
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 9, PP. 2086-2099, SEPT. 2014 1

Optimal Peer-to-Peer Scheduling for Mobile
Wireless Networks with Redundantly Distributed

Data
Michael J. Neely

University of Southern California
Abstract— This paper considers peer-to-peer scheduling for a

network with multiple wireless devices. A subset of the devices are
mobile users that desire specific files. Each user may already have
certain popular files in its cache. The remaining devices are access
points that typically have a larger set of files. Users can download
packets of their requested file from an access point or from
another user. A dynamic algorithm that opportunistically grabs
packets from current neighbors is developed. Under a simple
model where each user desires a single file with infinite length,
the algorithm is shown to optimize utility while incentivizing
participation. The algorithm extends as an efficient heuristic
in more general cases with finite file sizes and random active
and idle periods. Example simulations demonstrate the dramatic
throughput gains enabled by wireless peering.

Index Terms— Stochastic optimization, Queueing analysis

I. INTRODUCTION

Consider a network with N wireless devices. Let K of
these devices be identified as users, where K ≤ N . The
users can send packets to each other via direct peer-to-peer
transmissions. Each user has a certain collection of popular
files in its cache. The remaining N − K devices are access
points. The access points are connected to a larger network,
such as the internet, and hence typically have access to a
larger set of files. While a general network may have users
that desire to upload packets to the access points, this paper
focuses only on the user downloads. Thus, throughout this
paper it is assumed that the access points only send packets
to the users, but do not receive packets. In contrast, the users
can both send and receive. The network is mobile, and so
the transmission options between access points and users, and
between user pairs, can change over time.

Each user only wishes to download, and does not naturally
want to send any data. Users will only send data to each other
if they agree to operate according to a control algorithm that
schedules such transmissions. This paper assumes the users
have already agreed to abide by the control algorithm, and thus
focuses attention on altruistic network design that optimizes
a global network utility function. Such a prior agreement is
only reasonable if the algorithm provides desirable benefits
to the participants. Thus, this paper includes a tit-for-tat
constraint, similar to the work in [2], which is an effective
mechanism for incentivizing participation. Further, while this
paper develops a single algorithm for optimizing the entire

This material was presented in part at the 46th Conference on Information
Sciences and Systems (CISS), Princeton, March 2012 [1].

This material is supported in part by one or more of: the NSF Career
grant CCF-0747525, the Network Science Collaborative Technology Alliance
sponsored by the U.S. Army Research Laboratory W911NF-09-2-0053.

network, this does not automatically require the algorithm
to be centralized. Indeed, the resulting algorithm often has
a distributed implementation.

The model of this paper applies to a variety of practical
network situations. For example, the access points can be
wireless base stations in a future cellular network that allows
both base-station-to-user transmissions as well as direct user-
to-user transmissions. Alternatively, some of the access points
can be from smaller femtocells. To increase the capacity of
wireless systems, it is essential for future networks to enable
such femtocell access and/or direct user-to-user transmission.
This paper considers only 1-hop communication, so that all
downloads are received either directly from an access point
or from another user. The possibility of a user acting as a
multi-hop relay is not considered here.

The prior work [2] treats a more complex model where
each user can actively download multiple files at the same
time, and where the arrival process of desired files at each
user is random. A key challenge in this case is the complexity
explosion associated with labeling each file according to the
subset of other devices that already have it. This is solved in
[2] by first observing the subset information of each newly
arriving file, making an immediate decision about which
device in this subset should transmit the desired packets, and
then placing this request in a request queue at that selected
device. The devices are not required to transmit these packets
immediately. Rather, they can satisfy the requests over time.
This procedure does not sacrifice optimality, and yields an
algorithm with polynomial complexity. However, while this
is effective for networks with static topology, it can result in
significant delays in mobile networks. That is because a device
that is pre-selected for transmission may not currently be in
close proximity to the intended user, and/or may move out of
range before transmission occurs.

The current paper provides an alternative algorithm that is
particularly suited to the mobile case. To do so, a simpler
model is considered where each user desires only one file
that has infinite size. This enables one to focus on scheduling
to achieve optimally fair download rates. Rather than pre-
selecting devices for eventual transmission, the algorithm
makes opportunistic packet transmission decisions from the
set of current neighbors that have the desired file. This also
facilitates distributed implementation. The infinite file size
assumption is an approximation that is reasonable when file
sizes are large, such as for video files. A heuristic extension to
the case of finite file sizes is treated in Section V. This heuristic
is based on the optimality insights obtained from the infinite
size case. It is analytically shown to provide the same queueing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 9, PP. 2086-2099, SEPT. 2014 2

bounds as the infinite size case. It is shown in simulation
to offer desirable throughput and to be adaptive to non-
ergodic events. The simulations also illustrate the significant
gains achievable by enabling wireless peering as opposed to
receiving downloads only from a base station.

Prior work on fair scheduling in mobile ad-hoc networks
has considered token-based and economics-based mechanisms
to incentivize participation [3][4][5]. Incentives are also well
studied in the peer-to-peer literature. For example, algorithms
in [6][7][8][9] track the number of uploads and downloads for
each user, and give preferential treatment to those who have
helped others. Algorithms based on tokens, markets, and peer
reputations are considered in [10][11][12]. Such algorithms
are conceptually based on the simple “tit-for-tat” or “treat-for-
treat” principle, where rewards are given in direct proportion
to the amount of self-sacrificial behavior at each user. The
current paper also considers a tit-for-tat mechanism. However,
a key difference is that it designs a tit-for-tat constraint directly
into the optimization problem (similar to prior work [2] that
used a different network model). Remarkably, the solution of
the optimization naturally results in an intuitive token-like
procedure, where the number of tokens in a virtual queue
at each user determines the reputation of the user. Peer-to-
peer transmissions between user pairs are given preferential
treatment according to the differential reputation between the
users. This is similar to the backpressure principle for optimal
network scheduling [13][14]. However, the “backpressure” in
the present paper is determined by token differentials in virtual
reputation queues, rather than congestion differentials.

This paper uses Lyapunov optimization, which enables
optimization of time averages of general network penalties and
utilities subject to queue stability [15]. Stabilizing queueing
networks by minimizing Lyapunov drift was pioneered by
Tassiulas and Ephremides in [13][16]. This was extended to
minimizing a drift-plus-penalty expression in [17][18][19] for
joint queue stability and time average utility optimization. This
stochastic technique is related to dual subgradient techniques
for static convex programs (see works in [20][21][22][23][24]
for static network utility maximization). Related primal-dual
stochastic algorithms are in [25][26][27][28], see also tutorials
in [14][29][30][15]. Practical implementations of Lyapunov
based scheduling are reported in [31][32].

II. BASIC MODEL

Let N denote the set of devices, and K denote the set of
users, where K ⊆ N . Let N and K be the sizes of these sets.
The network operates in discrete time with unit time slots
t ∈ {0, 1, 2, . . .}. Assume that on each slot t, each user k ∈ K
desires at most one file. For each k ∈ K and each slot t, define
Fk(t) as the set of all devices in N that have the file currently
desired by user k. The set Fk(t) can include both users and
access points, and represents the set of devices that user k can
potentially receive packets from on slot t. If user k currently
does not want any file, or if the desired file is not contained
in any of the devices, then Fk(t) is defined as the empty set
{}. If user k only accepts downloads from a certain subset of
devices that it identifies as its social group, then Fk(t) can

be viewed as the intersection of its social group and the set
of devices that have its currently desired file. It is assumed
throughout that k /∈ Fk(t) (for all k ∈ K and all t), so that
no user wants a file that it already has.

In an actual network, the sets Fk(t) can change over time.
This happens if user k desires a new file, or if there is a change
in the cache of another device. The queueing bounds derived
in this paper treat arbitrarily varying Fk(t) sets. However,
optimal throughput utility is proven only in the special case
when file subsets never change, so that Fk(t) = Fk for all t,
for some fixed subsets Fk ⊆ N . This corresponds to the case
when each user desires a single file that consists of an infinite
number of packets, and the cache contents of the devices never
change. The algorithm extends as a high quality heuristic in
more general cases of finite file sizes and time-varying file
subsets, as explored via simulations in Section VI.

Every slot t, the network makes transmission actions. Let
(µnk(t)) be the matrix of transmission actions chosen on slot
t, where each entry µnk(t) is the number of packets that device
n ∈ N transmits to user k ∈ K. The set of all possible matrix
options to choose from is determined by the current topology
state of the network, as in [14]. Specifically, let ω(t) represent
the topology state on slot t, being a vector of parameters that
affect transmission, such as current device locations and/or
channel conditions. Assume ω(t) takes values in an abstract
set Ω, possibly being an infinite set. The ω(t) process is
assumed to be ergodic. In the case when Ω is finite or
countably infinite, the steady state probabilities are represented
by π(ω) = Pr[ω(t) = ω] for all ω ∈ Ω. Else, the steady
state probabilities are represented by an appropriate probability
density function. These probabilities are not necessarily known
to the network controller. Extensions to the case when ω(t) is
non-ergodic are explored in Sections V and VI.

For each ω ∈ Ω, define R(ω) as the set of all transmission
matrices (µnk) that are possible when ω(t) = ω. The exact
structure of R(ω) depends on the particular physical charac-
teristics and interference properties of the network. One may
choose the R(ω) sets to constrain the transmission variables
µnk to take integer values, although this is not required in the
analysis of this paper. It is assumed only that each set R(ω)
has the following basic properties:
• Every matrix (µnk) ∈ R(ω) has non-negative entries.
• If (µnk) ∈ R(ω), then (µ̃nk) ∈ R(ω), where (µ̃nk) is

any matrix formed by setting one or more entries of (µnk)
to zero.

• Every matrix (µnk) ∈ R(ω) must satisfy the constraint
0 ≤

∑
n∈N µnk ≤ xmaxk for all k ∈ K, where xmaxk

is a given bound on the number of packets that can be
delivered to user k on one slot, regardless of ω.

The next two subsections present example network models
that fit into the above framework.

A. Example Network with Orthogonal Subcells

Suppose the network region is divided into C non-
overlapping subcells. Let cn(t) be the current subcell of device
n, so that cn(t) ∈ {1, . . . , C}. Let c(t) = (c1(t), . . . , cN (t))
be the vector of device locations on slot t. The access points

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 9, PP. 2086-2099, SEPT. 2014 3

have fixed locations, while the mobile users can change
subcells from slot to slot. Let S(t) = (Snk(t)) be a channel
state matrix, where Snk(t) is the number of packets that device
n can transmit to device k on slot t, provided that there are no
competing transmissions (as defined below). The value Snk(t)
can depend on the c(t) location vector. Let the topology
state ω(t) be given by ω(t) = (c(t),S(t)). Assume access
point transmissions are orthogonal from all other access point
transmissions and from all peer-to-peer user transmissions. For
each ω(t), define R(ω(t)) as the set of all (µnk(t)) matrices
with entries that satisfy:
• µnk(t) ∈ {0, Snk(t)} for all n ∈ N and k ∈ K.
• Users can only transmit to other users currently in their

same subcell, so that µnk(t) = 0 whenever n ∈ K, k ∈
K, and cn(t) 6= ck(t).

• At most one user-to-user transmission can take place per
subcell on a given slot.

• Each access point can send to at most one user per slot.
This particular structure is useful because it allows user trans-
missions to be scheduled separately in each subcell, and access
point transmissions to be scheduled separately from all other
decisions. The sets R(ω(t)) can be defined differently for
more sophisticated interference models, such as that described
in the next subsection.

B. Example Network With SINR-based Transmission
Assume all devices move about a 2-dimensional network

region. Let c(t) be a matrix that specifies the 2-dimensional
location information for all devices n ∈ N . Let S(t) =
(Snk(t)) be a matrix of current attenuations on the links,
typically dependent on c(t). The topology state process is then
ω(t) = (c(t),S(t)). Transmission proceeds in two stages, as
in [33][34]: Every slot t, each device n ∈ N first chooses
whether or not to transmit (it does not yet choose which user
it transmits to). Let 1n(t) be a binary variable that is 1 if
device n chooses to transmit on slot t, and 0 else. If device
n chooses to transmit, it always uses a fixed power Pn. The
resulting combined signal plus noise at a given user k ∈ K is:

Combk(t) = σ2
k +

∑
n∈NPn1n(t)Snk(t)

where σ2
k is the noise power at user k. Once the 1n(t) decisions

are made, a pilot signal is sent so that each user k can
measure Combk(t) and report the value back to its potential
transmitters. Based on this feedback, each transmitting device
chooses a single user as the recipient of its transmission. Let
1nk(t) be a binary variable that is 1 if device n decides to
transmit to user k, and 0 else, with constraints:∑

k∈K1nk(t) ≤ 1n(t) ∀n ∈ N
One may wish to impose additional constraints (1nk(t)) ∈ B
for some set B. This can be used to restrict devices from
transmitting to certain users that are too far away or that have
relatively weak signal strength.

The transmission rates µnk(t) are then determined as a
function of the resulting signal-to-noise-plus-interference ratio
(SINR):

µnk(t) = (1− 1k(t))gnk

(
1nk(t)PnSnk(t)

Combk(t)− 1nk(t)PnSnk(t)

)

where the (1− 1k(t)) factor ensures that transmitting devices
cannot receive. Each function gnk(s) is assumed to satisfy:
• gnk(s) is non-decreasing in s.
• gnk(0) = 0.
• 0 ≤ gnk(s) ≤ gmax for all values s that can occur

as arguments, where gmax is some finite bound on the
transmission rate.

An example function is gnk(s) = Wnk ln(1 + s) for some
bandwidth values Wnk, which corresponds to Shannon capac-
ity. Alternatively, gnk(s) can be a discontinuous step function
that corresponds to a fixed set of modulation options [33]. An
example is when all transmissions use a single modulation
strategy that requires SINR to be above some threshold θ, in
which case gnk(s) = 0 for all s < θ, and gnk(s) = µ for all
s ≥ θ, where µ is some positive number.

This 2-stage transmission model ensures that, after the initial
decisions 1n(t) are made, the transmission rates µnk(t) can
be selected in a distributed way at each device n using only
knowledge of the Combk(t) and Snk(t) values for each po-
tential receiver k ∈ K. The structure is completely distributed
if one assumes the first stage decisions are made randomly,
where each device n independently chooses to transmit with
some pre-specified probability θn, and these random decisions
for 1n(t) are modeled as an additional part of the topology
state process ω(t) [33][34].

Alternatively, one can envision a scenario where femto
“helper” nodes transmit with constant power Pn on each and
every slot, and user nodes never transmit. In the absence of
mobility, this would produce a constant value for Combk(t)
for each user k on every slot t. This value could be measured
at time t = 0 and no further feedback would be necessary.1

In all of these cases, the resulting set of transmission rate
options for (µnk(t)) depends only on the topology state ω(t).
This fits into our general framework of an abstract set of
options R(ω(t)). More sophisticated sets R(ω(t)) that require
centralized scheduling can be used in cases when a single
station has the capability to coordinate all link decisions.

C. Optimization Objective

For each a ∈ N and b ∈ K, define fab(t) as an indicator
function that is 1 if and only if device a has the file currently
requested by user b:

fab(t)
M
=

{
1 if a ∈ Fb(t)
0 otherwise (1)

where notation “M
=” denotes “defined to be equal to.” Every

slot t, the network controller observes ω(t) and chooses
(µnk(t)) ∈ R(ω(t)). For each k ∈ K, define xk(t) as the
total number of packets that user k receives from others on
slot t, and define yk(t) as the total number of packets that
user k delivers to others on slot t:

xk(t) M
=

∑
a∈N µak(t)fak(t) (2)

yk(t) M
=

∑
b∈K µkb(t)fkb(t) (3)

1Of course, a practical system would periodically update the values of
Combk(t) to track any network changes. However, in cases of low variability
these updates need not take place on every slot.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 9, PP. 2086-2099, SEPT. 2014 4

The multiplication µak(t)fak(t) in (2) and (3) formally en-
sures that user k can only receive a packet from another device
that has the file it is requesting.

For a given control algorithm, let xk and yk represent the
time averages of the xk(t) and yk(t) processes for all k ∈ K:

xk
M
= limt→∞

1
t

∑t−1
τ=0 xk(τ) , yk

M
= limt→∞

1
t

∑t−1
τ=0 yk(τ)

These limits are temporarily assumed to exist.2 The value xk
is the time average download rate of user k, and yk is the time
average upload rate. The goal is to develop a control algorithm
that solves the following:3

Maximize:
∑
k∈K φk(xk) (4)

Subject to: αkxk ≤ βk + yk ∀k ∈ K (5)
(µnk(t)) ∈ R(ω(t)) ∀t ∈ {0, 1, 2, . . .} (6)

where for each k ∈ K, φk(x) are given concave functions of x,
and αk, βk are given non-negative weights. The value φk(xk)
represents the utility associated with user k downloading at
rate xk. The constraints (5) are the tit-for-tat constraints from
[2]. These constraints incentivize participation. They allow a
“free” download rate of βk/αk. Users can only receive rates
beyond this value in proportion to the rate at which they help
others. Choosing larger values of αk (typically in the range
0 ≤ αk ≤ 1) leads to more stringent requirements about
helping others. These tit-for-tat constraints restrict the system
operation and thus can affect overall network utility. Removing
these constraints by setting αk = 0 for all k leads to the
largest network utility, but does not embed any participation
incentives into the optimization problem.

The functions φk(x) are assumed to be concave, continu-
ous, and non-decreasing over the interval x ≥ 0. They are
not required to be differentiable. For example, they can be
piecewise linear, such as φk(x) = min[x, θk], where θk is a
given constant rate desired by user k. Alternatively, one can
choose φk(x) = ln(1 + νx) for each k ∈ K and for some
constant ν > 0. As ν → ∞, this leads to the well known
proportional fairness utility [21].4

One may want to modify the problem (4)-(6) by specifying
separate utility functions for the user-to-user download rates
and the access-point-to-user download rates. This is possible
by creating two “virtual users” m1(k) and m2(k) for each
actual user k ∈ K. Channel conditions for the virtual users
m1(k),m2(k) are defined to be the same as for the actual
user k, with the exception that virtual user m1(k) is restricted
to receive only from other users, while virtual user m2(k) is
restricted to receive only from the access points.

The above formulation does not explicitly consider energy
use as part of the optimization. This simplifies exposition of
the paper by focusing on the basic issues of utility optimal
peering with the tit-for-tat constraint. Section VIII extends the
formulation to incorporate energy constraints.

2This is only to simplify exposition of the optimization goal. The perfor-
mance analysis in Section IV does not a-priori assume the limits exist.

3Note that the trivial all-zero solution is always feasible.
4The function ln(x) has a singularity at x = 0, although Lyapunov

optimization theory can still be applied in this special case [15].

III. THE DYNAMIC ALGORITHM

The problem (4)-(6) is solved via the stochastic network
optimization theory of [15][14]. First note that problem (4)-
(6) is equivalent to the following problem that uses auxiliary
variables γk(t):

Maximize:
∑
k∈K φk(γk) (7)

Subject to: αkxk ≤ βk + yk ∀k ∈ K (8)
γk ≤ xk ∀k ∈ K (9)

(µnk(t)) ∈ R(ω(t)) ∀t ∈ {0, 1, 2, . . .} (10)
0 ≤ γk(t) ≤ xmaxk ∀t ∈ {0, 1, 2, . . .} (11)

where φk(γk) is defined as the time average of the process
φk(γk(t)):

φk(γk)M
= limt→∞

1
t

∑t−1
τ=0 φk(γk(τ))

The auxiliary variables γk(t) act as proxies for the ac-
tual download variables xk(t). This technique transforms a
problem of maximizing a function of a time average into
a problem of maximizing the time average of a function
(compare problems (4)-(6) and (7)-(11)).

The optimal utility is the same for both problems (4)-(6)
and (7)-(11). To see this, let φ∗1 and φ∗2 represent the optimal
utility for problems (4)-(6) and (7)-(11), respectively. First
note that φ∗1 ≤ φ∗2, since an optimal solution of (4)-(6) can
be used as a feasible solution to (7)-(11), yielding the same
utility, by setting γk(t) = xk for all t. To prove φ∗2 ≤ φ∗1,
consider an algorithm that solves the problem (7)-(11). Let
(µnk(t)), (γk(t)) be the decisions made over time, and let
xk, yk, γk, φk(γk) be the corresponding time averages, all
of which satisfy the constraints of the problem (7)-(11). Note
that these constraints include all of the desired constraints of
the original problem (4)-(6). Then:

φ∗2 =
∑
k∈K φk(γk) (12)

≤
∑
k∈K

φk(γk) (13)

≤
∑
k∈K φk(xk) (14)

≤ φ∗1 (15)

where (12) holds because this algorithm achieves the opti-
mal utility φ∗2 for problem (7)-(11), (13) holds by Jensen’s
inequality, (14) holds because this algorithm must yield time
averages that satisfy γk ≤ xk for all k ∈ K, and (15) holds
because the transmission decisions of the algorithm satisfy all
desired constraints of the original problem, and thus produce
xk values that give a utility that is less than or equal to the
optimal utility of the original problem (which is φ∗1). It follows
that any algorithm that is optimal for (7)-(11) makes decisions
that are also optimal for the original problem.

A. Virtual Queues

To facilitate satisfaction of the tit-for-tat constraints (8), for
each k ∈ K define a virtual queue Hk(t), with dynamics:

Hk(t+ 1) = max [Hk(t) + αkxk(t)− βk − yk(t), 0] (16)

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 9, PP. 2086-2099, SEPT. 2014 5

where xk(t), yk(t) are defined in (2)-(3). The intuition is
that αkxk(t) can be viewed as the “arrivals” on slot t, and
βk + yk(t) can be viewed as the “offered service” on slot
t. Stabilizing queue Hk(t) ensures the time average of the
“arrivals” is less than or equal to the time average of the
“service,” which ensures constraints (8).

Similarly, to satisfy the constraints (9), for each k ∈ K
define another virtual queue Qk(t) with dynamics:

Qk(t+ 1) = max[Qk(t) + γk(t)− xk(t), 0] (17)

The update (17) can be interpreted as a queueing equation
where γk(t) is the amount of data requested by user k on
slot t, and xk(t) is the amount of service. Stabilizing Qk(t)
ensures γk ≤ xk.

B. The Drift-Plus-Penalty Expression

Define the following quadratic function L(t):

L(t)M
=

1
2

∑
k∈K[Qk(t)2 +Hk(t)2]

Intuitively, taking actions to push L(t) down tends to maintain
stability of all queues. Define ∆(t) as the drift on slot t:

∆(t)M
=L(t+ 1)− L(t)

The algorithm is designed to observe the queues and the
current ω(t) on each slot t, and to then choose (µnk(t)) ∈
R(ω(t)) and γk(t) subject to 0 ≤ γk(t) ≤ xmaxk to minimize
a bound on the following drift-plus-penalty expression [15]:

∆(t)− V
∑
k∈K φk(γk(t))

where V is a non-negative weight that affects a performance
bound. Intuitively, the value of V affects the extent to which
the control action on slot t emphasizes utility optimization in
comparison to drift minimization.

Lemma 1: Under any control algorithm, the drift-plus-
penalty satisfies:

∆(t)− V
∑
k∈K φk(γk(t)) ≤ B(t)− V

∑
k∈Kφk(γk(t))

+
∑
k∈KHk(t)[αkxk(t)− βk − yk(t)]

+
∑
k∈KQk(t)[γk(t)− xk(t)] (18)

where B(t) is defined:

B(t) M
=

1
2

∑
k∈K(αkxk(t)− βk − yk(t))2

+ 1
2

∑
k∈K(γk(t)− xk(t))2

Proof: Squaring (16) and using max[y, 0]2 ≤ y2 for any
real number y yields:

Hk(t+ 1)2 ≤ Hk(t)2 + (αkxk(t)− βk − yk(t))2

2Hk(t)(αkxk(t)− βk − yk(t))

Similarly, squaring (17) gives:

Qk(t+ 1)2 ≤ Qk(t)2 + (γk(t)− xk(t))2

+2Qk(t)(γk(t)− xk(t))

Summing over k ∈ K and dividing by 2 yields the result.
The value of B(t) can be upper bounded by a finite constant

B every slot, where B depends on the maximum possible
values that µnk(t) and γk(t) can take. The algorithm below

is defined by observing ω(t) and the queue states every slot
t, and choosing actions to minimize the last three terms on
the right-hand-side of (18) (not including the first term B(t)),
given these observed quantities. The algorithm is derived by
identifying the factors that involve decision variables γk(t) and
µnk(t) in these last three terms. Isolating the γk(t) variables
in the last three terms on the right-hand-side of (18) gives the
expression: ∑

k∈K

[−V φk(γk(t)) +Qk(t)γk(t)] (19)

Similarly, isolating the µnk(t) variables in the last three
terms on the right-hand-side of (18) is done by substituting
definitions of xk(t) and yk(t) from (2)-(3). This leads to the
expression:∑
n∈N

∑
k∈K

µnk(t)fnk(t)[αkHk(t)− 1{n∈K}Hn(t)−Qk(t)]

(20)
where 1{n∈K} is an indicator function that is 1 if device n is
a user, and 0 if device n is an access point.

C. The Dynamic Peering Algorithm

The dynamic algorithm observes the virtual queues and
the ω(t) value on every slot t, and chooses control decision
variables that greedily minimize the expressions (19) and (20).
Specifically, every slot t the algorithm performs the following:
• (γk(t) decisions) Each user k ∈ K observes Qk(t) and

chooses γk(t) to solve:

Maximize: V φk(γk(t))−Qk(t)γk(t) (21)
Subject to: 0 ≤ γk(t) ≤ xmaxk (22)

• (µnk(t) decisions) The network controller observes all
queues (Q(t),H(t)) and the topology state ω(t) on slot
t, and chooses matrix (µnk(t)) ∈ R(ω(t)) to maximize
the following expression:∑

n∈N
∑
k∈K µnk(t)fnk(t)Wnk(t) (23)

where weights Wnk(t) are defined:

Wnk(t)M
=
[
Qk(t) + 1{n∈K}Hn(t)− αkHk(t)

]
• (Queue updates) Update virtual queues Hk(t) and Qk(t)

for all k ∈ K via (16) and (17).
The γk(t) decisions can be viewed as flow control actions

that restrict the amount of data requested from user k on each
slot. They are made separately at each user k. The (µnk(t))
decisions are transmission actions made at the network layer.
Examples are given below.

D. Example Flow Control Decisions

Consider the following piecewise linear utility functions for
all k ∈ K:

φk(xk) = νk min[xk, θk] (24)

where νk are given positive values that act as priority weights
for the users, and θk are are given positive values that represent
the maximum desired communication rate for each user.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 9, PP. 2086-2099, SEPT. 2014 6

Assume that θk ≤ xmaxk for all k ∈ K. Then the algorithm in
the previous section chooses γk(t) for each user k ∈ K as:

γk(t) =

{
θk if Qk(t) ≤ V νk
0 otherwise

Alternatively, consider the following strictly concave utility
functions for all k ∈ K:

φk(xk) = ln(1 + νkxk) (25)

Then the γk(t) decisions are:

γk(t) =

[
V

Qk(t)
− 1

νk

]xmax
k

0

(26)

where the operation [y]b0 is equal to y if 0 ≤ y ≤ b, 0 if
y < 0, and b if y > b. These utility functions can be viewed
as an accurate approximation of the proportionally fair utility
function if one selects νk = ν for all k, for a large value of ν.
Alternatively, using the proportionally fair utilities φk(xk) =

ln(xk) for all k ∈ K leads to γk(t) = [V/Qk(t)]
xmax
k

0 , which
is indeed the same as (26) in the limit as νk →∞.

E. Example Transmission Decisions (Cell-Partitioned Model)

Suppose the network has the special cell-partitioned struc-
ture specified in Section II-A. LetA be the set of access points.
Let Ka(t) be the set of users within reach of access point a
on slot t. Then each access point a ∈ A observes channels
Sak(t) and queues Qk(t), Hk(t) for all users k ∈ Ka(t) and
chooses to serve the single user in Ka(t) with the largest non-
negative value of fak(t)Sak(t)[Qk(t) − αkHk(t)] (breaking
ties arbitrarily), and chooses no users if this value is negative
for all k ∈ Ka(t).

Further, the user pairs in each subcell c ∈ {1, . . . , C}
are observed. Amongst all users in a given subcell, the
ordered user pair (a, k) with the largest non-negative value of
fak(t)Sak(t)[Qk(t) +Ha(t)− αkHk(t)] is selected for peer-
to-peer transmission in that subcell (breaking ties arbitrarily).
No peer-to-peer transmission occurs in the subcell if this value
is negative for all user pairs.

F. Example Transmission Decisions (SINR Model)

Suppose the network has the SINR structure as specified
in Section II-B. Suppose the set of transmitting devices for
slot t is determined in some way (perhaps randomly), so that
the 1n(t) decisions are made for all devices n ∈ N .5 The
max-weight transmission decision rule (23) then reduces to the
following: Each transmitting device n observes the Combk(t),
Snk(t), and Wnk(t) values for its potential receivers k, and
chooses to transmit to the single receiver k that maximizes the
following quantity (breaking ties arbitrarily):

fnk(t)Wnk(t)(1−1k(t))gnk

(
1nk(t)PnSnk(t)

Combk(t)− 1nk(t)PnSnk(t)

)
5Of course, the optimal 1n(t) decisions for each n ∈ N can be made

according to the max-weight rule (23). However, this would involve a
centralized decision of maximizing a weighted sum of rates over a non-convex
set R(ω(t)). Randomizing the 1n(t) decisions simplifies implementation
and achieves optimality over the restricted set of algorithms that use such
randomization, as discussed in Section II-B. See Chapter 6 of [15], and
references therein, for a discussion of alternative approximation methods.

where gnk(s) is the function that maps an SINR level s to a
transmission rate, as described in Section II-B.

IV. ALGORITHM PERFORMANCE

A. Utility Optimality for Non-Varying File Subsets

In general scenarios, the Fk(t) sets can change over time,
and these changes can be influenced by the past scheduling
decisions. For example, suppose a user downloads multiple
finite-sized files one after the other. Then its currently re-
quested file and its cache of complete files depends on the
rate at which it received previous downloads. An analysis of
the optimal utility in this complex scenario appears to be a
multi-dimensional Markov decision problem, and is beyond
the scope of this paper.

However, in the special case when file subsets do not change
over time, so that Fk(t) = Fk for all t, the problem (4)-(6)
exactly fits into the stochastic network optimization framework
of [15]. That is because the problem (4)-(6) seeks to maximize
a concave function of time averages of attribute functions
xk(t) and yk(t), subject to time average constraints on these
attributes, and:
• The only random events are isolated to the ω(t) process,

which is ergodic and is not influenced by control actions.
• The attribute functions xk(t), yk(t) are pure functions of

the observed random event ω(t) and the control actions
(µnk(t)), and do not depend on additional network state
information.

• The attribute functions have bounded second moments
E
[
xk(t)2

]
, E
[
yk(t)2

]
.

This leads to the following performance theorem. Assume each
user k ∈ K desires a single “infinitely long” file, and define
Fk ⊆ N as the set of devices that have this file (assumed
to satisfy k /∈ Fk). To model the ω(t) process, let M(t)
be a discrete time ergodic Markov chain with a finite state
space M. On each slot t, if M(t) = m, then ω(t) is chosen
independently using a probability distribution ηm(ω) (so there
is one distribution for each m ∈M).

Theorem 1: (Utility Performance [15]) Suppose Fk(t) =
Fk for all t ∈ {0, 1, 2, . . .}. If ω(t) evolves according to the
ergodic Markov chain as described above, then for any value of
V ≥ 0 the algorithm satisfies the desired tit-for-tat constraints,
in the sense that for all k ∈ K we have:

lim sup
t→∞

[αkxk(t)− βk − yk(t)] ≤ 0

where xk(t) and yk(t) are defined:

xk(t) M
=

1
t

∑t−1
τ=0 E [xk(τ)]

yk(t) M
=

1
t

∑t−1
τ=0 E [yk(τ)]

Further, achieved utility differs from optimality by O(1/V),
in the sense that:

lim inf
t→∞

∑
k∈K φk(xk(t)) ≥ φ∗ −O(1/V)

where φ∗ is the optimal utility for the problem (4)-(6).
Therefore, the achieved utility differs from the optimal φ∗

by at most O(1/V), which can be made arbitrarily small as
the parameter V is increased. It turns out that the V parameter

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 9, PP. 2086-2099, SEPT. 2014 7

determines a queue size tradeoff, which affects the timescales
over which the tit-for-tat constraints are satisfied. This is
demonstrated in the next subsections. Specifically, under mild
additional assumptions, the special structure of the peer-to-
peer network ensures that all queues are deterministically
bounded by a constant that is proportional to V . Further,
while the throughput utility results of Theorem 1 hold only
when the ω(t) process is ergodic and the Fk(t) sets do not
change over time, these assumptions are not needed in the
queue bound analysis. Thus, the queue bounds derived below
hold for arbitrary sample paths of ω(t) and Fk(t), regardless
of whether or not these are ergodic and/or if these depend on
past control actions.6

B. Bound on Data Queues Qk(t)

Suppose each utility function φk(x) has right-derivatives
that are bounded by a finite constant νk > 0 over the interval
0 ≤ xk ≤ xmaxk . This holds for the example utility functions
in (24) and (25), with the νk parameters specified there indeed
being the maximum right derivatives.

Lemma 2: If utility function φk(x) has maximum right
derivative νk > 0, then:

0 ≤ Qk(t) ≤ V νk + xmaxk ∀t ∈ {0, 1, 2, . . .}

provided that this inequality holds for Qk(0).
Proof: Assume that Qk(t) ≤ V νk+xmaxk for slot t (it holds

by assumption on slot t = 0). We prove it also holds for slot
t + 1. First consider the case Qk(t) ≤ V νk. From the queue
update equation (17), we see that this queue can increase by
at most xmaxk on each slot, and so we have Qk(t + 1) ≤
V νk + xmaxk , proving the result for this case.

Now consider the case Qk(t) > V νk. On slot t, the algo-
rithm chooses γk(t) ∈ [0, xmaxk] to maximize the expression:

V φk(γk(t))−Qk(t)γk(t)

However, for any γk(t) ≥ 0 we have:

V φk(γk(t))−Qk(t)γk(t)

≤ V φk(0) + V νkγk(t)−Qk(t)γk(t)

= V φk(0) + γk(t)[V νk −Qk(t)]

≤ V φk(0)

where equality holds if and only if γk = 0 (recall that [V νk−
Qk(t)] < 0). It follows that the algorithm must choose γk(t) =
0, and so Qk(t) cannot increase on this slot. That is:

Qk(t+ 1) ≤ Qk(t) ≤ V νk + xmaxk

6Note also that if the queues are deterministically bounded and the
conditions of Theorem 1 hold, then the time-average results in [35] ensure that
all limiting time average expectations can be replaced by pure time averages
(with probability 1).

C. Bound on Reputation Queues Hk(t)

The Hk(t) processes act as reputation queues for each user
k ∈ K, being low if user k has a good reputation for helping
others, and high otherwise (see queue dynamics in (16)). These
reputations directly affect the transmission decisions via the
weights Wnk(t) in (23). To see this, define A as the set of
access points. First consider the weight seen by an access point
a ∈ A for user k on slot t:

Wak(t) = Qk(t)− αkHk(t)

This weight is large if Hk(t) is small.
Lemma 3: If φk(t) has maximum right-derivative νk > 0,

if initial queue backlog satisfies 0 ≤ Qk(0) ≤ V νk + xmaxk ,
and if αk > 0, then no access point will send to user k on a
given slot t if Hk(t) > 1

αk
[V νk + xmaxk].

Proof: Lemma 2 ensures Qk(t) ≤ V νk + xmaxk for all t.
It follows that if Hk(t) > 1

αk
[V νk + xmaxx], then the weight

seen by an access point a ∈ A for user k satisfies:

Qk(t)− αkHk(t) ≤ V νk + xmaxk − αkHk(t)

< 0

Because the weight is negative, the max-weight functional (23)
is maximized by choosing µak(t) = 0, so that access point a
will not send data to user k on slot t.

Now suppose user u ∈ K considers transmitting to another
user k ∈ K. User u sees the weight:

Wuk(t) = Qk(t) +Hu(t)− αkHk(t)

The value Hu(t) − αkHk(t) can be viewed as a differential
reputation. We again see that a relatively low value of Hk(t)
improves the weights for user k. The next lemma shows that
all queues Hk(t) are deterministically bounded. For simplicity,
the lemma is stated under the assumption that all initial queue
backlogs are zero. Let Θ(t) = (Qk(t), Hk(t))|k∈K be the
vector of all virtual queue values on slot t.

Lemma 4: If all utility functions have right-derivatives
bounded by finite constants νk > 0, if βk > 0 for all k ∈ K,
and if initial backlog satisfies Qk(0) = Hk(0) = 0 for
all k ∈ K, then there are finite constants C1 and C2, both
independent of V , such that:

||Θ(t)|| ≤ C1 + C2V ∀t ∈ {0, 1, 2, . . .}

where ||Θ(t)|| is defined as the Euclidean norm:

||Θ(t)|| ≤
√∑

k∈KHk(t)2 +
∑
k∈KQk(t)2

Proof: The algorithm makes decisions for (µkb(t)) and
γk(t) that minimize the last three terms in the right-hand-side
of (18) over all alternative feasible decisions, including the
trivial decisions γ̃k(t) = µ̃kb(t) = 0. Thus:

∆(t)− V
∑
k∈K

φk(γk(t)) ≤ B(t)− V
∑
k∈K

φk(0)

−
∑
k∈K

Hk(t)βk

≤ B − V
∑
k∈K

φk(0)

−βmin||H(t)||

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 9, PP. 2086-2099, SEPT. 2014 8

where B is a constant that upper bounds B(t) for all t
(such a constant exists by the boundedness assumptions on
xk(t), yk(t), and γk(t)). Further, βmin M

= mink∈K βk, and we
have used the fact that

∑
k∈KHk(t) ≥ ||H(t)||. Now define

C0
M
=
∑
k∈K[φk(xmaxk)− φk(0)]. We have for all t:

∆(t) ≤ B + V C0 − βmin||H(t)||

By definition of ∆(t):

∆(t) =
1

2
||Θ(t+ 1)||2 − 1

2
||Θ(t)||2

Thus:

||Θ(t+ 1)||2 − ||Θ(t)||2 ≤ 2(B + V C0)− 2βmin||H(t)||
(27)

Note by Lemma 2 that for all slots t, we have 0 ≤ Qk(t) ≤
Qmax, where:

Qmax
M
=νmaxV + xmax

where νmax
M
= maxk∈K νk and xmax

M
= maxk∈K x

max
k . Thus,

for any slot t:

||Θ(t)|| ≤ ||Q(t)||+ ||H(t)||
≤ Qmax

√
K + ||H(t)|| (28)

Now suppose that on slot t, we have:

||Θ(t)|| > B + V C0

βmin
+Qmax

√
K (29)

Combining this with (28) shows that if (29) holds, then:

||H(t)|| > B + V C0

βmin
(30)

It follows that if (29) holds, then (by combining (27) and (30)):

||Θ(t+ 1)||2 − ||Θ(t)||2 < 0

Thus, ||Θ(t)|| cannot increase if (29) holds on slot t. It follows
that for all t:

||Θ(t)|| ≤ B + V C0

βmin
+Qmax

√
K + g

where g is defined as the maximum possible increase in
||Θ(t)|| in one slot. Because both Qk(t) and Hk(t) can
increase by at most xmax in one slot, we have g ≤ xmax

√
2K.

Thus, for all slots t we have:

||Θ(t)|| ≤ B + V C0

βmin
+ (V νmax + xmax)

√
K

+xmax
√

2K

= C1 + C2V

where:

C1
M
= B/βmin + xmax(

√
K +

√
2K) (31)

C2
M
= C0/βmin + νmax

√
K (32)

D. Robustness to Inexact Implementation

The proofs of Lemmas 2 and 4 reveal that the algorithm of
Section III-C has the following two properties for all t:
• For each k ∈ K, γk(t) is chosen to be 0 whenever
Qk(t) > V νk.

• The decisions for (γk(t)) and (µnk(t)) for each slot
t ensure the last three terms in the right-hand-side of
(18) sum to a value that is less than or equal to the
corresponding sum under the trivial decisions γk(t) = 0,
µnk(t) = 0 for all n, k.

These are the only properties used in the proofs of Lemmas 2
and 4. Hence, the bounded queue results hold more generally
under any algorithm that satisfies the above two properties.
These properties can often be hardwired into the algorithm
even in cases when it is difficult to choose γk(t) and (µnk(t))
to exactly solve (21)-(23).

E. Behavior of the Tit-for-Tat Constraints

The deterministic queue bounds provide insight into the tit-
for-tat behavior of the system. Indeed, from the queue update
equation for Hk(t) in (16), we have for any slot t:

Hk(t+ 1) ≥ Hk(t) + αkxk(t)− βk − yk(t)

Summing the above over t ∈ {t0, t0 + 1, . . . , t0 + T − 1} for
some initial slot t0 ≥ 0 and some positive integer T gives:

Hk(t0 + T)−Hk(t0) ≥
t0+T−1∑
t=t0

[αkxk(t)− βk − yk(t)]

Rearranging the above inequality and using the fact that
Hk(t0) ≥ 0 and Hk(t0 +T) ≤ Hmax

k for some finite constant
Hmax
k yields:

αk
1

T

t0+T−1∑
t=t0

xk(t) ≤ βk +
1

T

t0+T−1∑
t=t0

yk(t) +
Hmax
k

T
(33)

Therefore, over any interval of T slots, the average download
rate by user k (multiplied by the αk coefficient) cannot
exceed βk plus the average upload rate, plus a “fudge factor”
Hmax
k /T . The fudge factor becomes arbitrarily small with

increased interval size. This is a deterministic result that holds
for any sample path and any time interval. Using t0 = 0 and
letting T →∞ in (33) verifies that the time average tit-for-tat
constraints are indeed satisfied for all users k ∈ K.

V. EXTENSION TO FINITE FILE SIZES

Now suppose the files requested by users have finite sizes.
Suppose each user requests at most one file at a time. We say
a user is in the active state if it is requesting a file, and is in
the idle state if it does not have any file requests. For each
k ∈ K, define Ak(t) to be 1 if user k is active on slot t, and 0
else. If Ak(t) = 1, define Fk(t) as the set of devices in N that
have the currently requested file of user k. Define Fk(t) to be
the empty set {} if none of the devices have the file that user
k wants on slot t, or if the user is not active on slot t. Define
Dk(t) as the number of additional required packets for user
k to complete its file request (where Dk(t) > 0 if and only

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 9, PP. 2086-2099, SEPT. 2014 9

if Ak(t) = 1). When an active user finishes downloading all
packets of its requested file on some slot t, it goes to the idle
state, so that Ak(t+1) = Dk(t+1) = 0, and Fk(t+1) = {}.
Further, assume the user always goes from the active state to
the idle state after a certain time limit expires, representing
a maximum amount of time tolerable for one file download
(this allows the user to “timeout” and request a different file
if none of the devices have its desired file, or if the network
cannot deliver its desired file fast enough).

The algorithm of the previous section can be directly applied
to this case. It proceeds exactly as before, still updating queues
and making all γk(t) and µab(t) decisions the same way for all
users on every slot, regardless of whether users are active or
idle. Of course, the fab(t) parameters in (23) and in the receive
and send equations (2), (3) will remove any transmission link
(a, b) from consideration if user b is idle. However, if desired,
idle users can still participate in data delivery to other users.
If this is not desired, the transmission link from a user u that
is currently idle can be shut down by removing u from the
current Fk(t) sets for all other users k.

Since Lemmas 2, 3, and 4 were derived for arbitrary
(possibly non-ergodic) ω(t) and Fk(t) processes, they equally
hold in this context. In particular, if utility functions have
bounded right-derivatives νk > 0, if βk > 0, and if all
queues are initially empty, then Qk(t) ≤ V νk + xmaxk for
all users k and all slots t, and the tit-for-tat guarantee (33)
holds for all users k and all intervals of time. However, the
utility optimality theorem (Theorem 1) no longer holds in this
context. Hence, the resulting algorithm should be viewed as
a heuristic. Intuitively, the algorithm will behave well, with
performance close to that suggested by the infinite file size
assumption, when file sizes are large. This is explored via
simulation in the next section.

VI. SIMULATION FOR CELL-PARTITIONED NETWORKS

This section presents simulation results for a network with
the cell-partitioned structure of Section II-A. There are K =
50 users and a single access point that is a wireless base
station. The users move according to a Markov random walk
on a 4 × 4 grid with 16 subcells. Utility functions φk(x) are
given by (25) with νk = 1. Each cell can support at most
one user-to-user packet transmission per slot. The base station
can transmit to at most one user k per slot, with transmission
rate Sk(t) that is independent over slots and across users with
Pr[Sk(t) = 0] = Pr[Sk(t) = 1] = Pr[Sk(t) = 2] = 1/3. All
simulations run for 106 slots.

A. Large Files and Non-Ergodic Changes

The first set of simulations consider a case where all
users desire a single infinitely large file, and where the file
availability sets change non-ergodically. Specifically, on slot
t = 0, each user k is assigned a desired file. This file is
independently in the cache of other users with probability
p = 0.05. This establishes the Fk sets. These sets are held
fixed for the first third of the simulation. At the end of the first
third of the simulation, new sets are independently drawn using
a larger probability p = 0.1. These sets are held fixed for the

second third of the simulation. New file sets are independently
drawn at the beginning of the final third of the simulation, with
p = 0.07, and held fixed until the end.

Fig. 1 plots the resulting throughput from the base station
traffic and peer-to-peer traffic separately, using V = 10,
αk = α = 0.5, βk = 0.05, xmaxk = 3. Even though there
are only an average of 50/16 = 3.125 users per cell, and in
the first third of the simulation there is only a 5% chance that
a given user has the file desired by another user, the peer-to-
peer traffic is still more than twice that of the base station
alone. This further increases in the middle of the simulation
when the file availability probability jumps to 10%. Overall,
these results demonstrate that the algorithm can quickly adapt
to non-ergodic changes in the file availability. Fig. 2 shows
that the value of Qk(t) never exceeds 10 packets for any
user k (recall that the worst-case guarantee from Lemma 2
is Qk(t) ≤ V + 3 = 13 packets). All tit-for-tat constraints
were satisfied, with Hk(t) ≤ 24.6 for all k ∈ K and all t.

Figs. 3 and 4 explore the throughput-backlog tradeoff with
V (one can also plot the throughput-utility with V to see a
similar convergence as in Fig. 3). Fig. 3 and 4 also treat the
case when the tit-for-tat constraint is made more stringent (α =
0.75), in which case throughput is reduced.

0 2 4 6 8 10

x 10
5

0

2

4

6

8

10

Time t

T
h

ro
u

g
h

p
u

t
(p

a
c
k
e

ts
/s

lo
t)

Average Network Throughput versus Time

Peer−to−Peer

Base station

Fig. 1. Average throughput per-user versus time (16 subcells, 50 users). The
base station throughput appears constant because the max-weight user that it
selects almost always has a transmission rate of Sk(t) = 2 (note that there
are an average of 50/3 users with Sk(t) = 2 on every slot).

0 2 4 6 8 10

x 10
5

0

2

4

6

8

10

12

Time t

Q
u

e
u

e
 S

iz
e

 Q
(t

)
(p

a
c
k
e

ts
)

Queue Size versus Time

Largest Observed Queue Size

Average Per−User Queue Size

Fig. 2. Average and worst-case queue backlog per user versus time.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 9, PP. 2086-2099, SEPT. 2014 10

0 5 10 15 20 25
5

5.5

6

6.5

7

7.5

8

8.5

V

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(p
a

c
k
e

ts
/s

lo
t)

Throughput versus V

α = 0.50

α = 0.75

Fig. 3. Throughput versus V for α = 0.5 and α = 0.75.

0 5 10 15 20 25
0

5

10

15

20

25

30

V

In
d
iv

id
u
a
l
Q

u
e
u
e
 S

iz
e
 (

p
a
c
k
e
ts

)

Queue Size versus V

Guaranteed Upper Bound

Per−Queue Average

(α = 0.50 and α = 0.75)

Fig. 4. Queue backlog versus V , demonstrating the O(V) behavior. The
results for α = 0.5 and α = 0.75 are right on top of each other. The upper
bound V + 3 is also plotted.

B. Finite File Sizes

The second set of simulations consider the same network
and the same parameters V = 10, αk = α = 0.5, βk = 0.05,
xmaxk = 3. However, these simulations assume users transition
between active and idle states, as described in Section V.
At the beginning of each active period, users independently
draw a new file with size that is uniformly distributed over
the integers {50, 51, . . . , 150}, so that the average file size is
100 packets. The corresponding subset Fk(t) is independently
drawn at the beginning of each active period and held fixed
for the duration of this period. The Fk(t) set is formed by
assuming each device n 6= k independently has the file desired
by user k with probability p. The timeout value is set to ∞,
so that a user only goes to the idle state when it finishes
downloading its file. After a user spends one slot in the
idle state, it transitions to the active state independently with
probability q, and stays in the idle state with probability 1−q.
Thus, each idle period lasts for an average of 1/q slots.

Fig. 5 illustrates a sample path of throughput for the case
when the file availability probability is p = 0.05. The idle-to-
active transition probability is q = 1/100 so that the average
duration of an idle period is 100 slots. The figure separates
out the throughput due to base station traffic and peer-to-peer
traffic, again illustrating the significant gains available from
wireless peering. The average file delay for this experiment
was 809.37 slots, where file delay is defined as the duration
of time required to deliver all packets of the file (being

the duration of an active period).7 The average number of
delivered files per user was 1231.9 files during the 106 slots.

Fig. 6 presents throughput results when q is varied between
1 and 1/400 (so that average idle time varies between 1 and
400). Curves are given for the case p = 0.05 and p = 0.025.
The base station curves are roughly the same for both cases,
whereas the peer-to-peer throughput significantly increases
when the file availability probability is doubled. Fig. 7 plots
the resulting average file download delay.

0 2 4 6 8 10

x 10
5

0

1

2

3

4

5

6
Throughput versus time for the case of finite file sizes

T
h
ro

u
g
h
p
u
t
(p

a
c
k
e
ts

/s
lo

t)

Time t

Peer−to−Peer

Base station

Fig. 5. A sample path of peer-to-peer throughput and base station throughput
versus time for the case of finite file sizes with file availability probability
p = 0.05. The idle-to-active transition probability is q = 1/100 so that the
average duration of an idle period is 100 slots.

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

Average idle time 1/q (slots)

T
h
ro

u
g
h
p
u
t
(p

a
c
k
e
ts

/s
lo

t)

Throughput verus average idle time 1/q

Base station (p=0.05 and p=0.025)

Peer−to−peer (p=0.025)

Peer−to−peer (p=0.05)

Fig. 6. Throughput versus 1/q for peer-to-peer traffic and base station traffic,
for file availability probability p = 0.05 and p = 0.025.

C. Advantages of Scale

This subsection illustrates the dramatic throughput gains
achievable by scaling the system up to allow many more users
and many more subcells. The scenario of Section VI-A, Fig.
1, is repeated with the following modification:
• Previous simulation (Fig. 1): 1 base station, 50 mobile

users, 16 subcells arranged in a 4× 4 grid.
• Modified simulation (Fig. 8): 1 base station, 1250 mobile

users, 400 subcells arranged in a 20× 20 grid.
The new scenario maintains the same user/cell ratio 3.125,
but allows for many more subcells and hence many more

7Recall that the average file size is 100 packets. Thus, an ideal non-mobile
setting where there are only two users and one sends a single packet to the
other on every slot would yield an average delay of 100 slots.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 9, PP. 2086-2099, SEPT. 2014 11

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

1400

Average idle time 1/q (slots)

A
v
e
ra

g
e
 F

ile
 D

o
w

n
lo

a
d
 D

e
la

y
 (

s
lo

ts
)

Average File Download Delay versus Average Idle Time 1/q

Case p=0.05

Case p=0.025

Fig. 7. Average file download delay versus 1/q, for file availability
probability p = 0.05 and p = 0.025.

simultaneous transmissions. The resulting average peer-to-peer
traffic is 153.7 packets per slot while the average base station
traffic is only 2 packets per slot (compare Figs. 8 and 1).

0 2 4 6 8 10

x 10
5

0

50

100

150

200

Time

T
h

ro
u

g
h

p
u

t
(p

a
c
k
e

ts
/s

lo
t)

Average Network Throughput versus Time

Base Station Traffic

Peer−to−Peer Traffic

Fig. 8. Average throughput versus time for the same situation as Fig. 1, but
with many more subcells and users (400 subcells, 1250 users).

VII. SIMULATION FOR SINR-BASED NETWORKS

This section presents a simulation for the SINR-based trans-
mission model from Section II-B. To illustrate the flexibility
of the model, this section also assumes there is no user-to-user
communication, so the tit-for-tat constraints are removed by
setting αk = 0 for all k ∈ K (see (8)). Instead, users can
receive transmissions either from the base station or from one
of multiple femto “helper” nodes.

Assume the network region is square with unit length sides.
There is one base station that is located in the middle of
the square. There are 40 femto nodes that are randomly and
independently placed uniformly over the unit square at time 0.
These femto nodes never change their locations. There are 200
users that independently move about the network as follows:
The network area is divided into a 10× 10 region of subcells
(used only to simplify the mobility simulation). The first 100
users independently choose a subcell at time zero. These users
stay in that same subcell for the duration of the simulation,
but independently move to a new location in that subcell
every slot (uniformly distributed over the subcell). The next
100 users take independent random walks over the subcells
as follows: With probability 0.8 the user stays in the current

subcell, but moves to a uniformly chosen location in that same
subcell. With probability 0.2, the user moves to a neighboring
subcell (uniformly chosen over all neighbor cells), and chooses
a random location in that new subcell.

Let Snk(t) denote the attenuation between device n (either
a base station or femto node) and user k, and assume:

Snk(t) = min

[
(1/20)3

dist(n, k, t)3
, 1

]
where dist(n, k, t) is the distance between devices n and k on
slot t, being a number between 0 and

√
2. The above takes a

minimum with 1 to ensure Snk(t) ≤ 1 for all t. The SINR is
then computed via the formula in Section II-B. For simplicity,
we use a continuous rate function gnk(s) = ln(1 + s). We use
Pn = P and σ2

k = σ2 for all transmitters n and receivers k,
with a ratio P/σ2 = 100. See [36] and references therein for
details on related assumptions for SINR models.

The base station has all files, whereas the femto nodes
have only a subset of the files (chosen independently for each
femto node). To allow all users to have unimpeded access to
the base station if needed, every 10th slot all femto nodes
go idle and the base station alone transmits to the single
max-weight user (as determined by the weights in Section
III-F). On all other slots, the base station transmits together
with all 40 femto nodes according to the max-weight rule of
Section III-F.8 The simulation mimics that of Section VI-A,
with the exception that the file availability probability at the
femto nodes is increased to p = 0.1, p = 0.2, p = 0.15 at
the first, second, and third phases of the simulation. This is
because such femto nodes typically have a larger set of files as
compared to wireless peers. Results are shown in Fig. 9, where
it is again clear that the femto node traffic is significantly
larger than the base station traffic. The dashed line in the figure
indicates the sum throughput that would be achieved if the base
station acted alone (with no femto nodes) on each and every
slot. Overall, it is evident that the femto nodes significantly
boost total network throughput.

0 2 4 6 8 10

x 10
5

0

5

10

15

20

25
Throughput versus Time for the SINR model with Helper Nodes

Time t

T
h
ro

u
g
h
p
u
t

Femto Helper Node Traffic

Base Station Traffic

Total Traffic if Base Station
 works alone every slot

Fig. 9. A sample path of throughput for the SINR model with V = 10 and
200 users, 40 femto nodes, and 1 base station. The file availability probability
at the femto nodes is 0.1, 0.2, 0.15 for the three phases of the simulation.

8Of course, one could determine the optimal fraction of time to have the
base station transmit alone by comparing the max-weight metric for the cases
when all femto nodes are idle and when all are busy, and choosing the best
of the two. This modification is omitted for brevity.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 9, PP. 2086-2099, SEPT. 2014 12

VIII. AVERAGE POWER CONSTRAINTS

This section modifies the problem formulation to include
average power constraints at each user. Assume for simplicity
that a 1-slot transmission over a link (n, k) expends c units
of power at the transmitting device n and d units of power at
the receiving device k. Then the power expended by user k
on slot t is:

pk(t) = c
∑
j∈K

1{µkj(t)>0} + d
∑
n∈N

1{µnk(t)>0}

where 1{µnk(t)>0} is an indicator function that is 1 if µnk(t) >
0, and 0 else. Let pavk be positive numbers that represent
average power constraints for each user k ∈ K. The problem
becomes:

Maximize:
∑
k∈K φk(xk) (34)

Subject to: αkxk ≤ βk + yk ∀k ∈ K (35)
pk ≤ pavk ∀k ∈ K (36)

(µnk(t)) ∈ R(ω(t)) ∀t ∈ {0, 1, 2, . . .} (37)

The only difference between the above problem and the
original problem (4)-(6) is the addition of the average power
constraints in (36). This is easily incorporated by a virtual
queue Zk(t) for each k ∈ K with the following update
equation [18][15]:

Zk(t+ 1) = max[Zk(t) + pk(t)− pavk , 0] (38)

Define the modified Lyapunov function:

L(t) =
1

2

∑
k∈K

[Qk(t)2 +Hk(t)2 + Zk(t)2]

This results in the following drift-plus-penalty expression
(compare with (18)):

∆(t)− V
∑
k∈K

φk(γk(t)) ≤ B̃(t)− V
∑
k∈K

φk(γk(t))

+
∑
k∈K

Hk(t)[αkxk(t)− βk − yk(t)]

+
∑
k∈K

Qk(t)[γk(t)− xk(t)]

+
∑
k∈K

Zk(t) [pk(t)− pavk]

where B̃(t) is a second moment term that is similar to B(t)
but includes the second moments of the Zk(t) queue changes.
Minimizing the last four terms on the right-hand-side of the
above inequality leads to the following modified algorithm:
Every slot t, the γk(t) decisions are the same as (21)-(22).
However, the transmission decisions are made by choosing
a matrix (µnk(t)) ∈ R(ω(t)) to maximize the following
quantity (breaking ties arbitrarily):∑

n∈N

∑
k∈K

µnk(t)fnk(t)Wnk(t)

−
∑
n∈N

∑
k∈K

1{µnk(t)>0}[Zk(t)d+ Zn(t)c1{n∈K}]

where the weights Wnk(t) are the same as before and 1{n∈K}
is an indicator function that is 1 if n ∈ K and 0 else. The

second term in the above expression effectively defines a
negative bias of Zk(t)d+ Zn(t)c1{n∈K} for activating a link
(n, k). Such activation will only occur if µnk(t)fnk(t)Wnk(t)
exceeds this bias. Using the Lyapunov optimization theory of
[15], a modified version of Theorem 1 shows that the algo-
rithm always satisfies the desired constraints (35)-(37) while
achieving utility within O(1/V) of optimal. Of course, optimal
utility here is redefined over all algorithms that satisfy all of
the constraints, including the new average power constraints.

IX. CONCLUSIONS

This work develops a peer-to-peer scheduling algorithm for
mobile wireless networks. In the case when each user desires
a single file of infinite length, the algorithm is shown to
provide utility that can be pushed arbitrarily close to optimal,
with a tradeoff in queue size. To incentivize participation, the
algorithm embeds tit-for-tat constraints into the optimization.
This results in a max-weight scheduling decision that can be
viewed as a backpressure mechanism acting on the differential
reputation between users. The resulting algorithm extends as
a heuristic to more practical cases of finite file sizes and non-
ergodic events. Simulations demonstrate the significant gains
achievable by wireless peering and/or femto node transmis-
sions, particularly when the file availability probability is large.

REFERENCES

[1] M. J. Neely. Wireless peer-to-peer scheduling in mobile networks. Proc.
46th Conf. on Information Sciences and Systems (CISS), March 2012.

[2] M. J. Neely and L. Golubchik. Utility optimization for dynamic peer-
to-peer networks with tit-for-tat constraints. Proc. IEEE INFOCOM,
2011.

[3] L. Buttyan and J.-P. Hubaux. Stimulating cooperation in self-organizing
mobile ad hoc networks. ACM/Kluwer Mobile Networks and Applica-
tions (MONET), vol. 8, no. 5, pp. 579-592, Oct. 2003.

[4] J. Crowcroft, R. Gibbens, F. Kelly, and S. Ostring. Modeling incentives
for collaboration in mobile ad-hoc networks. presented at the 1st Int.
Symp. Modeling and Optimization in Mobile, Ad-Hoc, and Wireless
Networks (WiOpt ’03), Sophia-Antipolis, France, March 2003.

[5] M. J. Neely. Optimal pricing in a free market wireless network. Wireless
Networks, vol. 15, no. 7, pp. 901-915, Oct. 2009.

[6] S. Jun and M. Ahamad. Incentives in bittorrent induce free riding.
In ACM SIGCOMM Workshop on Economics of Peer-to-Peer Systems
(P2P-ECON), pages pp. 116–121, Philadelphia, PA, August 2005.

[7] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Analyzing and
improving bittorrent performance. In Proc. IEEE INFOCOM, Barcelona,
Catalunya, Spain, April 2006.

[8] K. Tamilmani, V. Pai, and A. E. Mohr. Swift: A system with incentives
for trading. In P2P-ECON, 2004.

[9] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani. Do incentives build robustness in bittorrent? In The 4th USENIX
Symposium on Networked Systems Design & Implementation (NSDI),
Cambridge, MA, April 2007.

[10] W.-C. Liao, F. Papadopoulos, and K. Psounis. Performance analysis of
bittorrent-like systems with heterogeneous users. In Performance, 2007.

[11] Q. Lian, Y. Peng, M. Yang, Z. Zhang, Y. Dai, and X. Li. Robust
incentives via multi-level tit-for-tat. In Proc. 5th International Workshop
on Peer-to-Peer Systems (IPTPS), 2006.

[12] M. J. Freedman, C. Aperjis, and R. Johari. Prices are right: Managing
resources and incentives in peer-assisted content distribution. In Proc.
7th International Workshop on Peer-to-Peer Systems (IPTPS), 2008.

[13] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transacations on Automatic Control,
vol. 37, no. 12, pp. 1936-1948, Dec. 1992.

[14] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and
cross-layer control in wireless networks. Foundations and Trends in
Networking, vol. 1, no. 1, pp. 1-149, 2006.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 9, PP. 2086-2099, SEPT. 2014 13

[15] M. J. Neely. Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.

[16] L. Tassiulas and A. Ephremides. Dynamic server allocation to parallel
queues with randomly varying connectivity. IEEE Transactions on
Information Theory, vol. 39, no. 2, pp. 466-478, March 1993.

[17] M. J. Neely. Dynamic Power Allocation and Routing for Satellite
and Wireless Networks with Time Varying Channels. PhD thesis,
Massachusetts Institute of Technology, LIDS, 2003.

[18] M. J. Neely. Energy optimal control for time varying wireless networks.
IEEE Transactions on Information Theory, vol. 52, no. 7, pp. 2915-2934,
July 2006.

[19] M. J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. IEEE/ACM Transactions on Net-
working, vol. 16, no. 2, pp. 396-409, April 2008.

[20] S. H. Low and D. E. Lapsley. Optimization flow control, i: Basic
algorithm and convergence. IEEE/ACM Transactions on Networking,
vol. 7 no. 6, pp. 861-875, Dec. 1999.

[21] F. Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, vol. 8, no. 1 pp. 33-37, Jan.-Feb.
1997.

[22] L. Xiao, M. Johansson, and S. P. Boyd. Simultaneous routing and
resource allocation via dual decomposition. IEEE Transactions on
Communications, vol. 52, no. 7, pp. 1136-1144, July 2004.

[23] M. Chiang. Balancing transport and physical layer in wireless multihop
networks: Jointly optimal congestion control and power control. IEEE
J. on Selected Areas in Comm., vol. 23, no. 1, pp. 104-116, Jan. 2005.

[24] X. Lin and N. B. Shroff. The impact of imperfect scheduling on cross-
layer congestion control in wireless networks. IEEE/ACM Transactions
on Networking, vol. 14, no. 2, pp. 302-315, April 2006.

[25] A. Eryilmaz and R. Srikant. Joint congestion control, routing, and MAC
for stability and fairness in wireless networks. IEEE Journal on Selected
Areas in Communications, Special Issue on Nonlinear Optimization of
Communication Systems, vol. 14, pp. 1514-1524, Aug. 2006.

[26] A. Stolyar. Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm. Queueing Systems, vol. 50, no. 4, pp.
401-457, 2005.

[27] H. Kushner and P. Whiting. Asymptotic properties of proportional-fair
sharing algorithms. Proc. 40th Annual Allerton Conf. on Communica-
tion, Control, and Computing, Monticello, IL, Oct. 2002.

[28] R. Agrawal and V. Subramanian. Optimality of certain channel aware
scheduling policies. Proc. 40th Annual Allerton Conf. on Communica-
tion, Control, and Computing, Monticello, IL, Oct. 2002.

[29] X. Lin, N. B. Shroff, and R. Srikant. A tutorial on cross-layer
optimization in wireless networks. IEEE Journal on Selected Areas
in Communications, Special Issue on Nonlinear Optimization of Com-
munication Systems, vol. 14, no. 8, Aug. 2006.

[30] S. Shakkottai and R. Srikant. Network optimization and control.
Foundations and Trends in Networking, vol. 2, no. 3, pp. 271-379, 2007.

[31] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and
A. Jovcic. FlashLinkQ: A synchronous distributed scheduler for peer-
to-peer ad-hoc networks. Proc. 48th Annual Allerton Conf., Moticello,
IL, 2010.

[32] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali. Rout-
ing without routes: The backpressure collection protocol. Proc. 9th
ACM/IEEE Intl. Conf. on Information Processing in Sensor Networks
(IPSN), April 2010.

[33] M. J. Neely, E. Modiano, and C. E Rohrs. Dynamic power allocation and
routing for time varying wireless networks. IEEE Journal on Selected
Areas in Communications, vol. 23, no. 1, pp. 89-103, January 2005.

[34] M. Grossglauser and D. Tse. Mobility increases the capacity of ad-hoc
wireless networks. IEEE/ACM Trans. on Networking, vol. 10, no. 4, pp.
477-486, August 2002.

[35] M. J. Neely. Stability and probability 1 convergence for queueing
networks via Lyapunov optimization. Journal of Applied Mathematics,
vol. 2012, doi:10.1155/2012/831909, 2012.

[36] H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews. Modeling
and analysis of k-tier downlink heterogeneous cellular networks. IEEE
Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 550-
560, April 2012.

