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LIFO-Backpressure Achieves Near Optimal
Utility-Delay Tradeoff

Longbo Huang∗, Scott Moeller†, Michael J. Neely†, Bhaskar Krishnamachari†

Abstract—There has been considerable work developing a
stochastic network utility maximization framework using Back-
pressure algorithms, also known as MaxWeight. A key open
problem has been the development of utility-optimal algorithms
that are also delay efficient. In this paper, we show that the
Backpressure algorithm, when combined with the LIFO queueing
discipline (called LIFO-Backpressure), is able to achieve a utility
that is within O(1/V ) of the optimal value, for any scalar
V ≥ 1, while maintaining an average delay of O([log(V )]2)
for all but a tiny fraction of the network traffic. This result
holds for a general class of problems with Markovian dynamics.
Remarkably, the performance of LIFO-Backpressure can be
achieved by simply changing the queueing discipline; it requires
no other modifications of the original Backpressure algorithm.
We validate the results through empirical measurements from
a sensor network testbed, which show a good match between
theory and practice.

Because some packets may stay in the queues for a very long
time under LIFO-Backpressure, we further develop the LIFOp-
Backpressure algorithm, which generalizes LIFO-Backpressure
by allowing interleaving between FIFO and LIFO. We show that
LIFOp-Backpressure also achieves the same O(1/V ) close-to-
optimal utility performance, and guarantees an average delay of
O([log(V )]2) for the packets that are served during the LIFO
period.

Index Terms—Queueing, Dynamic Control, LIFO scheduling,
Lyapunov analysis, Stochastic Optimization

I. INTRODUCTION

Recent developments in stochastic network optimization
theory have yielded a very general framework that solves a
large class of networking problems of the following form:
We are given a discrete time stochastic network. The network
state, which describes the current realization of the underlying
network randomness, such as the network channel condition,
is time varying according to some probability law. A network
controller performs some action based on the observed net-
work state at every time slot. The chosen action incurs a cost,
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1 but also serves some amount of traffic and possibly generates
new traffic for the network. This traffic causes congestion, and
thus leads to backlogs at nodes in the network. The goal of the
controller is to minimize its time average cost subject to the
constraint that the time average total backlog in the network
be kept finite.

This general setting models a large class of networking
problems ranging from traffic routing [1] and flow utility
maximization [2] to network pricing [3] and cognitive radio
applications [4]. Also, many techniques have also been applied
to this problem (see [5] for a survey). Among the approaches
that have been adopted, the family of Backpressure algorithms
[6] are recently receiving much attention due to their provable
performance guarantees, robustness to stochastic network con-
ditions and, most importantly, their ability to achieve the de-
sired performance without requiring any statistical knowledge
of the underlying randomness in the network.

Most prior performance results for Backpressure are given
in the following [O(1/V ), O(V )] utility-delay tradeoff form
[6]: Backpressure is able to achieve a utility that is within
O(1/V ) of the optimal utility, for any scalar V ≥ 1, while
guaranteeing an average network delay that is O(V ). Although
these results provide strong theoretical guarantees for the
algorithms, the network delay can be unsatisfying when we
achieve a utility that is very close to the optimal, i.e., when
V is large.

There have been efforts to develop algorithms that can
achieve better utility-delay tradeoffs. Previous works [7]
and [8] show improved tradeoffs are possible for single-
hop networks with certain structure, and develop opti-
mal [O(1/V ), O(log(V ))] and [O(1/V ), O(

√
V )] utility-delay

tradeoffs. The algorithms are different from basic Back-
pressure and require knowledge of an “epsilon” parame-
ter that measures distance to a performance region bound-
ary. Work [9] uses a completely different analytical tech-
nique to show that similar poly-logarithmic tradeoffs, i.e.,
[O(1/V ), O([log(V )]2)], are possible by carefully modify-
ing the actions taken by the basic Backpressure algorithms.
However, the algorithm requires a pre-determined learning
phase, which adds additional complexity to the implemen-
tation. The current work, following the line of analysis in
[9], instead shows that similar poly-logarithmic tradeoffs,
i.e., [O(1/V ), O([log(V )]2)], can be achieved by the orig-
inal Backpressure algorithm by simply modifying the ser-
vice discipline from First-in-First-Out (FIFO) to Last-In-First-

1Since cost minimization is mathematically equivalent to utility maximiza-
tion, below we will use cost and utility interchangeably.
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Out (LIFO) (called LIFO-Backpressure below). This is a
remarkable feature that distinguishes LIFO-Backpressure from
previous algorithms in [7] [8] [9] while providing a deeper
understanding of Backpressure itself and clarifying the role
of queue backlogs as Lagrange multipliers (see also [2] [9]).
However, this performance improvement is not for free: In
order to dramatically improve delay for the the majority of
the traffic, a small fraction of packets may need to stay in the
queues for a very long time (possibly forever). We prove that
as the V parameter is increased, the fraction of these “trapped”
packets quickly converges to zero, while maintaining O(1/V )
close-to-optimal utility and O([log(V )]2) average delay. This
provides an analytical justification for experimental observa-
tions of [10], in which a related Backpressure implementation
demonstrates that average delay can be reduced by two orders
of magnitude for 98% of traffic when LIFO queue discipline
is employed.

LIFO-Backpressure was proposed in a recent empirical
work [10]. Without providing theoretical guarantees, the au-
thors developed a practical implementation of Backpressure
routing and showed experimentally that applying the LIFO
queuing discipline drastically improves average packet delay.
Another two notable recent works providing an alternative
delay solution are [11] and [12]. [11] describes a novel
Backpressure-based per-packet randomized routing framework
that runs atop the shadow queue structure of [13] while
minimizing hop count as explored in [14]. Their techniques re-
duce delay drastically and eliminates the per-destination queue
complexity. [12] develops a queue-based routing algorithm for
intermittently connected networks, and uses a shadow-queue
based approach for delay improvement. However, neither
works provide O([log(V )]2) average delay guarantees.

Our analysis of the delay performance of LIFO-
Backpressure is based on the recent “exponential attraction”
result developed in [9]. The proof idea can be intuitively
explained by Fig. 1, which depicts a simulated backlog pro-
cess of a single queue system with unit packet size under
Backpressure. The left figure demonstrates the “exponential
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Fig. 1. The LIFO-Backpressure idea.

attraction” result in [9], which states that the queue size
vector under Backpressure deviates from some fixed point
with probability that decreases exponentially in the deviation
distance. Hence the queue size will mostly fluctuate within
the interval [QLow, QHigh], which can be shown to be of
O([log(V )]2) size. This result holds under both FIFO and
LIFO, as they result in the same queue process.

Now suppose that LIFO is used in this queue. Then, from
the right side of Fig. 1, we see that because the queue

mostly resides within the range of QLow and QHigh, most
packets arrive to find the queue size in this region. These
new packets will always be placed on the top of the queue
due to the LIFO discipline. Most packets thus enter and leave
the queue when the queue size is between QLow and QHigh
and therefore “see” a queue with average size no more than
QHigh−QLow = O([log(V )]2). Now let λ be the packet arrival
rate into the queue, and let λ̃ be the arrival rate of packets
entering when the queue size is in [QLow, QHigh] and that
eventually depart. Because packets always occupy the same
buffer slot under LIFO, we see that these packets can occupy
at most QHigh −QLow + δmax buffer slots, ranging from QLow
to QHigh + δmax, where δmax = Θ(1) is the maximum number
of packets that can enter the queue at any time. We can now
apply Little’s Theorem [15] to the buffer slots in the interval
[QLow, QHigh + δmax], and we see that average delay for these
packets that arrive when the queue size is in [QLow, QHigh]
satisfies:

D ≤ QHigh −QLow + δmax

λ̃
=
O([log(V )]2)

λ̃
. (1)

The exponential attraction result implies that λ ≈ λ̃. Hence
for almost all packets entering the queue, the average delay is
D = O([log(V )]2/λ).

We also generalize LIFO-Backpressure to a scheme that
allows interleaving between FIFO and LIFO, called LIFOp-
Backpressure. The development of LIFOp-Backpressure is
motivated by the fact that a few packets may stay in the
queue for a very long time under LIFO-Backpressure. We
show that LIFOp-Backpressure is able to achieve the same
O(1/V ) close-to-optimal utility performance, and guarantee
an average delay of O([log(V )]2) for the packets that are
served during the LIFO period. Finally, we show how these
results can be extended, allowing us to optimize functions of
time average cost.

This paper is organized as follows. We first provide an
example of our network model in Section II. We then present
the general system model in Section III. We review the
Backpressure algorithm in Section IV. The delay performance
of LIFO-Backpressure is presented in Section V. We then
present LIFOp-Backpressure and its performance in Section
VI. Simulation results and experimental testbed results are
presented in Sections VII and VIII. Finally, we show how our
results can be extended to optimize functions of time averages
in Section IX.

II. AN EXAMPLE OF OUR SYSTEM MODEL

To facilitate understanding of the general system model, we
first provide an example in this section to illustrate the model.

q1(t) q2(t)A1(t) = R1(t)
μ1(t) μ2(t) 

CH1(t) CH2(t) 

R2(t)

Fig. 2. A two-queue tandem example.

Consider the 2-queue network in Fig. 2. In this network,
external packets enter the network from nodes 1 and 2 and
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will be relayed over the network. We assume time is slotted,
and use R1(t) and R2(t) to denote the number of packets that
arrive to nodes 1 and 2 at time t, respectively. We assume that
Ri(t) ∈ {0, 1} for i = 1, 2.

The channel conditions of the queues are time varying,
e.g., due to fading. We use CH1(t) and CH2(t) to de-
note the channel condition of both queues. We assume that
CHj(t) ∈ {G,B}, where CHj(t) = G/B means that
channel j has a “Good” or “Bad” state. When CHj(t) = G,
one unit of power can serve 2 packets over the link, other-
wise it can only serve one. We assume that the quadruple
(R1(t), R2(t), CH1(t), CH2(t)) evolves according to a finite
state Markov chain with three states (1, 1, G,B), (1, 1, G,G),
and (0, 0, B,G).

We use x(t) , (x1(t), x2(t)) to denote the operator’s power
allocation action, where xj(t) denotes the amount of energy
spent at queue j = 1, 2. We assume xj(t) ∈ {0, 1} for all j
and t. Also, if x1(t) = 1 but queue 1 is empty, we assume
that null packets will be sent. We assume that power can be
allocated to both channels without impacting the link rates.
The operator’s goal is to find a power allocation policy to
determine (x1(t), x2(t)) for every time slot t, so as to support
all arriving traffic, i.e., maintain queue stability, with minimum
energy expenditure.

For ease of presenting the general model later, we now
restate the example problem above in the following general
form.
• The system has a network state:

S(t) , (R1(t), R2(t), CH1(t), CH2(t)),

which evolves according to a Markov chain with state space
S , {s1, s2, s3}, where s1 = (1, 1, G,B), s2 = (1, 1, G,G),
and s3 = (0, 0, B,G).
• Under a network state S(t), the operator has a set of feasible
actions, i.e., XS(t) , {x : x1 = 0/1, x2 = 0/1}, and he
chooses a power allocation decision x(t) ∈ XS(t).
• Under S(t) and x(t),

• The operator pays a cost f(t) , f(S(t),x(t)) = x1(t)+
x2(t), which is the total power consumption.

• The aggregate service rate allocated to queue j is denoted
by the rate function µj(t) , µj(S(t),x(t)). If in S(t),
CHj(t) = G, µj(t) = 2xj(t), else µj(t) = xj(t).

• The aggregate amount of traffic entering queue j is
denoted by the traffic function Aj(t) , Aj(S(t),x(t)). In
the example, A1(t) = R1(t) and A2(t) = R2(t) +µ1(t).

• The queues evolve according to:
qj(t+ 1) = max[qj(t)− µj(t), 0] +Aj(t), j = 1, 2.

• The goal of the operator is to minimize the time average
value of f(t), subject to network stability.

The network states, the traffic functions, and the service
rate functions are summarized in Fig. 3. It can be observed
that the functions are all continuous in the action x(t). Note
here A1(t) = R1(t) is part of S(t) and is independent of x(t);
while A2(t) = µ1(t)+R2(t) hence depends on x(t). Also note
that A2(t) equals µ1(t)+R2(t) instead of min[µ1(t), q1(t)]+
R2(t) due to our idle fill assumption.

On Using LIFO in Max-Weight Scheduling

This note provides a brief summary of the development of using LIFO in max-weight scheduling

(called LIFO scheduling in short) in stochastic network optimization. The idea of using LIFO with the

max-weight algorithm was first proposed in [1].

TABLE I

NETWORK STATE, TRAFFIC AND RATE

S(t) R1(t) R2(t) CH1(t) CH2(t) A1(t) A2(t) µ1(t) µ2(t)

s1 1 1 G B 1 2x1 + 1 2x1 x2

s2 1 1 G G 1 2x1 + 1 2x1 2x2

s3 0 0 B G 0 x1 x1 2x2

I. THE STATE OF THE ART - LIFO IN UTILITY MAXIMIZATION

So far, the LIFO scheduling results, either theoretical or experimental, have been focusing on utility

maximization in networks. The main reason for this is that when we try to optimize a utility over a network,

one can show, under some mild conditions that can usually be satisfied in practice, that the network backlog

vector under the max-weight algorithm is exponentially attracted to some fixed point. Specifically, under

max-weight with a control parameter V , there exists some fixed point γ∗ = (γ∗1 , ..., γ∗r )T = Θ(V ) such

that the network backlog vector q(t) satisfies the following property in steady state:

Pr{‖q(t) − γ∗‖ > D + m} ≤ e−cm, (1)

for some c, D = Θ(1). That is, the network backlog vector size will increase linearly with the V parameter,

and it will mostly be within log(V ) distance to γ∗ when V is large.

In practice, the FIFO queueing discipline is often used in many networking applications. Therefore,

a packet has to wait for all the packets in front of it in the queue before getting served. According to

the above attraction result, we see that under max-weight with FIFO, a packet usually has to wait for a

number of Θ(V ) packets. Thus the average network delay is Θ(V ). This analytical result is consistent

with what we see in simulations and experiments.

Now consider using the LIFO discipline. We see then in steady state, most packets will arrive and

leave the queue when the queue size is within log(V ) distance to the fixed point γ∗. Hence for most of

the packets, they “see” a queue with roughly log(V ) packets. Hence the average delay for most of the

packets is only logarithmic in V .

Fig. 3. The traffic and service functions under different states.

III. SYSTEM MODEL

In this section, we specify the general network model we
use. We consider a network controller that operates a network
with the goal of minimizing the time average cost, subject
to the queue stability constraint. The network is assumed to
operate in slotted time, i.e., t ∈ {0, 1, 2, ...}. We assume there
are r ≥ 1 queues in the network.

A. Network State

In every slot t, we use S(t) to denote the current net-
work state, which indicates the current network parameters,
such as a vector of channel conditions for each link, or
a collection of other relevant information about the current
network channels and arrivals. We assume that S(t) evolves
according a finite state irreducible and aperiodic Markov chain,
with a total of M different random network states denoted
as S = {s1, s2, . . . , sM}. Let πsi denote the steady state
probability of being in state si. It is easy to see in this case that
πsi > 0 for all si. The network controller can observe S(t)
at the beginning of every slot t, but the πsi and transition
probabilities are not necessarily known.

B. The Cost, Traffic, and Service

At each time t, after observing S(t) = si, the controller
chooses an action x(t) from a set X (si), i.e., x(t) = x(si) for
some x(si) ∈ X (si). The set X (si) is called the feasible action
set for network state si and is assumed to be time-invariant and
compact for all si ∈ S. The cost, traffic, and service generated
by the chosen action x(t) = x(si) are as follows:

(a) The chosen action has an associated cost given by the
cost function f(t) = f(si, x

(si)) : X (si) 7→ R+ (or
X (si) 7→ R− in reward maximization problems);

(b) The amount of traffic generated by the action to
queue j is determined by the traffic function Aj(t) =
Aj(si, x

(si)) : X (si) 7→ R+, in units of packets;
(c) The amount of service allocated to queue j is given by

the rate function µj(t) = µj(si, x
(si)) : X (si) 7→ R+, in

units of packets.
Note that Aj(t) includes both the exogenous arrivals from
outside the network to queue j, and the endogenous arrivals
from other queues, i.e., the transmitted packets from other
queues, to queue j. We assume the functions f(si, ·), µj(si, ·)
and Aj(si, ·) are continuous, time-invariant, their magnitudes
are uniformly upper bounded by some constant δmax ∈ (0,∞)
for all si, j, and they are known to the network operator. We
also assume that there exists a set of actions {x(si)

k }
k=1,2,...,∞
i=1,...,M

with x(si)
k ∈ X (si) and some variables ϑ(si)

k ≥ 0 for all si and
k with

∑
k ϑ

(si)
k = 1 for all si, such that:∑

si

πsi
{∑

k

ϑ
(si)
k [Aj(si, x

(si)
k )− µj(si, x(si)

k )]
}
≤ −η, (2)
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for some η > 0 and for all j. That is, the stability constraints
are feasible with η-slackness. Thus, there exists a stationary
randomized policy that stabilizes all the queues in the network
(where ϑ(si)

k represents the probability of choosing action x(si)
k

when S(t) = si) [6].

C. Queueing, Average Cost, and the Stochastic Problem

Let q(t) = (q1(t), ..., qr(t))
T ∈ Rr+, t = 0, 1, 2, ... be

the queue backlog vector process of the network, in units of
packets. We assume the following queueing dynamics:

qj(t+ 1) = max
[
qj(t)− µj(t), 0

]
+Aj(t), ∀j, (3)

and q(0) = 0. By using (3), we assume that when a queue does
not have enough packets to send, null packets are transmitted.
In this paper, we adopt the following notion of queue stability:

E
{ r∑
j=1

qj
}
, lim sup

t→∞

1

t

t−1∑
τ=0

r∑
j=1

E
{
qj(τ)

}
<∞. (4)

We also use fΠ
av to denote the time average cost induced by

an action-choosing policy Π, defined as:

fΠ
av , lim sup

t→∞

1

t

t−1∑
τ=0

E
{
fΠ(τ)

}
, (5)

where fΠ(τ) is the cost incurred at time τ by policy Π. We
call an action-choosing policy feasible if at every time slot t
it only chooses actions from the feasible action set X (S(t)).
We then call a feasible action-choosing policy under which (4)
holds a stable policy, and use f∗av to denote the optimal time
average cost over all stable policies.

In every slot, the network controller observes the current
network state and chooses a control action, with the goal of
minimizing the time average cost subject to network stability.
This goal can be mathematically stated as:

(P1) min : fΠ
av , s.t. (4).

In the following, we call (P1) the stochastic problem.

IV. BACKPRESSURE AND THE DETERMINISTIC PROBLEM

In this section, we first review the Backpressure algorithm
[6] for solving the stochastic problem. Then, we define the
deterministic problem and its dual for our later analysis. We
first recall the Backpressure algorithm for utility optimization
problems [6].

Backpressure: At every time slot t, observe the current
network state S(t) and the backlog q(t). If S(t) = si, choose
x(si) ∈ X (si) that solves the following:

max : −V f(si, x) +

r∑
j=1

qj(t)
[
µj(si, x)−Aj(si, x)

]
(6)

s.t. x ∈ X (si). 3
Depending on the problem structure, (6) can usually be

decomposed into separate parts that are easier to solve, e.g.,
[3], [4]. Also, when the network state process S(t) is i.i.d., it
has been shown in [6] that,

fBP
av = f∗av +O(1/V ), qBP = O(V ), (7)

where fBP
av and qBP are the expected average cost and the

expected average network backlog size under Backpressure,
respectively. When S(t) is Markovian, it is recently for-
mally shown in [16] that Backpressure achieves the exact

[O(V ), O(1/V )] utility-delay tradeoff. Note that the perfor-
mance results in (7) hold under Backpressure with any queue-
ing discipline for choosing which packets to serve.

We also recall the deterministic problem defined in [9]:
min : F(x) , V

∑
si

πsif(si, x
(si)) (8)

s.t. Aj(x) ,
∑
si

πsiAj(si, x
(si))

≤ Bj(x) ,
∑
si

πsiµj(si, x
(si)), ∀ j,

x(si) ∈ X (si) ∀ i = 1, 2, ...,M,

where πsi corresponds to the steady state probability of S(t) =
si and x = (x(s1), ..., x(sM ))T . The dual problem of (8) can
be obtained as follows:

max : g(γ), s.t. γ � 0, (9)
where g(γ) is called the dual function and is defined as:

g(γ) = inf
x(si)∈X (si)

∑
si

πsi

{
V f(si, x

(si)) (10)

+
∑
j

γj
[
Aj(si, x

(si))− µj(si, x(si))
]}
.

Here γ = (γ1, ..., γr)
T is the Lagrange multiplier of

(8). It is well known that g(γ) in (10) is concave in the
vector γ, and hence the problem (9) can usually be solved
efficiently, particularly when cost functions and rate functions
are separable over different network components [17]. Below,
we use γ∗V = (γ∗V 1, γ

∗
V 2, ..., γ

∗
V r)

T to denote an optimal
solution of the problem (9) with the corresponding V .

V. PERFORMANCE OF LIFO-BACKPRESSURE

In this section, we analyze the performance of Back-
pressure with the LIFO queueing discipline (called LIFO-
Backpressure). Note that in this case, the queues still evolve
according to (3), i.e., first serve the packets in the queue, and
then admit the new arrivals. However, the served packets are
chosen in a LIFO manner. The idea of using LIFO under
Backpressure is first proposed in [10], although they did not
provide any theoretical performance guarantee. We will show,
under some mild conditions (to be stated in Theorem 3), that
under LIFO-Backpressure, the time average delay for almost
all packets entering the network is O([log(V )]2) when the
utility is pushed to within O(1/V ) of the optimal value. Note
that the implementation complexity of LIFO-Backpressure is
the same as the original Backpressure, and LIFO-Backpressure
only requires knowledge of the instantaneous network condi-
tion. This is a remarkable feature that distinguishes it from
the previous algorithms achieving similar poly-logarithmic
tradeoffs in the i.i.d. case, e.g., [7] [8] [9], which all require
knowledge of some implicit network parameters other than
the instant network state. Below, we first provide a simple
example to demonstrate the need for careful treatment of the
usage of LIFO in Backpressure algorithms. Then, we present
a modified Little’s theorem that will be used for our proof.

A. A simple example on the LIFO delay
Consider a slotted system where two packets arrive at time

0, and one packet periodically arrives every slot thereafter (at
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times 1, 2, 3, . . .). The system is initially empty and can serve
exactly one packet per slot. The arrival rate λ is clearly 1
packet/slot (so that λ = 1). Further, under either FIFO or
LIFO service, there are always 2 packets in the system, so
Q = 2.

Under FIFO service, the first packet has a delay of 1 and
all packets thereafter have a delay of 2:

W FIFO
1 = 1 , W FIFO

i = 2 ∀i ∈ {2, 3, 4, . . .},
where W FIFO

i is the delay of the ith packet under FIFO (W LIFO
i

is similarly defined for LIFO). We thus have:

W
FIFO M

= lim
K→∞

1

K

K∑
i=1

W FIFO
i = 2.

Thus, λW
FIFO

= 1 × 2 = 2, Q = 2, and so λW
FIFO

= Q
indeed holds.

Now consider the same system under LIFO service. We still
have λ = 1, Q = 2. However, in this case the first packet never
departs, while all other packets have a delay equal to 1 slot:

W LIFO
1 =∞ , W LIFO

i = 1 ∀i ∈ {2, 3, 4, . . .}.
Thus, for all integers K > 0:

1

K

K∑
i=1

W LIFO
i =∞.

and so W
LIFO

= ∞. Clearly λW
LIFO 6= Q. On the other

hand, if we ignore the one packet with infinite delay, we note
that all other packets get a delay of 1 (exactly half the delay
in the FIFO system). Thus, in this example, LIFO service
significantly improves delay for all but the first packet.

For the above LIFO example, it is interesting to note that
if we define Q̃ and W̃ as the average backlog and delay
associated only with those packets that eventually depart, then
we have Q̃ = 1, W̃ = 1, and the equation λW̃ = Q̃ indeed
holds. This motivates the theorem in the next subsection,
which considers a time average only over those packets that
eventually depart.

B. A Modified Little’s Theorem for LIFO systems

We now present the modified Little’s theorem. Let B repre-
sent a finite set of buffer locations in a LIFO queueing system.
Let N(t) be the number of arrivals that use a buffer location
within set B up to time t. Let D(t) be the number of departures
from a buffer location within the set B up to time t. Let Wi

be the delay of the ith job to depart from the set B. Define
W as the lim sup average delay considering only those jobs
that depart:

W M
= lim sup

t→∞

1

D(t)

D(t)∑
i=1

Wi.

We then have the following theorem:
Theorem 1: Suppose there is a constant λmin > 0 such that

with probability 1:

lim inf
t→∞

N(t)

t
≥ λmin.

Further suppose that limt→∞D(t) =∞ with probability 1 (so
the number of departures is infinite). Then the average delay
W satisfies:

W M
= lim sup

t→∞

1

D(t)

D(t)∑
i=1

Wi ≤ |B|/λmin,

where |B| is the size of the finite set B.
Proof: See Appendix A.

We note that under FIFO, the delay experienced by a packet
in a set B may not be equal to its delay in the queue. This is
because packets under FIFO will gradually move from buffer
slots at the end of the queue towards the buffer slots at the
front. Under LIFO, however, once a packet leaves a buffer
slot, it also leaves the queue. Hence, the average delay packets
experience in their buffer slots is also the average delay they
experience in the queue. Thus, Theorem 1 can be used to study
packet queueing delay for LIFO systems.

C. LIFO-Backpressure Proof

We now provide the analysis of LIFO-Backpressure. To
prove our result, we will use the following theorem from
[16], which is the first to show that Backpressure (with either
FIFO or LIFO) achieves the exact [O(1/V ), O(V )] utility-
delay tradeoff under a Markovian network state process. It
generalizes the [O(1/V ), O(V )] performance result of Back-
pressure in the i.i.d. case in [6].

Theorem 2: Suppose S(t) is a finite state irreducible and
aperiodic Markov chain2 and the slackness condition (2)
holds, Backpressure (with either FIFO or LIFO) achieves the
following:

fBP
av = f∗av +O(1/V ), qBP = O(V ), (11)

where fBP
av and qBP are the expected time average cost and

backlog under Backpressure.
Proof: See [16].

Theorem 2 thus shows that LIFO-Backpressure guarantees
an average backlog of O(V ) when pushing the utility to within
O(1/V ) of the optimal value. We now consider the delay
performance of LIFO-Backpressure. For our analysis, we need
the following theorem (which is Theorem 1 in [9]).

Theorem 3: Suppose γ∗V is unique, the slackness condition
(2) holds, and the dual function g(γ) satisfies:

g(γ∗V ) ≥ g(γ) + L||γ∗V − γ||, ∀ γ � 0, (12)
for some constant L > 0 independent of V . Then, un-
der Backpressure with FIFO or LIFO, there exist constants
D,K, c∗ = Θ(1), i.e., all independent of V , such that for any
m ∈ R+,

P(r)(D,Km) ≤ c∗e−m, (13)
where P(r)(D,Km) is defined:
P(r)(D,Km) (14)

, lim sup
t→∞

1

t

t−1∑
τ=0

Pr{∃ j, |qj(τ)− γ∗V j | > D +Km}.

Proof: See [9].
Note that if a steady state distribution exists for q(t), e.g.,

when all queue sizes are integers, then P(r)(D,Km) is indeed
the steady state probability that there exists a queue j whose
queue value deviates from γ∗V j by more than D+Km distance.
In this case, Theorem 3 states that qj(t) deviates from γ∗V j by
Θ(log(V )) distance with probability O(1/V ). Hence when
V is large, qj(t) will mostly be within O(log(V )) distance
from γ∗V j . Also note that the conditions of Theorem 3 are not

2In [16], the theorem is proven under more general Markovian S(t)
processes that include the S(t) process assumed here.
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very restrictive. The condition (12) can usually be satisfied in
practice when the action space is finite, in which case the dual
function g(γ) is polyhedral (see [9] for more discussions). The
uniqueness of γ∗V can usually be satisfied in network utility
optimization problems, e.g., [2].

We now present the main result of this paper with respect
to the delay performance of LIFO-Backpressure. Below, the
notion “average arrival rate” is defined as follows: Let Aj(t)
be the number of packets entering queue j at time t. Then,
the time average arrival rate of these packets is defined as
(assuming it exists): λj = limt→∞ 1

t

∑t−1
τ=0Aj(τ). For the

theorem, we assume that time averages under Backpressure
exist with probability 1. This is a reasonable assumption, and
holds whenever the resulting discrete time Markov chain for
the queue vector q(t) under Backpressure is countably infinite
and irreducible. Note that the state space is indeed countably
infinite if we assume packets take integer units. If the system
is also irreducible, then the finite average backlog result of
Theorem 2 implies that all states are positive recurrent.

Let D,K, c∗ be constants as defined in Theorem 3, and
recall that these are Θ(1) (independent of V ). Assume V ≥ 1,
and define Qj,High and Qj,Low as:

Qj,High
M
= γ∗V j +D +K[log(V )]2, (15)

Qj,Low
M
= max[γ∗V j −D −K[log(V )]2, 0]. (16)

Define the interval Bj M=[Qj,Low, Qj,High]. The following theo-
rem considers the rate and delay of packets that enter when
qj(t) ∈ Bj and that eventually depart.

Theorem 4: Suppose V ≥ 1, γ∗V is unique, the slackness
assumption (2) holds, and the dual function g(γ) satisfies:

g(γ∗V ) ≥ g(γ) + L||γ∗V − γ||, ∀ γ � 0, (17)
for some constant L > 0 independent of V . Define D,K, c∗

as in Theorem 3, and define Bj as above. Then, for any queue
j with a time average input rate λj > 0, we have under LIFO-
Backpressure that:

(a) The rate λ̃j of packets that both arrive to queue j when
qj(t) ∈ Bj and that eventually depart the queue satisfies:

λj ≥ λ̃j ≥
[
λj −

δmaxc
∗

V log(V )

]+

. (18)

(b) The average delay of these packets is at most Wbound,
where:

Wbound
M
= [2D + 2K[log(V )]2 + δmax]/λ̃j .

This theorem says that the delay of packets that enter when
qj(t) ∈ Bj and that eventually depart is at most O([log(V )]2).
Further, by (18), when V is large, these packets represent the
overwhelming majority, in that the rate of packets not in this
set is at most O(1/V log(V )).

Proof: (Theorem 4) Theorem 2 shows that the average
network queue backlog is finite. Thus, there can be at most a
finite number of packets that enter the queue and never depart.
So the rate of packets arriving that never depart must be 0.
It follows that λ̃j is equal to the rate at which packets arrive
when qj(t) ∈ Bj . Define the indicator function 1j(t) to be 1
if qj(t) /∈ Bj , and 0 else. Define λ̃cj

M
=λj − λ̃j . Then, with

probability 1, we get: 3

λ̃cj = lim
t→∞

1

t

t−1∑
τ=0

Aj(τ)1j(τ)

= lim
t→∞

1

t

t−1∑
τ=0

E
{
Aj(τ)1j(τ)

}
.

Then, using the fact that Aj(t) ≤ δmax for all j, t, we have:
E
{
Aj(t)1j(t)

}
= E

{
Aj(t)|qj(t) /∈ Bj

}
Pr{qj(t) /∈ Bj)

≤ δmaxPr(qj(t) /∈ [Qj,Low, Qj,High]).

Therefore:

λ̃cj ≤ δmax lim
t→∞

1

t

t−1∑
τ=0

Pr(qj(τ) /∈ [Qj,Low, Qj,High])

≤ δmax lim
t→∞

1

t

t−1∑
τ=0

Pr(|qj(τ)− γ∗V,j | > D +Km),

where we define m M
= [log(V )]2. Note that V ≥ 1 and m ≥ 0.

From Theorem 3 we thus have:

0 ≤ λ̃cj ≤ δmaxc
∗e−m =

δmaxc
∗

V log(V )
. (19)

This proves Part (a).
To prove Part (b), define B̂j M

= [Qj,Low, Qj,High+δmax]. Since
Bj ⊂ B̂j , we see that the rate of the packets that enter and
leave B̂j is at least λ̃j . Part (b) then follows from Theorem 1
and that |B̂j | ≤ 2D + 2K[log(V )]2 + δmax.

Note that if λj = Θ(1), we see from Theorem 4 that, under
LIFO-Backpressure, the time average delay for almost all
packets going through queue j is only O([log(V )]2). Applying
this argument to all network queues with Θ(1) input rates, we
see that all but a tiny fraction of the traffic entering the network
only experiences a delay of O([log(V )]2). This contrasts with
the delay performance result of the usual Backpressure with
FIFO, which states that the time average delay will be Θ(V )
for all packets [9].

We remark that the queue process {q(t), t = 0, 1, ...}
remains the same under Backpressure with both FIFO and
LIFO. Thus, the required buffer sizes are the same in both
cases. However, under LIFO, we are able to reduce the delay
of the majority of the packets, by “shifting” most of their delay
to a tiny set of packets. Also note that, in this paper we have
implicitly assumed that each queue has an infinite buffer size
(by assuming (3)). Extending our results to networks where
nodes only have finite buffer sizes is an interesting direction
for future research. Finally, we note that in many cases, e.g.,
[7], [19], Backpressure automatically ensures that the queue
sizes remain bounded for all time. In such cases, using finite
buffer sizes is sufficient to guarantee the performance of
Backpressure.

VI. THE LIFOp-BACKPRESSURE ALGORITHM

In this section, we generalize the LIFO-Backpressure tech-
nique to allow interleaving between both LIFO and FIFO.
Specifically, at every time slot, each queue will randomly
decide to serve packets from either the back of the queue
or the front of the queue. The motivation of this interleaving

3The time average expectation is the same as the pure time average by
the Lebesgue Dominated Convergence Theorem [18], because we assume the
pure time average exists with probability 1, and that 0 ≤ Aj(t) ≤ δmax ∀t.
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approach is the observation that, under LIFO-Backpressure, a
few packets may stay in the queues for a very long time, or
they may never leave the queue. Thus, we want to resolve
this problem by also allowing the FIFO discipline, which
ensures that all the packets eventually leave each queue. We
parameterize the algorithm by a single parameter p ∈ [0, 1],
which represents the probability that a queue serves the
packets from the back of the queue at a given time. 4 We
call this approach the LIFOp-Backpressure algorithm.

A. The Algorithm

The idea of LIFOp-Backpressure is shown in Fig. 4. We
first pre-specify a probability p. 5 Then, at every time slot,
after choosing all the network action decisions according to
Backpressure, the queue serves packets from the end with
probability p; and from the front otherwise. Note that this
back/front decision is independent of the action taken by
Backpressure, and is independent for each queue. As we
vary p from 0 to 1, the algorithm transitions from the usual
Backpressure algorithm to LIFO-Backpressure.

qj(t)

Server

Arrival

Queue 
Front

Queue 
End

p 1-p

Qj,High Q̃j,Low��
V j Qj,Low

Fig. 4. The LIFO-FIFO interleaving technique. A packet is either served
when the queue is serving the end of the queue, or it gradually moves to the
right towards the front of the queue and is served when the queue is serving
packets from the front of the queue (the green packet and the arrow show
how packets gradually move to the right).

B. Performance Analysis

In this section, we analyze the performance of the LIFOp-
Backpressure algorithm. Without loss of generality, we assume
that each packet has unit size. Our following theorem shows
that LIFOp-Backpressure ensures that roughly a fraction p of
the packets experience only O([log(V )]2) queueing delay. This
result generalizes Theorem 4. In the theorem, we will use
Qj,High and Qj,Low defined in (15) and (16), i.e.,

Qj,High
M
= γ∗V j +D +K[log(V )]2,

Qj,Low
M
= max[γ∗V j −D −K[log(V )]2, 0],

as well as:
Q̃j,Low

M
= max[γ∗V j −D −K[log(V )]2 − δmax, 0].

Note that Q̃j,Low is slightly different from the Qj,Low (See
Fig. 4) and is introduced for our analysis. Then, we similarly
define B̃j , [Q̃j,Low, Qj,High] and assume throughout that all
the corresponding limits exist with probability 1.

4All the results in this section hold even if we choose different probabilities
for different queues.

5This p value will be pre-determined and not changed afterwards. It is
possible to use a p value that is a function of time in implementation. However,
the analysis will be very challenging.

Theorem 5: Suppose that V ≥ 1, γ∗V is unique, the
slackness assumption (2) holds, and the dual function g(γ)
satisfies:

g(γ∗V ) ≥ g(γ) + L||γ∗V − γ||, ∀ γ � 0, (20)
for some constant L > 0 independent of V . Define D,K, c∗ as
in Theorem 3, and define B̃j as above. Then, for any queue j
with a time average input rate λj > 0, we have under LIFOp-
Backpressure that:

(a) All the packets eventually leave the queue if 0 ≤ p < 1.
(b) There exists a set of packets Pj0 that arrive to queue

j when qj(t) ∈ B̃j , depart before they move to the right of
Q̃j,Low, and are served when the queue is serving the back of
the queue. 6 The set Pj0 has an average rate λPj0

that satisfies:

pλj ≥ λPj0 ≥
[
pλj −O(

δmaxc
∗

V log(V )
)

]+

. (21)

(c) If λPj0
> 0, the average delay of these packets is at

most Ŵbound, where:
Ŵbound

M
= 2(D +K[log(V )]2 + δmax)/λPj0

.

Proof: See Appendix B.
Theorem 5 says that by allocating a portion of the time to

serve the packets from the front of the queue, the problem
of packets being stuck in the queue can be resolved. If
the p parameter is chosen to be very close to one, then
LIFOp-Backpressure achieves almost the same performance
guarantee as LIFO-Backpressure, while ensuring that all the
packets are delivered.

The formal proof of Theorem 5 is given in Appendix B.
Here we sketch the proof idea: under the LIFOp-Backpressure
policy, for any queue j with an input rate λj > 0, the fraction
of packets that are served when the queue is serving the back
of the queue is pλj . Now we look at the packets that are served
from the back. First, we see that they will almost all arrive
to the queue when qj ∈ B̃j by Theorem 3. Second, they will
also almost all leave the queue before they move to the right
of Q̃j,Low. The reason for this is that, if a packet moves to the
right of Q̃j,Low, i.e., it moves into a buffer spot in [0, Q̃j,Low),
then since qj(t) rarely gets below Qj,Low ≈ Q̃j,Low + δmax,
it is very unlikely that this packet will be served from the
back of the queue. It can then only gradually move to the
front of the queue and be served there. Therefore, almost all
the packets that are served from the back will enter and leave
the queue when they are in the interval B̃j , which is of size
O([log(V )]2). Also, they have an average rate of roughly pλj .
Using Theorem 1, we see that they experience an average delay
of no more than O([log(V )]2)/pλj .

Note that similar to the LIFO-Backpressure case, LIFOp-
Backpressure reduces the delay of p-fraction of the packets
by “shifting” their delay to the other (1 − p)-fraction of the
packets. Therefore, if we reduce the delay of more packets, i.e.,
p closer to 1, the other fraction of the packets will experience
a larger average delay. This intuition will also be illustrated
in the simulation results in Section VII.

6Note that the third condition is needed because, when V is small, serving
the queue from the front may also serve a packet to the left of Q̃j,Low.
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VII. SIMULATION

In this section, we provide simulation results of the LIFO-
Backpressure algorithm and the LIFOp-Backpressure algo-
rithm. We consider the network shown in Fig. 5, where we
try to support a flow sourced by Node 1 destined for Node 7
with minimum energy consumption.

1

2

3

4

6

5

7

A(t)

(0.4, 3)

(0.2, 4)

(0.5, 3)

(0.4, 3)

(0.3, 4)

(0.4, 3)

(0.4, 3)

(0.3, 4)

(0.2, 4)

(1, 1)

Fig. 5. A multihop network. (a, b) represents the HIGH probability a and
the rate b obtained with one unit of power when HIGH.

We assume that A(t) evolves according to the 2-state
Markov chain in Fig. 6. When the state is HIGH, A(t) = 3,
else A(t) = 0. We assume that the channel condition of each
link can either be HIGH or LOW at a time. All the links except
link (2, 4) and link (6, 7) are assumed to be i.i.d. every time
slot, whereas the channel conditions of link (2, 4) and link
(6, 7) are assumed to be evolving according to independent
2-state Markov chains in Fig. 6. Each link’s HIGH probability
and unit power rate at the HIGH state is shown in Fig. 5. The
unit power rates of the links at the LOW state are all assumed
to be 1. We assume that the link states are all independent and
there is no interference. However, each node can only spend
one unit of power per slot to transmit over one outgoing link,
although it can simultaneously receive from multiple incoming
links. The goal is to minimize the time average power while
maintaining network stability.

HIGH LOW

0.3

0.7 0.7

0.3

Fig. 6. The two state Markov chain with the transition probabilities.

We simulate Backpressure with both LIFO and FIFO for
106 slots with V ∈ {20, 50, 100, 200, 500}. It can be verified
that the backlog vector converges to a unique attractor as
V increases in this case. The left two plots in Fig. 7 show
the average power consumption and the average backlog
under LIFO-Backpressure. We observe that the average power
quickly converges to the optimal value. We also see in
the middle plot that the average packet delay under LIFO-
Backpressure scales only as O([log(V )]2), whereas the delay
under FIFO increases linearly in V . The right plot of Fig. 7
shows the percentage of time when there exists a qj whose
value deviates from γ∗V j by more than 2[log(V )]2. As we can
see, this percentage is always very small, i.e., between 0.002
and 0.013, showing a good match between the theory and the
simulation results.

Fig. 8 compares the delay statistics of LIFO and FIFO for
more than 99.9% of the packets that leave the system before
the simulation ends, under the cases where V = 100 and
V = 500. We see that LIFO not only dramatically reduces
the average packet delay for these packets, but also greatly
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Fig. 7. LEFT: average network power consumption. MIDDLE: average
packet delay under FIFO and LIFO considering only the packets that depart
from the network (more than 99.9%). RIGHT: percentage of time when ∃ qj
such that |qj − γ∗V j | > 2[log(V )]2.

reduces the delay for most packets. For instance, when V =
500, under FIFO, almost all packets experience the average
delay around 1220 slots. Whereas under LIFO, the average
packet delay is brought down to 78. Moreover, 52.9% of the
packets only experience delay less than 20 slots, and 90.4% of
the packets experience delay less than 100 slots. Hence most
packets’ delay are reduced by a factor of 12 under LIFO as
compared to that under FIFO!

7

TABLE I
QLA WITH FIFO VS. QLA WITH LIFO

V=100
Case Avg. DL % DL < 20 % DL < 50 % DL < 100
LIFO 55.4 55.0 82.1 91.8
FIFO 260.6 0 0 0

V=500
Case Avg. DL % DL < 20 % DL < 50 % DL < 100
LIFO 78.3 52.9 80.4 90.4
FIFO 1219.8 0 0 0

VIII. EMPIRICAL VALIDATION

In this section we validate our analysis against empirical
results obtained from the same testbed and Backpressure Col-
lection Protocol (BCP) code developed in [10]. It is important
to note that these experiments are therefore not one-to-one
comparable with the analysis and simulations which we have
previously presented. We note that BCP runs atop the default
CSMA MAC for TinyOS which is not known to be throughput
optimal, that the testbed may not precisely be defined by
a finite state Markovian evolution, and finally that limited
storage availability on real wireless sensor nodes mandates the
introduction of virtual queues to maintain backpressure values
in the presence of data queue overflows.

In order to avoid using very large data buffers, in [10] the
forwarding queue of BCP has been implemented as a floating
queue. The concept of a floating queue is shown in Figure
10, which operates with a finite data queue of size Dmax

residing atop a virtual queue which preserves backpressure
levels. Packets that arrive to a full data queue result in a
data queue discard and the incrementing of the underlying
virtual queue counter. Underflow events (in which a virtual
backlog exists but the data queue is empty) results in null
packet generation, which are filtered and then discarded by
the sink. 3

Despite these real-world differences, we are able to demon-
strate clear order-equivalent delay gains due to LIFO usage in
BCP in the following experimentation.

Fig. 9. The 40 tMote Sky devices used in experimentation on Tutornet.

A. Testbed and General Setup

To demonstrate the empirical results, we deployed a col-
lection scenario across 40 nodes within the Tutornet testbed

3The LIFO floating queue can be shown (through sample path arguments) to
have a discard rate that is still proportional to O( 1

V c0 log(V ) ) with c0 = Θ(1)
derived in [18].

(see Figure 9). This deployment consisted of Tmote Sky
devices embedded in the 4th floor of Ronald Tutor Hall at
the University of Southern California.

In these experiments, one sink mote (ID 1 in Figure 9)
was designated and the remaining 39 motes sourced traffic
simultaneously, to be collected at the sink. The Tmote Sky
devices were programmed to operate on 802.15.4 channel 26,
selected for the low external interference in this spectrum on
Tutornet. Further, the motes were programmed to transmit
at -15 dBm to provide reasonable interconnectivity. These
experimental settings are identical to those used in [10].

Fig. 10. The floating LIFO queues of [10] drop from the data
queue during overflow, placing the discards within an underlying
virtual queue. Services that cause data queue underflows generate
null packets, reducing the virtual queue size.

We vary Dmax over experimentation because the exact
value of Dmax is not readily apparent in a real system. This
highlights the difficulty faced by techniques requiring explicit
knowledge of this or similar system parameters (e.g., Fast-
QLA in [9]). In practice, BCP defaults to a Dmax setting of
12 packets, the maximum reasonable resource allocation for a
packet forwarding queue in these highly constrained devices.

B. Experiment Parameters
Experiments consisted of Poisson traffic at 1.0 packets

per second per source for a duration of 20 minutes. This
source load is moderately high, since the boundary of the
capacity region for BCP running on this subset of motes has
previously been documented at 1.6 packets per second per
source [10]. A total of 36 experiments were run using the
standard BCP LIFO queue mechanism, for all combinations
of V ∈ {1, 2, 3, 4, 6, 8, 10, 12} and LIFO storage threshold
Dmax ∈ {2, 4, 8, 12}. In order to present a delay baseline for
Backpressure we additionally modified the BCP source code
and ran experiments with 32-packet FIFO queues (no floating
queues) for V ∈ {1, 2, 3}. 4

C. Results
Testbed results in Figure 11 provide the system average

packet delay from source to sink over V and Dmax, and

4These relatively small V values are due to the constraint that the motes
have small data buffers. Using larger V values will cause buffer overflow at
the motes.

Fig. 8. Delay statistics under Backpressure with LIFO and FIFO for packets
that leave the system before simulation ends (more than 99.9%). %DL < a
is the percentage of packets that enter the network and has delay less than a.

Fig. 9 also shows the delay for the first 20000 packets that
enter the network in the case when V = 500. We see that
under Backpressure plus LIFO, most packets experience very
small delay; while under Backpressure with FIFO, each packet
experiences roughly the average delay.
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Fig. 9. Packet delay under Backpressure with LIFO and FIFO

Finally, we simulate the LIFOp-Backpressure algorithm and
plot the results in Fig. 10. In this case, it can be verified that
the average delay of all packets is the same as that under the
original Backpressure. Since in the example network packets
need to go through multiple nodes to reach their destination,
the fraction of packets that experience only LIFO phases is
not exactly equal to p. However, the fraction will still be
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proportional in p. In this case, as we increase the value of
p, more packets will be served in the LIFO phase. However,
the average delay of the packets that experience FIFO phases
will also increase.
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Fig. 10. Average packet delay under LIFOp-Backpressure. The number next
to each p value indicates the percentage of packets that only experience LIFO
phases (or experience at least one FIFO phase in the right plot). Under a larger
p, more packets will experience only LIFO phases, which on the other hand
increases the average delay of the packets experience FIFO phases.

VIII. EMPIRICAL VALIDATION

In this section we validate our analysis of LIFO-
Backpressure empirically by carrying out new experiments
over the same testbed and Backpressure Collection Protocol
(BCP) code of [10]. This prior work did not empirically
evaluate the relationship between V , finite storage availability,
packet latency and packet discard rate. We note that BCP
runs atop the default CSMA MAC for TinyOS which is not
known to be throughput optimal, that the testbed may not
precisely be defined by a finite state Markovian evolution, and
finally that limited storage availability on real wireless sensor
nodes mandates the introduction of virtual queues to maintain
backpressure values in the presence of data queue overflows.

In order to avoid using very large data buffers, in [10]
the forwarding queue of BCP has been implemented as a
floating queue. The concept of a floating queue is shown in
Fig. 11, which operates with a finite data queue of size Dmax

residing atop a virtual queue which preserves backpressure
levels. Packets that arrive to a full data queue result in a
data queue discard and the incrementing of the underlying
virtual queue counter. Underflow events (in which a virtual
backlog exists but the data queue is empty) results in null
packet generation, which are filtered and then discarded by
the destination.

Despite these real-world differences, we are able to demon-
strate clear order-equivalent delay gains due to LIFO usage in
BCP in the following experimentation.

A. Testbed and General Setup

To demonstrate the empirical results, we deployed a collec-
tion scenario across 40 nodes within the Tutornet testbed (see
Fig. 12). This deployment consisted of Tmote Sky devices
embedded in the 4th floor of Ronald Tutor Hall at the
University of Southern California.

In these experiments, one sink mote (ID 1 in Fig. 12)
was designated and the remaining 39 motes sourced traffic

Fig. 11. The floating LIFO queues of [10] drop from the data
queue during overflow, placing the discards within an underlying
virtual queue. Services that cause data queue underflows generate
null packets, reducing the virtual queue size.

Fig. 12. The 40 tMote Sky devices used in experimentation on Tutornet.

simultaneously, to be collected at the sink. The Tmote Sky
devices were programmed to operate on 802.15.4 channel 26,
selected for the low external interference in this spectrum on
Tutornet. Further, the motes were programmed to transmit
at -15 dBm to provide reasonable interconnectivity. These
experimental settings are identical to those used in [10].

We vary Dmax, the buffer size of the motes, over exper-
imentation. In practice, BCP defaults to a Dmax setting of
12 packets, the maximum reasonable resource allocation for a
packet forwarding queue in these highly constrained devices.

B. Experiment Parameters

Experiments consisted of Poisson traffic at 1.0 packets
per second per source for a duration of 20 minutes. This
source load is moderately high, as the boundary of the ca-
pacity region for BCP running on this subset of motes has
previously been documented at 1.6 packets per second per
source [10]. A total of 36 experiments were run using the
standard BCP LIFO queue mechanism, for all combinations
of V ∈ {1, 2, 3, 4, 6, 8, 10, 12} and LIFO storage threshold
Dmax ∈ {2, 4, 8, 12}. In order to present a delay baseline for
Backpressure we additionally modified the BCP source code
and ran experiments with 32-packet FIFO queues (no floating
queues) for V ∈ {1, 2, 3}. 7

C. Results

Testbed results in Fig. 13 provide the system average packet
delay from source to sink over V and Dmax, and includes
95% confidence intervals. Delay in our FIFO implementation
scales linearly with V , as predicted by the analysis in [9]. This

7These relatively small V values are due to the constraint that the motes
have small data buffers. Using larger V values will cause buffer overflow at
the motes.
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yields an average delay that grows very rapidly with V , already
greater than 9 seconds per packet for V = 3. Meanwhile,
the LIFO floating queue of BCP performs much differently.
We have plotted a scaled [log(V )]2 target, and note that as
Dmax increases the average packet delay remains bounded by
Θ([log(V )]2). 8

Fig. 13. System average source to sink packet delay for BCP FIFO
versus BCP LIFO implementation over various V parameter settings.

These delay gains are only possible as a result of discards
made by the LIFO floating queue mechanism that occur when
the queue size fluctuates beyond the capability of the finite
data queue to smooth. Fig. 14 gives the system packet loss rate
of BCP’s LIFO floating queue mechanism over V . Note that
the poly-logarithmic delay performance of Fig. 13 is achieved
even for data queue size 12, which itself drops at most 5%
of traffic at V = 12. We cannot state conclusively from these
results that the drop rate scales like O( 1

V c0 log(V ) ). We hypothe-
size that a larger V value would be required in order to observe
the predicted drop rate scaling. Bringing these results back
to real-world implications, note that BCP (which minimizes
a penalty function of packet retransmissions) performs very
poorly with V = 0, and was found to have minimal penalty
improvement for V greater than 2. At this low V value, BCP’s
12-packet forwarding queue demonstrates zero packet drops in
the results presented here. These experiments, combined with
those of [10] suggest strongly that the drop rate scaling may
be inconsequential in many real world applications.

In order to explore the queue backlog characteristics and
compare with our analysis, Fig. 15 presents a histogram
of queue backlog frequency for rear-network-node 38 over
various V settings. This node was observed to have the worst
queue size fluctuations among all thirty-nine sources. For
V = 2, the queue backlog is very sharply distributed and
fluctuates outside the range [11 − 15] only 5.92% of the
experiment. As V is increased, the queue attraction is evident.
For V = 8 we find that the queue deviates outside the range
[41− 54] only 5.41% of the experiment. The queue deviation
is clearly scaling sub-linearly, as a four-fold increase in V

8We note in Fig. 13 that the FIFO case is implemented with Dmax =
32. Without a clear floating mechanism to allow virtual queue growth while
maintaining the FIFO discipline, a Dmax less than 32 is unstable even for
V = 3. The backlogs that must be achieved can be seen in rear network
node 38 of Fig. 15. The reason to present the FIFO results here is to show
the linear delay growth characteristic of the usual Backpressure technique and
compare it with the logarithmic growth of LIFO-Backpressure.

Fig. 14. System packet loss rate of BCP LIFO implementation over
various V parameter settings.

required only a 2.8 fold increase in Dmax for comparable drop
performance.

Fig. 15. Histogram of queue backlog frequency for rear-network-node
38 over various V settings.

IX. OPTIMIZING FUNCTIONS OF TIME AVERAGES

So far we have focused on optimizing time averages of
functions, we now consider the case when the objective of
the network controller is to optimize a function of some
time average metric, e.g., [20]. Specifically, we assume that
the action x(t) at time t incurs some instantaneous network
attribute vector y(t) = y(x(t)) = (y1(t), ..., yK(t))T ∈ RK+ ,
and the objective of the network controller is to minimize
a cost function Cost(y(t)) : RK+ → R+, 9 where y(t)
represents the time average value of y(t). We assume that
the function Cost(·) is continuous, convex and is component-
wise increasing, and that |yk(x(t))| ≤ δmax for all k, x(t). In
this case, we see that the Backpressure algorithm in Section
IV cannot be directly applied and the deterministic problem
(8) also needs to be modified.

To tackle this problem using the Backpressure algorithm, we
introduce an auxiliary vector z(t) = (z1(t), ..., zK(t))T . We
then define the following virtual queues Hk(t), j = 1, ...,K
that evolves as follows:

Hk(t+ 1) = max
[
Hk(t)− yk(t), 0

]
+ zk(t). (22)

These virtual queues are introduced for ensuring that the
average value of yk(t) is no less than the average value of

9The case for maximizing a utility function of long term averages can be
treated in a similar way.
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zk(t). We will then try to maximize the time average of
the function Cost(z(t)), subject to the constraint that the
actual queues qj(t) and the virtual queues Hk(t) must all
be stable. Specifically, the Backpressure algorithm for this
problem works as follows:

Backpressure-TimeAverage: At every time slot t, observe
the current network state S(t), and the backlogs q(t) and
H(t). If S(t) = si, do the following:

1) Auxiliary vector: choose the vector z(t) by solving:

min : V Cost(z) +
∑
k

Hk(t)zk

s.t. 0 ≤ zk ≤ δmax, ∀ k. (23)
2) Action: choose the action x(t) ∈ X (si) that solves:
max :

∑
k

Hk(t)yk(x) +
∑
j

qj(t)[µj(si, x)−Aj(si, x)]

s.t. x ∈ X (si). 3 (24)
In this case, one can also show that this Backpressure

algorithm achieves the [O(1/V ), O(V )] utility-delay tradeoff
under a Markovian S(t) process. We also note that in this
case, the deterministic problem is slightly different. Indeed,
the intuitive formulation will be of the following form:

min : F(x) , V Cost(
∑
si

πsiy(x(si))) (25)

s.t. Aj(x) ,
∑
si

πsiAj(si, x
(si))

≤ Bj(x) ,
∑
si

πsiµj(si, x
(si)) ∀ j

x(si) ∈ X (si) ∀ i = 1, 2, ...,M.

However, the dual problem of this optimization problem is
not separable, i.e., not of the form of (10), unless the function
Cost(·) is linear or if there exists an optimal action that is
in every feasible action set X (si), e.g., [20]. To resolve this
problem, we introduce the auxiliary vector z = (z1, ..., zK)T

and change the problem to:
min : F(x) , V Cost(z) (26)

s.t. z �
∑
si

πsiy(x(si))

Aj(x) ,
∑
si

πsiAj(si, x
(si))

≤ Bj(x) ,
∑
si

πsiµj(si, x
(si)) ∀ j

x(si) ∈ X (si) ∀ i = 1, 2, ...,M.

It can be shown that this modified problem is equivalent to
(25). Now we see that it is indeed due to the non-separable
feature of (25) that we need to introduce the auxiliary vector
z(t) in the deterministic problem. We also note that the
problem (26) actually has the form of (8). Therefore, all
previous results on (8), e.g., Theorem 3 and 4 will also apply
to problem (26).

X. CONCLUSION

In this paper, we show that the Backpressure algorithm,
when combined with the LIFO queueing discipline (called
LIFO-Backpressure), is able to achieve the near-optimal
[O(1/V ), O([log(V )]2)] utility-delay tradeoff. The results are

validated by simulations and sensor network testbed imple-
mentations. We also develop the LIFOp-Backpressure algo-
rithm, which generalizes LIFO-Backpressure by allowing an
interleaving between LIFO and FIFO. We show that LIFOp-
Backpressure achieves the same near-optimal tradeoff, and
guarantees that all packets are delivered.
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APPENDIX A – PROOF OF THEOREM 1
Here we provide the proof of Theorem 1.

Proof: Consider a sample path for which the lim inf
arrival rate is at least λmin and for which we have an
infinite number of departures (this happens with probability
1 by assumption). There must be a non-empty subset of
B consisting of buffer locations that experience an infinite
number of departures. Call this subset B̄. Now let W (b)

i be
the delay of the ith departure from b, let D(b)(t) denote the
number of departures from a buffer slot b ∈ B̄ up to time t,
and use Q(b)(t) to denote the occupancy of the buffer slot b
at time t. Note that Q(b)(t) is either 0 or 1. For all t ≥ 0, it
can be shown that:

D(b)(t)∑
i=1

W
(b)
i ≤

∫ t

0

Q(b)(τ)dτ. (27)

This can be seen from Fig. 16 below. Therefore, we have:

W1
(b)

W2
(b)

W3
(b)

W4
(b)

t0

Q
(b)
(t)

1

Fig. 16. An illustration of inequality (27) for a particular buffer location b.
At time t in the figure, we have D(b)(t) = 3.

∑
b∈B̄

D(b)(t)∑
i=1

W
(b)
i ≤

∫ t

0

∑
b∈B̄

Q(b)(τ)dτ

≤
∫ t

0

|B̄|dτ

≤ |B|t. (28)
The left-hand-side of the above inequality is equal to the

sum of all delays of jobs that depart from locations in B̄ up to
time t. All other buffer locations (in B but not in B̄) experience
only a finite number of departures. Let J represent an index
set that indexes all of the (finite number) of jobs that depart
from these other locations. Note that the delay Wj for each
job j ∈ J is finite (because, by definition, job j eventually
departs). We thus have:

D(t)∑
i=1

Wi ≤
∑
b∈B̄

D(b)(t)∑
i=1

W
(b)
i +

∑
j∈J

Wj .

where the inequality is because the second term on the right-
hand-side sums over jobs in J , and these jobs may not have
departed by time t. Combining the above and (28) yields for
all t ≥ 0:

D(t)∑
i=1

Wi ≤ |B|t+
∑
j∈J

Wj .
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Dividing by D(t) yields:

1

D(t)

D(t)∑
i=1

Wi ≤
|B|t
D(t)

+
1

D(t)

∑
j∈J

Wj .

Taking a lim sup as t→∞ yields:

lim sup
t→∞

1

D(t)

D(t)∑
i=1

Wi ≤ lim sup
t→∞

|B|t
D(t)

, (29)

where we have used the fact that
∑
j∈J Wj is a finite number,

and D(t)→∞ as t→∞, so that:

lim sup
t→∞

1

D(t)

∑
j∈J

Wj = 0.

Now note that, because each buffer location in B can hold
at most one job, the number of departures D(t) is at least
N(t) − |B|, which is a positive number for sufficiently large
t. Thus:

lim sup
t→∞

|B|t
D(t)

≤ lim sup
t→∞

[ |B|t
N(t)− |B|

]
= lim sup

t→∞

[ |B|
N(t)/t− |B|/t

]
≤ |B|/λmin.

Using this in (29) proves the result.

APPENDIX B – PROOF OF THEOREM 5

Here we prove Theorem 5. In the proof, we assume that all
the corresponding limits exist.

Proof: First we see that under the conditions of Theorem
5, the network is stable. Thus, the average rate out of any
queue j is equal to λj , which is the total input rate. That is,
letting µj(t) be the number of packets that depart from queue
j at time t, we have:

µj , lim
t→∞

1

t

t−1∑
τ=0

µj(τ) = λj . (30)

Now we use ej(t) to denote the event that queue j decides
to serve packets from the end of the queue, and let µEj be
the time average departure rate of the packets that are served
during the times when queue j serves the end of the queue.
We see that: 10

µEj , lim
t→∞

1

t

t−1∑
τ=0

µj(τ)1[ej(τ)]

(∗)
= lim

t→∞
1

t

t−1∑
τ=0

E
{
µ(τ)1[ej(τ)]

}
(31)

= lim
t→∞

1

t

t−1∑
τ=0

E
{
µj(τ)

}
p = pλj .

Here 1[·] is the indicator function, and (∗) follows from the
fact that the limit exists, that 0 ≤ µ(τ)1[e(τ)] ≤ δmax, and
the Lebesgue Dominated Convergence Theorem [18]. As a
result, the average rate of the packets that are served when
the queue serves the front of the queue, denoted by µFj , is
(1 − p)λj . Thus, if 0 ≤ p < 1, we see that µFj > 0. This
implies that every packet will eventually leave the queue. To
see this, suppose this is not the case. Then, there exists at least

10Note that the existence of µEj can be rigorously established using (30)
and the fact that µj(τ) ≤ δmax. However, the details are quite involved and
hence are omitted for brevity.

one packet P ∗ that never leaves the queue. In this case, for
any finite number K > 0, there must be more than K packets
in the queue when P ∗ arrives, since the packets are drained
out from the front with an average rate µFj > 0. However, this
implies that the queue size must be infinite when P ∗ arrives,
which contradicts the fact that the queue is stable. This proves
Part (a).

Now define Pj0 to be the set of packets that (i) arrive to
the queue when qj(t) ∈ B̃j , (ii) are served before they move
to the right of Q̃j,Low, and (iii) are served when the queue is
serving the end of the queue. Let λPj0

be the average rate of
the packets in Pj0. It can be observed that λPj0

≤ pλj . We
thus want to show that:

λPj0 ≥
[
pλj −O(

δmaxc
∗

V log(V )
)
]+
. (32)

Then, using the fact that the packets from Pj0 occupy an
interval of size at most Qj,High + Amax − Q̃j,Low ≤ 2(D +
K[log(V )]2 + δmax) = Θ([log(V )]2), we can use Theorem 1
and conclude from (32) that the average delay for the packets
in Pj0 is O([log(V )]2)/λPj0

if λPj0
> 0. 11

To prove (32), we first note that the packets that are served
when the queue is serving the end of the queue consist of the
following packet sets:

1) Pj0
2) Pj1, the set of packets that arrive when qj(t) ∈ B̃j , and

move to the right of Q̃j,Low but are still served from the
end of the queue

3) Pj2, the set of packets that are served from the end of
the queue but arrive to the queue when qj(t) > Qj,High

4) Pj3, the set of packets that are served from the end of
the queue but arrive to the queue when qj(t) < Q̃j,Low

Now define λPj1
, λPj2

and λPj3
to be the average rate of the

packets in Pj1, Pj2 and Pj3, respectively. We have:
µEj = pλj = λPj0

+ λPj1
+ λPj2

+ λPj3
.

This implies that:
λPj0

= pλj − (λPj1
+ λPj2

+ λPj3
). (33)

Therefore, to prove (32), it suffices to show that λPji
=

O( δmaxc
∗

V log(V ) ) for i = 1, 2, 3. To do this, we first note that λPj2

and λPj3
are upper bounded by the total arrival rates of the

packets that enter the queue when qj(t) > Qj,High and qj(t) <
Q̃j,Low, respectively. Using the definition of Qj,High and
Q̃j,Low and Theorem 3, we have λPj2 = O( δmaxc

∗

V log(V ) ), λPj3 =

O( δmaxc
∗

V log(V ) ).
We now compute an upper bound on λPj1

. Note that when
the queue decides to serve packets from the end of the queue
at time t, in order for it to serve a packet in Pj1, i.e., a
packet that arrives to the queue at some time t′ < t when
qj(t

′) ∈ B̃j but moves to the right of Q̃j,Low, we must have
qj(t) < Qj,Low. Therefore, if we denote µj1(t) the number
of packets in Pj1 that are served at time t, we see that
µj1(t) ≤ µmax1[qj(t)<Qj,Low]1[ej(t)] for all t. Therefore,

λPj1 = lim
t→∞

1

t

t−1∑
τ=0

E
{
µj1(τ)

}
11While Theorem 1 was stated for LIFO systems where each packet stays

in the same buffer location until departure, the result generalizes to the case
when buffer locations can shift within a set B as long as the group of packets
under consideration never leave the set B.
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≤ lim
t→∞

1

t

t−1∑
τ=0

E
{
δmax1[qj(τ)<Qj,Low]1[ej(τ)]

}
(∗)
= pδmax lim

t→∞
1

t

t−1∑
τ=0

Pr(qj(τ) < Qj,Low)

(∗∗)
≤ pδmaxP(r)(D,K[log(V )]2)

=
δmaxc

∗

V log(V )
.

Here (∗) uses the fact that ej(t) is independent of the
queue process, and (∗∗) follows from the definition of
P(r)(D,K[log(V )]2). Now using the fact that λPji

=

O( δmaxc
∗

V log(V ) ) for i = 1, 2, 3 in (33), we conclude that:

λPj0
≥
[
pλj −O(

δmaxc
∗

V log(V )
)
]+
. (34)

This proves Part (b).
Now by the definition of Pj0, we see that the packets in

Pj0 only occupy an interval of size no more than Qj,High −
Q̃j,Low + δmax ≤ 2(D+K[log(V )]2 + δmax) = Θ([log(V )]2).
Thus, using Theorem 1, the average delay for the packets in
Pj0 is O([log(V )]2)/λPj0 if λPj0 > 0. This proves Part (c)
and completes the proof of the theorem.
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