
PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 1

Dynamic Product Assembly and Inventory Control
for Maximum Profit

Michael J. Neely and Longbo Huang

Abstract— We consider a manufacturing plant that purchases
raw materials for product assembly and then sells the final
products to customers. There are M types of raw materials and
K types of products, and each product uses a certain subset of
raw materials for assembly. The plant operates in slotted time,
and every slot it makes decisions about re-stocking materials
and pricing the existing products in reaction to (possibly time-
varying) material costs and consumer demands. We develop a
dynamic purchasing and pricing policy that yields time average
profit within ε of optimality, for any given ε > 0, with a worst
case storage buffer requirement that is O(1/ε). The policy can
be implemented easily for large M , K, yields fast convergence
times, and is robust to non-ergodic system dynamics.

Index Terms— Queueing analysis, pricing, optimization

I. INTRODUCTION

This paper considers the problem of maximizing time aver-
age profit at a product assembly plant. The plant manages the
purchasing, assembly, and pricing of M types of raw materials
and K types of products. Specifically, the plant maintains a
storage buffer for each of the M materials, and can assemble
each product from some specific combination of materials.
The system operates in slotted time with normalized slots
t ∈ {0, 1, 2, . . .}. Every slot, the plant makes decisions about
purchasing new raw materials and pricing the K products for
sale to the consumer. This is done in reaction to material
costs and consumer demand functions that are known on each
slot but can change randomly from slot to slot according
to a stationary process with a possibly unknown probability
distribution.

It is well known that the problem of maximizing time
average profit in such a system can be treated using dynamic
programming and Markov decision theory. A textbook ex-
ample of this approach for a single product (single queue)
problem is given in [1], where inventory storage costs are also
considered. However, such approaches may be prohibitively
complex for problems with large dimension, as the state
space grows exponentially with the number of queues. Further,
these techniques require knowledge of the probabilities that
govern purchasing costs and consumer demand functions. Case
studies of multi-dimensional inventory control are treated in
[2] using a lower complexity neuro-dynamic programming
framework, which approximates the optimal value function
used in traditional dynamic programming. Such algorithms

Michael J. Neely and Longbo Huang are with the Electrical Engineering
department at the University of Southern California, Los Angeles, CA. (web:
http://www-rcf.usc.edu/∼mjneely and http://www-scf.usc.edu/∼longbohu).

This material is supported in part by the NSF Career grant CCF-0747525.

fine-tune the parameters of the approximation by either offline
simulations or online feedback (see also [3][4]).

In this paper, we consider a different approach that does not
attempt to approximate dynamic programming. Our algorithm
reacts to the current system state and does not require knowl-
edge of the probabilities that affect future states. Under mild
ergodicity assumptions on the material supply and consumer
demand processes, we show that the algorithm can push time
average profit to within ε of optimality, for any arbitrarily small
value ε > 0. This can be achieved by finite storage buffers of
size cTε/ε, where c is a coefficient that is polynomial in K
and M , and Tε is a constant that depends on the “mixing time”
of the processes. In the special case when these processes are
i.i.d. over slots, we have Tε = 1 for all ε > 0, and so the
buffers are size O(1/ε). The algorithm can be implemented in
real time even for problems with large dimension (i.e., large
K and M). Thus, our framework circumvents the “curse of
dimensionality” problems associated with dynamic program-
ming. This is because we are not asking the same question that
could be asked by dynamic programming approaches: Rather
than attempting to maximize profit subject to finite storage
buffers, we attempt to reach the more difficult target of pushing
profit arbitrarily close to the maximum that can be achieved
in systems with infinite buffer space. We can approach this
optimality with finite buffers of size O(1/ε), although this may
not be the optimal buffer size tradeoff. A dynamic program
might be able to achieve the same profit with smaller buffers,
but would contend with curse of dimensionality issues.

Prior work on inventory control with system models similar
to our own is found in [5] [6] [7] and references therein. Work
in [5] considers a single-dimensional inventory problem where
a fixed number of products are sold over a finite horizon
with a constant but unknown customer arrival rate. A set
of coupled differential equations are derived for the optimal
policy using Markov decision theory. Work in [6] provides
structural results for multi-dimensional inventory problems
with product assembly, again using Markov decision theory,
and obtains numerical results for a two-dimensional system. A
multi-dimensional product assembly problem is treated in [7]
for stochastic customer arrivals with fixed and known rates.
The complexity issue is treated by considering a large volume
limit and using results of heavy traffic theory. The work in
[7] also considers joint optimal price decisions, but chooses
all prices at time zero and holds them constant for all time
thereafter.

Our analysis uses the “drift-plus-penalty” framework of
stochastic network optimization, developed for queueing net-
works in [8][9][10]. Our work is most similar to the work

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 2

in [11], which uses this framework to address processing
networks that queue components that must be combined with
other components. The work in [11] treats multi-hop networks
and maximizes throughput and throughput-utility in these
systems using a deficit max-weight algorithm that uses “deficit
queues” to keep track of the deficit created when a component
cannot be processed due to a missing part. Our paper does
not consider a multi-hop network, but has similar challenges
when we do not have enough inventory to build a desired
product. Rather than using deficit queues, we use a different
type of Lyapunov function that avoids deficits entirely. Our
formulation also considers the purchasing and pricing aspects
of the problem, particularly for a manufacturing plant, and
considers arbitrary (possibly non-ergodic) material supply and
consumer demand processes.

Previous work in [12] uses the drift-plus-penalty framework
in a related revenue maximization problem for a wireless ser-
vice provider. In that context, a two-price result demonstrates
that dynamic pricing must be used to maximize time average
profit (a single price is often not enough, although two prices
are sufficient). The problem in this paper can be viewed as
the “inverse” of the service provider problem, and has an extra
constraint that requires the plant to maintain enough inventory
for a sale to take place.

The outline of this paper is as follows: In the next section
we specify the system model. The optimal time average profit
is characterized in Section III, where the two-price behavior is
also noted. Our dynamic control policy is developed in Section
IV for an i.i.d. model of material cost and consumer demand
states, and extensions to more general ergodic and non-ergodic
systems are considered in Section V.

II. SYSTEM MODEL

There are M types of raw materials, and each is stored in
a different storage buffer at the plant. Define Qm(t) as the
(integer) number of type m materials in the plant on slot t.
We temporarily assume all storage buffers have infinite space,
and later we show that our solution can be implemented with
finite buffers of size O(1/ε), where the ε parameter determines
a profit-buffer tradeoff.

Let Q(t) = (Q1(t), . . . , QM (t)) be the vector of queue
sizes, also called the inventory vector. From these materials,
the plant can manufacture K types of products. Define βmk as
the (integer) number of type m materials required for creation
of a single item of product k (for m ∈ {1, . . . ,M} and
k ∈ {1, . . . ,K}). We assume that products are assembled
quickly, so that a product requested during slot t can be
assembled on the same slot, provided that there are enough
raw materials.1 Thus, the plant must have Qm(t) ≥ βmk for
all m ∈ {1, . . . ,M} in order to sell one product of type k
on slot t, and must have twice this amount of materials in
order to sell two type k products, etc. The simplest example
is when each raw material itself represents a finished product,
which corresponds to the case K = M , βmm = 1 for all m,

1Algorithms that yield similar performance but require products to be
assembled one slot before they are delivered can be designed based on simple
modifications [13].

βmk = 0 for m 6= k. However, our model allows for more
complex assembly structures, possibly with different products
requiring some overlapping materials.

Every slot t, the plant must decide how many new raw
materials to purchase and what price it should charge for its
products. Let A(t) = (A1(t), . . . , AM (t)) represent the vector
of the (integer) number of new raw materials purchased on
slot t. Let D̃(t) = (D̃1(t), . . . , D̃K(t)) be the vector of the
(integer) number of products sold on slot t. The queueing
dynamics for m ∈ {1, . . . ,M} are thus:

Qm(t+1) = max

[
Qm(t)−

K∑
k=1

βmkD̃k(t), 0

]
+Am(t) (1)

Below we describe the pricing decision model that affects
product sales D̃(t), and the cost model associated with pur-
chasing decisions A(t).

A. Product Pricing and the Consumer Demand Functions
For each slot t and each commodity k, the plant must decide

if it desires to offer commodity k for sale, and, if so, what
price it should charge. Let Zk(t) represent a binary variable
that is 1 if commodity k is offered and is 0 else. Let Pk(t)
represent the per-unit price for product k on slot t. We assume
that prices Pk(t) are chosen within a compact set Pk of price
options. Thus:

Pk(t) ∈ Pk ∀k ∈ {1, . . . ,K},∀t (2)

The sets Pk include only non-negative prices and have a finite
maximum price Pk,max. For example, the set Pk might repre-
sent the interval 0 ≤ p ≤ Pk,max, or might represent a discrete
set of prices separated by some minimum price unit. Let
Z(t) = (Z1(t), . . . , ZK(t)) and P (t) = (P1(t), . . . , PK(t))
be vectors of these decision variables.

Let Y (t) represent the consumer demand state for slot
t, which represents any factors that affect the expected
purchasing decisions of consumers on slot t. Let D(t) =
(D1(t), . . . , DK(t)) be the resulting demand vector, where
Dk(t) represents the (integer) amount of type k products that
consumers want to buy in reaction to the current price Pk(t)
and under the current demand state Y (t). Specifically, we
assume that Dk(t) is a random variable that depends on Pk(t)
and Y (t), is conditionally i.i.d. over all slots with the same
Pk(t) and Y (t) values, and satisfies:

Fk(p, y) = E {Dk(t) | Pk(t) = p, Y (t) = y} ∀p ∈ Pk, y ∈ Y
(3)

The Fk(p, y) function is assumed to be continuous in p ∈ Pk
for each y ∈ Y .2 We assume that the current demand state
Y (t) is known to the plant at the beginning of slot t, and that
the demand functions Fk(p, y) are also known to the plant.
The process Y (t) takes values in a finite or countably infinite
set Y , and is assumed to be stationary and ergodic with steady
state probabilities π(y), so that:

π(y) = Pr[Y (t) = y] ∀y ∈ Y,∀t
2Continuity is not crucial. It is assumed only for convenience to ensure

the expression (26) has a maximum over Pk , which is always true in the
special case when Pk is a finite set of points (in which case the mathematical
definition of continuity also holds trivially).

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 3

The probabilities π(y) are not necessarily known to the plant.
We assume that the maximum demand for each product

k ∈ {1, . . . ,K} is deterministically bounded by a finite integer
Dk,max, so that regardless of price P (t) or the demand state
Y (t), we have:

0 ≤ Dk(t) ≤ Dk,max for all slots t and all products k

This boundedness assumption is useful for analysis. Such a
finite bound is natural in cases when the maximum number of
customers is limited on any given slot. The bound might also
be artificially enforced by the plant due to physical constraints
that limit the number of orders that can be fulfilled on one
slot. Define µm,max as the resulting maximum demand for
raw materials of type m on a given slot:

µm,max
M=

K∑
k=1

βmkDk,max (4)

If there is a sufficient amount of raw materials to fulfill all
demands in the vector D(t), and if Zk(t) = 1 for all k such
that Dk(t) > 0 (so that product k is offered for sale), then
the number of products sold is equal to the demand vector:
D̃(t) = D(t). We are guaranteed to have enough inventory
to meet the demands on slot t if Qm(t) ≥ µm,max for all
m ∈ {1, . . . ,M}. However, there may not always be enough
inventory to fulfill all demands, in which case we require
a scheduling decision that decides how many units of each
product will be assembled to meet a subset of the demands.
The value of D̃(t) = (D̃1(t), . . . , D̃K(t)) must be chosen
as an integer vector that satisfies the following scheduling
constraints:

0 ≤ D̃k(t) ≤ Zk(t)Dk(t) ∀k ∈ {1, . . . ,K} (5)

Qm(t) ≥
K∑
k=1

βmkD̃k(t) ∀m ∈ {1, . . . ,M} (6)

B. Raw Material Purchasing Costs

Let X(t) represent the raw material supply state on slot t,
which contains components that affect the purchase price of
new raw materials. Specifically, we assume that X(t) has the
form:

X(t) = [(x1(t), . . . , xM (t)); (s1(t), . . . , sM (t))]

where xm(t) is the per-unit price of raw material m on slot t,
and sm(t) is the maximum amount of raw material m available
for sale on slot t. We assume that X(t) takes values on some
finite or countably infinite set X , and that X(t) is stationary
and ergodic with probabilities:

π(x) = Pr[X(t) = x] ∀x ∈ X ,∀t

The π(x) probabilities are not necessarily known to the plant.
Let c(A(t), X(t)) be the total cost incurred by the plant for

purchasing a vector A(t) of new materials under the supply
state X(t):

c(A(t), X(t)) =
M∑
m=1

xm(t)Am(t) (7)

We assume that A(t) is limited by the constraint A(t) ∈
A(X(t)), where A(X(t)) is the set of all vectors A(t) =
(A1(t), . . . , AM (t)) such that for all t:

0 ≤ Am(t) ≤ min[Am,max, sm(t)] ∀m ∈ {1, . . . ,M} (8)
Am(t) is an integer ∀m ∈ {1, . . . ,M} (9)

c(A(t), X(t)) ≤ cmax (10)

where Am,max and cmax are finite bounds on the total amount
of each raw material that can be purchased, and the total
cost of these purchases on one slot, respectively. These finite
bounds might arise from the limited supply of raw materials,
or might be artificially imposed by the plant in order to limit
the risk associated with investing in new raw materials on any
given slot. A simple special case is when there is a finite
maximum price xm,max for raw material m at any time,
and when cmax =

∑M
m=1 xm,maxAm,max. In this case, the

constraint (10) is redundant.

C. The Maximum Profit Objective

For each k ∈ {1, . . . ,K}, define αk as a fixed (non-
negative) cost associated with assembling one product of type
k. Define a process φ(t) as follows:

φ(t)M=− c(A(t), X(t)) +
K∑
k=1

Zk(t)Dk(t)(Pk(t)− αk) (11)

The value of φ(t) represents the total instantaneous profit due
to material purchasing and product sales on slot t, under the
assumption that all demands are fulfilled (so that D̃k(t) =
Dk(t) for all k). Define φactual(t) as the actual instantaneous
profit, defined by replacing the Dk(t) values in the right hand
side of (11) with D̃k(t) values. Note that φ(t) can be either
positive, negative, or zero, as can φactual(t).

Define time average expectations φ and φactual as follows:

φM= lim
t→∞

1
t

t−1∑
τ=0

E {φ(τ)} , φactual M= lim
t→∞

1
t

t−1∑
τ=0

E {φactual(τ)}

Every slot t, the plant observes the current queue vector
Q(t), the current demand state Y (t), and the current supply
state X(t), and chooses a purchase vector A(t) ∈ A(X(t))
and pricing vectors Z(t), P (t) (with Zk(t) ∈ {0, 1} and
Pk(t) ∈ Pk for all k ∈ {1, . . . ,K}). The consumers then react
by generating a random demand vector D(t) with expectations
given by (3). The actual number of products filled is scheduled
by choosing the D̃(t) vector according to the scheduling
constraints (5)-(6), and the resulting queueing update is given
by (1). The goal of the plant is to maximize the time average
expected profit φactual. For convenience, a table of notation
is given in Table I.

III. CHARACTERIZING MAXIMUM TIME AVERAGE PROFIT

Assume infinite buffer capacity (so that Qm,max = ∞
for all m ∈ {1, . . . ,M}). Consider any control algorithm
that makes decisions for Z(t), P (t), A(t), and also makes
scheduling decisions for D̃(t), according to the system struc-
ture as described in the previous section. Define φopt as the

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 4

TABLE I
TABLE OF NOTATION

Notation Definition
X(t) Supply state, π(x) = Pr[X(t) = x]
A(t) = (A1(t), . . . , AM (t)) Raw materials purchased on slot t
c(A(t), X(t)) Raw material cost function
A(X(t)) Constraint set for variables A(t)
Y (t) Consumer demand state
Z(t) = (Z1(t), . . . , ZK(t)) 0/1 sale vector
P (t) = (P1(t), . . . , PK(t)) Price vector, Pk(t) ∈ Pk

D(t) = (D1(t), . . . , DK(t)) Random demand vector
Fk(p, y) Demand function
Q(t) = (Q1(t), . . . , QM (t)) Queue vector of raw materials
Qm,max Maximum buffer size for queue m
αk Cost of assembly for product type k
βmk # materials m used for product k
φ(t) Instantaneous profit (given by (11))
µ(t) = (µ1(t), . . . , µM (t)) Departures of raw materials (see (15))
D̃(t), µ̃(t) Actual demands and departures
φactual(t) Actual instantaneous profit for slot t

maximum time average profit over all such algorithms, so that
all algorithms must satisfy φactual ≤ φopt, but there exist
algorithms that can yield profit arbitrarily close to φopt. The
value of φopt is determined by the steady state distributions
π(x) and π(y), the cost function c(A(t), X(t)), and the
demand functions Fk(p, y).

It turns out that φopt can be characterized by a sub-class of
stationary randomized algorithms. Specifically, we say that a
policy is (X,Y)-only if it chooses P (t), Z(t), A(t) values
as a stationary and randomized function only of the current
observed X(t) and Y (t) states.

Theorem 1: There exists an (X,Y)-only policy P ∗(t),
Z∗(t), A∗(t) such that:

E {φ∗(t)} = φopt (12)
E {A∗m(t)} = E {µ∗m(t)} ∀m ∈ {1, . . . ,M} (13)

where φopt is the optimal time average profit, and where
E {φ∗(t)} and E {µ∗m(t)} are given by:

E {φ∗(t)} = −E {c(A∗(t), X(t))}

+
K∑
k=1

E {Z∗k(t)(P ∗k (t)− αk)Fk(P ∗k (t), Y (t))}

E {µ∗m(t)} =
K∑
k=1

βmkE {Z∗k(t)Fk(P ∗k (t), Y (t))} ∀m

where the expectations are with respect to the stationary prob-
ability distributions π(x) and π(y) for X(t) and Y (t), and the
(potentially randomized) decisions for A∗(t),Z∗(t),P ∗(t)
that depend on X(t) and Y (t).

Proof: See [13].
Note that Theorem 1 contains no variables for the schedul-

ing decisions for D̃(t), made subject to (5)-(6). Such schedul-
ing decisions allow choosing D̃(t) in reaction to the demands
D(t), and hence allow more flexibility beyond the choice of
the Z(t) and P (t) variables alone (which must be chosen
before the demands D(t) are observed). That such additional
scheduling options cannot be exploited to increase time aver-
age profit is a consequence of our proof of Theorem 1. It can
be shown that the expectations in Theorem 1 can be achieved

by algorithms that use at most 2 prices per demand state Y (t)
(such as a “regular” price and a reduced “sale” price) [13]. This
is similar to the 2-price result observed in [12] for the case
of a service provider with a single queue. Simple examples
can be given to show that two prices are often necessary to
achieve maximum time average profit, even when consumer
demand states Y (t) are the same for all slots (see [12] for a
simple example for the related service-provider problem).

IV. A DYNAMIC PRICING AND PURCHASING ALGORITHM

Here we construct a dynamic algorithm that makes purchas-
ing and pricing decisions in reaction to the current queue sizes
and the observed X(t) and Y (t) states, without knowledge of
the π(x) and π(y) probabilities that govern the evolution of
these states. We begin with the assumption that X(t) is i.i.d.
over slots with probabilities π(x) = Pr[X(t) = x], and Y (t)
is i.i.d. over slots with π(y) = Pr[Y (t) = y]. Section V
extends to more general non-i.i.d. processes.

Define 1k(t) as an indicator variable that is 1 if and only
if Qm(t) < µm,max for some queue m such that βmk > 0
(so that type m raw material is used to create product k). To
begin, let us choose an algorithm from the restricted class of
algorithms that choose Z(t) values to satisfy the following
edge constraint every slot t:

∀k, we have: Zk(t) = 0 whenever 1k(t) = 1 (14)

That is, the edge constraint (14) ensures that no type k product
is sold unless inventory in all of its corresponding raw material
queues m is at least µm,max. Under this restriction, we always
have enough raw material for any generated demand vector,
and so D̃k(t) = Dk(t) for all products k and all slots t. Thus,
from (11) we have φactual(t) = φ(t). Define µm(t) as the
number of material queue m departures on slot t:

µm(t)M=
K∑
k=1

βmkZk(t)Dk(t) (15)

The queueing dynamics of (1) thus become:

Qm(t+ 1) = Qm(t)− µm(t) +Am(t) (16)

The above equation continues to assume we have infinite
buffer space, but we soon show that we need only a finite
buffer to implement our solution.

A. Lyapunov Drift

For a given set of non-negative parameters {θm} for
m ∈ {1, . . . ,M}, define the non-negative Lyapunov function
L(Q(t)) as follows:

L(Q(t))M=
1
2

M∑
m=1

(Qm(t)− θm)2 (17)

This Lyapunov function is similar to that used for stock trading
problems in [14][15], and has the flavor of keeping queue

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 5

backlog near a non-zero value θm, as in [16]. Define the
conditional Lyapunov drift ∆(Q(t)) as follows:3

∆(Q(t))M=E {L(Q(t+ 1))− L(Q(t)) | Q(t)} (18)

Define a constant V > 0, to be used to affect the revenue-
storage tradeoff. Using the stochastic optimization technique
of [8], our approach is to design a strategy that, every slot
t, observes current system conditions Q(t), X(t), Y (t) and
makes pricing and purchasing decisions to minimize a bound
on the following “drift-plus-penalty” expression:

∆(Q(t))− V E {φ(t) | Q(t)}

where φ(t) is the instantaneous profit function defined in (11).

B. Computing the Drift

We have the following lemma.
Lemma 1: (Drift Computation) Under any algorithm that

satisfies the edge constraint (14), and for any constants V ≥ 0,
θm ≥ 0 for m ∈ {1, . . . ,M}, the Lyapunov drift ∆(Q(t))
satisfies:

∆(Q(t))− V E {φ(t)|Q(t)} ≤ B − V E {φ(t)|Q(t)}

+
M∑
m=1

(Qm(t)− θm)E {Am(t)− µm(t) | Q(t)} (19)

where the constant B is defined:

B M=
1
2

M∑
m=1

max[A2
m,max, µ

2
m,max] (20)

Proof: The edge constraint (14) ensures that the dynamics
(16) hold for all t. By subtracting θm from (16) and squaring
the result, we have:

(Qm(t+ 1)− θm)2 = (Qm(t)− θm)2 + (Am(t)− µm(t))2

+2(Qm(t)− θm)(Am(t)− µm(t))

Dividing by 2, summing over m ∈ {1, . . . ,M}, and taking
conditional expectations yields:

∆(Q(t)) = E {B(t)|Q(t)}+
M∑
m=1

(Qm(t)− θm)E {Am(t)− µm(t)|Q(t)}

where B(t) is defined:

B(t)M=
1
2

M∑
m=1

(Am(t)− µm(t))2 (21)

By the finite bounds on Am(t) and µm(t), we clearly have
B(t) ≤ B for all t.

3Strictly speaking, we should use the notation ∆(Q(t), t), as the drift may
be non-stationary. However, we use the simpler notation ∆(Q(t)) as a formal
representation of the right hand side of (18).

Now note from the definition of µm(t) in (15) that:

E {µm(t) | Q(t)}

= E

{
K∑
k=1

βmkZk(t)Dk(t) | Q(t)

}

=
K∑
k=1

βmkE {E {Zk(t)Dk(t) | Q(t), Pk(t), Y (t)} | Q(t)}

=
K∑
k=1

βmkE {Zk(t)Fk(Pk(t), Y (t)) | Q(t)} (22)

where we have used the law of iterated expectations in the
final equality. Similarly, we have from the definition of φ(t)
in (11):

E {φ(t) | Q(t)} = −E {c(A(t), X(t)) | Q(t)}

+
K∑
k=1

E {Zk(t)(Pk(t)− αk)Fk(Pk(t), Y (t)) | Q(t)} (23)

Plugging (22) and (23) into (19) yields:

∆(Q(t))− V E {φ(t) | Q(t)} ≤ B

+
M∑
m=1

(Qm(t)− θm)

[
E {Am(t)|Q(t)}

−
K∑
k=1

βmkE {Zk(t)Fk(Pk(t), Y (t)) | Q(t)}

]
+V E {c(A(t), X(t)) | Q(t)}

−V E

{
K∑
k=1

Zk(t)(Pk(t)− αk)Fk(Pk(t), Y (t)) | Q(t)

}
(24)

In particular, the right hand side of (24) is identical to the right
hand side of (19).

C. The Dynamic Purchasing and Pricing Algorithm

Minimizing the right hand side of (24) over all feasible
choices of A(t), Z(t), P (t) (given the observed X(t) and
Y (t) states and the observed queue values Q(t)) yields the
following algorithm:

Joint Purchasing and Pricing Algorithm (JPP): Every slot
t, perform the following actions:

1) Purchasing: Observe Q(t) and X(t), and choose A(t) =
(A1(t), . . . , AM (t)) ∈ A(X(t)) as the minimizer of the
following expression:

V c(A(t), X(t)) +
M∑
m=1

Am(t)(Qm(t)− θm) (25)

2) Pricing: Observe Q(t) and Y (t). For each product k ∈
{1, . . . ,K}, if 1k(t) = 1, choose Zk(t) = 0 and do not
offer product k for sale. If 1k(t) = 0, choose Pk(t) ∈ Pk
as the maximizer of the following expression:

V (Pk(t)− αk)Fk(Pk(t), Y (t))

+Fk(Pk(t), Y (t))
M∑
m=1

βmk(Qm(t)− θm) (26)

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 6

If the above maximized expression is positive, set
Zk(t) = 1 and keep Pk(t) as the maximizing value. Else,
set Zk(t) = 0 and do not offer product k for sale.

3) Queue Update: Fulfill all demands Dk(t), and update the
queues Qm(t) according to (16) (noting by construction
of this algorithm that D̃(t) = D(t) for all t, so that the
dynamics (16) are equivalent to (1)).

The above JPP algorithm does not require knowledge of
probability distributions π(x) or π(y), and is decoupled into
separate policies for pricing and purchasing. The pricing policy
is quite simple and involves maximizing a (possibly non-
concave) function of one variable Pk(t) over the 1-dimensional
set Pk. For example, if Pk is a discrete set of 1000 price
options, this involves evaluating the function over each option
and choosing the maximizing price. The purchasing policy is
more complex, as A(t) is an integer vector that must satisfy
(8)-(10). This is a knapsack problem due to the constraint (10).
However, the decision is trivial in the case when cmax =∑M
m=1 xm,maxAm,max, in which case the constraint (10) is

redundant.

D. Deterministic Queue Bounds

We have the following simple lemma that shows the above
policy can be implemented on a finite buffer system.

Lemma 2: (Finite Buffer Implementation) If initial inven-
tory satisfies Qm(0) ≤ Qm,max for all m ∈ {1, . . . ,M},
where Qm,max

M=θm + Am,max, then JPP yields Qm(t) ≤
Qm,max for all slots t ≥ 0 and all queues m ∈ {1, . . . ,M}.

Proof: Fix a queue m, and suppose that Qm(t) ≤ Qm,max
for some slot t (this holds by assumption at t = 0). We show
that Qm(t+ 1) ≤ Qm,max. To see this, note that because the
function c(A(t), X(t)) in (7) is non-decreasing in every entry
of A(t) for each X(t) ∈ X , the purchasing policy (25) yields
Am(t) = 0 for any queue m that satisfies Qm(t) > θm. It
follows that Qm(t) cannot increase if it is greater than θm,
and so Qm(t + 1) ≤ θm + Am,max (because Am,max is the
maximum amount of increase for queue m on any slot).

The following important related lemma shows that queue
sizes Qm(t) are always above µm,max, provided that they start
with at least this much raw material and that the θm values
are chosen to be sufficiently large. Specifically, define θm as
follows:

θm
M= max
{k∈{1,...,K}|βmk>0}

νmk (27)

where

νmk
M=
V (Pk,max − αk)

βmk
+ 2µmax +

∑
i∈{1,...,M},i6=m

βikAi,max
βmk

Lemma 3: Suppose that θm is defined by (27), and that
Qm(0) ≥ µm,max for all m ∈ {1, . . . ,M}. Then for all slots
t ≥ 0 we have:

Qm(t) ≥ µm,max ∀m ∈ {1, . . . ,M}
Proof: Fix m ∈ {1, . . . ,M}, and suppose that Qm(t) ≥

µm,max for some slot t (this holds by assumption for t = 0).
We prove it also holds for slot t + 1. If Qm(t) ≥ 2µm,max,
then Qm(t + 1) ≥ µm,max (because at most µm,max units

can depart queue m on any slot), and hence we are done.
Suppose now that µm,max ≤ Qm(t) < 2µm,max. In this case
the pricing functional in (26) satisfies the following for any
product k such that βmk > 0:

V (Pk(t)− αk)Fk(Pk(t), Y (t))

+Fk(Pk(t), Y (t))
M∑
i=1

βik(Qi(t)− θi)

≤ Fk(Pk(t), Y (t))× [V (Pk,max − αk)

+
∑

i∈{1,...,M},i6=m

βikAi,max + βmk(2µm,max − θm)

≤ 0

where the first inequality uses the fact that (Qi(t) − θi) ≤
Ai,max for all queues i (and in particular for all i 6= m) by
Lemma 2. The final inequality uses the definition of θm in
(27). It follows that the pricing rule (26) sets Zk(t) = 0 for all
products k that use raw material m, and so no departures can
take place from Qm(t) on the current slot. Thus: µm,max ≤
Qm(t) ≤ Qm(t+ 1), and we are done.

E. Performance Analysis of JPP
Theorem 2: (Performance of JPP) Suppose that θm is de-

fined by (27) for all m ∈ {1, . . . ,M}, and that µm,max ≤
Qm(0) ≤ θm + Am,max for all m ∈ {1, . . . ,M}. Suppose
X(t) and Y (t) are i.i.d. over slots. Then under the JPP
algorithm implemented with any parameter V > 0, we have:

(a) For all m ∈ {1, . . . ,M} and all slots t ≥ 0:

µm,max ≤ Qm(t) ≤ Qm,max M=θm +Am,max

where Qm,max = O(V).
(b) For all slots t > 0 we have:

1
t

t−1∑
τ=0

E {φactual(τ)} ≥ φopt − B

V
− E {L(Q(0))}

V t
(28)

where the constant B is defined in (20) and is independent of
V , and where φopt is the optimal time average profit defined
in Theorem 1.

(c) The time average profit converges with probability 1,
and satisfies:

lim
t→∞

1
t

t−1∑
τ=0

φactual(τ) ≥ φopt− B
V

(with probability 1) (29)

Thus, the time average profit is within O(1/V) of optimal,
and hence can be pushed arbitrarily close to optimal by
increasing V , with a tradeoff in the maximum buffer size that
is O(V). Defining ε = B/V yields the desired [O(ε), O(1/ε)]
profit-buffer size tradeoff.

Proof: (Theorem 2 parts (a) and (b)) Part (a) follows
immediately from Lemmas 2 and 3. To prove part (b), note
that JPP observes Q(t) and makes control decisions for Zk(t),
A(t), Pk(t) that minimize the right hand side of (19) under
any alternative choices. Thus:

∆(Q(t))− V E {φ(t) | Q(t)} ≤ B − V E {φ∗(t)|Q(t)}

+
M∑
m=1

(Qm(t)− θm)E {A∗m(t)− µ∗m(t)|Q(t)} (30)

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 7

where E {φ∗(t)|Q(t)}, and E {µ∗m(t)|Q(t)} correspond to any
alternative choices for the decision variables Z∗k(t), P ∗k (t),
A∗m(t) subject to the same constraints, being that P ∗k (t) ∈ Pk,
A∗m(t) satisfies (8)-(10), and Z∗k(t) ∈ {0, 1}, and Z∗k(t) = 0
whenever 1k(t) = 1. Because Qm(t) ≥ µm,max for all m, we
have 1k(t) = 0 for all k ∈ {1, . . . ,K}. Thus, the (X,Y)-only
policy of Theorem 1 satisfies the desired constraints. Further,
this policy makes decisions based only on (X(t), Y (t)), which
are i.i.d. over slots and hence independent of the current queue
state Q(t). Thus, from (12)-(13) we have:

E {φ∗(t)|Q(t)} = E {φ∗(t)} = φopt

E {A∗m(t)− µ∗m(t)|Q(t)} = E {A∗m(t)− µ∗m(t)} = 0 ∀m

Plugging the above two identities into the right hand side of
(30) yields:

∆(Q(t))− V E {φ(t) | Q(t)} ≤ B − V φopt (31)

Taking expectations of the above and using the definition of
∆(Q(t)) yields:

E {L(Q(t+ 1))} − E {L(Q(t))} − V E {φ(t)} ≤ B − V φopt

The above holds for all slots t ≥ 0. Summing over τ ∈
{0, 1, . . . , t− 1} for some integer t > 0 yields:

E {L(Q(t))}−E {L(Q(0))}−V
t−1∑
τ=0

E {φ(τ)} ≤ Bt−V tφopt

Dividing by tV , rearranging terms, and using non-negativity
of L(Q(t)) yields:

1
t

t−1∑
τ=0

E {φ(τ)} ≥ φopt − B

V
− E {L(Q(0))}

V t
(32)

Because 1k(t) = 0 for all k and all τ , we have φ(τ) =
φactual(τ) for all τ , and we are done.

Proof: (Theorem 2 part (c)) Taking a limit of (32) proves
that:

lim inf
t→∞

1
t

t−1∑
τ=0

E {φ(τ)} ≥ φopt −B/V

The above result made no assumption on the initial distribution
of Q(0). Thus, letting Q(0) be any particular initial state, we
have:

lim inf
t→∞

1
t

t−1∑
τ=0

E {φ(τ)|Q(0)} ≥ φopt −B/V (33)

However, under the JPP algorithm the process Q(t) is a
discrete time Markov chain with finite state space (because
it is an integer valued vector with finite bounds given in part
(a)). Suppose now the initial condition Q(0) is a recurrent
state. It follows that the time average of φ(t) must converge
to a well defined constant φ(Q(0)) with probability 1 (where
the constant may depend on the initial recurrent state Q(0)
that is chosen). Further, because φ(τ) is bounded above and
below by finite constants for all τ , by the Lebesgue dominated
convergence theorem we have:

lim
t→∞

1
t

t−1∑
τ=0

E {φ(τ)|Q(0)} = φ(Q(0))

Using this in (33) yields:

φ(Q(0)) ≥ φopt −B/V

This is true for all initial states that are recurrent. If Q(0) is a
transient state, then Q(t) eventually reaches a recurrent state
and hence achieves a time average that is, with probability 1,
greater than or equal to φopt −B/V .

F. Place-Holder Values

Theorem 2 seems to require the initial queue values to
satisfy Qm(t) ≥ µm,max for all t. This suggests that we need
to purchase that many raw materials before start-up. Here we
use the place holder backlog technique of [17] to show that we
can achieve the same performance without this initial start-up
cost, without loss of optimality. The technique also allows us
to reduce our maximum buffer size requirement Qm,max by
an amount µm,max for all m ∈ {1, . . . ,M}, with no loss in
performance.

To do this, we start the system off with exactly µm,max
units of fake raw material in each queue m ∈ {1, . . . ,M}. Let
Qm(t) be the total raw material in queue m, including both
the actual and fake material. Let Qactualm (t) be the amount of
actual raw material in queue m. Then for slot 0 we have:

Qm(0) = Qactualm (0) + µm,max ∀m ∈ {1, . . . ,M}

Assume that µm,max ≤ Qm(0) ≤ θm + Am,max for all
m ∈ {1, . . . ,M}, as needed for Theorem 2. Thus, 0 ≤
Qactualm (0) ≤ θm + Am,max − µm,max (so that the actual
initial condition can be 0). We run the JPP algorithm as before,
using the Q(t) values (not the actual queue values). However,
if we are ever asked to assemble a product, we use actual
raw materials whenever possible. The only problem comes
if we are asked to assemble a product for which there are
not enough actual raw materials available. However, we know
from Theorem 2 that the queue value Qm(t) never decreases
below µm,max for any m ∈ {1, . . . ,M}. It follows that we are
never asked to use any of our fake raw material. Therefore,
the fake raw material stays untouched in each queue for all
time, and we have:

Qm(t) = Qactualm (t) + µm,max ∀m ∈ {1, . . . ,M},∀t ≥ 0
(34)

The sample path of the system is equivalent to a sample path
that does not use fake raw material, but starts the system in
the non-zero initial condition Q(0). Hence, the resulting profit
achieved is the same. Because the limiting time average profit
does not depend on the initial condition, the time average profit
is still at least φopt−B/V . However, by (34) the actual amount
of raw material held is reduced by exactly µm,max on each
slot, which also reduces the maximum buffer size Qm,max by
exactly this amount.

G. Demand-Blind Pricing

As in [12] for the service provider problem, here
we consider the special case when the demand function
Fk(Pk(t), Y (t)) has the form:

Fk(Pk(t), Y (t)) = hk(Y (t))F̂k(Pk(t)) (35)

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 8

for some non-negative functions hk(Y (t)) and F̂k(Pk(t)).
This holds, for example, when Y (t) represents the integer
number of customers at time t, and F̂k(p) is the expected de-
mand at price p for each customer, so that Fk(Pk(t), Y (t)) =
Y (t)F̂k(Pk(t)). Under the structure (35), the JPP pricing
algorithm (26) reduces to choosing Pk(t) ∈ Pk to maximize:

V (Pk(t)−αk)F̂k(Pk(t)) + F̂k(Pk(t))
M∑
m=1

βmk(Qm(t)− θm)

Thus, the pricing can be done without knowledge of the
demand state Y (t).

V. ARBITRARY SUPPLY AND DEMAND PROCESSES

The JPP algorithm provides similar performance for non-
i.i.d. processes with a mild “decaying memory” property [13].
Here we consider its performance without any probabilistic
assumptions on X(t) and Y (t), where efficiency is measured
against a class of ideal T -slot lookahead policies that have
perfect knowledge of the future over frames of T slots. Let
T be a positive integer and let t0 ≥ 0. Define φT (t0)
as the optimal expected profit achievable over the interval
{t0, t0 + 1, ..., t0 + T − 1} by any policy that has complete
knowledge of the X(t) and Y (t) values over this interval
and that ensures the quantity of raw materials purchased over
the interval is equal to the expected amount consumed. Note
here that although the future X(t), Y (t) values are assumed
to be known, the random demands Dk(t) are still unknown.
Mathematically, φT (t0) can be defined as the solution to
the following optimization problem (with variables Am(τ),
Zk(τ), Pk(τ)):

(P1)

max : φT (t0) =
t0+T−1∑
τ=t0

E
{
φ(τ) | ĤT (t0)

}
s.t. :

t0+T−1∑
τ=t0

[
Am(τ)−

K∑
k=1

βmkZk(τ)Fk(Pk(τ), Y (τ))

]
= 0 ∀m ∈ {1, . . . ,M}

Constraints (2), (8), (9), (10).

Here ĤT (t0)M=[(X(τ), Y (τ))]t0+T−1
τ=t0 ; φ(τ) is defined in (11)

as the instantaneous profit obtained at time τ ; Am(τ) and∑K
k=1 βmkZk(τ)Fk(Pk(τ), Y (τ)) are the number of newly

ordered parts and the expected number of consumed parts in
time τ , respectively; and the expectation is taken over the
randomness in Dk(τ) due to the fact that the demand at time
τ is a random variable. Since purchasing no materials and
selling no products over the entire interval is a valid policy,
we see that the value φT (t0) ≥ 0 for all t0 and all T .

In the following, we look at the performance of JPP over
the interval from 0 to JT − 1, which is divided into a total of
J frames with length T each. We show that for any J > 0,
the JPP algorithm yields an average profit over {0, 1, ..., JT −
1} that is close to the profit obtained with an optimal T -slot
lookahead policy implemented on each T -slot frame.

A. Performance of JPP under arbitrary supply and demand
Theorem 3: Suppose the Joint Purchasing and Pricing Al-

gorithm (JPP) is implemented, with θm satisfying condition
(27), and that µm,max ≤ Qm(0) ≤ θm + Am,max for
all m ∈ {1, 2, ...,M}. Then for any arbitrary X(t) and
Y (t) processes, the queue backlog values satisfies part (a)
of Theorem 2. Moreover, for any positive integers J and T ,
and any ĤJT (0) (which specifies all X(τ), Y (τ) values for
τ ∈ {0, 1, . . . , JT − 1}), the time average profit over the
interval {0, 1, ..., JT − 1} satisfies:

1
JT

JT−1∑
τ=0

E
{
φ(τ) | ĤJT (0)

}
≥

1
JT

J−1∑
j=0

φT (jT)− BT

V
−

E
{
L(Q(0))|ĤJT (0)

}
V JT

.

where φT (jT) is defined to be the optimal value of the
problem (P1) over the interval {jT, ..., (j + 1)T − 1}. The
constant B is defined in (20).

Proof: See [13].

REFERENCES

[1] D. P. Bertsekas. Dynamic Programming and Optimal Control, vols. 1
and 2. Athena Scientific, Belmont, Mass, 1995.

[2] B. Van Roy, D. P. Bertsekas, Y. Lee, and J. N. Tsitsiklis. A neuro-
dynamic programming approach to retailer inventory management. Proc.
of 36th Conf. on Decision and Control, San Diego, Dec. 1997.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, Belmont, Mass, 1996.

[4] W. B. Powell. Approximate Dynamic Programming: Solving the Curses
of Dimensionality. John Wiley & Sons, 2007.

[5] Y. Aviv and A. Pazgal. Pricing of short life-cycle products through
active learning. working paper, October 2002.

[6] S. Benjaafar and M. ElHafsi. Production and inventory control of a
single product assemble-to-order system with multiple customer classes.
Management Science, vol. 52, no. 12, pp. 1896-1912, December 2006.

[7] E. L. Plambeck and A. R. Ward. Optimal control of a high-volume
assemble-to-order system. Mathematics of Operations Research, vol.
31, no. 3, pp. 453-477, August 2006.

[8] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and
cross-layer control in wireless networks. Foundations and Trends in
Networking, vol. 1, no. 1, pp. 1-149, 2006.

[9] M. J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. Proc. IEEE INFOCOM, March
2005.

[10] M. J. Neely. Energy optimal control for time varying wireless networks.
IEEE Transactions on Information Theory, vol. 52, no. 7, pp. 2915-2934,
July 2006.

[11] L. Jiang and J. Walrand. Stable and utility-maximizing scheduling for
stochastic processing networks. Allerton Conference on Communication,
Control, and Computing, 2009.

[12] L. Huang and M. J. Neely. The optimality of two prices: Maximizing
revenue in a stochastic communication system. IEEE/ACM Transactions
on Networking, vol. 18, no. 2, pp. 406-419, April 2010.

[13] M. J. Neely and L. Huang. Dynamic product assembly and
inventory control for maximum profit. ArXiv Technical Report,
arXiv:1004.0479v1, April 2010.

[14] M. J. Neely. Stock market trading via stochastic network optimization.
ArXiv Technical Report, arXiv:0909.3891v1, Sept. 2009.

[15] M. J. Neely. Stock market trading via stochastic network optimization.
Proc. IEEE Conference on Decision and Control (CDC), Atlanta, GA,
Dec. 2010.

[16] M. J. Neely. Optimal energy and delay tradeoffs for multi-user wireless
downlinks. IEEE Transactions on Information Theory, vol. 53, no. 9,
pp. 3095-3113, Sept. 2007.

[17] M. J. Neely and R. Urgaonkar. Opportunism, backpressure, and
stochastic optimization with the wireless broadcast advantage. Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA, Oct.
2008.

