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This chapter considers energy-aware control for a computing system with two states:

active and idle. In the active state, the controller chooses to perform a single task using one

of multiple task processing modes. The controller then saves energy by choosing an amount

of time for the system to be idle. These decisions affect processing time, energy expenditure,

and an abstract attribute vector that can be used to model other criteria of interest (such as

processing quality or distortion). The goal is to optimize time average system performance.

Applications of this model include a smart phone that makes energy-efficient computation
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and transmission decisions, a computer that processes tasks subject to rate, quality, and

power constraints, and a smart grid energy manager that allocates resources in reaction to

a time varying energy price.

The solution methodology of this chapter uses the theory of optimization for renewal sys-

tems developed in [25][30]. Section 9.1 focuses on a computer system that seeks to minimize

average power subject to processing rate constraints for different classes of tasks. Section

9.2 generalizes to treat optimization for a larger class of systems. Section 9.3 extends the

model to allow control actions to react to a random event observed at the beginning of each

active period, such as a vector of current channel conditions or energy prices.

9.1 Task Scheduling with Processing Rate Constraints
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Figure 9.1: (a) A processor that chooses from one of N classes on each frame k. (b) A
timeline illustrating the active and idle periods for each frame.

To illustrate the method, this section considers a particular system. Consider a computer

system that repeatedly processes tasks. There are N classes of tasks, where N is a positive

integer. For simplicity, assume each class always has a new task ready to be performed

(this is extended to randomly arriving tasks in Section 9.2.3). The system operates over

time intervals called frames. Each frame k ∈ {0, 1, 2, . . .} begins with an active period of

size D[k] and ends with an idle period of size I[k] (see Fig. 9.1). At the beginning of each

active period k, the controller selects a new task of class c[k] ∈ {1, . . . , N}. It also chooses

a processing mode m[k] from a finite set M of possible processing options. These control

decisions affect the duration D[k] of the active period and the energy e[k] that is incurred.

The controller then selects an amount of time I[k] to be idle, where I[k] is chosen such that
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0 ≤ I[k] ≤ Imax for some positive number Imax. Choosing I[k] = 0 effectively skips the idle

period, so there can be back-to-back active periods. For simplicity, this section assumes that

no energy is expended in the idle state.

Assume that D[k] and e[k] are random functions of the class and mode decisions for frame

k. Specifically, assume D[k] and e[k] are conditionally independent of the past, given the

current (c[k],m[k]) that is used, with mean values given by functions D̂(c,m) and ê(c,m)

defined over (c,m) ∈ {1, . . . , N}×M:

D̂(c,m)!=E [D[k]|(c[k],m[k]) = (c,m)] , ê(c,m)!=E [e[k]|(c[k],m[k]) = (c,m)]

where the notation “a!
=b” represents “a is defined to be equal to b.” This chapter uses

D̂(c[k],m[k]) and ê(c[k],m[k]) to denote expectations given a particular decision (c[k],m[k])

for frame k:

D̂(c[k],m[k]) = E [D[k]|c[k],m[k]] , ê(c[k],m[k]) = E [e[k]|c[k],m[k]]

It is assumed there is a positive value Dmin such that D[k] ≥ Dmin for all frames k, regardless

of the (c[k],m[k]) decisions. Thus, all frame sizes are at least Dmin units of time. Further,

for technical reasons, it is assumed that second moments of D[k] and e[k] are bounded by a

finite constant σ2, so that:

E
[
D[k]2

]
≤ σ2 , E

[
e[k]2

]
≤ σ2 (9.1)

where (9.1) holds regardless of the policy for selecting (c[k],m[k]). The conditional joint

distribution of (D[k], e[k]), given (c[k],m[k]), is otherwise arbitrary, and only the mean values

D̂(c,m) and ê(c,m) are known for each c ∈ {1, . . . , N} and m ∈ M. In the special case

of a deterministic system, the functions D̂(c,m) and ê(c,m) can be viewed as deterministic

mappings from a given control action (c[k],m[k]) = (c,m) to the actual delayD[k] = D̂(c,m)

and energy e[k] = ê(c,m) experienced on frame k, rather than as expectations of these values.
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9.1.1 Examples of Energy-Aware Processing

Consider an example where a computer system performs computation for different tasks.

Suppose the system uses a chip multi-processor that can select between one of multiple

processing modes for each task. For example, this might be done using voltage/frequency

scaling, or by using a choice of different processing cores [9][2]. Let M represent the set of

processing modes. For each mode m ∈ M, define:

Tsetup(m) !
= Setup time for mode m.

esetup(m) !
= Setup energy for mode m.

DPI(m) !
= Average delay-per-instruction for mode m.

EPI(m) !
= Average energy-per-instruction for mode m.

Further suppose that tasks of class c ∈ {1, . . . , N} have an average number of instructions

equal to Sc. For simplicity, suppose the number of instructions in a task is independent

of the energy and delay of each individual instruction. Then the average energy and delay

functions ê(c,m) and D̂(c,m) are:

ê(c,m) = esetup(m) + ScEPI(m)

D̂(c,m) = Tsetup(m) + ScDPI(m)

In cases when the system cannot be modeled using DPI(m) and EPI(m) functions, the

expectations ê(c,m) and D̂(c,m) can be estimated as empirical averages of energy and delay

observed when processing type c tasks with mode m. While this example assumes all classes

have the same set of processing mode options M, this can easily be extended to restrict each

class c to its own subset of options Mc.

As another example, consider the problem of wireless data transmission. Here, each task

represents a packet of data that must be transmitted. Let M represent the set of wireless

transmission options (such as modulation and coding strategies). For each m ∈ M, define

µ(m) as the transmission rate (in bits per unit time) under option m, and let power(m) be

the power used. For simplicity, assume there are no transmission errors. Let Bc represent
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the average packet size for class c ∈ {1, . . . , N}, in units of bits. Thus:

ê(c,m) = power(m)Bc/µ(m)

D̂(c,m) = Bc/µ(m)

In the case when each transmission mode m ∈ M has a known error probability, the func-

tions ê(c,m) and D̂(c,m) can be redefined to account for retransmissions. An important

alternative scenario is when channel states are time-varying but can be measured at the

beginning of each frame. This can be treated using the extended theory in Section 9.3.

9.1.2 Time Averages as Ratios of Frame Averages

The goal is to design a control policy that makes decisions over frames to minimize time

average power subject to processing each class n ∈ {1, . . . , N} with rate at least λn, for

some desired processing rates (λ1, . . . ,λN) that are given. Before formalizing this as a

mathematical optimization, this subsection shows how to write time averages in terms

of frame averages. Suppose there is a control policy that yields a sequence of energies

{e[0], e[1], e[2], . . .} and corresponding frame sizes {D[0] + I[0], D[1] + I[1], D[2] + I[2], . . .}
for each frame k ∈ {0, 1, 2, . . .}. The frame averages e, D, I are defined:

e!
= lim

K→∞

1

K

K−1∑

k=0

e[k] , D !
= lim

K→∞

1

K

K−1∑

k=0

D[k] , I !
= lim

K→∞

1

K

K−1∑

k=0

I[k] (9.2)

where, for simplicity, it is assumed the limits converge to constants with probability 1. Note

that e does not represent the time average power used by the system, because it does not

consider the amount of time spent in each frame. The time average power considers the

accumulated energy used divided by the total time, and is written as follows:

lim
K→∞

∑K−1
k=0 e[k]

∑K−1
k=0 (D[k] + I[k])

= lim
K→∞

1
K

∑K−1
k=0 e[k]

1
K

∑K−1
k=0 (D[k] + I[k])

=
e

D + I

Therefore, the time average power is equal to the average energy per frame divided by the

average frame size. This simple observation is often used in renewal-reward theory [6][35].
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For each class n ∈ {1, . . . , N} and each frame k, define an indicator variable 1n[k] that is

1 if the controller chooses to process a class n task on frame k, and 0 else:

1n[k]
!
=





1 if c[k] = n

0 if c[k] %= n

Then 1n
!
= limK→∞

1
K

∑K−1
k=0 1n[k] is the fraction of frames that choose class n, and the ratio

1n/(D + I) is the time average rate of processing class n tasks, in tasks per unit time.

The problem of minimizing time average power subject to processing each class n at a

rate of at least λn tasks per unit time is then mathematically written as follows:

Minimize:
e

D + I
(9.3)

Subject to:
1n

D + I
≥ λn ∀n ∈ {1, . . . , N} (9.4)

(c[k],m[k]) ∈ {1, . . . , N}×M ∀k ∈ {0, 1, 2, . . .} (9.5)

0 ≤ I[k] ≤ Imax ∀k ∈ {0, 1, 2, . . .} (9.6)

where the objective (9.3) is average power, the constraint (9.4) ensures the processing rate

of each class n is at least λn, and constraints (9.5)-(9.6) ensure that c[k] ∈ {1, . . . , N},
m[k] ∈ M, and 0 ≤ I[k] ≤ Imax for each frame k.

9.1.3 Relation to Frame Average Expectations

The problem (9.3)-(9.6) is defined by frame averages. This subsection shows that frame av-

erages are related to frame average expectations, and hence can be related to the expectation

functions D̂(c,m), ê(c,m). Consider any (possibly randomized) control algorithm for select-

ing (c[k],m[k]) over frames, and assume this gives rise to well defined expectations E [e[k]]

for each frame k. By the law of iterated expectations, it follows that for any given frame

k ∈ {0, 1, 2, . . .}:

E [e[k]] = E [ E [e[k]|c[k],m[k]] ] = E [ ê(c[k],m[k]) ] (9.7)
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Furthermore, because second moments are bounded by a constant σ2 on each frame k,

the bounded moment convergence theorem (given in Appendix A) ensures that if the frame

average energy converges to a constant e with probability 1, as defined in (9.2), then e is the

same as the frame average expectation:

lim
K→∞

1

K

K−1∑

k=0

e[k] = e = lim
K→∞

1

K

K−1∑

k=0

E [ê(c[k],m[k])]

The same goes for the quantities D, I, 1n. Hence, one can interpret the problem (9.3)-(9.6)

using frame average expectations, rather than pure frame averages.

9.1.4 An Example with One Task Class

Consider a simple example with only one type of task. The system processes a new task of

this type at the beginning of every busy period. The energy and delay functions can then

be written purely in terms of the processing mode m ∈ M, so that we have ê(m) and D̂(m).

Suppose there are only two processing mode options, so that M = {1, 2}, and that each

option leads to a deterministic energy and delay, as given below:

m[k] = 1 =⇒ (e[k], D[k]) = (ê(1), D̂(1)) = (1, 7) (9.8)

m[k] = 2 =⇒ (e[k], D[k]) = (ê(2), D̂(2)) = (3, 4) (9.9)

Option m[k] = 1 requires 1 unit of energy but 7 units of processing time. Option m[k] = 2 is

more energy-expensive (requiring 3 units of energy) but is faster (taking only 4 time units).

The idle time I[k] is chosen every frame in the interval [0, 10], so that Imax = 10.

No constraints

For this system, suppose we seek to minimize average power e/(D + I), with no processing

rate constraint. Consider three possible algorithms:
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1. Always use m[k] = 1 and I[k] = I for all frames k, for some constant I ∈ [0, 10].

2. Always use m[k] = 2 and I[k] = I for all frames k, for some constant I ∈ [0, 10].

3. Always use I[k] = I for all frames k, for some constant I ∈ [0, 10]. However, each frame

k, independently choose m[k] = 1 with probability p, and m[k] = 2 with probability

1− p (for some p that satisfies 0 ≤ p ≤ 1).

Clearly the third algorithm contains the first two for p = 1 and p = 0, respectively. The

time average power under each algorithm is:

m[k] = 1 always =⇒ e

D + I
=

ê(1)

D̂(1) + I
=

1

7 + I

m[k] = 2 always =⇒ e

D + I
=

ê(2)

D̂(2) + I
=

3

4 + I

probabilistic rule =⇒ e

D + I
=

pê(1) + (1− p)ê(2)

pD̂(1) + (1− p)D̂(2) + I
=

1p+ 3(1− p)

7p+ 4(1− p) + I

It is clear that in all three cases, we should choose I = 10 to minimize average power.

Further, it is clear that always choosing m[k] = 1 is better than always choosing m[k] = 2.

However, it is not immediately obvious if a randomized mode selection rule can do even

better. The answer is no: In this case, power is minimized by choosing m[k] = 1 and

I[k] = 10 for all frames k, yielding average power 1/17.

This fact holds more generally: Let a(α) and b(α) be any deterministic real valued func-

tions defined over general actions α that are chosen in an abstract action space A. Assume

the functions are bounded, and that there is a value bmin > 0 such that b(α) ≥ bmin for all

α ∈ A. Consider designing a randomized choice of α that minimizes E [a(α)] /E [b(α)], where

the expectations are with respect to the randomness in the α selection. The next lemma

shows this is done by deterministically choosing an action α ∈ A that minimizes a(α)/b(α).

Lemma 1. Under the assumptions of the preceding paragraph, for any randomized choice of

α ∈ A we have:
E [a(α)]

E [b(α)]
≥ inf

α∈A

[
a(α)

b(α)

]
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and so the infimum of the ratio over the class of deterministic decisions yields a value that

is less than or equal to that of any randomized selection.

Proof. Consider any randomized policy that yields expectations E [a(α)] and E [b(α)]. With-

out loss of generality, assume these expectations are achieved by a policy that randomizes

over a finite set of M actions α1, . . . ,αM in A with some probabilities p1, . . . , pM :1

E [a(α)] =
M∑

m=1

pma(αm) , E [b(α)] =
M∑

m=1

pmb(αm)

Then, because b(αm) > 0 for all αm, we have:

E [a(α)]

E [b(α)]
=

∑M
m=1 pma(αm)∑M
m=1 pmb(αm)

=

∑M
m=1 pmb(αm)[a(αm)/b(αm)]∑M

m=1 pmb(αm)

≥
∑M

m=1 pmb(αm) infα∈A[a(α)/b(α)]∑M
m=1 pmb(αm)

= inf
α∈A

[a(α)/b(α)]

One Constraint

The preceding subsection shows that unconstrained problems can be solved by deterministic

actions. This is not true for constrained problems. This subsection shows that adding just

a single constraint often necessitates the use of randomized actions. Consider the same

problem as before, with two choices for m[k], and with the same ê(m) and D̂(m) values

given in (9.8)-(9.9). We want to minimize e/(D + I) subject to 1/(D + I) ≥ 1/5, where

1/(D + I) is the rate of processing jobs. The constraint is equivalent to D + I ≤ 5.

Assume the algorithm chooses I[k] over frames to yield an average I that is somewhere in

1Indeed, because the set S = {(a(α), b(α)) such that α ∈ A} is bounded, the expectation (E [a(α)] ,E [b(α)]) is finite and is
contained in the convex hull of S. Thus, (E [a(α)] ,E [b(α)]) is a convex combination of a finite number of points in S.
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the interval 0 ≤ I ≤ 10. Now consider different algorithms for selecting m[k]. If we choose

m[k] = 1 always (so that (ê(1), D̂(1)) = (1, 7)), then:

m[k] = 1 always =⇒ e

D + I
=

1

7 + I
, D + I = 7 + I

and so it is impossible to meet the constraint D + I ≤ 5, because 7 + I > 5.

If we choose m[k] = 2 always (so that (ê(2), D̂(2)) = (3, 4)), then:

m[k] = 2 always =⇒ e

D + I
=

3

4 + I
, D + I = 4 + I

It is clear that we can meet the constraint by choosing I so that 0 ≤ I ≤ 1, and power is

minimized in this setting by using I = 1. This can be achieved, for example, by using I[k] = 1

for all frames k. This meets the processing rate constraint with equality: D+ I = 4+1 = 5.

Further, it yields average power e/(D + I) = 3/5 = 0.6.

However, it is possible to reduce average power while also meeting the constraint with

equality by using the following randomized policy (which can be shown to be optimal):

Choose I[k] = 0 for all frames k, so that I = 0. Then every frame k, independently choose

m[k] = 1 with probability 1/3, and m[k] = 2 with probability 2/3. We then have:

D + I = (1/3)7 + (2/3)4 + 0 = 5

and so the processing rate constraint is met with equality. However, average power is:

e

D + I
=

(1/3)1 + (2/3)3

(1/3)7 + (2/3)4 + 0
= 7/15 ≈ 0.466667

This is a significant savings over the average power of 0.6 from the deterministic policy.

9.1.5 The Linear Fractional Program for Task Scheduling

Now consider the general problem (9.3)-(9.6) for minimizing average power subject to average

processing rate constraints for each of theN classes. Assume the problem is feasible, so that it
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is possible to choose actions (c[k],m[k], I[k]) over frames to meet the desired constraints (9.4)-

(9.6). It can be shown that an optimal solution can be achieved over the class of stationary

and randomized policies with the following structure: Every frame, independently choose

vector (c[k],m[k]) with some probabilities p(c,m) = Pr[(c[k],m[k]) = (c,m)]. Further, use a

constant idle time I[k] = I for all frames k, for some constant I that satisfies 0 ≤ I ≤ Imax.

Thus, the problem can be written as the following linear fractional program with unknowns

p(c,m) and I and known constants ê(c,m), D̂(c,m), λn, and Imax:

Minimize:

∑N
c=1

∑
m∈M p(c,m)ê(c,m)

I +
∑N

c=1

∑
m∈M p(c,m)D̂(c,m)

(9.10)

Subject to:

∑
m∈M p(n,m)

I +
∑N

c=1

∑
m∈M p(c,m)D̂(c,m)

≥ λn ∀n ∈ {1, . . . , N} (9.11)

0 ≤ I ≤ Imax (9.12)

p(c,m) ≥ 0 ∀c ∈ {1, . . . , N}, ∀m ∈ M (9.13)
N∑

c=1

∑

m∈M

p(c,m) = 1 (9.14)

where the numerator and denominator in (9.10) are equal to e and D+I, respectively, under

this randomized algorithm, the numerator in the left-hand-side of (9.11) is equal to 1n, and

the constraints (9.13)-(9.14) specify that p(c,m) must be a valid probability mass function.

Linear fractional programs can be solved in several ways. One method uses a nonlinear

change of variables to map the problem to a convex program [3]. However, this method does

not admit an online implementation, because time averages are not preserved through the

nonlinear change of variables. Below, an online algorithm is presented that makes decisions

every frame k. The algorithm is not a stationary and randomized algorithm as described

above. However, it yields time averages that satisfy the desired constraints of the problem

(9.3)-(9.6), with a time average power expenditure that can be pushed arbitrarily close to

the optimal value. A significant advantage of this approach is that it extends to treat cases

with random task arrivals, without requiring knowledge of the (λ1, . . . ,λN) arrival rates, and

to treat other problems with observed random events, without requiring knowledge of the

probability distribution for these events. These extensions are shown in later sections.
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For later analysis, it is useful to write (9.10)-(9.14) in a simpler form. Let poweropt

be the optimal time average power for the above linear fractional program, achieved by

some probability distribution p∗(c,m) and idle time I∗ that satisfies 0 ≤ I∗ ≤ Imax. Let

(c∗[k],m∗[k], I∗[k]) represent the frame k decisions under this stationary and randomized

policy. Thus:

E [ê(c∗[k],m∗[k])]

E
[
I∗[k] + D̂(c∗[k],m∗[k])

] = poweropt (9.15)

E [1∗n[k]]

E
[
I∗[k] + D̂(c∗[k],m∗[k])

] ≥ λn ∀n ∈ {1, . . . , N} (9.16)

where 1∗n[k] is an indicator function that is 1 if c∗[k] = n, and 0 else. The numerator

and denominator of (9.15) correspond to those of (9.10). Likewise, the constraint (9.16)

corresponds to (9.11).

9.1.6 Virtual Queues

!"#$%&'"#$%&("&)*#$%+,#$%-&

Figure 9.2: An illustration of the virtual queue Qn[k] from equation (9.18).

To solve the problem (9.3)-(9.6), we first consider the constraints (9.4), which are equiv-

alent to the constraints:

λn(D + I) ≤ 1n ∀n ∈ {1, . . . , N} (9.17)

For each constraint n ∈ {1, . . . , N}, define a virtual queue Qn[k] that is updated on frames

k ∈ {0, 1, 2, . . .} by:

Qn[k + 1] = max[Qn[k] + λn(D[k] + I[k])− 1n[k], 0] (9.18)

The initial condition Qn[0] can be any non-negative value. For simplicity, it is assumed

throughout that Qn[0] = 0 for all n ∈ {1, . . . , N}. The update (9.18) can be viewed as a
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discrete time queueing equation, where Qn[k] is the backlog on frame k, λn(D[k] + I[k]) is

an effective amount of “new arrivals,” and 1n[k] is the amount of “offered service” (see Fig.

9.2). The intuition is that if all virtual queues Qn[k] are stable, then the average “arrival

rate” λn(D + I) must be less than or equal to the average “service rate” 1n, which ensures

the desired constraint (9.17). This is made precise in the following lemma.

Lemma 2. (Virtual Queues) Suppose Qn[k] has update equation given by (9.18), with any

non-negative initial condition.

a) For all K ∈ {1, 2, 3, . . .} we have:

1

K

K−1∑

k=0

[λn(D[k] + I[k])− 1n[k]] ≤
Qn[K]−Qn[0]

K
(9.19)

b) If limK→∞ Qn[K]/K = 0 with probability 1, then:

lim sup
K→∞

1

K

K−1∑

k=0

[λn(D[k] + I[k])− 1n[k]] ≤ 0 with probability 1 (9.20)

c) If limK→∞ E [Qn[K]] /K = 0, then:

lim sup
K→∞

[λn(D[K] + I[K])− 1n[K]] ≤ 0 (9.21)

where D[K], I[K], 1n[K] are defined:

D[K]!= 1
K

∑K−1
k=0 E [D[k]] , I[K]!= 1

K

∑K−1
k=0 E [I[k]] , 1n[K]!= 1

K

∑K−1
k=0 E [1n[k]]

Proof. From (9.18) we have for all k ∈ {0, 1, 2, . . .}:

Qn[k + 1] ≥ Qn[k] + λn(D[k] + I[k])− 1n[k]
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Fixing a positive integer K and summing the above over k ∈ {0, . . . , K − 1} yields:

Qn[K]−Qn[0] ≥
K−1∑

k=0

[λn(D[k] + I[k])− 1n[k]]

Dividing the above by K proves part (a). Part (b) follows from (9.19) by taking a lim sup.

Part (c) follows by first taking expectations of (9.19) and then taking a lim sup.

Inequality (9.19) shows that the value Qn[K]/K bounds the amount by which the desired

constraint for class n is violated by the time averages achieved over the first K frames.

Suppose that D[k], I[k], and 1n[k] have frame averages that converge to constants D, I, 1n

with probability 1. Part (c) of Lemma 2 indicates that if limK→∞ E [Qn[K]] /K = 0 for all

n ∈ {1, . . . , N}, then λn(D + I) ≤ 1n for all n ∈ {1, . . . , N}.

In the language of queueing theory, a discrete time queue Q[k] is said to be rate stable

if limk→∞Q[k]/k = 0 with probability 1, and is mean rate stable if limk→∞ E [Q[k]] /k = 0

[25]. With this terminology, the above lemma shows that if Qn[k] is rate stable then (9.20)

holds, and if Qn[k] is mean rate stable then (9.21) holds.

9.1.7 The Drift-Plus-Penalty Ratio

To stabilize the queues while minimizing time average power, we use Lyapunov optimization

theory, which gives rise to the drift-plus-penalty ratio algorithm [25]. First define L[k] as the

sum of the squares of all queues on frame k (divided by 2 for convenience later):

L[k]!=
1

2

N∑

n=1

Qn[k]
2

L[k] is often called a Lyapunov function, and acts as a scalar measure of the size of the

queues. Intuitively, keeping L[k] small leads to stable queues, and we should take actions

that tend to shrink L[k] from one frame to the next. Define ∆[k] as the Lyapunov drift,
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being the difference in the Lyapunov function from one frame to the next:

∆[k]!=L[k + 1]− L[k]

Taking actions to minimize ∆[k] every frame can be shown to ensure the desired con-

straints are satisfied whenever it is possible to satisfy them, but does not incorporate power

minimization. To incorporate this, every frame k we observe the current queue vector

Q[k] = (Q1[k], . . . , QN [k]) and choose control actions (c[k],m[k], I[k]) to minimize a bound

on the following drift-plus-penalty ratio:

E [∆[k] + V e[k]|Q[k]]

E [D[k] + I[k]|Q[k]]

where V is a non-negative parameter that weights the extent to which power minimization

is emphasized. The intuition is that the numerator incorporates both drift and energy. The

denominator “normalizes” this by the expected frame size, with the understanding that

average power must include both energy and frame size. We soon show that this intuition

is correct, in that all desired time average constraints are satisfied, and the time average

power is within O(1/V ) of the optimal value poweropt. Hence, average power can be pushed

arbitrarily close to optimal by using a sufficiently large value of V . The tradeoff is that

average queue sizes grow with V , which impacts the convergence time required to satisfy the

desired constraints.

The drift-plus-penalty ratio method was first developed for the context of restless bandit

systems in [18][19]. The method was used for optimization of renewal systems in [25][30],

which treat problems similar to those considered in this chapter. In the special case when

all frame sizes are fixed and equal to one unit of time (a time slot), and when V = 0, the

method reduces to observing queues Q[k] every slot k and taking actions to minimize a

bound on E [∆[k]|Q[k]]. This is the rule that generates the classic max-weight scheduling

algorithms for queue stability (without performance optimization), developed by Tassiulas

and Ephremides in [38][39]. For systems with unit time slots but with V > 0, the drift-plus-

penalty ratio technique reduces to the drift-plus-penalty technique of [24][8][29], which treats

joint queue stability and penalty minimization in systems with unit size slots.



16CHAPTER 9. LOWPOWERDYNAMIC SCHEDULING FOR COMPUTING SYSTEMS

Bounding the Drift-Plus-Penalty Ratio

To construct an explicit algorithm, we first bound the drift-plus-penalty ratio.

Lemma 3. For all frames k ∈ {0, 1, 2, . . .}, all possible Q[k], and under any decisions for

(c[k],m[k], I[k]), we have:

E [∆[k] + V e[k]|Q[k]]

E [D[k] + I[k]|Q[k]]
≤ B

E [D[k] + I[k]|Q[k]]
+

E [V ê(c[k],m[k])|Q[k]]

E
[
D̂(c[k],m[k]) + I[k]|Q[k]

]

+

∑N
n=1 Qn[k]E

[
λn(D̂(c[k],m[k]) + I[k])− 1n[k]|Q[k]

]

E
[
D̂(c[k],m[k]) + I[k]|Q[k]

] (9.22)

where B is a constant that satisfies the following for all possible Q[k] and all policies:

B ≥ 1
2

∑N
n=1 E [(λn(D[k] + I[k])− 1n[k])2|Q[k]]

Such a constant B exists by the second moment boundedness assumptions (9.1).

Proof. Note by iterated expectations that (similar to (9.7)):2

E [D[k]|Q[k]] = E
[
D̂(c[k],m[k])|Q[k]

]
, E [e[k]|Q[k]] = E [ê(c[k],m[k])|Q[k]]

Thus, the denominator is common for all terms of inequality (9.22), and it suffices to prove:

E [∆[k]|Q[k]] ≤ B +
∑N

n=1 Qn[k]E
[
λn(D̂(c[k],m[k]) + I[k])− 1n[k]|Q[k]

]
(9.23)

To this end, by squaring (9.18) and noting that max[x, 0]2 ≤ x2, we have for each n:

1

2
Qn[k + 1]2 ≤ 1

2
(Qn[k] + λn(D[k] + I[k])− 1n[k])

2

=
1

2
Qn[k]

2 +
1

2
(λn(D[k] + I[k])− 1n[k])

2 +Qn[k](λn(D[k] + I[k])− 1n[k])

2Indeed, by iterated expectations we have E [D[k]|Q[k]] = E [E [D[k]|(c[k],m[k]),Q[k]] |Q[k]], and E [D[k]|(c[k],m[k]),Q[k]] =
E [D[k]|(c[k],m[k])] because D[k] is conditionally independent of the past given the current (c[k],m[k]) used.
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Summing the above over n ∈ {1, . . . , N} and using the definition of ∆[k] gives:

∆[k] ≤ 1

2

N∑

n=1

(λn(D[k] + I[k])− 1n[k])
2 +

N∑

n=1

Qn[k](λn(D[k] + I[k])− 1n[k])

Taking conditional expectations given Q[k] and using the bound B proves (9.23).

The Task Scheduling Algorithm

Our algorithm takes actions every frame to minimize the last two terms on the right-hand-

side of the drift-plus-penalty ratio bound (9.22). The only part of these terms that we have

control over on frame k (given the observed Q[k]) is given below:

E
[
V ê(c[k],m[k])−

∑N
n=1 Qn[k]1n[k]|Q[k]

]

E
[
D̂(c[k],m[k]) + I[k]|Q[k]

]

Recall from Lemma 1 that minimizing the above ratio of expectations is accomplished over

a deterministic choice of (c[k],m[k], I[k]). Thus, every frame k we perform the following:

• Observe queues Q[k] = (Q1[k], . . . , QN [k]). Then choose c[k] ∈ {1, . . . , N}, m[k] ∈ M,

and I[k] such that 0 ≤ I[k] ≤ Imax to minimize:

V ê(c[k],m[k])−Qc[k][k]

D̂(c[k],m[k]) + I[k]
(9.24)

• Update queues Qn[k] for each n ∈ {1, . . . , N} via (9.18), using the D[k], I[k], and 1n[k]

values that result from the decisions c[k], m[k], I[k] that minimized (9.24)

Steps to minimize (9.24)

Here we elaborate on how to perform the minimization in (9.24) for each frame k. For each

c ∈ {1, . . . , N} and m ∈ M, define idle(c,m) as the value of I[k] that minimizes (9.24),
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given that we have (c[k],m[k]) = (c,m). It is easy to see that:

idle(c,m) =





0 if V ê(c,m)−Qc[k] ≤ 0

Imax otherwise

Now define val(c,m) by:

val(c,m) =
V ê(c,m)−Qc[k]

D̂(c,m) + idle(c,m)

Then we choose (c[k],m[k]) as the minimizer of val(c,m) over c ∈ {1, . . . , N} and m ∈ M,

breaking ties arbitrarily, and choose I[k] = idle(c[k],m[k]). Note that this algorithm chooses

I[k] = 0 or I[k] = Imax on every frame k. Nevertheless, it results in a frame average I that

approaches optimality for large V .

9.1.8 Performance of the Task Scheduling Algorithm

For simplicity, the performance theorem is presented in terms of zero initial conditions. It is

assumed throughout that the problem (9.3)-(9.6) is feasible, so that it is possible to satisfy

the constraints.

Theorem 1. Suppose Qn[0] = 0 for all n ∈ {1, . . . , N}, and that the problem (9.3)-(9.6) is

feasible. Then under the above task scheduling algorithm:

a) For all frames K ∈ {1, 2, 3, . . . } we have:3

e[K]

D[K] + I[K]
≤ poweropt +

B

V (D[K] + I[K])
(9.25)

where B is defined in Lemma 3, poweropt is the minimum power solution for the problem

(9.3)-(9.6), and e[K], D[K], I[K] are defined by:

e[K]!= 1
K

∑K−1
k=0 E [e[k]] , D[K]!= 1

K

∑K−1
k=0 E [D[k]] , I[K]!= 1

K

∑K−1
k=0 E [I[k]]

b) The desired constraints (9.20) and (9.21) are satisfied for all n ∈ {1, . . . , N}. Further,
3The right-hand-side in (9.25) can be simplified to poweropt +B/(V Dmin), since all frames are at least Dmin in size.
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we have for each frame K ∈ {1, 2, 3, . . .}:

E [||Q[k||]
K

≤
√

2(B + V β)

K
(9.26)

where ||Q[k]||!=
√∑N

n=1 Qn[k]2 is the norm of the queue vector (being at least as large as each

component Qn[k]), and β is a constant that satisfies the following for all frames k:

β ≥ E
[
poweropt(D[k] + I[k])− e[k]

]

Such a constant β exists because the second moments (and hence first moments) are bounded.

In the special case of a deterministic system, all expectations of the above theorem can be

removed, and the results hold deterministically for all frames K. Theorem 1 indicates that

average power can be pushed arbitrarily close to poweropt, using the V parameter that affects

an O(1/V ) performance gap given in (9.25). The tradeoff is that V increases the expected

size of E [Qn[K]] /K as shown in (9.26), which bounds the expected deviation from the nth

constraint during the first K frames (recall (9.19) from Lemma 2). Under a mild additional

“Slater-type” assumption that ensures all constraints can be satisfied with “ε-slackness,” a

stronger result on the virtual queues can be shown, namely, that the same algorithm yields

queues with average size O(V ) [25]. This typically ensures a tighter constraint tradeoff than

that given in (9.26). A related improved tradeoff is explored in more detail in Section 9.2.3.

Proof. (Theorem 1 part (a)) Given Q[k] for frame k, our control decisions minimize the last

two terms in the right-hand-side of the drift-plus-penalty ratio bound (9.22), and hence:

E [∆[k] + V e[k]|Q[k]]

E [D[k] + I[k]|Q[k]]
≤ B

E [D[k] + I[k]|Q[k]]
+

E [V ê(c∗[k],m∗[k])|Q[k]]

E
[
D̂(c∗[k],m∗[k]) + I∗[k]|Q[k]

]

+

∑N
n=1 Qn[k]E

[
λn(D̂(c∗[k],m∗[k]) + I∗[k])− 1∗n[k]|Q[k]

]

E
[
D̂(c∗[k],m∗[k]) + I∗[k]|Q[k]

] (9.27)

where c∗[k], m∗[k], I∗[k], 1∗n[k] are from any alternative (possibly randomized) decisions that

can be made on frame k. Now recall the existence of stationary and randomized decisions
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that yield (9.15)-(9.16). In particular, these decisions are independent of queue backlog Q[k]

and thus yield (from (9.15)):

E [ê(c∗[k],m∗[k])|Q[k]]

E
[
D̂(c∗[k],m∗[k]) + I∗[k]|Q[k]

] =
E [ê(c∗[k],m∗[k])]

E
[
D̂(c∗[k],m∗[k]) + I∗[k]

] = poweropt

and for all n ∈ {1, . . . , N} we have (from (9.16)):

E
[
λn(D̂(c∗[k],m∗[k]) + I∗[k])− 1∗n[k]|Q[k]

]
= E

[
λn(D̂(c∗[k],m∗[k]) + I∗[k])− 1∗n[k]

]
≤ 0

Plugging the above into the right-hand-side of (9.27) yields:

E [∆[k] + V e[k]|Q[k]]

E [D[k] + I[k]|Q[k]]
≤ B

E [D[k] + I[k]|Q[k]]
+ V poweropt

Rearranging terms gives:

E [∆[k] + V e[k]|Q[k]] ≤ B + V poweroptE [D[k] + I[k]|Q[k]]

Taking expectations of the above (with respect to the random Q[k]) and using the law of

iterated expectations gives:

E [∆[k] + V e[k]] ≤ B + V poweroptE [D[k] + I[k]] (9.28)

The above holds for all k ∈ {0, 1, 2, . . .}. Fixing a positive integer K and summing (9.28)

over k ∈ {0, 1, . . . , K − 1} yields, by the definition ∆[k] = L[k + 1]− L[k]:

E [L[K]− L[0]] + V
K−1∑

k=0

E [e[k]] ≤ BK + V poweropt
K−1∑

k=0

E [D[k] + I[k]]

Noting that L[0] = 0 and L[K] ≥ 0 and using the definitions of e[K], D[K], I[K] yields:

V Ke[K] ≤ BK + V Kpoweropt(D[K] + I[K])

Rearranging terms yields the result of part (a).
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Proof. (Theorem 1 part (b)) To prove part (b), note from (9.28) we have:

E [∆[k]] ≤ B + V E
[
poweropt(D[k] + I[k])− e[k]

]
≤ B + V β

Summing the above over k ∈ {0, 1, . . . , K − 1} gives:

E [L[K]]− E [L[0]] ≤ (B + V β)K

Using the definition of L[K] and noting that L[0] = 0 gives:

K∑

l=1

E
[
Qn[K]2

]
≤ 2(B + V β)K

Thus, we have E [||Q[K]||2] ≤ 2(B + V β)K. Jensen’s inequality for f(x) = x2 ensures

E [||Q[k]||]2 ≤ E [||Q[k]||2], and so for all positive integers K:

E [||Q[k]||]2 ≤ 2(B + V β)K (9.29)

Taking a square root of both sides of (9.29) and dividing by K proves (9.26). From (9.26)

we have for each n ∈ {1, . . . , N}:

lim
K→∞

E [Qn[k]]

K
≤ lim

K→∞

E [||Q[K]||]
K

≤ lim
K→∞

√
2(B + V β)√

K
= 0

and hence by Lemma 2 we know constraint (9.21) holds. Further, in [27] it is shown that

(9.29) together with the fact that second moments of queue changes are bounded implies

limk→∞Qn[k]/k = 0 with probability 1. Thus, (9.20) holds.

9.1.9 Simulation

We first simulate the task scheduling algorithm for the simple deterministic system with

one class and one constraint, as described in Section 9.1.4. The ê(m) and D̂(m) functions

are defined in (9.8)-(9.9), and the goal is to minimize average power subject to a processing

rate constraint 1/(D + I) ≥ 0.2. We already know the optimal power is poweropt = 7/15 ≈
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0.466667. We expect the algorithm to approach this optimal power as V is increased, and

to approach the desired behavior of using I[k] = 0 for all k, meeting the constraint with

equality, and using m[k] = 1 for 1/3 of the frames. This is indeed what happens, although

in this simple case the algorithm seems insensitive to the V parameter and locks into a

desirable periodic schedule even for very low (but positive) V values. Using V = 1 and one

million frames, the algorithm gets average power 0.466661, uses m[k] = 1 a fraction of time

0.333340, has average idle time I = 0.000010, and yields a processing rate 0.199999 (almost

exactly equal to the desired constraint of 0.2). Increasing V yields similar performance. The

constraint is still satisfied when we decrease the value of V , but average power degrades

(being 0.526316 for V = 0).
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Figure 9.3: Average power versus V .
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Figure 9.4: Processing Rate 110/T
versus frame index.

We next consider a system with 10 classes of tasks and two processing modes. The energy

and delay characteristics for each class i ∈ {1, . . . , 10} and mode m ∈ {1, 2} are:

Mode 1: (ê(i, 1), D̂(i, 1)) = (1i, 5i) (9.30)

Mode 2: (ê(i, 2), D̂(i, 2)) = (2i, 3i) (9.31)

so that mode 1 uses less energy but takes longer than mode 2, and the computational

requirements for each class increase with i ∈ {1, . . . , 10}. We assume desired rates are given

by λi = ρ/(30i) for i ∈ {1, . . . , 10}, for some positive value ρ. The problem is feasible

whenever ρ ≤ 1. We use ρ = 0.8 and run the simulation for 10 million frames. Fig. 9.3

shows the resulting average power as V is varied between 0 and 3, which converges to near
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optimal after V = 0.3. All 10 processing rate constraints are met within 5 decimal points of

accuracy after the 10 million frames. An illustration of how convergence time is affected by

the V parameter is shown in Fig. 9.4, which illustrates the average processing rate 110/T

for class 10, as compared to the desired constraint λ10 = ρ/300. It is seen, for example,

that convergence is faster for V = 0.05 than for V = 1. Convergence times can be improved

using non-zero initial queue backlog and the theory of place holder backlog in [25], although

we omit this topic for brevity.

9.2 Optimization with General Attributes

This section generalizes the problem to allow time average optimization for abstract at-

tributes. Consider again a frame-based system with frame index k ∈ {0, 1, 2, . . .}. Ev-

ery frame k, the controller makes a control action α[k], chosen within an abstract set A
of allowable actions. The action α[k] affects the frame size T [k] and an attribute vector

y[k] = (y0[k], y1[k], . . . , yL[k]). Specifically, assume these are random functions that are con-

ditionally independent of the past given the current α[k] decision, with mean values given

by functions T̂ (α) and ŷl(α) for all α ∈ A:

T̂ (α) = E [T [k]|α[k] = α] , ŷl(α) = E [yl[k]|α[k] = α]

Similar to the previous section, it is assumed there is a minimum frame size Tmin > 0 such

that T [k] ≥ Tmin for all k, and that second moments are bounded by a constant σ2, regardless

of the policy α[k]. The joint distribution of (T [k], y0[k], y1[k], . . . , yL[k]) is otherwise arbitrary.

Define frame averages T and yl by:

T = lim
K→∞

1

K

K−1∑

k=0

T [k] , yl = lim
K→∞

1

K

K−1∑

k=0

yl[k]

As discussed in Section 9.1.2, the value yl/T represents the time average associated with
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attribute yl[k]. The general problem is then:

Minimize: y0/T (9.32)

Subject to: yl/T ≤ cl ∀l ∈ {1, . . . , L} (9.33)

α[k] ∈ A ∀k ∈ {0, 1, 2, . . .} (9.34)

where c1, . . . , cL are given constants that specify the desired time average constraints.

9.2.1 Mapping to the Task Scheduling Problem

To illustrate the generality of this framework, this subsection uses the new notation to exactly

represent the task scheduling problem from Section 9.1. For that problem, one can define

the control action α[k] to have the form α[k] = (c[k],m[k], I[k]), and the action space A is

then the set of all (c,m, I) such that c ∈ {1, . . . , N}, m ∈ M, and 0 ≤ I ≤ Imax.

The frame size is T [k] = D[k] + I[k], and T̂ (α[k]) is given by:

T̂ (α[k]) = D̂(c[k],m[k]) + I[k]

We then define y0[k] as the energy expended in frame k, so that y0[k] = e[k] and ŷ0(α[k]) =

ê(c[k],m[k]). There are N constraints, so define L = N . To express the desired constraints

1n/T ≥ λn in the form yn/T ≤ cn, one can define yn[k] = −1n[k] and cn = −λn for each

n ∈ {1, . . . , N}, and ŷn(α[k]) = −1n[k]. Alternatively, one could define yn[k] = λnT [k]−1n[k]

and enforce the constraint yn ≤ 0 for all n ∈ {1, . . . , N}.

This general setup provides more flexibility. For example, suppose the idle state does not

use 0 energy, but operates at a low power pidle and expends total energy pidleI[k] on frame

k. Then total energy for frame k can be defined as y0[k] = e[k] + pidleI[k], where e[k] is the

energy spent in the busy period. The setup can also handle systems with multiple idle mode

options, each providing a different energy savings but incurring a different wakeup time.
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9.2.2 The General Algorithm

The algorithm for solving the general problem (9.32)-(9.34) is described below. Each con-

straint yl ≤ clT in (9.33) is treated using a virtual queue Ql[k] with update:

Ql[k + 1] = max[Ql[k] + yl[k]− clT [k], 0] ∀l ∈ {1, . . . , L} (9.35)

Defining L[k] and ∆[k] as before (in Section 9.1.7) leads to the following bound on the

drift-plus-penalty ratio, which can be proven in a manner similar to Lemma 3:

E [∆[k] + V y0[k]|Q[k]]

E [T [k]|Q[k]]
≤ B

E [T [k]|Q[k]]
+

E
[
V ŷ0(α[k]) +

∑L
l=1 Ql[k]ŷl(α[k])|Q[k]

]

E
[
T̂ (α[k])|Q[k]

] (9.36)

where B is a constant that satisfies the following for all Q[k] and all possible actions α[k]:

B ≥ 1

2

L∑

l=1

E
[
(yl[k]− clT [k])

2|Q[k]
]

Every frame, the controller observes queues Q[k] and takes an action α[k] ∈ A that

minimizes the second term on the right-hand-side of (9.36). We know from Lemma 1 that

minimizing the ratio of expectations is accomplished by a deterministic selection of α[k] ∈ A.

The resulting algorithm is:

• Observe Q[k] and choose α[k] ∈ A to minimize (breaking ties arbitrarily):

V ŷ0(α[k]) +
∑L

l=1 Ql[k]ŷl(α[k])

T̂ (α[k])
(9.37)

• Update virtual queues Ql[k] for each l ∈ {1, . . . , L} via (9.35).

One subtlety is that the expression (9.37) may not have an achievable minimum over the

general (possibly infinite) set A (for example, the infimum of the function f(x) = x over

the open interval 0 < x < 1 is not achievable over that interval). This is no problem: Our
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algorithm in fact works for any approximate minimum that is an additive constant C away

from the exact infimum every frame k (for any arbitrarily large constant C ≥ 0). This

effectively changes the “B” constant in our performance bounds to a new constant “B+C”

[25]. Let ratioopt represent the optimal ratio of y0/T for the problem (9.32)-(9.34). As

before, it can be shown that if the problem is feasible (so that there exists an algorithm that

can achieve the constraints (9.33)-(9.34)), then any C-additive approximation of the above

algorithm satisfies all desired constraints and yields y0/T ≤ ratioopt + O(1/V ), which can

be pushed arbitrarily close to ratioopt as V is increased, with the same tradeoff in the queue

sizes (and hence convergence times) with V . The proof of this is similar to that of Theorem

1, and is omitted for brevity (see [25][30] for the full proof).

9.2.3 Random Task Arrivals and Flow Control
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Figure 9.5: A task processing system with random arrivals and flow control.

Again consider a system with N classes of tasks, as in Section 9.1. Each frame k again has

a busy period of duration D[k] and an idle period of duration I[k] as in Fig. 9.1. However,

rather than always having tasks available for processing, this subsection assumes tasks arrive

randomly with rates (λ1, . . . ,λN), where λn is the rate of task arrivals per unit time (see Fig.

9.5). At the beginning of each busy period, the controller chooses a variable c[k] that specifies

which type of task is performed. However, c[k] can now take values in the set {0, 1, . . . , N},
where c[k] = 0 is a null choice that selects no task on frame k. If c[k] = 0, the busy period

has some positive size D0 and may spend a small amount of energy to power the electronics,

but does not process any task. The mode selection variable m[k] takes values in the same

set M as before. The idle time variable I[k] is again chosen in the interval [0, Imax].
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Further, for each n ∈ {1, 2, . . . , N} we introduce flow control variables γn[k], chosen in the

interval 0 ≤ γn[k] ≤ 1. The variable γn[k] represents the probability of admitting each new

randomly arriving task of class n on frame k (see Fig. 9.5). This enables the system to drop

tasks if the raw arrival rates (λ1, . . . ,λN) cannot be supported. Let γ[k] = (γ1[k], . . . , γN [k])

be the vector of these variables.

We thus have α[k] = (c[k],m[k], I[k],γ[k]), with action space A being the set of all

(c,m, I,γ) such that c ∈ {0, 1, . . . , N}, m ∈ M, 0 ≤ I ≤ Imax, and 0 ≤ γn ≤ 1 for

n ∈ {1, . . . , N}. Define e[k] and D[k] as the energy and busy period duration for frame k.

Assume e[k] depends only on (c[k],m[k], I[k]), and D[k] depends only on (c[k],m[k]), with

averages given by functions ê(c[k],m[k], I[k]) and D̂(c[k],m[k]):

ê(c[k],m[k], I[k]) = E [e[k]|c[k],m[k], I[k]] , D̂(c[k],m[k]) = E [D[k]|c[k],m[k]]

Finally, for each n ∈ {1, . . . , N}, define An[k] as the random number of new arrivals admitted

on frame k, which depends on the total frame size D[k] + I[k] and the admission probability

γn[k]. Formally, assume the arrival vector (A1[k], . . . , AN [k]) is conditionally independent of

the past given the current α[k] used, with expectations:

E [An[k]|α[k]] = λnγn[k][D̂(c[k],m[k]) + I[k]] (9.38)

The assumption on independence of the past holds whenever arrivals are independent and

Poisson, or when all frame sizes are an integer number of fixed size slots, and arrivals are

independent and identically distributed (i.i.d.) over slots with some general distribution.

We seek to maximize a weighted sum of admission rates subject to supporting all of the

admitted tasks, and to maintaining average power to within a given positive constant Pav:

Maximize:

∑N
n=1 wnAn

D + I
(9.39)

Subject to: An/(D + I) ≤ 1n/(D + I) ∀n ∈ {1, . . . , N} (9.40)
e

D + I
≤ Pav (9.41)

α[k] ∈ A ∀k ∈ {0, 1, 2, . . .} (9.42)
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where (w1, . . . , wN) are a collection of positive weights that prioritize the different classes in

the optimization objective.

We thus have L = N +1 constraints. To treat this problem, define T [k] = D[k] + I[k], so

that T̂ (α[k]) = D̂(c[k],m[k]) + I[k]. Further define y0[k], yn[k] for n ∈ {1, . . . , N}, and x[k]

as:

y0[k] = −
N∑

n=1

wnAn[k] =⇒ ŷ0(α[k]) = −
N∑

n=1

wnλnγn[k][D̂(c[k],m[k]) + I[k]]

yn[k] = An[k]− 1n[k] =⇒ ŷn(α[k]) = λnγn[k][D̂(c[k],m[k]) + I[k]]− 1n[k]

x[k] = e[k]− [D[k] + I[k]]Pav =⇒ x̂(α[k]) = ê(c[k],m[k], I[k])− [D̂(c[k],m[k]) + I[k]]Pav

Then:

• Minimizing y0/T is equivalent to (9.39).

• The constraints yn ≤ 0 for n ∈ {1, . . . , N} are equivalent to (9.40).

• The constraint x ≤ 0 is equivalent to (9.41).

Note that the above problem does not specify any explicit queueing for the randomly

arriving tasks. The algorithm will in fact construct explicit queues (so that the virtual

queues can be viewed as actual queues). Note also that the constraint α[k] ∈ A does not

allow restrictions on actions based on the queue state, such as when the queue is empty or

not. Thus, in principle, we allow the possibility of “processing” a task of class n even when

there is no such task available. In this case, we assume this processing is still costly, in that

it incurs time equal to D̂(c[k],m[k]) and energy equal to ê(c[k],m[k], I[k]). Our algorithm

will naturally learn to avoid the inefficiencies associated with such actions.

The Dynamic Algorithm for Random Task Arrivals

To enforce the constraints yn ≤ 0 for each n ∈ {1, . . . , N}, define queue Qn[k] with update:

Qn[k + 1] = max[Qn[k] + An[k]− 1n[k], 0] (9.43)
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To enforce x ≤ 0, define a virtual queue Z[k] with update:

Z[k + 1] = max[Z[k] + e[k]− [D[k] + I[k]]Pav, 0] (9.44)

It can be seen that the queue update (9.43) is the same as that of an actual queue for class

n tasks, with random task arrivals An[k] and task service 1n[k]. The minimization of (9.37)

then becomes the following: Every frame k, observe queues Q[k] and Z[k]. Then choose

c[k] ∈ {0, 1, . . . , N}, m[k] ∈ M, I[k] ∈ [0, Imax], and γn[k] ∈ [0, 1] for all n ∈ {1, . . . , N} to

minimize:

−V
∑N

n=1 wnλnγn[k][D̂(c[k],m[k]) + I[k]]

D̂(c[k],m[k]) + I[k]

+

∑N
n=1 Qn[k](λnγn[k][D̂(c[k],m[k]) + I[k]]− 1n[k])

D̂(c[k],m[k]) + I[k]

+
Z[k](ê(c[k],m[k], I[k])− [D̂(c[k],m[k]) + I[k]]Pav)

D̂(c[k],m[k]) + I[k]
(9.45)

After a simplifying cancellation of terms, it is easy to see that the γn[k] decisions can be

separated from all other decisions (see Exercise 2). The resulting algorithm then observes

queues Q[k] and Z[k] every frame k and performs the following:

• (Flow Control) For each n ∈ {1, . . . , N}, choose γn[k] as:

γn[k] =





1 if Qn[k] ≤ V wn

0 otherwise
(9.46)

• (Task Scheduling) Choose c[k] ∈ {0, 1, . . . , N}, m[k] ∈ M, I[k] ∈ [0, Imax] to minimize:

Z[k]ê(c[k],m[k], I[k])−
∑N

n=1 Qn[k]1n[k]

D̂(c[k],m[k]) + I[k]
(9.47)

• (Queue Update) Update Qn[k] for each n ∈ {1, . . . , N} by (9.43), and update Z[k] by

(9.44).
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The minimization problem (9.47) is similar to (9.24), and can be carried out in the same

manner as discussed in Section 9.1.7. A key observation about the above algorithm is that

it does not require knowledge of the arrival rates (λ1, . . . ,λN). Indeed, the λn terms cancel

out of the minimization, so that the flow control variables γn[k] in (9.46) make “bang-bang”

decisions that admit all newly arriving tasks of class n on frame k if Qn[k] ≤ V wn, and

admit none otherwise. This property makes the algorithm naturally adaptive to situations

when the arrival rates change, as shown in the simulations of Section 9.2.4.

Note that if ê(0,m, I) < ê(c,m, I) for all c ∈ {1, . . . , N}, m ∈ M, I ∈ [0, Imax], so that

the energy associated with processing no task is less than the energy of processing any class

c %= 0, then the minimization in (9.47) will never select a class c such that Qc[k] = 0. That

is, the algorithm naturally will never select a class for which no task is available.

Deterministic Queue Bounds and Constraint Violation Bounds

In addition to satisfying the desired constraints and achieving a weighted sum of admitted

rates that is within O(1/V ) of optimality, the flow control structure of the task scheduling al-

gorithm admits deterministic queue bounds. Specifically, assume all frame sizes are bounded

by a constant Tmax, and that the raw number of class n arrivals per frame (before admission

control) is at most An,max. By the flow control policy (9.46), new arrivals of class n are

only admitted if Qn[k] ≤ V wn. Thus, assuming that Qn[0] ≤ V wn + An,max, we must have

Qn[k] ≤ V wn+An,max for all frames k ∈ {0, 1, 2, . . .}. This specifies a worst-case queue back-

log that is O(V ), which establishes an explicit [O(1/V ), O(V )] performance-backlog tradeoff

that is superior to that given in (9.26).

With mild additional structure on the ê(c,m, I) function, the deterministic bounds on

queues Qn[k] lead to a deterministic bound on Z[k], so that one can compute a value Zmax,

of size O(V ), such that Z[k] ≤ Zmax for all k. This is explored in Exercise 3 (see also [29]).
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9.2.4 Simulations and Adaptiveness of Random Task Scheduling

Here we simulate the dynamic task scheduling and flow control algorithm (9.46)-(9.47),

using the 10-class system model defined in Section 9.1.9 with ê(c,m) functions given in

(9.30)-(9.31). For consistency with that model, we remove the c[k] = 0 option, so that the

decision (9.31) chooses c[k] = 1,m[k] = 1, incurring one unit of energy, in case no tasks are

available. Arrivals are from independent Bernoulli processes with rates λi = ρ/(30i) for each

class i ∈ {1, . . . , 10}, with ρ = 0.8. We use weights wn = 1 for all n, so that the objective

is to maximize total throughput, and Pav = 0.5, which we know is feasible from results in

Fig. 9.3 of Section 9.1.9. Thus, we expect the algorithm to learn to admit everything, so

that the admission rate approaches the total arrival rate as V is increased. We simulate for

10 million frames, using V in the interval from 0 to 200. Results are shown in Figs. 9.6 and

9.7. Fig 9.6 shows the algorithm learns to admit everything for large V (100 or above), and

Fig. 9.7 plots the resulting average queue size (in number of tasks) per queue, together with

the deterministic bound Qn[k] ≤ V + 60 (where An,max = 60 in this case because there is at

most one arrival per slot, and the largest possible frame is Dmax+Imax = 50+10 = 60). The

average power constraint was satisfied (with slackness) for all cases. The average queue size

in Fig. 9.7 grows linearly with V until V = 100, when it saturates by admitting everything.

The saturation value is the average queue size associated with admitting the raw arrival

rates directly.
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We now illustrate that the algorithm is robust to abrupt rate changes. We consider the

same system as before, run over 10 million frames with V = 100. However, we break the

simulation timeline into three equal size phases. During the first and third phase, we use

arrival rates λi = ρ1/(30i) for i ∈ {1, . . . , 10}, where ρ1 = 0.8 as in the previous experiment.

Then, during the second (middle) phase, we double the rates to λi = ρ2/(30i), where ρ2 = 1.6.

Because ρ2 > 1, these rates are infeasible and the algorithm must learn to optimally drop

tasks so as to maximize the admission rate subject to the power constraint. Recall that the

algorithm is unaware of the arrival rates and must adapt to the existing system conditions.

The results are shown in Figs. 9.8 and 9.9. Fig. 9.8 shows a moving average admission rate

versus time. During the first and third phases of the simulation, we have ρ1 = 0.8 and the

admitted rates are close to the raw arrival rate (shown as the lower dashed horizontal line).

During the middle interval (with ρ2 = 1.6), the algorithm quickly adapts to the increased

arrivals and yields admitted rates that are close to those that should be used in a system

with loading ρ2 = 1.6 always (shown as the higher dashed horizontal line). Fig. 9.9 plots

the corresponding moving average queue backlog per queue. The lower dashed horizontal

line indicates the value of average backlog that would be achieved in a system with loading

ρ1 = 0.8 always. Also shown is the deterministic queue bound V + 60 = 160, which holds

for all frames, regardless of the raw arrival rates.
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9.2.5 Task Scheduling: Extensions and Further Reading

This section considered minimizing time averages subject to time average constraints. Ex-

tended techniques for minimizing convex functions of time average vectors (or maximizing

concave functions) subject to similar constraints are treated in the renewal optimization the-

ory of [25][30]. This is useful for extending the flow control problem (9.39)-(9.42) to optimize

a sum of concave utility functions φn(x) of the time average admission rates for each class:

N∑

n=1

φn

(
An/(D + I)

)

Using logarithmic functions φn(x) leads to proportional fairness [15], while other fairness

properties are achieved with other concave functions [23][37][41]. Related utility optimiza-

tion for particular classes of wireless systems with fixed size frames of T slots, and with

probabilistic reception every slot, is treated using a different technique in [11][10]. Related

work on utility optimal scheduling for single-slot data networks is treated using convex op-

timization in [16][22][43][21], stochastic “primal-dual” algorithms in [17][1][36][4][20], and

stochastic “dual” algorithms in [24][32][5][8][34].

For the problem with random arrivals, queueing delay can often be improved by changing

the constraint An ≤ 1n of (9.40) to An + ε ≤ 1n, for some ε > 0. This specifies that the

output processing rate should be ε larger than the arrival rate. However, unlike the case

ε = 0, such a constraint yields a queue Qn[k] that contains some “fake” tasks, and can lead

to decisions that serve the queue when no actual tasks are available. This can be overcome

using the theory of ε-persistent service queues in [33][26].

Note that our flow control algorithm rewards admission of new data on each frame.

This fits the general framework of this section, where attributes yl[k] are (possibly random)

functions of the control action α[k] ∈ A. One might attempt to solve the problem by defining

a reward upon completion of service. This does not fit our framework: That is because

the algorithm might “complete” a service in a queue that is empty, simply to accumulate

the “fake” reward. One could eliminate fake rewards by an augmented model that allows

rewards ŷl(α[k],Q[k]) and/or action spaces A(Q[k]) that depend on the current backlog,
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although this creates a much more complex Markov decision model that is easily avoided

by defining rewards at admission. However, there are some problems that require such

a reward structure, such as problems of stock market trading where prior ownership of a

particular stock is required to reap the benefits of selling at an observed desirable price.

These problems can be treated with a modified Lyapunov function of the form L[k] =
∑N

n=1(Qn[k] − θ)2, which pushes backlog towards a non-empty state θ. This approach is

used for stock trading [28], inventory control [31], energy harvesting [13], and smart-grid

energy management [40]. The first algorithms for optimal energy harvesting used a related

technique [7], and related problems in processing networks that assemble components by

combining different sub-components are treated in [14][12].

9.2.6 Exercises for Section 9.2

Exercise 1. Consider a system with N classes, each of which always has new tasks available.

Every frame k we choose a class c[k] ∈ {1, . . . , N}, and select a single task of that class for

processing. We can process using mode m[k] ∈ M. The result yields frame size T̂ (c[k],m[k]),

energy ê(c[k],m[k]), and processing quality q̂(c[k],m[k]). Design an algorithm that selects

c[k] and m[k] every frame k to maximize q/T subject to an average power constraint e/T ≤
Pav and to a processing rate constraint of at least λn for each class n.

Exercise 2. Show that minimization of (9.45) leads to the separable flow control and task

scheduling algorithm of (9.46)-(9.47).

Exercise 3. Consider the flow control and task scheduling algorithm (9.46)-(9.47), and recall

that Qn[k] ≤ Qmax for all n ∈ {1, . . . , N} and all frames k, where Qmax
!
=maxn∈{1,...,N}[V wn+

An,max]. Suppose there is a constant emin > 0 such that ê(c,m, I) ≥ emin for all c %= 0, and

that ê(0,m, I) = 0 for all m ∈ M, I ∈ [0, Imax].

a) Show that the minimization of (9.47) chooses c[k] = 0 whenever Z[k] > Qmax/emin.

b) Suppose there is a constant emax such that e[k] ≤ emax for all k. Conclude that

Z[k] ≤ Zmax
!
=Qmax/emin + emax for all frames k.
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c) Use the queueing equation (9.44) to show that over any sequence of K frames {j, j +
1, . . . , j +K − 1} (starting at some frame j), the total energy usage satisfies:

∑j+K−1
k=j e[k] ≤ Pav

∑j+K−1
k=j T [k] + Zmax

where T [k] is the size of frame k. Hint: Make an argument similar to the proof of Lemma 2.

Exercise 4. Consider the same general attributes yl[k] of Section 9.2, with ŷl(α[k]) for

α[k] ∈ A. State the algorithm for solving the problem of minimizing y0 subject to yl/T ≤ cl.

Hint: Define appropriate attributes xl[k] on a system with an “effective” frame size of 1

every frame, and minimize x0/1 subject to xl/1 ≤ 0 for l ∈ {1, . . . , L}.

Exercise 5. Modify the task scheduling algorithm of Section 9.1.7 to allow the controller

to serve more than one task per frame. Specifically, every frame k the controller chooses a

service action s[k] from a set S of possible actions. Each service action s ∈ S determines a

clearance vector c(s) = (c1(s), . . . , cN(s)), where ci(s) is the number of tasks of type i served

if action s is used on a given frame. It also incurs a delay D̂(s) and energy ê(s).

Exercise 6. Consider the linear fractional problem of finding a vector (x1, . . . , xM) to min-

imize (a0 +
∑M

i=1 aixi)/(b0 +
∑M

i=1 bixi) subject to
∑M

i=1 cilxi ≤ dl for l ∈ {1, . . . , L} and

0 ≤ xi ≤ 1 for all i ∈ {1, . . . ,M}. Assume constants ai, bi, cil, dl are given, that b0 > 0, and

that bi ≥ 0 for all i ∈ {1, . . . ,M}. Treat this as a time average problem with action α[k] =

(x1[k], . . . , xM [k]), action space A = {(x1, . . . , xM)|0 ≤ xi ≤ 1 ∀i ∈ {1, . . . ,M}}, frame size

T [k] = b0 +
∑M

i=1 bixi[k], and where we seek to minimize (a0 +
∑M

i=1 aixi)/(b0 +
∑M

i=1 bixi)

subject to
∑M

i=1 cilxi ≤ dl for all l ∈ {1, . . . , L}.

a) State the drift-plus-penalty ratio algorithm (9.37) for this, and conclude that:

lim
K→∞

a0 +
∑M

i=1 aixi[K]

b0 +
∑M

i=1 bixi[K]
≤ ratioopt +B/V , lim

K→∞

M∑

i=1

cilxi[K] ≤ dl ∀l ∈ {1, . . . , L}

for some finite constant B, where ratioopt is the optimal value of the objective function, and

xi[K]!= 1
K

∑K−1
k=0 xi[k]. Thus, the limiting time average satisfies the constraints and is within

B/V from optimality. Your answer should solve for values φi[k] such that on frame k we

choose (x1[k], . . . , xM [k]) over A to minimize φ0[k]+
∑M

i=1 φi[k]xi[k]

b0+
∑M

i=1 bixi[k]
. Note: It can be shown a
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solution is: Define I !
={i ∈ {1, . . . ,M}|bi = 0} and J !

={j ∈ {1, . . . ,M}|bj > 0}. For all

i ∈ I, choose xi[k] = 0 if φi[k] ≥ 0, and xi[k] = 1 if φi[k] < 0. Next, temporarily select

xj[k] = 0 for all j ∈ J . Then rank order the indices j ∈ J from smallest to largest value of

φj[k]/bj, and, using this order, greedily change xj[k] from 0 to 1 if it improves the solution.

b) Note that the case b0 = 1 and bi = 0 for i %= 0 is a linear program. Give an explicit deci-

sion rule for each xi[k] in this case (the solution should be separable for each i ∈ {1, . . . ,M}).

9.3 Reacting to Randomly Observed Events

Consider a problem with general attributes y0[k], y1[k], . . . , yL[k] and frame size T [k] for each

frame k, as in Section 9.2. However, now assume the controller observes a random event

ω[k] at the beginning of each frame k, and this can influence attributes and frame sizes.

The value of ω[k] can represent a vector of channel states and/or prices observed for frame

k. Assume {ω[k]}∞k=0 is independent and identically distributed (i.i.d.) over frames. The

controller chooses an action α[k] ∈ A(ω[k]), where the action space A(ω[k]) possibly depends

on the observed ω[k]. Values of (T [k], y0[k], . . . , yL[k]) are conditionally independent of the

past given the current ω[k] and α[k], with mean values:

ŷl(ω[k],α[k]) = E [yl[k]|ω[k],α[k]] , T̂ (ω[k],α[k]) = E [T [k]|ω[k],α[k]]

The goal is to solve the following optimization problem:

Minimize: y0/T (9.48)

Subject to: yl/T ≤ cl ∀l ∈ {1, . . . , L} (9.49)

α[k] ∈ A(ω[k]) ∀k ∈ {0, 1, 2, . . .} (9.50)

As before, the constraints yl ≤ clT are satisfied via virtual queues Ql[k] for l ∈ {1, . . . , L}:

Ql[k + 1] = max[Ql[k] + yl[k]− clT [k], 0] (9.51)
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The random ω[k] observations make this problem more complex that those considered in

previous sections of this chapter. We present two different algorithms from [25][30].

Algorithm 1:

Every frame k, observe Q[k] and ω[k] and choose α[k] ∈ A(ω[k]) to minimize the following

ratio of expectations:

E
[
V ŷ0(ω[k],α[k]) +

∑L
l=1 Ql[k]ŷl(ω[k],α[k])|Q[k]

]

E
[
T̂ (ω[k],α[k])|Q[k]

] (9.52)

Then update the virtual queues via (9.51).

Algorithm 2:

Define θ[0] = 0, and define θ[k] for k ∈ {1, 2, 3, . . .} as a running ratio of averages over past

frames:

θ[k]!=
∑k−1

i=0 y0[i]/
∑k−1

i=0 T [i] (9.53)

Then every frame k, observe Q[k], θ[k], and ω[k], and choose α[k] ∈ A(ω[k]) to minimize

the following function:

V [ŷ0(ω[k],α[k])− θ[k]T̂ (ω[k],α[k])] +
L∑

l=1

Ql[k][ŷl(ω[k],α[k])− clT̂ (ω[k],α[k])] (9.54)

Then update the virtual queues via (9.51).

Comparison of Algorithms 1 and 2

Both algorithms are introduced and analyzed in [25][30], where they are shown to satisfy

the desired constraints and yield an optimality gap of O(1/V ). Algorithm 1 can be analyzed

in a manner similar to the proof of Theorem 1, and has the same tradeoff with V as given
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in that theorem. However, the ratio of expectations (9.52) is not necessarily minimized by

observing ω[k] and choosing α[k] ∈ A(ω[k]) to minimize the deterministic ratio given ω[k].

In fact, the minimizing policy depends on the (typically unknown) probability distribution

for ω[k]. A more complex bisection algorithm is needed for implementation, as specified in

[25][30].

Algorithm 2 is much simpler and involves a greedy selection of α[k] ∈ A(ω[k]) based

only on observation of ω[k], without requiring knowledge of the probability distribution for

ω[k]. However, its mathematical analysis does not yield as explicit information regarding

convergence time as does Algorithm 1. Further, it requires a running average to be kept

starting at frame 0, and hence may not be as adaptive when system statistics change. A

more adaptive approximation of Algorithm 2 would define the average θ[k] over a moving

window of some fixed number of frames, or would use an exponentially decaying average.

Both algorithms reduce to the following simplified drift-plus-penalty rule in the special

case when the frame size T̂ (ω[k],α[k]) is a fixed constant T for all ω[k],α[k]: Every frame k,

observe ω[k] and Q[k] and choose α[k] ∈ A(ω[k]) to minimize:

V ŷ0(ω[k],α[k]) +
∑L

l=1 Ql[k]ŷl(ω[k],α[k]) (9.55)

Then update the virtual queues via (9.51). This special case algorithm was developed in [29]

to treat systems with fixed size time slots.

A simulation comparison of the algorithms is given in [30]. The next subsection describes

an application to energy-aware computation and transmission in a wireless smart phone.

Exercise 7 considers opportunistic scheduling where wireless transmissions can be deferred

by waiting for more desirable channels. Exercise 8 considers an example of price-aware

energy consumption for a network server that can process computational tasks or outsource

them to another server.
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9.3.1 Efficient Computation and Transmission for a Wireless Smart Device

Consider a wireless smart device (such as a smart phone or sensor) that always has tasks to

process. Each task involves a computation operation, followed by a transmission operation

over a wireless channel. On each frame k, the device takes a new task and looks at its meta-

data β[k], being information that characterizes the task in terms of its computational and

transmission requirements. Let d represent the time required to observe this meta-data. The

device then chooses a computational processing mode m[k] ∈ M(β[k]), where M(β[k]) is the

set of all mode options under β[k]. The mode m[k] and meta-data β[k] affect a computation

time Dcomp[k], computation energy ecomp[k], computation quality q[k], and generate A[k] bits

for transmission over the channel. The expectations of Dcomp[k], ecomp[k], q[k] are:

D̂comp(β[k],m[k]) = E [Dcomp[k]|β[k],m[k]]

êcomp(β[k],m[k]) = E [ecomp[k]|β[k],m[k]]

q̂(β[k],m[k]) = E [q[k]|β[k],m[k]]

For example, in a wireless sensor, the mode m[k] may represent a particular sensing task,

where different tasks can have different qualities and thus incur different energies, times, and

A[k] bits for transmission. The full conditional distribution of A[k], given β[k], m[k], will

play a role in the transmission stage (rather than just its conditional expectation).

The A[k] units of data must be transmitted over a wireless channel. Let S[k] be the state

of the channel on frame k, and assume S[k] is constant for the duration of the frame. We

choose a transmission mode g[k] ∈ G, yielding a transmission time Dtran[k] and transmission

energy etran[k] with expectations that depend on S[k], g[k], and A[k]. Define random event

ω[k] = (β[k], S[k]) and action α[k] = (m[k], g[k]). We can then define expectation functions

D̂tran(ω[k],α[k]) and êtran(ω[k],α[k]) by:

D̂tran(ω[k],α[k]) = E [Dtran[k]|ω[k],α[k]] , êtran(ω[k],α[k]) = E [etran[k]|ω[k],α[k]]

where the above expectations are defined via the conditional distribution associated with the

number of bits A[k] at the computation output, given the meta-data β[k] and computation
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mode m[k] selected in the computation phase (where β[k] and m[k] are included in the ω[k],

α[k] information). The total frame size is thus T [k] = d+Dcomp[k] +Dtran[k].

The goal is to maximize frame processing quality per unit time q/T subject to a processing

rate constraint of 1/T ≥ λ, and subject to an average power constraint (ecomp+etran)/T ≤ Pav

(where λ and Pav are given constants). This fits the general framework with observed

random events ω[k] = (β[k], S[k]), control actions α[k] = (m[k], g[k]), and action space

A(ω[k]) = M(β[k]) × G. We can define y0[k] = −q[k], y1[k] = T [k] − 1/λ, and y2[k] =

ecomp[k] + etran[k] − PavT [k], and solve the problem of minimizing y0/T subject to y1 ≤ 0

and y2 ≤ 0. To do so, let Q[k] and Z[k] be virtual queues for the two constraints:

Q[k + 1] = max[Q[k] + T [k]− 1/λ, 0] (9.56)

Z[k + 1] = max[Z[k] + ecomp[k] + etran[k]− PavT [k], 0] (9.57)

Using Algorithm 2, we define θ[0] = 0 and θ[k] for k ∈ {1, 2, . . .} by (9.53). The Algorithm

2 minimization (9.54) amounts to observing (β[k], S[k]), Q[k], Z[k], and θ[k] on each frame

k and choosing m[k] ∈ M(β[k]) and g[k] ∈ G to minimize:

V [−q̂(β[k],m[k])− θ[k](d+ D̂comp(β[k],m[k]) + D̂tran(ω[k],α[k]))]

+Q[k][d+ D̂comp(β[k],m[k]) + D̂tran(S[k], g[k])− 1/λ]

+Z[k][êcomp(β[k],m[k]) + êtran(ω[k],α[k])− Pav(d+ D̂comp(β[k],m[k]) + D̂tran(ω[k],α[k]))]

The computation and transmission operations are coupled and cannot be separated. This

yields the following algorithm: Every frame k:

• Observe ω[k] = (β[k], S[k]) and values Q[k], Z[k], θ[k]. Then jointly choose action

m[k] ∈ M(β[k]) and g[k] ∈ G, for a combined action α[k] = (m[k], g[k]), to minimize:

−V q̂(β[k],m[k]) + D̂comp(β[k],m[k])[Q[k]− V θ[k]− PavZ[k]] + Z[k]êcomp(β[k],m[k])

+D̂tran(ω[k],α[k])[Q[k]− V θ[k]− PavZ[k]] + Z[k]êtran(ω[k],α[k])

• (Updates) Update Q[k], Z[k], θ[k] via (9.56), (9.57), and (9.53).
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Exercise 9 shows the algorithm can be implemented without θ[k] if the goal is changed to

maximize q, rather than q/T . Further, the computation and transmission decisions can be

separated if the system is modified so that the bits generated from computation are handed

to a separate transmission layer for eventual transmission over the channel, rather than

requiring transmission on the same frame, similar to the structure used in Exercise 8.

9.3.2 Exercises for Section 9.3

Exercise 7. (Energy-Efficient Opportunistic Scheduling [29]) Consider a wireless device

that operates over fixed size time slots k ∈ {0, 1, 2, . . .}. Every slot k, new data of size A[k]

bits arrives and is added to a queue. The data must eventually be transmitted over a time-

varying channel. At the beginning of every slot k, a controller observes the channel state S[k]

and allocates power p[k] for transmission, enabling transmission of µ[k] bits, where µ[k] =

µ̂(S[k], p[k]) for some given function µ̂(S, p). Assume p[k] is chosen so that 0 ≤ p[k] ≤ Pmax

for some constant Pmax > 0. We want to minimize average power p subject to supporting all

data, so that A ≤ µ. Treat this as a problem with all frames equal to 1 slot, observed random

events ω[k] = (A[k], S[k]), and actions α[k] = p[k] ∈ [0, Pmax]. Design an appropriate queue

update and power allocation algorithm, using the policy structure (9.55).
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Figure 9.10: The client/server system of Exercise 8, with decision variables (γ[k], e[k]) and
observed prices (φ[k],ψ[k]).

Exercise 8. (Energy Prices and Network Outsourcing) Consider a computer server that

operates over fixed length time slots k ∈ {0, 1, 2, . . .}. Every slot k, a new task arrives and

has size S[k] (if no task arrives then S[k] = 0). The server decides to either accept the task,

or outsource it to another server (see Fig. 9.10). Let γ[k] be a binary decision variable that
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is 1 if the server accepts the task on slot k, and zero else. Define A[k] = γ[k]S[k] as the

total workload admitted on slot k, which is added to the queue of work to be done. Let φ[k]

be the (possibly time-varying) cost per unit size for outsourcing, so the outsourcing cost is

cout[k] = φ[k](1− γ[k])S[k]. Every slot k, the server additionally decides to process some of

its backlog by purchasing an amount of energy e[k] at a per unit energy price ψ[k], serving

µ[k] = µ̂(e[k]) units of backlog with cost cenergy[k] = ψ[k]e[k], where µ̂(e) is some given

function. Assume e[k] is chosen in some interval 0 ≤ e[k] ≤ emax. The goal is to minimize

time average cost cout + cenergy subject to supporting all tasks, so that A ≤ µ. Treat this as

a problem with all frames equal to 1 slot, observed random events ω[k] = (S[k],φ[k],ψ[k]),

actions α[k] = (γ[k], e[k]), and action space A(ω[k]) being the set of all (γ, e) such that

γ ∈ {0, 1} and 0 ≤ e ≤ emax. Design an appropriate queue and state the dynamic algorithm

(9.55) for this problem. Show that it can be implemented without knowledge of the probability

distribution for (S[k],φ[k],ψ[k]), and that the γ[k] and e[k] decisions are separable.

Exercise 9. Consider the same problem of Section 9.3.1, with the modified objective of

maximizing q subject to 1/T ≥ λ and (ecomp + etran)/T ≤ Pav. Use the observation from

Exercise 4 that this can be viewed as a problem with an “effective” fixed frame size equal to

1, and give an algorithm from the policy structure (9.55).

9.4 Conclusions

This chapter presents a methodology for optimizing time averages in systems with variable

length frames. Applications include energy and quality aware task scheduling in smart

phones, cost effective energy management at computer servers, and more. The resulting

algorithms are dynamic and often do not require knowledge of the probabilities that affect

system events. While the performance theorem of this chapter was stated under simple

i.i.d. assumptions, the same algorithms are often provably robust to non-i.i.d. situations,

including situations where the events are non-ergodic [25]. Simulations in Section 9.2.4 show

examples of how such algorithms adapt to changes in the event probabilities. Exercises in

this chapter were included to help readers learn to design dynamic algorithms for their own

optimization problems.
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The solution technique of this chapter uses the theory of optimization for renewal systems

from [25][30], which applies to general problems. Performance for individual problems can

often be improved using enhanced techniques, such as using place-holder backlog, exponen-

tial Lyapunov functions, LIFO scheduling, and ε-persistent service queues, as discussed in

[25] and references therein. However, the drift-plus-penalty methodology described in this

chapter provides much of the insight needed for these more advanced techniques. It is also

simple to work with and typically yields desirable solution quality and convergence time.

Appendix A — Bounded Moment Convergence Theorem

This appendix provides a bounded moment convergence theorem that is often more convenient

than the standard Lebesgue dominated convergence theorem (see, for example, [42] for the

standard Lebesgue dominated convergence theorem). We are unaware of a statement and

proof in the literature, so we give one here for completeness. Let X(t) be a random process

defined either over non-negative real numbers t ≥ 0, or discrete time t ∈ {0, 1, 2, . . .}. Recall
that X(t) converges in probability to a constant x if for all ε > 0 we have:

lim
t→∞

Pr[|X(t)− x| > ε] = 0

Theorem 2. Suppose there is a real number x such that X(t) converges to x in probabil-

ity. Further suppose there are finite constants C > 0, δ > 0 such that for all t we have

E
[
|X(t)|1+δ

]
≤ C. Then limt→∞ E [X(t)] = x.

Proof. Without loss of generality, assume x = 0 (else, we can define Y (t) = X(t) − x). Fix

ε > 0. By definition of X(t) converging to 0 in probability, we have:

lim
t→∞

Pr[|X(t)| > ε] = 0 (9.58)

Further, for all t we have E [X(t)] ≤ E [|X(t)|], and so:

E [X(t)] ≤ ε+ E [|X(t)| | |X(t)| > ε]Pr[|X(t)| > ε] (9.59)
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We want to show the final term in the right-hand-side above converges to 0 when t → ∞.

To this end, note that for all t we have:

C ≥ E
[
|X(t)|1+δ

]

≥ E
[
|X(t)|1+δ | |X(t)| > ε

]
Pr[|X(t)| > ε]

≥ E [|X(t)| | |X(t)| > ε]1+δ Pr[|X(t)| > ε] (9.60)

where (9.60) follows by Jensen’s inequality applied to the conditional expectation of the

function f(|X(t)|), where f(x) = x1+δ is convex over x ≥ 0. Multiplying inequality (9.60)

by Pr[|X(t)| > ε]δ yields:

CPr[|X(t)| > ε]δ ≥ (E [|X(t)| | |X(t)| > ε]Pr[|X(t)| > ε])1+δ ≥ 0

Taking a limit of the above as t → ∞ and using (9.58) yields:

0 ≥ lim
t→∞

(E [|X(t)| | |X(t)| > ε]Pr[|X(t)| > ε])1+δ ≥ 0

It follows that:

lim
t→∞

E [|X(t)| | |X(t)| > ε]Pr[|X(t)| > ε] = 0

Using this equality and taking a lim sup of (9.59) yields lim supt→∞ E [X(t)] ≤ ε. This

holds for all ε > 0, and so lim supt→∞ E [X(t)] ≤ 0. Similarly, it can be shown that

lim inft→∞ E [X(t)] ≥ 0. Thus, limt→∞ E [X(t)] = 0.

Recall that convergence with probability 1 is stronger than convergence in probability,

and so the above result also holds if limt→∞X(t) = x with probability 1. Theorem 2 can

be applied to the case when limK→∞
1
K

∑K−1
k=0 e[k] = e with probability 1, for some finite

constant e, and when there is a constant C such that E [e[k]2] ≤ C for all k. Indeed, one can

define X(K) = 1
K

∑K−1
k=0 e[k] for K ∈ {1, 2, 3, . . .} and use the Cauchy-Schwartz inequality

to show E [X(K)2] ≤ C for all K ∈ {1, 2, 3, . . .}, and so limK→∞
1
K

∑K−1
k=0 E [e[k]] = e.
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