
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 1

Intelligent Packet Dropping for Optimal
Energy-Delay Tradeoffs in Wireless Downlinks

Michael J. Neely
University of Southern California
http://www-rcf.usc.edu/∼mjneely

Abstract— We explore the advantages of intelligently dropping
a small fraction of packets that arrive for transmission over
a time varying wireless downlink. Without packet dropping, the
optimal energy-delay tradeoff conforms to a square root tradeoff
law, as shown by Berry and Gallager (2002). We show that
intelligently dropping any non-zero fraction of the input rate
dramatically changes this relation from a square root tradeoff
law to a logarithmic tradeoff law. Further, we demonstrate
an innovative algorithm for achieving this logarithmic tradeoff
without requiring a-priori knowledge of arrival rates or channel
probabilities. The algorithm can be implemented in real time
and easily extends to yield similar performance for multi-user
systems.

I. INTRODUCTION

Wireless systems must offer high throughput and low delay
while operating with very little power. In order to maximize
performance, it is desirable for systems to react to current
channel conditions using rate adaptive and power adaptive
transmission technology. In this paper, we develop a schedul-
ing algorithm that uses channel information to yield an average
power expenditure that can be pushed arbitrarily close to the
minimum average power required for system stability, with a
corresponding optimal tradeoff in average delay.

In [2] it was shown that when all packets must be trans-
mitted, the optimal energy-delay tradeoff is given by a square
root tradeoff law, known as the Berry-Gallager bound. In this
paper, we consider optimal energy-delay tradeoffs under the
assumption that a small fraction of packets can be dropped.
We show that intelligently dropping packets can dramatically
change the energy-delay relation from a square root trade-
off law to a logarithmic tradeoff law. This result holds for
any non-zero bound on the packet drop rate. Further, we
demonstrate an innovative algorithm for joint power allocation
and packet dropping that achieves the optimal logarithmic
tradeoff without requiring a-priori knowledge of the input
rate or the channel state probabilities. The algorithm can be
implemented in real time and easily extends to offer provably
optimal energy-delay tradeoffs for multi-user systems. This
demonstrates that significant improvements in average delay
are possible if a non-zero packet drop rate can be tolerated.

Related work in [3] [4] [5] [6] considers energy and delay
issues in a single wireless downlink with a static channel, and

This work was presented in part at the WiOpt conference, Boston, April
2006.

This material is supported in part by one or more of the following: the
DARPA IT-MANET program grant W911NF-07-0028, the NSF grant OCE
0520324, the NSF Career grant CCF-0747525.

work in [2] [7] [8] considers downlinks with fading channels.
The fundamental square root tradeoff for single-user systems
is developed by Berry and Gallager in [2], and this tradeoff is
extended to multi-user systems in [9]. The problem of fairness
and utility optimal flow control is investigated in [10], where it
is shown that the fundamental utility-delay tradeoff law is quite
different and has a logarithmic structure. The dynamic control
algorithms of [9] [10] combine the concepts of buffer parti-
tioning developed in [2] and performance optimal Lyapunov
networking from [11]-[14]. Specifically, the work in [11]-[14]
presents simple Lyapunov techniques for achieving stability
and performance optimization simultaneously (extending the
Lyapunov results developed for queueing stability in works
such as [15]-[22]).

This paper uses similar techniques to address the problem
of intelligent packet dropping for energy efficiency. However,
the optimal control strategies in this context have a different
structure from those of [2] [9]. Specifically, the algorithms of
[2] [9] partition the buffer of an infinite queue into two halves,
where different drift modes are designed for each partition.
Here, we design a strategy that emulates a finite buffer queue
with strictly positive drift. We show that the strategy yields a
logarithmic delay tradeoff that cannot be achieved in systems
that do not allow packet dropping.

An outline of this paper is as follows: In the next section
we present the system model and problem formulation. In
Section III the basic positive drift algorithm is developed,
under the assumption that all channel state probabilities are
a-priori known. A more practical dynamic strategy that does
not require such a-priori knowledge is developed in Section
IV. The strategy uses a novel form of Lyapunov theory to
make on-line decisions that are tradeoff optimal. Necessity of
the logarithmic tradeoff is proven in Section VI for the special
case of systems with no channel state variation. Extensions to
multi-user systems are briefly considered in Section VII. A
modified adaptive threshold algorithm is presented in Section
VIII to yield a further constant-factor delay improvement while
maintaining tradeoff optimality. This adaptive threshold policy
extends the conference version of this paper [1] and can be
viewed as a new technique for network learning. Simulations
are provided in Section IX.

II. SYSTEM MODEL

Consider a single wireless transmitter that operates in slotted
time with slots normalized to integer units t ∈ {0, 1, 2, . . .}.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 2

The transmission rate offered by the transmitter on slot t
depends on a controllable power variable P (t) and an uncon-
trollable channel state S(t) according to a general rate-power
function C(P (t), S(t)), taking units of bits/slot. We assume
that power allocations are limited by a peak power constraint
Pmax, so that 0 ≤ P (t) ≤ Pmax for all t. Channel states S(t)
are assumed to be contained within some finite but arbitrarily
large state space S. An example rate-power function is the
logarithmic capacity curve for an Additive White Gaussian
Noise channel:

C(P, S) = log(1 + PαS) (1)

where αS is an attenuation/noise coefficient associated with
channel state S. Other examples include link budget functions
corresponding to a finite number of modulation and coding
schemes designed to achieve a sufficiently low probability of
error, in which case the C(P, S) function can be a discontin-
uous step function in P for each channel state S (see Fig. 1).
Such discontinuous steps might also arise in the special case
when all packets have fixed bit lengths and when C(P, S)
takes only a finite set of rates associated with transmitting an
integral number of packets. Our analysis holds for all such
C(P, S) functions, and in particular we assume only that
C(P, S) satisfies the following structural properties:1

1) Boundedness: There is a maximum transmission rate
µmax such that 0 ≤ C(P, S) ≤ µmax for all P ≤ Pmax
and all S ∈ S.

2) Zero Rate for Zero Power: C(0, S) = 0 for all channel
states S ∈ S.

3) Upper Semi-Continuity: For each channel state S ∈ S,
the C(P, S) function is upper semi-continuous in the P
variable. Specifically, for any power level P such that
0 ≤ P ≤ Pmax and for any infinite sequence {Pn} such
that limn→∞ Pn = P , we have:

C(P, S) ≥ lim sup
n→∞

C(Pn, S)

We note that the class of upper semi-continuous functions in-
cludes all continuous functions, and also includes all piecewise
continuous functions such that the function value at any point
of discontinuity is equal to the largest of its limiting values
at that point (see Fig. 1). This is a natural property for any
practical rate-power curve, as a point of discontinuity usually
represents a threshold point at which it is possible to support
a larger transmission rate.

Channel states S(t) are assumed to be independent and
identically distributed (i.i.d.) every slot, with state probabilities
πS = Pr[S(t) = S] for all S ∈ S . Let A(t) represent the
amount of new data that enters the system at time t (in units
of bits). This arrival process A(t) is assumed to be i.i.d. with
rate λ, so that E {A(t)} = λ for all t. Further, we assume
the second moment of arrivals is bounded in terms of a finite
constant Âmax, so that:

E
{
A(t)2

}
≤ Â2

max for all t

1The first structural property (boundedness) is the only one essential to our
analysis. The other two properties can be removed without affecting the main
results of this paper. They are used only to simplify exposition of Lemma 1
in Section III.

PP

C(P, S)

(a) (b)

Fig. 1. Example C(P, S) functions: (a) A function that is concave and
increasing in P . (b) A piecewise constant function with the upper semi-
continuity property.

Newly arriving data is either admitted to the system, or
dropped. Let Ã(t) be a control variable representing the
amount of new arrivals admitted on slot t, where 0 ≤ Ã(t) ≤
A(t). All admitted data is stored in a queue to await transmis-
sion, and we let U(t) represent the queue backlog or unfinished
work in the system at time t. Every timeslot, a downlink
controller observes the current channel state S(t) and the
current queue backlog U(t) and chooses a power allocation
P (t) subject to the constraint 0 ≤ P (t) ≤ Pmax. This yields
an offered transmission rate of µ(t) = C(P (t), S(t)). The
queueing dynamics thus proceed as follows:

U(t+ 1) = max[U(t)− µ(t), 0] + Ã(t) (2)

Note that the actual bits transmitted can be different from
µ(t) if there are not enough bits in the queue to transmit at
the full offered transmission rate. Let µ̃(t) represent the actual
amount of bits transmitted during slot t. Note that µ̃(t) ≤
µ(t), and strict inequality can only occur if U(t) < µmax.
Let ρ < 1 represent a required acceptance ratio. The goal is
to achieve an optimal energy-delay tradeoff while maintaining
an acceptance rate greater than or equal to ρλ. That is, we
require the following guarantee on long term throughput:

lim inf
t→∞

1
t

t−1∑
τ=0

E {µ̃(τ)} ≥ ρλ

A. The Berry-Gallager Bound

Let µc represent the downlink capacity, so that the system
can stably support any arrival rate λ such that 0 ≤ λ < µc, and
µc is the largest number with this property. Define Φ(λ) as the
minimum energy required to stabilize the queue if the input
rate is λ (assuming that 0 ≤ λ < µc). It can be shown that
Φ(λ) indeed depends only on λ (and not on higher order arrival
statistics), and that it is convex over the interval 0 ≤ λ < µc. In
[2], it is shown that a sequence of stabilizing power allocation
algorithms, indexed by increasing positive numbers V , can
be designed that push average power expenditure arbitrarily
close to Φ(λ). Further, it was shown that, subject to some
concavity assumptions on the C(P, S) function and some
admissibility assumptions on the input process, any stabilizing
power allocation algorithm that yields average power within
O(1/V) of the minimum power Φ(λ) must also have average
delay greater than or equal to Ω(

√
V).2 We refer to this square

2Where the notation f(V) = Ω(
√

V) denotes a function that increases at
least as fast as a square root function.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 3

root tradeoff law as the Berry-Gallager bound. We note that
the admissibility assumptions required for this bound include
the assumption that arrivals and channel states are i.i.d. over
timeslots. Further, the bound is derived under the assumption
that no data is allowed to be dropped.

As an example, consider a downlink that satisfies all as-
sumptions required for the Berry-Gallager bound. Assume the
arrival process is i.i.d. with rate λ. However, suppose that we
only need to admit a fraction ρ < 1 of all incoming data, so
that a drop rate of up to (1 − ρ)λ bits/slot can be tolerated.
The minimum power required to stabilize such a system is thus
equal to Φ∗ M=Φ(ρλ). Hence, the new goal is to push average
power expenditure arbitrarily close to Φ∗. Consider now the
naive dropping policy that makes random and independent
admission decisions every timeslot, where all incoming data
A(t) is admitted with probability ρ, and else it is dropped.
The resulting admitted rate is exactly equal to ρλ. However,
the admitted input stream is still i.i.d. from slot to slot, and
hence the Berry-Gallager bound still governs the energy-delay
performance associated with scheduling this admitted data.
Therefore, this naive approach to packet dropping cannot
overcome the square root tradeoff relation.

However, instead of randomly dropping packets, we con-
sider schemes that intelligently drop packets. Remarkably, we
find that for any arbitrarily small but positive dropping ratio
(i.e., any (1 − ρ) > 0), it is possible to design an intelligent
packet dropping scheme (together with a power allocation
scheme) that yields an average power expenditure that differs
from Φ∗ by at most O(1/V), while yielding average delay
that grows only logarithmically in the control parameter V .
Hence, the ability to drop packets dramatically improves the
energy-delay tradeoff law. This result shows that the square
root curvature of the Berry-Gallager bound is due only to a
very small fraction of packets that arrive at in-opportune times.
Average delay can be dramatically reduced by identifying
these packets and dropping them.

III. A DROPPING SCHEME FOR KNOWN SYSTEM
STATISTICS

In this section we demonstrate existence of a scheme
that uses intelligent packet dropping to overcome the Berry-
Gallager bound. The policy developed in this section is not
intended as a practical means of control, as it can only be
constructed via off-line computations based on full knowledge
of the arrival rate λ and the channel state probabilities πS
(for each S ∈ S). In Section IV we construct an on-line
strategy that achieves the same performance without requiring
knowledge of these parameters. We first present the following
Lemma from [13]:

Lemma 1: If channel states S(t) are i.i.d. and if the rate-
power function C(P, S) satisfies the structural properties of
the previous section, then for any λ < µc a stationary power
allocation policy can be designed that makes randomized
power allocation decisions P ∗(t) based only on observations
of the current channel state S(t), yielding:

E {P ∗(t)} = Φ(λ) for all t
E {µ∗(t)} = λ for all t

where µ∗(t) = C(P ∗(t), S(t)) is the associated transmission
rate of the randomized scheme.

Note that the expectations of the above lemma are taken
with respect to the random channel state S(t) and the poten-
tially random power allocation that depends on S(t). Such a
policy could in principle be constructed with a-priori knowl-
edge of λ and πS for all S ∈ S . It can be shown that if
the structural properties 2 and 3 for the C(P, S) function
are removed, then the above lemma can be modified to state
that there exists an infinite sequence of randomized power
allocation policies P ∗n(t) such that limn→∞ E {P ∗n(t)} =
Φ(λ) and limn→∞ E {µ∗n(t)} ≥ λ. This modified statement
can also be used to prove our main results, although it is more
convenient to use the simpler statement given in Lemma 1.

A. The Positive Drift Algorithm

The first step of our intelligent packet dropping algorithm
is to emulate a finite buffer queueing system with buffer size
Q, where the constant Q is to be determined later. That is, we
modify the queueing update equation as follows:

U(t+ 1) = min [Q,max[U(t)− µ(t), 0] +A(t)] (3)

This is the same queue update equation as (2), with the excep-
tion that any data exceeding the buffer size Q is necessarily
dropped. Specifically, the amount of arrivals Ã(t) admitted
every slot is decided purely in terms of this finite buffer
threshold, so that Ã(t) = A(t) whenever adding all new A(t)
arrivals does not make total backlog exceed the threshold, and
else Ã(t) is equal to only that portion of the new arrivals that
take backlog up to the Q threshold. The following policy is
defined in terms of a given required acceptance ratio ρ < 1.

Positive Drift Algorithm for Known Statistics:
1) Emulate the finite buffer system (3) using a constant

buffer size Q (to be chosen later).
2) Let P (t) = P ∗(t), where P ∗(t) is the stationary policy

that observes S(t) and then randomly allocates power to
yield E {P ∗(t)} = Φ((ρ + ε)λ), E {µ∗(t)} = (ρ + ε)λ
for all t (as in Lemma 1), for some small value ε such
that 0 < ε < (1− ρ), to be determined later.

For suitable choices of Q and ε, the above policy yields
a logarithmic energy-delay tradeoff relation. It is perhaps
surprising that the policy is designed to have a positive drift in
the direction of the finite buffer theshold Q. Indeed, every slot
the expected new arrivals is given by E {A(t)} = λ, which
exceeds the expected transmission rate E {µ∗(t)} = (ρ+ ε)λ
(recall that ε is chosen so that ρ+ε < 1). Intuitively, one might
expect an optimal queueing control algorithm to have negative
drift towards the empty state U(t) = 0. However, this is pre-
cisely what the algorithm is designed to avoid, as fundamental
inefficiencies arise from the edge effects associated with a
queue becoming empty. The algorithm is similar in spirit to
the buffer partitioning algorithm of [2], which uses a positive
drift whenever queue backlog is below a given threshold and
a negative drift when backlog is larger than this threshold.
However, in our algorithm above, the “threshold” is given by
the finite buffer size Q. Any data that violates this threshold
is simply dropped.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 4

B. Analysis of the Positive Drift Algorithm

To analyze performance of the algorithm, note that time
average power expenditure satisfies:

P M= lim
t→∞

1
t

t−1∑
τ=0

E {P ∗(t)} = Φ(ρλ+ ελ)

≤ Φ(ρλ) + Φ′(λ)ελ

where Φ′(λ) denotes the right derivative of the Φ(·) function
evaluated at λ (note that finite right derivatives exist for
any convex function over an open interval). Thus, because
Φ∗ M=Φ(ρλ), average power expenditure satisfies:

P ≤ Φ∗ + Φ′(λ)ελ (4)

For any fixed control parameter V ≥ 1, the idea is to choose
ε = (1 − ρ)/(2V). With this choice, it follows from (4) that
average power expenditure is within O(1/V) of the minimum
average power Φ∗.

Next, note that the time average transmission rate is given
by:

lim
t→∞

1
t

t−1∑
τ=0

E {µ∗(t)} = (ρ+ ε)λ

However, this time average transmission rate can be larger than
the time average throughput, due to the fact that the actual
data transmitted may be less than µ∗(t) if U(t) < µmax. To
ensure that the throughput is greater than or equal to ρλ, we
present the following lemma concerning edge effects in any
queueing system with a transmission rate µ(t). Recall that µ̃(t)
is defined as the actual data transmitted during slot t.

Lemma 2: (Edge Effects) If µ(t) ≤ µmax for all t, then
any stochastic queueing system that transmits at the full rate
µ(t) whenever U(t) ≥ µmax must satisfy:

lim inf
t→∞

1
t

t−1∑
τ=0

E {µ̃(τ)} ≥ lim inf
t→∞

1
t

t−1∑
τ=0

E {µ(τ)} − αµmax

where:

αM= lim sup
t→∞

1
t

t−1∑
τ=0

Pr[U(t) < µmax] (5)

Proof: Note that we have µ̃(t) ≤ µ(t) for all t, with equality
whenever U(t) ≥ µmax. Hence:

µ̃(t) ≥ µ(t)− µmax1[U(t)<µmax] (6)

where 1X is an indicator function equal to 1 if event X is
satisfied, and zero else. Inequality (6) can be verified as fol-
lows: If U(t) < µmax, then the right hand side of (6) is equal
to µ(t) − µmax, which is non-positive. Hence the inequality
trivially holds in this case. Otherwise, U(t) ≥ µmax, and the
inequality (6) holds with equality. Taking expectations of (6)
yields for all t:

E {µ̃(t)} ≥ E {µ(t)} − µmaxPr[U(t) < µmax]

Summing over τ ∈ {0, . . . , t − 1}, dividing by t, and taking
the lim inf as t→∞ yields the result.

Intuitively, the above lemma indicates that the actual
throughput of the queueing system differs from the time
average transmission rate by an amount that is at most αµmax,

where α represents time average probability that the queue
backlog drops below µmax. We call α the “edge probability.”

Applying the above lemma to the positive drift algorithm
above (where E {µ∗(t)} = (ρ + ε)λ for all t) yields the
following guarantee on time average throughput:

lim inf
t→∞

1
t

t−1∑
τ=0

E {µ̃∗(τ)} ≥ ρλ+ ελ− αµmax (7)

To ensure that the throughput is greater than or equal to ρλ,
from (7) we find it suffices to ensure that the edge probability
α is small enough to satisfy αµmax ≤ ελ. However, note that
on every timeslot t, the expected difference between the arrival
rate and the transmission rate satisfies:

E {A(t)− µ∗(t)} = λ− (ρ+ ε)λ = λ(1− ρ− ε) (8)

The above expectation is defined as the drift of the algo-
rithm. Using the fact that ε = (1 − ρ)/(2V), it follows that
the drift is greater than or equal to λ(1 − ρ)/2 whenever
V ≥ 1. This positive drift tends to increase queue backlog,
pushing U(t) away from the edge region U(t) < µmax.
Further, it can be shown that the resulting edge probability
α decays exponentially in the buffer size Q. Therefore, the
edge probability α can be made as small as desired, satisfying
αµmax ≤ ελ, while maintaining a buffer size Q that is
logarithmic in 1/ε, and hence logarithmic in V . Formally,
the fact that α decays exponentially in Q is shown by the
following lemma.

Lemma 3: Given a queueing system with a finite buffer size
Q and a positive drift that satisfies (8), there exists a positive
constant θ∗ such that the edge probability α satisfies:

α ≤ e−θ
∗(Q−µmax)

The above lemma follows from the Kingman bound [23],
which also specifies the constant θ∗. The proof, together with
a simple lower bound on θ∗, are given in Appendix B. Hence,
if Q is chosen as follows:

QM=µmax +
1
θ∗

log
(µmax

ελ

)
(9)

then the lemma implies α ≤ ελ/µmax, ensuring from (7) that
throughput is greater than or equal to ρλ. Further, because
1/ε = O(V) and U(t) ≤ Q for all t, it follows from (9) that
average queue backlog is O(log(V)), as is the average delay
of admitted data (via Little’s Theorem). This demonstrates
feasibility of a logarithmic energy-delay tradeoff.

While the positive drift algorithm is conceptually very sim-
ple, it cannot be implemented without full a-priori knowledge
of the arrival rate λ and the channel probabilities πS (for
each S ∈ S). Even if all of these parameters are estimated,
the intrinsic estimation error might preclude realization of
the desired performance, and could lead to significant mis-
match problems if input rates or channel probabilities change
over time. Further, the algorithm does not easily extend to
multi-user, multi-channel systems, because the total number
of channel states in such systems grows geometrically with
the number of channels. Therefore, it is essential to construct
a more practical algorithm to achieve a logarithmic energy-
delay tradeoff.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 5

(ρ + ε)A(t)

X(t)

µ(t)

1

(ρ + ε)A(t)

X(t)

µ(t)

1

(ρ + ε)A(t)

X(t)

µ(t)

1

Fig. 2. An illustration of the virtual queueing system associated with the
X(t) update equation (10).

IV. AN ON-LINE ALGORITHM FOR INTELLIGENT PACKET
DROPPING

To construct an on-line algorithm for achieving a logarith-
mic energy-delay tradeoff, we use the theory of performance
optimal Lyapunov networking [11]-[14]. To this end, suppose
the system emulates a finite buffer system with buffer size
Q (to be chosen later), so that queue backlog U(t) evolves
according to (3). Define the following Lyapunov function
L(U):

L(U)M=eω(Q−U)

where ω > 0 is a parameter to be determined later. Because
U(t) ≤ Q for all t, the Lyapunov function L(U(t)) reaches its
minimum value when U(t) = Q, and increases exponentially
when queue backlog deviates from the buffer threshold Q. We
show that scheduling to minimize the drift of this Lyapunov
function from one slot to the next ensures that the edge
probability α decays exponentially in Q.

To maintain high throughput, it is desirable to ensure that
the time average transmission rate µ(t) is greater than or equal
to (ρ+ ε)λ, for some value ε such that 0 < ε < (1− ρ), to be
determined later. To this end, we use the virtual queue concept
developed in [13]. Let X(t) represent a virtual queue that is
implemented purely in software, where X(0) = 0 and where
X(t) follows the following update equation every slot:

X(t+ 1) = max[X(t)− µ(t), 0] + (ρ+ ε)A(t) (10)

where A(t) is the amount of new arrivals during slot t (some
of which may not be admitted to the actual queue U(t)), and
where µ(t) is the transmission rate chosen by the downlink
control algorithm. Note that X(t) can be viewed as the backlog
in a queue with input (ρ+ ε)A(t) and time varying server rate
µ(t) (see Fig. 2).

Definition 1: A queueing system with unfinished work
X(t) is strongly stable if:

lim sup
t→∞

1
t

t−1∑
τ=0

E {X(τ)} <∞

It is not difficult to show that a strongly stable queue with
an upper bounded transmission rate has the property that the
lim inf of the difference between the time average server rate
and the time average arrival rate is non-negative [13]. Because
the time average arrival rate to the X(t) queue is given by
(ρ+ ε)λ, we have the following lemma:

Lemma 4: If the X(t) queue is strongly stable and the A(t)

process is i.i.d. with rate λ, then:

lim inf
t→∞

1
t

t−1∑
τ=0

E {µ(τ)} ≥ ρλ+ ελ (11)

lim inf
t→∞

1
t

t−1∑
τ=0

E {µ̃(τ)} ≥ ρλ+ ελ− αµmax (12)

Proof: Because the X(t) queue is strongly stable with an
upper bounded transmission rate µmax, the lim inf difference
between the time average server rate and arrival rate satisfies:

lim inf
t→∞

1
t

t−1∑
τ=0

E {µ(τ)− (ρ+ ε)A(τ)} ≥ 0

The inequality (11) follows from the above inequality together
with the fact that E {A(t)} = λ for all t. The inequality (12)
follows from (11) together with Lemma 2.

A. Performance Optimal Lyapunov Networking

Our technique of stochastic queue optimization is based
on the theory of performance optimal Lyapunov networking,
which allows stability and performance optimization to be
achieved via a single drift argument [11] [13] [14]. This
extends the Lyapunov stability results of [15]-[22], and is
closely related to stochastic gradient optimization (see, for
example, [24] for an application to data networks). To demon-
strate the technique, consider a system with a vector process
Z(t) representing a set of queue states that evolve according
to some probability law. Let P (t) represent a non-negative
control process that affects system dynamics, and let P ∗

represent a target upper bound desired for the time average
of P (t). Let Ψ(Z) represent any non-negative function of Z
(representing a Lyapunov function), and let ∆(Z(t)) represent
the conditional Lyapunov drift, defined as follows:3

∆(Z(t))M=E {Ψ(Z(t+ 1))−Ψ(Z(t)) | Z(t)} (13)

We have the following important lemma, which is a modified
version of similar results developed in [11][13][14].

Lemma 5: (Lyapunov Optimization [11][13][14]) If there is
a process B(t) and constants ε > 0, V ≥ 0, together with a
non-negative function f(Z), such that the queueing system
satisfies the following drift inequality for all t and all Z(t):

∆(Z(t))+V E {P (t) | Z(t)} ≤ B(t)−εf(Z(t))+V P ∗ (14)

then:

lim sup
t→∞

1
t

t−1∑
τ=0

E {P (τ)} ≤ P ∗ +B/V

lim sup
t→∞

1
t

t−1∑
τ=0

E {f(Z(τ))} ≤ B + V (P ∗ − P inf)
ε

where

P inf
M= lim inf

t→∞

1
t

t−1∑
τ=0

E {P (τ)} , B M= lim sup
t→∞

1
t

t−1∑
τ=0

E {B(τ)}

3Strictly speaking, correct notation for the conditional Lyapunov drift
in (13) is ∆(Z(t), t), as the drift may also depend on the timeslot t.
However, we use the simpler notation ∆(Z(t)) as a formal and more concise
representation of the right hand side of (13).

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 6

If V is a control parameter of the system, the above lemma
indicates that the time average of the P (t) process can be
bounded by a value that is arbitrarily close to the target value
P ∗, with a corresponding tradeoff in the time average value
of f(Z(t)) that is at most linear in V .

To apply Lemma 5 to our queueing problem, let Z(t) =
(U(t), X(t)) represent the vector queue state of both the actual
and virtual queues, and define the following mixed Lyapunov
function:

Ψ(Z)M=L(U) +
1
2
X2 = eω(Q−U) +

1
2
X2

The conditional drift ∆(Z(t)) for the above Lyapunov
function is defined in (13). Motivated by Lemma 5, the goal
of our dynamic control strategy is to choose P (t) to minimize
a bound on the following drift metric every timeslot t:

Drift Metric: ∆(Z(t)) + V E {P (t) | Z(t)}

where V ≥ 1 is a control parameter that effects the energy-
delay performance of the algorithm. Note that this drift metric
is simply the left hand side of (14).

B. Algorithm Construction

To compute a bound on the drift metric of the previous
subsection, it is useful to define σ2 to be any positive constant
that satisfies the following inequality for all t and all Z(t):

σ2 ≥ E
{

(µ(t)−A(t))2 | Z(t)
}

(15)

Note that because µ(t) ≤ µmax and E
{
A(t)2

}
≤ Â2

max,
choosing σ2 M=µ2

max + Â2
max ensures that (15) is satisfied for

all t. A tighter bound is given by σ2 M=Â2
max+max[0, µ2

max−
2λµmax], which is useful in cases when the input rate λ
is known. Likewise, if there exists a deterministic arrival
bound Amax such that A(t) ≤ Amax for all t, then choosing
σ2 M= max[µ2

max, A
2
max] also ensures that (15) is satisfied.

Lemma 6: If a positive constant ω is chosen to satisfy the
inequality:

ωeωµmax ≤ λ(1− ρ− ε)/σ2 (16)

then for all t we have the following bound on the drift metric:

∆(Z(t)) + V E {P (t) | Z(t)} ≤ B + V E {P (t) | Z(t)}
−ωeω(Q−U(t)) [λ− E {µ(t) | Z(t)} − λ(1− ρ− ε)/2]

−X(t) [E {µ(t) | Z(t)} − (ρ+ ε)λ] (17)

where µ(t) = C(P (t), S(t)), and where:

B M=
µ2
max + (ρ+ ε)2Â2

max

2
+ 1 (18)

Proof: The proof involves summing the Lyapunov drift
expressions associated with the actual queue U(t) and the
virtual queue X(t). These expressions are computed using the
dynamic queue update equations (10) and (3). The detailed
proof is given in Appendix A.

It is not difficult to show that if ω is chosen as follows:

ωM=
λ(1− ρ− ε)

σ2
e−λµmax(1−ρ−ε)/σ2

(19)

then the inequality constraint (16) is satisfied, and hence the
result of Lemma 6 holds. This follows directly from the fact

that for any positive value c, the inequality xex ≤ c is always
satisfied by the variable x = ce−c. If λ is unknown, then any
positive lower bound λ0 (such that 0 < λ0 ≤ λ) can be used
in replacement for λ in (19) while still ensuring that (16) is
satisfied.

We design the dynamic control policy to minimize the drift
bound given in the right hand side of (17) every timeslot,
considering all possible power allocation options P (t) such
that 0 ≤ P (t) ≤ Pmax. Isolating the terms on the right hand
side of (17) that depend on the control variable P (t) (noting
that µ(t) = C(P (t), S(t))), it is clear that minimizing the
bound in (17) is equivalent to choosing P (t) in reaction to
the current channel state and the current queue backlogs in
order to maximize the following expression every timeslot:

E
{(
X(t)− ωeω(Q−U(t))

)
C(P (t), S(t))− V P (t) | Z(t)

}
Maximizing the above conditional expectation is accom-

plished by deterministically maximizing the resulting expres-
sion corresponding to the particular channel state realization
S(t) and the particular queue state Z(t) = (U(t), X(t))
observed on the current timeslot t. This leads to the following
dynamic policy, which uses a control parameter V ≥ 1 and
uses fixed parameters Q, ε, ω to be determined later in terms
of V and ρ.

Dynamic Packet Dropping Policy: Every timeslot, observe
the current channel state S(t) and the current queue backlogs
U(t) and X(t). Then:

1) Allocate power P (t) = P , where P solves:

Maximize: C(P, S(t))(X(t)− ωeω(Q−U(t)))− V P
Subject to: 0 ≤ P ≤ Pmax

2) Iterate the virtual queue X(t) according to (10), using
µ(t) = C(P (t), S(t)).

3) Emulate the finite buffer queue U(t) according to (3).
Note that the power allocation step in the above control

policy involves a simple optimization of a function of one
variable, and can easily be solved in real time for most prac-
tical C(P, S) functions. For example, if C(P, S) is concave
and differentiable in P for all channel states S (as in (1)),
then the optimal P (t) value can be solved simply by taking a
derivative and setting P (t) to the local maximum found on the
interval 0 ≤ P ≤ Pmax (possibly achieved at the endpoints
P = 0 or P = Pmax). If C(P, S) is piecewise constant with a
fixed number of transmission rate options (and hence a fixed
number of power options), then the solution is found simply
by comparing each option.

Theorem 1: (Dynamic Packet Dropping Performance) For
a given value ρ < 1 and a fixed control parameter V ≥ 1, if
parameters ε, ω, and Q are chosen so that ε = (1− ρ)/(2V),
ω is positive and satisfies (16), and Q = log(xV)/ω, where
x is any value that satisfies:

x ≥ 4µmaxeωµmaxB

λ2ω(1− ρ− ε)(1− ρ)
(20)

then:
(a) lim supt→∞

1
t

∑t−1
τ=0 E {P (τ)} ≤ Φ∗ +O(1/V)

(b) U(t) ≤ Q for all t, where Q = O(log(V))

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 7

(c) lim inft→∞ 1
t

∑t−1
τ=0 E {µ̃(τ)} ≥ ρλ

We prove the above theorem in the next section. Note
that because U(t) ≤ O(log(V)) for all t, average delay is
also O(log(V)) (by Little’s Theorem). Hence, the algorithm
satisfies the required acceptance rate and yields a logarithmic
energy-delay tradeoff. Note that the constants can be chosen to
satisfy the necessary inequalities (16) and (20) just by knowing
a lower bound λ0 on the input rate λ, so that the exact input
rate λ is not required. Likewise, the channel state probabilities
πs are not required for implementation. Hence, the algorithm
can easily adapt to the situation where the channel state
probabilities change between periods of network operation.
We note that the value of Q was chosen only to ensure a
sufficiently small analytical bound on the edge probability α.
Our analysis was conservative, and experimentally we find
that (constant factor) improvements in delay can be achieved
by appropriately reducing the value of Q, without affecting
throughput or average energy expenditure. This is discussed
further in Sections VIII and IX, where simulation results
are presented and a modified adaptive threshold policy is
introduced.

V. PERFORMANCE ANALYSIS

Here we prove Theorem 1. Note that the dynamic policy is
designed to minimize the right hand side of the drift bound
(17) over all possible power allocation policies. In particular,
the resulting bound is less than or equal to the corresponding
expression associated with any alternative power allocation
policy P ∗(t). Thus, for any policy where P ∗(t) is randomly
chosen every slot in reaction to the current channel state
S(t) but independently of the current queue state Z(t) =
(U(t), X(t)), we have:

∆(Z(t)) + V E {P (t) | Z(t)} ≤ B + V E {P ∗(t)}
−ωeω(Q−U(t)) [λ− E {µ∗(t)} − λ(1− ρ− ε)/2]

−X(t)[E {µ∗(t)} − (ρ+ ε)λ] (21)

where µ∗(t) = C(P ∗(t), S(t)). We emphasize that the
P (t), U(t), X(t) variables used in the above inequality corre-
spond to the dynamic control policy under investigation (and
are the same as those in (17)), while the new variables P ∗(t)
and µ∗(t) are used as replacements in the right hand side of
(17) and correspond to an alternative power assignment.

Consider now the particular randomized policy P ∗(t) that
allocates power in reaction to the current channel state S(t)
(but independently of queue backlog) to yield the following
for all t:

E {µ∗(t)} = (ρ+ ε)λ (22)
E {P ∗(t)} = Φ((ρ+ ε)λ) (23)

Such a policy is guaranteed to exist by Lemma 1. Using
equations (22) and (23) in (21) yields:

∆(Z(t)) + V E {P (t) | Z(t)} ≤ B + V Φ((ρ+ ε)λ)
−ωeω(Q−U(t))λ(1− ρ− ε)/2 (24)

The above drift inequality is in the exact form as given in the
Lyapunov Optimization Lemma (Lemma 5). Directly applying

the lemma yields:

lim supt→∞
1
t

∑t−1
τ=0 E {P (τ)} ≤ Φ((ρ+ ε)λ) +B/V (25)

lim supt→∞
1
t

∑t−1
τ=0 E

{
eω(Q−U(τ))

}
≤

B+V [Φ((ρ+ε)λ)−P inf]
ωλ(1−ρ−ε)/2 (26)

Proof of part (a) of Theorem 1: Recall that Φ∗ M=Φ(ρλ).
Thus, from (25) we have:

lim sup
t→∞

1
t

t−1∑
τ=0

E {P (τ)} ≤ Φ(ρλ+ ελ) +B/V

≤ Φ∗ + Φ′(λ)ελ+B/V

≤ Φ∗ +O(1/V)

where the final inequality follows because ε = (1− ρ)/(2V).
�

Proof of part (b) of Theorem 1: Note that the finite buffer
queueing update equation in (3) ensures that U(t) ≤ Q for all
t. The result follows by noting that Q = O(log(V)). �

Proof of part (c) of Theorem 1: To prove part (c), we first
make the following claims:

Claim 1: The X(t) queue is strongly stable.
Claim 2: The edge probability α (defined in (5)) satisfies

α ≤ λε/µmax.
The claims are proven at the end of this section. Because the

X(t) queue is stable, from Lemma 4 of the previous section
we have that the time average system throughput satisfies:

lim inf
t→∞

1
t

t−1∑
τ=0

E {µ̃(τ)} ≥ ρλ+ ελ− αµmax

≥ ρλ

where the final inequality follows from Claim 2. �
It remains only to prove Claims 1 and 2.
Proof: (Claim 1) Consider again the drift bound in (21).

However, instead of considering a power allocation policy
P ∗(t) that satisfies (22) and (23), we consider an alternative
policy P ∗(t) that also makes randomized decisions based only
on the current channel state S(t), but which yields:

E {µ∗(t)} = λ(1 + ρ+ ε)/2
E {P ∗(t)} = Φ(λ(1 + ρ+ ε)/2)

Again, such a policy is guaranteed to exist by Lemma 1. Using
the above expressions in (21) yields:

∆(Z(t)) + V E {P (t) | Z(t)} ≤ B + V Pmax

−X(t)λ(1− ρ− ε)/2

Because (1− ρ− ε) > 0, the above drift expression is in the
exact form for application of Lemma 5. We thus have:

lim sup
t→∞

1
t

t−1∑
τ=0

E {X(τ)} ≤ B + V Pmax
λ(1− ρ− ε)/2

proving that X(t) is strongly stable.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 8

Proof: (Claim 2) For any timeslot τ and for any distribution
on the random variable U(τ), we have:

E
{
eω(Q−U(τ))

}
≥ E

{
eω(Q−U(τ)) | U(τ) < µmax

}
Pr[U(τ) < µmax]

≥ eω(Q−µmax)Pr[U(τ) < µmax]

Summing the above inequality over τ ∈ {0, . . . , t− 1} yields:

eω(Q−µmax)
t−1∑
τ=0

Pr[U(τ) < µmax] ≤
t−1∑
τ=0

E
{
eω(Q−U(τ))

}
Dividing both sides by t, taking the lim sup, and using the
inequality (26) yields:

eω(Q−µmax)α ≤ B + V [Φ((ρ+ ε)λ)− P inf]
ωλ(1− ρ− ε)/2

(27)

where α is defined in (5).
However, from Claim 1 we know that the X(t) queue is

stable, and hence the lim inf of the time average energy used
to stabilize the queue must be greater than or equal to the
minimum average energy required for stability [13]. Because
the transmission rate of the X(t) queue is given by µ(t) =
C(P (t), S(t)) and the average input rate is given by (ρ+ ε)λ
(see (10) and Fig. 2), the lim inf of the expended energy is
given by P inf , and the minimum energy for stability is given
by Φ((ρ + ε)λ). Therefore, we have P inf ≥ Φ((ρ + ε)λ).
Using this fact in (27) yields:

eω(Q−µmax)α ≤ B

ωλ(1− ρ− ε)/2
Therefore:

α ≤
[

eωµmaxB

ωλ(1− ρ− ε)/2

]
e−ωQ

Using the fact that QM= log(xV)/ω, we have:

α ≤
[

eωµmaxB

ωλ(1− ρ− ε)/2

]
1
V x

Using (20) to replace the x variable in the right hand side of
the above inequality yields:

α ≤ λ(1− ρ)
2µmaxV

Using the fact that εM=(1 − ρ)/(2V) in the above inequality
yields α ≤ λε/µmax, proving the claim.

VI. NECESSITY OF THE LOGARITHMIC TRADEOFF

The logarithmic energy-delay tradeoff may seem to be
an artifact of the exponential Lyapunov function L(U) that
was used, so that another Lyapunov function (perhaps doubly
exponential) could perhaps offer sub-logarithmic performance.
However, this is not the case. Here we present a class of sys-
tems for which the optimal energy-delay tradeoff is necessarily
logarithmic, and hence this tradeoff is fundamental.

We consider the special case of a system with no channel
variation, so that the rate-power function is given by C(P).
Further, we assume the system has the following properties:

1) Arrivals A(t) are i.i.d. over timeslots, and there exists a
probability q > 0 such that Pr[A(t) = 0] = q.

2) All admission/rejection decisions are made immediately
upon arrival, so that admitted data is necessarily served.

3) The minimum average power function Φ(x) is non-linear
over the interval ρλ/2 ≤ x ≤ ρλ, and hence (by
convexity):

Φ′(ρλ) >
Φ(ρλ)− Φ(ρλ/2)

ρλ/2
(28)

where Φ′(ρλ) is the right derivative of the minimum
energy function at the point ρλ.

We further restrict attention to the class of ergodic schedul-
ing policies with well defined time averages.

Theorem 2: If a control policy of the type described above
yields a throughput of at least ρλ and has an average energy
expenditure P such that:

P − Φ(ρλ) ≤ 1/V (29)

then average congestion (and hence average delay) must be
greater than or equal to Ω(log(V)).

Proof: Assume that ρλ satisfies (28), and define the
constant β as follows:

β M=Φ′(ρλ)− Φ(ρλ)− Φ(ρλ/2)
ρλ/2

Note that β > 0. Consider a control policy as described
in the statement of the theorem. Let U and P represent
the time average queue backlog and the time average power
expenditure, respectively. Assume that (29) holds. Further,
define δ as the time average fraction of time that µ̃(t) < ρλ/2,
where µ̃(t) is the actual amount of data transmitted during slot
t. That is:

δM= lim
t→∞

1
t

t−1∑
τ=0

1[µ̃(τ)<ρλ/2]

where 1X is an indicator function that is 1 whenever condition
X is true, and is zero otherwise. We make the following claims
(proven below):

Claim 1: δ ≤ 2/(V βρλ)
Claim 2: There exist positive constants C and c (that do not

depend on V or U) such that: δ ≥ CqcU
Combining Claims 1 and 2 yields:

CqcU ≤ 2/(V βρλ)

Taking the logarithm of both sides and shifting terms yields:

U ≥ log(V βρλC/2)
c log(1/q)

establishing the result.
To complete the proof, below we prove Claims 1 and 2.
Proof: (Claim 1) Define µ1 as the conditional time average

rate of µ̃(t) given that µ̃(t) ≥ ρλ/2, and define P 1 as
the conditional time average power expenditure associated
with such transmissions. Similarly, define µ2 and P 2 as the
conditional time averages given that µ̃(t) < ρλ/2.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 9

Note by definition that 0 ≤ µ2 ≤ ρλ/2. Because total
throughput is greater than or equal to ρλ, we have:

ρλ ≤ (1− δ)µ1 + δµ2

Rearranging terms in the above inequality yields:

µ1 ≥ ρλ+
δ(ρλ− µ2)

(1− δ)
(30)

Likewise, we have:

P = (1− δ)P 1 + δP 2

≥ (1− δ)Φ(µ1) + δΦ(µ2) (31)

where (31) follows because Φ(x) is defined as the minimum
average energy required to support an average transmission
rate of x, and hence is less than or equal to the average
power of any particular strategy that achieves a transmission
rate of at least x. Specifically, recall here that the channel is
static, so that the power allocation strategy used to achieve
the conditional transmission rate µ1 over the special slots in
which µ̃(t) ≥ ρλ/2 can be used over any slot to achieve an
unconditional time average transmission rate of at least µ1

with a time average power equal to P 1. Using (30) in (31)
and noting that Φ(x) is non-decreasing and convex, we have:

P ≥ (1− δ)Φ
(
ρλ+

δ(ρλ− µ2)
(1− δ)

)
+ δΦ(µ2)

≥ (1− δ)
[
Φ(ρλ) + Φ′(ρλ)

δ(ρλ− µ2)
(1− δ)

]
+ δΦ(µ2)

= Φ(ρλ) + δ(ρλ− µ2)
[
Φ′(ρλ)− Φ(ρλ)− Φ(µ2)

ρλ− µ2

]
≥ Φ(ρλ) + δ(ρλ− µ2)

[
Φ′(ρλ)− Φ(ρλ)− Φ(ρλ/2)

ρλ/2

]
= Φ(ρλ) + δ(ρλ− µ2)β

where the inequalities follow by convexity of Φ(x) together
with the fact that 0 ≤ µ2 ≤ ρλ/2. Therefore, P ≥ Φ(ρλ) +
δβρλ/2, and hence by (29) we have 1/V ≥ δβρλ/2, proving
the claim.

Proof: (Claim 2) Let t be a time at which the system
is in steady state, so that E {U(t)} = U . By the Markov
inequality, we have Pr[U(t) ≤ 2U] ≥ 1/2. The probability
that U(t) ≤ 2U and that we then have k consecutive slots
over which there are no arrivals is thus at least (1/2)qk. Let
k = d2U/(ρλ/2) + 1e. If there are no arrivals over this set
of k slots, we know there must be at least one of the k slots
in which fewer than ρλ/2 units of data were served. Indeed,
if all k slots served at least ρλ/2 units of data, then the total
amount of transmitted data over these slots would be at least
kρλ/2, which is greater than 2U and hence a contradiction.

Without loss of generality, assume the system is in steady
state at time 0, and divide the timeline into successive frames
of size k slots. The time average rate δ at which we serve
fewer than ρλ/2 bits is greater than or equal to (1/k) times
the probability that a particular frame experiences such an

event, and so δ ≥ (1/2)qk/k. Thus:

δ ≥ (1/2)qk/k

≥ (1/2)q[4U/(ρλ)+2]/[4U/(ρλ) + 2]

=
C̃qc̃U

U + θ

where C̃ = ρλq2/8, c̃ = 4/(ρλ), and θ = ρλ/2. Let d =
1/ log(1/q). It is not difficult to show that qd(U+θ) ≤ 1/(U +
θ) (using the fact that e−x ≤ 1/x for all x > 0), and hence:

δ ≥ C̃qc̃Uqd(U+θ) = CqcU

where we defined c = c̃+d and C = C̃qdθ. This proves Claim
2.

While Theorem 2 is presented for the case of static channels,
we conjecture that the analysis can be extended to prove that
the logarithmic delay tradeoff is also necessary in the case of
dynamic channels.

VII. MULTI-USER SYSTEMS

The algorithm can easily be extended to multi-user
systems with L links with a vector link state process
S(t) = (S1(t), . . . , SL(t)), a vector valued rate-power func-
tion C(P (t),S(t)), and a vector arrival process A(t) =
(A1(t), . . . , AL(t)). In this case, we have actual queues
U(t) = (U1(t), . . . , UL(t)) and virtual queues X(t) =
(X1(t), . . . , XL(t)), each of which is updated according
to queueing equations similar to (3) and (10). Let λ =
(λ1, . . . , λL) represent the input rate vector, and for simplicity
assume that λi > 0 for all i. The minimum energy function
Φ(λ) for this multi-user problem specifies the minimum
average sum power expended by the system, minimized over
all possible policies that support the input rates λ. For a given
value ρ < 1, the goal is to design a strategy that ensures a
throughput vector of at least ρλ, while pushing average power
expenditure arbitrarily close to the target value Φ∗ = Φ(ρλ).

Suppose that the power vector P (t) is contained within
a compact set Π every timeslot, where Π represents the set
of acceptable power allocation vectors. The multi-user policy
observes the current channel state S(t) and the current queue
backlogs X(t) and U(t), and chooses a power vector P (t) =
(P1, . . . , PL) every slot to optimize:

Maximize:∑L
i=1

[
Ci(P ,S(t))

(
Xi(t)− ωieωi(Qi−Ui(t))

)
− V Pi

]
subject to P (t) ∈ Π. The virtual queues Xi(t) are then
updated as follows:

Xi(t+ 1) = max[Xi(t)− µi(t), 0] + (ρ+ ε)Ai(t)

where µi(t) = Ci(P (t),S(t)). Each Ui(t) queue operates
according to the finite buffer queueing equation (3) with a
buffer size Qi and with an input process Ai(t) and server rate
process µi(t). This multi-channel, multi-user algorithm yields
a logarithmic energy-delay tradeoff for appropriately chosen
{Qi}, {ωi}, ε values. Specifically, for each i ∈ {1, . . . , L}, let

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 10

σ2
i be any constant such that the following holds for all Z(t)

(where Z(t)M=[U(t);X(t)]):

σ2
i ≥ E

{
(µi(t)−Ai(t))2 | Z(t)

}
Further suppose that for all i, the the constants ωi are chosen
to be positive and to satisfy:

ωie
ωiµmax ≤ λi(1− ρ− ε)/σ2

i (32)

Theorem 3: (Multi-User Packet Dropping) For a given
value ρ < 1 and a fixed control parameter V ≥ 1, if parameters
ε, {ωi}, and {Qi} are chosen so that ε = (1− ρ)/(2V), each
ωi is positive and satisfies (32), and Qi = log(xiV)/ωi, where
xi is any value that satisfies:

xi ≥
4µmaxLBeωiµmax

λ2
iωi(1− ρ− ε)(1− ρ)

where B is defined in (18), then:
(a) lim supt→∞

1
t

∑t−1
τ=0

∑L
i=1 E {Pi(τ)} ≤ Φ∗ +O(L/V)

(b) Ui(t) ≤ Qi for all t, where Qi = O(log(V)) for all i
(c) lim inft→∞ 1

t

∑t−1
τ=0 E {µ̃i(τ)} ≥ ρλi for all i

The proof of the above theorem is similar to the proof for
the single-user case, and is omitted for brevity.

VIII. AN ADAPTIVE-THRESHOLD POLICY FOR
CONSTANT-FACTOR DELAY IMPROVEMENT

Our dynamic packet-dropping policy was proven to
achieve an optimal [O(1/V), O(log(V))] energy-delay trade-
off. Specifically, the policy ensures that no more than a
fraction 1 − ρ of packets are dropped, that time average
power expenditure is within O(1/V) from optimality, and
that queue backlog U(t) satisfies U(t) ≤ Q for all time t,
where Q = O(log(V)) (see Theorem 1). However, while the
Q parameter is logarithmic in V , it was chosen to have a
constant coefficient that is large enough to analytically ensure
that the edge probability α satisfies α ≤ λε/µmax. Our
analysis was conservative, and in simulations it was observed
that edge events were very rare. Indeed, it was found that the
condition α ≤ λε/µmax was typically satisfied under the much
less conservative threshold Q̃ = Q/15 (see simulations in
Section IX). This demonstrates that, while the policy achieves
the optimal [O(1/V), O(log(V))] asymptotic performance,
average delay can be further reduced by a significant constant
factor.

In this section we design a modified policy that preserves
the same analytical delay guarantees, but that adaptively
adjusts the Q parameter to yield significant constant factor
improvements in delay, as observed in the simulations of
Section IX. The policy uses a novel type of virtual queue that
accumulates the excess amount by which the edge probability
has violated its time average constraint. The Q parameter is
adjusted in response to this virtual queue. For simplicity, in this
section we consider only the single-queue problem, although
the technique readily extends to the multi-user scenario treated
in Section VII.

A. The Threshold-Adaptive Packet Dropping Policy

Fix the acceptance ratio ρ < 1. Again let V be a positive
control parameter that affects the energy-delay tradeoff, and
define constants ε, ω, and x as in Theorem 1, where ε =
(1 − ρ)/(2V), ω is positive and satisfies (16), and x is any
positive value that satisfies (20). The modified algorithm uses a
time varying maximum buffer size Q(t), with queueing update
equation as follows:

U(t+ 1) = min[Q(t),max[U(t)− µ(t), 0] +A(t)] (33)

The value of Q(t) is chosen so that Qmin ≤ Q(t) ≤ Qmax
for all t, where Qmax = log(xV)/ω. That is, Qmax is the
same as the constant value Q used in the original algorithm
of Theorem 1. We set the minimum Q value to be Qmin =
max[Qmax/f, 10µmax], where f is a suitably defined constant
reduction factor. In our simulations we choose the reduction
factor f to be between 15 and 40. The Q(t) value is modified
over time in response to a new virtual queue, as follows: Let
Y (t) be a new virtual queueing process with Y (0) = 0, and
with update equation:

Y (t+ 1) = max[Y (t)− ελ/µmax, 0] + 1α(t) (34)

where 1α(t) is an indicator function that is 1 if and only if an
edge event occurs on slot t:

1α(t) =
{

1 if U(t) < µmax
0 if U(t) ≥ µmax

It is clear that if the virtual queue Y (t) is stable, then the
lim sup time average edge probability α is less than or equal
to ελ/µmax, as desired. Let θ be a positive value that defines
an acceptable number of timeslots by which the time average
edge probability can exceed its desired upper bound ελ/µmax
(we use θ = 5 throughout). The threshold-adaptive algorithm
is designed so that Y (t) consistently returns to a value below
θ. This is accomplished by ensuring that Q(t) increases and
remains at Qmax whenever Y (t) is above the θ threshold for
a long duration of time.

Specifically, let s = (Qmax − Qmin)/100 be the additive
increment by which Q(t) can be increased (or decreased), so
that:

Q(t) ∈ {Qmin, Qmin + s,Qmin + 2s, . . . , Qmax}

Initialize the adaptive Q threshold to Q(0) = Qmin. For each
slot t ∈ {0, 1, 2, . . .}, let Qcap(t) be the smallest value of the
adaptive Q threshold under which no edge event has occurred
(so that there exists a time τ ≤ t such that U(τ) < µmax and
Q(τ) = Qcap(t) − s). Initialize Qcap(0) = Qmin + s. Every
slot t, after the queueing equation (33) is updated, Q(t) is
updated to Q(t+ 1) as follows:
• Q(t + 1) = min[Q(t) + s,Qmax] if Y (t) > θ, if
U(t+ 1) = Q(t), and Q(t) < Qcap(t).

• Q(t + 1) = max[Q(t) − s,Qmin] if Y (t) ≤ θ, if
U(t + 1) ≤ Q(t) − s, and no edge event has occurred
within the past 1000 slots.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 11

• Q(t + 1) = Q(t) if neither of the above events are
satisfied.

Intuitively, the above policy decreases Q(t) when Y (t) is
small, as a small Y (t) indicates a low time average number of
edge events and suggests the current Q value is unnecessarily
large. Note that Q(t) can only decrease if no edge events
have occurred within the past 1000 slots (a heuristic that
enables a quicker response to combat edge events), and is
not decreased unless U(t+ 1) ≤ Q(t)− s (so that decreasing
the Q value would not force any data to be dropped on slot
t+ 1). Alternatively, Q(t) is increased when Y (t) is large in
order to reduce the future rate of edge events. The Qcap(t)
parameter is added so that Q(t) only increases when an edge
event has actually occurred under a Q value that was greater
than or equal to its current value. This is useful because edge
events typically disappear altogether once Q is large enough,
so that there is no value in making Q larger unless more edge
events are experienced. The requirement that Q(t) cannot be
increased unless U(t + 1) = Q(t) ensures that the threshold
is only adjusted when queue backlog is at the level of the
old threshold, a requirement that plays a crucial role in our
Lyapunov analysis of the above strategy (provided in the next
sub-section).

Threshold-Adaptive Packet Dropping Policy: Every times-
lot t, observe the current channel state S(t) and the current
queue backlogs U(t), X(t), and Y (t). Then:

1) Allocate power P (t) = P , where P solves:

Maximize: C(P, S(t))(X(t)− ωeω(Q(t)−U(t)))− V P
Subject to: 0 ≤ P ≤ Pmax

2) Iterate the virtual queue X(t) according to (10), using
µ(t) = C(P (t), S(t)).

3) Iterate the virtual queue Y (t) according to (34).
4) Emulate the finite buffer queue U(t) according to (33).
5) Update the Q(t) value as specified above.
Theorem 4: (Threshold-Adaptive Algorithm Performance)

For any parameter V > 0, for values ε, ω, x chosen as above,
and for any positive θ value, the threshold-adaptive packet
dropping policy yields the same guarantees specified in parts
(a), (b), and (c) of Theorem 1 for the original packet dropping
algorithm.

Thus, the threshold-adaptive policy preserves the same
analytical delay guarantees as the original algorithm, but
experimentally achieves much better delay performance (see
simulations in Section IX). Choosing a threshold value θ = 5
allows the time average edge rate to be 5 slots over its desired
rate before Q(t) is increased. A larger θ value would make
Q(t) less likely to increase, at the expense of expanding the
amount of time required for the time average edge probability
to begin “averaging out” to a value less than ελ/µmax. The
adaptive Q(t) threshold creates a non-trivial modification of
the system dynamics of the original algorithm, and below we
present a proof of Theorem 4.

B. Performance Analysis of the Threshold-Adaptive Policy

Define the following time-dependent Lyapunov function:
L(U(t), t) = eω(Q(t)−U(t)). Again define the vector of queue

backlogs Z(t)M=(U(t), X(t)), and define:

Ψ(Z(t), t)M=L(U(t), t) +
1
2

(X(t))2

Using the same drift analysis as Lemma 6 (in Appendix A),
we have:

∆(Z(t)) + V E {P (t) | Z(t)} = ∆L(Z(t)) + ∆J(Z(t))
+V E {P (t) | Z(t)}

where ∆J(Z(t)) satisfies the same bound as in part (a)
of Lemma 7. The computation to bound ∆L(Z(t)) is sim-
ilar to that given in Appendix A: Because U(t + 1) ≥
min[Q(t), U(t) − µ(t) + A(t)], the inequality (37) from Ap-
pendix A is modified to:

eω(Q(t)−U(t+1)) ≤ eω(Q(t)−U(t))eω(µ(t)−A(t)) + 1

and hence:

eω(Q(t+1)−U(t+1)) ≤ [eω(Q(t+1)−U(t+1)) − eω(Q(t)−U(t+1))]
+eω(Q(t)−U(t))eω(µ(t)−A(t)) + 1 (35)

The term in brackets on the right hand side of (35) can be
bounded by:

[eω(Q(t+1)−U(t+1)) − eω(Q(t)−U(t+1))] ≤ eωs − 1 (36)

Inequality (36) is true because the left hand side is only
positive if the threshold is increased on slot t (so that Q(t) <
Q(t + 1)), and any increase is by exactly s and occurs only
when U(t + 1) = Q(t). Therefore, using (35) and (36) and
following the same steps as in Appendix A, we have the
following bound:

∆(Z(t)) + V E {P (t) | Z(t)} ≤
B + (eωs − 1) + V E {P (t) | Z(t)}
−ωeω(Q(t)−U(t))[λ− E {µ(t) | Z(t)} − λ(1− ρ− ε)/2]
−X(t)[E {µ(t) | Z(t)} − (ρ+ ε)λ]

Because the threshold-adaptive dropping policy makes
power allocation decisions to minimize the right hand side
of the above drift expression, we have:

∆(Z(t)) + V E {P (t) | Z(t)} ≤
B + (eωs − 1) + V E {P ∗(t) | Z(t)}
−ωeω(Q(t)−U(t))[λ− E {µ∗(t) | Z(t)} − λ(1− ρ− ε)/2]
−X(t)[E {µ∗(t) | Z(t)} − (ρ+ ε)λ]

where P ∗(t) corresponds to any alternative feasible power
allocation policy, and µ∗(t) = C(P ∗(t), S(t)). Consider the
queue backlog-independent policy from (22) and (23) that
yields E {µ∗(t)} = (ρ + ε)λ and E {P ∗(t)} = Φ((ρ + ε)λ).
We thus have:

∆(Z(t)) + V E {P (t) | Z(t)} ≤
B + (eωs − 1) + V Φ((ρ+ ε)λ)
−ωeω(Q(t)−U(t))[λ(1− ρ− ε)/2]

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 12

The above drift inequality holds for all time t. Using Lemma
5, we have (defining B̃ M=B + (eωs − 1)):

lim sup
t→∞

1
t

t−1∑
τ=0

E {P (τ)} ≤ Φ((ρ+ ε)λ) + B̃/V

lim sup
t→∞

1
t

t−1∑
τ=0

E
{
eω(Q(τ)−U(τ))

}
≤

B̃ + V [Φ((ρ+ ε)λ)− P inf]
ωλ(1− ρ− ε)/2

Repeating the same argument from Theorem 1, which shows
Φ((ρ + ε)λ) ≤ Φ∗ + O(1/V), yields part (a) of Theorem 4.
Now note that part (b) of the Theorem 4 follows immediately
by noting that U(t) ≤ Qmax for all t. Finally, similar to the
proof of Theorem 1, it can be shown that the virtual queue
X(t) is stable, and thus that the time average throughput
is greater than or equal to ρλ whenever the time average
edge probability α is less than or equal to ελ/µmax. This
latter property occurs whenever the virtual queue Y (t) is rate
stable. However, the queue Y (t) is always rate stable, because
if Y (t) spends a long duration above the θ threshold, then
Q(t) will rise to Qmax, and the system will run according
to the dynamics of the original policy until either Y (t) again
drops below the θ threshold (ensuring a time average edge
probability that is within θ/t of the desired bound), or until
the dynamics of the original policy create an edge probability
that has the desired bound.

IX. SIMULATIONS OF THE DYNAMIC PACKET DROPPING
POLICY

For simplicity, we simulate a single queue with rate-power
curve C(P, S) = log(1 +PαS). The channel state αS is i.i.d.
over timeslots and can take two possible values, both equally
likely: αS ∈ {1, 2}. Every timeslot, a power variable P (t)
is allocated subject to the constraint that 0 ≤ P (t) ≤ 2 (i.e.,
Pmax = 2). Thus, we have µmax = log(5). The arrival process
is i.i.d., where a single packet of size Amax arrives with prob-
ability 1/2 every timeslot, and else no packet arrives. We use
the value Amax = 2 log(2.5), so that λ = log(2.5). Further,
because A(t) ∈ {0, Amax}, we have Â2

max = E
{
A(t)2

}
=

λAmax, and σ2 = Â2
max+max[0, µ2

max−2λµmax] = λAmax.
The value of ω is given by (19).

We implement the dynamic packet dropping policy with
the original constant value of Q given in Theorem 1. We also
simulate the same policy but with a reduced threshold Q̃ =
Q/15. Finally, we simulate the threshold-adaptive algorithm.
We use ρ = 0.95 for all simulations (so that the drop rate must
be less than 5%). In the threshold-adaptive algorithm, we use
Qmax = Q, Qmin = max[10µmax, Q/30], s = (Qmax −
Qmin)/100, and θ = 5. The value of V is varied from 1 to
8000, and all simulations start with an empty system and run
over a duration of 15 million timeslots.

The average power expenditure versus V is shown in
Fig. 3 (where V is plotted on a logarithmic scale). We see
immediately that the average power performance is almost
the same for all three algorithms, as all three curves lie
almost exactly on top of each other. We note that the constant

Q algorithm and the threshold-adaptive algorithm are both
analytically guaranteed to meet the edge probability constraint
α ≤ λε/µmax, and thus to analytically ensure an acceptance
ratio of at least ρ. This fact is consistent with our simula-
tions for both of these algorithms, where the empirical edge
probability constraint was satisfied for all values of V , and the
empirical average rate of accepted traffic was larger than ρλ for
V < 300, and differed from ρλ only in the fourth significant
digit for V ≥ 300. The Q/15 algorithm does not have
analytical guarantees on the edge probability and acceptance
ratio, although it was observed to meet both constraints for
V < 400. However, the edge probability constraint was not
always met for V ≥ 400 (for example, for V = 500 the
actual edge probability was α = 0.000173 while the required
bound was λε/µmax = 0.000036). Correspondingly, it was
observed that the rate of accepted traffic was slightly lower
than ρλ = 0.870476 for V ≥ 400, although the lowest
acceptance rate was 0.869230 at V = 8000 (still very close
to ρλ).

The difference between the three algorithms is apparent
from the simulated average congestion illustrated in Fig. 4. The
original Q algorithm has average backlog that indeed grows
only logarithmically in V , although it is still quite large due
to our conservative analysis for the constant coefficient of the
Q threshold. The average backlog is reduced by a significant
constant factor in the adaptive threshold algorithm, without
sacrificing energy performance or violating the required ac-
ceptance ratio. The average backlog is reduced even further
in the Q/15 algorithm (roughly by a factor of 15 from the
original dynamic dropping policy).

10
0

10
1

10
2

10
3

10
4

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
Average Power versus V for all Three Intelligent Dropping Algorithms

V (log scale)

T
im

e
 A

ve
ra

g
e

 P
o

w
e

r
E

xp
e

n
d

itu
re

(E

[P
])

Fig. 3. Simulated performance of average power expenditure versus V for
the dynamic packet dropping policy and two variations: The Q/15 algorithm
and the threshold-adaptive (dynamic Q) algorithm. The three curves lie almost
exactly on top of each other and are indistinguishable in the above plot.

X. CONCLUSIONS

This work demonstrates that allowing for a small fraction of
packet dropping can fundamentally change the energy-delay

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 13

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

V

T
im

e
 A

ve
ra

g
e

 B
a

ck
lo

g

(E
[U

])
Average Backlog Versus V

Dropping Algorithm with Original Q

Reduced Threshold Algorithm (Q/15)

Adaptive Threshold Algorithm

Fig. 4. Simulated performance of average backlog versus V for the original
Q algorithm, the Q/15 algorithm, and the threshold-adaptive algorithm.

tradeoff law for wireless transmitters from the square root
law (derived by Berry and Gallager) to a logarithmic law. A
dynamic algorithm was constructed to achieve this logarithmic
tradeoff using Lyapunov scheduling together with an auxiliary
queueing state that regulates edge probabilities. The resulting
algorithm does not require knowledge of channel probabilities
and can be implemented in real time. The techniques devel-
oped here are quite powerful and can likely be used in other
contexts to provide delay-aware network control algorithms
with low complexity.

APPENDIX A — PROOF OF LEMMA 6

Here we prove Lemma 6 of Section IV-B. Recall that
Z(t) = (U(t), X(t)). Define J(X)M= 1

2X
2, and note that

Ψ(Z(t)) = L(U(t))+J(X(t)). Let ∆L(Z(t)) and ∆J(Z(t))
represent the components of the Lyapunov drift associated
with L(U(t)) and J(X(t)), respectively:

∆L(Z(t)) M= E {L(U(t+ 1))− L(U(t)) | Z(t)}
∆J(Z(t)) M= E {J(X(t+ 1))− J(X(t)) | Z(t)}

The Lyapunov drift of the Ψ(Z(t)) function is thus:

∆(Z(t)) = ∆L(Z(t)) + ∆J(Z(t))

We prove the drift bound in (17) by computing individual
bounds on ∆L(Z(t)) and ∆J(Z(t)).

Lemma 7: If ω is positive and satisfies (16), then for all t
we have:

(a) ∆J(Z(t)) ≤ µ2
max+(ρ+ε)2Â2

max

2

−X(t)[E {µ(t) | Z(t)} − (ρ+ ε)λ]
(b) ∆L(Z(t)) ≤ 1

−ωeω(Q−U(t)) [λ− E {µ(t) | Z(t)} − λ(1− ρ− ε)/2]
The proof of part (a) follows by squaring the virtual queue

update equation (10) and using a standard quadratic Lyapunov

drift computation (see, for example, [14]), and is omitted for
brevity. Below we prove part (b).

Proof: (Lemma 7 part (b)) Recall that L(U) = eω(Q−U),
and note by the finite buffer queueing equation (3) that the
U(t) process satisfies:

U(t+ 1) ≥ min[Q,U(t)− µ(t) +A(t)]

Hence, for any value ω > 0 we have:

e−ωU(t+1) ≤ e−ω(U(t)−µ(t)+A(t)) + e−ωQ

Therefore:

eω(Q−U(t+1)) ≤ eω(Q−U(t))eω(µ(t)−A(t)) + 1 (37)

Now note by the Taylor theorem that for any value x that is
upper bounded by some maximum value xmax, we have:

ex ≤ 1 + x+
x2

2
exmax

Because ω(µ(t)−A(t)) ≤ ωµmax for all t, we have:

eω(µ(t)−A(t)) ≤ 1+ω(µ(t)−A(t))+
ω2

2
(µ(t)−A(t))2eωµmax

(38)
Using (38) in (37) yields:

eω(Q−U(t+1)) − eω(Q−U(t)) ≤ 1 −ωeω(Q−U(t))
[
A(t)− µ(t)

− ω

2
(µ(t)−A(t))2eωµmax

]
Taking conditional expectations of both sides of the above
inequality yields:

∆L(Z(t)) ≤ 1− ωeω(Q−U(t))
[
λ− E {µ(t) | Z(t)}

−ω
2
eωµmaxE

{
(µ(t)−A(t))2 | Z(t)

}]
≤ 1− ωeω(Q−U(t))

[
λ− E {µ(t) | Z(t)}

−ω
2
eωµmaxσ2

]
(39)

≤ 1− ωeω(Q−U(t)) [λ− E {µ(t) | Z(t)}
−λ(1− ρ− ε)/2] (40)

where (39) follows from (15), and (40) follows because ω
satisfies the inequality ωeωµmax ≤ λ(1− ρ− ε)/σ2 (given in
(16)). This proves part (b) of the lemma.

Summing the drift components ∆L(Z(t)) and ∆J(Z(t))
from Lemma 7 establishes Lemma 6.

APPENDIX B — PROOF OF LEMMA 3
Here we derive the edge probability bound given in Lemma

3 for the Positive Drift Algorithm. We also compute a simple
bound on the constant θ∗. Let U(t) represent the buffer
occupancy of the positive drift algorithm, with dynamic equa-
tion given by the finite buffer queueing equation (3), and
with positive drift given by (8). Define the inverted process
Y (t)M=Q− U(t).

Lemma 8: Y (t) ≤ Ŷ (t) for all t ≥ 0, where Ŷ (t) is a
process defined with the same initial condition as Y (t), and
with update equation:

Ŷ (t+ 1) = max[Ŷ (t)−A(t) + µ(t), 0]

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 14

Proof: (Lemma 8) Note that Y (t) has dynamics:

Y (t+ 1) = Y (t)− Ã(t) + µ̃(t) (41)

where µ̃(t) is the actual data served from queue U(t) (and
satisfies µ̃(t) ≤ µ(t)), and Ã(t) is the actual data admitted to
queue U(t) according to the finite buffer queueing equation
(3). Suppose now that Y (τ) ≤ Ŷ (τ) for all τ ∈ {0, . . . , t}
(note that it holds for t = 0 because Y (0) = Ŷ (0)). We show
it also holds for time τ = t + 1. If Ã(t) 6= A(t), then some
new data was dropped from the finite buffer queue at time t,
and so by (3) we have U(t+1) = Q and hence Y (t+1) = 0.
Thus, we trivially have Y (t + 1) ≤ Ŷ (t + 1) in this case. In
the opposite case when Ã(t) = A(t), we have from (41):

Y (t+ 1) = Y (t)−A(t) + µ̃(t)
≤ max[Y (t)−A(t) + µ̃(t), 0]
≤ max[Ŷ (t)−A(t) + µ(t), 0]
= Ŷ (t+ 1)

proving the lemma.
The system Ŷ (t) evolves like a discrete time GI/GI/1

queue with an inverted arrival and transmission rate process,
and has negative drift given by:

E {−A(t) + µ(t)} = −λ(1− ρ− ε) (42)

Using the Kingman bound [23], in steady state we have:

Pr[Ŷ > Q− µmax] ≤ e−θ
∗(Q−µmax)

where the constant θ∗ is given by the positive root of the
following equation:

E
{
eθ

∗(µ(t)−A(t))
}

= 1

It is well known that the above equation has a positive root
θ∗ whenever the A(t) and µ(t) processes satisfy the negative
drift criterion (42) [23]. The following lemma presents a
simple lower bound on θ∗ in terms of known constants.

Lemma 9: If the drift condition (42) holds, then θ∗ is
greater than or equal to any constant θ that satisfies the
following inequality:

θeθµmax ≤ 2λ(1− ρ− ε)/σ2 (43)

where E {A(t)} = λ, µ(t) ≤ µmax for all t, and where σ2 is
any constant that satisfies (15).

As in the bound for the constant ω in Lemma 6, it is not
difficult to show that a particular solution of (43) is given by:

θM=
2λ(1− ρ− ε)

σ2
e−2λµmax(1−ρ−ε)/σ2

and hence the above value can be used in replacement of θ∗

in (9) to yield an acceptable Q value for use in the positive
drift algorithm.

Proof: (Lemma 9) Define δ(t)M=µ(t) − A(t), and define
f(θ)M=E

{
eθδ(t)

}
. Because the negative drift expression (42)

holds, it is well known that (see, for example, [23]):
• f(θ) < 1 for all θ such that 0 < θ < θ∗

• f(0) = f(θ∗) = 1

• f(θ) > 1 whenever θ > θ∗

For any θ ≥ 0, a Taylor expansion of eθδ(t) yields:

eθδ(t) ≤ 1 + θδ(t) +
θ2δ(t)2

2
eθµmax

Taking expectations of both sides and using (42) yields:

f(θ) ≤ 1− θλ(1− ρ− ε) +
θ2σ2

2
eθµmax

Define g(θ) as the right hand side in the above inequality. It
follows that f(θ) ≤ g(θ) whenever θ ≥ 0. Therefore, any non-
negative constant θ that satisfies g(θ) ≤ 1 must also satisfy
f(θ) ≤ 1, and hence θ ≤ θ∗. But the condition g(θ) ≤ 1 is
equivalent to the condition (43), proving the lemma.

Finally, combining the bound on the tail behavior of Ŷ (t)
and the fact that Y (t) ≤ Ŷ (t), we have in steady state:

Pr[U < µmax] = Pr[Y > Q− µmax]
≤ Pr[Ŷ > Q− µmax]
≤ e−θ

∗(Q−µmax)

which proves Lemma 3.

REFERENCES

[1] M. J. Neely. Intelligent packet dropping for optimal energy-delay
tradeoffs in wireless downlinks. Proc. of WiOpt, Boston, pp. 179-188,
April 2006.

[2] R. Berry and R. Gallager. Communication over fading channels with
delay constraints. IEEE Transactions on Information Theory, vol. 48,
no. 5, pp. 1135-1149, May 2002.

[3] E. Uysal-Biyikoglu, B. Prabhakar, and A. El Gamal. Energy-efficient
packet transmission over a wireless link. IEEE/ACM Trans. Networking,
vol. 10, pp. 487-499, Aug. 2002.

[4] M. Zafer and E. Modiano. A calculus approach to minimum energy
transmission policies with quality of service guarantees. Proc. IEEE
INFOCOM, March 2005.

[5] M. A. Khojastepour and A. Sabharwal. Delay-constrained scheduling:
Power efficiency, filter design, and bounds. Proc. IEEE INFOCOM,
March 2004.

[6] W. Chen, M. J. Neely, and U. Mitra. Energy-efficient transmissions with
individual packet delay constraints. IEEE Transactions on Information
Theory, vol. 54, no. 5, pp. 2090-2109, May 2008.

[7] A. Fu, E. Modiano, and J. Tsitsiklis. Optimal energy allocation for
delay-constrained data transmission over a time-varying channel. Proc.
IEEE INFOCOM, 2003.

[8] M. Goyal, A. Kumar, and V. Sharma. Power constrained and delay
optimal policies for scheduling transmission over a fading channel. Proc.
IEEE INFOCOM, April 2003.

[9] M. J. Neely. Optimal energy and delay tradeoffs for multi-user wireless
downlinks. IEEE Transactions on Information Theory, vol. 53, no. 9,
pp. 3095-3113, Sept. 2007.

[10] M. J. Neely. Super-fast delay tradeoffs for utility optimal fair scheduling
in wireless networks. IEEE Journal on Selected Areas in Commu-
nications, Special Issue on Nonlinear Optimization of Communication
Systems, vol. 24, no. 8, pp. 1489-1501, Aug. 2006.

[11] M. J. Neely. Dynamic Power Allocation and Routing for Satellite
and Wireless Networks with Time Varying Channels. PhD thesis,
Massachusetts Institute of Technology, LIDS, 2003.

[12] M. J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. Proc. IEEE INFOCOM, March
2005.

[13] M. J. Neely. Energy optimal control for time varying wireless networks.
IEEE Transactions on Information Theory, vol. 52, no. 7, pp. 2915-2934,
July 2006.

[14] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and
cross-layer control in wireless networks. Foundations and Trends in
Networking, vol. 1, no. 1, pp. 1-149, 2006.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 15

[15] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transacations on Automatic Control,
vol. 37, no. 12, pp. 1936-1949, Dec. 1992.

[16] L. Tassiulas and A. Ephremides. Dynamic server allocation to parallel
queues with randomly varying connectivity. IEEE Transactions on
Information Theory, vol. 39, pp. 466-478, March 1993.

[17] P. R. Kumar and S. P. Meyn. Stability of queueing networks and
scheduling policies. IEEE Trans. on Automatic Control, vol.40,.n.2,
pp.251-260, Feb. 1995.

[18] N. McKeown, V. Anantharam, and J. Walrand. Achieving 100%
throughput in an input-queued switch. Proc. IEEE INFOCOM, 1996.

[19] N. Kahale and P. E. Wright. Dynamic global packet routing in wireless
networks. Proc. IEEE INFOCOM, 1997.

[20] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, and P. Whiting.
Providing quality of service over a shared wireless link. IEEE Commu-
nications Magazine, vol. 39, no.2, pp.150-154, 2001.

[21] E. Leonardi, M. Mellia, F. Neri, and M. Ajmone Marsan. Bounds on
average delays and queue size averages and variances in input-queued
cell-based switches. Proc. IEEE INFOCOM, 2001.

[22] M. J. Neely, E. Modiano, and C. E Rohrs. Dynamic power allocation and
routing for time varying wireless networks. IEEE Journal on Selected
Areas in Communications, vol. 23, no. 1, pp. 89-103, January 2005.

[23] R. Gallager. Discrete Stochastic Processes. Kluwer Academic Publish-
ers, Boston, 1996.

[24] J. W. Lee, R. R. Mazumdar, and N. B. Shroff. Opportunistic power
scheduling for dynamic multiserver wireless systems. IEEE Transactions
on Wireless Communications, vol. 5, no.6, pp. 1506-1515, June 2006.

