aperiodic then it also holds that limt→∞ P [Q(t) = i|Q(0) = q0] = πi for all qi ∈ S.
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Since it is impossible for the number of queued users to transition from 0 to 1 we have P0,1 = 0. For j ≥ 2 we have

P0,j = P [A(t) = j|Q(t) = 0] =
λj

j!
e−λ ∀j ∈ {2, 3, 4, . . .}

Since it is impossible for the number of queued users to decrease by more than 1, we have

Pi,j = 0 whenever j < i− 1

For i ∈ {1, 2, 3, . . .} we have

Pi,i−1 = P [A(t) = 0,Exactly one queued user transmits|Q(t) = i]

= P [A(t) = 0|Q(t) = i]P [Exactly one queued user transmits|Q(t) = i]

= e−λip(1− p)i−1

The remaining Pij values can be similarly obtained. However, it is more useful to consider the drift.
Define S(t) ∈ {0, 1} as the number of successful users in slot t (the successful user can be either a new user or a queued

user). Then
Q(t+ 1)−Q(t) = A(t)− S(t)

and the drift is

Dn = E [Q(t+ 1)−Q(t)|Q(t) = n]

= E [A(t)|Q(t) = n]− E [S(t)|Q(t) = n]

= λ− Psucc(n)

where Psucc(n) = P [S(t) = 1|Q(t) = n] is the success probability given Q(t) = n and

Psucc(0) = P [A(t) = 1|Q(t) = 0] = λe−λ

and for n ≥ 1:

Psucc(n) = P [A(t) = 0, one queued user transmits|Q(t) = n] + P [A(t) = 1, no queued user transmts|Q(t) = n]

= e−λnp(1− p)n−1 + λe−λ(1− p)n

It follows that
Dn = λ− e−λnp(1− p)n−1 − λe−λ(1− p)n ∀n ≥ 1

and so, regardless of the value p ∈ (0, 1) we have
lim
n→∞

Dn = λ

Since λ > 0, it follows that there is a threshold value n∗ such that

Dn ≥ λ/2 ∀n ≥ n∗

The DTMC drift lemma (Lemma 2) implies the DTMC is unstable! The system is also clearly unstable when p = 0 or p = 1.
Therefore Slotted Aloha with randomly arriving users is unstable for any fixed transmission probability p ∈ [0, 1].

This instability can be fixed by using a dynamic transmission probability pn for n ∈ {1, 2, 3, . . .}, so the drift becomes
(compare to the previous boxed equality):

Dn = λ− e−λnpn(1− pn)n−1 − λe−λ(1− pn)n ∀n ≥ 1

that is
Dn = λ− (λ+ npn)e−λ(1− pn)n ∀n ≥ 1

Let pn = min[θ/n, 1] for n ∈ {1, 2, 3, . . .}, where θ > 0 is a value to be optimized. Then for n ≥ θ we have pn = θ/n and

Dn = λ− (λ+ θ)e−λ(1− θ/n)n ∀n ≥ θ

and so
lim
n→∞

Dn = λ− (λ+ θ)e−(λ+θ)

The limit is strictly negative when
λ < (λ+ θ)e−(λ+θ)
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The value of θ can be chosen to maximize the right-hand-side:

(λ+ θ)e−(λ+θ) ≤ max
g>0
{ge−g} = 1/e

where the maximum is attained when g∗ = 1. We can therefore choose θ so that λ + θ = g∗ = 1. This is always possible
because λ ≤ 1. That is, we choose

θ∗ = 1− λ

and so
p∗n =

1− λ
n

∀n ∈ {1, 2, 3, . . .}

which means λ+ npn = 1. In particular, substituting p∗n into the above boxed equality yields

Dn = λ− e−λ
(

1− 1− λ
n

)n
∀n ≥ 1

and so
lim
n→∞

Dn = λ− e−1 = −(1/e− λ)

Hence, if λ < 1/e, there is a threshold n∗ such that

Dn ≤ −(1/e− λ)/2 ∀n ≥ n∗

and the DTMC drift lemma (Lemma 2) implies the DTMC is stable. Thus, this slotted Aloha protocol, with dynamic transmission
probability p∗n = (1 − λ)/n, stably supports any arrival rate λ that satisfies λ < 1/e. Therefore, the maximum throughput is
1/e, which is the same value as in the case of n users with infinitely many packets.

C. Slotted CSMA for Poisson arrivals

Fix β with 0 < β < 1. The slotted CSMA protocol for Poisson arrivals is this:16 Activity takes place over variable-sized
frames, where each frame ends with one mini-slot worth of idle (an idle frame has size β and a success or collision frame has
size 1 + β):
• New users are officially labeled as queued users. They wait until they hear a new frame (initiated after one mini-slot of

idle) and then transmit as all queued users do.
• Queued users transmit independently at the start of each new frame with probability pn, where index n is equal to the

number of queued users at the start of the frame. If a queued user is successful (because it was the only transmission)
then it leaves the system.

Let {Q(k)}∞k=1 be the DTMC, where Q(k) is the number of queued users at the start of frame k. As before we have

Q(k + 1)−Q(k) = A(k)− S(k)

where S(k) ∈ {0, 1} is the number of successful users on frame k, and A(k) is the number of new arrivals. The drift is then

Dn = E [A(k)− S(k)|Q(k) = n] = E [A(k)|A(k) = n]− Psucc(n) ∀n ∈ {0, 1, 2, . . .}

where Psucc(n) is the success probability for a frame k that has Q(k) = n. For n ≥ 1 we have

Psucc(n) = npn(1− pn)n−1 ∀n ≥ 1

Also it can be shown for n ≥ 1:

E [A(k)|Q(k) = n] = λβP [Idle] + λ(1 + β)(1− P [Idle])

= λβ(1− pn)n + λ(1 + β)(1− (1− pn)n)

As before, define pn = min[θ/n, 1] for n ∈ {1, 2, 3, . . .}. Then pn = θ/n for n ≥ θ and

Dn = λβ(1− θ/n)n−1 + λ(1 + β)(1− (1− θ/n)n)− θ(1− θ/n)n−1 ∀n ≥ θ

Thus

lim
n→∞

Dn = λβe−θ + λ(1 + β)(1− e−θ)− θe−θ

= λ(1 + β)− (λ+ θ)e−θ

16A variation on this protocol has new users who arrive during a mini-slot to transmit with probability 1 at the start of the next frame, while new users
who arrive at other times are added to the queued users. There is no difference in the resulting throughput and the protocol treated here (which adds all new
users directly to the queue) is simpler to analyze.
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This is negative whenever
λ(1 + β) < (λ+ θ)e−θ

That is, we want

λ <
θ

(1 + β)eθ − 1

where the right-hand-side is, remarkably, identical to (29). The DTMC drift lemma (Lemma 2) ensures stability whenever λ
is less than the right-hand-side. To maximize the right-hand-side, we can choose θ the same way as given in the analysis for
n users, each with infinitely many packets to send: An approximate optimum is θ∗ ≈

√
2β and λ∗ ≈ 1/(1 +

√
2β).

D. Slotted CSMA/CD for Poisson arrivals

Here we consider the same protocol as slotted CSMA, but cut collisions short to 2β. Using a similar analysis gives

Dn = E [A(k)|Q(k) = n]− Psucc(n)

where
Psucc(n) = npn(1− pn)n−1

and

E [A(k)|Q(k) = n] = λβP [Idle] + λ(1 + β)P [Succ] + λ(2β)P [Collision]

= λβ(1− pn)n + λ(1 + β)npn(1− pn)n−1 + 2λβ(1− (1− pn)n − npn(1− pn)n−1)

Using pn = min[θ/n, 1] gives for n→∞

lim
n→∞

Dn = λβe−θ + λ(1 + β)θe−θ + 2λβ(1− e−θ − θe−θ)− θe−θ

This is negative when

λ <
θe−θ

2β + θe−θ − βe−θ − βθe−θ

where the right-hand-side is identical to the result (30) for CSMA/CD in the context of n users with infinitely many packets to
send. The optimal value θ∗ = 0.7680 given there can be used, yielding the same maximum throughput value λ∗ = 1/(1+3.31β).
The protocol is stable when λ < 1/(1 + 3.31β).

APPENDIX A – PROBABILITY DETAILS

Fix Ω as a nonempty set that shall be our sample space. If A ⊆ Ω we define the complement of A, written Ac by

Ac = {ω ∈ Ω : ω /∈ A}

Let φ denote the empty set, being the set with no elements. It holds that φ ⊆ Ω, φc = Ω, and Ωc = φ.

A. The set F and the function P

Let F be a set of subsets of Ω. We often use the word collection when talking about a set of sets, so F can also be called
a collection of subsets of Ω (the words “collection” and “set” have the same meaning here). We say that F is a sigma algebra
on Ω if the following three properties hold:
• Ω ∈ F .
• If A ∈ F then Ac ∈ F .
• If {Ai}∞i=1 satisfy Ai ∈ F for all i ∈ {1, 2, 3, . . .} then ∪∞i=1Ai ∈ F .

These properties can be used to show that: φ ∈ F ; the union of a finite or countably infinite number of sets in F is another
set in F ; the intersection of a finite or countably infinite number of sets in F is another set in F . The smallest sigma algebra
on Ω is the 2-element set F = {φ,Ω}. The largest sigma algebra on Ω is F = Pow(Ω), where Pow(Ω) is the power set of
Ω and is defined as the set of all subsets of Ω.

Given that F is a sigma algebra on Ω, we say that a function P : F → R is a probability measure if it satisfies the following
three axioms of probability:

1) P [A] ≥ 0 for all A ∈ F .
2) P [Ω] = 1.
3) If {Ai}∞i=1 is a sequence of disjoint sets in F , so that Ai ∩Aj = φ for all i 6= j, then

P [∪∞i=1Ai] =

∞∑
i=1

P [Ai]
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B. Consequences

A probability space is a triplet (Ω,F , P ) where Ω is a nonempty set called the sample space; F is a sigma algebra on Ω,
and P : F → R is a probability measure. Sets in the collection F are called events. The axioms of probability can be used to
prove that all events have probabilities that are numbers between 0 and 1:

0 ≤ P [A] ≤ 1 ∀A ∈ F

Hence, the function P : F → R can be viewed as a function of the form P : F → [0, 1]. It can also be proven that

P [A] + P [Ac] = 1 ∀A ∈ F

Finally, the probability axioms can be used to prove the following:
• Subset bound: If A and B are events that satisfy A ⊆ B, then P [A] ≤ P [B].
• Union bound: If {Ai}∞i=1 are events then

P [∪∞i=1Ai] ≤
∞∑
i=1

P [Ai]

C. A function X : Ω→ R that is not a random variable

Fix a probability space (Ω,F , P ). A random variable is a function X : Ω → R that satisfies the following measurability
property:

{ω ∈ Ω : X(ω) ≤ x} ∈ F ∀x ∈ R (53)

If F = Pow(Ω) then all functions X : Ω→ R are random variables because all subsets of Ω are in F , so the measurability
property (53) holds trivially. It is easy to construct an example function X : Ω→ R that is not a random variable if we use a
finite sample space Ω and a sigma algebra other than Pow(Ω). For example, consider

Ω = {blue, red, green, black}
F = {φ,Ω, {blue, red, green}, {black}}

It can be shown that F is a sigma algebra on Ω, but F does not include all subsets of Ω. Define a function X : Ω→ R by

X(blue) = 0

X(red) = 0

X(green) = 1.3

X(black) = 7

Then
{X ≤ 1} = {blue, red} /∈ F

and so the function X : Ω→ R is not a random variable.
Of course, if we changed the sigma algebra to F = Pow(Ω) then the same function X : Ω→ R defined above would be a

random variable.

D. Discrete sample spaces

If Ω is a finite or countably infinite set, we typically use F = Pow(Ω), which means all subsets of Ω are events and all
functions X : Ω → R are random variables. In particular, all 1-element subsets of Ω are events and hence P [{ω}] exists for
all ω ∈ Ω. Then the probability measure P : Pow(Ω)→ [0, 1] must be

P [A] =
∑
ω∈A

P [{ω}] ∀A ⊆ Ω (54)

When Ω is an uncountably infinite set then we cannot define P according to (54) because summation is only defined when
summing a finite or countably infinite number of values. Also, if Ω is an uncountably infinite set then we typically do not use
F = Pow(Ω) because it leads to surprising contradictions. For these uncountably infinite cases, we can typically use the best
probability space in the world, defined in the next subsection.
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E. The best probability space in the world

It can be shown that for any positive integer n, the multidimensional set Rn can be put into one-to-one correspondence
with the (1-dimensional) unit interval [0, 1). Also, the set RN of all real-valued infinite sequences can be put into one-to-one
correspondence with [0, 1). It turns out that most practical probability problems, including problems that have either countably
or uncountably infinite sample spaces, can be reformulated to use the unit interval as the sample space, so that

Ω = [0, 1)

Specifically, consider the following probability space that we call the best probability space in the world:

(Ω,F , P ) = ([0, 1),B([0, 1)), µ)

where:
• B([0, 1)) denotes the Borel sigma algebra on [0, 1), being the smallest sigma algebra on [0, 1) that includes the intervals

[0, x] for all x ∈ [0, 1).
• µ : B([0, 1))→ [0, 1] is the Borel measure on [0, 1) that maps every set in B([0, 1)) to its length.
In particular, it can be shown there is a unique measure µ : B([0, 1))→ [0, 1] such that

µ([0, x]) = x ∀x ∈ [0, 1)

For this measure, it follows that for all a, b with 0 ≤ a < b < 1 we must have

µ((a, b]) = b− a

and
µ({x}) = 0 ∀x ∈ [0, 1)

Therefore, for all a, b with 0 ≤ a < b < 1 we have

µ((a, b)) = µ([a, b]) = µ((a, b]) = µ([a, b)) = b− a
µ((a, 1)) = µ([a, 1)) = 1− a

It follows that if A ⊆ [0, 1) is a countable union of disjoint intervals then µ(A) is the sum of the interval lengths.
While B([0, 1)) does not contain all subsets of [0, 1), it has so many sets that, arguably, it contains all subsets of [0, 1)

of practical interest.17 For example, all finite or countably infinite subsets of [0, 1) are in B([0, 1)); all intervals of [0, 1) are
in B([0, 1)); all open or closed subsets of [0, 1) are in B([0, 1)); all sets that can be formed by a finite or countably infinite
procedure of complements, unions, and intersections of sets in B([0, 1)) are again in B([0, 1)).

On this probability space ([0, 1),B([0, 1)), µ), define the identity random variable U : Ω→ R by U(ω) = ω for all ω ∈ [0, 1).
It holds that U is uniformly distributed over [0, 1). In particular, ([0, 1),B([0, 1)), µ) is the simplest way to define a space that
is big enough to contain a single random variable U ∼ Unif[0, 1).

Arguably, any probability space that contains a single random variable U ∼ Unif[0, 1) can be used to model any practical
probability problem within the world of science, technology, and engineering. Why? Given U ∼ Unif[0, 1), we can write U
in its base-2 binary expansion:18

U =

∞∑
i=1

Ui2
−i

where (U1, U2, U3, . . .) does not have an infinite tail of 1s. It can be shown that {Ui}∞i=1 are i.i.d. Bernoulli(1/2) random
variables, so

P [Ui = 0] = P [Ui = 1] = 1/2 ∀i ∈ {1, 2, 3, . . .}

By taking measurable functions of U (or of its bits {Ui}∞i=1) we can generate an infinite sequence of mutually independent
random variables {Xi}∞i=1 where each Xi has any desired CDF FXi . Also by taking measurable functions of U , we can
generate a countably infinite collection of mutually independent Brownian motion processes! In particular, a single random
variable U ∼ Unif[0, 1) is rich enough to generate the randomness needed for any practical computer simulation. This argument
implicitly assumes that a “practical computer simulation” is one that uses a finite or countably infinite sequence of calls to a
random number generator.

The probability space ([0, 1),B([0, 1)), µ) has its shortcomings: It cannot support an uncountably infinite number of mutually
independent Bernoulli(1/2) random variables. There are larger probability spaces that can. However, the probability space
([0, 1),B([0, 1)), µ) is good enough for most applications.

17It is possible to construct a subset of [0, 1) that is not in B([0, 1)) by a deep thought experiment that uses a set theory axiom called the axiom of choice
to make an uncountably infinite number of decisions. Such sets exist but do not arise in practice.

18We use [0, 1) instead of [0, 1] so that we can cleanly write the base-2 expansion. Aside from this, the probability spaces ([0, 1],B([0, 1]), µ) and
([0, 1),B([0, 1)), µ) have similar properties and either can be used when needed.
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APPENDIX B – EXTENSIONS OF RENEWAL THEORY

A. Delayed renewal theorem

Claim (Delayed renewal theorem) Let {Ti}∞i=2 be i.i.d. positive random variables with finite mean E [T ] > 0. Let T1 be a
positive random variable with any distribution and having any dependence on {Ti}∞i=2. Let N(t) count the number of arrivals
up to time t (so the first arrival is at time T1, the second is at time T1 + T2, and so on). Then

lim
t→∞

N(t)

t
=

1

E [T ]
almost surely

Proof: Fix t ≥ T1 + T2 (so that N(t) ≥ 2). The time t must lie between two arrival times and so (the reader is encouraged
to draw the picture similar to Fig. 1): ∑N(t)

i=1 Ti ≤ t <
∑N(t)+1
i=1 Ti

Since N(t) ≥ 2, we can divide the above inequality by N(t) to obtain

T1

N(t) +
(
N(t)−1
N(t)

)(
1

N(t)−1
∑N(t)
i=2 Ti

)
≤ t

N(t) <
T1

N(t) + 1
N(t)

∑N(t)+1
i=2 Ti (55)

Since N(t)→∞ surely, we have

lim
t→∞

T1
N(t)

= 0 surely

lim
t→∞

N(t)− 1

N(t)
= 1 surely

lim
t→∞

1

N(t)− 1

N(t)∑
i=2

Ti = E [T ] almost surely

lim
t→∞

1

N(t)

N(t)+1∑
i=2

Ti = E [T ] almost surely

where the last two equalities hold by the LLN. Taking t → ∞ in (55) and substituting these equalities gives the following
“sandwich” result

E [T ] ≤ lim
t→∞

t

N(t)
≤ E [T ] almost surely

Since E [T ] > 0, it follows that limt→∞N(t)/t = 1/E [T ] almost surely. �

Claim (Delayed renewal-reward theorem) Let {Ti}∞i=2 be i.i.d. positive random variables with finite mean E [T ] > 0, let
{Gi}∞i=2 be i.i.d. random variables with finite mean E [G], let T1 and G1 be any random variables (where T1 is positive). Then

lim
t→∞

R(t)

t
=

E [G]

E [T ]
almost surely

Proof: For any t ≥ T1 + T2 (so N(t) ≥ 2) we have

R(t)

t
=

1

t

N(t)∑
i=1

Gi

=

(
N(t)

t

) 1

N(t)

N(t)∑
i=1

Gi


=

(
N(t)

t

) G1

N(t)
+

(
N(t)− 1

N(t)

) 1

N(t)− 1

N(t)∑
i=2

Gi


Taking t→∞ and using the previous result N(t)/t→ 1/E [T ] almost surely proves the result. �

B. Limiting expectations and the elementary renewal theorem

Claim: (Elementary renewal-reward theorem) Let {Ti}∞i=1 be i.i.d. positive random variables with finite expectation E [T ].
Let {Gi}∞i=1 be i.i.d. random variables with finite expectation E [G]. Then

a) limt→∞
E[N(t)]

t = 1
E[T ] .

b) limt→∞
E[R(t)]

t = E[G]
E[T ] .

The proof is nontrivial and is omitted for brevity (see, for example, [1]).
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C. Reward sprinkling

Consider now a system with i.i.d. inter-renewal times {Ti}∞i=1 that are positive random variables with finite mean E [T ] > 0,
i.i.d. rewards {Gi}∞i=1 that are i.i.d. with finite mean E [G]. Rather than assuming that the reward of frame i is earned in bulk
at the end of the frame, assume that the total reward Gi can be sprinkled out in any manner during the course of the frame.
This includes having some parts of the reward earned in pieces at distinct times during the middle of the frame, and/or having
the reward accumulated continuously as a fluid. The resulting R(t) function now can change at any time (not just at renewal
times).

We need to treat the changes in R(t) carefully. Assume there is an i.i.d. random sequence {Li}∞i=1 of nonnegative random
variables with finite mean E [L], and an i.i.d. random sequence {Hi}∞i=1 of nonnegative random variables with a finite mean
E [H]. The value Li is a bound on the amount of negative rewards that can be sprinkled during frame i. The value Hi is a
bound on the amount of positive rewards that can be sprinkled over frame i. The total reward R(t) accumulated at time t ≥ 0

is equal to the sum reward accumulated over the N(t) complete frames (which is
∑N(t)
i=1 Gi) plus a (possibly negative) partial

reward associated with the current frame. Thus

− LN(t)+1 +

N(t)∑
i=1

Gi ≤ R(t) ≤ HN(t)+1 +

N(t)∑
i=1

Gi ∀t ≥ 0 (56)

• Example scenario 1: Suppose there are no negative rewards accumulated over any frame. Then Gi ≥ 0 surely for all i.
We can use Li = 0 and Hi = Gi for i ∈ {1, 2, 3, . . .}.

• Example scenario 2: Suppose the worst-case negative reward that can be sprinkled is some positive constant M . We can
use Li = M and Hi = Gi +M for all i ∈ {1, 2, 3. . . .}.

Claim: Under the reward-sprinkling model (56) as described above, we have

lim
t→∞

R(t)

t
=

E [G]

E [T ]
almost surely

Proof: Assuming t > 0 and dividing (56) by t gives

−LN(t)+1

t
+

(
N(t)

t

)
1

N(t)

N(t)∑
i=1

Gi ≤
R(t)

t
≤
HN(t)+1

t
+

(
N(t)

t

)
1

N(t)

N(t)∑
i=1

Gi (57)

We already know N(t)→∞ surely and

lim
t→∞

N(t)

t
=

1

E [T ]
almost surely

lim
t→∞

1

N(t)

N(t)∑
i=1

Gi = E [G] almost surely

Thus, taking t→∞ in (57) would prove the desired result if we can ensure:

lim
t→∞

LN(t)+1

t
= 0 almost surely (58)

lim
t→∞

HN(t)+1

t
= 0 almost surely (59)

To prove (58) and (59), observe that for all t > 0:

LN(t)+1 =

N(t)+1∑
i=1

Li −
N(t)∑
i=1

Li

Assuming t > 0 and dividing both sides by t gives

LN(t)+1

t
=

(N(t) + 1

t

)
1

N(t) + 1

N(t)+1∑
i=1

Li

−
N(t)

t

1

N(t)

N(t)∑
i=1

Li


We already know N(t) → ∞ surely, and N(t)/t → 1/E [T ] almost surely. Hence, almost surely, the right-hand-side of the
above equality converges to E[L]

E[T ] −
E[L]
E[T ] = 0. Thus, (58) holds. The same argument shows (59) holds.

The above theorem shows that this different manner of accumulating rewards does not change the limiting average reward
per unit time. However, a pathological counter-example can be constructed when {Li}∞i=1 and {Hi}∞i=1 are not i.i.d. with a
finite mean: Suppose Ti = 1 for all i and Gi = 0 for all i. However, at the halfway point of each frame i we get a large reward
Hi = i2, later at the 3/4 point of each frame i we get a large negative reward −Li = −i2. This indeed yields Gi = Hi−Li = 0
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for all i, but taking a limit as n→∞ over integers n ∈ {0, 1, 2, ...} gives (noting that at time n+ 1
2 we are in the middle of

frame (n+ 1)):

lim
n→∞

R(n+ 1
2 )

n+ 1
2

= lim
n→∞

(n+ 1)2

n+ 1
2

=∞ surely

lim
n→∞

R(n)

n
= lim
n→∞

0 = 0 surely

In this example, limt→∞R(t)/t does not exist because R(tn)/tn can have different limiting values over different subsequences
of times tn that satisfy tn →∞.

APPENDIX C – DETAILS ON ALMOST SURE CONVERGENCE

Let {Yi}∞i=1 be a sequence of random variables. Fix c ∈ R. We say that Yn → c surely if:

lim
n→∞

Yn(ω) = c ∀ω ∈ Ω

We say that Yn → c almost surely if:
P
[
ω ∈ Ω : lim

n→∞
Yn(ω) = c

]
= 1

Convergence almost surely is also called convergence with probability 1. It is clear that

Convergence surely =⇒ Convergence almost surely

Theorem 5: Yn → c almost surely if and only if for all ε > 0 we have

lim
n→∞

P [∪∞i=n{|Yi − c| ≥ ε}] = 0 (60)
Proof: See Appendix D.

A. Comparison to convergence in probability
Theorem 5 helps to understand the relationship between convergence almost surely and convergence in probability. We say

that Yn → c in probability if for all ε > 0 we have

lim
n→∞

P [|Yn − c| ≥ ε] = 0

Comparing this condition to (60), it is apparent that (60) is more stringent because for all n ∈ {1, 2, 3, . . .} and all ε > 0 we
have

{|Yn − c| ≥ ε} ⊆ ∪∞i=n{|Yi − c| ≥ ε}

and so
P [|Yn − c| ≥ ε] ≤ P [∪∞i=n{|Yi − c| ≥ ε}]

Taking a limit of both sides as n→∞ proves that

Convergence almost surely =⇒ Convergence in probability

B. Sufficient condition for almost sure convergence
Let {Yi}∞i=1 be a sequence of random variables. Fix c ∈ R.
Lemma 3: If there is an α > 0 such that ∞∑

i=1

E [|Yi − c|α] <∞

then Yn → c almost surely.
Proof: Fix ε > 0. By Theorem 5 it suffices to show

lim
n→∞

P [∪∞i=n{|Yi − c| ≥ ε}] = 0

We have by the union bound

P [∪∞i=n{|Yi − c| ≥ ε}] ≤
∞∑
i=n

P [|Yi − c| ≥ ε]

=

∞∑
i=n

P [|Yi − c|α ≥ εα]

≤
∞∑
i=n

E [|Yi − c|α]

εα
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where the final inequality holds by the Markov inequality. Taking a limit as n→∞ gives

lim
n→∞

P [∪∞i=n{|Yi − c| ≥ ε}] ≤
1

εα

(
lim
n→∞

∞∑
i=n

E [|Yi − c|α]

)
(61)

Since
∑∞
i=1 E [|Yi − c|α] <∞, the limit of its tail sum is zero:

lim
n→∞

∞∑
i=n

E [|Yi − c|α] = 0

Substituting this limit into (61) gives the result.

C. Proof of law of large numbers for finite variance case

Let {Xi}∞i=1 be i.i.d. random variables with finite mean µ and variance σ2. For each n ∈ {1, 2, 3, . . .} define

Mn =
1

n

n∑
i=1

Xi

It follows by linearity of expectation and basic properties of the variance for a linear combination of independent random
variables that

E [Mn] = µ ∀n ∈ {1, 2, 3, . . .}

V ar(Mn) = E
[
(Mn − µ)2

]
=
σ2

n
∀n ∈ {1, 2, 3, . . .}

We first show almost sure convergence to µ when we sample only over indices that are perfect squares, that is, we consider
M1,M4,M9,M16,M25 and so on.

Lemma 4: Mn2 → µ almost surely.
Proof: We use Lemma 3 with α = 2:

∞∑
n=1

E
[
(Mn2 − µ)2

]
=

∞∑
n=1

V ar(Mn2)

=

∞∑
n=1

σ2

n2

<∞

We now use the fact that we have almost sure convergence over perfect squares to get almost sure convergence.
Lemma 5: Mn → µ almost surely.
Proof: First suppose that, in addition to {Xi}∞i=1 being i.i.d. with finite mean and variance, we have that all Xi are surely

nonnegative (so Xi(ω) ≥ 0 for all ω ∈ Ω and all i ∈ {1, 2, 3, . . .}). We prove the result in this special nonnegative case, then
show that this special case can be used to prove the general case.

For each positive integer n, define kn as the largest integer such that k2n ≤ n. Then

k2n ≤ n < (kn + 1)2 = k2n + 2kn + 1

It is clear that limn→∞ kn =∞. It is not difficult to show that

lim
n→∞

k2n
n

= lim
n→∞

(kn + 1)2

n
= 1 (62)

Since Xi ≥ 0 surely for all i, we have for each positive integer n that

k2n∑
i=1

Xi ≤
n∑
i=1

Xi ≤
(kn+1)2∑
i=1

Xi

Dividing both sides by n gives(
k2n
n

) 1

k2n

k2n∑
i=1

Xi

 ≤Mn ≤
(

(kn + 1)2

n

) 1

(kn + 1)2

(kn+1)2∑
i=1

Xi
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That is (
k2n
n

)
Mk2n

≤Mn ≤
(

(kn + 1)2

n

)
M(kn+1)2 (63)

We already know from Lemma 4 that

Mk2n
→ µ almost surely

M(kn+1)2 → µ almost surely

Taking a limit of (63) and using these results and (62) gives

µ ≤ lim
n→∞

Mn ≤ µ almost surely

This proves the desired result for the special case when Xi are surely nonnegative.
For the general case when Xi can be negative, break Xi into its positive and negative parts:

Xi = X+
i −X

−
i ∀i ∈ {1, 2, 3, . . .}

where X+
i = max{Xi, 0} and X−i = max{−Xi, 0}. Note that since {Xi}∞i=1 are i.i.d., it holds that the nonnegative random

variables {X+
i }∞i=1 are i.i.d., as are the nonnegative random variables {X−i }∞i=1. It also holds that X+

i has a finite mean and
variance, as does X−i . Define X = X1 and note that

E [X] = E
[
X+
]
− E

[
X−
]

Our proven result for nonnegative i.i.d. random variables with finite mean and variance implies:

1

n

n∑
i=1

X+
i → E

[
X+
]

almost surely

1

n

n∑
i=1

X−i → E
[
X−
]

almost surely

It follows that we almost surely have:

lim
n→∞

1

n

n∑
i=1

Xi =

(
lim
n→∞

1

n

n∑
i=1

X+
i

)
−

(
lim
n→∞

1

n

n∑
i=1

X−i

)
= E

[
X+
]
− E

[
X−
]

= E [X]

APPENDIX D – PROOF OF THEOREM 5

Without loss of generality we assume c = 0. Let N = {1, 2, 3, ...}. Let {Yn}∞n=1 be random variables. Define

A =
{
ω ∈ Ω : lim

n→∞
Yn(ω) = 0

}
Observe that

(ω ∈ A) ⇐⇒ “For all k ∈ N, there is an n ∈ N such that |Yi(ω)| < 1/k for all i ≥ n.”

Hence
A = ∩k∈N ∪n∈N ∩∞i=n{|Yi| < 1/k} (64)

where
• ∩k∈N means “For all k ∈ N”
• ∪n∈N means “there is an n ∈ N”
• ∩∞i=n{|Yi| ≤ 1/k} means “|Yi| < 1/k for all i ≥ n.”

The representation (64) formally proves the set A is an event, that is, A ∈ F . That is because |Yi| is a random variable (it is
a continuous function of Yi) and so {|Yi| < 1/k} ∈ F for all i, k ∈ N. Therefore ∩∞i=n{|Yi| < 1/k} is a countable intersection
of events and so ∩∞i=n{|Yi| < 1/k} ∈ F for all n, k ∈ N. Since the countable union of events in F is also in F , we obtain
∪n∈N ∩∞i=n {|Yi| < 1/k} ∈ F for all k ∈ N, and the countable intersection of these events over all k ∈ N is also in F .
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Clearly P [A] = 1 if and only if P [Ac] = 0. By DeMorgan’s law:

Ac = ∪k∈N ∩n∈N ∪∞i=n{|Yi| ≥ 1/k}

For k, n ∈ N define
Bn,k = ∪∞i=n{|Yi| ≥ 1/k}

It holds that for each fixed k ∈ N we have
Bn,k ↘ ∩∞n=1Bn,k

and by continuity of probability
lim
n→∞

P [Bn,k] = P [∩∞n=1Bn,k] ∀k ∈ N (65)

We want to show the following statement (which is equivalent to the statement of Theorem 5):(
lim
n→∞

P [Bn,k] = 0 ∀k ∈ N
)
⇐⇒ P [Ac] = 0 (66)

To prove the forward direction of (66), suppose for all k ∈ N we have limn→∞ P [Bn,k] = 0. Fix k ∈ N. By (65) we have

P [∩∞n=1Bn,k] = 0

This holds for all k ∈ N and so by Theorem 2

P [∪∞k=1 ∩∞n=1 Bn,k] = 0

That is, P [Ac] = 0. This proves the forward direction of (66).
To prove the reverse direction, suppose P [Ac] = 0. Fix k ∈ N. We have

Ac ⊇ ∩n∈N ∪∞i=n {|Yi| ≥ 1/k}

Since P [Ac] = 0, it follows that
P [∩n∈N ∪∞i=n {|Yi| ≥ 1/k}] = 0

That is
P [∩n∈NBn,k] = 0

which by (65) gives
lim
n→∞

P [Bn,k] = 0

This holds for all k ∈ N, which proves the reverse direction of (66).

APPENDIX E — CONDITIONING, EXPECTATION, AND BERNOULLI TRIALS

Fix a probability space (Ω,F , P ).

A. Conditioning

If A and B are events with P [B] > 0 then the conditional probability of A given B is defined

P [A|B] =
P [A ∩B]

P [B]

We say that a sequence of events {Bi}∞i=1 partition the sample space if they are disjoint and their union is Ω:

Bi ∩Bi = φ ∀i 6= j

∪∞i=1 Bi = Ω

The law of total probability states that if A is an event and {Bi}∞i=1 are events that partition the sample space then

P [A] =

∞∑
i=1

P [A ∩Bi] =
∑

i:P [Bi]>0

P [A|Bi]P [Bi]

This formula is proven by observing

A = A ∩ Ω = A ∩ (∪∞i=1Bi) = ∪∞i=1(A ∩Bi)

and so
P [A] = P [∪∞i=1(A ∩Bi)]

Now apply the third axiom of probability to the sequence of disjoint events {A ∩Bi}∞i=1.
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B. Indicator random variable
Let A be an event. Define the binary-valued random variable 1A by

1A =

{
1 if A is true
0 else

In particular, 1A(ω) = 1 if and only if ω ∈ A. The random variable 1A is called an indicator random variable or indicator
function.

C. Expectation
If X is a random variable, the expectation of X , written E [X], is a value that satisfies

E [X] ∈ R ∪ {∞} ∪ {−∞} ∪ {DNE}

where DNE represents does not exist. We say the expectation is finite if E [X] ∈ R. The expectation E [X] depends only on the
CDF of X , so all random variables with the same CDF have the same expectation. It can be shown that if X is a nonnegative
random variable, meaning that X(ω) ≥ 0 for all ω ∈ Ω, then the expectation always exists and E [X] ∈ [0,∞) ∪ {∞}. It can
further be shown that if X is any random variable (possibly one that can take negative values), then E [X] ∈ R if and only if
E [|X|] <∞.

Let a, b be real numbers, let A be an event, and let X,Y be random variables that have finite expectations. The expectation
has the following important properties:

1) Expectation of indicator:
E [1A] = P [A]

2) Linearity of expectation:
E [aX + bY ] = aE [X] + bE [Y ]

In particular, linearity of expectation says that if X and Y have finite expectations then aX+bY also has a finite expectation,
and this expectation is given by the above formula. By induction, linearity of expectation can be used to prove that if n is a
positive integer, a1, . . . , an are real numbers, and X1, . . . , Xn are random variables with finite expectations, then

E

[
n∑
i=1

aiXi

]
=

n∑
i=1

aiE [Xi]

This can be used, together with the indicator function property, to prove a useful formula for random variables that can
take at most finitely many values. Fix n as a positive integer and let {x1, . . . , xn} be a set of n distinct real numbers. Let
X : Ω→ {x1, ..., xn} be a random variable. Observe that for each i ∈ {1, ..., n} we have {X = xi} is an event and

X =

n∑
i=1

xi1{X=xi}

Taking expectations of the above equality (and using linearity of expectation and the indicator function property) yields

E [X] =

n∑
i=1

xiE
[
1{X=xi}

]
=

n∑
i=1

xiP [X = xi]

This formula can be generalized in certain special cases when E [|X|] <∞:
• If X is a discrete random variable, meaning X : Ω→ D where D ⊆ R is a nonempty set that is either finite or countably

infinite, and if E [|X|] <∞, it can be shown that

E [X] =
∑
x∈D

xP [X = x]

• If X is a continuous random variable with a valid probability density function (PDF), and if E [|X|] <∞, then it can be
shown

E [X] =

∫ ∞
−∞

xfX(x)dx

It can be shown that if X is any nonnegative random variable then:

E [X] =

∫ ∞
0

P [X > x]dx

with the understanding that E [X] =∞ if and only if the right-hand-side of the above equality is ∞. A formal derivation of
this uses the Lebesgue integral and the Fubini-Tonelli theorem of measure theory:(

X =

∫ ∞
0

1{X>x}dx

)
=⇒

(
E [X] =

∫ ∞
0

E
[
1{X>x}

]
dx

)
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D. Variance

If X is a random variable with finite expectation E [X] we define the variance of X , written V ar(X), by

V ar(X) = E
[
(X − E [X])2

]
It can be shown that

V ar(X) = E
[
X2
]
− E [X]

2

The value E
[
X2
]

is called the second moment of X . It can be shown that a random variable X has a finite second moment
if and only if E [X] and V ar(X) are both finite. If X,Y are two random variables with finite second moments then

V ar(X + Y ) = V ar(X) + V ar(Y )− 2E [(X − E [X])(Y − E [Y ])]

We say that X and Y are uncorrelated if
E [(X − E [X])(Y − E [Y ])] = 0

It holds that X and Y are uncorrelated if and only if

E [XY ] = E [X]E [Y ]

It can be shown that if X and Y are independent with finite expectations, then they must be uncorrelated.
If X is a random variable with finite variance, and if a ∈ R, then

V ar(aX) = a2V ar(X)

If {X1, ..., Xn} are pairwise uncorrelated (meaning E [XiXj ] = E [Xi]E [Xj ] for all i 6= j) then

V ar

(
n∑
i=1

Xi

)
=

n∑
i=1

V ar(Xi)

E. Expectation inequalities

If X and Y are random variables with finite expectations then it can be shown

(X ≤ Y ) =⇒ E [X] ≤ E [Y ]

As a consequence, if X is a nonnegative random variable (so X(ω) ≥ 0 for all ω ∈ Ω) then for all ε > 0 we have

X ≥ ε1{X≥ε}
and so

E [X] ≥ εE
[
1{X≥ε}

]
which proves the Markov inequality for nonnegative random variables (for any ε > 0):

P [X ≥ ε] ≤ E [X]

ε

If X has mean µ and finite second moment then the Markov inequality implies the following Chebyshev inequality: For all
ε > 0 we have

P [|X − µ| ≥ ε] = P [|X − µ|2 ≥ ε2] ≤
E
[
|X − µ|2

]
ε2

=
V ar(X)

ε2
(67)

If X and Y are random variables with finite second moments E
[
X2
]

and E
[
Y 2
]
, then XY has finite expectation and

E [XY ]
2 ≤ E [|XY |]2 ≤ E

[
X2
]
E
[
Y 2
]

where the second inequality is a form of the Cauchy-Schwarz inequality for random variables X,Y with finite second moments:

E [XY ]
2 ≤ E

[
X2
]
E
[
Y 2
]

which can be proven by first assuming 0 < E
[
Y 2
]
<∞, observing the function f(a) = E

[
(X − aY )2

]
is always nonnegative,

and then finding the minimizer a∗ ∈ R (the case E
[
Y 2
]

= 0 can be treated separately).
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F. Law of total expectation

If X is a random variable with E [|X|] <∞ and if B is an event with P [B] > 0 then we define the conditional expectation
of X given B by

E [X|B] =
E [X1B ]

P [B]

It can be shown that this is the same as the expectation of a random variable Y that has distribution equal to the conditional
distribution of X given B, that is

(P [Y ≤ y] = P [X ≤ y|B] ∀y ∈ R) =⇒ (E [Y ] = E [X|B])

If X is a random variable with E [|X|] <∞ and if {Bi}∞i=1 are events that partition the sample space then

X =

∞∑
i=1

X1Bi

and it can be shown that:19

E [X] =

∞∑
i=1

E [X1Bi ] =
∑

i:P [Bi]>0

E [X|Bi]P [Bi]

This is called the law of total expectation.

APPENDIX F — SEQUENCES OF RANDOM VARIABLES

Let {Xi}∞i=1 be an infinite sequence of random variables, each with finite mean and variance. It holds that

i.i.d. =⇒ pairwise independent =⇒ pairwise uncorrelated

Suppose {Xi}∞i=1 are pairwise uncorrelated, possibly having different distributions, but all having the same mean and variance:

E [Xi] = µ ∀i ∈ {1, 2, 3, ...}
V ar(Xi) = σ2 ∀i ∈ {1, 2, 3, ...}

where µ ∈ R and 0 < σ2 <∞. For each positive integer n define

Mn =
1

n

n∑
i=1

Xi

Gn =
1√
nσ2

n∑
i=1

(Xi − µ)

Linearity of expectation and the variance properties for pairwise uncorrelated random variables can be used to show

E [Mn] = µ ∀n ∈ {1, 2, 3, ...}

V ar(Mn) =
σ2

n
∀n ∈ {1, 2, 3, ...}

which motivates the law of large numbers, and

E [Gn] = 0 ∀n ∈ {1, 2, 3, ...}
V ar(Gn) = 1 ∀n ∈ {1, 2, 3, ...}

which motivates the central limit theorem. In particular, if we additionally assume {Xi}∞i=1 are i.i.d. then the central limit
theorem (CLT) implies that the distribution of Gn converges to the N(0, 1) distribution, being the distribution of a Gaussian
random variable with mean 0 and variance 1:

lim
n→∞

P [Gn ≤ x] =

∫ x

−∞

1√
2π
e−t

2/2dt ∀x ∈ R

This type of convergence is called convergence in distribution. The law of large numbers (LLN) implies a stronger form of
convergence: If {Xi}∞i=1 are i.i.d. with finite mean µ then Mn → µ with probability 1.20

19The thing to be careful of here is whether or not we can push the expectation through the infinite sum. The Fubini-Tonelli theorem of measure theory
ensures that E

[∑∞
i=1Xi

]
=
∑∞
i=1 E [Xi] whenever either Xi are nonnegative random variables for all i, or when

∑∞
i=1 E [|Xi|] < ∞. In the formula

above we have |X| =
∑∞
i=1 |X1Bi | and so E [|X|] <∞ implies

∑∞
i=1 E

[
|X1Bi |

]
<∞, which allows pushing the expectation through the infinite sum.

20While the standard statement of the LLN requires {Xi}∞i=1 to be i.i.d. and to have finite mean µ (with possibly infinite variance), it can be shown that
if {Xi}∞i=1 are pairwise uncorrelated, have possibly different distributions with the same mean µ, and have bounded variances so that V ar(Xi) ≤ σ2

max
for all i ∈ {1, 2, 3, . . .} for some σ2

max <∞, then we can again conclude Mn → µ with probability 1.
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Since E [Mn] = µ and V ar(Mn) is known, we can fix ε > 0 and use the Chebyshev inequality (67) to conclude

P [|Mn − µ| ≥ ε] ≤
V ar(Mn)

ε2
=

σ2

nε2
∀n ∈ {1, 2, 3, ...} (68)

A. Hoeffding inequality

A related Hoeffding inequality is useful when the random variables are bounded. Here we state the result without proof:
Let {Xi}∞i=1 be a sequence of mutually independent random variables (they do not need to be identically distributed). Define
µi = E [Xi] for i ∈ {1, 2, 3, . . .}. If there are real numbers ai, bi such that21

ai ≤ Xi(ω) ≤ bi ∀i ∈ {1, 2, 3, . . .}, ∀ω ∈ Ω

then
• Single-sided Hoeffding inequality: For all ε > 0 we have

P

[
1

n

n∑
i=1

(Xi − µi) ≥ ε

]
≤ exp

(
− 2ε2n2∑n

i=1(bi − ai)2

)
∀n ∈ {1, 2, 3, . . .}

• Double-sided Hoeffding inequality: For all ε > 0 we have

P

[∣∣∣∣∣ 1n
n∑
i=1

(Xi − µi)

∣∣∣∣∣ ≥ ε
]
≤ 2 exp

(
− 2ε2n2∑n

i=1(bi − ai)2

)
∀n ∈ {1, 2, 3, . . .} (69)

In the special case when {Xi}∞i=1 are i.i.d. with mean µ we have 1
n

∑n
i=1(Xi − µi) = Mn − µ. If µ is unknown, but if

there are known a, b values that satisfy a ≤ Xi ≤ b surely for all i, the double-sided Hoeffding inequality can be used to find
a 95% confidence interval [Mn − ε,Mn + ε] based on n i.i.d. samples. That is, we can find a radius ε > 0 such that

P [µ ∈ [Mn − ε,Mn + ε]] ≥ 0.95 (70)

simply by finding an ε that makes the right-hand-side of (69) equal to 0.05. Also, the right-hand-side of (69) reduces to
2 exp( −2ε

2n
(b−a)2 ), which decreases exponentially fast with n (as compared to the O(1/n) decrease of Chebyshev in (68)). Thus,

the Hoeffding inequality is typically much tighter than the Chebyshev inequality. Of course, the assumption that all random
variables Xi are in the bounded interval [a, b] is more detailed than the assumption that V ar(Xi) <∞.

An important special case is when {Xi}∞i=1 are i.i.d. and Bern(p) with some unknown p ∈ [0, 1] (see also Section III-F).
In this case we can use a = 0, b = 1, and the right-hand-side of (69) becomes 2e−2ε

2n. In this special case we obtain the
following radii ε for 95% confidence intervals [Mn − ε,Mn + ε] for the unknown p:

n = 100 =⇒ ε = 0.135810

n = 200 =⇒ ε = 0.096032

n = 300 =⇒ ε = 0.078410

n = 103 =⇒ ε = 0.042947

n = 104 =⇒ ε = 0.013581

n = 105 =⇒ ε = 0.004295

n = 106 =⇒ ε = 0.0013581

It should be emphasized that these radii ε are computed before observing any of the random samples {Xi}. The width of the
confidence interval is 2ε, although the left-endpoint of the confidence interval is the random variable Mn − ε.

The inequality (70) states that, even before observing the Mn random variable, we know the probability that the random
interval [Mn − ε,Mn + ε] includes the (unknown) value µ is greater than or equal to 0.95. In particular, inequality (70) holds
before looking at the value Mn. One may wonder what the conditional probability is, given we observe Mn:

P [µ ∈ [Mn − ε,Mn + ε]|Mn] =??

The correct answer to this question is not particularly helpful: It depends on Mn, and it is always either 0 or 1 depending on
the value Mn. That is because there is no randomness to the parameter µ: Either µ is in the given interval or it is not. For
example, if we happen to observe Mn = 0.87 then:22

P [µ ∈ [Mn − ε,Mn + ε]|Mn = 0.87] = P [µ ∈ [0.87− ε, 0.87 + ε]|Mn = 0.87] =

{
1 if µ ∈ [0.87− ε, 0.87 + ε]
0 else

21The assumption that Xi is surely in [a, b] can be replaced by the assumption that Xi is almost surely in [a, b], with no change in any probability result.
22A formal treatment of conditional probability given a random variable Mn recognizes that there can be many versions of E

[
1{µ∈[Mn−ε,Mn+ε]}|Mn

]
,

every version has the form g(Mn) for some measurable function g : R→ R, and any two versions g1(Mn) and g2(Mn) satisfy P [g1(Mn) = g2(Mn)] = 1.
Our consideration of the case Mn = 0.87 is consistent with the version given by g(Mn) for g(x) = 1{µ∈[x−ε,x+ε]} for all x ∈ R.
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and so if µ is unknown, the answer exists but cannot be evaluated. It is more useful to consider the unconditional probability
in (70), which can be obtained from bounds such as the Chebyshev and Hoeffding inequalities.23

B. Relation to Gaussian distributions in statistics

In the case when {Xi}∞i=1 are i.i.d. N(µ, σ2) with unknown µ and σ2 (with µ ∈ R and 0 < σ2 <∞) a remarkable result in
the theory of statistics holds: A confidence interval In (with random endpoints and a random width that is roughly proportional
to 1/

√
n) can be constructed from n samples, using the sample mean and sample variance, such that P [µ ∈ In] can be exactly

computed using a student’s t-distribution [28]. Specifically, for any integer n ≥ 2 and any real number t > 0 we can define
the interval

In =

[
Mn − t

√
Vn√
n
,Mn + t

√
Vn√
n

]
(71)

where random variables Mn and Vn are the sample mean and sample variance

Mn =
1

n

n∑
i=1

Xi

Vn =
1

n− 1

n∑
i=1

(Xi −Mn)2

where dividing by n − 1 in the sample variance, rather than n, ensures the result is unbiased. Defining the random variable
Tn by24

Tn =

√
n√
Vn

(Mn − µ)

yields the remarkable result that Tn has a student’s t-distribution with n − 1 degrees of freedom, so P [|Tn| > t] can be
calculated for all t > 0. If we choose t such that P [|Tn| > t] = 0.05 then

0.95 = P [|Tn| ≤ t]

= P

[ √
n√
Vn
|Mn − µ| ≤ t

]
= P

[
|Mn − µ| ≤ t

√
Vn√
n

]
= P [µ ∈ In]

The value t > 0 that yields P [|Tn| > t] = 0.05 is often called t0.025,n−1 and is found from a lookup table to obtain the
(one-sided) probability P [Tn > t] = 0.025. Symmetry of the PDF for a student’s-t random variable with n − 1 degrees of
freedom implies P [|Tn| > t] = 2P [Tn > t]. The student’s-t CDF is continuous so P [Tn = x] = 0 for all x ∈ R.

When the distribution of each Xi is not N(µ, σ2), but when an upper bound on the variance is known, the Chebyshev
inequality (68) can be used. The Chebyshev inequality is generally considered to be loose. For a tighter result when the
random variables Xi are surely in some bounded interval [a, b], the Hoeffding inequality (69) can be used. Observe that (68)
and (69) are solid mathematical bounds that hold for any sample size n ∈ {1, 2, 3, . . .}.

When the number of (non-Gaussian) samples n is large, an alternative statistical practice is to obtain approximate bounds
and approximate confidence intervals via a conventional method of batch means that groups the i.i.d. samples into batches of
sufficiently large size for the central limit theorem to suggest each batch mean is approximately Gaussian [28]. This can give
approximate confidence intervals that are sometimes tighter than the (rigorous) confidence intervals obtained by Chebyshev
or Hoeffding. The approximate confidence intervals are of the type (71) with the exception that the sample mean and sample
variance are computed from the batch mean samples, not the raw samples. This method is particularly useful when the random
variables Xi are not bounded, so that Hoeffding cannot be applied. In practice, the method of batch means often uses batches of
size 15-20 samples each, although the size required for a good approximation to a Gaussian actually depends on the distribution
of Xi.

23A review of the law of large numbers may be useful: Fix the (possibly unknown) distribution for X1 with the (possibly unknown) mean µ. The inequality
(70) implies that if we fix n and independently repeat the experiment to form an infinite i.i.d. sequence {Mn,i}∞i=1, where each Mn,i has the same
distribution as our original Mn, then the law of large numbers guarantees that, as the number of experiments gets large, the fraction of experiments that
result in µ ∈ [Mn,i − ε,Mn,i + ε] approaches a value that is at least 0.95. This can be directly tested by simulation when the distribution of X1 (and the
value µ) is known by the computer: Consider, say, 106 experiments. For each experiment i ∈ {1, . . . , 106} we independently generate n i.i.d. samples with
the same distribution as X1, call them {Xn,i,j}nj=1, and define Mn,i = 1

n

∑n
j=1Xn,i,j . The computer can then count how many experiments yield a

randomly generated interval that contains µ. Of course, by independently repeating the experiment in this way, we view all random variables Xn,i,j : Ω→ R
as part of one larger experiment that takes place on a single probability space (Ω,F , P ), so a given outcome ω ∈ Ω determines the values Xn,i,j(ω) for
all j ∈ {1, . . . , n}, i ∈ {1, 2, 3, . . .}.

24Formally we define Tn = 0 if the (probability zero) event Vn = 0 holds (this can only hold if Xi = X1 for all i ∈ {1, ..., n}).
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