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Dynamic Markov Decision Policies for Delay
Constrained Wireless Scheduling

Michael J. Neely , Sucha Supittayapornpong

Abstract— We consider a one-hop wireless system with a small
number of delay constrained users and a larger number of users
without delay constraints. We develop a scheduling algorithm
that reacts to time varying channels and maximizes throughput
utility (to within a desired proximity), stabilizes all queues, and
satisfies the delay constraints. The problem is solved by reducing
the constrained optimization to a set of weighted stochastic
shortest path problems, which act as natural generalizations
of max-weight policies to Markov decision networks. We also
present approximation results for the corresponding shortest
path problems, and discuss the additional complexity and delay
incurred as compared to systems without delay constraints. The
solution technique is general and applies to other constrained
stochastic decision problems.

Index Terms— Queueing systems, Network analysis and con-
trol, Markov processes

I. INTRODUCTION

This paper considers delay-aware scheduling in a multi-
user wireless uplink or downlink with K delay-constrained
users and N delay-unconstrained users, each with different
transmission channels. The system operates in slotted time
with normalized slots t ∈ {0, 1, 2, . . .}. Every slot, a random
number of new packets arrive from each user. Packets are
queued for eventual transmission, and every slot the scheduler
looks at the queue backlog and the current channel states
and chooses one channel to serve. The number of packets
transmitted over that channel depends on its current channel
state. The goal is to stabilize all queues, satisfy average delay
constraints for the delay-constrained users, and drop as few
packets as possible.

Without the delay constraints, this problem is a classical
opportunistic scheduling problem, and can be solved with
efficient max-weight algorithms based on Lyapunov drift and
Lyapunov optimization (see [2] and references therein). The
delay constraints make the problem a much more complex
Markov Decision Problem (MDP). While general methods for
solving MDPs exist (see, for example, [3][4][5]), they typically
suffer from a curse of dimensionality. Specifically, the number
of queue state vectors grows exponentially in the number of
queues. Thus, a general problem with many queues has an
intractably large state space. This creates non-polynomial im-
plementation complexity for offline approaches such as linear

This material was presented in part at the 48th IEEE Conf. on Decision
and Control (CDC), Shanghai, China, Dec. 2009 [1].

The authors are with the Electrical Engineering department at the University
of Southern California, Los Angles, CA.

This material is supported in part by one or more of the following: the
DARPA IT-MANET program grant W911NF-07-0028, the NSF Career grant
CCF-0747525.

programming [3][4], and non-polynomial complexity and/or
learning time for online or quasi online/offline approaches such
as Q-learning [6][7].

We do not solve this fundamental curse of dimensionality.
Rather, we avoid this difficulty by focusing on the special
structure that arises in a wireless network with a relatively
small number of delay-constrained users (say, K ≤ 5),
but with an arbitrarily large number of users without delay
constraints (so that N can be large). This is an important
scenario, particularly in cases when the number of “best effort”
users in a network is much larger than the number of delay-
constrained users. We develop a solution that, on each slot,
requires a computation that has a complexity that depends
exponentially in K, but only polynomially in N . Further, the
resulting convergence times and delays are polynomial in the
total number of queues K + N . Our solution uses a concept
of forced renewals that introduces a deviation from optimality
that can be made arbitrarily small with a corresponding
polynomial tradeoff in convergence time. Finally, we show that
a simple Robbins-Monro iteration can be used to approximate
the required computations when channel and traffic statistics
are unknown. Our methods are general and can be applied to
other MDPs for networks with similar structure.

Related prior work on delay optimality for multi-user op-
portunistic scheduling under special symmetric assumptions is
developed in [8][9][10], and single-queue delay optimization
problems are treated in [11][12][13][14] using dynamic pro-
gramming and Markov Decision theory. Approximate dynamic
programming algorithms are applied to multi-queue switches
in [15] and shown to perform well in simulation. Optimal
asymptotic energy-delay tradeoffs are developed for single
queue systems in [16], and optimal energy-delay and utility-
delay tradeoffs for multi-queue systems are treated in [17][18].
The algorithms of [17][18] have very low complexity and
provably converge quickly even for large networks, although
the tradeoff-optimal delay guarantees they achieve do not
necessarily optimize the coefficient multiplier in the delay
expression.

Our approach in the present paper treats the MDP problem
associated with delay constraints using Lyapunov drift and
Lyapunov optimization theory [2]. This theory has been used
to stabilize queueing networks [8] and provide utility opti-
mization [2][19][20][21][22][23][24] via simple max-weight
principles. We extend the max-weight principles to treat net-
works with Markov decisions, where the network costs depend
on both the control actions taken and the current state (such
as the queue state) the system is in. For each cost constraint
we define a virtual queue, and show that the constrained
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MDP can be solved using Lyapunov drift theory implemented
over a variable-length frame, where “max-weight” rules are
replaced with weighted stochastic shortest path problems.
This is similar to the Lagrange multiplier approaches used
in the related works [13][14] that treat power minimization
for single-queue wireless links with an average delay con-
straint. The work in [13] uses stochastic approximation with
a 2-timescale argument and a limiting ordinary differential
equation. The work in [14] treats a single-queue MIMO
system using primal-dual updates [25]. Our virtual queues
are similar to the Lagrange Multiplier updates in [13][14].
However, we treat multi-queue systems, and we use a different
analytical approach that emphasizes stochastic shortest paths
over variable length frames. Because of this, our approach can
be used in conjunction with a variety of existing techniques for
solving shortest path problems (see, for example, [6]). We use
a Robbins-Monro technique that is adapted to this context,
together with a delayed queue analysis to uncorrelate past
samples from current queue states. Our resulting algorithm
has an implementation complexity that grows exponentially in
the number of delay-constrained queues K, but polynomially
in the number of delay-unconstrained queues N . Further, we
obtain polynomial bounds on convergence times and delays.

The next section describes the network model. Section III
presents the weighted stochastic shortest-path algorithm. Sec-
tion IV describes approximate implementations, and Section
V presents a simple simulation example.

II. NETWORK MODEL

Consider a one-hop wireless queueing network that oper-
ates in discrete time with timeslots t ∈ {0, 1, 2, . . .}. The
network has K delay-constrained queues and N stability-
constrained queues, for a total of K +N queues indexed by
sets KM

={1, . . . ,K} and N M
={K+1, . . . ,K+N}. The queues

store fixed-length packets for transmission over their wireless
channels. Every timeslot, new packets randomly arrive to
each queue. Let A(t) = (A1(t), . . . , AK+N (t)) represent
the random packet arrival vector, being a vector of non-
negative integers. The stability-constrained queues have an
infinite buffer space. The delay-constrained queues have a
finite buffer space that can store b packets (for some positive
integer b). The network channels can vary from slot to slot.
Let S(t) = (S1(t), . . . , SK+N (t)) be the channel state vector
on slot t, representing conditions that affect transmission rates.
The stacked vector [A(t),S(t)] is assumed to be independent
and identically distributed (i.i.d.) over slots, with possibly
correlated entries on the same slot.

Every slot t, the network controller observes the channel
states S(t) and chooses a transmission rate vector µ(t) =
(µ1(t), . . . , µK+N (t)), being a vector of non-negative integers.
The choice of µ(t) is constrained to a set ΓS(t) that depends on
the current S(t). A simple example is a system with ON/OFF
channels where the controller can transmit a single packet over
at most one ON channel per slot, as in [8]. In this example,
S(t) is a binary vector of channel states, and ΓS(t) restricts
µ(t) to be a binary vector with at most one non-zero entry
and with µi(t) = 0 whenever Si(t) = 0. We assume that

for each possible channel state vector S, the set ΓS has the
natural property that for any µ ∈ ΓS , any non-negative integer
vector µ′ that is entrywise less than or equal to µ is also in
ΓS . In addition to constraining µ(t) to take values in ΓS(t)

every slot t, we shall soon also restrict the µk(t) values for
the delay-constrained queues k ∈ K to be at most the current
number of packets in queue k. This is a natural restriction,
although we do not place such a restriction on the stability-
constrained queues n ∈ N . This is a technical detail that will
be important later, when we show that the effective dimension
of the resulting Markov decision problem is K, independent
of the number of stability-constrained queues N .

Let Q(t) = (Q1(t), . . . , QK+N (t)) represent the vector of
current queue backlogs, and define dn(t) = An(t) − µn(t).
The queue dynamics for the stability-constrained queues are:

Qn(t+ 1) = max[Qn(t) + dn(t), 0] ∀n ∈ N (1)

where the max[·, 0] operation allows, in principle, a service
variable µn(t) to be independent of whether or not Qn(t)
is empty. If Qn(t) < µn(t), the transmitter only transmits
the Qn(t) packets available over channel n, and the residual
capability of transmitting µn(t)−Qn(t) additional packets is
either wasted or used with idle fill.

The delay-constrained queues have a different queue dy-
namic. Because of the finite buffer, we must allow packet
dropping. Let Dk(t) be the number of dropped packets on
slot t. The queue dynamics for the delay-constrained queues
are given by:

Qk(t+ 1) = Qk(t)− µk(t)−Dk(t) +Ak(t) ∀k ∈ K (2)

Note that this does not have any max[·, 0] operation, because
we will force the µk(t) and Dk(t) decisions to be such that
we never serve or drop packets that we do not have. The
precise constraints on these decision variables are given after
the introduction of a forced renewal event, defined in the next
subsection.

A. Forced Renewals

We want to force the delay-constrained queues to repeatedly
visit a renewal state of being simultaneously empty. Thus, at
the end of every slot, with probability φ > 0 we independently
drop all unserved packets in all delay constrained queues
k ∈ K. The stability-constrained queues do not experience
such forced drops. Specifically, let φ(t) be an i.i.d. Bernoulli
process that is 1 with probability φ every slot t, and 0
otherwise. Assume φ(t) is independent of [A(t),S(t)]. If
φ(t) = 1, we say slot t experiences a forced renewal event.
The decision options for µk(t) and Dk(t) for k ∈ K are then
additionally constrained as follows: If φ(t) = 0, then:

µk(t) ∈ {0, 1, . . . , Qk(t)}
Dk(t) ∈ {max[Ak(t) +Qk(t)− b, 0], . . . , Ak(t)}

so that during normal operation, we can serve at most Qk(t)
packets from queue k (so new arrivals cannot be served), and
we can drop only new arrivals, necessarily dropping any new
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arrivals that would exceed the finite buffer capacity. However,
if φ(t) = 1 we have:

µk(t) ∈ {0, 1, . . . , Qk(t)}
Dk(t) = Qk(t)− µk(t) +Ak(t)

so that µk(t) is constrained as before, but Dk(t) is then equal
to the remaining packets (if any) at the end of the slot.

We shall optimize the system under the assumption that
the forced renewal process φ(t) is uncontrollable. This pro-
vides an analyzable system that lends itself to simple ap-
proximations, as shown in later parts of the paper. While
these forced renewals create inefficiency in the system, the
rate of dropped packets due to forced renewals is at most
(Kb +

∑K
k=1 E [Ak(t)])φ, which assumes the worst case of

dropping a full buffer plus all new arrivals every renewal
event. This value can be made arbitrarily small with a small
choice of φ. For problems such as minimizing the average
drop rate subject to delay constraints in the delay-constrained
queues and stability in the stability-constrained queues, it can
be shown that this O(φ) term bounds the gap between system
optimality without forced renewals and system optimality with
forced renewals (see Appendix A). In Theorem 1 we show the
disadvantage of using a small value of φ is that our average
queue bound for the stability-constrained queues is O(1/φ).

Define a renewal frame as the sequence of slots starting just
after a renewal event and ending at the next renewal event.
Assume that all delay-constrained queues are initially empty,
so that time 0 starts the first renewal frame. Define t0 = 0,
and let tr for r ∈ {1, 2, . . .} represent the sequence that marks
the beginning of each renewal frame. For r ∈ {0, 1, 2, . . .},
define Tr M=tr+1− tr as the duration of the rth renewal frame.
Note that {Tr}∞r=0 are i.i.d. geometric random variables with
E [Tr] = 1/φ.

B. Markov Decision Notation

Define ω(t)M
=[A(t),S(t)] as the observed arrivals and

channels of the network on slot t, and define the random
network event Ω(t)M

=[ω(t), φ(t)]. Then Ω(t) is i.i.d. over
slots. The control decision constraints of the previous section
can be summarized with the following simple notation: Let
Z M

={0, 1, . . . , b}K be the K-dimensional state space for the
delay-constrained queues, and let z(t)M

=(Qk(t))k∈K represent
the current state of these queues. Every slot t, the controller
observes the random event Ω(t) and the queue state z(t), and
makes a control action α(t), which determines all decision
variables µi(t) for i ∈ {1, . . . ,K +N} and Dk(t) for k ∈ K.
Control action α(t) is chosen in a set AΩ(t),z(t) that depends
on Ω(t) and z(t). All of the decision variables described in
the previous subsection are constrained only in terms of Ω(t)
and z(t). In particular, the queue states Qn(t) for n ∈ N do
not constrain the decisions.

Recall that dn(t)M
=An(t) − µn(t). Then α(t), Ω(t), z(t)

together affect the vector d(t) = (dn(t))n∈N through a
deterministic function d̂n(α(t),Ω(t), z(t)):

dn(t) = d̂n(α(t),Ω(t), z(t)) ∀n ∈ N (3)

Further, α(t), Ω(t), z(t) together define the transition proba-
bilities from z(t) to z(t+ 1), defined for all states i and j in
Z:

Pij(α,Ω) = Pr[z(t+ 1) = j|z(t) = i, α(t) = α,Ω(t) = Ω]
(4)

From the equation (2) we find that Pij(α,Ω) ∈ {0, 1}, so
that next states z(t + 1) are deterministic given α(t), Ω(t),
z(t). Finally, we define a general penalty vector y(t) =
(y0(t), y1(t), . . . , yL(t)), for some integer L ≥ 0, where
penalties yl(t) are deterministic functions of α(t), Ω(t), z(t):

yl(t)
M
=ŷl(α(t),Ω(t), z(t)) (5)

For example, penalty y0(t) can be defined as the total number
of dropped packets on slot t by defining y0(t) =

∑
k∈KDk(t),

which is indeed a function of α(t), Ω(t), z(t).
We assume throughout that all of the above deterministic

functions are bounded, so that there is a finite constant β such
that for all l ∈ {0, 1, . . . , L}, all n ∈ N , and all slots t we
have:

|yl(t)| ≤ β , |dn(t)| ≤ β (6)

C. The Optimization Problems

A control policy is a method for choosing actions α(t) ∈
AΩ(t),z(t) over slots t ∈ {0, 1, 2, . . .}. We restrict to causal
policies that make decisions with knowledge of the past but
without knowledge of the future. Suppose a particular control
policy is given. Define time averages Qn and yl for n ∈ N
and l ∈ {0, 1, . . . , L} by:

Qn
M
= lim sup

t→∞

1

t

t−1∑
τ=0

E [Qn(τ)]

yl
M
= lim sup

t→∞

1

t

t−1∑
τ=0

E [yl(τ)]

Our goal is to design a control policy to solve the following
stochastic optimization problem:

Minimize: y0 (7)
Subject to: yl ≤ 0 ∀l ∈ {1, . . . , L} (8)

Qn <∞ ∀n ∈ N (9)
α(t) ∈ AΩ(t),z(t) ∀t ∈ {0, 1, 2, . . .} (10)

That is, we desire to minimize the time average of the y0(t)
penalty, subject to time average constraints on the other penal-
ties, and subject to queue stability (called strong stability) for
all stability-constrained queues. The general structure (7)-(10)
fits a variety of network optimization problems. For example,
if we define y0(t) as the sum packet drops

∑
k∈KDk(t), define

L = K, and define yk(t) = Qk(t) − Qav for all k ∈ K
(for some positive constant Qav), then the problem (7)-(10)
seeks to minimize the total packet drop rate, subject to an
average backlog of at most Qav in all delay-constrained queues
k ∈ K, and subject to stability of all stability-constrained
queues n ∈ N .
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Alternatively, to enforce an average delay constraint Wav

at all queues k ∈ K (for some positive number Wav), we can
define penalties:

yk(t) = Qk(t)− (Ak(t)−Dk(t))Wav ∀k ∈ K

Note that the time average of (Ak(t)−Dk(t)) is the number
λ̃k, the average arrival rate of (non-dropped) packets to queue
k. Hence, the constraint yk ≤ 0 is equivalent to:

Qk − λ̃kWav ≤ 0

However, by Little’s theorem [26] we have Qk = λ̃kW k,
where W k is the average delay for queue k, and so the
constraint yk ≤ 0 ensures W k ≤Wav (assuming λ̃k > 0).

In the following, we develop a dynamic algorithm that can
come arbitrarily close to solving the problem (7)-(10). Our
solution is general and applies to any other discrete time
Markov decision problem on a general finite state space Z ,
random events Ω(t) = [ω(t), φ(t)] (for forced renewal process
φ(t)), control actions α(t) in a general set AΩ(t),z(t), queue
equations (1) with dn(t) given in the form (3), transition
probabilities in the form (4), and penalties in the form (5).

D. Slackness Assumptions

Suppose the problem (7)-(10) is feasible, so that there exists
a policy that satisfies the constraints. It can be shown that the
constraint Qn < ∞ implies that dn ≤ 0 (the converse is not
necessarily true) [27]. Thus, the following modified problem
is feasible whenever the original one is:

Minimize: y0 (11)
Subject to: yl ≤ 0 ∀l ∈ {1, . . . , L} (12)

dn ≤ 0 ∀n ∈ N (13)
α(t) ∈ AΩ(t),z(t) ∀t ∈ {0, 1, 2, . . .} (14)

Define yopt0 as the infimum of y0 for the problem (11)-(14),
necessarily being less than or equal to the corresponding infi-
mum of the original problem (7)-(10).1 We show in Theorem
1 that, under a mild slackness condition, the value of yopt0 can
be approached arbitrarily closely while maintaining Qn <∞
for all queues n ∈ N . Thus, yopt0 is also the infimum of y0

for the original problem (7)-(10).
The problem (11)-(14) is a constrained Markov decision

problem (MDP) with state (Ω(t), z(t)). Under mild assump-
tions (such as this state space being finite, and the action space
AΩ,z being finite for each (Ω, z)) the MDP has an optimal
stationary policy that chooses actions α(t) ∈ AΩ(t),z(t) every
slot t as a stationary and possibly randomized function of
the state (Ω(t), z(t)) only. We call such policies (Ω, z)-only
policies. Because this system experiences regular renewals, the
performance of any (Ω, z)-only policy can be characterized by
ratios of expectations over one renewal frame. Thus, we make
the following assumption.

1Recall that yopt0 is defined assuming forced renewals of probability φ.
Thus, yopt0 is typically within a gap of O(φ) of the minimum cost without
such forced renewals (see Appendix A).

Assumption 1: There is an (Ω, z)-only policy α∗1(t) that
satisfies the following over any renewal frame:

E
[∑tr+Tr−1

τ=tr
y∗0(τ)

]
1/φ

= yopt0 (15)

E
[∑tr+Tr−1

τ=tr
d∗n(τ)

]
1/φ

≤ 0 ∀n ∈ N (16)

E
[∑tr+Tr−1

τ=tr
y∗l (τ)

]
1/φ

≤ 0 ∀l ∈ {1, . . . , L} (17)

where Tr is the size of the renewal frame, with E [Tr] = 1/φ,
and y∗l (τ), d∗n(τ) are values under the policy α∗(t) on slot τ
of the renewal frame.

We emphasize that Assumption 1 is mild and holds when-
ever the problem (11)-(14) is feasible and has an optimal
stationary policy (i.e., an optimal (Ω, z)-only policy). We
now make the following stronger assumption that there exists
an (Ω, z)-only policy that can meet the constraints (16)-(17)
with “ε-slackness,” without caring what average value of y0(t)
this policy generates. This assumption is related to standard
“Slater-type” assumptions in optimization theory [25].

Assumption 2: There is a value ε > 0 and an (Ω, z)-
only policy α∗2(t) (typically different from policy α∗1(t) in
Assumption 1) that satisfies the following over any renewal
frame:

E
[∑tr+Tr−1

τ=tr
d∗n(τ)

]
1/φ

≤ −ε ∀n ∈ N (18)

E
[∑tr+Tr−1

τ=tr
y∗l (τ)

]
1/φ

≤ −ε ∀l ∈ {1, . . . , L} (19)

We show in Theorem 1 that systems that satisfy Assumption
2 with larger values of ε can operate with smaller average
queue sizes in the stability-constrained queues.

E. An Example where Assumptions 1 and 2 are Satisfied

Consider the problem of minimizing the average drop rate
subject to an average queue backlog constraint of Qavk in
each queue k ∈ K, and to stability in each queue n ∈ N
(such a problem is considered in the simulation example of
Section V). The buffer size b in each delay-constrained queue
is finite, so that the set Z is finite. Suppose the set Ω is also
finite, and the action space AΩ,z is finite for each (Ω, z). Time
averages achievable in constrained Markov decision problems
with forced renewals and with finite state and action spaces
can be shown to also be achievable by stationary policies.
Thus, if the problem is feasible, then Assumption 1 holds.

Now assume the arrival rate vector (λn)n∈N for the
stability-constrained queues is interior to the N -dimensional
capacity region for those queues (see [27] for a discussion of
the capacity region). Specifically, suppose there is a value δ >
0 such that (λn+δ)n∈N is in this capacity region. Assume that
Qavk > 0 for all k ∈ K, and define ε = min[δ,mink∈KQ

av
k ].

Consider the (Ω, z)-only policy that drops all arrivals of all
delay-constrained queues (so Qk(t) = 0 for all k ∈ K), and
that chooses transmission rates for the stability-constrained
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queues to support the rates (λn + δ)n∈N . This policy yields
average backlog at least ε less than the required constraint Qavk
in each queue k ∈ K, and yields dn = λn − µn ≤ −ε for all
n ∈ N , and so Assumption 2 is satisfied.

III. THE DYNAMIC CONTROL ALGORITHM

To solve the problem (7)-(10), we extend the frame-
work of [2] to a case of variable length frames (see
related analysis, without renewal frame structures, in
[19][20][21][22][28][23][24]). Specifically, for each of the L
penalty constraints yl ≤ 0, we define a virtual queue Xl(t)
that is initialized to zero and that has dynamic update equation:

Xl(t+ 1) = max[Xl(t) + yl(t), 0] ∀l ∈ {1, . . . , L} (20)

where yl(t) = ŷl(α(t),Ω(t), z(t)) is the lth penalty incurred
on slot t by a particular action α(t) ∈ AΩ(t),z(t). The intuition
is that if the virtual queue Xl(t) is stable, then the time average
of yl(t) must be non-positive. This turns the time average
constraint into a simple queue stability problem.

A. Lyapunov Drift
Define X(t) as a vector of all virtual queues Xl(t) for

l ∈ {1, . . . , L}. Define Θ(t) as the combined vector of all
virtual queues and all stability-constrained queues:

Θ(t)M
=[X(t), (Qn(t))n∈N ]

Assume all queues are initially empty, so that Θ(0) = 0.
Define the following quadratic function:

L(t)M
=

1

2

∑
n∈N

Qn(t)2 +
1

2

L∑
l=1

Xl(t)
2

Let tr be the start of a renewal frame, with duration Tr. Define
∆(tr) as follows:

∆(tr)
M
=L(tr + Tr)− L(tr) (21)

The conditional expectation of ∆(tr), given the queue back-
logs Θ(tr), is called the frame-based conditional Lyapunov
drift. It is important to note that the implemented policy α(t)
may not be stationary and/or may depend on the queue values
Θ(t) (which can be different on each renewal interval). Thus,
the actual system events are not necessarily i.i.d. over different
renewal frames. However, these frames are useful because we
will analytically compare the frame based Lyapunov drift of
the actual policy to the corresponding drifts of the (Ω, z)-only
policies of Assumptions 1 and 2.

Lemma 1: (Lyapunov Drift) Under any network control
policy that chooses α(τ) ∈ AΩ(τ),z(τ) for all slots τ during a
renewal frame τ ∈ {tr, . . . , tr + Tr − 1}, and for any initial
queue values Θ(tr), we have:

E [∆(tr)|Θ(tr)] ≤ B/φ2 + E [G(tr)|Θ(tr)] (22)

where G(tr) is defined:

G(tr)
M
=

∑
n∈N

Qn(tr)

tr+Tr−1∑
τ=tr

dn(τ)

+

L∑
l=1

Xl(tr)

tr+Tr−1∑
τ=tr

yl(τ) (23)

and where B is a finite constant defined:

B M
=

(2− φ)β2(N + L)

2

where we recall β is the bound in (6).
Proof: For any l ∈ {1, . . . , L} and any τ ∈ {tr, . . . , tr +

Tr−1} we have by squaring (20) and using max[x, 0]2 ≤ x2:

Xl(τ + 1)2 ≤ (Xl(τ) + yl(τ))2

= Xl(τ)2 + yl(τ)2 + 2Xl(τ)yl(τ)

= Xl(τ)2 + yl(τ)2 + 2Xl(tr)yl(τ)

+2[Xl(τ)−Xl(tr)]yl(τ)

≤ Xl(τ)2 + β2 + 2Xl(tr)yl(τ) + 2β2(τ − tr)

where the final inequality holds because the change in Xl(τ)
on any slot is at most β, as is the magnitude of yl(τ). Summing
the above over τ ∈ {tr, . . . , tr + Tr − 1} and dividing by 2
yields:

Xl(tr + Tr)
2 −Xl(tr)

2

2
≤ Trβ

2 + β2Tr(Tr − 1)

2

+Xl(tr)

tr+Tr−1∑
τ=tr

yl(τ) (24)

=
β2T 2

r

2
+Xl(tr)

tr+Tr−1∑
τ=tr

yl(τ)

(25)

where (24) uses the identity:
tr+Tr−1∑
τ=tr

(τ − tr) = Tr(Tr − 1)/2

Similarly, it can be shown for any n ∈ N :

Qn(tr + Tr)
2 −Qn(tr)

2

2
≤ β2T 2

r

2

+Qn(tr)

tr+Tr−1∑
τ=tr

dn(τ) (26)

Summing (25) and (26) over l ∈ {1, . . . , L}, n ∈ N , taking
conditional expectations, and noting that the second moment
of a geometric random variable Tr with success probability φ
is given by (2− φ)/φ2 proves the result.

B. The Frame-Based Drift-Plus-Penalty Algorithm

Let V ≥ 0 be a non-negative parameter that we use
to affect proximity to the optimal solution. Our dynamic
algorithm initializes all virtual and actual queue states to 0,
and designates t0 = 0 as the start of the first renewal frame.
Then:
• For each frame r ∈ {0, 1, 2, . . .}, observe the vector of

virtual and actual queues Θ(tr) and implement a policy
over the course of the frame to minimize the following
“drift-plus-penalty” expression:

E

[
G(tr) + V

tr+Tr−1∑
τ=tr

y0(τ) | Θ(tr)

]
(27)
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• During the course of the frame, update virtual and actual
queues every slot by (1) and (20), and update state z(t)
by (4). At the end of the frame, go back to the preceding
step.

The decision rule (27) generalizes the drift-plus-penalty
rule in [2][28] to a variable frame system. The problem of
designing a policy to minimize (27) over one frame is a
weighted stochastic shortest path problem, where weights are
virtual and actual queue backlogs at the start of the frame.
Finding such a policy is non-trivial, and often can only be done
approximately. The next sub-section analyzes the algorithm
under the assumption that we have a procedure to approximate
(27) every frame. Section IV considers various approximation
methods.

C. Performance Theorem

For constants C ≥ 0, δ ≥ 0, define a (C, δ)-approximation
of (27) to be a policy for choosing α(t) over a frame
(consisting of slots τ ∈ {tr, . . . , tr + Tr − 1}) that yields
a drift-plus-penalty that is less than or equal to that of any
other policy, plus an error term parameterized by C and δ:

E

[
G(tr) + V

tr+Tr−1∑
τ=tr

y0(τ) | Θ(tr)

]
≤

E

[
G∗(tr) + V

tr+Tr−1∑
τ=tr

y∗0(τ) | Θ(tr)

]

+C + δ
∑
n∈N

Qn(tr) + δ

L∑
l=1

Xl(tr) + V δ (28)

where G∗(tr) and y∗0(τ) represent (23) and (5), respectively,
under any alternative algorithm α∗(t) that can be implemented
during the slots τ ∈ {tr, . . . , tr + Tr − 1} of the frame.
Note that an exact minimization of the stochastic shortest path
problem (27) is a (C, δ)-approximation for C = δ = 0.

Theorem 1: Suppose Assumptions 1 and 2 hold for a given
ε > 0. Fix V ≥ 0, C ≥ 0, δ ≥ 0, and suppose we
use a (C, δ)-approximation every frame. If ε > φδ, then
all desired constraints (8)-(10) are satisfied. Further, for all
positive integers R, the average queue sizes satisfy:

1

R

R−1∑
r=0

[∑
n∈N

E [Qn(tr)] +

L∑
l=1

E [Xl(tr)]

]
≤

B/φ+ Cφ+ V (φδ + 2β)

ε− φδ
(29)

Further, the time average penalty satisfies:

lim supt→∞
1
t

∑t−1
τ=0 E [y0(τ)] ≤ yopt0 +

B/φ+Cφ
V + φδ[1 + (β − yopt0 )/ε] (30)

Suppose our implementation of the stochastic shortest path
problem every frame is accurate enough to ensure δ = 0.
Then from (30) and (29), the time average of y0(t) can be
made arbitrarily close to (or below) yopt0 as V is increased,
with a tradeoff in average queue size that is linear in V .
The dependence on the φ parameter is also apparent: While
we desire φ to be small to minimize the disruptions due to

forced renewals, a small value of φ implies a larger value of
B/φ in (30) and (29). Note also that the average size of each
stability-constrained queue affects its average delay, and the
average size of each virtual queue affects the convergence time
required for its constraint to be closely met.

D. Proof of Theorem 1

We first prove (29), and then (30).
Proof: (Theorem 1 part 1—Queue Bounds) Let tr be the

start of a renewal time. From (22) we have:

E

[
∆(tr) + V

tr+Tr−1∑
τ=tr

y0(τ) | Θ(tr)

]

≤ B

φ2
+ E

[
G(tr) + V

tr+Tr−1∑
τ=tr

y0(τ) | Θ(tr)

]

≤ B

φ2
+ C + E

[
G∗(tr) + V

tr+Tr−1∑
τ=tr

y∗0(τ) | Θ(tr)

]

+δ
∑
n∈N

Qn(tr) + δ

L∑
l=1

Xl(tr) + V δ (31)

where G∗(tr) and y∗l (τ) are for any alternative policy α∗(t).
Using the fact that |y∗0(τ)−y0(τ)| ≤ 2β for all τ , and E [Tr] =
1/φ, we have:

E [∆(tr)|Θ(tr)] ≤
B

φ2
+ C +

2βV

φ
+ E [G∗(tr) | Θ(tr)]

+δ
∑
n∈N

Qn(tr) + δ

L∑
l=1

Xl(tr) + V δ (32)

Now consider the (Ω, z)-only policy α∗2(t) from Assump-
tion 2 (equations (18)-(19)), which makes decisions indepen-
dent of Θ(tr) to yield (using the definition of G(tr) in (23)):

E [G∗(tr)|Θ(tr)] ≤
−ε
φ

[∑
n∈N

Qn(tr) +

L∑
l=1

Xl(tr)

]
Substituting the above into the right-hand-side of (32) gives:

E [∆(tr)|Θ(tr)] ≤ B/φ2 + C + V (2β/φ+ δ)

+(δ − ε/φ)

[∑
n∈N

Qn(tr) +

L∑
l=1

Xl(tr)

]
(33)

Taking expectations of the above and using the definition of
∆(tr) gives:

E [L(tr+1)]− E [L(tr)] ≤ B/φ2 + C + V (2β/φ+ δ)

+(δ − ε/φ)

[∑
n∈N

E [Qn(tr)] +

L∑
l=1

E [Xl(tr)]

]
Summing the above over r ∈ {0, . . . , R−1} (for some positive
integer R), dividing by R, and using the fact that E [L(t0)] = 0
gives:

E [L(tR)]

R
≤ B/φ2 + C + V (2β/φ+ δ)

+
(δ − ε/φ)

R

R−1∑
r=0

[∑
n∈N

E [Qn(tr)] +

L∑
l=1

E [Xl(tr)]

]
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Rearranging terms and using E [L(tR)] ≥ 0 and ε > φδ proves
(29). While (29) samples only at the start of renewal frames,
it can easily be used to show all virtual and actual queues
are strongly stable (see Appendix B), and hence all desired
inequality constraints are met [27].

Proof: (Theorem 1 part 2 — Performance Bound) Define
probability γ M

=δφ/ε. This is a valid probability because ε > φδ
by assumption. We consider a new policy α∗(t) implemented
over the frame τ ∈ {tr, . . . , tr + Tr − 1}. The policy α∗(t)
is a randomized mixture of the (Ω, z)-only policies from
Assumptions 1 and 2: At the start of the frame, independently
flip a biased coin with probabilities γ and 1−γ, and carry out
one of the two following policies for the full duration of the
renewal interval:
• With probability γ: Use policy α∗2(t) from Assumption

2 for the duration of the renewal frame, which yields
(18)-(19).

• With probability 1−γ: Use policy α∗1(t) from Assumption
1 for the duration of the renewal frame, which yields (15)-
(17).

Note that this policy α∗(t) is independent of Θ(tr). With
α∗(t), from (15) we have:

E

[
tr+Tr−1∑
τ=tr

y∗0(τ)|Θ(tr)

]
≤ γβ + (1− γ)yopt0

φ
(34)

We also have from (16)-(17) and (18)-(19):

E

[
tr+Tr−1∑
τ=tr

y∗l (τ)|Θ(tr)

]
≤ −γε

φ
= −δ ∀l ∈ {1, . . . , L}

E

[
tr+Tr−1∑
τ=tr

d∗n(τ)|Θ(tr)

]
≤ −γε

φ
= −δ ∀n ∈ N (35)

Plugging (34)-(35) into (31) yields:

E

[
∆(tr) + V

tr+Tr−1∑
τ=tr

y0(τ) | Θ(tr)

]
≤ B/φ2 + C + V δ

+
V

φ
[γβ + (1− γ)yopt0 ]

Taking expectations gives:

E [L(tr+1)]− E [L(tr)] + V E

[
tr+Tr−1∑
τ=tr

y0(τ)

]
≤

B/φ2 + C + V δ +
V

φ
[γβ + (1− γ)yopt0 ]

Summing over r ∈ {0, . . . , R − 1} and dividing by V R/φ
gives the following for all R > 0:

1

R/φ
E

[
tR−1∑
τ=0

y0(τ)

]
≤ [γβ+ (1−γ)yopt0 + δφ] +

B/φ+ Cφ

V

Using γ = δφ/ε shows the right-hand-side of the above
inequality is the same as the right-hand-side of the desired
inequality (30). Finally, in Appendix B it is shown that:

lim sup
R→∞

E
[∑tR−1

τ=0 y0(τ)
]

R/φ
≥ lim sup

t→∞

1

t

t−1∑
τ=0

E [y0(τ)] (36)

IV. APPROXIMATING THE STOCHASTIC SHORTEST PATH
PROBLEM

Consider now the stochastic shortest path problem (27).
Here we describe several approximation options and their
performance. We note that the techniques and results in this
section draw from standard contraction results used in dynamic
programming with discounted rewards [29][6][30].

For simplicity, assume the state space (Ω(t), z(t)) is finite,
and the action space AΩ(t),z(t) is finite for all (Ω(t), z(t)).
Without loss of generality, assume we start at time 0 and
have (possibly non-zero) backlogs Θ = Θ(0). Let T be the
renewal interval size. For every step τ ∈ {0, . . . , T−1}, define
cΘ(α(τ),Ω(τ), z(τ)) as the incurred cost assuming that the
queue state at the beginning of the renewal is Θ(0):

cΘ(α(τ),Ω(τ), z(τ)) M
=

∑
n∈N

Qn(0)d̂n(α(τ),Ω(τ), z(τ))

+

L∑
l=1

Xl(0)ŷl(α(τ),Ω(τ), z(τ))

+V ŷ0(α(τ),Ω(τ), z(τ)) (37)

Let αssp(τ) denote the optimal control action on slot τ
for solving the stochastic shortest path problem, given that
the controller first observes Ω(τ) and z(τ). Define Z̃ M

=Z ∪
{renewal}, where we have added a new state “renewal”
to represent the renewal state, which is the termination state
of the stochastic shortest path problem. Appropriately adjust
the transition probabilities Pij(α,Ω) to account for this new
state [29][6][30]. Define J = (Jz)|z∈Z̃ as a vector of optimal
costs, where Jz is the minimum expected sum cost to the
renewal state given that we start in state z, and Jrenewal = 0.
By basic dynamic programming theory [29][6], the optimal
control action on each slot τ (given Ω(τ) and z(τ)) is:

α(τ) = arg minα∈AΩ(τ),z(τ)
[cΘ(α,Ω(τ), z(τ))+∑

y∈Z̃ Pz(τ),y(α,Ω(τ))Jy] (38)

This policy is easily implemented provided that the Jz
values are known. It is well known that the J vector satisfies
the following vector dynamic programming equation:2

J = E
[

min
αz∈AΩ,z

[cΘ(αz,Ω) + P (αz,Ω)J ]

]
(39)

where we have used an entry-wise min (possibly with dif-
ferent αz actions being used for minimizing each entry z ∈
Z̃). Further, cΘ(αz,Ω) is defined as a vector with entries
cΘ(αz,Ω, z), and P (αz,Ω) = (Pzy(αz,Ω)) is the matrix of
transition probabilities for Ω and control action αz . The ex-
pectation in (39) is over the distribution of the i.i.d. process Ω.
Because Ω(t) has the structure Ω(t) = [ω(t), φ(t)], where ω(t)
is the random outcome for slot t and φ(t) is an independent
Bernoulli process that has forced renewals with probability φ,

2One can also derive (39) by defining a value function H(z,Ω), writing the
Bellman equation in terms ofH(z(t+1),Ω(t+1)), taking an expectation with
respect to the i.i.d. Ω(t), Ω(t+ 1), and defining J(z)M=EΩ(t)[H(z,Ω(t))].
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we can re-write the above vector equation as:

J = φE
[

min
αz∈A[ω,1],z

c
(1)
Θ (αz, ω)

]
+

(1− φ)E
[

min
αz∈A[ω,0],z

[
c

(0)
Θ (αz, ω) + P (0)(αz, ω)J

]]
(40)

where:

c
(1)
Θ (αz, ω) M

= cΘ(αz, [ω, 1])

c
(0)
Θ (αz, ω) M

= cΘ(αz, [ω, 0])

P (0)(αz, ω) M
= P (αz, [ω, 0])

We assume the transition probabilities P (0)(αz, ω) are
known (recall that these are indeed known binary values as
described in the model of Section II-B). We next show how
to compute an approximation of J based on random samples
of ω(t) and using a classic Robbins-Monro iteration.

A. Estimation Through Random i.i.d. Samples

Suppose we have an infinite sequence of random variables
arranged in batches with batch size W , with ωkw denoting
the wth sample of batch k. All random variables are i.i.d.
with probability distribution the same as ω(t), and all are
independent of the queue state Θ that is used for this stochastic
shortest path problem. Consider the following two mappings
Ψ and Ψ̃ from a J vector to another J vector, where the
second is implemented with respect to a particular batch k:

ΨJ M
=φE

[
min

αz∈A[ω,1],z
c

(1)
Θ (αz, ω)

]
+

(1− φ)E
[

min
αz∈A[ω,0],z

[
c

(0)
Θ (αz, ω) + P (0)(αz, ω)J

]]
(41)

Ψ̃J M
=φ

1

W

W∑
w=1

min
αz∈A[ωkw,1],z

c
(1)
Θ (αz, ωkw) +

(1− φ)
1

W

W∑
w=1

min
αz∈A[ωkw,0],z

[
c

(0)
Θ (αz, ωkw)+

P (0)(αz, ωkw)J
]

(42)

where the min is entrywise over each vector entry. The expec-
tation in (41) is implicitly conditioned on a given Θ vector,
and is with respect to the random ω, which is independent
of Θ. We note that both ΨJ and Ψ̃J are vectors with size
determined by the size of the state space Z . For a system
with K delay-constrained queues, the size of Z is exponential
in K. Thus, any computation of the map ΨJ or Ψ̃J must
update a number of entries that is exponential in K. This is
why we desire K to be small, even though the number of
stability-constrained queues N can be large.

The mapping Ψ cannot be implemented without knowledge
of the distribution of ω (so that the expectation can be
computed), whereas the mapping Ψ̃ can be implemented as a
“simulation” over the W random samples ωkw (assuming such
samples can be generated or obtained). However, the expected
value of Ψ̃J is exactly equal to ΨJ . Thus, given an initial
vector Jk for use in step k, we can write Ψ̃Jk = ΨJk + ηk,

where ηk is a zero-mean vector random variable. Specifically,
the vector ηk satisfies:

E [ηk | Jk] = 0

Thus, while the vector ηk is not independent of Jk, each entry
is uncorrelated with any deterministic function of Jk. That
is, for each entry i and any deterministic (and measurable)
function f(·) we have via iterated expectations:

E [ηk[i]f(Jk)] = E [f(Jk)E [ηk[i] | Jk]] = 0 (43)

For k ∈ {0, 1, 2, . . .} we have the iteration:

Jk+1 =
1

k + 1
Ψ̃Jk +

k

k + 1
Jk (44)

This iteration is a classic Robbins-Monro stochastic approxi-
mation algorithm. It can be shown that the J vector remains
deterministically bounded for all k [31], and that Ψ and Ψ̃
satisfy the requirements of Proposition 4.6 in Section 4.3.4
of [6]. Thus the above iteration is in the standard form for
stochastic approximation theory, and ensures that:

lim
k→∞

Jk = J∗ with prob. 1

where J∗ is the cost vector associated with the optimal
stochastic shortest path problem, that is, it is the solution to
(40) and thus satisfies J∗ = ΨJ∗. This holds for any batch
size W (including the simplest case W = 1), although taking
larger batches reduces the variance of the per-batch estimation
and may improve overall convergence speed.

B. Recursive Methods for Ψ

Contraction results for general stochastic shortest path prob-
lems are given in [6]. The following is a related result with
a simpler form that holds because of our forced renewal
structure. For a given vector X , define ||X|| as the maximum
absolute value of X:

||X||M= max
i
|Xi|

It is not difficult to show that for any vector X and any
probability matrix P with rows that sum to 1, and with a
number of columns equal to the size of X , we have ||PX|| ≤
||X||.

Lemma 2: For any vectors X , Y of the same size as J∗,
we have:

||ΨX −ΨY || ≤ (1− φ)||X − Y ||
Proof: Omitted (see [31] and related results in [6]).
This simple result yields the following approximation

bounds for k iterations of the map Ψ: Define J0 as any initial
guess of J∗, and for k ∈ {1, 2, 3, . . .} define Jk = ΨJk−1.
Because ΨJ∗ = J∗, we have:

||Jk − J∗|| = ||ΨJk−1 −ΨJ∗||
≤ (1− φ)||Jk−1 − J∗||

By recursion, it easily follows that for all k ∈ {0, 1, 2, . . .} we
have:

||Jk − J∗|| ≤ (1− φ)k||J0 − J∗|| (45)
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Because the renewal frame size is independent of the policy,
and has average 1/φ, it is not difficult to show that J∗ ≤
cmax/φ, where cmax is the largest possible magnitude of of
cΘ(α(τ),Ω(τ), z(τ)) for slot τ in the frame (such a constant
exists and is finite because of the boundedness assumptions).
Therefore, defining J0 = 0 and using (45) yields:

||Jk − J∗|| ≤ (1− φ)kcmax/φ

By the definition of cΘ(·) in (37), it can be shown that cmax is
a sum of terms that are proportional to V , Qn(tr), and Zl(tr).
Further, in [31] it is shown that the deviation in the optimal
cost when (38) is used with an approximate value Jk, rather
than J∗, deviates from J∗ by at most:

2(1− φ)||Jk − J∗||
φ

Hence, the above two bounds can be used to compute a value
k that provides explicit approximation values for C and δ for
use in Theorem 1.

C. Recursive Methods for Ψ̃

The difficulty in iterating the map ΨJ is that it requires
full knowledge of the underlying probability distributions to
compute the associated expectations. An approximation of this
is to use Ψ̃ from (42). Specifically, assume we have W i.i.d.
samples ω1, . . . , ωW . Then the Ψ̃ function is:

Ψ̃J M
=φ

1

W

W∑
w=1

min
αz∈A[ωw,1],z

c
(1)
Θ (αz, ωw) +

(1− φ)
1

W

W∑
w=1

min
αz∈A[ωw,0],z

[
c

(0)
Θ (αz, ωw) + P (0)(αz, ωw)J

]
Define J̃0 as any initial vector, and for k ∈ {1, 2, 3, . . .}

define J̃k = Ψ̃Jk−1. Using the same proof technique as
Lemma 2 and equation (45) it is easy to show that for any
W > 0, Ψ̃ is also a contraction that satisfies for any X and
Y :

||Ψ̃X − Ψ̃Y || ≤ (1− φ)||X − Y ||

Thus, it has a unique fixed point J̃
∗

satisfying Ψ̃J̃
∗

= J̃
∗
,

and for all k ∈ {1, 2, 3, . . .} we have:

||J̃k − J̃
∗|| ≤ (1− φ)k||J̃0 − J̃

∗||

The value J̃
∗

is typically not the same as J∗. It represents
the optimal cost vector in a modified system where the ω
vector is i.i.d. with the same distribution as the empirical
average given over the W samples. Intuitively, J̃

∗
becomes a

better approximation for J∗ when the number of samples W is
large. This is because the iteration for Ψ̃J uses a summation of
bounded i.i.d. random variables to approximate an expectation,
and the error of such an approximation goes to zero as the
number of samples W is increased. Formal convergence as
W → ∞ can be derived using continuity and contraction
properties of the Bellman iteration (see related results in [6]).

D. Sampling From the Past and Delayed Queue Analysis

It remains to be seen how one can obtain the required i.i.d.
samples without knowing the probability distribution for ω.
In this subsection, we describe a technique that uses previous
samples of the ω(τ) values.

We first obtain a collection of W i.i.d. samples of ω(t).
Consider a given renewal time tr, and suppose that the time
tr is large enough so that we can obtain W samples according
to the following procedure: Let ω1

M
=ω(tr), ω2

M
=ω(tr − 1),

ω3
M
=ω(tr−2), . . . , ωW

M
=ω(tr−W + 1). Because ω(t) is i.i.d.

over slots (and because our renewal times are chosen randomly
and independently), it is easy to see that {ω1, . . . , ωW } form
an i.i.d. sequence.

A subtlety now arises: Even though the {ω1, . . . , ωW }
sequence is i.i.d., these samples are not independent of the
queue backlog Θ(tr) at the beginning of the renewal. This is
because these values have influenced the queue states. This
makes it challenging to directly analyze a Robbins-Monro
iteration. Indeed, the expectation in (41) can be viewed as
a conditional expectation given a certain queue backlog at
the beginning of the renewal interval, which is Θ(tr) for
the rth renewal. This conditioning does not affect (41) when
ω(t) is chosen independently of initial queue backlog, and
so the random samples in (42) are also assumed to be chosen
independent of the initial queue backlog, which is not the case
if we sample from the past.

To avoid this difficulty and ensure the samples are both i.i.d.
and independent of the queue states that form the weights in
our stochastic shortest path problem, we use a delayed queue
analysis as in the related queueing problem [32] (see also
related work on using delayed samples for Robbins-Monro
iterations in [33][34]). Let tstart denote the slot on which
sample ωW is taken, and let Θ(tstart) represent the queue
backlogs at that time. It follows that the i.i.d. samples are
also independent of Θ(tstart). Hence, the bounds derived for
the iteration technique in the previous section can be applied
when the iterates use Θ(tstart) as the backlog vector. Let
JΘ(tr) denote the optimal solution to the problem (39) for a
queue backlog Θ(tr) at the beginning of our renewal time tr,
and let JΘ(tstart) denote the corresponding optimal solution
for a problem that starts with initial queue backlog Θ(tstart).
Then there are W − 1 slots in between tstart and tr. Because
the maximum change in any queue on one slot is bounded
by β, we want to claim that an algorithm which computes the
stochastic shortest path using the Θ(tstart) queue values gives
a result that is within an additive constant of the algorithm
which uses Θ(tr). Such an additive constant can be viewed
as the C constant in Theorem 1. This can be justified using
the next lemma, which bounds the deviation of the optimal
costs associated with two general queue backlog vectors.

Let Θ1 and Θ2 be two different queue backlog vectors,
and let JΘ1 and JΘ2 represent the optimal frame costs
corresponding to Θ1 and Θ2, respectively. Define the constant
γ as follows:

γ M
= sup
αz,Ω
||cΘ1(αz,Ω)− cΘ2(αz,Ω)|| (46)

where cΘ(αz,Ω) is the vector, indexed by z, with the zth
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entry given by (37) using backlog vector Θ. Note from (37)
that γ is independent of V (as the V term in (37) cancels out in
the subtraction), and is proportional to the maximum penalty
value times the maximum difference in any queue backlog
entry in Θ1 and its corresponding entry in Θ2. Thus γ is
also independent of the actual size of the backlog vectors, and
depends only on their difference, being bounded by a constant
proportional to Wβ.

Lemma 3: For the vectors Θ1 and Θ2, and for the γ value
defined in (46), we have:

(a) The difference between JΘ1
and JΘ2

satisfies:

||JΘ1
− JΘ2

|| ≤ γ

φ

(b) Let α1(t) denote the policy decisions at time t under the
policy that makes optimal decisions subject to queue backlogs
Θ1, and define Jmis21 as the expected sum cost over a frame
of a mismatched policy that incurs costs according to backlog
vector Θ2 but makes decisions according to α1(t) (and hence
has the same decisions as the optimal policy for Θ1). Then:

JΘ2
≤ Jmis21 ≤ JΘ1

+ 1
γ

φ

where 1 is a vector of all 1 values with the same dimension
as JΘ1

.
Proof: Omitted for brevity (see [31]).

V. SIMULATION

In this section, we simulate the frame-based drift-plus-
penalty algorithm in Section III-B for the simple network
in Fig. 1. The algorithm utilizes the classic Robbins-Monro
iteration, based on samples from the past, to approximate
the weighted stochastic shortest path problem (40). This is
because solving (40) exactly is computationally expensive,
would require full probability knowledge, and may not be
practical for implementation.

The network in Fig. 1 consists of one delay-constrained
queue and ten stability-constrained queues, so that K = {1}
and N = {2, 3, . . . , 11}. The size of the delay-constrained
queue is limited to b = 10 packets. Random packet arrivals
are i.i.d. Bernoulli processes with Pr[An(t) = 1] = 0.06 for
n ∈ N and Pr[A1(t) = 1] = 0.4. Each network channel
has a binary state and is active (ON-state) with probability
Pr[Si(t) = 1] = 0.18775 for i ∈ N and Pr[S1(t) = 1] = 0.5.
The forced renewal probability is Pr[φ(t) = 1] = 0.01.

In this simulation, we consider a problem of minimizing the
average number of dropped packets. For the delay-constrained

Fig. 1. A network with 1 delay-constrained queue (queue 1), and 10 stability-
constrained queues.
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Fig. 2. Behavior in the system with V = 0.

queue Q1(t), the average backlog is limited to 1.2. Define
y0(t) = D1(t) and y1(t) = Q1(t)−1.2. Then an optimization
for this simulation is

Minimize ȳ0

Subject to ȳ1 ≤ 0

Q̄n <∞ for all n ∈ {2, 3, . . . , 11}.

The simulation follows the frame-based drift-plus-penalty
algorithm in Section III-B with the Robbins-Monro iteration
(44). A batch size is set to be W = 50, so that we store the
most recent 50 samples (using less than 50 in the initial slots if
τ < 50). Note that the number of samples is half of the average
frame size, 1/φ = 100. Every forced renewal slot tr, the
algorithm uses the batch to approximate the mapping Ψ̃J in
(42), and then updates J according to (44). After updating J ,
every decision in frame r is decided from the simple rule (38).
Then all delay-constrained, stability-constrained, and virtual
queues are updated as in (1), (2), and (20).

For a simple initial comparison, we use V = 0, so the
algorithm puts no weight on minimizing y0 and only attempts
to satisfy the desired constraints. Results from the algorithm
until 1×105 slots are shown in Fig. 2. The system drops almost
all packets in the delay-constrained queue (as expected),
making its average queue size approach zero, as shown in the
top graphs of Fig. 2. All stability-constrained queues are stable
and have similar behavior, which is shown in the bottom-left
of Fig. 2. The bottom-right of Fig. 2 shows the convergence of
J . This illustrates that the algorithm yields a feasible solution.

We next use V = 100, so the algorithm attempts to
minimize dropping in queue 1. Behavior in the system for the
first 2 × 105 slots are shown in Fig. 3. The figure shows the
convergence of the algorithm. After 2× 106 slots, the average
rate of dropped packets is 0.080 packets/slot and the average
backlog of the delay-constrained queue is 0.975. These values
correspond to the data points plotted for V = 100 in Figs. 4
and 5. Compared to the result from V = 0, the average number
of dropped packets decreases, while the backlog increases as a
result of more aggressive admission. In addition, the algorithm



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 8, PP. 1948-1961, AUG. 2013 11

0 50000 100000 150000 200000
time

0.0

0.1

0.2

0.3

0.4

0.5
pa

ck
et

Average number of dropped packets

D1

0 50000 100000 150000 200000
time

0

2

4

6

8

10

12

pa
ck

et

Length of the delay-constrained queue

Q1(t)

Q1(t)

0 50000 100000 150000 200000
time

0

10

20

30

40

50

60

70

80

90

pa
ck

et

Length of stability-constrained queues

Q2(t)

Q3(t)

0 50000 100000 150000 200000
time

−500

0

500

1000

1500

2000

va
lu

e

Vector J

Fig. 3. Behaviors of the system with V = 100

with V = 100 takes more time slots to converge.

Finally, the system is simulated for V in the range from
0 to 1000, as shown in Figs. 4 and 5. Each value of V is
simulated over 5 independent runs. As V is increased, we
expect the average drop rate to approach to optimality, with a
corresponding increase in average queue sizes for the both
delay-constrained and stability-constrained queues. This is
exactly what happens. After 2×106 slots, the average number
of dropped packets and the average number of backlogs are
recorded. Then the average of the five values for each V is
calculated. Additional simulation with V = 104 shows that
the average rate of dropped packets is 0.073 packets/slot, and
the average backlog is Q1 = 1.15 which is closer to 1.2 than
the case with V = 1000.

For intuition about how these simulation results compare
to the analytical optimum for this problem, note that the sum
input rate (minus dropped packets) is (λ1 − λdrop) + 10λ2 =
1− λdrop packets/slot. This must be less than or equal to the
maximum possible system output rate, being the probability
that at least one of the 11 channels is ON: 1 − (1/2)(1 −
.18775)10 packets/slot. It follows that any stabilizing strategy
must satisfy λdrop ≥ 0.0625 packets/slot. However, one cannot
achieve this value exactly because that would make the average
backlog in queue 1 greater than the constraint 1.2. Further note
that the forced renewal structure creates an optimality gap by
an amount no more than the drops due to forced renewals
(recall Appendix A). In our simulations, the rate of these
drops is roughly (1/100)Q1 ≈ 0.0115 packets/slot. This error
bound is consistent with our simulated total drop rate of 0.073
(note that 0.0625 + 0.0115 = 0.0740). Finally, note that since
our algorithm optimizes decisions subject to assumed forced
renewal events of probability 1/100, it has an incentive to
keep average queue size slightly below the 1.2 constraint to
reduce the drops due to random forced renewals. We expect
that an actual system optimality (without the forced renewal
structure) would match the constraint Q1 = 1.2 exactly.
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Fig. 4. Average number of dropped packets versus V
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Fig. 5. Average backlog of the delay-constrained queue versus V

VI. CONCLUSIONS

We have developed an approach to the Markov Deci-
sion problems associated with a small number K of delay-
constrained wireless users and a (possibly large) number
N of stability-constrained queues. Our formulation allows
optimization of general penalty functions subject to general
penalty constraints, such as minimizing average packet drops
subject to average backlog and/or average delay constraints at
the delay-constrained queues, and subject to stability at the
stability-constrained queues. Our approach uses a reduction
to an online (unconstrained) weighted stochastic shortest path
problem implemented over variable length frames. This gen-
eralizes the class of max-weight network control policies to
networks with Markov decisions. The solution to the under-
lying stochastic shortest path problem has complexity that is
exponential in the number of delay-constrained queues K, but
polynomial in the number of delay-unconstrained queues N . A
Robbins-Monro approximation technique was used to develop
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several approximation algorithms for the stochastic shortest
path problem. The solution technique is general and extends
to other network problems with stochastic decisions.

APPENDIX A — BOUNDING THE INEFFICIENCY OF
FORCED RENEWALS

Consider the problem of minimizing the average drop rate
subject to delay constraints in the delay-constrained queues
and stability in the stability-constrained queues. First consider
the case without forced renewals. Assume the problem is
feasible, and define dropopt as the infimum drop rate subject
to the desired constraints. For simplicity, assume this infimum
is achieved by a particular policy (else, we can consider a
sequence of policies that approach dropopt arbitrarily closely).
Let [A(t),S(t)] be a particular sample path of arrivals and
channels over t ∈ {0, 1, 2, . . .}, and let [µopt(t),Dopt(t)] be
the decisions made by the optimal policy in response to this
sample path, where Dopt(t) = (Dopt

k (t))k∈K. Thus, these
decisions satisfy all required constraints, and:

lim supt→∞
1
t

∑t−1
τ=0

∑
k∈K E

[
Dopt
k (τ)

]
= dropopt (47)

Let Qopt(t) = (Qopt1 (t), . . . , QoptK+N (t)) be the queue back-
logs on slot t under this policy.

Now consider the same system with the same arrivals and
channels [A(t),S(t)], but introduce an independent forced
renewal process φ(t), where forced renewals occur i.i.d. with
probability φ. Consider a new policy [µ̃(t), D̃(t)] that acts on
this sample path. Let Q̃(t) be the resulting queue backlog, with
initial condition Q̃(0)M

=Q
opt(0). Define L̃k(t) as the residual

packets (plus arrivals) in queue k ∈ K after transmission on
slot t:

L̃k(t)M
=Ak(t) + Q̃k(t)− µ̃k(t)

The policy [µ̃(t), D̃(t)] is defined as follows. For each slot
t ∈ {0, 1, 2, . . .} we have for all i ∈ {1, . . . ,K +N}:

µ̃i(t) = min[µopti (t), Q̃i(t)]

Further, for k ∈ K we have:

D̃k(t) =

{
min[Dopt

k (t), L̃k(t)] if φ(t) = 0

L̃k(t) if φ(t) = 1

Thus, the new policy mimics the decisions of the original
policy, with the exception that it only transmits and drops
packets it actually has. It is not difficult to see that this
new policy satisfies Q̃i(t) ≤ Qopti (t) for all t and all i ∈
{1, . . . ,K+N}. Thus, the finite buffer size b is never violated
in any queue. Further, because service is FIFO within a queue,
all non-dropped packets have delay less than or equal to their
delay in the original policy. Thus, the new policy satisfies all
desired stability and delay constraints. Further, on each slot t
we can write:

D̃k(t) = D̃A
k (t) + D̃B

k (t)

where D̃A
k (t)M

= min[Dopt
k (t), L̃k(t)], and D̃B

k (t) are the addi-
tional packets (if any) that are dropped. It is clear that all
packet drops in D̃B

k (t) are due to forced renewals. Further, by
definition of D̃A

k (t) we have D̃A
k (t) ≤ Dopt

k (t), and so:

D̃k(t) ≤ Dopt
k (t) + D̃B

k (t)

Thus:

lim supt→∞
1
t

∑t−1
τ=0

∑
k∈K E

[
D̃k(τ)

]
≤ lim supt→∞

1
t

∑t−1
τ=0

∑
k∈K E

[
Dopt
k (τ)

]
+lim supt→∞

1
t

∑t−1
τ=0

∑
k∈K E

[
D̃B
k (τ)

]
≤ dropopt + (Kb+

∑
k∈K λk)φ

where λk
M
=E [Ak(t)], and we have used (47) together with

the fact that the rate of drops due to forced renewals is at
most (Kb +

∑K
k=1 λk)φ. Thus, there exists a policy on the

system with forced renewals that has a drop rate within O(φ)
of dropopt. It follows that the optimal policy on the system
with forced renewals is also within O(φ) of dropopt.

APPENDIX B — TIME AVERAGES

This appendix provides details for the proof of Theorem 1.
Recall that tr is the start time of the rth renewal frame, and
Tr is the size of the frame, for r ∈ {0, 1, 2, . . .}. The random
variables Tr are i.i.d. and geometrically distributed with mean
1/φ and second moment (2− φ)/φ2. The queue sizes on slot
tr are independent of Tr. Recall that (29) implies there is a
finite constant D > 0 such that for all R > 0:

1

R

R−1∑
r=0

[∑
n∈N

E [Qn(tr)] +

L∑
l=1

E [Xl(tr)]

]
≤ D (48)

Claim 1: If (48) holds, then:

lim sup
t→∞

1

t

t−1∑
τ=0

[∑
n∈N

E [Qn(τ)] +

L∑
l=1

E [Xl(τ)]

]
<∞

and so all queues Qn(t) and Xl(t) are strongly stable.
Proof: (Claim 1) Define H(t) as follows:

H(t)M
=
∑
n∈N

Qn(t) +

L∑
l=1

Xl(t)

The sum of the (non-negative) H(τ) values over τ ∈
{0, . . . , R − 1} is less than or equal to the sum over the first
R frames (because each frame is at least one slot), and so:

R−1∑
τ=0

H(τ) ≤
R−1∑
r=0

tr+Tr−1∑
τ=tr

H(τ)

≤
R−1∑
r=0

Tr[H(tr) + Trγ]

where γ = (N + L)β is the maximum increase in H(t)
during one slot (recall (6)). Taking expectations and using
E [H(tr)Tr] = (1/φ)E [H(tr)] yields:

R−1∑
τ=0

E [H(τ)] ≤ γRE
[
T 2

0

]
+ (1/φ)

R−1∑
r=0

E [H(tr)]

Dividing by R and using (48) yields for all R > 0:

1

R

R−1∑
τ=0

E [H(τ)] ≤ γE
[
T 2

0

]
+D/φ

Taking a limit as R→∞ proves the result.
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Claim 2: If |y0(τ)| ≤ β for all τ , then:

lim sup
t→∞

1

t

t−1∑
τ=0

E [y0(τ)] ≤ lim sup
R→∞

E
[∑tR−1

τ=0 y0(τ)
]

R/φ

Proof: (Claim 2) It suffices to assume y0(t) ≥ 0 for all
t (else, just define ỹ0(t) = y0(t) + β). Fix ε > 0. Define
R(t)M

=d(φ+ ε)te. For each integer t > 0, define ψ(t) = 1 if:
R(t)−1∑
r=0

Tr < t

and define ψ(t) = 0 otherwise. Note that the average of
the Tr values converges to 1/φ with probability 1, and so
limt→∞ E [ψ(t)] = 0. Thus, because y0(t) ≥ 0 for all t:

1

t

t−1∑
τ=0

y0(τ) ≤ 1

t

tR(t)−1∑
τ=0

y0(τ) + βψ(t)

where the first term in the right-hand-side is an upper bound
if ψ(t) = 0 (because R(t) frames contains at least t slots if
ψ(t) = 0), while the second is an upper bound otherwise.
Taking expectations yields:

1

t

t−1∑
τ=0

E [y0(τ)] ≤ R(t)

t

1

R(t)
E

tR(t)−1∑
τ=0

y0(τ)


+βE [ψ(t)]

≤ (
1

t
+ φ+ ε)

1

R(t)
E

tR(t)−1∑
τ=0

y0(τ)


+βE [ψ(t)]

Taking limits gives:

lim sup
t→∞

1

t

t−1∑
τ=0

E [y0(τ)] ≤ (φ+ ε) lim sup
R→∞

1

R
E

[
tR−1∑
τ=0

y0(τ)

]
The above holds for all ε > 0. Taking a limit as ε→ 0 yields
the result.
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