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Delay Analysis for Max Weight Opportunistic
Scheduling in Wireless Systems

Michael J. Neely

Abstract—We consider the delay properties of max-weight
opportunistic scheduling in a multi-user ON/OFF wireless system,
such as a multi-user downlink or uplink. It is well known
that max-weight scheduling stabilizes the network (and hence
yields maximum throughput) whenever input rates are inside
the network capacity region. We show that when arrival and
channel processes are independent, average delay of the max-
weight policy is order-optimal, in the sense that it does not
grow with the number of network links. While recent queue-
grouping algorithms are known to also yield order-optimal delay,
this is the first such result for the simpler class of max-weight
policies. We then consider multi-rate transmission models and
show that average delay in this case typically does increase with
the network size due to queues containing a small number of
“residual” packets.

Index Terms—Queueing analysis

I. INTRODUCTION

We consider the delay properties of max-weight opportunis-
tic scheduling in a multi-user wireless system. Specifically,
we consider a system with N transmission links. Each link
receives independent data that arrives randomly and must
be queued for eventual transmission. Separate queues are
maintained by each link i ∈ {1, . . . , N}, so that data arriving
to queue i must be transmitted over link i. The system works
in slotted time with normalized slots t ∈ {0, 1, 2, . . .}. The
channel states of each link vary randomly from slot to slot,
and every slot t the network controller observes the current
queue backlogs and the current channel states, and selects a
single link for wireless transmission.

This is a classic opportunistic scheduling scenario, where
the network scheduler can exploit knowledge of the current
state of the time varying channels. It is well known that max-
weight scheduling policies are throughput optimal in such
systems, in the sense that they provably stabilize all queues
whenever the input rate vector is inside the network capacity
region. This stability result was first shown by Tassiulas and
Ephremides in [2] for the special case of ON/OFF channels,
and was later generalized to multi-rate transmission models
and systems with power allocation [3] [4] [5] [6]. However, the
delay properties of max-weight scheduling are less understood.
An average delay bound that is linear in N is derived in [5]
[6]. While this bound is tight in the case of correlated arrival
and channel processes, it is widely believed to be loose for
independent arrivals and channels.
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In this paper, we focus on the special case of ON/OFF
channels, and show that the max-weight policy indeed yields
average delay that is O(1) under independence assumptions.
Thus, average delay does not grow with the network size and
hence is order optimal. While our previous queue grouping
results in [7] also demonstrate that O(1) delay is possible,
this is the first such result for the simpler class of max-
weight policies. Specifically, we first show that for any input
rate vector that is within a ρ-scaled version of the capacity
region (where ρ represents the network loading and satisfies
0 < ρ < 1), the max-weight rule yields average delay that
is less than or equal to c log(1/(1 − ρ))/(1 − ρ)2, where
c is a constant that does not depend on ρ or N .1 This is
in comparison to the previous delay bound of cN/(1 − ρ)
developed for max-weight scheduling [5] [6]. Note that our
new bound does not grow with N , but has a worse asymptotic
in ρ. We next present a different analysis that improves
the delay bound to c log(1/(1 − ρ))/(1 − ρ) for systems
with “f -balanced” traffic rates (to be made precise in later
sections). That is, if arrival rates are heterogeneous but are
more balanced (so that the difference between the maximum
arrival rate and the average arrival rate is sufficiently small),
then order-optimal average delay is maintained while the delay
asymptotic in ρ is improved.

Finally, we consider systems with multi-rate capabilities. We
first provide a delay bound that grows linearly with N , similar
to the bounds in [5] [6] but with an improved coefficient. We
then provide an example multi-rate system and show that its
average congestion and delay must grow at least linearly with
N under any scheduling algorithm, due to many queues having
a small number of “residual” packets. This is an important
example and demonstrates that the Θ(N) behavior of the
multi-rate delay bound is fundamental and cannot be avoided,
highlighting a significant difference between single-rate and
multi-rate systems.

It is known that order-optimal delay requires queue-based
scheduling. Indeed, it is shown in [7] that average delay in an
N -user downlink with time varying channels grows at least lin-
early with N if queue-independent algorithms are used (such
as round-robin or randomized schedulers). Related results are
shown for N ×N packet switches in [8], where a delay gap
between queue-aware and queue-independent algorithms is
developed. Delay optimal control laws for multi-user wireless
systems are mostly limited to systems with special symmetric
structure [2] [9] [10]. Delay optimality results are developed
in [11] for a heavy traffic regime in the limit as the system
loading ρ approaches 1. Recent results on exponents of the

1The value c is used here to easily express a delay scaling relationship, and
represents a generic coefficient that does not depend on ρ or N . The value c
is not necessarily the same in all places it is used.
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tail of delay distributions are provided in [12] [13], and order-
optimal delay for greedy maximal scheduling with ρ a constant
factor away from 1 is considered in [14] [15].

The max-weight rule is also called the Longest Connected
Queue (LCQ) scheduling rule in the special case of an
ON/OFF downlink. This policy was developed by Tassiulas
and Ephremides in [2], where it was shown to support the
full network capacity region and to also be delay optimal in
the special symmetric case when all arrival rates and ON/OFF
probabilities are the same for each link. The fact that the actual
average delay of LCQ in such symmetric cases is O(1) was
recently proven in [10] (which shows that doubling the size
of a symmetric system does not increase the average delay)
and [7] (which uses a queue-grouped Lyapunov function
to bound the average delay). Delay properties of variations
of LCQ for symmetric Poisson systems are considered in
[16] in the limit of asymptotically large N . For asymmetric
systems, it is shown in [7] that a different algorithm, called
the Largest Connected Group (LCG) algorithm, yields O(1)
average delay. However, the LCG algorithm requires some
statistical knowledge to set up a queue-group structure. Hence,
it is important to understand the delay properties of the
simpler max-weight rule, which does not require statistical
knowledge. In this paper, we combine the queue grouping
concepts developed in [7] together with two novel Lyapunov
functions to provide an order-optimal delay analysis of max-
weight. The first Lyapunov function we use has a weighted
sum of two different component functions, and is inspired
by work in [17] where a Lyapunov function with a similar
structure is used in a different context.

In the next section, we specify the network model and
review basic concepts concerning the network capacity region.
Section III proves our first delay result for the ON/OFF chan-
nel model with general heterogeneous traffic rates inside the
capacity region. Section IV provides our second bound (with
a tighter asymptotic in ρ) for the case of heterogeneous traffic
rates but under an f -balanced traffic assumption. Section
V treats multi-rate systems. Section VI provides simulation
results.

II. SYSTEM MODEL

Consider a multi-user wireless system with N transmission
links. The system operates in slotted time with normalized
slots t ∈ {0, 1, 2, . . .}. We assume that data is measured in
units of fixed size packets, and let Ai(t) represent the number
of packets that arrive to link i ∈ {1, . . . , N} during slot t.
Each link i maintains a separate queue to store this arriving
data, and we let Qi(t) represent the number of packets waiting
for transmission over link i.

Let Si(t) represent the channel state for the ith channel
during slot t. We assume that Si(t) is a non-negative integer
that represents the current transmission rate (in units of pack-
ets/slot) available over channel i if this channel is selected for
transmission on slot t. For most of this paper, we consider the
simple case of ON/OFF channels, where Si(t) ∈ {0, 1} for
all channels i ∈ {1, . . . , N} (multi-rate systems are treated in
Section V). Define S(t) = (S1(t), . . . , SN (t)) as the channel
state vector.

Let µi(t) represent the control decision variable on slot t,
given as follows:

µi(t) =
{
Si(t), if channel i is selected on slot t
0, otherwise

Define µ(t) = (µ1(t), . . . , µN (t)) as the vector of transmis-
sion decisions. We also call this the transmission rate vector,
as it determines the instantaneous transmission rates over each
link (in units of packets/slot), where the rate is either 0 or 1.
The constraint that at most one channel is selected per slot
translates into the constraint that µ(t) has at most one non-zero
entry (and any non-zero entry i is equal to Si(t)). Define F(t)
as the set of all such control vectors µ(t) that are possible for
slot t, called the feasibility set for slot t. The queue dynamics
for each queue i ∈ {1, . . . , N} are given as follows:

Qi(t+ 1) = max[Qi(t)− µi(t), 0] +Ai(t) (1)

subject to the constraint µ(t) ∈ F(t) for all t.

A. Traffic and Channel Assumptions

We assume the arrival processes Ai(t) are independent
for all i ∈ {1, . . . , N}. Further, each process Ai(t) is i.i.d.
over slots with mean λi = E {Ai(t)} and with a finite
second moment E

{
Ai(t)2

}
< ∞. Similarly, we assume

channel processes Si(t) are independent of each other and
i.i.d. over slots with probabilities Pr[Si(t) = 1] = pi for
i ∈ {1, . . . , N}.

B. The Network Capacity Region

Suppose the network control policy chooses a transmission
rate vector every slot according to a well defined probability
law, so that the queue states evolve according to (1).

Definition 1: A queue Qi(t) is strongly stable if:

lim sup
t→∞

1
t

t−1∑
τ=0

E {Qi(τ)} <∞

We say that the network of queues is strongly stable if all
individual queues are strongly stable. Throughout, we shall
use the term “stability” to refer to strong stability.

Define Λ as the network capacity region, consisting of the
closure of all arrival rate vectors λ = (λ1, . . . , λN ) for which
there exists a stabilizing control algorithm. In [2] it is shown
that the capacity region Λ is the set of all rate vectors λ =
(λ1, . . . , λN ) such that for each of the 2N −1 non-empty link
subsets L ⊂ {1, . . . , N}, we have:∑

i∈L
λi ≤ 1−Πi∈L(1− pi) (2)

This is an explicit description of the capacity region Λ. The
following alternative implicit characterization is also useful for
analysis (see [6] and references therein):

Theorem 1: (Capacity Region Λ) The capacity region Λ
is equal to the set of all (non-negative) rate vectors λ =
(λ1, . . . , λN ) for which there exists a stationary randomized
control policy that observes the current channel state vector
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S(t) and chooses a feasible transmission rate vector µ(t) ∈
F(t) as a random function of S(t), such that:

λi = E {µi(t)} for all i ∈ {1, . . . , N} (3)

where the expectation is taken with respect to the random
channel vector S(t) and the potentially random control action
that depends on S(t). �

It is easy to see that any non-negative rate vector that
is entrywise less than or equal to a vector λ ∈ Λ is also
contained in Λ. This follows immediately from Theorem 1 by
modifying the stationary randomized policy µ(t) that yields
E {µi(t)} = λi to a new policy µ̂(t) by probabilistically
setting each µi(t) value to zero with an appropriate probability
qi, yielding E {µ̂i(t)} = E {µi(t)} (1− qi) ≤ E {µi(t)}.

It is also easy to show that the capacity region Λ is
convex and compact (i.e., closed and bounded). Further, if
E {Si(t)} > 0 for all i ∈ {1, . . . , N}, then Λ has full
dimension of size N and hence has a non-empty interior.

C. The Max-Weight Scheduling Policy

Given a rate vector λ interior to the capacity region Λ,
a stationary, randomized, queue-independent policy could in
principle be designed to stabilize the system, although this
would require full knowledge of the traffic rates and channel
state probabilities. However, it is well known that the fol-
lowing queue-aware max-weight policy stabilizes the system
whenever the rate vector is interior to Λ, without requiring
knowledge of the traffic rates or channel statistics [2]: Each
slot t, observe current queue backlogs and channel states
Qi(t) and Si(t) for each link i, and choose to serve the link
i∗(t) ∈ {1, . . . , N} with the largest Qi(t)Si(t) product. This
is also called the Longest Connected Queue policy (LCQ) [2],
as it serves the queue with the largest backlog among all that
are currently ON.

The max-weight policy is very important because of its
simplicity and its general stability properties. However, a tight
delay analysis is quite challenging, and prior work provides
only a loose upper bound on average delay that is O(N),
i.e., linear in the network size [5] [6]. It is shown in [7] that
O(1) average delay is possible when both channels and packet
arrivals are independent across users and across timeslots, and
when no traffic rate is larger than the average traffic rate by
more than a specified amount. The O(1) delay analysis of
[7] uses an algorithm called Largest Connected Group that is
different from the max-weight policy and that requires more
statistical knowledge to implement. In the following, we use
the queue grouping analysis techniques of [7] to show that
the simpler max-weight policy can also provide O(1) average
delay, and does so for all traffic rates within a ρ-scaled version
of the capacity region. However, the scaling in ρ is worse than
that in [7]. Section IV recovers the same ρ scaling as [7] under
a similar “f -balanced” traffic assumption.

III. DELAY ANALYSIS FOR ARBITRARY RATES IN Λ
Consider the ON/OFF channel model where each Si(t) is an

independent i.i.d. Bernoulli process with Pr[Si(t) = 1] = pi.
Assume the arrival rate vector λ = (λ1, . . . , λN ) is interior to

the capacity region Λ, so that there exists a value ρ such that
0 < ρ < 1 and:

λ ∈ ρΛ (4)

That is, λ is contained within a ρ-scaled version of the capacity
region. The parameter ρ can be viewed as the network loading,
measuring the fraction the rate vector λ is away from the
capacity region boundary. Define Atot(t) as the total packet
arrivals on slot t:

Atot(t)M=
N∑
i=1

Ai(t)

Define λtot =
∑N
i=1 λi as the sum packet arrival rate. Because

the sum of the entries of any rate vector in the capacity region
Λ is no more than 1, we have by (4) that λtot ≤ ρ.

A. Important Parameters of Λ
To analyze delay, it is useful to characterize the N -

dimensional capacity region Λ in terms of its size on subspaces
of smaller dimension. To this end, define pmin as the smallest
channel ON probability:

pmin
M= min
i∈{1,...,N}

pi

We assume that 0 < pmin < 1. For each positive integer K,
define parameters µsymK and rK as follows:

µsymK
M=

1
K

[1− (1− pmin)K ]

rK
M= 1− (1− pmin)K

Thus, rK = KµsymK . The following lemma shall be useful.
Lemma 1: For any positive integer K and any probability

pmin > 0, we have µsymK > µsymK+1. That is:

1
K

[1− (1− pmin)K ] >
1

K + 1
[1− (1− pmin)K+1]

Proof: See Appendix D.
Further, for K ∈ {1, . . . , N}, let LK represent a particular

subset of K links within the link set {1, . . . , N}. For each
subset LK , define 1LK as an N -dimensional vector that is 1
in all entries i ∈ LK , and zero in all other entries.

Lemma 2: For each set LK of size K (for any integer K
such that 1 ≤ K ≤ N ) we have:

µsymK 1LK ∈ Λ

Furthermore, for each integer k such that 1 ≤ k ≤ K and for
any set Lk that contains k links, we have µsymK 1Lk ∈ Λ.

Proof: We first prove that µsymK 1LK ∈ Λ. By (2), it suf-
fices to show that for any integer m such that 1 ≤ m ≤ K, the
sum of any m non-zero components of µsymK 1LK is less than
or equal to rm.2 That is, it suffices to show that mµsymK ≤ rm.
But this is equivalent to showing that µsymK ≤ µsymm for
m ≤ K, which is true by Lemma 1. Finally, the fact that
µsymK 1Lk ∈ Λ (for any integer k such that 1 ≤ k ≤ K)
follows because any rate vector with entries less than or equal
to another rate vector in Λ is also in Λ.

2Note that rm ≤ 1 − Πi∈Lm (1 − pi), where Lm is any subset of m
links.
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Thus, µsymK can be intuitively viewed as an edge size such
that any K-dimensional hypercube of this edge size (with
dimensions defined along the orthogonal directions of any K
axes of RN ) can fit inside the capacity region Λ.

B. The O(1) Delay Bound for Arbitrary Traffic in Λ

Suppose the LCQ algorithm is used together with a sta-
tionary probabilistic tie breaking rule in cases when multiple
queues have the same weight. This allows the queueing system
to be viewed as a stationary Markov chain. In this case, it is
well known that if the arrival rate vector is interior to the
capacity region, then all queues are stable under LCQ, with
a well defined steady state time average [6]. The following
O(N) delay bound for LCQ is given in [7]:3

W ≤
N [1 + 1

λtot

∑N
i=1 E

{
Ai(t)2

}
− 2

λtot

∑N
i=1 λ

2
i ]

2rN (1− ρ)
(5)

where W represents the average delay in the system. The
bound (5) also holds for arrival vectors A(t) that are i.i.d. over
slots but with possibly correlated entries Ai(t) on the same slot
t. The next theorem demonstrates an improved O(1) bound in
the case when all arrival processes Ai(t) are independent.

Theorem 2: (Delay Bound for LCQ) Consider the ON/OFF
channel model and assume processes Ai(t) and Si(t) are
independent and i.i.d. over slots. Assume that λ ∈ ρΛ for
some network loading ρ such that 0 < ρ < 1. Let K be any
integer such that rK+1 > λtot, that is:4

1− (1− pmin)K+1 > λtot (6)

Then the max-weight (LCQ) policy for the ON/OFF channel
model stabilizes all queues and yields:

N∑
i=1

Qi ≤
KBθC

(1− ρ)2

where Qi is the time average number of packets in queue i,
and where the constants Bθ, C, and θ are defined:

Bθ
M=

λtot
2

+
1
2

N∑
i=1

E
{
Ai(t)2

}
−

N∑
i=1

λ2
i

+
θ

2
[
E
{
Atot(t)2

}
+ λtot − 2λ2

tot

]
(7)

C M=

{ rK+1
rNKλtot
N(1−ρ) +

rK (rK+1−λtot)
(1−ρ)

if K < N

1/rN if K ≥ N
(8)

θ M=

{
(1−ρ)(µsymK −µsymN )

rK+1
if K < N

0 if K ≥ N
(9)

(10)

3The bound in [7] is of the form c/ε, where ε is any value such that
λ + ε ∈ Λ, where ε is a vector with all values equal to ε. The bound (5)
follows by observing that ε = (1− ρ)rN/N satisfies λ+ ε ∈ Λ whenever
λ ∈ ρΛ. A similar c/ε bound is given in [5] [6] for more general multi-rate
systems.

4Note that λtot ≤ ρ < 1, and hence there is always a suitably large value
K such that (6) holds.

By Little’s Theorem, average delay W thus satisfies:

W ≤ min
[

KBθC

λtot(1− ρ)2
,

NB0

λtotrN (1− ρ)

]
(11)

where B0 represents the value of Bθ with θ = 0, and the
second expression in the above min[·, ·] function is identical
to the previous delay bound (5).

The proof of Theorem 2 is given in the next subsection.
We note that the right term inside the min[·, ·] operator in
(11) is smaller in the case K ≥ N . The above bound can be
minimized over all positive integers K that satisfy rK+1 >
λtot. For a simpler interpretation of the bound that illuminates
the fact that this is an O(1) delay result, note that because
(1+ρ)/2 > ρ ≥ λtot, we can ensure that (6) holds by choosing
K to satisfy:

1− (1− pmin)K+1 ≥ (1 + ρ)/2

Choosing K as follows accomplishes this:

K = max
[
1,
⌈

log(2/(1− ρ))
log(1/(1− pmin))

⌉
− 1
]

(12)

Because λtot ≤ ρ, it is not difficult to show that with this
choice of K, we have rK+1 − λtot ≥ (1− ρ)/2. Thus, in the
case K < N we have:

C ≤ rK+1

rK(rK+1−λtot)
(1−ρ)

≤ 2rK+1

rK

Because C = 1/rN for the case K ≥ N , we have that
C = O(1) (regardless of whether or not K < N ). Further, we
have from (12) that K is proportional to log(1/(1 − ρ)) but
independent of N . Finally, if arrival processes are independent
so that E

{
Atot(t)2

}
= O(1), we have Bθ/λtot = O(1).

Therefore, the delay bound of (11) has the form:

W ≤ min
[
c1 log(1/(1− ρ))

(1− ρ)2
,
c2N

(1− ρ)

]
(13)

where c1 and c2 are constants that do not depend on ρ or
N . If N itself is small, then the right expression in the
above min[·, ·] can be smaller than the left expression (i.e.,
the previous delay bound (5) can be the same as our new
delay bound in the case when N is small). However, if the
loading ρ is held fixed as N is scaled to infinity, then the left
expression in the min[·, ·] is always smaller and demonstrates
O(1) average delay (see also simulations in Figs. 1 and 2 of
Section VI). Thus, LCQ is order-optimal with respect to N .
However, the left delay bound has a worse asymptotic in ρ,
and so it would be worse than the right bound in the opposite
case when N is fixed and ρ is scaled to 1.

C. Lyapunov Drift Analysis

To prove Theorem 2, it suffices to consider only the case
K < N , as the delay bound in the opposite case K ≥ N
is identical to the previous delay bound (5). Let Q(t) =
(Q1(t), . . . , QN (t)) be the vector of queue backlogs. Define
Qtot(t) as the sum queue backlog in all queues of the system:

Qtot(t)M=
N∑
i=1

Qi(t) (14)
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Define the following Lyapunov function:

L(Q(t))M= 1
2

∑N
i=1Qi(t)

2 + θ
2

(∑N
j=1Qj(t)

)2

(15)

where θ is a positive constant to be determined later. Thus,
L(Q(t)) = 1

2

∑N
i=1Qi(t)

2 + θ
2Qtot(t)

2. This Lyapunov func-
tion uses the standard sum of squares of queue length, and
adds a new term that is the square of the total queue backlog.
This new term incorporates the queue grouping concept similar
to [7], and will be important in obtaining tight delay bounds.
The technique of composing this Lyapunov function as a sum
of two different quadratic terms weighted by a θ constant
shall be useful in analyzing both stability and delay in two
different modes of network operation, and is inspired by a
similar technique used in [17] to analyze stability in a very
different context. Specifically, work in [17] considers multi-
hop networks with greedy maximal scheduling and achieves
stability results when input rates are a constant factor (such as
a factor of 2) away from the capacity region boundary.

Here, we consider a single-hop network with time-varying
channels, and obtain both stability and order-optimal delay
results for all input rates inside the capacity region. The
intuition on why this 2-part Lyapunov function allows a tight
delay bound is as follows: The first term is a standard sum of
squares of queue length, and ensures stability of the algorithm
while creating a large negative drift when the number of non-
empty queues is small. However, this term also has a relatively
small negative drift when the number of non-empty queues is
large, preventing O(1) delay analysis from this term alone.
To compensate, the second term is a square of the sum of
all queues, which does not significantly affect the drift of the
first term when the number of non-empty queues is small, but
creates a large negative drift to help the first term when the
number of non-empty queues is large.

The queue dynamics (1) can be rewritten as follows:

Qi(t+ 1) = Qi(t)− µ̃i(t) +Ai(t) (16)

where µ̃i(t) = min[Qi(t), µi(t)]. Define µ̃tot(t) =∑N
i=1 µ̃i(t), being either 0 or 1, and being 1 if and only if the

system serves a packet on slot t. The dynamics for Qtot(t)
are given by:

Qtot(t+ 1) = Qtot(t)− µ̃tot(t) +Atot(t) (17)

where Atot(t) =
∑N
i=1Ai(t). Let Q(t) be the stochastic

queue evolution process for a given control policy. Define the
one-step conditional Lyapunov drift as follows:5

∆(Q(t))M=E {L(Q(t+ 1))− L(Q(t)) | Q(t)} (18)

Lemma 3: The Lyapunov drift ∆(Q(t)) for the ON/OFF
channel model satisfies:

∆(Q(t)) = E {B(t) | Q(t)}

−
N∑
i=1

Qi(t)E {µi(t)− λi | Q(t)}

−θQtot(t)E {µ̃tot(t)− λtot | Q(t)}
5Strictly speaking, correct notation should be ∆(Q(t), t), as the drift

could be from a non-stationary policy, although we use the simpler notation
∆(Q(t)) as formal notation for the right hand side of (18).

where µi(t) and µ̃tot(t) correspond to the LCQ policy, and
where B(t) is given by:

B(t) M=
µ̃tot(t)

2
+

1
2

N∑
i=1

[Ai(t)2 − 2Ai(t)µ̃i(t)]

+
θ

2
[Atot(t)2 + µ̃tot(t)− 2µ̃tot(t)Atot(t)] (19)

Proof: (Lemma 3) See Appendix A.
Now note that the LCQ algorithm chooses µ(t) ∈ F(t) on

each slot t to maximize
∑N
i=1Qi(t)µi(t), and hence:

N∑
i=1

Qi(t)µi(t) ≥
N∑
i=1

Qi(t)µ∗i (t)

where µ∗(t) = (µ∗1(t), . . . , µ∗N (t)) is any other feasible
transmission rate vector in F(t). It follows that the above
inequality is preserved when taking conditional expectations
given the current Q(t) value. Plugging this result into the
second term on the right hand side of the drift expression
in Lemma 3 thus yields:

∆(Q(t)) ≤ E {B(t) | Q(t)}

−
N∑
i=1

Qi(t)E {µ∗i (t)− λi | Q(t)}

−θQtot(t)E {µ̃tot(t)− λtot | Q(t)} (20)

where µ∗(t) = (µ∗1(t), . . . , µ∗N (t)) is any other feasible con-
trol action on slot t. Note that µ̃tot(t) in the above expression
still corresponds to the LCQ policy.

Let L(t) represent the number of non-empty queues on slot
t, so that 0 ≤ L(t) ≤ N .
• Case 1 (L(t) ≤ K): Suppose L(t) ≤ K, and let L(t)

represent the set of non-empty queue indices. Recall
that µsymK 1L(t) ∈ Λ (by Lemma 2) and that λ/ρ ∈ Λ
(by assumption that λ ∈ ρΛ). By taking a convex
combination of these two vectors and using convexity
of the set Λ, it follows that:

λ+ (1− ρ)µsymK 1L(t) ∈ Λ (21)

Now let µ∗(t) be the stationary randomized policy that
makes decisions based only on the current channel state,
and that yields:

E {µ∗(t)} = λ+ (1− ρ)µsymK 1L(t)

Such a policy exists by (21) and Theorem 1. Thus, for
all i ∈ L(t) we have:

E {µ∗i (t)} = λi + (1− ρ)µsymK (22)

Using (22) in the drift inequality (20) and noting that
Qi(t) = 0 if i /∈ L(t) yields:

∆(Q(t)) ≤ E {B(t) | Q(t)} −
N∑
i=1

Qi(t)(1− ρ)µsymK

+θQtot(t)λtot
= E {B(t) | Q(t)}
−Qtot(t)[(1− ρ)µsymK − θλtot]
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Define ε as follows:

εM=[(1− ρ)µsymK − θλtot] (23)

It follows that:

∆(Q(t)) ≤ E {B(t) | Q(t)} − εQtot(t) (24)

• Case 2 (L(t) > K): Suppose L(t) > K, and again let
L(t) represent the set of non-empty queue indices. Note
that λ/ρ ∈ Λ and µsymN 1 ∈ Λ, where 1 is the all 1 vector.
By convexity of Λ, the convex combination is also in Λ:

λ+ (1− ρ)µsymN 1 ∈ Λ

Now let µ∗(t) be the stationary randomized policy that
makes decisions independent of queue backlog, and that
yields for all i ∈ {1, . . . , N}:

E {µ∗i (t)} = λi + (1− ρ)µsymN (25)

Such a policy exists by Theorem 1. Note that when the
number of non-empty queues is greater than K, there is
a packet departure under the LCQ policy with probability
at least one minus the product of the K + 1 largest OFF
probabilities:

E {µ̃tot | Q(t)} ≥ 1−Πi∈L̂K+1
(1− pi) ≥ rK+1 (26)

where L̂K+1 represents the set of K + 1 links with the
smallest success probabilities. Plugging (25) and (26) into
the drift inequality (20) yields:

∆(Q(t)) ≤ E {B(t) | Q(t)}
−Qtot(t)[(1− ρ)µsymN + θ(rK+1 − λtot)]

To equalize the drift in both Case 1 and Case 2, we choose
θ to satisfy:

ε = (1− ρ)µsymN + θ(rK+1 − λtot)

Thus (using (23)):

θ =
(1− ρ)(µsymK − µsymN )

rK+1

ε =
(1− ρ) [µsymN λtot + µsymK (rK+1 − λtot)]

rK+1

Recall that we have assumed K < N (as Theorem 2 is
trivially true if K ≥ N , as described at the beginning of this
subsection). Thus, we have µsymK > µsymN (by Lemma 1), and
so we indeed have θ > 0. Further, because rK+1 > λtot, we
have that ε > 0. Therefore, the drift inequality (24) holds in
both Case 1 and Case 2 (and hence holds for all t and all
Q(t)). We now use the following well known Lyapunov drift
lemma (see, for example, [6] for a proof):

Lemma 4: (Lyapunov Drift [6]) If the drift ∆(Q(t)) of a
non-negative Lyapunov function satisfies the following for all
t and all Q(t):

∆(Q(t)) ≤ E {B(t) | Q(t)} − εE {f(t) | Q(t)}

for some stochastic processes B(t), f(t), and some constant
ε > 0, then:

f ≤ B/ε

where

f M= lim sup
t→∞

1
t

t−1∑
τ=0

E {f(τ)}

B M= lim sup
t→∞

1
t

t−1∑
τ=0

E {B(τ)}�

Using this Lyapunov drift lemma in (24) (using f(t) =
Qtot(t)) yields:

Qtot ≤ B/ε

We note that because the system evolves according to a
Markov chain with a countably infinite state space, the
time averages are well defined (so that the lim sup can be
replaced by a regular limit). Further, using the fact that
limt→∞

1
t

∑t−1
τ=0 E {µ̃i(τ)} = λi, the value of B can be seen

to equal the value Bθ defined in (7), proving Theorem 2.

IV. A TIGHTER BOUND FOR “f -BALANCED TRAFFIC”

Here we present a tighter bound on average backlog and
delay of the LCQ algorithm for the ON/OFF channel model.
Our bound in this section is of the form c log( 1

1−ρ )/(1 − ρ),
which is still O(1) with respect to the network size N , but
yields a better asymptotic in ρ. Unfortunately, our analysis
does not hold for all rate vectors λ inside the capacity
region Λ. Rather, we make the following assumption about
a more “balanced” traffic rate vector. Let λ = (λ1, . . . , λN ),
and without loss of generality assume that λi > 0 for all
i ∈ {1, . . . , N} (else, we can redefine N to be the number
of links with non-zero rates). Define λtot =

∑N
i=1 λi and

λav = λtot/N . We say that λ has f -balanced rates if there is
a constant f such that:

λi ≤ λav + f for all i ∈ {1, . . . , N} (27)

That is, λ is f -balanced if no individual traffic rate is more
than an amount f above the average rate λav . Clearly any
uniform traffic rate vector is f -balanced for f = 0. However,
this definition of f -balanced rates also captures a large class
of heterogeneous arrival rate vectors. We shall prove our delay
results under the assumption that f is suitably small. A similar
assumption is used in [7], and our delay analysis relies heavily
on the queue-grouping techniques used there.

A. The Queue-Grouped Lyapunov Function

Fix an integer K such that 1 ≤ K ≤ N . Define N̂ as the
smallest multiple of K that is larger than or equal to N :

N̂ = dN/KeK (28)

Now define a new rate vector λ̂ = (λ1, . . . , λN , 0, 0, . . . , 0),
where the last N̂ − N entries are zero. Define N̂ − N
“fictitious” queues for these last dimensions (these queues
always have zero backlog, but shall be convenient to define
for counting purposes). Define GK as the set of all possible
partitions of the link set {1, . . . , N̂} into K disjoint sets, each
with an equal size of N̂/K links. Let g ∈ GK denote a
particular partition, and define L(g)

1 , . . . ,L(g)
K as the collection

of sets corresponding to g (so that the union ∪Kk=1L
(g)
k is equal
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to {1, . . . , N̂}, and the intersection L(g)
n ∩ L(g)

m is empty for
all m 6= n, where m,n ∈ {1, . . . ,K}).

For a particular partition g, define Q(g)
k (t) as the sum of all

queue backlogs in the kth set of g:

Q
(g)
k (t)M=

∑
i∈L(g)

k

Qi(t)

Define the following queue-grouped Lyapunov function:

L(Q(t))M=
1
2

∑
g∈GK

K∑
k=1

(Q(g)
k (t))2 (29)

This is similar to the Lyapunov function of [7], with the
exception that it sums over all possible partitions into K
disjoint groups. For intuition, we note that the f -balanced traf-
fic assumption allows the “Largest Connected Group” (LCG)
argument of [7] to proceed on any set of K disjoint groups.
However, once we fix a particular group, minimizing the drift
gives rise to the LCG algorithm rather than the “max-weight”
LCQ algorithm. Changing the Lyapunov function by summing
over all possible K disjoint groups yields a similar negative
drift as in LCG, but the “symmetry” induced by summing over
all groups remarkably makes the drift minimizing algorithm
the LCQ algorithm (rather than LCG).

Define A(g)
k (t) and µ̃

(g)
k (t) as the sum arrivals and depar-

tures from the kth group of the partition g:

A
(g)
k (t) M=

∑
i∈L(g)

k

Ai(t)

µ̃
(g)
k (t) M=

∑
i∈L(g)

k

µ̃i(t)

The dynamics for the kth group of partition g thus satisfy:

Q
(g)
k (t+ 1) = Q

(g)
k (t)− µ̃(g)

k (t) +A
(g)
k (t) (30)

Define the Lyapunov drift ∆(Q(t)) as before (given in (18)).
Lemma 5: For a general scheduling policy, the Lyapunov

drift satisfies:

∆(Q(t)) = E {C(t) | Q(t)}

−
∑
g∈GK

K∑
k=1

Q
(g)
k (t)E

{
µ̃

(g)
k (t)− λ(g)

k | Q(t)
}

where λ(g)
k

M=
∑
i∈L(g)

k

λi, and where C(t) is defined:

C(t)M=
1
2

∑
g∈GK

K∑
k=1

[
µ̃

(g)
k (t) +A

(g)
k (t)2 − 2µ̃(g)

k (t)A(g)
k (t)

]
(31)

Proof: The proof is similar to the proof of Lemma 3.
Specifically, note from (30) that:

Q
(g)
k (t+ 1)2 −Q(g)

k (t)2 = µ̃
(g)
k (t) +A

(g)
k (t)2

−2µ̃(g)
k (t)A(g)

k (t)− 2Q(g)
k (t)[µ̃(g)

k (t)−A(g)
k (t)]

where we have used the fact that µ̃(g)
k (t)2 = µ̃

(g)
k (t). The result

follows by summing over all k and all groups, and taking
conditional expectations.

Remarkably, we next show that the “max-weight” LCQ
algorithm for this ON/OFF channel model minimizes the final
term in the right hand side of the above drift expression.

Lemma 6: (Max Weight Matching) Every slot t, the LCQ
algorithm chooses a transmission rate vector µ(t) ∈ F(t)
that maximizes the following expression over all alternative
feasible transmission rate vectors:∑

g∈GK

K∑
k=1

Q
(g)
k (t)µ̃(g)

k (t)

Proof: See Appendix B.
It follows that we can replace the variables µ̃

(g)
k (t) in

the final term of the drift expression in Lemma 5, which
correspond to the LCQ policy, with variables µ̃

(g)∗
k (t) that

correspond to any other feasible rate vector µ∗(t) ∈ F(t),
while creating an inequality relationship:

∆(Q(t)) ≤ E {C(t) | Q(t)}

−
∑
g∈GK

K∑
k=1

Q
(g)
k (t)E

{
µ̃

(g)∗
k (t)− λ(g)

k | Q(t)
}

(32)

The drift inequality (32) is quite subtle: It is defined in terms
of any other single feasible rate vector µ∗(t) (where this vector
does not depend on the partition g). Note that the variables
µ̃

(g)∗
k (t) are defined for different partitions g ∈ GK , but for

each particular g these variables are still derived from the same
vector µ∗(t). They are derived from µ∗(t) by summing the
components of this rate vector that have non-empty queues
over the dimensions that correspond to the groups within the
particular partition g.

B. Optimizing the Drift Bound
Here we manipulate the sum in the right-hand side of (32)

to yield a useful drift bound.
Lemma 7: For any vector λ = (λ1, . . . , λN̂ ), if there is a

value β such that 0 < β < 1 such that for all i ∈ {1, . . . , N}
we have:

λi ≤
λtot

N̂
+
β(1− ρ)

K
(33)

then:∑
g∈GK

K∑
k=1

Q
(g)
k (t)λ(g)

k ≤ Qtot(t) |GK |
[λtot + zβ(1− ρ)]

K

where |GK | is the cardinality of GK , Qtot(t) is the total sum
backlog (defined in (14)), and z is defined:

z M=(1− 1/K)/(1− 1/N̂) (34)

Proof: The proof of Lemma 7 follows from simple
counting arguments, and is given in Appendix C.

Note that λtot/N̂ ≤ λtot/N with approximate equality
when N is large (so that N̂/N ≈ 1). The constraints (33)
imply that λ is f -balanced with f = β(1− ρ)/K.

Lemma 8: There exists a single randomized strategy that
observes queue backlogs and channel states for slot t and
chooses µ∗(t) ∈ F(t) such that:∑
g∈GK

K∑
k=1

Q
(g)
k (t)E

{
µ̃

(g)∗
k (t) | Q(t)

}
≥ Qtot(t) |GK |

rK
K
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where rK = 1− (1− pmin)K .
Proof: See Appendix C.

Using Lemmas 7 and 8 in the drift inequality (32) yields:
Lemma 9: If λ ∈ ρΛ (for 0 < ρ < 1) and if (33) is satisfied

for all i ∈ {1, . . . , N}, then:

∆(Q(t)) ≤ E {C(t) | Q(t)}

−Qtot(t) |GK |
[rK − λtot − zβ(1− ρ)]

K
(35)

Lemma 9 leads immediately to the delay theorem stated in
the next subsection.

C. An Improved Delay Bound for f -Balanced Traffic

Theorem 3: (Delay Bound for ON/OFF Channels with f -
Balanced Traffic) Suppose λ ∈ ρΛ for 0 < ρ < 1. Let K be
the smallest integer that satisfies rK ≥ (1 + ρ)/2, that is:

[1− (1− pmin)K ] ≥ (1 + ρ)/2 (36)

Suppose that K ≤ N , and the f -balanced traffic constraints
(33) are satisfied for some value β such that 0 ≤ β < 1/(2z),
where z M=(1−1/K)/(1−1/N̂) (note that z ≤ 1). If the max-
weight (LCQ) policy is used on this ON/OFF channel model,
then average queue occupancy satisfies:

Qtot ≤
KD

(1− ρ)( 1
2 − zβ)

, W ≤ K(D/λtot)
(1− ρ)( 1

2 − zβ)
(37)

where D is defined:

DM=
1
2
[
λtot + E

{
Atot(t)2

}]
Further, in the special case when N is a multiple of K, and
when traffic is uniform and Poisson with λi = λtot/N for all
i, we have β = 0 and:6

Qtot ≤
[2Kλtot − λ2

tot]
1− ρ

, W ≤ 2K − λtot
1− ρ

Note that the constraint (36) is satisfied by:

K =

⌈
log( 2

1−ρ )

log(1/(1− pmin))

⌉
Therefore, K is independent of N , and is proportional to
log( 1

1−ρ ). Assuming that traffic streams are independent, so
that E

{
Atot(t)2

}
= O(1), implies that D = O(1). Thus the

delay bound gives W ≤ c log(1/(1− ρ))/(1− ρ) (where c is
a constant independent of ρ and N ), being independent of the
network size N and having an asymptotic in ρ that is better
than that of Theorem 2.

Proof: (Theorem 3) Because λ ∈ ρΛ, we have λtot ≤ ρ
(as the maximum sum rate is at most rN ≤ 1). The assumption
on rK in (36) thus implies:

[rK − λtot − zβ(1− ρ)] ≥ (1− ρ)(
1
2
− zβ)

6These bounds for symmetric Poisson traffic are obtained from the last line
of the proof of Theorem 3, which gives a slightly smaller bound than that
achieved by plugging β = 0, E

˘
Atot(t)2

¯
= λtot + λ2

tot into (37).

The above value is strictly positive because zβ < 1/2. Using
the drift inequality (35) directly in the Lyapunov Drift Lemma
(Lemma 4) yields:

Qtot ≤
KC

|GK | (1− ρ)( 1
2 − zβ)

Using the definition of C(t) in (31) and the fact that the system
is stable (so the long term departure rate is equal to λtot)
yields:

C =
|GK |λtot

2
+

1
2

∑
g∈GK

K∑
k=1

[
E
{
A

(g)
k (t)2

}
− 2(λ(g)

k )2
]

≤ |GK |

[
λtot

2
+

E
{
Atot(t)2

}
2

]
= |GK |D

The above bound on C proves the first part of the theorem. The
second part, for uniform Poisson traffic, follows by the above
equality for C (without the bound), using E

{
A

(g)
k (t)

}
= λtot

K

and E
{
A

(g)
k (t)2

}
= λ2

tot

K2 + λtot
K for all g, k.

V. MULTI-RATE TRANSMISSION MODELS

Now suppose that for each channel i ∈ {1, . . . , N}, the
states Si(t) are non-negative integers bounded by a finite
integer µi,max, where µi,max represents the maximum trans-
mission rate over channel i.7 That is, we have:

Si(t) ∈ {0, 1, . . . , µi,max} for all t and all i ∈ {1, . . . , N}

We assume that µi,max > 0 for all i. The queueing dynamics
are governed by (1). The capacity region Λ is known to be
equal to the set of all rate vectors that can be achieved via
a stationary, randomized, queue-independent algorithm that
chooses µ∗(t) as a potentially random function of only the
current S(t) vector [6].

The max-weight algorithm in this case is the algorithm
that observes queue backlogs and channel states every slot
and selects the link i ∈ {1, . . . , N} with the largest value of
Qi(t)Si(t) (breaking ties arbitrarily). Suppose the arrival rate
vector satisfies λ ∈ ρΛ for some loading value ρ such that
0 < ρ < 1. The analysis in [5] [6] uses a standard Lyapunov
function, given by the sum of the squares of queue backlog,
to show the max-weight algorithm for a general downlink has
average delay upper bounded by cN/(1 − ρ), where c is a
constant that is independent of N and ρ. We first present
a modified version of that prior bound, which has the same
structure but uses our particular µi,max notation and improves
the c coefficient:

Lemma 10: Suppose A(t) is i.i.d. over slots with
E {A(t)} = λ, and that the channel state vector S(t) =
(S1(t), . . . , SN (t)) is also i.i.d. over slots. Suppose that λ ∈
ρΛ for some value ρ that satisfies 0 < ρ < 1. Then the system

7For consistency, we continue to work in integer units of packets. The
analysis does not significantly change if Si(t) values are viewed as non-
negative real numbers with units of bits/slot.
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is stable under the max-weight algorithm and has an average
delay bound given by:

W ≤
N
[

1
2λtot

∑N
i=1 E

{
A2
i

}
− 3

2λtot

∑N
i=1 λ

2
i

]
(1− ρ)µsym

+
N min

[∑N
i=1

λiµi,max
λtot

, Ŝ
2

λtot

]
(1− ρ)µsym

(38)

where Ŝ2 is defined:

Ŝ2 M=E
{

max
i∈{1,...,N}

Si(t)2
}

and where µsym is defined as the largest value such that
(µsym/N, µsym/N, . . . , µsym/N) ∈ Λ.

Further, in the case when all processes Si(t) are independent
and satisfy Pr[Si(t) = µi,max] > 0, we can bound µsym as
follows:

µsym ≥ µ̂(1− (1− pmin)N )

where µ̂ and pmin are defined:

µ̂ M= min
i∈{1,...,N}

µi,max

pmin
M= min

i∈{1,...,N}
Pr[Si(t) ≥ µ̂]

Proof: The proof uses the Lyapunov function L(Q(t)) =
1
2

∑N
i=1Qi(t)

2, as in [5] [6], but provides a simple modi-
fication of the argument to yield a tighter bound (given in
Appendix E for completeness).

We note that the above delay bound holds also in the case
when µi,max = ∞ for some values i, but when the second
moment of transmission rates is finite (so that Ŝ2 is finite).
The above delay bound has the structure cN/(1−ρ), and holds
even if arrival and channel vectors A(t) and S(t) have entries
that are correlated over the different links i ∈ {1, . . . , N}.
A similar argument can be used to show stability with the
same structural delay bound ĉN/(1−ρ) for the modified max-
weight policy that chooses the link i ∈ {1, . . . , N} with the
largest Qi(t) min[Qi(t), Si(t)] value. This modified policy can
sometimes provide smaller empirical average delay than the
original max-weight policy, although its resulting analytical
delay bound has a slightly worse coefficient ĉ ≥ c (this
modified policy is equivalent to the original max-weight policy
in the case of ON/OFF channels with µi,max = 1 for all
i). Similar to the ON/OFF case, one might suspect that for
this multi-rate system, average delay that is independent of
N can be achieved when arrival and channel processes are
independent over each channel. However, the next subsection
presents an important example that shows this is not the case.8

8We note that our original pre-print of this paper in [18] incorrectly claimed
that multi-rate systems also have delay that is independent of N . The mistake
in [18] arose when plugging the equation from Lemma 10 of that paper into
equation (33) of that paper. Plugging one equation into the other implicitly
assumed that the sum queue backlog in queues with at least µmax packets
is the same as the total queue backlog in the system. This is true when
µmax = 1, but is not true in general as it neglects the “residual” packets in
queues with fewer than µmax packets.

A. An example showing necessity of Ω(N) delay

Here we present an example showing that the average num-
ber of queues that have at least one packet (but possibly fewer
than µi,max packets) must be linear in N . This necessarily
makes the average delay of any scheduling policy grow at least
linearly with N . Consider a system with N queues with sym-
metric channels and traffic. Assume that N ≥ 3 and suppose
that all arrival processes Ai(t) are independent and Bernoulli
with Pr[Ai(t) = 1] = 3/N for all i ∈ {1, . . . , N} (so that
λi = 3/N for all i, and λtot = 3 packets/slot). Now suppose
that all channels have µi,max = 5, and channel state processes
are i.i.d. with Pr[Si(t) = 5] = 1/2, Pr[Si(t) = 0] = 1/2 for
all i ∈ {1, . . . , N}. The largest symmetric rate in the capacity
region of this system is µsym/N = 5(1 − (1/2)N )/N , and
hence the arrival rate vector is inside the capacity region and
has ρ given by:

ρ =
3

5(1− (1/2)N )

Note that ρ < 1 for N ≥ 3, and ρ is approximately 3/5
for large N . Here we show that under any scheduling policy,
in steady state the average number of non-empty queues in
this system must be linear in N . Specifically, consider any
scheduling policy, and let Z(t) represent the number of non-
empty queues on slot t. For simplicity, we assume that Z(t)
has a well defined steady state under the scheduling policy.
The intuition behind our proof is that Z(t+1) is formed from
Z(t) by adding the number of new non-empty queues created
and subtracting any non-empty queue that becomes empty.
The number of non-empty queues subracted can be at most
1 (as we can serve at most one channel per slot), while the
average number of new non-empty queues added is more than
one whenever Z(t) < N/2.

Lemma 11: Consider any scheduling policy for which Z(t)
has a well defined steady state distribution. Then for the system
above (with λi = 3/N and µi,max = 5 for all i ∈ {1, . . . , N})
we have that in steady state:

Pr[Z(t) ≥ N/2] ≥ 1/3

and hence E {Z(t)} ≥ N/6. That is, the average number
of non-empty queues is at least N/6, and hence the average
number of packets in the system is at least N/6.

Proof: Define ∆(t)M=Z(t + 1) − Z(t) as the change in
Z(t) from one slot to the next. Let t be a time at which the
system is in steady state. We thus have E {∆(t)} = 0. On the
other hand, we have the following:

E {∆(t) | Z(t) ≥ N/2} ≥ −1 (39)
E {∆(t) | Z(t) < N/2} ≥ λiN/2− 1 = 1/2 (40)

where (39) follows because the drift cannot be less than −1
on any slot (as at most one non-empty queue can become an
empty queue), and (40) holds because, given that Z(t) < N/2,
the average number of new non-empty queues that are created
on slot t is equal to the average number of new arrivals to the
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empty queues, which is at least λi(N/2). It follows that:

0 = E {∆(t)}
= E {∆(t) | Z(t) ≥ N/2}Pr[Z(t) ≥ N/2]

+E {∆(t) | Z(t) < N/2} (1− Pr[Z(t) ≥ N/2])
≥ (−1)Pr[Z(t) ≥ N/2]

+(1/2)(1− Pr[Z(t) ≥ N/2])

Therefore Pr[Z(t) ≥ N/2] ≥ 1/3, completing the proof.

VI. SIMULATIONS

Here we present simulations for the ON/OFF system with
independent channel and arrival processes. We assume that
Pr[Si(t) = ON ] = 1/2 for all i ∈ {1, . . . , N}. We first
consider symmetric Bernoulli arrivals, so that λi = λ for all i,
where λ is chosen so that λ ∈ ρΛ with ρ = 0.8. We simulated
the system over 106 slots for values of N between 3 and 300.
The resulting simulated queue averages are shown in Fig. 1,
together with the two O(1) bounds and the previous O(N)
bound. Note that the previous O(N) bound is a considerable
overestimate of queue backlog. Our new bounds do not grow
with N , and our second O(1) bound (derived for f -balanced
traffic rates) is indeed tighter than the first O(1) bound (for
N ≥ 9), although it applies only to f -balanced traffic while
the first bound applies to any traffic rates in ρΛ. However,
there is still a significant gap (roughly a factor of 10 in this
example) between our tightest bound and the simulated value.
We next consider heterogeneous traffic rates implemented on
the same ON/OFF system. We assume that N is odd, and
choose rates λi given as follows:

λi =

 λ for i ∈ {1, . . . , (N − 1)/2}
2λ for i ∈ {(N − 1)/2 + 1, . . . , N − 1}
4λ for i = N

where λ is chosen so that λ ∈ ρΛ for ρ = 0.8. The results
are shown in Fig. 2. Note that we plot only the first O(1)
bound (for heterogeneous traffic) in this case, although the f -
balanced traffic assumption also applies in this case when N
is sufficiently large.

Simulations of the multi-rate system example in Section
V-A were also conducted, and it was verified that average
backlog indeed grows linearly with N due to the “residual”
packets in queues i that have fewer than µi,max packets (sim-
ulation plots omitted for brevity). However, it was observed
in the simulations that the total backlog due to queues with
at least µi,max packets is O(1). This suggests that, although
the total average backlog in multi-rate systems may have a
fundamental O(N) term due to residual packets, the average
backlog may be O(1) after a term of at most

∑N
i=1(µi,max−1)

is subtracted out.

VII. CONCLUSIONS

We have presented an improved delay analysis for the max-
weight scheduling algorithm. For ON/OFF channels, max-
weight is equivalent to Longest Connected Queue (LCQ), and
yields average delay that is order-optimal, being independent
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Fig. 1. Simulation and Bounds for the ON/OFF system with symmetric
traffic and ρ = 0.8.
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Fig. 2. Simulation and Bounds for the ON/OFF system with heterogeneous
traffic and ρ = 0.8.

of the network size N . If an f -balanced traffic assumption
holds, average delay was shown to maintain independence of
N while allowing an improved asymptotic in ρ. For multi-
rate channels, a delay bound of O(N) applies. Conversely,
it is shown for a simple multi-rate example that, unlike
ON/OFF channels, average backlog must be at least linear
in N due to “residual” packets. Our delay analysis makes use
of the technique of queue grouping. The particular Lyapunov
functions introduced for this delay analysis are powerful and
may be useful in other contexts.

APPENDIX A — PROOF OF LEMMA 3

Here we prove Lemma 3. Define ∆1(Q(t)) and ∆2(Q(t))
as the conditional drift for the sum of squares term and the
square of queue backlog term, respectively, so that ∆(Q(t)) =
∆1(Q(t)) + θ∆2(Q(t)). Squaring (16) and using the fact that
µ̃i(t)2 = µ̃i(t) and Qi(t)µ̃i(t) = Qi(t)µi(t) (because µ̃i(t) ∈
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{0, 1}, and µ̃i(t) = µi(t) if Qi(t) > 0): yields:

1
2
Qi(t+ 1)2 =

1
2
Qi(t)2 +

(Ai(t)− µ̃i(t))2

2
−Qi(t)(µi(t)−Ai(t))

=
1
2
[
Qi(t)2 +Ai(t)2 + µ̃i(t)

]
−Ai(t)µ̃i(t)

−Qi(t)(µi(t)−Ai(t))

Therefore:

∆1(Q(t)) = E {B1(t) | Q(t)}

−
N∑
i=1

Qi(t)E {µi(t)− λi | Q(t)}

where

B1(t)M=
N∑
i=1

[
1
2
[
Ai(t)2 + µ̃i(t)

]
−Ai(t)µ̃i(t)

]
Similarly:

1
2
Qtot(t+ 1)2 =

1
2
[
Qtot(t)2 + µ̃tot(t)2 +Atot(t)2

]
−µ̃tot(t)Atot(t)
−Qtot(t)(µ̃tot(t)−Atot(t))

Therefore:

∆2(Q(t)) = E {B2(t) | Q(t)}
−Qtot(t)E {µ̃tot(t)− λtot | Q(t)}

where µ̃tot(t)2 = µ̃tot(t) (because it is either 0 or 1), and

B2(t)M=
1
2
[
µ̃tot(t) +Atot(t)2

]
− µ̃tot(t)Atot(t)

Summing ∆1(Q(t)) and θ∆2(Q(t)) and noting from (19) that
B(t) = B1(t) + θB2(t) yields the result of Lemma 3.

APPENDIX B — PROOF OF LEMMA 6

Define the integer m = N̂/K. Here we prove Lemma
6. Given a particular queue backlog vector Q(t), the LCQ
algorithm maximizes the expression

∑N̂
i=1Qi(t)µi(t) over all

µ(t) ∈ F(t). We now show that this also maximizes the
expression given in Lemma 6. To this end, we have:∑
g∈GK

K∑
k=1

Q
(g)
k (t)µ̃(g)

k (t) =
∑
g∈GK

K∑
k=1

Q
(g)
k (t)

∑
i∈L(g)

k

µ̃i(t)

=
N̂∑
i=1

µ̃i(t)Qi(t) |GK |

+
N̂∑
i=1

µ̃i(t)
∑
j 6=i

Qj(t)
|GK | (m− 1)

N̂ − 1

where the final equality holds because link i is in every group
that multiplies the µ̃i(t) term, and all other links multiply this
term the same number of times (by group symmetry). The
above also uses the fact that (by symmetry) the number of
group partitions for which a particular link j is in the same

group as link i is equal to the total number of partitions
multiplied by the probability that a randomly chosen parti-
tion includes i and j in the same group. Define the above
expression as f(t) for simplicity. Therefore:

f(t) =
N̂∑
i=1

µ̃i(t)Qi(t) |GK | (1−
m− 1
N̂ − 1

)

+
N̂∑
i=1

µ̃i(t)

 N̂∑
j=1

Qj(t)

 |GK | m− 1
N̂ − 1

(41)

The µ̃i(t) values in the expression for f(t) are the only ones
affected by the control action on slot t. The final term on
the right hand side is given by

∑
i µ̃i(t) (the total departures

on slot t) multiplied by a non-negative constant. This final
term is maximized by any work conserving policy that always
transmits a packet when there is a non-empty connected
queue. The first term on the right hand side is a non-negative
constant multiplied by the term

∑
i µ̃i(t)Qi(t). But note that

µ̃i(t)Qi(t) = µi(t)Qi(t), and thus the LCQ policy maximizes
this first term. As LCQ is work conserving, it also maximizes
the second term, and thus maximizes f(t), proving Lemma 6.

APPENDIX C — PROOF OF LEMMAS 7 AND 8

Proof: (Lemma 7) Define the integer m = N̂/K. Using
a counting argument similar to that of Appendix B (compare
with (41)), we have that for any vector λ = (λ1, . . . , λN̂ ):

∑
g∈GK

K∑
k=1

Q
(g)
k (t)λ(g)

k =
N̂∑
i=1

Qi(t)λi |GK | (1−
m− 1
N̂ − 1

)

+Qtot(t)λtot |GK |
m− 1
N̂ − 1

(42)

Using the bound on λi given in (33) yields:∑
g∈GK

K∑
k=1

Q
(g)
k (t)λ(g)

k ≤

Qtot(t)λtot |GK |

[
1
N̂
− m− 1
N̂(N̂ − 1)

+
m− 1
N̂ − 1

]
+Qtot(t) |GK | (1−

m− 1
N̂ − 1

)β(1− ρ)/K

The result of Lemma 7 follows by using the identities:[
1
N̂
− m− 1
N̂(N̂ − 1)

+
m− 1
N̂ − 1

]
=

1
K

(43)

[
1− m− 1

N̂ − 1

]
= z

Proof: (Lemma 8) Let L(t) represent the number of non-
empty queues on slot t. If L(t) = 0, then Qtot(t) = 0 and
the result is trivial. Now suppose that L(t) = l, where l ∈
{1, 2, . . . , N}. Define (l1, . . . , lN̂ ) to be a 0/1 vector with
li = 1 if and only if Qi(t) > 0. Define l(g)k to be the number of
non-empty queues in the kth group of partition g. Consider the
following randomized policy for µ∗(t) ∈ F(t): First observe
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all channel states Si(t) for non-empty queues i, and define
new channel states Ŝi(t) as follows: If Si(t) = 0 (OFF), assign
Ŝi(t) = 0. If Si(t) = 1 (ON), independently assign Ŝi(t) = 1
with probability pmin/pi (this is a valid probability because
pmin ≤ pi). It follows that the new channel state vector Ŝ(t)
has independent and symmetric ON probabilities pmin. Now
independently, randomly, and uniformly choose a queue to
serve over all non-empty queues i with Ŝi(t) = 1. It follows
that for all non-empty queues i we have:

E {µ̃∗i (t) | Q(t)} =
1− (1− pmin)l

l
=
rl
l

Further, for any g ∈ GK and any k ∈ {1, . . . ,K} we have:

E
{
µ̃

(g)∗
k (t) | Q(t)

}
=
∑
i∈L(g)

k

E {µ̃∗i (t) | Q(t)} = l
(g)
k

rl
l

Using this equality gives:

∑
g∈GK

K∑
k=1

Q
(g)
k (t)E

{
µ̃

(g)∗
k (t) | Q(t)

}
=

rl
l

∑
g∈GK

K∑
k=1

Q
(g)
k (t)l(g)k (44)

Now note that the l(g)k values are structurally similar to the λ(g)
k

values, and hence (similar to (42)) we have (using Qi(t)li =
Qi(t) and ltot = l):

∑
g∈GK

K∑
k=1

Q
(g)
k (t)l(g)k =

N̂∑
i=1

Qi(t) |GK | (1−
m− 1
N̂ − 1

)

+Qtot(t)l |GK |
m− 1
N̂ − 1

Using this in (44) yields:

∑
g∈GK

K∑
k=1

Q
(g)
k (t)E

{
µ̃

(g)∗
k (t) | Q(t)

}
=
rl
l
Qtot(t) |GK |

[
1− m− 1

N̂ − 1
+
l(m− 1)
N̂ − 1

]
(45)

≥ rlQtot(t) |GK |

[
1
N̂
− (m− 1)
N̂(N̂ − 1)

+
m− 1
N̂ − 1

]
= rlQtot(t) |GK | /K (46)

where the last equality holds by (43). The above holds for
L(t) = l ∈ {1, . . . , N}. Suppose now that l ≥ K. In this case
we have rl ≥ rK , proving the result of Lemma 8 for l ≥ K.

Consider now the final case where l ∈ {1, . . . ,K−1}. Then
from (45) we have:

∑
g∈GK

K∑
k=1

Q
(g)
k (t)E

{
µ̃

(g)∗
k (t) | Q(t)

}
≥ rl

l
Qtot(t) |GK | (47)

Using the fact that rl
l ≥

rK−1
K−1 ≥

rK
K yields the result.

APPENDIX D — PROOF OF LEMMA 1
Here we prove that µsymK > µsymK+1. Specifically, we show

that if p is a value such that 0 < p ≤ 1, then for any positive
integer K we have:

1
K

[1− (1− p)K ] >
1

K + 1
[1− (1− p)K+1] (48)

To show this, note that it is trivially true for the case p = 1.
In the opposite case where 0 < p < 1, we can multiply (48)
by K(K+ 1) and rearrange terms to see that the inequality is
equivalent to the following:

(1− p)K +Kp(1− p)K < 1 (49)

Thus, it suffices to prove that (49) is true. To this end, we
have:

(1− p)K +Kp(1− p)K < (1− p)K +Kp(1− p)K−1

≤
K∑
i=0

(
K

i

)
pi(1− p)K−i

= ((1− p) + p)K = 1

where the first (strict) inequality holds because 0 < p < 1
and hence (1− p)K < (1− p)K−1. This establishes (49) and
completes the proof of Lemma 1.

APPENDIX E — PROOF OF LEMMA 10
The queueing dynamics are given by Qi(t+ 1) = Qi(t)−

µ̃i(t) + Ai(t), where µ̃i(t) = min[µi(t), Qi(t)]. Using the
Lyapunov function L(Q(t))M= 1

2

∑N
i=1Qi(t)

2 and performing
a standard quadratic drift computation (see, for example, [6]),
it is not difficult to show the drift satisfies:

∆(Q(t)) =
1
2

N∑
i=1

E
{
Ai(t)2

}
−

N∑
i=1

E
{
λiµ̃i(t)−

µ̃i(t)2

2
| Q(t)

}

+
N∑
i=1

λiQi(t)−
N∑
i=1

Qi(t)E {µi(t) | Q(t)}

+
N∑
i=1

Qi(t)E {µi(t)− µ̃i(t) | Q(t)}

By definition of µ̃i(t), we have:

Qi(t)(µi(t)− µ̃i(t)) = µ̃i(t)µi(t)− µ̃i(t)2

≤ min[µi,maxµ̃i(t), µi(t)2]− µ̃i(t)2

Hence:

∆(Q(t)) ≤ 1
2

N∑
i=1

E
{
Ai(t)2

}
−

N∑
i=1

E
{
λiµ̃i(t) +

µ̃i(t)2

2
| Q(t)

}

+
N∑
i=1

λiQi(t)−
N∑
i=1

Qi(t)E {µi(t) | Q(t)}

+
N∑
i=1

E
{

min
[
µi,maxµ̃i(t), µi(t)2

]
| Q(t)

}
(50)
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Using the fact that E {min[·, ·]} ≤ min[E {·} ,E {·}] (by
Jensen’s inequality and concavity of the min[·, ·] operator),
that the sum of a min is less than or equal to the min of a
sum, and that

∑N
i=1 E

{
µi(t)2 | Q(t)

}
≤ Ŝ2, the final term on

the right hand side of (50) can be bounded by:

min

[
N∑
i=1

µi,maxE {µ̃i(t) | Q(t)} , Ŝ2

]

Because the max-weight policy maximizes
∑N
i=1Qi(t)µi(t)

(given queue backlogs Q(t)) we have:

N∑
i=1

Qi(t)E {µi(t) | Q(t)} ≥
N∑
i=1

Qi(t)E {µ∗i (t) | Q(t)} (51)

where µ∗i (t) represents any alternative scheduling decision.
Noting that λ/ρ ∈ Λ and µsym/N ∈ Λ, we have by convexity
of Λ:

λ+ (1− ρ)µsym/N ∈ Λ

Thus, there exists a stationary randomized policy that chooses
µ∗(t) independent of queue backlog to yield:

E {µ∗(t) | Q(t)} = E {µ∗(t)} = λ+ (1− ρ)µsym/N

Plugging this into (51) and then into (50) yields:

∆(Q(t)) ≤ 1
2

N∑
i=1

E
{
Ai(t)2

}
−

N∑
i=1

E
{
λiµ̃i(t) +

µ̃i(t)2

2
| Q(t)

}

− (1− ρ)µsym
N

N∑
i=1

Qi(t)

+ min

[
N∑
i=1

µi,maxE {µ̃i(t) | Q(t)} , Ŝ2

]
(52)

Using the Lyapunov drift lemma (Lemma 4) on the above
drift and noting that the system is stable with well defined
time average limits yields:

N∑
i=1

Qi ≤
N
[

1
2

∑N
i=1 E

{
A2
i

}
− 3

2

∑N
i=1 λ

2
i

]
(1− ρ)µsym

+
N min

[∑N
i=1 λiµi,max, Ŝ

2
]

(1− ρ)µsym

where we have used the fact that limt→∞ E {µ̃i(t)} = λi and
limt→∞ E

{
µ̃2
i (t)

}
≥ limt→∞ E {µ̃i(t)}2 = λ2

i . Using Little’s
theorem on this congestion bound proves (38).

Now suppose that all Si(t) processes are independent and
Pr[Si(t) = µi,max] ≥ pmin for all i. We derive the bound on
µsym given in Lemma 10. Define µ̂M= mini∈{1,...,N} µi,max.
Consider the stationary and randomized algorithm µ∗(t) that
observes channel states S(t) and probabilistically places each
link i ∈ {1, . . . , N} in a set χ(t) with probability 0 if Si(t) <
µ̂, and with probability pmin/Pr[Si(t) ≥ µ̂] if Si(t) ≥ µ̂.
Then χ(t) contains a random number of links, and each link
appears in χ(t) independently with probability pmin. Select

a link to serve on slot t uniformly and randomly with equal
probability over all links in χ(t) (remaining idle if χ(t) is
empty). It follows that under this policy, a particular link i is
selected for transmission with probability exactly (1 − (1 −
pmin)N )/N , and is selected only if Si(t) ≥ µ̂. Hence:

E {µ∗i (t)} ≥
µ̂(1− (1− pmin)N )

N
for all i ∈ {1, . . . , N}

It follows that the symmetric rate vector with all N entries
equal to the right hand side in the above expression is in the
capacity region Λ, so that µsym/N is greater than or equal to
this value.
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