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Abstract

In this thesis, we develop new Lagrangian methods with fast convergence for constrained
convex programs with complicated functional constraints. The dual subgradient method, also
known as the dual ascent method, and the primal dual subgradient method, also known as
the Arrow-Hurwicz-Uzawa subgradient method, are classical Lagrangian methods to solve con-
strained convex programs. Both methods are known to have a slow O(1/ε2) convergence time. In
contrast, the new Lagrangian methods proposed in this thesis have a faster O(1/ε) convergence
time. Recall that the alternating direction method of multipliers (ADMM), which is another
representative Lagrangian method for convex programs with linear equality constraints, is also
known to have O(1/ε) convergence. However, our methods work for general convex programs
with possibly non-linear constraints.

We first revisit the classical dual subgradient method and study its convergence time for
constrained strongly convex programs in Chapter 2. By using a novel drift-plus-penalty type
analysis, we show that the dual subgradient method enjoys a faster O(1/ε) convergence time for
general (possibly non-differentiable) constrained strongly convex programs. After that, we seek to
develop new Lagrangian methods with the fast O(1/ε) convergence time for general constrained
convex programs without strong convexity in Chapter 3, which is the core chapter in this thesis.
Based on the new Lagrangian methods developed in Chapter 3, new techniques that exceed the
state-of-the-art are developed for joint rate control and routing in data networks in Chapter 4
and for online convex optimization with stochastic and long term constraints in Chapters 5-6.

The other focus of this thesis is to illustrate the practical relevance of mathematical op-
timization techniques in engineering systems. In Chapter 7, we adapt our new online convex
optimization technique to the power control for energy harvesting devices with outdated state
information such that we can achieve utility within O(ε) of the optimal by using a battery with an
O(1/ε) capacity. In Chapter 8, we extend conventional drift-plus-penalty stochastic optimization
and Zinkevich’s online convex optimization to develop new dynamic transmit covariance design
policies for MIMO fading systems with unknown channel distributions and inaccurate channel
state information. In Chapter 9, we study the index coding problem and characterize the opti-
mality of two representative scalar and fractional linear codes, i.e., cyclic codes and maximum
distance separable (MDS) codes, by studying the integrality gap between the integer linear pro-
gram from an information theoretical lower bound and its linear relaxations and the Lagrangian
duality between various linear relaxations and their dual problems.
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Chapter 1

Introduction

A constrained convex program, also called constrained convex optimization problem, has the

form:

min f(x) (1.1)

s.t. gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m}, (1.2)

x ∈ X , (1.3)

where f(x) and gk(x) are convex functions and X is a closed convex set. In general, a convex

program can have linear equality constraints given by hj(x) = 0,∀j, where functions hj(x) are

linear functions. Since each linear equality constraint hj(x) = 0 can be equivalently represented

by two convex inequality constraints hj(x) ≤ 0 and −hj(x) ≤ 0, linear equality constraints are

not included in problem formulation (1.1)-(1.3). In this thesis, we often denote the stacked vector

of multiple functions g1(x), g2(x), . . . , gm(x) as g(x) =
[
g1(x), g2(x), . . . , gm(x)

]T.

To deal with the challenge of constraints (1.2) in the above convex program, the definition of

Lagrangian is introduced as follows:

Definition 1.1 (Lagrangian and Lagrangian Dual Function). For each inequality constraint

gk(x) ≤ 0, we introduce a scalar λk ≥ 0, called a Lagrangian multiplier, and define the Lagrangian

L associated with the problem (1.1)-(1.3) as

L(x,λ) = f(x) + λTg(x) = f(x) +
m∑
k=1

λkgk(x),

where λ = [λ1, . . . , λm]T is the stacked vector of all Lagrangian multipliers. Define the Lagrangian

1



dual function (or just dual function) associated with the problem (1.1)-(1.3) as

q(λ) = inf
x∈X

L(x,λ) = inf
x∈X
{f(x) +

m∑
k=1

λkgk(x)}

The Lagrangian augments the objective function f(x) with a weighted sum of the constraint

functions gk(x). The vector λ is called the Lagrange multiplier vector or dual variable vector

associated with the problem (1.1)-(1.3). Correspondingly, the vector x is called the primal

variable vector.

In this thesis, we assume all considered convex programs have at lease one optimal solution

and the following condition holds.

Condition 1.1 (Existence of Lagrange Multipliers Attaining Strong Duality). The convex pro-

gram (1.1)-(1.3) has Lagrange multipliers attaining the strong duality. That is, there exists a

Lagrange multiplier vector λ∗ = [λ∗1, λ∗2, . . . , λ∗m]T ≥ 0 such that

q(λ∗) = f(x∗),

where x∗ is an optimal solution to the problem (1.1)-(1.3) and q(λ) defined in Definition 1.1 is

the dual function of the problem (1.1)-(1.3).

Condition 1.1 is a mild condition and is implied by various conditions called constraint qual-

ifications [BNO03, BSS06, BV04]. For example, it is implied by the existence of a vector s ∈ X

such that gk(s) < 0 for all k ∈ {1, . . . ,m}, called the Slater condition.

1.1 Lagrangian Methods for Constrained Convex Programs

Theoretically, the constrained convex program (1.1)-(1.3) can be solved directly using a first-

order method with the projection onto the set {x ∈ X : gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m}}. However,

such a projection itself can be computationally challenging or even as difficult as the original

problem since the projection requires to minimize a quadratic function subject to the constraints

(1.2) and (1.3). Alternatively, interior point methods, which convert constrained convex programs

into unconstrained problems by introducing a barrier function for each functional constraint (1.2),

have been developed to solve the convex program (1.1)-(1.3) [NW06, BV04]. An interior point
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method typically takes a relatively small number of iterations to converge to a good solution.

However, the per-iteration complexity can be huge since each iteration involves a Newton step

that essentially computes Hessians and matrix inverses. In addition, interior point methods are

centralized and hence are not suitable for distributed implementations in engineering systems.

Lagrangian methods, which are based on the Lagrangian defined in Definition 1.1 and strong

duality described in Condition 1.1, are effective methods for constrained, especially large-scale,

convex programs in the form of (1.1)-(1.3). A Lagrangian method iteratively updates both the

primal variable x and the dual variable λ; and the per-iteration complexity is typically low. In

fact, Lagrangian methods often yield distributive implementations and hence are widely exploited

in engineering applications such as data networks [KMT98, LL99, Low03], decentralized multi-

agent systems [TTM11], model predictive control (MPC) [NN14] and so on.

1.1.1 Dual Subgradient Method

As a representative example of Lagrangian methods, the dual subgradient method, also known

as the dual ascent method, to solve the convex program (1.1)-(1.3) is described as follows:

Algorithm 1.1 Dual Subgradient Method
Let c > 0 be a constant step size. Let λ(0) ≥ 0 be an arbitrary constant vector. At each iteration
t ∈ {0, 1, 2, . . .}, update x(t) and λ(t+ 1) as follows:

• Update primal variables via

x(t) = argmin
x∈X

{
f(x) +

m∑
k=1

λk(t)gk(x)
}
.

• Update dual variables via

λk(t+ 1) = max
{
λk(t) + cgk(x(t)), 0

}
,∀k ∈ {1, 2, . . . ,m}.

• Output the running average x(t+ 1) given by

x(t+ 1) = 1
t+ 1

t∑
τ=0

x(τ) = x(t) t

t+ 1 + x(t) 1
t+ 1

as the solution at iteration t+ 1.

Note that the argminx∈X {·} involved in the primal variable updates of Algorithm 1.1 may

not be well defined even though X is a closed set. In general, to ensure argminx∈X {h(x)} is

well defined for a continuous function h(x), we need to exclude the possibility that h(x) becomes
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smaller as ‖x‖ → ∞. One condition that ensures the existence of argminx∈X {h(x)} is to assume

h(x) is coercive, i.e., h(x) → ∞ whenever ‖x‖ → ∞. This condition holds whenever h(x) is a

strongly convex function, defined in Definition 1.7. Alternatively, if the closed set X is bounded,

then argminx∈X {h(x)} exists for any continuous function h(x).

Let q(λ) be the Lagrangian dual function, defined in Definition 1.1, for the convex program

(1.1)-(1.3). By Danskin’s Theorem (see Proposition B.25 in [Ber99]), g(x(t)) is a subgradient

of q(λ) at the point λ = λ(t). Recall that λ ∈ Rm+ . It follows that the dynamic of the dual

vector λ(t) can be interpreted as a projected subgradient method with the constant step size c

to maximize the dual function q(λ). Thus, Algorithm 1.1 is called a dual subgradient method.

It is worthwhile emphasizing that with a constant step size c, λ(t) does not necessarily con-

verge to an optimal dual vector λ∗ that maximizes q(λ) since q(λ) is in general non-differentiable

and the subgradient method with a constant step size may not converge to a maximizer of a

non-differentiable concave function. Even if we assume λ(t) = λ∗ at certain iteration t, the

corresponding x(t) = argmin
x∈X

{f(x) +
∑m
k=1 λk(t)gk(x)} is not necessarily an optimal solution to

the problem (1.1)-(1.3) when the minimizer of f(x) +
∑m
k=1 λk(t)gk(x) is not unique. In fact,

x(t) = argmin
x∈X

{f(x) +
∑m
k=1 λk(t)gk(x)} can even be infeasible in this case. This is because an

optimal solution to the problem (1.1)-(1.3) is a nontrivial convex combination of the minimizers

of f(x) +
∑m
k=1 λ

∗
kgk(x) when q(λ) is not differentiable at λ = λ∗.

As a result, there is no performance guarantee of x(t) in Algorithm 1.1 for general convex

programs in the form of (1.1)-(1.3) and it is important to use the running average x(t) as the

solution. The running average sequence x(t) is also called the ergodic sequence in [LPS99]. The

idea of using the running averages x(t) as the solutions, rather than the original primal variables

x(t), dates back to Shor [Sho85] and is further developed in [SC96, LL97, LPS99, GPS15].

If the functions f(x) and each gk(x) are separable with respect to components or blocks of

x, then the updates of primal variable x(t) can be decomposed into several smaller independent

subproblems, each of which only involves a component or block of x(t). For example, if f(x)

and gk(x) are linear functions, then the updates x(t) can be decomposed into n scalar convex

minimizations that often have closed-form solutions. Such a desirable property has made the

dual subgradient method a pervasive decomposition technique for distributed resource allocation

in network utility maximization problems [LL99, PC06].
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1.1.2 Primal-Dual Subgradient Method

A close relative of the dual subgraident method is the primal-dual subgradient method, also

known as the Arrow-Hurwicz-Uzawa subgradient method. The convex program (1.1)-(1.3) can

be solved by the primal-dual subgradient method as described in Algorithm 1.2.

Algorithm 1.2 Primal-Dual Subgradient Method
Let c > 0 be a constant step size. Let x(0) ∈ X be arbitrary and λ(0) = 0. At each iteration
t ∈ {1, 2, . . .}, update x(t) and λ(t) as follows:

• Update primal variables via

x(t) = PX
[
x(t− 1)− c∇f(x(t− 1))− c

m∑
k=1

λk(t− 1)∇gk(x(t− 1))
]
,

where ∇f(x(t − 1)) is a subgradient of f(x) at point x = x(t − 1), ∇gk(x(t − 1)) is a
subgradient of gk(x) at point x = x(t− 1), and PX [·] is the projection onto convex set X .

• Update dual variables via

λk(t) = [λk(t− 1) + cgk(x(t− 1))]λ
max
k

0 ,∀k ∈ {1, 2, . . . ,m},

where λmax
k > λ∗k,∀k ∈ {1, 2, . . . ,m} with λ∗k defined in Condition 1.1 and [·]λ

max
k

0 is the
projection onto interval [0, λmax

k ].

• Output the running average x(t+ 1) given by

x(t+ 1) = 1
t+ 1

t∑
τ=0

x(τ) = x(t) t

t+ 1 + x(t) 1
t+ 1

as the solution at iteration t+ 1.

Recall that if the strong duality for the problem (1.1)-(1.3) is attained by certain Lagrange

multipliers, i.e., Condition 1.1 holds, then by the saddle point theorem for convex programs

(Proposition 5.1.6 in [Ber99]), (x∗,λ∗) is an optimal solution-multiplier pair if and only if it is

a saddle point of the Lagrangian. Let L(x,λ) be the Lagrangian, defined in Definition 1.1, for

the convex program (1.1)-(1.3). It follows that ∇f(x(t − 1)) +
∑m
k=1 λk(t − 1)∇gk(x(t − 1)) ∈

∂
∂xL(x(t−1),λ(t−1)) and g(x(t−1)) ∈ ∂

∂λL(x(t−1),λ(t−1)), and hence Algorithm 1.2 can be

interpreted as an Arrow-Hurwicz-Uzawa algorithm for solving the saddle points of the Lagragian

L(x,λ).

Note that if f(x) or gk(x) are separable, then the primal updates in Algorithm 1.1 requires to

solve unconstrained convex minimization problems, which can incur huge complexity when the
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number of constraints or the primal variable dimension is large. In contrast, Algorithm 1.2 iterates

the primal variables using projected gradient updates, which can be performed independently for

each component of x as long as the set X is a Cartesian product. Note that if X is a complicated

set where coordinates are coupled together, we can introduce more inequality constraints and

leave X a simple set. This property makes Algorithm 1.2 suitable for large scale convex programs

with non-separable objective or constraint functions.

On the other hand, Algorithm 1.2 requires the knowledge of upper bounds for the optimal

Lagrange multipliers to determine algorithm parameters λmax
k ,∀k ∈ {1, 2, . . . ,m} used in the

dual updates. These upper bounds can be difficult to estimate for some convex programs.

1.1.3 Drift-Plus-Penalty Technique for Deterministic Optimization

The drift-plus-penalty technique was originally developed to solve more general stochastic op-

timization [Nee03, GNT06, Nee10] and was shown applicable to deterministic convex programs

[Nee05, Nee14]. The drift-plus-penalty technique originates from the backpressure algorithm con-

sidered in the seminal work [TE92] by Tassiulas and Ephremides. The backpressure algorithm

developed in [TE92] is to perform routing and scheduling by minimizing a Lyapunov drift expres-

sion such that all data queues in the stochastic data network are stabilized whenever possible.

However, such a backpressure algorithm has no utility performance guarantee when network

utilities exist in the considered network. The drift-plus-penalty technique extends the method

in [TE92] by introducing an additional penalty term, corresponding to the network utility, to

the drift minimization such that the problem of joint network stability and utility maximization

can be solved. Later, this technique is further extended to solve general stochastic optimization,

not only stochastic optimization in queueing networks, by introducing virtual queues for general

stochastic constraints, not only queue stability constraints.

A deterministic convex program in the form of (1.1)-(1.3) can be solved by the drift-plus-

penalty technique as described in Algorithm 1.3. Note that the drift-plus-penalty technique

introduces a virtual queue Qk(t) for each functional constraint (1.2). These virtual queues can

be interpreted as the queue backlogs of constraint violations and indeed correspond to physical

queue backlogs when each constraint (1.2) is a node flow balance constraint in data network

applications. It was noted in [NMR05, HN11, SHN14] that the drift-plus-penalty technique

applied to deterministic convex programs is closely related to the dual subgradient method. In
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fact, if we let V = 1
c and Qk(0)

V = λk(0),∀k ∈ {1, 2, . . . ,m}, then Algorithm 1.3 and Algorithm

1.1 yield the same sequence of x(t) and Qk(t)
V = λk(t),∀k ∈ {1, 2, . . . ,m},∀t ≥ 0.

Algorithm 1.3 Drift-Plus-Penalty (DPP) Algorithm
Let V > 0 be a constant parameter. Let Q(0) ≥ 0 be arbitrary. At each iteration t ∈ {0, 1, 2, . . .},
update x(t) and Q(t+ 1) as follows:

• Update primal variables via

x(t) = argmin
x∈X

{
V f(x) +

m∑
k=1

Qk(t)gk(x)
}
.

• Update virtual queues via

Qk(t+ 1) = max
{
Qk(t) + gk(x(t)), 0

}
,∀k ∈ {1, 2, . . . ,m}.

• Output the running average x(t+ 1) given by

x(t+ 1) = 1
t+ 1

t∑
τ=0

x(τ) = x(t) t

t+ 1 + x(t) 1
t+ 1

as the solution at iteration t+ 1.

However, we emphasize that the drift-plus-penalty technique can solve stochastic optimization

that is more general than deterministic convex programs. In addition, the performance analysis

of the drift-plus-penalty is based on Lyapunov type analysis of a drift-plus-penalty expression

and is fundamentally different from the conventional analysis of the dual subgradient method. In

fact, the new Lagrangian methods developed in this thesis inherits heavily from the drift-plus-

penalty technique even though many of them are intended to be developed to solve deterministic

convex programs.

1.1.4 Alternating Direction Method of Multipliers (ADMM)

Now consider a special case of the convex program (1.1)-(1.3) with separable objective func-

tions and linear equality constraints, given as follows:

min f1(x) + f2(y) (1.4)

s.t. Ax + By = c, (1.5)

x ∈ X ⊆ Rn1 ,y ∈ Y ⊆ Rn2 . (1.6)
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Note that a linear inequality constraint can be converted to an equality constraint by intro-

ducing a non-negative dummy variable. By augmenting the Lagrangian with a quadratic term

of the equality constraint function, we define the augmented Lagrangian as

Lρ(x,y,λ) = f1(x) + f2(y) + λT(Ax + By− c
)

+ ρ

2‖Ax + By− c‖2

where ρ is a constant algorithm parameter. In the ADMM applied to solve the problem (1.4)-

(1.6), each iteration consists of the following steps:

• Update x(t) = argminx∈X Lρ(x,y(t− 1),λ(t− 1)).

• Update y(t) = argminy∈Y Lρ(x(t),y,λ(t− 1)).

• Update λ(t) = λ(t− 1) + ρ
[
Ax(t) + By(t)− c

]
.

At each iteration, the ADMM updates primal variables x and y in an alternating manner,

also known as Gauss-Seidel manner, which accounts for the name “alternating direction method”.

The isolated update of variables x and y can reduce per-iteration complexity in comparison to

jointly choosing (x,y) to minimize Lρ(x,y,λ). The ADMM recently has attracted a lot interest

in machine learning, network scheduling, computational biology and finance. See [BPC+11] for

a recent survey on the development and applications of ADMM.

However, a significant limitation of the ADMM algorithm is that it can only solve problems

with linear constraints. This is mainly because the quadratic term introduced in the augmented

Lagrangian can be non-convex when there are non-linear constraints.

1.2 Convergence Time of Existing Lagrangian Methods

For the convex program (1.1)-(1.3), we define an ε-approximate solution as follows.

Definition 1.2 (ε-approximate Solution). Let x∗ be an optimal solution to the problem (1.1)-

(1.3). For any ε > 0, a point xε ∈ X is said to be an ε-approximate solution if f(xε) ≤ f(x∗) + ε

and gk(xε) ≤ ε,∀k ∈ {1, . . . ,m}.

Note that if xε is an ε-approximate solution and there exists z ∈ X such that gk(z) ≤

−δ, ∀k ∈ {1, . . . ,m} for some δ > 0, one can convert an ε-approximate point xε to another point
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x = θxε + (1 − θ)z, for θ = δ
ε+δ , which satisfies all constraints gk(x) ≤ 0 and has an objective

value within O(ε) of optimality.

The convergence time of an iterative algorithm measures the number of iterations required

to obtain an ε-approximate solution and is formally defined as follows:

Definition 1.3 (Convergence Time). Let x(t), t ∈ {1, 2, . . .} be the solution sequence yielded by

an iterative algorithm. The convergence time (to an ε approximate solution) of this algorithm is

the number of iterations required to achieve an ε-approximate solution. That is, this algorithm is

said to have an O(h(ε)) convergence time if {x(t), t ≥ O(h(ε))} is a sequence of ε-approximate

solutions.

Or alternatively, we have the definition of convergence rates given as follows:

Definition 1.4 (Convergence Rate). Let h̃(t) be a decreasing function converging to 0 as t→∞;

and x(t), t ∈ {1, 2, . . .} be the solution sequence yielded by an iterative algorithm. This algorithm

is said to have an O(h̃(t)) convergence rate if f(x(t)) ≤ f(x∗) + h̃(t) and gk(x(t)) ≤ h̃(t),∀k ∈

{1, . . . ,m} for all t ≥ 1.

The definition of convergence rate is independent of ε and requires the error to eventually

converge to zero. In contrast, the definition of convergence time depends on ε and only requires

that the solution error is eventually smaller than ε. In this sense, the definition of convergence

rate is slightly stronger than the definition of convergence time; and a convergence rate result can

imply the convergence time result. For example, if a solution sequence x(t) satisfies f(x(t)) ≤

f(x∗) + 1√
t

and gk(x(t)) ≤ 1√
t
,∀k ∈ {1, . . . ,m} for all t ≥ 1, then this algorithm has an O( 1√

t
)

convergence rate (since error decays with time like O( 1√
t
)) and this further implies that the

convergence time of this algorithm is O( 1
ε2 ). However, the definition of convergence time is

still quite useful in analyzing the convergence performance of an iterative algorithm since some

algorithms fundamentally do not have vanishing errors. In this thesis, we use terminologies

“convergence rate” and “convergence time” interchangeably when proper.

The convergence time results of existing Lagrangian methods are summarized as follows:

• Dual subgradient methods and drift-plus-penalty technique: For general convex

programs in the form of (1.1)-(1.3), where the objective function f(x) is convex but not

necessarily strongly convex, the convergence time of Algorithm 1.3 is shown to be O( 1
ε2 ) in

[Nee05, Nee14]. A similar O( 1
ε2 ) convergence time of Algorithm 1.1 is shown in [NO09a].
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A recent work [SHN14] shows that Algorithm 1.3 has an O( 1
ε ) convergence time if the dual

function is locally polyhedral and Algorithm 1.3 with a different average scheme has an

O( 1
ε1.5 ) convergence time if the dual function is locally quadratic. For a special class of

strongly convex programs in the form of (1.1)-(1.3), where f(x) is second-order differen-

tiable and strongly convex and gk(x),∀k ∈ {1, 2, . . . ,m} are second-order differentiable and

have bounded Jacobians, the convergence time of Algorithm 1.1 is shown to be O( 1
ε ) in

[NN14].

• Primal-dual subgradient methods: The convergence time of Algorithm 1.2 is proven

to be O( 1
ε2 ) in [NO09b].

• ADMM: The best known convergence time of ADMM algorithm for the convex program

(1.4)-(1.6) with general convex f1(·) and f2(·) is recently shown to be O( 1
ε ) [HY12, LMZ15].

An asynchronous ADMM algorithm with the same O( 1
ε ) convergence time is studied in

[WO13]. Geometric convergence rate of ADMM is possible under restrictive assumptions

such as the strong convexity of the objective functions and rank conditions of the linear

equality constraints [HL16, DY16].

1.3 Facts From Convex Analysis

In this section, we introduce basic facts from convex analysis that will be frequently used

throughout this thesis. If not specified, we always use ‖ · ‖ to denote the Euclidean norm, also

known as l2 norm, of a vector.

Definition 1.5 (Lipschitz Continuity). Let X ⊆ Rn be a convex set. Function h : X 7→ Rm is

said to be Lipschitz continuous on X with modulus L if there exists L > 0 such that

‖h(y)− h(x)‖ ≤ L‖y− x‖,∀x,y ∈ X .

Definition 1.6 (Smooth Functions). Let X ⊆ Rn and function h(x) be continuously differen-

tiable on X . Function h(x) is said to be smooth on X with modulus L if ∇h(x) is Lipschitz

continuous on X with modulus L.

Note that linear function h(x) = aTx is smooth with modulus 0. If a function h(x) is smooth

with modulus L, then ch(x) is smooth with modulus cL for any c > 0.
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Lemma 1.1 (Descent Lemma, Proposition A.24 in [Ber99]). Let h be a continuously differentiable

function. If h is smooth on X with modulus L, then for any x,y ∈ X we have

h(y) ≥ h(x) + [∇h(x)]T(y− x)− L

2 ||y− x||2,

h(y) ≤ h(x) + [∇h(x)]T(y− x) + L

2 ||y− x||2.

Definition 1.7 (Strongly Convex Functions). Let X ⊆ Rn be a convex set. Function h(x)

is said to be strongly convex on X with modulus α if there exists a constant α > 0 such that

h(x)− 1
2α‖x‖

2 is convex on X .

Recall that function h(x) is concave if and only if −h(x) is convex. Similarly, function h(x)

is strongly concave with modulus α if and only if −h(x) is strongly convex with modulus α. Or

alternatively, function h(x) is strongly concave with if there exists a constant α > 0 such that

h(x) + 1
2α‖x‖

2 is concave.

The next corollary follows directly from the definition of strongly convex functions.

Corollary 1.1. Let X ⊆ Rn be a convex set. If function h(x) is convex on X and α > 0, then

h(x) + α‖x− x0‖2 is strongly convex with modulus 2α for any constant x0 ∈ Rn.

Lemma 1.2 (Theorem D.6.1.2 in [HUL01]). Let function h(x) be strongly convex on X with

modulus α. Let ∂h(x) be the set of all subgradients of h at point x. Then

h(y) ≥ h(x) + dT(y− x) + α

2 ‖y− x‖2,∀x,y ∈ X ,∀d ∈ ∂h(x).

Lemma 1.3 (Proposition B.24 (f) in [Ber99]). Let X ⊆ Rn be a convex set. Let function h(x)

be convex on X and xopt be a global minimum of h on X . Let ∂h(x) be the set of all subgradients

of h at point x. Then, there exists d ∈ ∂h(xopt) such that

dT(x− xopt) ≥ 0,∀x ∈ X .

Corollary 1.2. Let X ⊆ Rn be a convex set. Let function h(x) be strongly convex on X with

modulus α and xopt be a global minimum of h on X . Then,

h(xopt) ≤ h(x)− α

2 ‖x
opt − x‖2,∀x ∈ X .
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Proof. A special case when h is differentiable and X = Rn is Theorem 2.1.8 in [Nes04]. The

proof for general h and X is as follows.

Fix x ∈ X . By Lemma 1.3, there exists d ∈ ∂h(xopt) such that dT(x−xopt) ≥ 0. By Lemma

1.2, we also have

h(x) ≥ h(xopt) + dT(x− xopt) + α

2 ‖x− xopt‖2

(a)
≥ h(xopt) + α

2 ‖x− xopt‖2,

where (a) follows from the fact that dT(x− xopt) ≥ 0.

Similarly, we have the next corollary for strongly concave functions.

Corollary 1.3. Let X ⊆ Rn be a convex set. Let function h(x) be strongly concave on X with

modulus α and xopt be a global maximum of h on X . Then,

h(xopt) ≥ h(x) + α

2 ‖x
opt − x‖2,∀x ∈ X .

1.4 Thesis Outline and Our Contributions

This thesis is organized as follows:

• Chapter 2 – Convergence time of dual subgradient methods for strongly con-

vex programs: This chapter considers general strongly convex programs (possibly non-

differentiable) and shows that the classical dual subgraident method with simple running

averages has O( 1
ε ) convergence. This chapter also shows that if the strongly convex program

satisfies additional assumptions, then the dual subgradient method with a new running av-

erage scheme, called the sliding running average, can achieve O(log( 1
ε )) convergence.

• Chapter 3 – New Lagrangian methods for convex programs:

This chapter considers constrained convex programs (possibly without strong convexity)

and develops two new Lagrangian methods with fast O( 1
ε ) convergence. The new meth-

ods improve the conventional dual subgradient method or primal-dual subgradient method,

both of which are known to have slow O( 1
ε2 ) convergence. The new methods can deal with

nonlinear convex inequality constraints that can not be handled by the alternating direction
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method of multipliers (ADMM). The first new Lagrangian method is a dual type method

and works for general constrained convex programs (with possibly non-differentiable objec-

tive and constraint functions). The second one is a primal-dual type method but only works

for smooth constrained convex programs. Both methods have the same O(1/ε) convergence

time, yet the second one enjoys smaller per-iteration complexity when the objective function

or the constraint functions are not separable.

• Chapter 4 – New backpressure algorithms for joint rate control and routing:

This chapter considers backpressure algorithms for joint rate control and routing in multi-

hop data networks. To achieve an arbitrary small utility optimality gap, all existing back-

pressure algorithms necessarily yield arbitrarily large queue lengths. Inspired by the new

Lagrangian dual optimization methods developed in Chapter 3, this chapter proposes new

backpressure algorithms that can converge to the exact optimal utility while ensuring all

queue lengths are bounded by a finite constant.

• Chapter 5 – Online convex optimization with stochastic constraints: This chapter

considers online convex optimization (OCO) with stochastic constraints, which generalizes

Zinkevich’s OCO over a known simple fixed set by introducing multiple stochastic func-

tional constraints that are i.i.d. generated at each round and are disclosed to the decision

maker only after the decision is made. This formulation arises naturally when decisions

are restricted by stochastic environments or deterministic environments with noisy obser-

vations. To solve this problem, this chapter proposes a new algorithm that achieves O(
√
T )

expected regret and constraint violations and O(
√
T log(T )) high probability regret and

constraint violations.

• Chapter 6 – Online convex optimization with long term constraints: This chapter

considers online convex optimization with long term constraints, which is a special case

problem of online convex optimization with stochastic constraints considered in Chapter 5.

In online convex optimization with long term constraints, we relax the functional constraints

by allowing them to be violated at each round but still requiring them to be satisfied in the

long term. Inspired by the Lagrangian dual optimization technique developed in Chapter

3, this chapter develops a new online learning algorithm that can achieve O(
√
T ) regret

and O(1), i.e., finite, constraint violations.
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• Chapter 7 – Power control for energy harvesting devices with outdated state

information: This chapter considers utility optimal power control for energy harvesting

wireless devices with a finite capacity battery. The distribution information of the under-

lying wireless environment and harvestable energy is unknown and only outdated system

state information is known at the device controller. This chapter proposes a new online

power control algorithm that achieves utility within O(ε) of the optimal, for any desired

ε > 0, by using a battery with an O(1/ε) capacity.

• Chapter 8 – Dynamic transmit covariance design in MIMO fading systems with

unknown channel distributions and inaccurate channel state information:

This chapter considers dynamic transmit covariance design in point-to-point MIMO fading

systems with unknown channel state distributions and inaccurate channel state information

subject to both long term and short term power constraints. We develop different dynamic

transmit covariance policies for the case of instantaneous channel state information at

the transmitter (CSIT) and the case of delayed CSIT, respectively. In either case, the

corresponding policy can approach optimality with an O(δ) gap, where δ is the inaccuracy

measure of CSIT.

• Chapter 9 – Duality codes and the integrality gap bound for index coding:

This chapter considers the index coding problem that captures the essence of the classical

network coding problem. By studying the integrality gap of an integer linear program,

which arises from an information theoretical bound for the index coding problem, and

the Lagrangian duality of its linear programing relaxations, we analyze the performance

of cyclic codes and partial clique codes for index coding. We also show these codes are

optimal when the bipartite digraph representation of the index coding problem is planar.
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Chapter 2

Convergence Time of Dual Subgradient Methods for Strongly

Convex Programs

Consider the following strongly convex program:

min f(x) (2.1)

s.t. gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m} (2.2)

x ∈ X (2.3)

where the set X ⊆ Rn is closed and convex; function f(x) is continuous and strongly convex on

X ; functions gk(x),∀k ∈ {1, 2, . . . ,m} are Lipschitz continuous and convex on X . Note that the

functions f(x), g1(x), . . . , gm(x) are not necessarily differentiable. Denote the stacked vector of

multiple functions g1(x), g2(x), . . . , gm(x) as g(x) =
[
g1(x), g2(x), . . . , gm(x)

]T. Throughout this

chapter, the strongly convex program (2.1)-(2.3) is required to satisfy the following assumptions:

Assumption 2.1 (Basic Assumptions).

• There exists an optimal solution x∗ ∈ X that solves the strongly convex program (2.1)-(2.3).

• The function f(x) is strongly convex on X with modulus σ.

• There exists a constant β such that ‖g(x1)−g(x2)‖ ≤ β‖x1−x2‖ for all x1,x2 ∈ X . That

is, the function g(x) is Lipschitz continuous on X with modulus β.

Note that the strong convexity of the function f(x) implies that the optimum is unique.
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Assumption 2.2 (Existence of Lagrange Multipliers). Condition 1.1 holds for the strongly con-

vex program (2.1)-(2.3). That is, there exists a Lagrange multiplier vector λ∗ = [λ∗1, λ∗2, . . . , λ∗m]T ≥

0 such that

q(λ∗) = f(x∗),

where x∗ is the optimal solution to the problem(2.1)-(2.3) and q(λ) = inf
x∈X
{f(x)+

∑m
k=1 λkgk(x)}

is the Lagrangian dual function of the problem (2.1)-(2.3).

The strongly convex program (2.1)-(2.3) arises often in applications such as model predic-

tive control (MPC) [NN14], network flow control [LL99] and decentralized multi-agent control

[TTM11]. Algorithm 1.1, the dual subgradient method, is a conventional method to solve (2.1)-

(2.3) [BSS06]. It is an iterative algorithm that, every iteration, removes the inequality constraints

(2.2) and chooses primal variables to minimize a function over the set X . Algorithm 1.1 can be

interpreted as a subgradient/gradient method applied to the Lagrangian dual function of convex

program (2.1)-(2.3) and allows for many different step size rules [Ber99]. Note that by Danskin’s

theorem (Proposition B.25(a) in [BSS06]), the Lagrangian dual function of a strongly convex

program is differentiable, thus Algorithm 1.1 for strongly convex program (2.1)-(2.3) is in fact a

dual gradient method.

The classical dual subgradient method with a constant step size, Algorithm 1.1, uses the

simple running averages, also called the ergodic sequence in [LPS99], x(t) = 1
t

∑t−1
τ=0 x(τ) as

the solutions at each iteration. In this chapter, we also proposes a new running average scheme,

called the sliding running averages as follows:

• Sliding Running Averages: Use x̃(t) = x(0) and

x̃(t) =


1
t
2

∑t−1
τ= t

2
x(τ) if t is even

x̃(t− 1) if t is odd

as the solution at each iteration t ∈ {1, 2, . . .}.

This chapter shows that the sliding running averages can have better convergence time when the

dual function of the convex program satisfies additional assumptions. The results in this chapter

are originally developed in our papers [YN15, YN18b].
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2.1 Related Work

As reviewed in Section 1.2, the convergence time of Algorithm 1.1 for general (possibly without

strong convexity) convex programs is O( 1
ε2 ). For a special class of strongly convex programs in the

form of (2.1)-(2.3), where f(x) is second-order differentiable and strongly convex and gk(x),∀k ∈

{1, 2, . . . ,m} are second-order differentiable and have bounded Jacobians, the convergence time of

the dual subgradient algorithm is shown to be O( 1
ε ) in [NN14]. Note that convex program (2.1)-

(2.3) with second order differentiable f(x) and gk(x), k ∈ {1, 2, . . . ,m} in general can be solved

via interior point methods with geometric convergence. However, to achieve fast convergence

in practice, the barrier parameters must be scaled carefully and the computation complexity

associated with each iteration can be high. In contrast, the dual subgradient method can yield

distributive implementations with low per-iteration computation complexity when the objective

and constraint functions are separable.

This chapter considers a class of strongly convex programs that is more general than those

treated in [NN14].1 Besides the strong convexity of f(x), we only require the constraint functions

gk(x) to be Lipschitz continuous. The functions f(x) and gk(x) can even be non-differentiable.

Thus, this paper can deal with non-smooth optimization. For example, the l1 norm ‖x‖1 is

non-differentiable and often appears as part of the objective or constraint functions in machine

learning, compressed sensing and image processing applications. This chapter shows that the con-

vergence time of the dual subgradient method with simple running averages for general strongly

convex programs is O( 1
ε ) and the convergence time can be improved to O(log( 1

ε )) by using sliding

running averages when the dual function is locally quadratic.

A closely related recent work is [NP16] that considers strongly convex programs with strongly

convex and second order differentiable objective functions f(x) and conic constraints in the form

of Gx + h ∈ K, where K is a proper cone. The authors in [NP16] show that a hybrid algorithm

using both dual subgradient and dual fast gradient methods can have convergence time O( 1
ε2/3 );

and the dual subgradient method can have convergence time O(log( 1
ε )) if the strongly convex

program satisfies an error bound property. Results in this chapter are developed independently

and consider general nonlinear convex constraint functions; and show that the dual subgradi-

1Note that bounded Jacobians imply Lipschitz continuity. Work [NN14] also considers the effect of inaccurate
solutions for the primal updates. The analysis in this chapter can also deal with inaccurate updates. In this case,
there will be an error term δ on the right of (2.6).
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ent/gradient method with a different averaging scheme has an O(log( 1
ε )) convergence time when

the dual function is locally quadratic. Another independent parallel work is [NPN15] that con-

siders strongly convex programs with strongly convex and smooth objective functions f(x) and

general constraint functions g(x) with bounded Jacobians. The authors in [NPN15] shows that

the dual subgradient/gradient method with simple running averages has O( 1
ε ) convergence.

This chapter and independent parallel works [NP16, NPN15] obtain similar convergence times

of the dual subgradient/gradient method with different averaging schemes for strongly convex

programs under slightly different assumptions. However, the proof technique in this chapter is

fundamentally different from that used in [NP16] and [NPN15]. Works [NP16, NPN15] and other

previous works, e.g., [NN14], follow the classical optimization analysis approach based on the

descent lemma, while this chapter is based on the drift-plus-penalty analysis that was originally

developed for stochastic optimization in dynamic queuing systems [Nee03, Nee10]. Using the

drift-plus-penalty technique, we further propose a new Lagrangian dual type algorithm with

O( 1
ε ) convergence for general convex programs (possibly without strong convexity) in Chapter 3.

2.2 Convergence Time Analysis

This section analyzes the convergence time of Algorithm 1.1 for the strongly convex program

(2.1)-(2.3) under Assumptions 2.1-2.2.

2.2.1 An Upper Bound of the Drift-Plus-Penalty Expression

Denote λ(t) =
[
λ1(t), . . . , λm(t)

]T. Define Lyapunov function L(t) = 1
2‖λ(t)‖2 and Lyapunov

drift ∆(t) = L(t+ 1)− L(t).

Lemma 2.1. At each iteration t in Algorithm 1.1, we have

1
c

∆(t) = [λ(t+ 1)]Tg(x(t))− 1
2c‖λ(t+ 1)− λ(t)‖2 (2.4)

Proof. The update equations λk(t + 1) = max{λk(t) + cgk(x(t)), 0},∀k ∈ {1, 2, . . . ,m} can be

rewritten as

λk(t+ 1) = λk(t) + cg̃k(x(t)),∀k ∈ {1, 2, . . . ,m}, (2.5)
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where g̃k(x(t)) =

 gk(x(t)), if λk(t) + cgk(x(t)) ≥ 0

− 1
cλk(t), else

, ∀k ∈ {1, 2, . . . ,m}.

Fix k ∈ {1, 2, . . . ,m}. Squaring both sides of (2.5) and dividing by factor 2 yields:

1
2 [λk(t+ 1)]2

=1
2[λk(t)]2 + c2

2 [g̃k(x(t))]2 + cλk(t)g̃k(x(t))

=1
2 [λk(t)]2 + c2

2 [g̃k(x(t))]2 + cλk(t)gk(x(t)) + cλk(t)[g̃k(x(t))− gk(x(t))]

(a)= 1
2[λk(t)]2 + c2

2 [g̃k(x(t))]2 + cλk(t)gk(x(t))− c2g̃k(x(t))[g̃k(x(t))− gk(x(t))]

=1
2 [λk(t)]2 − c2

2 [g̃k(x(t))]2 + c[λk(t) + cg̃k(x(t))]gk(x(t))

(b)= 1
2[λk(t)]2 − 1

2 [λk(t+ 1)− λk(t)]2 + cλk(t+ 1)gk(x(t))

where (a) follows from λk(t)[g̃k(x(t)) − gk(x(t))] = −cg̃k(x(t))[g̃k(x(t)) − gk(x(t))], which can

be shown by considering g̃k(x(t)) = gk(x(t)) and g̃k(x(t)) 6= gk(x(t)), separately; and (b) follows

from the fact that λk(t+ 1) = λk(t) + cg̃k(x(t)). Summing over k ∈ {1, 2, . . . ,m} yields 1
2‖λ(t+

1)‖2 = 1
2‖λ(t)‖2− 1

2c
2‖λ(t+1)−λ(t)‖2 +c[λ(t+1)]Tg(x(t)). Rearranging the terms and dividing

both sides by factor c yields the result.

Lemma 2.2. Let x∗, σ and β be constants defined in Assumption 2.1. If c ≤ σ
β2 in Algorithm

1.1, then we have

1
c

∆(t) + f(x(t)) ≤ f(x∗),∀t ≥ 0 (2.6)

Proof. Fix t ≥ 0. Since f(x) is strongly convex with modulus σ; gk(x),∀k ∈ {1, 2, . . . ,m}

are convex; and λk(t),∀k ∈ {1, 2, . . . ,m} are non-negative at each iteration t, the function

f(x) +
∑m
k=1 λk(t)gk(x) is also strongly convex with modulus σ at each iteration t. Note that

x(t) = argmin
x∈X

{
f(x) +

∑m
k=1 λk(t)gk(x)

}
. By Corollary 1.2 with xopt = x(t) and y = x∗, we

have

f(x(t)) +
m∑
k=1

λk(t)gk(x(t)) ≤ f(x∗) +
m∑
k=1

λk(t)gk(x∗)− σ

2 ‖x(t)− x∗‖2.

Hence, f(x(t)) ≤ f(x∗) + [λ(t)]T
[
g(x∗)−g(x(t))

]
− σ

2 ‖x(t)−x∗‖2. Adding this inequality to
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equation (2.4) yields

1
c

∆(t) + f(x(t))

≤f(x∗)− 1
2c‖λ(t+ 1)− λ(t)‖2 − σ

2 ‖x(t)− x∗‖2 + [λ(t)]T[g(x∗)− g(x(t))] + [λ(t+ 1)]Tg(x(t)).

Define

B(t) = − 1
2c‖λ(t+ 1)− λ(t)‖2 − σ

2 ‖x(t)− x∗‖2 + [λ(t)]T[g(x∗)− g(x(t))] + [λ(t+ 1)]Tg(x(t)).

Next, we need to show that B(t) ≤ 0.

Since x∗ is the optimal solution to the problem (2.1)-(2.3), we have gk(x∗) ≤ 0,∀k ∈

{1, 2, . . . ,m}. Note that λk(t+ 1) ≥ 0,∀k ∈ {1, 2, . . . ,m},∀t ≥ 0. Thus,

[λ(t+ 1)]Tg(x∗) ≤ 0, ∀t ≥ 0 (2.7)

Now we have,

B(t) =− 1
2c‖λ(t+ 1)− λ(t)‖2 − σ

2 ‖x(t)− x∗‖2 + [λ(t)]T[g(x∗)− g(x(t))] + [λ(t+ 1)]Tg(x(t))
(a)
≤ − 1

2c‖λ(t+ 1)− λ(t)‖2 − σ

2 ‖x(t)− x∗‖2 + [λ(t)]T[g(x∗)− g(x(t))] + [λ(t+ 1)]Tg(x(t))

− [λ(t+ 1)]Tg(x∗)

=− 1
2c‖λ(t+ 1)− λ(t)‖2 − σ

2 ‖x(t)− x∗‖2 + [λ(t)− λ(t+ 1)]T[g(x∗)− g(x(t))]
(b)
≤ − 1

2c‖λ(t+ 1)− λ(t)‖2 − σ

2 ‖x(t)− x∗‖2 + ‖λ(t)− λ(t+ 1)‖‖g(x(t))− g(x∗)‖
(c)
≤ − 1

2c‖λ(t+ 1)− λ(t)‖2 − σ

2 ‖x(t)− x∗‖2 + β‖λ(t)− λ(t+ 1)‖‖x(t)− x∗‖

=− 1
2c
[
‖λ(t+ 1)− λ(t)‖ − cβ‖x(t)− x∗‖

]2 − 1
2(σ − cβ2)‖x(t)− x∗‖2

(d)
≤0

where (a) follows from (2.7); (b) follows from the Cauchy-Schwarz inequality; (c) follows from

Assumption 2.1; and (d) follows from c ≤ σ
β2 .
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2.2.2 Objective Value Violation

Theorem 2.1 (Objective Value Violation). Let x∗, σ and β be constants defined in Assumption

2.1. If c ≤ σ
β2 in Algorithm 1.1, then

f(x(t)) ≤ f(x∗) + ‖λ(0)‖2

2ct ,∀t ≥ 1.

Proof. Fix t ≥ 1. By Lemma 2.2, we have 1
c∆(τ) + f(x(τ)) ≤ f(x∗) for all τ ∈ {0, 1, . . . , t− 1}.

Summing over τ ∈ {0, 1, . . . , t− 1} we have:

1
c

t−1∑
τ=0

∆(τ) +
t−1∑
τ=0

f(x(τ)) ≤ tf(x∗)

⇒ 1
c

[L(t)− L(0)] +
t−1∑
τ=0

f(x(τ)) ≤ tf(x∗)

⇒ 1
t

t−1∑
τ=0

f(x(τ)) ≤ f(x∗) + L(0)− L(t)
ct

≤ f(x∗) + L(0)
ct

Note that x(t) = 1
t

∑t−1
τ=0 x(τ) and by the convexity of f(x), we have

f(x(t)) ≤ 1
t

t−1∑
τ=0

f(x(τ)) ≤ f(x∗) + L(0)
ct

= f(x∗) + ‖λ(0)‖2

2ct

Remark 2.1. Similarly, we can prove that f(x̃(2t)) ≤ f(x∗)+‖λ(t)‖2

2ct since x̃(2t) = 1
t

∑2t−1
τ=t x(τ).

A later lemma (Lemma 2.4) guarantees that ‖λ(t)‖ ≤
√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖, where λ∗ is

defined in Assumption 2.2. Thus, f(x̃(2t)) ≤ f(x∗) +
(√
‖λ(0)‖2+‖λ∗‖2+‖λ∗‖

)2

2ct ,∀t ≥ 1.

2.2.3 Constraint Violation

The analysis of constraint violations is similar to that in [Nee14] for general convex programs.

However, using the improved upper bound in Lemma 2.2, the convergence time of constraint

violations in strongly convex programs is order-wise better than that in general convex programs.

Lemma 2.3. For any t2 > t1 ≥ 0,

λk(t2) ≥ λk(t1) + c

t2−1∑
τ=t1

gk(x(τ)),∀k ∈ {1, 2, . . . ,m}.
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In particular, for any t > 0,

λk(t) ≥ λk(0) + c

t−1∑
τ=0

gk(x(τ)),∀k ∈ {1, 2, . . . ,m}.

Proof. Fix k ∈ {1, 2, . . . ,m}. Note that λk(t1 + 1) = max{λk(t1) + cgk(x(t1)), 0} ≥ λk(t1) +

cgk(x(t1)). By induction, this lemma follows.

Lemma 2.4. Let σ and β be constants defined in Assumption 2.1 and λ∗ be the Lagrange

multiplier vector defined in Assumption 2.2. If c ≤ σ
β2 in Algorithm 1.1, then λ(t) satisfies

‖λ(t)‖ ≤
√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖,∀t ≥ 1. (2.8)

Proof. Fix t ≥ 1. Let x∗ be the optimal solution to the problem (2.1)-(2.3). Assumption 2.2

implies that

f(x∗) = q(λ∗) ≤ f(x(τ)) +
m∑
k=1

λ∗kgk(x(τ)),∀τ ∈ {0, 1, . . . , t− 1},

where the inequality follows from the definition of q(λ).

Thus, we have f(x∗) − f(x(τ)) ≤
∑m
k=1 λ

∗
kgk(x(τ)),∀τ ∈ {0, 1, . . . , t − 1}. Summing over

τ ∈ {0, 1, . . . , t− 1} yields

tf(x∗)−
t−1∑
τ=0

f(x(τ)) ≤
t−1∑
τ=0

m∑
k=1

λ∗kgk(x(τ))

=
m∑
k=1

λ∗k

[ t−1∑
τ=0

gk(x(τ))
]

(a)
≤ 1

c

m∑
k=1

λ∗k[λk(t)− λk(0)]

≤ 1
c

m∑
k=1

λ∗kλk(t)

(b)
≤ 1

c
‖λ∗‖‖λ(t)‖ (2.9)

where (a) follows from Lemma 2.3 and (b) follows from the Cauchy-Schwarz inequality. On the
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other hand, summing (2.6) in Lemma 2.2 over τ ∈ {0, 1, . . . , t− 1} yields

tf(x∗)−
t−1∑
τ=0

f(x(τ)) ≥ L(t)− L(0)
c

= ‖λ(t)‖2 − ‖λ(0)‖2

2c (2.10)

Combining (2.9) and (2.10) yields

‖λ(t)‖2 − ‖λ(0)‖2

2c ≤ 1
c
‖λ∗‖‖λ(t)‖

⇒
[
‖λ(t)‖ − ‖λ∗‖

]2 ≤ ‖λ(0)‖2 + ‖λ∗‖2

⇒ ‖λ(t)‖ ≤
√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖

Theorem 2.2 (Constraint Violation). Let σ and β be constants defined in Assumption 2.1 and

λ∗ be the Lagrange multiplier vector defined in Assumption 2.2. If c ≤ σ
β2 in Algorithm 1.1, then

gk(x(t)) ≤
√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖

ct
,∀k ∈ {1, 2, . . . ,m},∀t ≥ 1.

Proof. Fix t ≥ 1 and k ∈ {1, 2, . . . ,m}. Recall that x(t) = 1
t

∑t−1
τ=0 x(τ). Thus,

gk(x(t))
(a)
≤ 1

t

t−1∑
τ=0

gk(x(τ))

(b)
≤ λk(t)− λk(0)

ct

≤ λk(t)
ct

≤ ‖λ(t)‖
ct

(c)
≤
√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖

ct

where (a) follows from the convexity of gk(x), k ∈ {1, 2, . . . ,m}; (b) follows from Lemma 2.3; and

(c) follows from Lemma 2.4.
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Remark 2.2. Similarly, we can prove that

gk(x̃(2t)) ≤
√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖

ct
,∀k ∈ {1, 2, . . . ,m},∀t ≥ 1.

The next corollary provides a lower bound of f(x(t)) and follows directly from Assumption

2.2 and Theorem 2.2.

Corollary 2.1. Let σ and β be constants defined in Assumption 2.1 and let λ∗ be the Lagrange

multiplier vector defined in Assumption 2.2. If c ≤ σ
β2 in Algorithm 1, then

f(x(t)) ≥ f(x∗)− 1
t

√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖

c

m∑
k=1

λ∗k,∀t ≥ 1.

Proof. Fix t ≥ 1. By Assumption 2.2, we have

f(x(t)) +
m∑
k=1

λ∗kgk(x(t)) ≥ q(λ∗) = f(x∗) +
m∑
k=1

λ∗kgk(x∗) = f(x∗).

Thus, we have

f(x(t)) ≥f(x∗)−
m∑
k=1

λ∗kgk(x(t))

(a)
≥f(x∗)−

m∑
k=1

λ∗k

√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖

ct

=f(x∗)− 1
t

√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖

c

m∑
k=1

λ∗k,

where (a) follows from the constraint violation bound, i.e., Theorem 2.2, and the fact that

λ∗k ≥ 0,∀k ∈ {1, 2, . . . ,m}.

2.2.4 Convergence Time of Algorithm 1.1

The next theorem summarizes Theorem 2.1 and Theorem 2.2.

Theorem 2.3. Let x∗, σ and β be constants defined in Assumption 2.1 and let λ∗ be the Lagrange
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multiplier vector defined in Assumption 2.2. If c ≤ σ
β2 in Algorithm 1.1, then for all t ≥ 1,

f(x(t)) ≤ f(x∗) + ‖λ(0)‖2

2ct .

gk(x(t)) ≤
√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖

t
,∀k ∈ {1, 2, . . . ,m}.

Specifically, if λ(0) = 0, then

f(x(t)) ≤ f(x∗).

gk(x(t)) ≤ 2‖λ∗‖
ct

,∀k ∈ {1, 2, . . . ,m}.

In summary, if c ≤ σ
β2 in Algorithm 1.1, then x(t) ensures that error decays like O( 1

t ) and

provides an ε-approximate solution with convergence time O( 1
ε ).

Remark 2.3. If c ≤ σ
β2 in Algorithm 1.1, then x̃(t) also ensures that error decays like O( 1

t ) and

provides an ε-approximate solution with convergence time O( 1
ε ).

2.3 Geometric Convergence of Algorithm 1.1 with Sliding

Running Averages

This section shows that the convergence time of Algorithm 1.1 with sliding running averages

x̃(t) is O(log( 1
ε )) when the dual function of the problem (2.1)-(2.3) satisfies additional assump-

tions.

2.3.1 Smooth Dual Function

Recall the definition of smooth functions in Definition 1.6. Define q(λ) = inf
x∈X
{f(x) +∑m

k=1 λkgk(x)} (a)= min
x∈X
{f(x) +

∑m
k=1 λkgk(x)} as the Lagrangian dual function of the prob-

lem (2.1)-(2.3) where (a) follows because f(x) is strongly convex, f(x) and gk(x) are continuous

and X is a closed set. For fixed λ ∈ Rm+ , f(x) + λTg(x) is strongly convex with respect to x ∈ X

with modulus α. Define x(λ) = argminx∈X {f(x)+λTg(x)}. By Danskin’s theorem (Proposition

B.25 in [Ber99]), q(λ) is differentiable with gradient ∇λq(λ) = g(x(λ)).
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Lemma 2.5 (Smooth Dual Function). The Lagrangian dual function of the problem (2.1)-(2.3),

q(λ), is smooth on Rm+ with modulus γ = β2

σ .

Proof. Fix λ,µ ∈ Rm+ . Let x(λ) = argminx∈X {f(x) + λTg(x)} and x(µ) = argminx∈X {f(x) +

µTg(x)}. Recall that for fixed λ ∈ Rm+ , f(x) + λTg(x) is strongly convex with respect to x ∈ X

with modulus α. By Corollary 1.2, we have f(x(λ)) + λTg(x(λ)) ≤ f(x(µ)) + λTg(x(µ)) −
α
2 ‖x(λ)−x(µ)‖2 and f(x(µ))+µTg(x(µ)) ≤ f(x(λ))+µTg(x(λ))− α

2 ‖x(λ)−x(µ)‖2. Summing

the above two inequalities and simplifying gives

α‖x(λ)− x(µ)‖2 ≤ [µ− λ]T[g(x(λ))− g(x(µ))]
(a)
≤ ‖λ− µ‖‖g(x(λ))− g(x(µ))‖
(b)
≤ β‖λ− µ‖‖x(λ)− x(µ)‖

where (a) follows from the Cauchy-Schwarz inequality and (b) follows because g(x) is Lipschitz

continuous by Assumption 2.1. This implies

‖x(λ)− x(µ)‖ ≤ β

α
‖λ− µ‖ (2.11)

Thus, we have

‖∇q(λ)−∇q(µ)‖ (a)= ‖g(x(λ))− g(x(µ))‖
(b)
≤ β‖x(λ)− x(µ)‖
(c)
≤ β2

α
‖λ− µ‖

where (a) follows from ∇λq(λ) = g(x(λ)); (b) follows from the Lipschitz continuity of g(x); and

(c) follows from (2.11).

Thus, q(λ) is smooth on Rm+ with modulus γ = β2

α .

Since ∇λq(λ(t)) = g(x(t)), the dynamic of λ(t) can be interpreted as the projected gradient

method with step size c to solve maxλ∈Rm+ {q(λ)} where q(·) is a smooth function by Lemma 2.5.

Thus, we have the next lemma.

Lemma 2.6. Consider the strongly convex program (2.1)-(2.3) satisfying Assumptions 2.1-2.2.
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If c ≤ σ
β2 in Algorithm 1.1, then

q(λ∗)− q(λ(t)) ≤ 1
2ct‖λ(0)− λ∗‖2, ∀t ≥ 1.

Proof. Recall that a projected gradient descent algorithm with step size c < 1
γ converges to

the maximum of a concave function with smooth modulus γ with the error decaying like O( 1
t ).

Thus, this lemma follows. The proof is essentially the same as the convergence time proof of the

projected gradient method for set constrained smooth optimization in [Nes04]. See Section 2.7.1

for the detailed proof.

2.3.2 Problems with Locally Quadratic Dual Functions

In addition to Assumptions 2.1-2.2, we further require the next assumption in this subsection.

Assumption 2.3 (Locally Quadratic Dual Function). Let λ∗ be a Lagrange multiplier vector of

the problem (2.1)-(2.3) defined in Assumption 2.2. There exists Dq > 0 and Lq > 0, where the

subscript q denotes locally “quadratic”, such that for all λ ∈ {λ ∈ Rm+ : ‖λ − λ∗‖ ≤ Dq}, the

dual function q(λ) = min
x∈X

{
f(x) +

∑m
k=1 λkgk(x)

}
satisfies

q(λ∗) ≥ q(λ) + Lq‖λ− λ∗‖2.

Lemma 2.7. Consider the strongly convex program (2.1)-(2.3) satisfying Assumptions 2.1-2.3.

Let q(λ),λ∗, Dq and Lq be defined in Assumption 2.3. We have the following properties:

1. If λ ∈ Rm+ and q(λ∗)− q(λ) ≤ LqD2
q , then ‖λ− λ∗‖ ≤ Dq.

2. The Lagrange multiplier defined in Assumption 2.2 is unique.

Proof.

1. Assume not and there exists λ′ ∈ Rm+ such that q(λ∗)− q(λ′) ≤ LqD2
q and ‖λ′−λ∗‖ > Dq.

Define λ = (1 − η)λ∗ + ηλ′ for some η ∈ (0, 1). Note that ‖λ − λ∗‖ = ‖η(λ′ − λ∗)‖ =

η‖(λ′ − λ∗)‖. Thus, we can choose η ∈ (0, 1) such that ‖λ− λ∗‖ = Dq, i.e., η = Dq
‖λ′−λ∗‖ .

Note that λ ∈ Rm+ because λ′ ∈ Rm+ and λ∗ ∈ Rm+ . Since the dual function q(·) is a

concave function, we have q(λ) ≥ (1 − η)q(λ∗) + ηq(λ′). Thus, q(λ∗) − q(λ) ≤ q(λ∗) −
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(
(1−η)q(λ∗)+ηq(λ′)

)
= η(q(λ∗)−q(λ′)) ≤ ηLqD2

q . This contradicts Assumption 2.3 that

q(λ∗)− q(λ) ≥ Lq‖λ− λ∗‖2 = LqD
2
q .

2. Assume not and there exists µ∗ 6= λ∗ such that µ∗ ∈ Rm+ and q(µ∗) = q(λ∗). By part 1 of

this lemma, ‖µ∗ − λ∗‖ ≤ Dq. Thus, we have

q(µ∗)
(a)
≤ q(λ∗)− Lq‖µ∗ − λ∗‖2

(b)
< q(λ∗)

where (a) follows from Assumption 2.3 and (b) follows from the assumption that µ∗ 6= λ∗.

This contradicts the assumption that q(µ∗) = q(λ∗).

Define

Tq = ‖λ(0)− λ∗‖2

2cLqD2
q

, (2.12)

where the subscript q denotes locally “quadratic”.

Lemma 2.8. Consider the strongly convex program (2.1)-(2.3) satisfying Assumptions 2.1-2.3.

If c ≤ σ
β2 in Algorithm 1.1, then ‖λ(t)− λ∗‖ ≤ Dq for all t ≥ Tq, where Tq is defined in (2.12).

Proof. By Lemma 2.6 and Lemma 2.7, if 1
2ct‖λ(0) − λ∗‖2 ≤ LqD

2
q , then ‖λ(t) − λ∗‖ ≤ Dq. It

can be checked that t ≥ ‖λ(0)−λ∗‖2

2cLqD2
q

implies that 1
2ct‖λ(0)− λ∗‖2 ≤ LqD2

q .

Lemma 2.9. Consider the strongly convex program (2.1)-(2.3) satisfying Assumptions 2.1-2.3.

If c ≤ σ
β2 in Algorithm 1.1, then

1. ‖λ(t)− λ∗‖ ≤ 1√
t

1√
2cLq
‖λ(0)− λ∗‖,∀t ≥ Tq, where Tq is defined in (2.12).

2. ‖λ(t)−λ∗‖ ≤
(√ 1

1+2cLq

)t−Tq‖λ(Tq)−λ∗‖ ≤
( 1√

1+2cLq

)t
Dq(1 + 2cLq)

Tq
2 , ∀t ≥ Tq , where

Tq is defined in (2.12).

Proof.

1. By Lemma 2.6, q(λ∗)− q(λ(t)) ≤ 1
2ct‖λ(0)−λ∗‖2,∀t ≥ 1. By Lemma 2.8 and Assumption

2.3, q(λ∗)−q(λ(t)) ≥ Lq‖λ(t)−λ∗‖2,∀t ≥ Tq. Thus, we have Lq‖λ(t)−λ∗‖2 ≤ 1
2ct‖λ(0)−

λ∗‖2,∀t ≥ Tq, which implies that ‖λ(t)− λ∗‖ ≤ 1√
t

1√
2cLq
‖λ(0)− λ∗‖,∀t ≥ Tq.
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2. By part 1, we know ‖λ(t) − λ∗‖ ≤ Dq,∀t ≥ Tq. The second part is essentially a local

version of Theorem 12 in [NNG15], which shows that the projected gradient method for set

constrained smooth convex optimization converge geometrically if the objective function

satisfies a quadratic growth condition. See Section 2.7.2 for the detailed proof.

Corollary 2.2. Consider the strongly convex program (2.1)-(2.3) satisfying Assumptions 2.1-2.3.

If c ≤ σ
β2 in Algorithm 1.1, then ‖λ(2t) − λ(t)‖ ≤ 2

( 1√
1+2cLq

)t
Dq(1 + 2cLq)

Tq
2 ,∀t ≥ Tq, where

Tq be defined in (2.12).

Proof.

‖λ(2t)− λ(t)‖ ≤‖λ(2t)− λ∗‖+ ‖λ(t)− λ∗‖
(a)
≤
( 1√

1 + 2cLq

)2t
Dq(1 + 2cLq)

Tq
2 +

( 1√
1 + 2cLq

)t
Dq(1 + 2cLq)

Tq
2

(b)
≤2
( 1√

1 + 2cLq

)t
Dq(1 + 2cLq)

Tq
2 ,

where (a) follows from part 2 in Lemma 2.9; and (b) follows from 1√
1+cLq

< 1.

Theorem 2.4. Consider the strongly convex program (2.1)-(2.3) satisfying Assumptions 2.1-2.3.

If c ≤ σ
β2 in Algorithm 1.1, then

f(x̃(2t)) ≤ f(x∗) + 1
t

( 1√
1 + 2cLq

)t
η,∀t ≥ Tq,

where ηq = 2D2
q(1+2cLq)Tq+2Dq(1+2cLq)

Tq
2
(√
‖λ(0)‖2+‖λ∗‖2+‖λ∗‖

)
c and Tq is defined in (2.12).

Proof. Fix t ≥ Tq. By Lemma 2.2, we have 1
c∆(τ) + f(x(τ)) ≤ f(x∗) for all τ ∈ {0, 1, . . .}.

Summing over τ ∈ {t, t+ 1, . . . , 2t− 1} yields 1
c

∑2t−1
τ=t ∆(τ) +

∑2t−1
τ=t f(x(τ)) ≤ tf(x∗). Dividing

by factor t yields

1
t

2t−1∑
τ=t

f(x(τ)) ≤ f(x∗) + L(t)− L(2t)
ct

(2.13)
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Thus, we have

f(x̃(2t))
(a)
≤ 1

t

2t−1∑
τ=t

f(x(τ))
(b)
≤ f(x∗) + L(t)− L(2t)

ct

= f(x∗) + ‖λ(t)‖2 − ‖λ(2t)‖2

2ct

= f(x∗) + ‖λ(t)− λ(2t) + λ(2t)‖2 − ‖λ(2t)‖2

2ct
(c)
≤ f(x∗) + ‖λ(t)− λ(2t)‖2 + 2‖λ(2t)‖‖λ(t)− λ(2t)‖

2ct

(d)
≤ f(x∗) +

(
2
( 1√

1+2cLq

)t
Dq(1 + 2cLq)

Tq
2

)2

2ct +
4
( 1√

1+2cLq

)t
Dq(1 + 2cLq)

Tq
2 ‖λ(2t)‖

2ct
(e)
≤ f(x∗) + 1

t

( 1√
1 + 2cLq

)t(2D2
q(1 + 2cLq)Tq

c
+ 2Dq(1 + 2cLq)

Tq
2 ‖λ(2t)‖

c

)
(f)= f(x∗) + 1

t

( 1√
1 + 2cLq

)t
ηq

where (a) follows from x̃(2t) = 1
t

∑2t−1
τ=t x(τ) and the convexity of f(x); (b) follows from (2.13);

(c) follows from the Cauchy-Schwarz inequality; (d) follows from Corollary 2.2; (e) follows from
1√

1+2cLq
< 1; and (f) follows from ‖λ(2t)‖ ≤

√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖ and the definition of

ηq.

Theorem 2.5. Consider the strongly convex program (2.1)-(2.3) satisfying Assumptions 2.1-2.3.

If c ≤ σ
β2 in Algorithm 1.1, then

gk(x̃(2t)) ≤ 2Dq(1 + 2cLq)
Tq
2

ct

( 1√
1 + 2cLq

)t
,∀k ∈ {1, 2, . . . ,m},∀t ≥ Tq,

where Tq is defined in (2.12).

Proof. Fix t ≥ Tq and k ∈ {1, 2, . . . ,m}. Thus, we have

gk(x̃(2t))
(a)
≤ 1

t

2t−1∑
τ=t

gk(x(τ))

(b)
≤ 1
ct

(
λk(2t)− λk(t)

)
≤ 1
ct
‖λ(2t)− λ(t)‖

(c)
≤ 2Dq(1 + 2cLq)

Tq
2

ct

( 1√
1 + 2cLq

)t
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where (a) follows from the convexity of gk(x); (b) follows from Lemma 2.3; and (c) follows from

Corollary 2.2.

The next theorem summarizes both Theorem 2.4 and Theorem 2.5.

Theorem 2.6. Consider the strongly convex program (2.1)-(2.3) satisfying Assumptions 2.1-2.3.

If c ≤ σ
β2 in Algorithm 1.1, then for all t ≥ Tq,

f(x̃(2t)) ≤ f(x∗) + 1
t

( 1√
1 + 2cLq

)t
ηq,∀t ≥ Tq,

gk(x̃(2t)) ≤ 2Dq(1 + 2cLq)
Tq
2

ct

( 1√
1 + 2cLq

)t
,∀k ∈ {1, 2, . . . ,m},∀t ≥ Tq,

where ηq = 2D2
q(1+2cLq)Tq+2Dq(1+2cLq)

Tq
2
(√
‖λ(0)‖2+‖λ∗‖2+‖λ∗‖

)
c and Tq is defined in (2.12). In

summary, if c ≤ σ
β2 in Algorithm 1.1, then x̃(t) ensures error decays like O

(( 1
1+2cLq

)t/2) and

provides an ε-approximate solution with convergence time O(log( 1
ε )).

2.3.3 Problems with Locally Strongly Concave Dual Functions

The following assumption is stronger than Assumptions 2.3 but can be easier to verify in

certain cases. For example, if the dual function of the convex program is available, Assumption

2.4 is easier to verify, e.g., by studying the Hessian of the dual function.

Assumption 2.4 (Locally Strongly Concave Dual Function). Let λ∗ be a Lagrange multiplier

vector defined in Assumption 2.2. There exists Dc > 0 and Lc > 0, where the subscript c denotes

locally strongly “concave”, such that the dual function q(λ) is strongly concave with modulus Lc

over {λ ∈ Rm+ : ‖λ− λ∗‖ ≤ Dc}.

The next lemma summarizes that Assumption 2.4 implies Assumption 2.3.

Lemma 2.10. If the strongly convex program (2.1)-(2.3) satisfies Assumption 2.4, then it also

satisfies Assumption 2.3 with Dq = Dc and Lq = Lc
2 .

Proof. Since q(·) is strongly concave and is maximized at λ∗, by Corollary 1.3, q(λ∗) ≥ q(λ) +
Lc
2 ‖λ− λ∗‖2 for all λ ∈ {λ ∈ Rm+ : ‖λ− λ∗‖ ≤ Dc}.
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Since Assumption 2.4 implies Assumption 2.3, by the results from the previous subsection,

x̃(t) from Algorithm 1.1 provides an ε-approximate solution with convergence time O(log( 1
ε )).

In this subsection, we show that if the problem (2.1)-(2.3) satisfies Assumption 2.4, then the

geometric error decay has a smaller contraction modulus.

The next lemma relates the smoothness of the dual function and Assumption 2.4.

Lemma 2.11. If function h is both smooth with modulus γ and strongly concave with modulus

Lc over set X , which is not a singleton, then Lc ≤ γ.

Proof. This is a basic fact in convex analysis. See Section 2.7.3 for the detailed proof.

For any problem (2.1)-(2.3) satisfying Assumptions 2.1-2.2 and 2.4, we define

Tc = ‖λ(0)− λ∗‖2

cLcD2
c

, (2.14)

where the subscript c denotes locally strongly “concave”.

Lemma 2.12. Cosider the strongly convex program (2.1)-(2.3) satisfying Assumptions 2.1-2.2

and 2.4. Let Dc and Lc be defined in Assumption 2.4. If c ≤ σ
β2 in Algorithm 1.1, then

1. ‖λ(t)− λ∗‖ ≤ Dc for all t ≥ Tc , where Tc is defined in (2.14).

2. ‖λ(t)− λ∗‖ ≤
(√

1− cLc
)t−Tc‖λ(Tc)− λ∗‖ ≤

(√
1− cLc

)t Dc
(
√

1−cLc)Tc
, ∀t ≥ Tc , where Tc

is defined in (2.14).

Proof.

1. By Lemma 2.10, q(·) is locally quadratic with Dq = Dc and Lq = Lc
2 . The remaining part

of the proof is identical to the proof of Lemma 2.8.

2. By part 1 of this lemma, λ(t) ∈ {λ ∈ Rm+ : ‖λ−λ∗‖ ≤ Dc},∀t ≥ Tc. That is, the dynamic

of λ(t), t ≥ Tc is the same as that in the projected gradient method with step size c to

solve2 maxλ∈{λ∈Rm+ :‖λ−λ∗‖≤Dc}
{
q(λ)

}
. Thus, the part is essentially a local version of the

convergence time result of the projected gradient method for set constrained smooth and

strongly convex optimization [Nes04]. See Section 2.7.4 for the detailed proof.

2Recall that the projected gradient method with constant step size when applied to set constrained smooth
and strongly convex optimization converges to the optimal solution at the rate O(κt) where κ is a parameter
depending on the step size, the smoothness modulus and the strong convexity modulus [Nes04].
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The next corollary follows from Part 2 of Lemma 2.12.

Corollary 2.3. Consider the strongly convex program (2.1)-(2.3) satisfying Assumptions 2.1-2.2

and 2.4. If c ≤ σ
β2 in Algorithm 1.1, then

‖λ(2t)− λ(t)‖ ≤
(√

1− cLc
)t 2Dc

(
√

1− cLc)Tc
,∀t ≥ Tc,

where Tc is defined in (2.14).

Proof.

‖λ(2t)− λ(t)‖

≤‖λ(2t)− λ∗‖+ ‖λ(t)− λ∗‖
(a)
≤
(√

1− cLc
)2t Dc

(
√

1− cLc)Tc
+
(√

1− cLc
)t Dc

(
√

1− cLc)Tc
(b)
≤
(√

1− cLc
)t 2Dc

(
√

1− cLc)Tc

where (a) follows from part 2 of Lemma 2.12 and (b) follows from the fact that
√

1− cLc < 1,

which is implied by c ≤ 1
γ and Lc ≤ γ.

Theorem 2.7. Consider the strongly convex program (2.1)-(2.3) satisfying Assumptions 2.1-2.2

and 2.4. If c ≤ σ
β2 in Algorithm 1.1, then

f(x̃(2t)) ≤ f(x∗) + 1
t

(√
1− cLc

)t
ηc, ∀t ≥ Tc,

where ηc = 2D2
c

(
√

1−cLc)2Tc + 2Dc
(√
‖λ(0)‖2+‖λ∗‖2+‖λ∗‖

)
(
√

1−cLc)Tc
is a fixed constant and Tc is defined in (2.14).

Proof. Fix t ≥ Tc. By Lemma 2.2, we have 1
c∆(τ) + f(x(τ)) ≤ f(x∗) for all τ ∈ {0, 1, . . .}.
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Summing over τ ∈ {t, t+ 1, . . . , 2t− 1} we have:

1
c

2t−1∑
τ=t

∆(τ) +
2t−1∑
τ=t

f(x(τ)) ≤ tf(x∗)

⇒ 1
c

[L(2t)− L(t)] +
2t−1∑
τ=t

f(x(τ)) ≤ tf(x∗)

⇒ 1
t

2t−1∑
τ=t

f(x(τ)) ≤ f(x∗) + L(t)− L(2t)
ct

(2.15)

Thus, we have

f(x̃(2t))
(a)
≤ 1

t

2t−1∑
τ=t

f(x(τ))
(b)
≤ f(x∗) + L(t)− L(2t)

ct

=f(x∗) + ‖λ(t)‖2 − ‖λ(2t)‖2

2ct

=f(x∗) + ‖λ(t)− λ(2t) + λ(2t)‖2 − ‖λ(2t)‖2

2ct

=f(x∗) + ‖λ(t)− λ(2t)‖2 + 2[λ(2t)]T[λ(t)− λ(2t)]
2ct

(c)
≤f(x∗) + ‖λ(t)− λ(2t)‖2 + 2‖λ(2t)‖‖λ(t)− λ(2t)‖

2ct

(d)
≤f(x∗) +

((√
1− cLc

)t
2Dc

(
√

1−cLc)Tc

)2

2ct +
2
((√

1− cLc
)t 2Dc

(
√

1−cLc)Tc

)
‖λ(2t)‖

2ct

(e)
≤f(x∗) +

(√
1− cLc

)t( 2D2
c

(
√

1−cLc)2Tc + 2Dc‖λ(2t)‖
(
√

1−cLc)Tc

)
t

(f)= f(x∗) + 1
t

(√
1− cLc

)t
ηc

where (a) follows from the fact that x̃(2t) = 1
t

∑2t−1
τ=t x(τ) and the convexity of f(x); (b) follows

from (2.15); (c) follows from the Cauchy-Schwarz inequality; (d) is true because

‖λ(2t)− λ(t)‖ ≤
(√

1− cLc
)t 2Dc

(
√

1− cLc)Tc
,∀t ≥ Tc

by Corollary 2.3; (e) follows from the fact that
√

1− cLc < 1; and (f) follows from the fact that

‖λ(2t)‖ ≤
√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖ by Lemma 2.4 and the definition of ηc.

Theorem 2.8. Consider the strongly convex program (2.1)-(2.3) satisfying Assumptions 2.1-2.2
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and 2.4. If c ≤ σ
β2 in Algorithm 1.1, then

gk(x̃(2t)) ≤ 1
t

(√
1− cLc

)t 2Dc

c(
√

1− cLc)Tc
,∀k ∈ {1, 2, . . . ,m},∀t ≥ Tc

where Tc is defined in (2.14).

Proof. Fix t ≥ Tc and k ∈ {1, 2, . . . ,m}. Thus, we have

gk(x̃(2t))
(a)
≤ 1

t

2t−1∑
τ=t

gk(x(τ))

(b)
≤ 1
ct

[λk(2t)− λk(t)]

≤ 1
ct
‖λ(2t)− λ(t)‖

(c)
≤ 1

t

(√
1− cLc

)t 2Dc

c(
√

1− cLc)Tc

where (a) follows from the convexity of gk(·); (b) follows from Lemma 2.3; and (c) follows from

Corollary 2.3.

The next theorem summarizes both Theorem 2.7 and Theorem 2.8.

Theorem 2.9. Consider the strongly convex program (2.1)-(2.3) satisfying Assumptions 2.1-2.2

and 2.4. If c ≤ σ
β2 in Algorithm 1.1, then for all t ≥ Tc,

f(x̃(2t)) ≤ f(x∗) + 1
t

(√
1− cLc

)t
ηc,

gk(x̃(2t)) ≤ 1
t

(√
1− cLc

)t 2Dc

c(
√

1− cLc)Tc
,∀k ∈ {1, 2, . . . ,m},

where ηc = 2D2
c

(
√

1−cLc)2Tc + 2Dc
(√
‖λ(0)‖2+‖λ∗‖2+‖λ∗‖

)
(
√

1−cLc)Tc
is a fixed constant and Tc is defined in (2.14).

In summary, if c ≤ σ
β2 in Algorithm 1.1, then x̃(t) ensures error decays like O

( 1
t (1 − cLc)

t/2)
and provides an ε-approximate solution with convergence time O(log( 1

ε )).

Under Assumptions 2.1-2.2 and 2.4, Theorem 2.9 shows that if c ≤ σ
β2 , then x̃(t) provides

an ε-approximate solution with convergence time O(log( 1
ε )). Since Lq = Lc

2 by Lemma 2.10 and

note that
√

1− cLc ≤ 1√
1+2cLq

, the geometric contraction modulus shown in Theorem 2.9 under

Assumption 2.4 is smaller than the geometric contraction modulus shown in Theorem 2.6 under

Assumption 2.3.
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2.3.4 Discussion

Practical Implementation

Assumptions 2.3 and 2.4 in general are difficult to verify. However, we note that to ensure x̃(t)

provides the better O(log( 1
ε )) convergence time, we only require c ≤ σ

β2 , which is independent of

the parameters in Assumptions 2.3 or 2.4. Namely, in practice, we can blindly apply Algorithm

1.1 to the problem (2.1)-(2.3) with no need to verify Assumption 2.3 or 2.4. If the problem

(2.1)-(2.3) happens to satisfy Assumptions 2.3 or 2.4, then x̃(t) enjoys the faster convergence

time O(log( 1
ε )). If not, then x̃(t) or x(t) at least have convergence time O( 1

ε ).

Local Assumption and Local Geometric Convergence

Since Assumption 2.3 only requires the “quadratic” property to be satisfied in a local radius

Dq around λ∗, the error of Algorithm 1.1 starts to decay like O
(

1
t

( 1√
1+2cLq

)t) only after λ(t)

arrives at the Dq local radius after Tq iterations, where Tq is independent of the approximation

requirement ε and hence is order O(1). Thus, Algorithm 1.1 provides an ε-approximate solution

with convergence time O(log( 1
ε ). However, it is possible that Tq is relatively large if Dq is small.

In fact, Tq > 0 because Assumption 2.3 only requires the dual function to have the “quadratic”

property in a local radius. Thus, the theory developed in this section can deal with a large class

of problems. On the other hand, if the dual function has the “quadratic” property globally, i.e.,

for all λ ≥ 0, then Tq = 0 and the error of Algorithm 1.1 decays like O
(

1
t

( 1√
1+2cLq

)t)
,∀t ≥ 1.

A similar tradeoff holds with respect to Assumption 2.4.
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2.4 Applications

2.4.1 Strongly Convex Programs Satisfying Non-Degenerate Constraint

Qualifications

Theorem 2.10. Consider the following strongly convex program:

min f(x) (2.16)

s.t. gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m} (2.17)

x ∈ Rn (2.18)

where f(x) is a second-order continuously differentiable and strongly convex function; gk(x),∀k ∈

{1, 2, . . . ,m} are Lipschitz continuous, second-order continuously differentiable and convex func-

tions. Let x∗ be the unique solution to this strongly convex program.

1. Let K ⊆ {1, 2, . . . ,m} be the set of active constraints, i.e., gk(x∗) = 0,∀k ∈ K, and

denote the vector composed by gk(x), k ∈ K as gK. If g(x) has a bounded Jacobian and

rank(∇xgK(x∗)T) = |K|, then Assumptions 2.1-2.3 hold for this problem.

2. If g(x) has a bounded Jacobian and rank(∇xg(x∗)T) = m, then Assumptions 2.1-2.4 hold

for this problem.

Proof. See Section 2.7.5.

Corollary 2.4. Consider the following strongly convex program with linear inequality constraints:

min f(x) (2.19)

s.t. Ax ≤ b (2.20)

where f(x) is second-order continuously differentiable and strongly convex function; and A is an

m× n matrix.

1. Let x∗ be the optimal solution. Assume Ax∗ ≤ b has l rows that hold with equality, and let

A′ be the l× n submatrix of A corresponding to these “active” rows. If rank(A′) = l, then

Assumptions 2.1-2.3 hold for this problem.
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2. If rank(A) = m, then Assumptions 2.1-2.4 hold for this problem with Dc =∞.

2.4.2 Network Utility Maximization with Independent Link Capacity

Constraints

Consider a network with l links and n flow streams. Let {b1, b2, . . . , bl} be the capacities of

each link and {x1, x2, . . . , xn} be the rates of each flow stream. Let N (k) ⊆ {1, 2, . . . , n}, 1 ≤

k ≤ l be the set of flow streams that use link k. This problem is to maximize the utility function∑n
i=1 wi log(xi) with wi > 0,∀1 ≤ i ≤ n, which represents a measure of network fairness [Kel97],

subject to the capacity constraint of each link. This problem is known as the network utility

maximization (NUM) problem and can be formulated as follows3:

min
n∑
i=1
−wi log(xi)

s.t.
∑

i∈N (k)

xi ≤ bk,∀k ∈ {1, 2, . . . , l}

xi ≥ 0,∀i ∈ {1, 2, . . . , n}

Typically, many link capacity constraints in the above formulation are redundant, e.g., ifN (k1) =

N (k2) and bk1 ≤ bk2 , then the capacity constraint of the k2-th link is redundant. Assume that

redundant link capacity constraints are eliminated and the remaining links are reindexed. The

above formulation can be rewritten as follows:

min
n∑
i=1
−wi log(xi) (2.21)

s.t. Ax ≤ b (2.22)

x ≥ 0 (2.23)

where wi > 0,∀1 ≤ i ≤ n; A = [a1, · · · ,an] is a 0-1 matrix of size m× n such that aij = 1 if and

only if flow xj uses link i; and b > 0.

Note that problem (2.21)-(2.23) satisfies Assumptions 2.1 and 2.2. By the results from Section

3In this paper, the NUM problem is always formulated as a minimization problem. Without loss of optimality,
we define log(0) = −∞ and hence log(·) is defined over R+. Or alternatively, we can replace the non-negative
rate constraints with xi ≥ xmin

i , ∀i ∈ {1, 2, . . . , n} where xmin
i , ∀i ∈ {1, 2, . . . , n} are sufficiently small positive

numbers.
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2.2, x(t) has an O( 1
ε ) convergence time for this problem. The next theorem provides sufficient

conditions such that x̃(t) can have better convergence time O(log( 1
ε )) .

Theorem 2.11. The network utility maximization problem (2.21)-(2.23) has the following prop-

erties:

1. Let bmax = max1≤i≤n bi and xmax > 0 such that xmax
i > bmax,∀i ∈ {1, . . . , n}. The network

utility maximization problem (2.21)-(2.23) is equivalent to the following problem

min
n∑
i=1
−wi log(xi) (2.24)

s.t. Ax ≤ b (2.25)

0 ≤ x ≤ xmax (2.26)

2. Let x∗ be the optimal solution. Assume Ax∗ ≤ b has m′ rows that hold with equality, and

let A′ be the m′×n submatrix of A corresponding to these “active” rows. If rank(A′) = m′,

then Assumptions 2.1-2.3 hold for this problem.

3. If rank(A) = m, then Assumptions 2.1-2.4 hold for this problem.

Proof. See Section 2.7.6.

Remark 2.4. Theorem 2.11 and Corollary 2.4 complement each other. If rank(A) = m, we

can apply Theorem 2.11 to problem (2.21)-(2.23). However, to apply Corollary 2.4, we require

rank(B) = m+ n, where B =

 A

In

. This is always false since the size of A′ is (m+ n)× n.

Thus, Corollary 2.4 can not be applied to problem (2.21)-(2.23) even if rank(A) = m. On the

other hand, Corollary 2.4 considers general utilities while Theorem 2.11 is restricted to the utility∑n
i=1−wi log(xi).

Now we give an example of network utility maximization such that Assumption 2.3 is not

satisfied. Consider the problem (2.21)-(2.23) with w = [1, 1, 1, 1]T,

A = [a1,a2,a3,a4] =



1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1
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and b = [3, 7, 2, 8]T. Note that rank(A) = 3 < m; and µTA = [0, 0, 0, 0] and µTb = 0 if

µ = [1, 1,−1,−1]T.

It can be checked that the optimal solution to this NUM problem is [x∗1, x∗2, x∗3, x∗4]T =

[0.8553, 2.1447, 1.1447, 5.8553]T. Note that all capacity constraints are tight and [λ∗1, λ∗2, λ∗3, λ∗4]T =

[0.3858, 0.0903, 0.7833, 0.0805]T is the optimal dual variable that attains strong duality.

Next, we show that q(λ) is not locally quadratic at λ = λ∗ by contradiction. Assume that

there exist Dq > 0 and Lq > 0 such that q(λ) ≤ q(λ∗) − Lq‖λ − λ∗‖2 for any λ ∈ Rm+ and

‖λ − λ∗‖ ≤ Dq. Put λ = λ∗ + tµ with |t| sufficiently small such that λ∗ + tµ ∈ Rm+ and

‖λ∗ + tµ− λ∗‖ < Dq. Note that by (2.32) and (2.33), we have

µT∇λq(λ∗) =
n∑
i=1

µTai
[λ∗]Tai

+ µTb = 0, (2.27)

µT∇2
λq(λ

∗)µ = 0. (2.28)

Thus, we have

q(λ∗ + tµ)
(a)= q(λ∗) + tµT∇λq̃(λ∗) + t2µT∇2

λq̃(λ
∗)µ + o(t2‖µ‖2)

(b)=q(λ∗) + o(t2‖µ‖2)

where (a) follows from the second-order Taylor’s expansion and (b) follows from equations (2.27)

and (2.28). By definition of o(t2‖µ‖2), there exists δ > 0 such that |o(t
2‖µ‖2)|
‖tµ‖2 < Lq,∀t ∈ (−δ, δ),

i.e., o(t2‖µ‖2) > −Lq‖tµ‖2,∀t ∈ (−δ, δ). This implies q(λ∗ + tµ) = q(λ∗) + o(t2‖µ‖2) >

q(λ∗)− Lq‖tµ‖2. A contradiction! Thus, q(λ) is not locally quadratic at λ = λ∗.

In view of the above example, the sufficient condition in Part 2 of Theorem 2.11 for Assump-

tion 2.3 is sharp.

2.5 Numerical Experiment

2.5.1 Network Utility Maximization

Consider the simple NUM problem described in Figure 2.1. Let x1, x2 and x3 be the data rates

of stream 1, 2 and 3 and let the network utility be minimizing − log(x1)− 2 log(x2)− 3 log(x3).
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It can be checked that capacity constraints other than x1 + x2 + x3 ≤ 10, x1 + x2 ≤ 8, and

x2 + x3 ≤ 8 are redundant. By Theorem 2.11, the NUM problem can be formulated as follows:

min − log(x1)− 2 log(x2)− 3 log(x3)

s.t. Ax ≤ b

0 ≤ x ≤ xmax

where A =


1 1 1

1 1 0

0 1 1

, b =


10

8

8

 and xmax =


11

11

11

. The optimal solution to this NUM

problem is x∗1 = 2, x∗2 = 3.2, x∗3 = 4.8 and the optimal value is −7.7253. Note that the second

capacity constraint x1 + x2 ≤ 8 is loose and the other two capacity constraints are tight.

Since the objective function is decomposable, the dual subgradient method can yield a dis-

tributed solution. This is why the dual subgradient method is widely used to solve NUM problems

[LL99]. It can be checked that the objective function is strongly convex with modulus σ = 2
121

on X = {0 ≤ x ≤ xmax} and g is Lipschitz continuous with modulus β ≤
√

6 on X . Figure

2.2 verifies the convergence of x(t) with c = σ
β2 = 1/363 and λ1(0) = λ2(0) = λ3(0) = 0. Since

λ1(0) = λ2(0) = λ3(0) = 0, by Theorem 2.1, we know f(x(t)) ≤ f(x∗),∀t > 0, which is also

verified in Figure 2.2. To verify the convergence time of constraint violations, Figure 2.3 plots

g1(x(t)), g2(x(t)), g3(x(t)) and 1/t with both x-axis and y-axis in log10 scales. As observed in

Figure 2.3, the curves of g1(x(t)) and g3(x(t)) are parallel to the curve of 1/t for large t. Note

that g1(x(t)) ≤ 0 is satisfied early because this constraint is loose. Figure 2.3 verifies the conver-

gence time of x(t) in Theorem 2.3 by showing that error decays like O( 1
t ) and suggests that the

convergence time is actually Θ( 1
ε ) for this NUM problem.

Note that rank(A) = 3. By Theorem 2.11, this NUM problem satisfies Assumptions 2.1-2.4.

Apply Algorithm 1.1 with c = σ
β2 = 1/363 and λ1(0) = λ2(0) = λ3(0) = 0 to this NUM problem.

Figure 2.4 verifies the convergence of the objective and constraint functions for x̃(t). Figure 2.5

verifies the results in Theorem 2.11 that the convergence time of x̃(t) is O(log( 1
ε )) by showing

that error decays like O( 1
t 0.998t). If we compare Figure 2.5 and Figure 2.3, we can observe that

x̃(t) converges much faster than x(t).
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Figure 2.1: A simple NUM problem with 3 flow streams
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Figure 2.5: Convergence time of x̃(t) from Algorithm 1.1 for a NUM problem.

2.5.2 Linear Constrained Quadratic Program

Consider the following quadratic program (QP)

min xTPx + cTx

s.t. Ax ≤ b

where P =

 1 2

2 5

, c = [1, 1]T, A =

 1 1

0 1

 and b = [−2,−1]T. The optimal solution to

this quadratic program is x∗ = [−1,−1]T and the optimal value is 8.

If P is a diagonal matrix, the dual subgradient method can yield a distributed solution. It

can be checked that the objective function is strongly convex with modulus σ = 0.34 and each

row of the linear inequality constraint is Lipschitz continuous with modulus ζ =
√

2. Figure 2.6

verifies the convergence of x(t) for the objective and constraint functions yielded by Algorithm

1.1 with c = σ
2ζ2 = 0.34/4, λ1(0) = 0 and λ2(0) = 0. Figure 2.7 verifies the convergence time
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of x(t) proven in Theorem 2.3 by showing that error decays like O( 1
t ) and suggests that the

convergence time is actually Θ( 1
ε ) for this quadratic program.
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Figure 2.6: Convergence of x(t) from Algorithm 1.1for a quadratic program.

Note that rank(A) = 2. By Corollary 2.4 this quadratic program satisfies Assumptions 2.1-

2.4. Apply Algorithm 1.1 with c = σ
2ζ2 = 0.34/4 and λ1(0) = λ2(0) = λ3(0) = 0 to this quadratic

program. Figure 2.8 verifies the convergence of the objective and constraint functions. Figure

2.9 verifies the results in Corollary 2.4 that the convergence time of x̃(t) is O(log( 1
ε )) by showing

that error decays like O( 1
t 0.9935t). If we compare Figure 2.9 and Figure 2.7, we can observe that

Algorithm x̃(t) converges much faster than x(t).

2.5.3 Large Scale Quadratic Program

Consider quadratic program minx∈RN {xTQx + dTx : Ax ≤ b} where Q,A ∈ RN×N and

d,b ∈ RN . Q = UΣUH ∈ RN×N where U is the orthonormal basis for a random N × N

zero mean and unit variance normal matrix and Σ is the diagonal matrix with entries from

uniform [1, 3]. A is a random N ×N zero mean and unit variance normal matrix. d and b are

random vectors with entries from uniform [0, 1]. In a PC with a 4 core 2.7GHz Intel i7 CPU
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Figure 2.9: Convergence time of x̃(t) from Algorithm 1.1 for a quadratic program.

and 16GB Memory, we run both Algorithm 1.1 and quadprog from Matlab, which by default is

using the interior point method, over randomly generated large scale quadratic programs with

N = 400, 600, 800, 1000 and 1200. For different problem size N , the running time is the average

over 100 random quadratic programs and is plotted in Figure 2.10. To solve these large scale

quadratic programs, the dual subgradient method has updates x(t) = − 1
2Q−1[λT(t)A + d] and

λ(t+1) = max{λ(t)+c[Ax(t)−b],0} at each iteration t. Note that we only need to compute the

inverse of large matrix Q once and then use it during all iterations. In our numerical simulations,

Algorithm 1.1 is terminated when the error (both objective violations and constraint violations)

of x̃(t) is less than 1e-5.

2.6 Chapter Summary

This chapter studies the convergence time of the dual subgradient method strongly convex

programs. This chapter shows that the convergence time of the dual subgradient method with

simple running averages for general strongly convex programs is O( 1
ε ). This chapter also considers
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Figure 2.10: The average running time for large scale quadratic programs.

a variation of the primal averages, called the sliding running averages, and shows that if the dual

function is locally quadratic then the convergence time is O(log( 1
ε )).

2.7 Supplement to this Chapter

2.7.1 Proof of Lemma 2.6

Note that λk(t+ 1) = max{λk(t) + cgk(x(t)), 0},∀k ∈ {1, 2, . . . ,m} can be interpreted as the

λ(t + 1) = PRm+
[
λ(t) + cg(x(t))

]
where PRm+ [·] is the projection onto Rm+ . As observed before,

the dynamic of λ(t) can be interpreted as the projected gradient method with step size c to solve

max
λ∈Rm+

{q(λ)}. Thus, the proof given below is essentially the same as the convergence time proof

of the projected gradient method for set constrained smooth optimization in [Nes04].

Fact 2.1. λ(t+ 1) = argmaxλ∈Rm+

{
q(λ(t)) + [g(x(t))]T[λ− λ(t)]− 1

2c‖λ− λ(t)‖2
}
,∀t ≥ 0.
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Proof. Fix t ≥ 0,

λ(t+ 1) =PRm+ {λ(t) + cg(x(t))}

= argmin
λ∈Rm+

{
‖λ− [λ(t) + cg(x(t))]‖2

}
= argmin

λ∈Rm+

{
c2‖g(x(t))‖2 − 2c[g(x(t))]T[λ− λ(t)] + ‖λ− λ(t)‖2

}
(a)= argmin

λ∈Rm+

{
−q(λ(t))− [g(x(t))]T[λ− λ(t)] + 1

2c‖λ− λ(t)‖2
}

= argmax
λ∈Rm+

{
q(λ(t)) + [g(x(t))]T[λ− λ(t)]− 1

2c‖λ− λ(t)‖2
}

where (a) follows because the minimizer is unchanged when we remove constant term c2‖g(x(t))‖2,

divide by factor 2c, and add constant term −q(λ(t)) in the objective function.

Recall that q(λ) is smooth with modulus γ = β2

σ by Lemma 2.5.

Fact 2.2. If c ≤ 1
γ = σ

β2 , then q(λ(t+ 1)) ≥ q(λ(t)),∀t ≥ 0.

Proof. Fix t ≥ 0,

q(λ(t+ 1))
(a)
≥ q(λ(t)) + [g(x(t))]T[λ(t+ 1)− λ(t)]− γ

2 ‖λ(t+ 1)− λ(t)‖2

(b)
≥q(λ(t)) + [g(x(t))]T[λ(t+ 1)− λ(t)]− 1

2c‖λ(t+ 1)− λ(t)‖2

(c)
≥q(λ(t)) + [g(x(t))]T[λ(t)− λ(t)]− 1

2c‖λ(t)− λ(t)‖2

=q(λ(t))

where (a) follows from Lemma 1.1 and the fact that ∇λq(λ(t)) = g(x(t)); (b) follows from c ≤ 1
γ ;

and (c) follows form Fact 2.1.

Fact 2.3. [g(x(t))]T[λ(t+ 1)− λ∗] ≥ 1
c [λ(t+ 1)− λ(t)]T[λ(t+ 1)− λ∗],∀t ≥ 0

Proof. Fix t ≥ 0. By the projection theorem (Proposition B.11(b) in [Ber99]), we have
[
λ(t +

1) −
(
λ(t) + cg(x(t))

)]T[λ(t + 1) − λ∗] ≤ 0. Thus, [g(x(t))]T[λ(t + 1) − λ∗] ≥ 1
c [λ(t + 1) −

λ(t)]T[λ(t+ 1)− λ∗].

Fact 2.4. If c ≤ 1
γ = σ

β2 , then q(λ∗)− q(λ(t+ 1)) ≤ 1
2c‖λ(t)−λ∗‖2− 1

2c‖λ(t+ 1)−λ∗‖2,∀t ≥ 0.
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Proof. Fix t ≥ 0,

q(λ(t+ 1))
(a)
≥ q(λ(t)) + [g(x(t))]T[λ(t+ 1)− λ(t)]− γ

2 ‖λ(t+ 1)− λ(t)‖2

=q(λ(t)) + [g(x(t))]T[λ(t+ 1)− λ∗ + λ∗ − λ(t)]− γ

2 ‖λ(t+ 1)− λ(t)‖2

(b)
≥q(λ(t)) + [g(x(t))]T[λ∗ − λ(t)]− γ

2 ‖λ(t+ 1)− λ(t)‖2 + 1
c

[λ(t+ 1)− λ(t)]T[λ(t+ 1)− λ∗]
(c)
≥q(λ(t)) + [g(x(t))]T[λ∗ − λ(t)]− γ

2 ‖λ(t+ 1)− λ(t)‖2 + 1
2c‖λ(t+ 1)− λ(t)‖2

+ 1
2c‖λ(t+ 1)− λ∗‖2 − 1

2c‖λ(t)− λ∗‖2

(d)
≥q(λ(t)) + [g(x(t))]T[λ∗ − λ(t)] + 1

2c‖λ(t+ 1)− λ∗‖2 − 1
2c‖λ(t)− λ∗‖2

(e)
≥q(λ∗) + 1

2c‖λ(t+ 1)− λ∗‖2 − 1
2c‖λ(t)− λ∗‖2

where (a) follows from Lemma 1.1 and the fact that ∇λq(λ(t)) = g(x(t)); (b) follows from Fact

2.3; (c) follows from the identity uTv = 1
2‖u‖

2 + 1
2‖v‖

2 − 1
2‖u − v‖2,∀u,v ∈ Rm; (d) follows

from c ≤ 1
γ ; and (e) follows from the concavity of q(·).

Rearranging terms yields the desired result.

Fix c ≤ 1
γ and t > 0. By Fact 2.4, we have q(λ∗)− q(λ(τ + 1)) ≤ 1

2c‖λ(τ)−λ∗‖2− 1
2c‖λ(τ +

1)− λ∗‖2,∀τ ∈ {0, 1, . . . , t− 1}. Summing over τ and dividing by fact t yields

1
t

t−1∑
τ=0

[
q(λ∗)− q(λ(τ + 1))

]
≤ 1

2ct [‖λ(0)− λ∗‖2 − ‖λ(t)− λ∗‖2]

≤ 1
2ct‖λ(0)− λ∗‖2

Note that q(λ∗) − q(λ(τ + 1)),∀τ ∈ {0, 1, . . . , t − 1} is a decreasing sequence by Fact 2.2.

Thus, we have

q(λ∗)− q(λ(t) ≤ 1
t

t−1∑
τ=0

[
q(λ∗)− q(λ(τ + 1))

]
≤ 1

2ct‖λ(0)− λ∗‖2.
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2.7.2 Proof of Part 2 of Lemma 2.9

This part is essentially a local version of Theorem 12 in [NNG15], which shows that the

projected gradient method for set constrained smooth convex optimization converge geometrically

if the objective function satisfies a quadratic growth condition.

In this subsection, we provide a simple proof that directly follows from Fact 2.4 and Assump-

tion 2.3. By Fact 2.4, we have

q(λ∗)− q(λ(t+ 1)) ≤ 1
2c‖λ(t)− λ∗‖2 − 1

2c‖λ(t+ 1)− λ∗‖2,∀t ≥ 0. (2.29)

By part 1, we know ‖λ(t)− λ∗‖ ≤ Dq,∀t ≥ Tq. By Assumption 2.3, we have

q(λ∗)− q(λ(t+ 1)) ≥ Lq‖λ(t+ 1)− λ∗‖2,∀t ≥ Tq. (2.30)

Combining (2.29) and (2.30) yields

(Lq + 1
2c )‖λ(t+ 1)− λ∗‖2 ≤ 1

2c‖λ(t)− λ∗‖2,∀t ≥ Tq.

This can be written as

‖λ(t+ 1)− λ∗‖ ≤

√
1

1 + 2cLq
‖λ(t)− λ∗‖,∀t ≥ Tq

Thus, this part follows by induction.

2.7.3 Proof of Lemma 2.11

Define h̃(x) = −h(x). Then h̃ is smooth with modulus γ and strongly convex with modulus

Lc over the set X . By definition of smooth functions, h must be differentiable over set X . By

Lemma 1.2, we have

h̃(y) ≥ h̃(x) + [∇h̃(x)]T(y− x) + Lc
2 ‖y− x‖2,∀x,y ∈ X
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By Lemma 1.1,

h̃(y) ≤ h̃(x) + [∇h̃(x)]T(y− x) + γ

2 ‖y− x‖2,∀x,y ∈ X

Since X is not a singleton, we can choose distinct x,y ∈ X . Combining the above two inequalities

yields Lc ≤ γ.

2.7.4 Proof of Part 2 of Lemma 2.12

By the first part of this lemma, λ(t) ∈ {λ ∈ Rm+ : ‖λ − λ∗‖ ≤ Dc},∀t ≥ Tc. The remaining

part of the proof is essentially a local version of the convergence time proof of the projected

gradient method for set constrained smooth and strongly convex optimization [Nes04].

Recall that q(λ) is smooth with modulus γ = β2

σ by Lemma 2.5. The next fact is an enhance-

ment of Fact 2.4 using the locally strong concavity of the dual function.

Fact 2.5. If c ≤ 1
γ = σ

β2 , then q(λ∗)−q(λ(t+1)) ≤ ( 1
2c−

Lc
2 )‖λ(t)−λ∗‖2− 1

2c‖λ(t+1)−λ∗‖2,∀t ≥

Tc.

Proof. Fix t ≥ Tc,

q(λ(t+ 1))
(a)
≥ q(λ(t)) + [g(x(t))]T[λ(t+ 1)− λ(t)]− γ

2 ‖λ(t+ 1)− λ(t)‖2

=q(λ(t)) + [g(x(t))]T[λ(t+ 1)− λ∗ + λ∗ − λ(t)]− γ

2 ‖λ(t+ 1)− λ(t)‖2

(b)
≥q(λ(t)) + [g(x(t))]T[λ∗ − λ(t)]− γ

2 ‖λ(t+ 1)− λ(t)‖2 + 1
c

[λ(t+ 1)− λ(t)]T[λ(t+ 1)− λ∗]
(c)
≥q(λ(t)) + [g(x(t))]T[λ∗ − λ(t)]− γ

2 ‖λ(t+ 1)− λ(t)‖2 + 1
2c‖λ(t+ 1)− λ(t)‖2

+ 1
2c‖λ(t+ 1)− λ∗‖2 − 1

2c‖λ(t)− λ∗‖2

(d)
≥q(λ(t)) + [g(x(t))]T[λ∗ − λ(t)] + 1

2c‖λ(t+ 1)− λ∗‖2 − 1
2c‖λ(t)− λ∗‖2

(e)
≥q(λ∗) + 1

2c‖λ(t+ 1)− λ∗‖2 + (Lc2 −
1
2c )‖λ(t)− λ∗‖2

where (a) follows from Lemma 1.1 and the fact that ∇λq(λ(t)) = g(x(t)); (b) follows from

Fact 2.3; (c) follows from the identity uTv = 1
2‖u‖

2 + 1
2‖v‖

2 − 1
2‖u − v‖2,∀u,v ∈ Rm; (d)

follows from c ≤ 1
γ ; and (e) follows from the fact that q(·) is strongly concave over the set
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{λ ∈ Rm+ : ‖λ − λ∗‖ ≤ Dc} such that q(λ∗) ≤ q(λ(t)) + [g(x(t))]T[λ∗ − λ(t)] − Lc
2 ‖λ

∗ − λ(t)‖2

by Lemma 1.24.

Rearranging terms yields the desired inequality.

Note that q(λ∗)− q(λ(t+ 1)) ≥ 0,∀t > 0. Combining with Fact 2.5 yields ( 1
2c −

Lc
2 )‖λ(t)−

λ∗‖2 − 1
2c‖λ(t+ 1)− λ∗‖2 ≥ 0,∀t ≥ Tc. Recall that c ≤ 1

γ implies that c ≤ 1
Lc

by Lemma 2.11.

Thus, we have

‖λ(t+ 1)− λ∗‖ ≤
√

1− cLc‖λ(t)− λ∗‖,∀t ≥ Tc

By induction, we have

‖λ(t)− λ∗‖ ≤
(√

1− cLc
)t−Tc‖λ(Tc)− λ∗‖,∀t ≥ Tc

2.7.5 Proof of Theorem 2.10

Lemma 2.13. Let q(λ) : Rm+ → R be a concave function and q(λ) be maximized at λ = λ∗ ≥ 0.

Suppose the following conditions are satisfied:

1. Suppose ∇λq(λ∗) = d ≤ 0 and λ∗kdk = 0,∀k ∈ {1, . . . ,m}. Denote K = {k ∈ {1, . . . ,m} :

dk = 0} and l = |K|.

2. Suppose ∇2
λq(λ

∗) = UΣUT where Σ ≺ 0 is an n× n negative definite matrix and U is an

m× n matrix. Let U′ be an l× n submatrix of U and be composed by rows with indices in

K. Suppose that rank(U′) = l.

Then, there exists Dq > 0 and Lq > 0 such that q(λ) ≤ q(λ∗) − Lq‖λ − λ∗‖2 for any λ ∈ Rm+

and ‖λ− λ∗‖ ≤ Dq.

Proof. Without loss of generality, assume that K = {1, . . . , l}. Denote U =

 U′

U′′

 where

U′′ is the (m − l) × n matrix composed by (l + 1)-th to m-th rows of U. Since d ≤ 0, let

δ = min{l+1≤k≤m}{|dk|} such that dk ≤ −δ, ∀k ∈ {l + 1, . . . ,m}. For each λ, we define µ via

4Note that the dual function q(λ) is differentiable and has gradient∇λq(λ(t)) = g(x(t)) by the strong convexity
of f(x) and Proposition B.25 in [Ber99]. Applying Lemma 1.2 to q̃(λ) = −q(λ), which has gradient ∇λq̃(λ(t)) =
−g(x(t)) and is strongly convex over the set {λ ∈ Rm+ : ‖λ− λ∗‖ ≤ Dc}, yields q(λ∗) ≤ q(λ(t)) + [g(x(t))]T[λ∗ −
λ(t)]− Lc

2 ‖λ
∗ − λ(t)‖2.
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µk = λk − λ∗k,∀k ∈ {1, . . . , l}, µk = 0,∀k ∈ {l + 1, . . . ,m} and ν via νk = 0,∀k ∈ {1, . . . , l}, νk =

λk − λ∗k,∀k ∈ {l + 1, . . . ,m} such that λ − λ∗ = µ + ν and ‖λ − λ∗‖2 = ‖µ‖2 + ‖ν‖2. Define

l-dimension vector µ′ = [µ1, . . . , µl]. Note that ‖µ′‖ = ‖µ‖. By the first condition, dk 6= 0,∀k ∈

{l + 1, . . . ,m} implies that λ∗k = 0,∀k ∈ {l + 1, . . . ,m}, which together with the fact that λ ≥ 0

implies that ν ≥ 0. If ‖λ− λ∗‖ is sufficiently small, we have

q(λ) (a)= q(λ∗) + (λ− λ∗)T∇λq(λ∗) + (λ− λ∗)T∇2
λq(λ

∗)(λ− λ∗) + o(‖λ− λ∗‖2)

= q(λ∗) +
l∑

k=1
µkdk +

m∑
k=l+1

νkdk + µTUΣUTµT + νTUΣUTνT + o(‖λ− λ∗‖2)

(b)
≤ q(λ∗)−

m∑
k=l+1

νkδ + µ′,TU′ΣU′,Tµ′,T + o(‖λ− λ∗‖2)

(c)
≤ q(λ∗)−

m∑
k=l+1

νkδ − κ‖µ′‖2 + o(‖λ− λ∗‖2)

(d)
< q(λ∗)− κ‖ν‖2 − κ‖µ‖2 + o(‖λ− λ∗‖2)

= q(λ∗)− κ‖λ− λ∗‖2 + o(‖λ− λ∗‖2)

where (a) follows from the second-order Taylor’s expansion; (b) follows from the facts that

dk = 0,∀k ∈ {1, . . . , l}; ν ≥ 0 and dk ≤ −δ; the last m − l elements of vector µ are zeros;

and Σ ≺ 0; (c) is true because κ > 0 exists when rank(U′) = l and Σ ≺ 0; and (d) follows

from −δ ≤ −κνk,∀k ∈ {l + 1, . . . ,m}, which is true as long as ‖ν‖ is sufficiently small; and

‖µ′‖ = ‖µ‖.

By the definition of o(‖λ−λ∗‖2), for any κ > 0, we have o(‖λ−λ∗‖2) ≤ κ
2 ‖λ−λ∗‖2 as long

as ‖λ− λ∗‖ is sufficiently small. Thus, there exists Dq > 0 such that

q(λ) ≤ q(λ∗)− Lq‖λ− λ∗‖2,∀λ ∈ {λ ∈ Rm+ : ‖λ− λ∗‖ ≤ Dq}

where Ls = κ/2.

Lemma 2.14. Let q(λ) : Rm+ → R be a second-order continuously differentiable concave function

maximized at λ = λ∗ ≥ 0. If ∇2
λq(λ

∗) ≺ 0, then there exists Dc > 0 and Lc > 0 such that q(·)

is strongly concave on the set λ ∈ {λ ∈ Rm+ : ‖λ− λ∗‖ ≤ Dc}

Proof. This lemma trivially follows from the continuity of ∇2
λq(λ).
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Proof of Part 1 of Theorem 2.10:

Note that Assumption 2.1 is trivially true. Assumption 2.2 follows from the assumption5 that

rank(∇gK(x∗)T) = l. To show that Assumption 2.3 holds, we need to apply Lemma 2.13.

By the strong convexity of f(x) and Proposition B.25 in [Ber99], the dual function q(λ) is

differentiable and has gradient ∇λq(λ∗) = g(x∗). Thus, d = ∇λq(λ∗) ≤ 0. By Assumption 2.2,

i.e., the strong duality, we have λ∗kdk = 0,∀k ∈ {1, . . . ,m}. Thus, the first condition in Lemma

2.13 is satisfied.

For λ ≥ 0, define x∗(λ) = argminx∈Rn
[
f(x) + λTg(x)

]
and denote x∗(λ∗) = x∗. Note that

x∗(λ) is a well-defined function because f(x)+λTg(x) is strongly convex and hence is minimized

at a unique point. By equation (6.9), page 598, in [Ber99], we have

∇2
λq(λ

∗) = −
[
∇xg(x∗)

]T[∇2
xf(x∗) +

m∑
k=1

λ∗k∇2
xgk(x∗)

]−1[∇xg(x∗)
]

(2.31)

Note that ∇2
xf(x∗) +

∑m
k=1 λ

∗
k∇2

xgk(x∗) � 0 because f is strongly convex and gk, k ∈

{1, . . . ,m} are convex. Thus, if rank(∇xgK(x∗)T) = |K|, then the second condition of Lemma

2.13 is satisfied.

Proof of Part 2 of Theorem 2.10: Using the same argument, we can show that Assumptions

2.1-2.2 hold. By equation (2.31) and the assumption that rank(∇xg(x∗)T) = m, Assumption 2.4

follows from Lemma 2.14.

2.7.6 Proof of Theorem 2.11

• Proof of Part 1: Let x∗ be the optimal solution to the problem (2.21)-(2.23). Since each

column of A has at least one non-zero entry, we have x∗i ≤ bmax,∀i ∈ {1, 2, . . . , n} with

bmax = max1≤i≤n bi. Thus, the problem (2.24)-(2.26) is equivalent to the problem (2.21)-

(2.23) since only a redundant constraint x ≤ xmax is introduced.

• Proof of Part 2:

– To show Assumption 2.1 holds: It follows from the strong convexity of
∑n
i=1−wi log(xi)

over set X = {0 ≤ x ≤ xmax}.

5The assumption that rank(∇xgK(x∗)T) = l is known as the non-degenerate constraint qualification or linear
independence constraint qualification, which along with Slater’s constraint qualification, is one of various constraint
qualifications implying strong duality [BSS06, SB94].
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– To show Assumption 2.2 holds: If x∗i = 0,∀1 ≤ i ≤ n, then the objective function is

+∞. Thus, x∗i > 0,∀1 ≤ i ≤ n. Since x∗i ≤ bmax,∀1 ≤ i ≤ n and xmax
i > bmax,∀1 ≤

i ≤ n, we have xi < xmax
i ,∀1 ≤ i ≤ n. Thus, constraints x ≥ 0 and x ≤ xmax are

inactive. The active inequality constraints can only be those among Ax ≤ b. Thus, if

rank(A) = m then the linear dependence constraint qualification is satisfied and the

strong duality holds [BSS06, SB94]. Note that the strong duality also holds in the

problem (2.21)-(2.23) because its active inequality constraints also can only be those

among Ax ≤ b.

– To show Assumption 2.3 holds: Define the Lagrangian dual function of the problem

(2.21)-(2.23) as

q̃(λ) = min
x≥0

{ n∑
i=1
−wi log(xi) + λT(Ax− b)

}
.

Note that argminx≥0
{∑n

i=1−wi log(xi) + λT(Ax − b)
}

=
[
[ 1

λTa1
]∞0 , . . . , [ 1

λTan
]∞0
]T

where the [·]ba denotes the projection onto the interval [a, b]. As argued above, the

strong duality holds for problem (2.21)-(2.23). Let x∗ be the optimal solution to the

above convex program and λ∗ ≥ 0 be the corresponding dual variables. By strong du-

ality, x∗ = argminx≥0
{∑n

i=1−wi log(xi) + (λ∗)T(Ax−b)
}

, i.e, x∗i = argminxi≥0
{
−

wi log(xi) + (λ∗)Taixi
}
,∀1 ≤ i ≤ n. Thus, we have x∗i =

[
wi

(λ∗)Tai

]∞
0 ,∀1 ≤ i ≤ n. In

the proof of part 1 of this theorem, we show that 0 < x∗i ≤ bmax,∀1 ≤ i ≤ n. Thus,

0 < wi
(λ∗)Tai ≤ b

max,∀1 ≤ i ≤ n and x∗i =
[

wi
(λ∗)Tai

]∞
0 = wi

(λ∗)Tai ,∀1 ≤ i ≤ n.

Now consider the problem (2.24)-(2.26). x∗ is still the optimal solution and λ∗ is

still the corresponding dual variable when the Lagrangian dual function is defined as

q(λ) = min0≤x≤xmax
{∑n

i=1−wi log(xi) + λT(Ax− b)
}

. Note that

argmin
0≤x≤xmax

{ n∑
i=1
−wi log(xi) + λT(Ax− b)

}
=
[[ w1

λTa1

]xmax
1

0 , . . . ,
[ wn

λTan

]xmax
n

0

]T
.

By the fact that 0 < wi
(λ∗)Tai < xmax

i ,∀i ∈ {1, 2, . . . , n} and by the continuity of

functions wi
λTai

,, we know

[[ w1

λTa1

]xmax
1

0 , . . . ,
[ wn

λTan

]xmax
n

0

]
=
[[ w1

λTa1

]∞
0 , . . . ,

[ wn

λTan

]∞
0

]
=
[ w1

λTa1
, . . . ,

wn

λTan

]
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when λ is sufficiently near λ∗. That is, q(λ) = q̃(λ) when λ is sufficiently near λ∗.

Next, we show that the dual function q(λ) is locally quadratic in a neighborhood of

λ∗ by using Lemma 2.13. Consider λ ∈ Rm+ such that ‖λ − λ∗‖ is sufficiently small,

or equivalently, λ is sufficiently close to λ∗. For such λ, we have

argmin
0≤x≤xmax

{ n∑
i=1
−wn log(xi) + λT(Ax− b)

}
=
[ w1

λTa1
, . . . ,

wn

λTan

]T
Thus,

q(λ) =
n∑
i=1

[
− wi log

( 1
λTai

)
+ wiλ

Tai
λTai

]
− λTb

=
n∑
i=1

[
− wi log

( 1
λTai

)]
+

n∑
i=1

wi − λTb

for λ ∈ Rm+ such that ‖λ − λ∗‖ is sufficiently small. Note that q(λ) is infinitely

differentiable at any λ ∈ Rm+ such that ‖λ − λ∗‖ is sufficiently small. Taking the

first-order and second-order derivatives at λ = λ∗ yields

∇λq(λ∗) =
n∑
i=1

wiai
(λ∗)Tai

− b, (2.32)

∇2
λq(λ

∗) =−
n∑
i=1

wiaiaT
i

((λ∗)Tai)2 = Adiag
(
[− w1

((λ∗)Tai)2 , . . . ,−
wn

((λ∗)Tan)2 ]
)
AT, (2.33)

where diag
(
[− w1

((λ∗)Tai)2 , . . . ,− wn
((λ∗)Tan)2 ]

)
denotes the diagonal matrix with diagonal

entries − w1
((λ∗)Tai)2 , . . . ,− wn

((λ∗)Tan)2 . Note that wi
((λ∗)Tai)2 > 0,∀1 ≤ i ≤ n. Thus, if

rank(A′) = m′, then Assumption 2.3 holds by Lemma 2.13.

• Proof of Part 3: Using the same arguments in the proof of part 2, we can show that

Assumptions 2.1-2.2 hold. By equation (2.33) and the fact that rank(A) = m, Assumption

2.4 follows from Lemma 2.14.
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Chapter 3

New Lagrangian Methods for Constrained Convex Programs

Fix positive integers n and m. Consider general constrained convex programs given by:

min f(x) (3.1)

s.t. gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m}, (3.2)

x ∈ X , (3.3)

where the set X ⊆ Rn is a closed convex set; the function f(x) is convex on X ; and the functions

gk(x),∀k ∈ {1, 2, . . . ,m} are convex on X . Note that the functions f(x), g1(x), . . . , gm(x) are not

necessarily differentiable. Denote the stacked vector of multiple functions g1(x), g2(x), . . . , gm(x)

as g(x) =
[
g1(x), g2(x), . . . , gm(x)

]T. Throughout this chapter, the convex program (3.1)-(3.3)

is required to satisfy the following assumptions:

Assumption 3.1 (Lipschitzness).

• There exists a (possibly non-unique) optimal solution x∗ ∈ X that solves the convex program

(3.1)-(3.3).

• There exists a constant β such that ‖g(x1)−g(x2)‖ ≤ β‖x1−x2‖ for all x1,x2 ∈ X . That

is, the function g(x) is Lipschitz continuous on X with modulus β.

Assumption 3.2 (Existence of Lagrange Multipliers). Condition 1.1 holds for the convex pro-

gram (3.1)-(3.3). That is, there exists a Lagrange multiplier vector λ∗ = [λ∗1, λ∗2, . . . , λ∗m]T ≥ 0

such that

q(λ∗) = f(x∗),
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where x∗ is an optimal solution to the problem (3.1)-(3.3) and q(λ) = inf
x∈X
{f(x)+

∑m
k=1 λkgk(x)}

is the Lagrangian dual function of the problem (3.1)-(3.3).

As reviewed in Section 1.2 in Chapter 1, existing Lagrangian methods for general (possibly

non-differentiable non-strongly convex) convex programs with (possibly nonlinear) functional

constraints have a slow O( 1
ε2 ) convergence time. In this chapter, we present two new Lagrangian

methods, both of which have a fast O( 1
ε ) convergence time. The first algorithm is originally

developed in our paper [YN17e] and the second algorithm is originally developed in our paper

[YN16c] and our technical report [YN17d].

The first algorithm works for general (possibly non-differentiable) constrained convex pro-

grams under Assumptions 3.1 and 3.2 and updates the primal variables by solving an uncon-

strained convex minimization that can be decomposed into independent smaller subproblems

when f(x) and gk(x) are separable. This new algorithm directly improves Algorithm 1.3, the

drift-plus-penalty method for deterministic convex programs, or equivalently, Algorithm 1.1, the

dual subgradient method, which only achieves a slow O( 1
ε2 ) convergence time with a similar

primal update scheme.

The second algorithm further requires that f(x) and gk(x) in the convex program (3.1)-(3.3)

are smooth; and updates the the primal variables by following a projected gradient update that

can be distributively implemented even when f(x) or gk(x) are not separable. This new algorithm

directly improves Algorithm 1.2, the primal-dual subgradient method, which only achieves a slow

O( 1
ε2 ) convergence time with a similar primal update scheme.

3.1 New Dual Type Algorithm for General Constrained

Convex Programs

Consider the following algorithm described in Algorithm 3.1. This algorithm computes both

primal variables x(t) ∈ X and dual variables Q(t) =
[
Q1(t), . . . , Qm(t)

]T, called virtual queue

vectors in the drift-plus-penalty technique, at iterations t ∈ {0, 1, 2, . . .}. One main result of

this chapter is that, whenever the parameter α in Algorithm 3.1 is chosen to satisfy α ≥ β2/2,

the running average x(t) = 1
t

∑t−1
τ=0 x(τ) closely approximates a solution to the convex program

(3.1)-(3.3) and has an approximation error that decays like O(1/t).
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Algorithm 3.1 New Dual Type Algorithm for General Constrained Convex Programs
Let α > 0 be a constant parameter. Choose any x(−1) ∈ X . Initialize Qk(0) =
max{0,−gk(x(−1))},∀k ∈ {1, 2, . . . ,m}. At each iteration t ∈ {0, 1, 2, . . .}, update x(t) and
Q(t+ 1) as follows:

• Update primal variables via

x(t) = argmin
x∈X

{
f(x) +

[
Q(t) + g(x(t− 1))

]Tg(x) + α‖x− x(t− 1)‖2
}
.

• Update virtual queues via

Qk(t+ 1) = max
{
− gk(x(t)), Qk(t) + gk(x(t))

}
,∀k ∈ {1, 2, . . . ,m}. (3.4)

• Output the running average x(t+ 1) given by

x(t+ 1) = 1
t+ 1

t∑
τ=0

x(τ) = x(t) t

t+ 1 + x(t) 1
t+ 1

as the solution at iteration t+ 1.

Algorithm 3.1 is similar to Algorithm 1.3, the DPP technique for deterministic convex pro-

grams, with the following distinctions:

1. The Lagrange multiplier (“virtual queue”) update equation for Qk(t) is modified to take a

max with −gk(x(t)), rather than simply project onto the nonnegative real numbers as the

traditional update rule Qk(t+ 1) = max{Qk(t) + gk(x(t)), 0} used in Algorithm 1.3 .

2. The minimization step augments the Qk(t) weights with gk(x(t−1)) values obtained on the

previous step. These gk(x(t−1)) quantities, when multiplied by constraint functions gk(x),

yield a cross-product term in the primal update. This cross term together with another

newly introduced quadratic term in the primal update can cancel a quadratic term in an

upper bound of the Lyapunov drift such that a finer analysis of the drift-plus-penalty leads

to the fast O( 1
ε ) convergence time.

3. A quadratic term, which is similar to a term used in proximal algorithms [PB13], is in-

troduced. This provides a strong convexity “pushback”. The pushback is not sufficient to

alone cancel the main drift components, but it cancels residual components introduced by

the new gk(x(t− 1)) weight.

At the same time, Algorithm 3.1 preserves the desirable properties possessed by Algorithm

1.3. That is, if the functions f(x) and g(x) are separable with respect to components or blocks
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of x, then the primal updates for x(t) can be decomposed into several smaller independent

subproblems, each of which only involves a component or block of x(t).

3.2 Basic Properties from Virtual Queue Update Equa-

tions

This section presents important facts from the virtual queue update equation (3.4).

3.2.1 Properties of Virtual Queues

Lemma 3.1. Let Q(t), t ∈ {0, 1, . . .} be the sequence of virtual queue vectors yielded by the

update equation (3.4). Then,

1. At each iteration t ∈ {0, 1, 2, . . .}, Qk(t) ≥ 0 for all k ∈ {1, 2, . . . ,m}.

2. At each iteration t ∈ {0, 1, 2, . . .}, Qk(t) + gk(x(t− 1)) ≥ 0 for all k ∈ {1, 2 . . . ,m}.

3. At iteration t = 0, ‖Q(0)‖2 ≤ ‖g(x(−1))‖2. At each iteration t ∈ {1, 2, . . .}, ‖Q(t)‖2 ≥

‖g(x(t− 1))‖2.

Proof.

1. Fix k ∈ {1, 2, . . . ,m}. Note that Qk(0) ≥ 0 by initialization Qk(0) = max{0,−gk(x(−1))}.

Assume Qk(t) ≥ 0 and consider iteration t + 1. If gk(x(t)) ≥ 0, then Qk(t + 1) =

max{−gk(x(t)), Qk(t)+gk(x(t))} ≥ Qk(t)+gk(x(t)) ≥ 0. If gk(x(t)) < 0, then Qk(t+1) =

max{−gk(x(t)), Qk(t)+gk(x(t))} ≥ −gk(x(t)) > 0. Thus, Qk(t+1) ≥ 0. The result follows

by induction.

2. Fix k ∈ {1, 2, . . . ,m}. Note that Qk(0) + gk(x(−1)) ≥ 0 by initialization rule Qk(0) =

max{0,−gk(x(−1))} ≥ −gk(x(−1)). For t ≥ 1, by the virtual queue update equation, we

have

Qk(t) = max{−gk(x(t− 1)), Qk(t− 1) + gk(x(t− 1))} ≥ −gk(x(t− 1)),

which implies that Qk(t) + gk(x(t− 1)) ≥ 0.

3. Consider t = 0. Fix k ∈ {1, 2, . . . ,m}. Consider the cases gk(x(−1)) ≥ 0 and gk(x(−1)) < 0

separately. If gk(x(−1)) ≥ 0, then Qk(0) = max{0,−gk(x(−1))} = 0 and so |Qk(0)| ≤
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|gk(x(−1))|. If gk(x(−1)) < 0, then Qk(0) = max{0,−gk(x(−1))} = −gk(x(−1)) =

|gk(x(−1))|. Thus, in both cases, we have |Qk(0)| ≤ |gk(x(−1))|. Squaring both sides

and summing over k ∈ {1, 2, . . . ,m} yields ‖Q(0)‖2 ≤ ‖g(x(−1))‖2.

Consider t ≥ 1. Fix k ∈ {1, 2, . . . ,m}. Consider the cases gk(x(t−1)) ≥ 0 and gk(x(t−1)) <

0 separately. If gk(x(t− 1)) ≥ 0, then

Qk(t) = max{−gk(x(t− 1)), Qk(t− 1) + gk(x(t− 1))}

≥ Qk(t− 1) + gk(x(t− 1))
(a)
≥ gk(x(t− 1))

= |gk(x(t− 1))|

where (a) follows from part 1. If gk(x(t− 1)) < 0, then

Qk(t) = max{−gk(x(t− 1)), Qk(t− 1) + gk(x(t− 1))}

≥ −gk(x(t− 1))

= |gk(x(t− 1))|.

Thus, in both cases, we have |Qk(t)| ≥ |gk(x(t − 1))|. Squaring both sides and summing

over k ∈ {1, 2, . . . ,m} yields ‖Q(t)‖2 ≥ ‖g(x(t− 1))‖2.

Lemma 3.2. Let Q(t), t ∈ {0, 1, . . .} be the sequence of virtual queue vectors yielded by the

update equation (3.4). At each iteration t ∈ {1, 2, . . .},

Qk(t) ≥
t−1∑
τ=0

gk(x(τ)),∀k ∈ {1, 2, . . . ,m}. (3.5)

Proof. Fix k ∈ {1, 2, . . . ,m} and t ≥ 1. For any τ ∈ {0, . . . , t− 1} the update rule of Algorithm

3.1 gives:

Qk(τ + 1) = max{−gk(x(τ)), Qk(τ) + gk(x(τ))}

≥ Qk(τ) + gk(x(τ)).
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Hence, Qk(τ + 1) − Qk(τ) ≥ gk(x(τ)). Summing over τ ∈ {0, . . . , t − 1} and using Qk(0) ≥ 0

gives the result.

3.2.2 Properties of the Drift

Recall that Q(t) =
[
Q1(t), . . . , Qm(t)

]T is the vector of virtual queue backlogs. Define L(t) =
1
2‖Q(t)‖2. The function L(t) shall be called a Lyapunov function. Define the Lyapunov drift as

∆(t) = L(t+ 1)− L(t) = 1
2
[
‖Q(t+ 1)‖2 − ‖Q(t)‖2

]
. (3.6)

Lemma 3.3. Let Q(t), t ∈ {0, 1, . . .} be the sequence of virtual queue vectors yielded by the

update equation (3.4). At each iteration t ∈ {0, 1, 2, . . .}, an upper bound of the Lyapunov drift

is given by

∆(t) ≤ [Q(t)]Tg(x(t)) + ‖g(x(t))‖2. (3.7)

Proof. The virtual queue update equation Qk(t+ 1) = max{−gk(x(t)), Qk(t) + gk(x(t))},∀k ∈

{1, 2, . . . ,m} can be rewritten as

Qk(t+ 1) = Qk(t) + g̃k(x(t)),∀k ∈ {1, 2, . . . ,m}, (3.8)

where

g̃k(x(t)) =

 gk(x(t)), if Qk(t) + gk(x(t)) ≥ −gk(x(t))

−Qk(t)− gk(x(t)), else
∀k.
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Fix k ∈ {1, 2, . . . ,m}. Squaring both sides of (3.8) and dividing by 2 yield:

1
2 [Qk(t+ 1)]2

=1
2[Qk(t)]2 + 1

2[g̃k(x(t))]2 +Qk(t)g̃k(x(t))

=1
2 [Qk(t)]2 + 1

2[g̃k(x(t))]2 +Qk(t)gk(x(t)) +Qk(t)[g̃k(x(t))− gk(x(t))]

(a)= 1
2[Qk(t)]2 + 1

2[g̃k(x(t))]2 +Qk(t)gk(x(t))− [g̃k(x(t)) + gk(x(t))][g̃k(x(t))− gk(x(t))]

=1
2 [Qk(t)]2 − 1

2 [g̃k(x(t))]2 +Qk(t)gk(x(t)) + [gk(x(t))]2

≤1
2 [Qk(t)]2 +Qk(t)gk(x(t)) + [gk(x(t))]2,

where (a) follows from the fact that Qk(t)[g̃k(x(t))−gk(x(t))] = −[g̃k(x(t))+gk(x(t))]·[g̃k(x(t))−

gk(x(t))], which can be shown by considering g̃k(x(t)) = gk(x(t)) and g̃k(x(t)) 6= gk(x(t)).

Summing over k ∈ {1, 2, . . . ,m} yields

1
2‖Q(t+ 1)‖2 ≤ 1

2‖Q(t)‖2 + [Q(t)]Tg(x(t)) + ‖g(x(t))‖2.

Rearranging the terms yields the desired result.

3.3 Convergence Time Analysis of Algorithm 3.1

This section analyzes the convergence time of Algorithm 3.1 for the convex program (3.1)-(3.3)

under Assumptions 3.1-3.2.

3.3.1 An Upper Bound of the Drift-Plus-Penalty Expression

Lemma 3.4. Consider the convex program (3.1)-(3.3) under Assumptions 3.1-3.2. If α ≥ 1
2β

2

in Algorithm 3.1, then for all t ≥ 0, we have

∆(t) + f(x(t))

≤f(x∗) + α
[
‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2

]
+ 1

2
[
‖g(x(t))‖2 − ‖g(x(t− 1))‖2

]
,

where x∗ is an optimal solution of the problem (3.1)-(3.3) and β is the Lipschitz modulus of g(x),

both of which are defined in Assumption 3.1.
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Proof. Fix t ≥ 0. Note that Lemma 3.1 implies that Q(t) + g(x(t − 1)) is component-wise

nonnegative. Hence, the function f(x) +
[
Q(t) + g(x(t − 1))

]Tg(x) is convex with respect to x

on X . Since α‖x − x(t − 1)‖2 is strongly convex with respect to x with modulus 2α, it follows

that

f(x) +
[
Q(t) + g(x(t− 1))

]Tg(x) + α‖x− x(t− 1)‖2

is strongly convex with respect to x with modulus 2α.

Since x(t) is chosen to minimize the above strongly convex function, by Corollary 1.2, we

have

f(x(t)) +
[
Q(t) + g(x(t− 1))

]Tg(x(t)) + α‖x(t)− x(t− 1)‖2

≤f(x∗) +
[
Q(t) + g(x(t− 1))

]Tg(x∗)︸ ︷︷ ︸
≤0

+α‖x∗ − x(t− 1)‖2 − α‖x∗ − x(t)‖2

(a)
≤f(x∗) + α‖x∗ − x(t− 1)‖2 − α‖x∗ − x(t)‖2, (3.9)

where (a) follows by using the fact that gk(x∗) ≤ 0 for all k ∈ {1, 2, . . . ,m} and Qk(t) + gk(x(t−

1)) ≥ 0 (i.e., part 2 in Lemma 3.1) to eliminate the term marked by an underbrace.

Note that uT
1u2 = 1

2
[
‖u1‖2 + ‖u2‖2 − ‖u1 − u2‖2

]
for any u1,u2 ∈ Rm. Thus, we have

[g(x(t− 1))]Tg(x(t)) = 1
2
[
‖g(x(t− 1))‖2 + ‖g(x(t))‖2 − ‖g(x(t− 1))− g(x(t))‖2

]
. (3.10)

Substituting (3.10) into (3.9) and rearranging terms yields

f(x(t)) + [Q(t)]Tg(x(t))

≤f(x∗) + α‖x∗ − x(t− 1)‖2 − α‖x∗ − x(t)‖2 − α‖x(t)− x(t− 1)‖2 + 1
2‖g(x(t− 1))− g(x(t))‖2

− 1
2‖g(x(t− 1))‖2 − 1

2‖g(x(t))‖2

(a)
≤f(x∗) + α‖x∗ − x(t− 1)‖2 − α‖x∗ − x(t)‖2 + (1

2β
2 − α)‖x(t)− x(t− 1)‖2 − 1

2‖g(x(t− 1))‖2

− 1
2‖g(x(t))‖2

(b)
≤f(x∗) + α‖x∗ − x(t− 1)‖2 − α‖x∗ − x(t)‖2 − 1

2‖g(x(t− 1))‖2 − 1
2‖g(x(t))‖2,
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where (a) follows from the fact that ‖g(x(t− 1))− g(x(t))‖ ≤ β‖x(t)− x(t− 1)‖, which further

follows from the assumption that g(x) is Lipschitz continuous with modulus β; (b) follows from

the fact α ≥ 1
2β

2.

Summing (3.7) with the above inequality and cancelling common terms on both sides yields

∆(t) + f(x(t)) ≤f(x∗) + α
[
‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2

]
+ 1

2
[
‖g(x(t))‖2 − ‖g(x(t− 1))‖2

]
.

3.3.2 Objective Value Violations

Lemma 3.5. Consider the convex program (3.1)-(3.3) under Assumptions 3.1-3.2. Let x∗ be an

optimal solution of the problem (3.1)-(3.3) and β be the Lipschitz modulus of g(x), both of which

are defined in Assumption 3.1.

1. If α ≥ 1
2β

2 in Algorithm 3.1, then for all t ≥ 1, we have

t−1∑
τ=0

f(x(τ)) ≤ tf(x∗) + α‖x∗ − x(−1)‖2.

2. If α > 1
2β

2 in Algorithm 3.1, then for all t ≥ 1, we have

t−1∑
τ=0

f(x(τ)) ≤ tf(x∗) + α‖x∗ − x(−1)‖2 + α

2α− β2 ‖g(x∗)‖2 − ‖Q(t)‖2

2 .

Proof. By Lemma 3.4, we have ∆(τ) + f(x(τ)) ≤ f(x∗) + α[‖x∗ − x(τ − 1)‖2 − ‖x∗ − x(τ)‖] +
1
2 [‖g(x(τ))‖2−‖g(x(τ − 1))‖2] for all τ ∈ {0, 1, 2, . . .}. Summing over τ ∈ {0, 1, . . . , t− 1} yields

t−1∑
τ=0

∆(τ) +
t−1∑
τ=0

f(x(τ))

≤tf(x∗) + α

t−1∑
τ=0

[‖x∗ − x(τ − 1)‖2 − ‖x∗ − x(τ)‖2] + 1
2

t−1∑
τ=0

[‖g(x(τ))‖2 − ‖g(x(τ − 1))‖2].
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Recalling that ∆(τ) = L(τ + 1)− L(τ) and simplifying summations yields

L(t)− L(0) +
t−1∑
τ=0

f(x(τ))

≤tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 + 1
2‖g(x(t− 1))‖2 − 1

2‖g(x(−1))‖2.

Rearranging terms; and substituting L(0) = 1
2‖Q(0)‖2 and L(t) = 1

2‖Q(t)‖2 yields

t−1∑
τ=0

f(x(τ))

≤tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 + 1
2‖g(x(t− 1))‖2 − 1

2‖g(x(−1))‖2

+ 1
2‖Q(0)‖2 − 1

2‖Q(t)‖2

(a)
≤ tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 + 1

2‖g(x(t− 1))‖2 − 1
2‖Q(t)‖2, (3.11)

where (a) follows from the fact that ‖Q(0)‖ ≤ ‖g(x(−1))‖, i.e., part 3 in Lemma 3.1.

Next, we present the proof of both parts:

1. This part follows from the observation that equation (3.11) can be further simplified as

t−1∑
τ=0

f(x(τ))
(a)
≤ tf(x∗) + α‖x∗ − x(−1)‖2 + 1

2‖g(x(t− 1))‖2 − 1
2‖Q(t)‖2

(b)
≤tf(x∗) + α‖x∗ − x(−1)‖2,

where (a) follows by ignoring the non-positive term −α‖x∗ − x(t − 1)‖2 on the right side

and (b) follows from the fact that ‖Q(t)‖ ≥ ‖g(x(t− 1))‖, i.e., part 3 in Lemma 3.1.
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2. This part follows by rewriting equation (3.11) as

t−1∑
τ=0

f(x(τ))

≤tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 + 1
2‖g(x(t− 1))− g(x∗) + g(x∗)‖2

− 1
2‖Q(t)‖2

=tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 + 1
2‖g(x(t− 1))− g(x∗)‖2

+ [g(x∗)]T[g(x(t− 1))− g(x∗)] + 1
2‖g(x∗)‖2 − 1

2‖Q(t)‖2

(a)
≤ tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 + 1

2‖g(x(t− 1))− g(x∗)‖2

+ ‖g(x∗)‖‖g(x(t− 1))− g(x∗)‖+ 1
2‖g(x∗)‖2 − 1

2‖Q(t)‖2

(b)
≤tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 + 1

2β
2‖x∗ − x(t− 1)‖2

+ β‖g(x∗)‖‖x∗ − x(t− 1)‖+ 1
2‖g(x∗)‖2 − 1

2‖Q(t)‖2

=tf(x∗) + α‖x∗ − x(−1)‖2 −
(
α− 1

2β
2)[‖x∗ − x(t− 1)‖ − 1

2
β

α− 1
2β

2 ‖g(x∗)‖
]2

+ α

2α− β2 ‖g(x∗)‖2 − 1
2‖Q(t)‖2

(c)
≤tf(x∗) + α‖x∗ − x(−1)‖2 + α

2α− β2 ‖g(x∗)‖2 − 1
2‖Q(t)‖2,

where (a) follows from the Cauchy-Schwarz inequality; (b) follows from the fact that

‖g(x(t− 1))− g(x∗)‖ ≤ β‖x∗ − x(t− 1)‖, which further follows from the assumption that

g(x) is Lipschitz continuous with modulus β; and (c) follows from the fact that α > 1
2β

2.

Theorem 3.1 (Objective Value Violations of Algorithm 3.1). Consider the convex program

(3.1)-(3.3) under Assumptions 3.1-3.2. If α ≥ 1
2β

2 in Algorithm 3.1, for all t ≥ 1, we have

f(x(t)) ≤ f(x∗) + α

t
‖x∗ − x(−1)‖2,

where x∗ is an optimal solution to the problem (3.1)-(3.3) and β is the Lipschitz modulus of g(x),

both of which are defined in Assumption 3.1.
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Proof. Fix t ≥1. By part 1 in Lemma 3.5, we have

t−1∑
τ=0

f(x(τ)) ≤ tf(x∗) + α‖x∗ − x(−1)‖2

⇒1
t

t−1∑
τ=0

f(x(τ)) ≤ f(x∗) + α

t
‖x∗ − x(−1)‖2.

Since x(t) = 1
t

∑t−1
τ=0 x(τ) and f(x) is convex, by Jensen’s inequality it follows that

f(x(t)) ≤ 1
t

t−1∑
τ=0

f(x(τ)).

The above theorem shows that under Algorithm 3.1, the error gap between f(x(t)) and the

optimal value f(x∗) is at most O( 1
t ). This holds for any initial guess vector x(−1) ∈ X . Of

course, choosing x(−1) close to x∗ is desirable because it reduces the coefficient α‖x∗−x(−1)‖2.

3.3.3 Constraint Violations

The next Lemma follows from Assumption 3.2 and Lemma 3.2.

Lemma 3.6. Consider the convex program (3.1)-(3.3) under Assumptions 3.1-3.2. Let x(t),Q(t), t ∈

{0, 1, . . .} be sequences generated by Algorithm 3.1. Then,

t−1∑
τ=0

f(x(τ)) ≥ tf(x∗)− ‖λ∗‖‖Q(t)‖, ∀t ≥ 1,

where x∗ is an optimal solution of the problem (3.1)-(3.3) defined in Assumption 3.1; and λ∗ is

a Lagrange multiplier vector satisfying Assumption 3.2.

Proof. Define Lagrangian dual function q(λ) = inf
x∈X
{f(x)+

∑m
k=1 λkgk(x)}. For all τ ∈ {0, 1, . . .},

by Assumption 3.2, we have

f(x∗) = q(λ∗)
(a)
≤ f(x(τ)) +

m∑
k=1

λ∗kgk(x(τ)),
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where (a) follows the definition of q(λ∗). Thus, we have

f(x(τ)) ≥ f(x∗)−
m∑
k=1

λ∗kgk(x(τ)),∀τ ∈ {0, 1, . . .}.

Summing over τ ∈ {0, 1, . . . , t− 1} yields

t−1∑
τ=0

f(x(τ)) ≥tf(x∗)−
t−1∑
τ=0

m∑
k=1

λ∗kgk(x(τ))

=tf(x∗)−
m∑
k=1

λ∗k

[ t−1∑
τ=0

gk(x(τ))
]

(a)
≥ tf(x∗)−

m∑
k=1

λ∗kQk(t)

(b)
≥tf(x∗)− ‖λ∗‖‖Q(t)‖,

where (a) follows from Lemma 3.2 and the fact that λ∗k ≥ 0,∀k ∈ {1, 2, . . . ,m}; and (b) follows

from the Cauchy-Schwarz inequality.

Lemma 3.7. Consider the convex program (3.1)-(3.3) under Assumptions 3.1-3.2. If α > β2

2 in

Algorithm 3.1, then for all t ≥ 1, the virtual queue vector satisfies

‖Q(t)‖ ≤ 2‖λ∗‖+
√

2α‖x∗ − x(−1)‖+
√

α

α− 1
2β

2 ‖g(x∗)‖,

where x∗ is an optimal solution of the problem (3.1)-(3.3) and β is the Lipschitz modulus of g(x),

both of which are defined in Assumption 3.1; and λ∗ is a Lagrange multiplier vector satisfying

Assumption 3.2.

Proof. Fix t ≥ 1. By part 2 in Lemma 3.5, we have

t−1∑
τ=0

f(x(τ)) ≤tf(x∗) + α‖x∗ − x(−1)‖2 + α

2α− β2 ‖g(x∗)‖2 − 1
2‖Q(t)‖2.

By Lemma 3.6, we have

t−1∑
τ=0

f(x(τ)) ≥ tf(x∗)− ‖λ∗‖‖Q(t)‖.
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Combining the last two inequalities and cancelling the common term tf(x∗) on both sides yields

1
2‖Q(t)‖2 −

(
α‖x∗ − x(−1)‖2 + α

2α− β2 ‖g(x∗)‖2
)
≤ ‖λ∗‖‖Q(t)‖

⇒
(
‖Q(t)‖ − ‖λ∗‖

)2 ≤ ‖λ∗‖2 + 2α‖x∗ − x(−1)‖2 + α

α− 1
2β

2 ‖g(x∗)‖2

⇒‖Q(t)‖ ≤ ‖λ∗‖+
√
‖λ∗‖2 + 2α‖x∗ − x(−1)‖2 + α

α− 1
2β

2 ‖g(x∗)‖2

(a)⇒‖Q(t)‖ ≤ 2‖λ∗‖+
√

2α‖x∗ − x(−1)‖+
√

α

α− 1
2β

2 ‖g(x∗)‖,

where (a) follows from the basic inequality
√
a+ b+ c ≤

√
a+
√
b+
√
c for any a, b, c ≥ 0.

Theorem 3.2 (Constraint Violations of Algorithm 3.1). Consider the convex program (3.1)-

(3.3) under Assumptions 3.1-3.2. If α > β2

2 in Algorithm 3.1, then for all t ≥ 1, the constraint

functions satisfy

gk(x(t)) ≤ 1
t

(
2‖λ∗‖+

√
2α‖x∗ − x(−1)‖+

√
α

α− 1
2β

2 ‖g(x∗)‖
)
,∀k ∈ {1, 2, . . . ,m},

where x∗ is an optimal solution of the problem (3.1)-(3.3) and β is the Lipschitz modulus of g(x),

both of which are defined in Assumption 3.1; and λ∗ is a Lagrange multiplier vector satisfying

Assumption 3.2.

Proof. Fix t ≥ 1 and k ∈ {1, 2, . . . ,m}. Recall that x(t) = 1
t

∑t−1
τ=0 x(τ). Thus,

gk(x(t))
(a)
≤ 1

t

t−1∑
τ=0

gk(x(τ))

(b)
≤ Qk(t)

t

≤ ‖Q(t)‖
t

(c)
≤ 1

t

(
2‖λ∗‖+

√
2α‖x∗ − x(−1)‖+

√
α

α− 1
2β

2 ‖g(x∗)‖
)
,

where (a) follows from the convexity of gk(x), k ∈ {1, 2, . . . ,m} and Jensen’s inequality; (b)

follows from Lemma 3.2; and (c) follows from Lemma 3.7.

3.3.4 Convergence Time of Algorithm 3.1

The next theorem summarizes Theorems 3.1 and 3.2.
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Theorem 3.3 (Convergence Time of Algorithm 3.1). Consider the convex program (3.1)-(3.3)

under Assumptions 3.1-3.2. If α > β2

2 in Algorithm 3.1, then for all t ≥ 1, we have

f(x(t)) ≤f(x∗) + α

t
‖x∗ − x(−1)‖2,

gk(x(t)) ≤1
t

(
2‖λ∗‖+

√
2α‖x∗ − x(−1)‖+

√
α

α− 1
2β

2 ‖g(x∗)‖
)
,∀k ∈ {1, 2, . . . ,m},

where x∗ is an optimal solution of the problem (3.1)-(3.3) and β is the Lipschitz modulus of g(x),

both of which are defined in Assumption 3.1; and λ∗ is a Lagrange multiplier vector satisfying

Assumption 3.2. In summary, Algorithm 3.1 ensures error decays like O( 1
t ) and provides an

ε-approximate solution with convergence time O( 1
ε ).

3.3.5 Convex Programs with Linear Equality Constraints

So far, it is assumed that there is no linear equality constraint in the convex program (3.1)-

(3.3). In fact, if the convex program (3.1)-(3.3) contains a linear equality constraint given by

h(x) = 0, we can replace it with two inequality constraints h(x) ≤ 0 and −h(x) ≤ 0, both of

which are convex inequality constraints, to rewrite the original convex program into the form

of (3.1)-(3.3). After that, we can further apply Algorithm 3.1 to solve the reformulated convex

program with an O(1/ε) convergence time. However, by doing this, two virtual queues, rather

than one, are needed for each linear equality constraint and it is obvious that more virtual queues

incurs more computation and storage overhead in the implementation of Algorithm 3.1.

By looking into the proof of Lemma 3.4, we realize that one reason why the virtual queue

update equation (3.4) updateQk(t) as the larger one between−gk(x(t−1)) andQk(t−1)+gk(x(t−

1)) is to yield a non-negative coefficient vector Q(t)+g(x(t−1)) such that
[
Q(t)+g(x(t−1))

]Tg(x)

involved in the primal update is convex. This is necessary since a convex function multiplying

a negative constant is in general no longer convex. However, if gk(x) is a linear function, then

cgk(x) is convex no matter the constant c is positive or negative.

In fact, if gk(x) is linear and the convex program (3.1)-(3.3) has a linear equality constraint

given by gk(x) = 0, then it suffices to update the corresponding virtual queue Qk(t) using the

equation:

Qk(t+ 1) = Qk(t) + gk(x(t)),∀t ∈ {0, 1, 2, . . .}. (3.12)
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and initialize the virtual queue with Qk(0) = 0 to ensure the same O(1/ε) convergence time of

Algorithm 3.1 without modifying any other steps.

To simply the analysis, we now consider an extreme case of constrained convex programs

where all functional constrains are linear equality constraints given by g(x) = 0. Instead of

replacing g(x) = 0 with g(x) ≤ 0 and g(x) = 0 and applying the original Algorithm 3.1, we keep

all equality constraints unchanged, and initialize Qk(0) = 0,∀k and replace (3.4) with (3.12) in

Algorithm 3.1. In the reminder of this section, we sketch the O(1/t) convergence rate analysis of

such a modification of Algorithm 3.1.

Note thatQk(0) = 0 and virtual queue update equation (3.12) guarantees that
∑t−1
τ=0 gk(x(τ)) =

Qk(t),∀t ≥ 1, which can be easily proven by using the same argument in the proof of Lemma

3.2. Thus, if we can show that ‖Q(t)‖ is bounded from above by a constant for all t, then we

can establish the O( 1
t ) convergence rate of constraint violations.

Squaring both sides of (3.12) and summing over k ∈ {1, 2, . . . ,m} yields

∆(t) = [Q(t)]Tg(x(t)) + 1
2‖g(x(t))‖2 (3.13)

which is a drift identity that is even tighter than the drift bound in Lemma 3.3.

Recall that all linear functions are Lipschitz continuous, we assume g(x) is Lipschitz contin-

uous with modulus β. Note that Q(t) updated by (3.12) ensures f(x) + [Q(t) + g(x(t))]Tg(x)

is convex as long as g is linear. By using similar steps in the proof Lemma 3.4 and using (3.13)

rather than (3.7) in the last step, we can obtain a simpler drift-plus-penalty bound given by

∆(t) + f(x(t)) ≤ f(x∗) + α[‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2]

With the above drift-plus-penalty bound, we can prove the O(1/t) convergence rate of objec-

tive and constraint violations following steps similar to those in Sections 3.3.2 and 3.3.3.

The O(1/t) convergence rate for constrained convex programs with both inequality constraints

and linear equality constraints can be established by trivially combining the steps in the previous

sections and the steps in this section.
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3.4 New Primal-Dual Type Algorithm for Smooth Con-

strained Convex Programs

In this section, we further assume that the convex program (3.1)-(3.3) has smooth objective

and constraint functions, i.e., the following assumption holds.

Assumption 3.3 (Smoothness).

• Let function f(x) be smooth with modulus Lf , i.e., ‖∇f(x1)−∇f(x2)‖ ≤ Lf‖x1−x2‖ for

all x1,x2 ∈ X . For each k ∈ {1, 2, . . . ,m}, let function gk(x) be smooth with modulus Lgk ,

i.e., ‖∇gk(x1)−∇gk(x2)‖ ≤ Lgk‖x1−x2‖ for all x1,x2 ∈ X . Denote Lg = [Lg1 , . . . , Lgm ]T.

Now consider another new Lagrangian method described in Algorithm 3.2. Note that Algo-

rithm 3.2 involves a positive step size sequence {γ(t), t ≥ 0}. We consider the following two rules

for choosing γ(t) in Algorithm 3.2.

• Constant γ(t): Choose positive step sizes γ(t) via

γ(t) = γ <
1

β2 + Lf
,∀t ≥ 0 (3.14)

• Non-increasing γ(t): Choose positive step sizes γ(t) via

γ(t) =


1

β2+Lf+[Q(0)+g(x(−1))]TLg
, t = 0

min
{
γ(t− 1), 1

β2+Lf+[Q(t)+g(x(t−1))]TLg

}
, t ≥ 1

(3.15)

Note that part 2 of Lemma 3.1 ensures Q(t)+g(x(t−1)) ≥ 0,∀t ≥ 0. Thus, (3.15) ensures

γ(t) > 0,∀t ≥ 0.

Note that Algorithm 3.2 uses the same virtual queue update equation (3.4) used in Algorithm

3.1 but modifies the update of primal variables x(t) from a minimization problem to a simple

projection, which is similar to the primal update in Algorithm 1.2.

Recall that if f(x) or gk(x) are not separable, the primal update of x(t) in Algorithm 3.1

is not decomposable and requires to jointly solve a set constrained convex minimization, which

can have huge computation complexity especially when the dimension n is large. In contrast,

the projection used in Algorithm 3.2 can be distributively implemented as long as the gradient
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Algorithm 3.2 New Primal-Dual Type Algorithm for Smooth Constrained Convex Programs
Let {γ(t), t ≥ 0} be a sequence of positive step sizes. Choose any x(−1) ∈ X . Initialize Qk(0) =
max{0,−gk(x(−1))},∀k ∈ {1, 2, . . . ,m}. At each iteration t ∈ {0, 1, 2, . . .}, update x(t) and
Q(t+ 1) as follows:

• Update primal variables via

x(t) = PX
[
x(t− 1)− γ(t)d(t)

]
,

where PX [·] is the projection onto convex set X and d(t) = ∇f(x(t− 1)) +
∑m
k=1[Qk(t) +

gk(x(t−1))]∇gk(x(t−1)) is the gradient of function φ(x) = f(x)+[Q(t)+g(x(t−1))]Tg(x)
at point x = x(t− 1).

• Update virtual queues via the equation (3.4) in Algorithm 3.1.

• Output the running average x(t+ 1) given by

x(t+ 1) = 1
t+ 1

t∑
τ=0

x(τ) = x(t) t

t+ 1 + x(t) 1
t+ 1

as the solution at iteration t+ 1.

is known and the set X is a Cartesian product. Thus, Algorithm 3.2 is suitable for large scale

convex programs with non-separable f(x) or gk(x) since its per-iteration complexity is much less

than that in Algorithm 3.1.

For constrained convex programs with non-separable f(x) or gk(x), the primal update of x(t)

in Algorithm 1.2 also has low complexity since it follows a similar projection update. However,

Algorithm 1.2 has a slow O(1/ε2) convergence time as reviewed in Section 1.2. Another drawback

of Algorithm 1.2 is that its implementation requires to know an upper bound of the optimal

Lagrange multiplier vector λ∗ (defined in Assumption 3.2), which is typically unavailable in

practice.

In this section, we show that Algorithm 3.2 has the same O( 1
ε ) convergence time as Algorithm

3.1 for the smooth constrained convex programs (3.1)-(3.3) and its implementation does not

require any knowledge of the optimal Lagrange multiplier vector λ∗.

3.4.1 An Upper Bound of the Drift-Plus-Penalty Expression

Since Algorithm 3.2 uses the same virtual queue update equation (3.4) used in Algorithm

3.1, Lemmas 3.1-3.3 proven in Section 3.2 and Lemma 3.6 proven in Section 3.3.3 still hold for

Algorithm 3.2. The convergence time analysis of Algorithm 3.2 folllows a structure similar to
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that of Algorithm 3.1 and is presented in the remainder of this section. The first key step is to

derive an upper bound for the drift-plus-penalty expression under Algorithm 3.2.

Lemma 3.8. Consider the convex program (3.1)-(3.3) under Assumptions 3.1-3.3. For all t ≥ 0

in Algorithm 3.2, we have

∆(t) + f(x(t)) ≤f(x∗) + 1
2γ(t) [‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2] + 1

2 [‖g(x(t))‖2 − ‖g(x(t− 1))‖2]

+ 1
2
[
β2 + Lf + [Q(t) + g(x(t− 1))]TLg −

1
γ(t)

]
‖x(t)− x(t− 1)‖2,

where x∗ is an optimal solution of the problem (3.1)-(3.3) and β is the Lipschitz modulus of g(x),

both of which are defined in Assumption 3.1; and Lf and Lg are defined in Assumption 3.3.

Proof. Fix t ≥ 0. The projection operator can be reinterpreted as an optimization problem as

follows:

x(t) = PX [x(t− 1)− γ(t)d(t)]
(a)⇔ x(t) = argmin

x∈X

{∥∥x− [x(t− 1)− γ(t)d(t)]
∥∥2}

⇔ x(t) = argmin
x∈X

{
‖x− x(t− 1)‖2 + 2γ(t)[d(t)]T[x− x(t− 1)] + [γ(t)]2‖d(t)‖2

}
(b)⇔ x(t) = argmin

x∈X

{
f(x(t− 1)) +

m∑
k=1

[Qk(t) + gk(x(t− 1))]gk(x(t− 1)) + dT(t)[x− x(t− 1)]

+ 1
2γ(t)‖x− x(t− 1)‖2

}
(c)⇔ x(t) = argmin

x∈X

{
φ(x(t− 1)) + [∇φ(x(t− 1))]T[x− x(t− 1)] + 1

2γ(t)‖x− x(t− 1)‖2
}
,

(3.16)

where (a) follows from the definition of the projection onto a convex set; (b) follows from the fact

the minimizing solution does not change when we remove constant term [γ(t)]2‖d(t)‖2, multiply

positive constant 1
2γ(t) and add constant term f(x(t − 1)) + [Q(t) + g(x(t − 1))]Tg(x(t − 1)) in

the objective function; and (c) follows by defining

φ(x) = f(x) + [Q(t) + g(x(t− 1))]Tg(x). (3.17)

Note that part 2 in Lemma 3.1 implies that Q(t) + g(x(t − 1)) is component-wise nonnegative
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for all k ∈ {1, 2, . . . ,m}. Hence, function φ(x) is convex with respect to x on X .

Since 1
2γ(t)‖x − x(t− 1)‖2 is strongly convex with respect to x with modulus 1

γ(t) , it follows

that

φ(x(t− 1)) + [∇φ(x(t− 1))]T[x− x(t− 1)] + 1
2γ(t)‖x− x(t− 1)‖2

is strongly convex with respect to x with modulus 1
γ(t) .

Since x(t) is chosen to minimize the above strongly convex function, by Corollary 1.2, we

have

φ(x(t− 1)) + [∇φ(x(t− 1))]T[x(t)− x(t− 1)] + 1
2γ(t)‖x(t)− x(t− 1)‖2

≤φ(x(t− 1)) + [∇φ(x(t− 1))]T[x∗ − x(t− 1)] + 1
2γ(t)‖x

∗ − x(t− 1)‖2 − 1
2γ(t)‖x

∗ − x(t)‖2

(a)
≤φ(x∗) + 1

2γ(t) [‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2]

(b)=f(x∗) + [Q(t) + g(x(t− 1))]Tg(x∗)︸ ︷︷ ︸
≤0

+ 1
2γ(t) [‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2]

(c)
≤f(x∗) + 1

2γ(t) [‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2], (3.18)

where (a) follows from the fact that φ(x) is convex with respect to x on X ; (b) follows from

the definition of function φ(x) in (3.17); and (c) follows by using the fact that gk(x∗) ≤ 0 and

Qk(t) + gk(x(t − 1)) ≥ 0 (i.e., part 2 in Lemma 3.1) for all k ∈ {1, 2, . . . ,m} to eliminate the

term marked by an underbrace.

Recall that f(x) is smooth on X with modulus Lf by Assumption 3.3. By Lemma 1.1, we

have

f(x(t)) ≤ f(x(t− 1)) + [∇f(x(t− 1))]T[x(t)− x(t− 1)] + Lf
2 ‖x(t)− x(t− 1)‖2. (3.19)

Recall that each gk(x) is smooth on X with modulus Lgk by Assumption 3.3. Thus, [Qk(t) +
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gk(x(t− 1))]gk(x) is smooth with modulus [Qk(t) + gk(x(t− 1))]Lgk . By Lemma 1.1, we have

[Qk(t) + gk(x(t− 1))]gk(x(t))

≤[Qk(t) + gk(x(t− 1))]gk(x(t− 1)) + [Qk(t) + gk(x(t− 1))][∇gk(x(t− 1))]T[x(t)− x(t− 1)]

+ [Qk(t) + gk(x(t− 1))]Lgk
2 ‖x(t)− x(t− 1)‖2. (3.20)

Summing (3.20) over k ∈ {1, 2, . . . ,m} yields

[Q(t) + g(x(t− 1))]Tg(x(t)) (3.21)

≤[Q(t) + g(x(t− 1))]Tg(x(t− 1)) +
m∑
k=1

[Qk(t) + gk(x(t− 1))][∇gk(x(t− 1))]T[x(t)− x(t− 1)]

+ [Q(t) + g(x(t− 1))]TLg

2 ‖x(t)− x(t− 1)‖2. (3.22)

Summing up (3.19) and (3.22) together yields

f(x(t)) + [Q(t) + g(x(t− 1))]Tg(x(t))

≤f(x(t− 1)) + [Q(t) + g(x(t− 1))]Tg(x(t− 1)) + [∇f(x(t− 1))]T[x(t)− x(t− 1)]

+
m∑
k=1

[Qk(t) + gk(x(t− 1))][∇gk(x(t− 1))]T[x(t)− x(t− 1)]

+ Lf + [Q(t) + g(x(t− 1))]TLg

2 ‖x(t)− x(t− 1)‖2

(a)=φ(x(t− 1)) + [∇φ(x(t− 1))]T[x(t)− x(t− 1)] + Lf + [Q(t) + g(x(t− 1))]TLg

2 ‖x(t)− x(t− 1)‖2,

(3.23)

where (a) follows from the definition of function φ(x) in (3.17).

Substituting (3.18) into (3.23) yields

f(x(t)) + [Q(t) + g(x(t− 1))]Tg(x(t))

≤f(x∗) + 1
2γ(t) [‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2]

+ 1
2
[
Lf + [Q(t) + g(x(t− 1))]TLg −

1
γ(t)

]
‖x(t)− x(t− 1)‖2. (3.24)
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Note that uT
1u2 = 1

2 [‖u1‖2 + ‖u2‖2 − ‖u1 − u2‖2] for any u1,u2 ∈ Rm. Thus, we have

[g(x(t− 1))]Tg(x(t)) = 1
2 [‖g(x(t− 1))‖2 + ‖g(x(t))‖2 − ‖g(x(t− 1))− g(x(t))‖2]. (3.25)

Substituting (3.25) into (3.24) and rearranging terms yields

f(x(t)) + [Q(t)]Tg(x(t))

≤f(x∗) + 1
2γ(t) [‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2]− 1

2‖g(x(t− 1))‖2 − 1
2‖g(x(t))‖2

+ 1
2‖g(x(t− 1))− g(x(t))‖2 + 1

2
[
Lf + [Q(t) + g(x(t− 1))]TLg −

1
γ(t)

]
‖x(t)− x(t− 1)‖2

(a)
≤f(x∗) + 1

2γ(t) [‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2]− 1
2‖g(x(t− 1))‖2 − 1

2‖g(x(t))‖2

+ 1
2
[
β2 + Lf + [Q(t) + g(x(t− 1))]TLg −

1
γ(t)

]
‖x(t)− x(t− 1)‖2,

where (a) follows from the fact that ‖g(x(t− 1))− g(x(t))‖ ≤ β‖x(t)− x(t− 1)‖, which further

follows from the assumption that g(x) is Lipschitz continuous with modulus β.

Summing (3.7) to the above inequality and cancelling the common terms on both sides yields

∆(t) + f(x(t))

≤f(x∗) + 1
2γ(t) [‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2] + 1

2 [‖g(x(t))‖2 − ‖g(x(t− 1))‖2]

+ 1
2
[
β2 + Lf + [Q(t) + g(x(t− 1))]TLg −

1
γ(t)

]
‖x(t)− x(t− 1)‖2.

3.4.2 Smooth Constrained Convex Programs with Linear g(x)

This subsection shows that if each gk(x) is a linear function, then it suffices to choose constant

parameters γ(t) = γ < 1
β2+Lf in Algorithm 3.2 to solve the smooth constrained convex program

(3.1)-(3.3) with an O(1/ε) convergence time.

The next corollary follows directly from Lemma 3.8 by noting that Lg = 0 when each gk(x)

is a linear function.

Corollary 3.1. Consider the convex program (3.1)-(3.3) where each gk(x) is a linear function

under Assumptions 3.1-3.3. If we choose γ(t) according to (3.14) in Algorithm 3.2, i.e., γ(t) =
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γ < 1
β2+Lf , then for all t ≥ 0, we have

∆(t) + f(x(t))

≤f(x∗) + 1
2γ
[
‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2

]
+ 1

2
[
‖g(x(t))‖2 − ‖g(x(t− 1))‖2

]
where x∗ is an optimal solution of the problem (3.1)-(3.3) and β is the Lipschitz modulus of g(x),

both of which are defined in Assumptions 3.1; and Lf is the constant defined in Assumption 3.3.

Proof. Note that if each gk(x) is a linear function, then we have Lg = 0. Fix t ≥ 0. By Lemma

3.8 with γ(t) = γ < 1
β2+Lf and Lg = 0, we have

∆(t) + f(x(t))

≤f(x∗) + 1
2γ
[
‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2

]
+ 1

2
[
‖g(x(t))‖2 − ‖g(x(t− 1))‖2

]
+ 1

2
(
β2 + Lf −

1
γ

)
‖x(t)− x(t− 1)‖2

(a)
≤f(x∗) + 1

2γ
[
‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2

]
+ 1

2
[
‖g(x(t))‖2 − ‖g(x(t− 1))‖2

]
where (a) follows from γ < 1

β2+Lf .

Theorem 3.4. Consider the convex program (3.1)-(3.3) where each gk(x) is a linear function

under Assumptions 3.1- 3.3. Let x∗ be an optimal solution. Let λ∗ be a Lagrange multiplier

vector satisfying Assumption 3.2. If we choose γ(t) according to (3.14) in Algorithm 3.2, then

for all t ≥ 1, we have

1.

f(x(t)) ≤ f(x∗) + 1
2γt‖x

∗ − x(−1)‖2.

2.

gk(x(t)) ≤ 1
t

2‖λ∗‖+
√

1
γ
‖x∗ − x(−1)‖+

√√√√ 1
γ

1
γ − β2 ‖g(x∗)‖

 .

where x∗ is an optimal solution of the problem (3.1)-(3.3) defined in Assumptions 3.1; λ∗ is a

Lagrange multiplier vector satisfying Assumption 3.2; and Lf is the constant defined in Assump-

tion 3.3. That is, Algorithm 3.2 ensures error decays like O(1/t) and provides an ε-approximate

solution with convergence time O(1/ε).
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Proof. Note that Corollary 3.1 provides a drift-plus-penalty bound similar to the one derived in

Lemma 3.4 for Algorithm 3.1. The only modification is replacing α with 1
2γ . Following the same

proof steps in Sections 3.3.2-3.3.4, we can prove the current theorem.

3.4.3 Smooth Constrained Convex Programs with Non-Linear g(x)

For the smooth constrained convex program (3.1)-(3.3) with possibly nonlinear g(x), the

following assumption is further assumed:

Assumption 3.4.

• There exists C > 0 such that ‖g(x)‖ ≤ C for all x ∈ X .

• There exists R > 0 such that ‖x− y‖ ≤ R for all x,y ∈ X .

This subsection proves that if the convex program (3.1)-(3.3) with possibly nonlinear g(x)

satisfies Assumptions 3.1-3.4, then it suffices to choose non-increasing step sizes γ(t) according

to (3.15) in Algorithm 3.2 to solve the convex program (3.1)-(3.3) with an O(1/ε) convergence

time.

Lemma 3.9. Consider the convex program (3.1)-(3.3) under Assumptions 3.1-3.4. If we choose

non-increasing γ(t) in Algorithm 3.2 according to (3.15), then we have

1.
∑t
τ=0

1
2γ(τ)

[
‖x∗ − x(τ − 1)‖2 − ‖x∗ − x(τ)‖2

]
≤ 1

2γ(t)R
2,∀t ≥ 0;

2.
∑t−1
τ=0 f(x(τ)) ≤ tf(x∗) + 1

2γ(t−1)R
2 + 1

2‖g(x(t− 1))‖2 − 1
2‖Q(t)‖2,∀t ≥ 1;

3. ‖Q(t+ 1)‖ ≤ 2‖λ∗‖+R
√

1
γ(t) + C,∀t ≥ 0;

where x∗ is an optimal solution of the problem (3.1)-(3.3) defined in Assumptions 3.1; λ∗ is

a Lagrange multiplier vector satisfying Assumption 3.2; and R and C are constants defined in

Assumption 3.4.

Proof.
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1. This is obviously true when t = 0. Fix t ≥ 1. Note that

t∑
τ=0

1
2γ(τ)

[
‖x∗ − x(τ − 1)‖2 − ‖x∗ − x(τ)‖2

]
= 1

2γ(0)‖x
∗ − x(−1)‖2 +

t−1∑
τ=0

[ 1
2γ(τ + 1) −

1
2γ(τ) ]‖x∗ − x(τ)‖2 − 1

2γ(t)‖x
∗ − x(t)‖2

(a)
≤ 1

2γ(0)R
2 +

t−1∑
τ=0

[ 1
2γ(τ + 1) −

1
2γ(τ) ]R2

= 1
2γ(t)R

2

where (a) follows because ‖x∗ − x(τ)‖ ≤ R,∀τ ≥ 0 by Assumption 3.4 and γ(τ + 1) ≤

γ(τ),∀τ ≥ 0 by (3.15).

2. Fix t ≥ 1. By Lemma 3.8, for all τ ∈ {0, 1, 2, . . .}, we have

∆(τ) + f(x(τ))

≤f(x∗) + 1
2γ(τ)

[
‖x∗ − x(τ − 1)‖2 − ‖x∗ − x(τ)‖2

]
+ 1

2
[
‖g(x(τ))‖2 − ‖g(x(τ − 1))‖2

]
+ 1

2
[
β2 + Lf + [Q(τ) + g(x(τ − 1))]TLg −

1
γ(τ)

]
‖x(τ)− x(τ − 1)‖2

(a)
≤f(x∗) + 1

2γ(τ)
[
‖x∗ − x(τ − 1)‖2 − ‖x∗ − x(τ)‖2

]
+ 1

2
[
‖g(x(τ))‖2 − ‖g(x(τ − 1))‖2

]
where (a) follows because each γ(τ) chosen according to (3.15) ensures β2 + Lf + [Q(τ) +

g(x(τ − 1))]TLg − 1
γ(τ) ≤ 0.

Summing over τ ∈ {0, 1, 2, . . . , t− 1} and rearranging terms yields

t−1∑
τ=0

f(x(τ))

≤tf(x∗) +
t−1∑
τ=0

1
2γ(τ)

[
‖x∗ − x(τ − 1)‖2 − ‖x∗ − x(τ)‖2

]
+ 1

2

t−1∑
τ=0

[
‖g(x(τ))‖2 − ‖g(x(τ − 1))‖2

]
−

t−1∑
τ=0

∆(τ)

(a)
≤ tf(x∗) + 1

2γ(t− 1)R
2 + 1

2‖g(x(t− 1))‖2 − 1
2‖g(x(−1))‖2 + 1

2‖Q(0)‖2 − 1
2‖Q(t)‖2

(b)
≤tf(x∗) + 1

2γ(t− 1)R
2 + 1

2‖g(x(t− 1))‖2 − 1
2‖Q(t)‖2
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where (a) follows from part 1 of this lemma and by recalling that ∆(τ) = 1
2‖Q(τ + 1)‖2 −

1
2‖Q(τ)‖2; and (b) follows because ‖Q(0)‖2 ≤ ‖g(x(−1))‖2 by part 3 in Lemma 3.1.

3. By part 2 of this lemma, we have

t∑
τ=0

f(x(τ)) ≤(t+ 1)f(x∗) + 1
2γ(t)R

2 + 1
2‖g(x(t))‖2 − 1

2‖Q(t+ 1)‖2

≤(t+ 1)f(x∗) + 1
2γ(t)R

2 + 1
2C

2 − 1
2‖Q(t+ 1)‖2 (3.26)

where (a) follows from ‖g(x(t))‖ ≤ C by Assumption 3.4. By Lemma 3.6, we have

t∑
τ=0

f(x(τ)) ≥ (t+ 1)f(x∗)− ‖λ∗‖‖Q(t+ 1)‖ (3.27)

Combining (3.26) and (3.27), cancelling common terms and rearranging terms yields

1
2‖Q(t+ 1)‖2 − ‖λ∗‖‖Q(t+ 1)‖ − 1

2γ(t)R
2 − 1

2C
2 ≤ 0

⇒
[
‖Q(t+ 1)‖ − ‖λ∗‖

]2
≤ ‖λ∗‖2 + 1

γ(t)R
2 + C2

⇒‖Q(t+ 1)‖ ≤ ‖λ∗‖+

√
‖λ∗‖2 + 1

γ(t)R
2 + C2

(a)⇒‖Q(t+ 1)‖ ≤ 2‖λ∗‖+

√
1
γ(t)R+ C (3.28)

where (a) follows from the basic inequality
√
z1 + z2 + z3 ≤

√
z1 + √z2 + √z3 for any

z1, z2, z3 ≥ 0.

Lemma 3.10. Consider the convex program (3.1)-(3.3) with possibly nonlinear gk(x) under

Assumptions 3.1-3.4. If we choose non-increasing γ(t) according to (3.15) in Algorithm 3.2, then

γ(t) ≥ γmin,∀t ≥ 0

with constant

γmin = 1(√
β2 + Lf + 2‖λ∗‖‖Lg‖+ 2C‖Lg‖+R‖Lg‖

)2 (3.29)
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where β,λ∗, Lf ,Lg R and C are constants defined in Assumptions 3.1-3.4.

Proof. This lemma can be proven by induction as follows. By (3.15), we have

γ(0) = 1
β2 + Lf + [Q(0) + g(x(−1))]TLg

(a)
≥ 1
β2 + Lf + ‖Q(0) + g(x(−1))‖‖Lg‖

(b)
≥ 1
β2 + Lf + 2C‖Lg‖

≥γmin

where (a) follows from the Cauchy-Schwarz inequality; and (b) follows from ‖Q(0)+g(x(−1))‖ ≤

‖Q(0)‖ + ‖g(x(−1))‖ ≤ 2‖g(x(−1))‖ ≤ 2C where the second inequality follows from part 3 of

Lemma 3.1 and the third inequality follows from Assumption 3.4. Thus, we have γ(0) ≥ γmin.

Now assume γ(t) ≥ γmin holds for t = t0 and consider t = t0 + 1. By (3.15), γ(t0 + 1) is given

by

γ(t0 + 1) = min
{
γ(t0), 1

β2 + Lf + [Q(t0 + 1) + g(x(t0))]TLg

}
Since γ(t0) ≤ γmin by the induction hypothesis, to prove γ(t0 + 1) ≥ γmin, it remains to prove

1
β2 + Lf + [Q(t0 + 1) + g(x(t0))]TLg

≥ γmin

By part 3 of Lemma 3.9, we have

‖Q(t0 + 1)‖ ≤2‖λ∗‖+R

√
1

γ(t0) + C

(a)
≤2‖λ∗‖+R

√
1

γmin + C (3.30)
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where (a) follows the hypothesis in the induction. Thus, we have

1
β2 + Lf + [Q(t0 + 1) + g(x(t0))]TLg

(a)
≥ 1
β2 + Lf + ‖Q(t0 + 1) + g(x(t0))‖‖Lg‖

(b)
≥ 1
β2 + Lf + ‖Q(t0 + 1)‖‖Lg‖+ ‖g(x(t0))‖‖Lg‖

(c)
≥ 1

β2 + Lf +
[
2‖λ∗‖+R

√
1

γmin + C]‖Lg‖+ C‖Lg‖

= 1

β2 + Lf + 2‖λ∗‖‖Lg‖+ 2C‖Lg‖+R‖Lg‖
√

1
γmin

(d)= 1
β2 + Lf + 2‖λ∗‖‖Lg‖+ 2C‖Lg‖+ (R‖Lg‖)2 +R‖Lg‖

√
β2 + Lf + 2‖λ∗‖‖Lg‖+ 2C‖Lg‖

(e)
≥ 1(√

β2 + Lf + 2‖λ∗‖‖Lg‖+ 2C‖Lg‖+R‖Lg‖
)2

=γmin

where (a) follows from the Cauchy-Schwarz inequality; (b) follows from the triangle inequality;

(c) follows from (3.30) and ‖g(x(t0))‖ ≤ C by Assumption 3.4; (d) follows by substituting

γmin = 1[√
β2+Lf+2‖λ∗‖‖Lg‖+2C‖Lg‖+R‖Lg‖

]2 ; and (e) follow from the basic inequality z2
1 + z2

2 +

z1z2 ≤ (z1 + z2)2 for any z1, z2 ≥ 0.

Thus, we have γ(t0 + 1) ≥ γmin. This lemma follows by induction.

The next theorem summarizes the O(1/ε) convergence time of Algorithm 3.2 for the smooth

constrained convex program (3.1)-(3.3) with possibly nonlinear gk(x).

Theorem 3.5. Consider the convex program (3.1)-(3.3) with possibly nonlinear gk(x) under

Assumptions 3.1- 3.4. Let x∗ be an optimal solution and λ∗ be a Lagrange multiplier vector

satisfying Assumption 3.2. If we choose non-increasing γ(t) according to (3.15) in Algorithm

3.2, then for all t ≥ 1, we have

1.

f(x(t)) ≤ f(x∗) + 1
t

R2

2γmin .

2.

gk(x(t)) ≤ 1
t

(
‖λ∗‖+R

√
1

γmin + C
)
,∀k ∈ {1, 2, . . . ,m}.
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where γmin is the constant defined in Lemma 3.10; x∗ is an optimal solution of the problem

(3.1)-(3.3) defined in Assumptions 3.1; λ∗ is a Lagrange multiplier vector satisfying Assumption

3.2; and R and C are constants defined in Assumption 3.4. That is, Algorithm 3.2 ensures error

decays like O(1/t) and provides an ε-approximate solution with convergence time O(1/ε).

Proof.

1. Fix t ≥ 1. By part 2 of Lemma 3.9, we have

t−1∑
τ=0

f(x(τ)) ≤tf(x∗) + 1
2γ(t− 1)R

2 + 1
2‖g(x(t− 1))‖2 − 1

2‖Q(t)‖2

(a)
≤ tf(x∗) + 1

2γminR
2

where (a) follows from γ(t − 1) ≥ γmin by Lemma 3.10 and ‖Q(t)‖ ≥ ‖g(x(t − 1))‖ by

Lemma 3.1.

Recall that x(t) = 1
t

∑t−1
τ=0 x(τ). Dividing both sides by t and using Jensen’s inequality for

convex function f(x) yields f(x(t)) ≤ f(x∗) + 1
t

R2

2γmin .

2. Fix t ≥ 1 and k ∈ {1, 2, . . . ,m}. Recall that x(t) = 1
t

∑t−1
τ=0 x(τ). Thus,

gk(x(t))
(a)
≤ 1

t

t−1∑
τ=0

gk(x(τ))

(b)
≤ gk(t)

t

≤ ‖Q(t)‖
t

(c)
≤ 1

t

(
2‖λ∗‖+R

√
1

γmin + C
)
,

where (a) follows from the convexity of gk(x), k ∈ {1, 2, . . . ,m} and Jensen’s inequality;

(b) follows from Lemma 3.2; and (c) follows because ‖Q(t)‖ ≤ 2‖λ∗‖+ R
√

1
γ(t−1) + C by

part 3 of Lemma 3.9 and γ(t− 1) ≥ γmin by Lemma 3.10.
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3.5 Chapter Summary

This chapter considers two new Lagrangian methods to constrained solve convex programs.

The first algorithm can solve general convex programs with possibly non-differentiable objective

or constraint functions. and has a parallel implementation when the objective and constraint

functions are separable. The second algorithm can solve convex programs with smooth objective

and constraint functions. At each iteration, the second algorithm updates the primal variable

x(t) using a simple projected gradient update, which can be distributively implemented even if

the objective or constraint functions are not separable. Both algorithms are proven to have a

fast O( 1
ε ) convergence time.
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Chapter 4

New Backpressure Algorithms for Joint Rate Control and

Routing

In multi-hop data networks, the problem of joint rate control and routing is to accept data

into the network to maximize certain utilities and to make routing decisions at each node such

that all accepted data are delivered to intended destinations without overflowing any queue in

intermediate nodes. The original backpressure algorithm proposed in the seminal work [TE92] by

Tassiulas and Ephremides addresses this problem by assuming that incoming data are given and

are inside the network stability region and develops a routing strategy to deliver all incoming

data without overflowing any queue. In the context of [TE92], there is essentially no utility

maximization consideration in the network. The backpressure algorithm is further extended by

a drift-plus-penalty technique to deal with both utility maximization and queue stability [Nee03,

GNT06, Nee10]. Alternative extensions for both utility maximization and queue stabilization

are developed in [ES06, Sto05, LS04, LMS06]. The above extended backpressure algorithms have

different dynamics and/or may yield different utility-delay tradeoff results. However, all of them

rely on “backpressure” quantities, which are the differential backlogs between neighboring nodes.

It has been observed in [NMR05, ES06, LS04, LSXS15] that the drift-plus-penalty and other

alternative algorithms can be interpreted as first order Lagrangian methods for constrained op-

timization. In addition, these backpressure algorithms follow certain fundamental utility-delay

tradeoffs. For instance, the primal-dual type backpressure algorithm in [ES06] achieves an O(ε)

utility optimality gap with an O(1/ε2) queue length. That is, a small utility optimality gap

(corresponding to a small ε) is available only at the cost of a large queue length. The drift-

plus-penalty backpressure algorithm [Nee10], which has the best utility-delay tradeoff among all
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existing first order Lagrangian methods for general networks, can only achieve an O(ε) utility

optimality gap with an O(1/ε) queue length. Under certain restrictive assumptions over the

network, a better [O(ε), O(log(1/ε))] tradeoff is achieved via an exponential Lyapunov function

in [Nee06], and an [O(ε), O(log2(1/ε))] tradeoff is achieved via a LIFO-backpressure algorithm in

[HMNK13].

Fundamental lower bounds on utility-delay tradeoffs in [BG02, Nee07, ES12, Nee16, Nee06]

show that, for various stochastic network settings, a large queue delay is unavoidable if a small

utility optimality gap is demanded. These works consider certain hard problems with stochastic

behavior. It leaves open the question of whether or not performance can be improved for networks

that fall outside these hard cases. The current chapter investigates network flow problems that

can be written as (deterministic) convex programs, which are not restricted to the prior lower

bounds. We pursue the question of whether or not improved tradeoffs are possible. Can optimal

utility be approached with constant queue sizes?

Recently, there have been many attempts in obtaining new variations of backpressure algo-

rithms for deterministic network flow problems by applying Newton’s method to the Lagrangian

dual function. In the recent work [LSXS15], the authors develop a Newton’s method for joint

rate control and routing. However, the utility-delay tradeoff in [LSXS15] is still [O(ε), O(1/ε2)];

and the algorithm requires a centralized projection step although Newton directions can be ap-

proximated in a distributed manner. Work [WOJ13] considers a network flow control problem

where the path of each flow is given (and hence there is no routing part in the problem), and pro-

poses a decentralized Newton based algorithm for rate control. Work [ZRJ13] considers network

routing without an end-to-end utility and only shows the stability of the proposed Newton based

backpressure algorithm. All of the above Netwon’s method based algorithms rely on distributed

approximations for the inverse of Hessians, whose computations still require certain coordinations

for the local information updates and propagations and do not scale well with the network size.

In contrast, the first order Lagrangian methods do not need global network topology information.

Rather, each node only needs the queue length information of its neighbors.

In this chapter, we propose two new backpressure algorithms that are as simple as the ex-

isting algorithms in [Nee10, ES06, LS04] but have a better utility-delay tradeoff. The first new

backpressure algorithm is originally developed in our paper [YN17b] and the second new back-

pressue algorithm is developed in our technical report [YN17c]. The first algorithm is almost a
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straightforward application of Algorithm 3.1, the new Lagrangian method developed in Chapter

3 for constrained convex programs, to the network utility maximization with node flow balance

constraints. However, this backpressure algorithm involves a global algorithm parameter that

depends on the number of sessions and the number of links in the underlying network. The

second algorithm is developed by adapting the general Lagrangian method developed in Chapter

3 for the specific network optimization problem such that only local algorithm parameters, which

can be locally determined by each node, are used.

The new backpressue algorithms achieve a vanishing utility optimality gap that decays like

O(1/t), where t is the number of iterations. They also guarantee that the queue length at each

node is always bounded by a fixed constant of the same order as the optimal Lagrange multiplier

of the network optimization problem. This improves on the utility-delay tradeoffs of prior work.

In particular, it improves the steady-state [O(ε), O(1/ε2)] utility-delay tradeoff in [ES06] and

the [O(ε), O(1/ε)] utility-delay tradeoff of the drift-plus-penalty algorithm in [Nee10], both of

which yield an unbounded queue length to have a vanishing utility optimality gap. Indeed, the

steady-state utility-delay tradeoff of our algorithm is [0, O(1)]. They are the first algorithms to

achieve zero utility gap and finite queue lengths for joint rate control and routing in multi-hop

data networks. The convergence time to reach this limiting performance is also faster than prior

work.

The new backpressure algorithms differ from existing first order backpressure algorithms in

the following aspects:

1. The “backpressure” quantities in this paper are with respect to newly introduced weights.

These are different from queues used in other backpressure algorithms, but can still be

locally tracked and updated.

2. The rate control and routing decision rule involves a quadratic term that is similar to a

term used in proximal algorithms [PB13].

Note that the benefit of introducing a quadratic term in network optimization has been

observed in [LS06]. Work [LS06] developed a distributive rate control algorithm for network

utility maximization (NUM) problems with given routing paths that can be reformulated as a

special case of the problem treated in this paper. The algorithm of [LS06] considers a fixed

set of predetermined paths for each session and does not scale well when treating all (typically
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exponentially many) possible paths of a general network. The algorithm proposed in [LS06] is not

a backpressure type and does not have queue length or convergence time guarantees. The source

session rates yielded during the execution of that algorithm can violate link capacity constraints

and hence are infeasible before convergence.

4.1 System Model and Problem Formulation

Consider a slotted data network with normalized time slots t ∈ {0, 1, 2, . . .}. This network is

represented by a graph G = (N ,L), where N is the set of nodes and L ⊆ N × N is the set of

directed links. Let |N | = N and |L| = L. This network is shared by F end-to-end sessions denoted

by a set F . For each end-to-end session f ∈ F , the source node Src(f) and destination node

Dst(f) are given but the routes are not specified. Each session f has a continuous and concave

utility function Uf (xf ) that represents the “satisfaction” received by accepting xf amount of

data for session f into the network at each slot. Unlike [ES06, LSXS15] where Uf (·) is assumed

to be differentiable and strongly concave, this paper considers general concave utility functions

Uf (·), including those that are neither differentiable nor strongly concave. Formally, each utility

function Uf is defined over an interval dom(Uf ), called the domain of the function. It is assumed

throughout that either dom(Uf ) = [0,∞) or dom(Uf ) = (0,∞), the latter being important for

proportionally fair utilities [KMT98] Uf (x) = log(x) that have singularities at x = 0 .

Denote the capacity of link l as Cl and assume it is a fixed and positive constant.1 Define

µ
(f)
l as the amount of session f ’s data routed at link l that is to be determined by our algorithm.

Note that in general, the network may be configured such that some session f is forbidden to

use link l. For each link l, define Sl ⊆ F as the set of sessions that are allowed to use link l. The

case of unrestricted routing is treated by defining Sl = F for all links l.

Note that if l = (n,m) with n,m ∈ N , then µ
(f)
l and Cl can also be respectively written as

µ
(f)
(n,m) and C(n,m). For each node n ∈ N , denote the sets of its incoming links and outgoing

links as I(n) and O(n), respectively. Note that xf ,∀f ∈ F and µ
(f)
l ,∀l ∈ L,∀f ∈ F are the

decision variables of a joint rate control and routing algorithm. If the global network topology

information is available, the optimal joint rate control and routing can be formulated as the

1As stated in [LSXS15], this is a suitable model for wireline networks and wireless networks with fixed trans-
mission power and orthogonal channels.
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following multi-commodity network flow problem:

max
xf ,µ

(f)
l

∑
f∈F

Uf (xf ) (4.1)

s.t. xf1{n=Src(f)} +
∑
l∈I(n)

µ
(f)
l ≤

∑
l∈O(n)

µ
(f)
l ,∀f ∈ F ,∀n ∈ N \ {Dst(f)} (4.2)

∑
f∈F

µ
(f)
l ≤ Cl,∀l ∈ L, (4.3)

µ
(f)
l ≥ 0,∀l ∈ L,∀f ∈ Sl, (4.4)

µ
(f)
l = 0,∀l ∈ L,∀f ∈ F \ Sl, (4.5)

xf ∈ dom(Uf ),∀f ∈ F (4.6)

where 1{·} is an indicator function; (4.2) represents the node flow conservation constraints relaxed

by replacing equalities with inequalities, meaning that the total rate of flow f into node n is less

than or equal to the total rate of flow f out of the node (since, in principle, we can always send

fake data for departure links when the inequality is loose); and (4.3) represents link capacity

constraints. Note that for each flow f , there is no constraint (4.2) at its destination node Dst(f)

since all incoming data are consumed by this node.

The above formulation includes network utility maximization with fixed paths as special

cases. In the case when each session only has one single given path, e.g., the network utility

maximization problem considered in [LL99], we could modify the sets Sl used in constraints (4.4)

and (4.5) to reflect this fact. For example, if link l1 is only used for sessions f1 and f2, then

Sl1 = {f1, f2}. Similarly, the case [LS06] where each flow is restricted to using links from a set of

predefined paths can be treated by modifying the sets Sl accordingly. See Section 4.6.1 for more

discussions.

The solution to the problem (4.1)-(4.6) corresponds to the optimal joint rate control and

routing. However, to solve this convex program at a single computer, we need to know the

global network topology and the solution is a centralized one, which is not practical for large

data networks. As observed in [NMR05, ES06, LS04, LSXS15], various versions of backpressure

algorithms can be interpreted as distributed solutions to the problem (4.1)-(4.6) from first order

Lagrangian methods.

Two mild assumptions are made concerning the problem (4.1)-(4.6).
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Assumption 4.1 (Feasibility). The problem (4.1)-(4.6) has at least one optimal solution vector

[x∗f ;µ(f),∗
l ]f∈F,l∈L.

Assumption 4.2 (Existence of Lagrange Multipliers). Condition 1.1 holds for the convex pro-

gram (4.1)-(4.6). Specifically, define convex set

C = {[xf ;µ(f)
l ]f∈F,l∈L : (4.3)-(4.6) hold}.

Assume there exists a Lagrange multiplier vector λ∗ = [λ(f),∗
n ]f∈F,n∈N\{Dst(f)} ≥ 0 such that

q(λ∗) = max{(4.1) : (4.2)-(4.6)}

where q(λ) = sup[xf ;µ(f)
l

]∈C

{∑
f∈F

Uf (xf ) −
∑
f∈F

∑
n∈N\{Dst(f)}

λ(f)
n

[
xf1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l −∑

l∈O(n)

µ
(f)
l

]}
is the Lagrangian dual function of the problem (4.1)-(4.6) by treating (4.3)-(4.6)

as a convex set constraint.

Assumptions 4.1 and 4.2 hold in most cases of interest. For example, the Slater condition

guarantees Assumption 4.2. Since the constraints (4.2)-(4.6) are linear, Proposition 6.4.2 in

[BNO03] ensures that Lagrange multipliers exist whenever constraints (4.2)-(4.6) are feasible

and when the utility functions Uf are either defined over open sets (such as Uf (x) = log(x) with

dom(Uf ) = (0,∞)) or can be concavely extended to open sets, meaning that there is an ε > 0

and a concave function Ũf : (−ε,∞)→ R such that Ũf (x) = Uf (x) whenever x ≥ 0.2

Fact 4.1 (Replacing Inequality with Equality). If Assumption 4.1 holds, the problem (4.1)-(4.6)

has an optimal solution vector [x∗f ;µ(f),∗
l ]f∈F,l∈L such that all constraints (4.2) take equalities.

Proof. Note that each µ(f)
l can appear on the left side in at most one constraint (4.2) and appear

on the right side in at most one constraint (4.2). Let [x∗f ;µ(f),∗
l ]f∈F,l∈L be an optimal solution

vector such that at least one inequality constraint (4.2) is loose. Note that we can reduce the

value of µ(f),∗
l on the right side of a loose (4.2) until either that constraint holds with equality,

or until µ(f),∗
l reduces to 0. The objective function value does not change, and no constraints are

violated. We can repeat the process until all inequality constraints (4.2) are tight.

2If dom(Uf ) = [0,∞), such concave extension is possible if the right-derivative of Uf at x = 0 is finite (such as
for Uf (x) = log(1+x) or Uf (x) = min[x, 3]). Such an extension is impossible for the example Uf (x) =

√
x because

the slope is infinite at x = 0. Nevertheless, Lagrange multipliers often exist even for these utility functions, such
as when the Slater condition holds [BNO03].
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4.2 New Backpressure Algorithms

4.2.1 Discussion of Various Queueing Models

At each node, an independent queue backlog is maintained for each session. At each slot t,

let xf (t) be the source session rates; and let µ(f)
l (t) be the link session rates. Some prior work

enforces the constraints (4.2) via virtual queues Y (f)
n (t) of the following form:

Y (f)
n (t+ 1) = max

{
Y (f)
n (t) + xf (t)1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l (t)−

∑
l∈O(n)

µ
(f)
l (t), 0

}
. (4.7)

While this virtual equation is a meaningful approximation, it differs from reality in that new

injected data are allowed to be transmitted immediately, or equivalently, a single packet is allowed

to enter and leave many nodes within the same slot. Further, there is no clear connection between

the virtual queues Y (f)
n (t) in (4.7) and the actual queues in the network. Indeed, it is easy to

construct examples that show there can be an arbitrarily large difference between the Y (f)
n (t)

value in (4.7) and the physical queue size in actual networks (see Section 4.6.2 for an illustrating

example).

An actual queueing network has queues Z(f)
n (t) with the following dynamics:

Z(f)
n (t+ 1) ≤max

{
Z(f)
n (t)−

∑
l∈O(n)

µ
(f)
l (t), 0

}
+ xf (t)1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l (t). (4.8)

This is faithful to actual queue dynamics and does not allow data to be retransmitted over

multiple hops in one slot. Note that (4.8) is an inequality because the new arrivals from other

nodes may be strictly less than
∑
l∈I(n) µ

(f)
l (t) because those other nodes may not have enough

backlog to send. The model (4.8) allows for any decisions to be made to fill the transmission

values µ(f)
l (t) in the case that Z(f)

n (t) ≤
∑
l∈O(n) µ

(f)
l (t), provided that (4.8) holds.

This chapter develops new algorithms that converges to the optimal utility defined by the

problem (4.1)-(4.6), and that produce worst-case bounded queues on the actual queueing network,

that is, with actual queues that evolve as given in (4.8). To begin, it is convenient to introduce
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the following virtual queue equation

Q(f)
n (t+ 1) =Q(f)

n (t)−
∑

l∈O(n)

µ
(f)
l (t) + xf (t)1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l (t), (4.9)

where Q(f)
n (t) represents a virtual queue value associated with session f at node n. At first

glance, this model (4.9) appears to be only an approximation, perhaps even a worse approxima-

tion than (4.7), because it allows the Q(f)
n (t) values to be negative. Indeed, we use Q(f)

n (t) only

as virtual queues to inform the algorithm and do not treat them as actual queues. However, this

paper shows that using these virtual queues to choose the µ(t) decisions ensures not only that

the desired constraints (4.2) are satisfied, but that the resulting µ(t) decisions create bounded

queues Z(f)
n (t) in the actual network, where the actual queues evolve according to (4.8). In

short, our algorithms can be faithfully implemented with respect to actual queueing networks,

and converge to exact optimality on those networks.

The next lemma shows that if an algorithm can guarantee virtual queues Q(f)
n (t) defined in

(4.9) are bounded, then actual physical queues satisfying (4.8) are also bounded.

Lemma 4.1. Consider a network flow problem described by the problem (4.1)-(4.6). For all

l ∈ L and f ∈ F , let µ(f)
l (t), xf (t) be decisions yielded by a dynamic algorithm. Suppose Y (f)

n (t),

Z
(f)
n (t), Q(f)

n (t) evolve by (4.7)-(4.9) with initial conditions V (f)
n (0) = Z

(f)
n (0) = Q

(f)
n (0) = 0. If

there exists a constant B > 0 such that |Q(f)
n (t)| ≤ B, ∀t, then

1. Z(f)
n (t) ≤ 2B +

∑
l∈O(n) Cl for all t ∈ {0, 1, 2, . . .}.

2. Y (f)
n (t) ≤ 2B +

∑
l∈O(n) Cl for all t ∈ {0, 1, 2, . . .}.

Proof.

1. Fix f ∈ F , n ∈ N \ {Dst(f)}. Define an auxiliary virtual queue Q̂(f)
n (t) that is initialized

by Q̂
(f)
n (0) = B +

∑
l∈O(n) Cl and evolves according to (4.9). It follows that Q̂(f)

n (t) =

Q
(f)
n (t) + B +

∑
l∈O(n) Cl,∀t. Since by assumption Q

(f)
n (t) ≥ −B, ∀t, we have Q̂(f)

n (t) ≥∑
l∈O(n) Cl ≥

∑
l∈O(n) µ

(f)
l (t),∀t. This implies that Q̂(f)

n (t) also satisfies:

Q̂(f)
n (t+ 1) = max

{
Q̂(f)
n (t)−

∑
l∈O(n)

µ
(f)
l (t), 0

}
+ xf (t)1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l (t),∀t,

(4.10)
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which is identical to (4.8) except the inequality is replaced by an equality. Since Z(f)
n (0) =

0 < Q̂
(f)
n (0) and Q̂

(f)
n (t) satisfies (4.10), it follows by inductions that Z(f)

n (t) ≤ Q̂(f)
n (t),∀t.

Since Q̂
(f)
n (t) = Q

(f)
n (t) + B +

∑
l∈O(n) Cl,∀t, and Q

(f)
n (t) ≤ B, ∀t, we have Q̂

(f)
n (t) ≤

2B +
∑
l∈O(n) Cl,∀t. It follows that Z(f)

n (t) ≤ 2B +
∑
l∈O(n) Cl,∀t.

2. Fix f ∈ F , n ∈ N \ {Dst(f)}. By (4.10),

Q̂(f)
n (t+ 1)

= max
{
Q̂(f)
n (t)−

∑
l∈O(n)

µ
(f)
l (t), 0

}
+ xf (t)1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l (t)

= max
{
Q̂(f)
n (t) + xf (t)1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l (t)−

∑
l∈O(n)

µ
(f)
l (t), xf (t)1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l (t)

}
(a)
≥ max

{
Q̂(f)
n (t) + xf (t)1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l (t)−

∑
l∈O(n)

µ
(f)
l (t), 0

}

where (a) follows from the fact that µ(f)
l (t), xf (t),∀f, l, t are non-negative. Note that the

right side of the above equation is identical to the right side of (4.7) except that Y (f)
n (t)

is rewritten as Q̂(f)
n (t). Since Y (f)

n (0) = 0 < Q̂
(f)
n (0), by induction, we have Y (f)

n (t) ≤

Q̂
(f)
n (t),∀t. Since Q̂(f)

n (t) = Q
(f)
n (t) + B +

∑
l∈O(n) Cl,∀t and Q

(f)
n (t) ≤ B, ∀t, we have

Q̂
(f)
n (t) ≤ 2B +

∑
l∈O(n) Cl,∀t. It follows that Y (f)

n (t) ≤ 2B +
∑
l∈O(n) Cl,∀t.

4.2.2 New Backpressure Algorithms

In this subsection, we propose two new backpressure algorithms that yield source session rates

xf (t) and link session rates µ(f)
l (t) at each slot such that the physical queues for each session at

each node are bounded by a constant and the time average utility satisfies

1
t

t−1∑
τ=0

∑
f∈F

Uf (xf (t)) ≥
∑
f∈F

Uf (x∗f )−O(1
t
),∀t,

where x∗f are from the optimal solution to (4.1)-(4.6). Note that Jensen’s inequality further

implies that

∑
f∈F

Uf
(1
t

t−1∑
τ=0

xf (τ)
)
≥
∑
f∈F

Uf (x∗f )−O(1
t
),∀t.
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The two backpressure algorithm are described in Algorithm 4.1 and Algorithm 4.2, respec-

tively. Similar to existing backpressure algorithms, the updates in both algorithms at each node

n are fully distributed and only depend on weights at itself and its neighbor nodes. Unlike ex-

isting backpressure algorithms, the weights used to update decision variables xf (t) and µ
(f)
l (t)

are not the virtual queues Q(f)
n (t) themselves, rather, they are augmented values W (f)

n (t) equal

to the sum of the virtual queues and the amount of net injected data in the previous slot t− 1.

In addition, the updates involve an additional quadratic term, which is similar to a term used in

proximal algorithms [PB13].

The only difference between Algorithm 4.1 and Algorithm 4.2 is that a single global parameter

α is used in Algorithm 4.1 while each node n in Algorithm 4.2 owns its own local parameter αn. In

fact, Algorithm 4.1 is derived from the direct application of Algorithm 3.1, developed for general

constrained convex programs in Chapter 3, to the problem (4.1)-(4.6) by treating the constraints

(4.3)-(4.6) as a convex set constraint and by replacing linear inequality constraints (4.2) with

linear equality constraints. Note that by Fact 4.1, to solve the problem (4.1)-(4.6), we can replace

linear inequality constraints (4.2) with linear equality constraints without loss of optimality. In

Section 3.3.5, it is mentioned that the equation (3.12) can be used as the virtual queue update

equation for linear equality constraints in a convex program. Note that the equation (3.12) in

the context of the problem (4.1)-(4.6) is identical to (4.9). Since (4.1) and (4.2) are separable,

the primal update in Algorithm 3.1 can be decomposed into independent subproblems. Thus, it

is easy to observe that Algorithm 4.1 is simply a distributive implementation of Algorithm 3.1

to solve the problem (4.1)-(4.6).

The global parameter α in Algorithm 4.1 is corresponding to the same parameter α in Algo-

rithm 3.1. The results developed in Chapter 3 require α > 1
2β

2, where β is the Lipschitz modulus

of the vectorized constraints (4.2). Define x = [xf ]f∈F as the stacked column vector of all source

session rates and µ = [µ(f)
l ]f∈F,l∈L as the stacked column vector of all link session rates. Note

that x has length |F| and µ has length |L||F|. Thus, the constraints (4.2) can be vectorized as

g(x,µ) = Ax + Rµ ≤ 0, (4.11)
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where A =


A1
...

A|F|

 is a |F|(|N | − 1) × |F| source-node incidence matrix such that each sub-

matrix Af is a {0, 1} matrix of size (|N |− 1)×|F| whose (n, f)-th entry is equal to 1 if and only

if node n is the source node of session f ; and R = Diag{R1, . . . ,R|F|} is a block diagonal matrix

with R1, . . . ,R|F| on its diagonal such that each sub-matrix Rf is a {±1, 0} node-arc incidence

matrix of size (|N | − 1) × |L| whose (n, l)-th entry is equal to 1 if and only if link l flows into

node n and is equal to −1 if and only if link l flows out of node n. The Lipschitz modulus of the

vectorized version of the constraints (4.2) is summarized in the next Lemma.

Lemma 4.2. The vector function g(x,µ) = Ax + Rµ is Lipschitz continuous with modulus

β =
√
|F|+

√
2|L|. (4.12)

Proof. Define column vector y = [x; µ] and B = [A,R]. The constraints (4.2) can be further

rewritten as g(y) = By ≤ 0. Note that linear function g(y) = By is Lipschitz continuous with

modulus ‖B‖2 where ‖B‖2 is the induced matrix l2 norm defined as ‖B‖2 = supx6=0{
‖Bx‖
‖x‖ }.

Applying the matrix norm inequalities (for block matrices) ‖[H1,H2]‖2 ≤ ‖H1‖2 + ‖H2‖2

and ‖Diag{H1, . . . ,HK}‖2 ≤ max1≤k≤K{‖Hk‖2} yields ‖B‖2 ≤ ‖A‖2 + ‖R‖2 ≤ ‖A‖2 +

maxf∈F{‖Rf‖2}. Note that exactly |F| entries in the matrix A are 1 and all the other en-

tries are 0; and each matrix Rf has at most 2|L| non-zero entries whose absolute values are 1.

By the fact ‖H‖2 ≤
√∑m

i=1
∑n
j=1 |Hij | for any matrix H ∈ Rm×n, we know ‖A‖2 ≤

√
|F| and

‖Rf‖2 ≤
√

2|L|,∀f ∈ F . It follows that ‖B‖2 ≤
√
|F|+

√
2|L|.

To determine a large enough value of the parameter α in Algorithm 4.1 to guarantee its

convergence, we need to known the number of sessions and the number links in the network. In

many applications, these two values may not be globally known at each node. In addition, the

value given by α > 1
2β

2 = 1
2 (
√
|F| +

√
2|L|)2 can be unnecessarily large for certain network

topologies. (That is, the Lipschitz modulus in Lemma 4.2 can be loose in many cases since it is

derived without taking the network topology into consideration.) Recall that by the results in

Chapter 3, an unnecessarily large value of α in Algorithm 3.1 incurs slow convergence.

To resolve the above issues of Algorithm 4.1, we further develop Algorithm 4.2 by adapting

the general Lagrangian methods developed in Chapter 3 for the multi-commodity network flow
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problem (4.1)-(4.6). The complete analysis of Algorithm 4.1 is presented in our paper [YN17b]. In

the remainder of this chapter, we analyze the performance of Algorithm 4.2; and show that each

node n in Algorithm 4.2 determines its own parameter αn based on local link connections and

the value of each αn is significantly smaller than the global parameter α required in Algorithm

4.1.

Algorithm 4.1 New Backpressure Algorithm with a Global Parameter
Let α > 0 be a constant parameter. Initialize xf (−1) = 0, µ(f)

l (−1) = 0,∀f ∈ F ,∀l ∈ L and
Q

(f)
n (0) = 0,∀n ∈ N ,∀f ∈ F . At each time t ∈ {0, 1, 2, . . .}, each node n does the following:

• For each f ∈ F , if node n is not the destination node of session f , i.e., n 6= Dst(f), then
define weight W (f)

n (t):

W (f)
n (t) =Q(f)

n (t) + xf (t− 1)1{n=Src(f)} +
∑
l∈I(n)

µ
(f)
l (t− 1)−

∑
l∈O(n)

µ
(f)
l (t− 1),

If node n is the destination node, i.e., n = Dst(f), then define W (f)
n (t) = 0. Notify neighbor

nodes (nodes k that can send session f to node n, i.e., ∀k such that f ∈ S(k,n)) about this
new W

(f)
n (t) value.

• For each f ∈ F , if node n is the source node of session f , i.e., n = Src(f), choose xf (t) as
the solution to

max
xf

Uf (xf )−W (f)
n (t)xf − α

[
xf − xf (t− 1)

]2
s.t. xf ∈ dom(Uf )

• For all (n,m) ∈ O(n), choose {µ(f)
(n,m)(t),∀f ∈ F} as the solution to the following convex

program:

max
µ

(f)
(n,m)

∑
f∈F

[
W (f)
n (t)−W (f)

m (t)
]
µ

(f)
(n,m)−α

∑
f∈F

[
µ

(f)
(n,m) − µ

(f)
(n,m)(t− 1)

]2
s.t.

∑
f∈F

µ
(f)
(n,m) ≤ C(n,m)

µ
(f)
(n,m) ≥ 0,∀f ∈ S(n,m)

µ
(f)
(n,m) = 0,∀f 6∈ S(n,m)

• For each f ∈ F , if node n is not the destination of f , i.e., n 6= Dst(f), update virtual queue
Q

(f)
n (t+ 1) by (4.9).
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Algorithm 4.2 New Backpressure Algorithm with Local Parameters
Let αn > 0,∀n ∈ N be constant parameters. Initialize xf (−1) = 0, µ(f)

l (−1) = 0,∀f ∈ F ,∀l ∈ L
and Q(f)

n (0) = 0,∀n ∈ N ,∀f ∈ F . At each time t ∈ {0, 1, 2, . . .}, each node n does the following:

• For each f ∈ F , if node n is not the destination node of session f , i.e., n 6= Dst(f), then
define weight W (f)

n (t):

W (f)
n (t) =Q(f)

n (t) + xf (t− 1)1{n=Src(f)} +
∑
l∈I(n)

µ
(f)
l (t− 1)−

∑
l∈O(n)

µ
(f)
l (t− 1), (4.13)

If node n is the destination node, i.e., n = Dst(f), then define W (f)
n (t) = 0. Notify neighbor

nodes (nodes k that can send session f to node n, i.e., ∀k such that f ∈ S(k,n)) about this
new W

(f)
n (t) value.

• For each f ∈ F , if node n is the source node of session f , i.e., n = Src(f), choose xf (t) as
the solution to

max
xf

Uf (xf )−W (f)
n (t)xf − αn

[
xf − xf (t− 1)

]2 (4.14)

s.t. xf ∈ dom(Uf ) (4.15)

• For all (n,m) ∈ O(n), choose {µ(f)
(n,m)(t),∀f ∈ F} as the solution to the following convex

program:

max
µ

(f)
(n,m)

∑
f∈F

[
W (f)
n (t)−W (f)

m (t)
]
µ

(f)
(n,m)−

(
αn + αm

)∑
f∈F

[
µ

(f)
(n,m) − µ

(f)
(n,m)(t− 1)

]2 (4.16)

s.t.
∑
f∈F

µ
(f)
(n,m) ≤ C(n,m) (4.17)

µ
(f)
(n,m) ≥ 0,∀f ∈ S(n,m) (4.18)

µ
(f)
(n,m) = 0,∀f 6∈ S(n,m) (4.19)

• For each f ∈ F , if node n is not the destination of f , i.e., n 6= Dst(f), update virtual queue
Q

(f)
n (t+ 1) by (4.9).
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4.2.3 Almost Closed-Form Updates in Algorithm 4.2

This subsection shows the decisions xf (t) and µ(f)
l (t) in Algorithm 4.2 have either closed-form

solutions or “almost” closed-form solutions at each iteration t.

Lemma 4.3. Let x̂f ≡ xf (t) denote the solution to (4.14)-(4.15).

1. Suppose dom(Uf ) = [0,∞) and Uf (xf ) is differentiable. Let h(xf ) = U ′f (xf ) − 2αnxf +

2αnxf (t− 1)−W (f)
n (t). If h(0) < 0, then x̂f = 0; otherwise x̂f is the root to the equation

h(xf ) = 0 and can be found by a bisection search.

2. Suppose dom(Uf ) = (0,∞) and Uf (xf ) = wf log(xf ) for some weight wf > 0. Then:

x̂f = 2αnxf (t− 1)−W (f)
n (t)

4αn
+

√
(W (f)

n (t)− 2αnxf (t− 1))2 + 8αnwf
4αn

Proof. Trivial.

The problem (4.16)-(4.19) can be rewritten as follows by eliminating µ(f)
(n,m), f 6∈ S(n,m), com-

pleting the squares and replacing maximization with minimization. (Note that K = |S(n,m)| ≤

|F|.)

min 1
2

K∑
k=1

(zk − ak)2 (4.20)

s.t.
K∑
k=1

zk ≤ b (4.21)

zk ≥ 0,∀k ∈ {1, 2, . . . ,K} (4.22)

Lemma 4.4. The solution to the problem (4.20)-(4.22) is given by z∗k = max{0, ak − θ∗},∀k ∈

{1, 2, . . . ,K} where θ∗ ≥ 0 can be found either by a bisection search (See Section 4.6.3) or by

Algorithm 4.3 with complexity O(K logK).

Proof. A similar problem where (4.21) is replaced with an equality constraint in considered in

[DSSSC08]. The optimal solution to this quadratic program is characterized by its KKT condition

and a corresponding algorithm can be developed to obtain its KKT point. A complete proof is

presented in Section 4.6.3.
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Algorithm 4.3 Algorithm to Solve Problem (4.20)-(4.22)

1. Check if
∑K
k=1 max{0, ak} ≤ b holds. If yes, let θ∗ = 0 and z∗k = max{0, ak},∀k ∈

{1, 2, . . . ,K} and terminate the algorithm; else, continue to the next step.

2. Sort all ak,∈ {1, 2, . . . ,K} in a decreasing order π such that aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(K).
Define S0 = 0.

3. For k = 1 to K

• Let Sk = Sk−1 + ak. Let θ∗ = Sk−b
k .

• If θ∗ ≥ 0, aπ(k) − θ∗ > 0 and aπ(k+1) − θ∗ ≤ 0, then terminate the loop; else, continue
to the next iteration in the loop.

4. Let z∗k = max{0, ak − θ∗},∀k ∈ {1, 2, . . . ,K} and terminate the algorithm.

Note that the step (3) in Algorithm 4.3 has complexity O(K) and hence the overall complexity

of Algorithm 4.3 is dominated by the sorting step (2) with complexity O(K log(K)).

4.3 Performance Analysis of Algorithm 4.2

In this section, we show that the new backpressure algorithm has vanishing utility optimality

gaps that decay like O(1/t), where t is number of iterations, and finite queue lengths.

4.3.1 Preliminaries

Let y = [xf ;µ(f)
l ]f∈F,l∈L define a column vector. For each f ∈ F , n ∈ N \ {Dst(f)}, define

y(f)
n =

 [xf ;µ(f)
l ]l∈I(n)∪O(n) if n = Src(f),

[µ(f)
l ]l∈I(n)∪O(n) else,

(4.23)

which is a column vector composed by the control actions appearing in each constraint (4.2); and

introduce a function with respect to y(f)
n as

g(f)
n (y(f)

n ) = xf1{n=Src(f)} +
∑
l∈I(n)

µ
(f)
l −

∑
l∈O(n)

µ
(f)
l (4.24)

Thus, the constraints (4.2) can be rewritten as

g(f)
n (y(f)

n ) ≤ 0,∀f ∈ F ,∀n ∈ N \ {Dst(f)}.
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Note that each vector y(f)
n is a subvector of y and has length dn + 1 where dn is the degree of

node n (the total number of outgoing links and incoming links) if node n is the source of session

f ; and has length dn if node n is not the source of session f . Note that components in different

vector variables y(f)
n can overlap. The vector variables y and y(f)

n are introduced only to simplify

notation.

Fact 4.2. Each function g
(f)
n (·) defined in (4.24) is Lipschitz continuous with respect to vector

y(f)
n with modulus

βn ≤
√
dn + 1.

where dn is the degree of node n.

Proof. This fact can be easily shown by noting that each g
(f)
n (y(f)

n ) is a linear function with

respect to vector y(f)
n and has at most dn + 1 non-zero coefficients that are equal to ±1.

Note that virtual queue update equation (4.9) can be rewritten as:

Q(f)
n (t+ 1) = Q(f)

n (t) + g(f)
n (y(f)

n (t)), (4.25)

and weight update equation (4.13) can be rewritten as:

W (f)
n (t) = Q(f)

n (t) + g(f)
n (y(f)

n (t− 1)). (4.26)

Define

L(t) = 1
2
∑
f∈F

∑
n∈N\Dst(f)

[Q(f)
n (t)]2 (4.27)

and call it a Lyapunov function. In the remainder of this chapter, double summations are often

compactly written as a single summation, e.g.,

∑
f∈F

∑
n∈N\Dst(f)

[
·
] ∆=

∑
f∈F,

n∈N\Dst(f)

[
·
]
.
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Define the Lyapunov drift as

∆(t) = L(t+ 1)− L(t).

The following lemma follows directly from equation (4.25).

Lemma 4.5. At each iteration t ∈ {0, 1, . . .} in Algorithm 4.2, the Lyapunov drift is given by

∆(t) =
∑
f∈F,

n∈N\Dst(f)

[
Q(f)
n (t)g(f)

n (yfn(t)) + 1
2 [g(f)

n (yfn(t))]2
]
. (4.28)

Proof. Fix f ∈ F and n ∈ N \Dst(f), we have

1
2 [Q(f)

n (t+ 1)]2 − 1
2 [Q(f)

n (t)]2 (a)= 1
2[Q(f)

n (t) + g(f)
n (y(f)

n (t))]2 − 1
2 [Q(f)

n (t)]2

=Q(f)
n (t)g(f)

n (yfn(t)) + 1
2 [g(f)

n (yfn(t))]2 (4.29)

where (a) follows from (4.25).

By the definition of ∆(t), we have

∆(t) = 1
2

∑
f∈F,

n∈N\Dst(f)

[
Q(f)
n (t+ 1)

]2 − [Q(f)
n (t)]2

]
(a)=

∑
f∈F,

n∈N\Dst(f)

[
Q(f)
n (t)g(f)

n (yfn(t)) + 1
2 [g(f)

n (yfn(t))]2
]

where (a) follows from (4.29).

Define f(y) =
∑
f∈F Uf (xf ). At each time t, consider choosing a decision vector y(t) that

includes elements in each subvector y(f)
n (t) to solve the following problem:

max
y

f(y)−
∑
f∈F,

n∈N\Dst(f)

[
W (f)
n (t)g(f)

n (y(f)
n ) + αn‖y(f)

n − y(f)
n (t− 1)‖2

]

−
∑
f∈F,

n=Dst(f)

αn
∑
l∈I(n)

[µ(f)
l − µ

(f)
l (t− 1)]2 (4.30)

s.t. (4.3)-(4.6) (4.31)
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The expression (4.30) is called a modified drift-plus-penalty expression. This results in the novel

backpressure-type algorithm of Algorithm 4.2. Indeed, the decisions in Algorithm 4.2 were derived

as the solution to the above problem (4.30)-(4.31). This is formalized in the next lemma.

Lemma 4.6. At each iteration t ∈ {0, 1, . . .}, the action y(t) jointly chosen in Algorithm 4.2 is

the solution to the problem (4.30)-(4.31).

Proof. The proof involves collecting terms associated with the xf (t) and µ
(f)
l (t) decisions. See

Section 4.6.4 for details.

Furthermore, the next lemma relates h(y∗) and h(y(t)) yielded by action y(t) that aggregates

all control actions jointly chosen in Algorithm 4.2 at each iteration t ∈ {0, 1, . . .}.

Lemma 4.7. Let y∗ = [x∗f ;µ(f),∗
l ]f∈F,l∈L be an optimal solution to problem (4.1)-(4.6) given in

Fact 4.1, i.e., g(f)
n (y(f),∗

n ) = 0,∀f ∈ F ,∀n ∈ N \ Dst(f). If αn ≥ 1
2 (dn + 1),∀n ∈ N , where dn

is the degree of node n, then the action y(t) = [xf (t);µ(f)
l (t)]f∈F,l∈L jointly chosen in Algorithm

4.2 at each iteration t ∈ {0, 1, . . .} satisfies

f(y(t)) ≥ f(y∗) + Φ(t)− Φ(t− 1) + ∆(t),

where Φ(t) =
∑
f∈F,n∈N

[
αn1{n6=Dst(f)}‖y

(f),∗
n −y(f)

n (t)‖2+αn1{n=Dst(f)}
∑
l∈I(n)[µ

(f),∗
l −µ(f)

l (t)]2
]
.

Proof. See Section 4.6.5.

It remains to show that this modified backpressure algorithm leads to fundamentally improved

performance.

4.3.2 Utility Optimality Gap Analysis

Define Q(t) =
[
Q

(f)
n (t)

]
f∈F,n∈N\{Dst(f)} as the stacked column vector of all virtual queues

Q
(f)
n (t) defined in (4.9). Note that (4.27) can be rewritten as L(t) = 1

2‖Q(t)‖2. Define vectorized

constraints (4.2) as g(y) = [g(f)
n (y(f)

n )]f∈F,n∈N\Dst(f).

Lemma 4.8. Let y∗ = [x∗f ;µ(f),∗
l ]f∈F,l∈L be an optimal solution to the problem (4.1)-(4.6) given

in Fact 4.1, i.e., g(f)
n (y(f),∗

n ) = 0,∀f ∈ F ,∀n ∈ N \ Dst(f). If αn ≥ 1
2 (dn + 1),∀n ∈ N in
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Algorithm 4.2, where dn is the degree of node n, then for all t ≥ 1,

t−1∑
τ=0

f(y(τ)) ≥ tf(y∗)− ζ + 1
2‖Q(t)‖2.

where ζ = Φ(−1) =
∑
f∈F,n∈N

[
αn1{n 6=Dst(f)}‖y

(f),∗
n ‖2 + αn1{n=Dst(f)}

∑
l∈I(n)(µ

(f),∗
l )2] is a

constant.

Proof. By Lemma 4.7, we have f(y(τ)) ≥ f(y∗) + Φ(t)−Φ(t− 1) + ∆(τ),∀τ ∈ {0, 1, . . . , t− 1}.

Summing over τ ∈ {0, 1, . . . , t− 1} yields

t−1∑
τ=0

f(y(τ)) ≥tf(y∗) +
t−1∑
τ=0

[Φ(τ)− Φ(τ − 1)] +
t−1∑
τ=0

∆(τ)

=tf(y∗) + Φ(t)− Φ(−1) +
t−1∑
τ=0

∆(τ)

(a)
≥ tf(y∗)− Φ(−1) +

t−1∑
τ=0

∆(τ)

where (a) follows from the fact that Φ(t) ≥ 0,∀t.

Recall ∆(τ) = L(τ + 1)− L(τ), simplifying summations and rearranging terms yields

t−1∑
τ=0

f(y(τ)) ≥tf(y∗)− Φ(−1) + L(t)− L(0)

(a)= tf(y∗)− Φ(−1) + 1
2‖Q(t)‖2

where (a) follows from the fact that L(0) = 0 and L(t) = 1
2‖Q(t)‖2.

The next theorem summarizes that Algorithm 4.2 yields a vanishing utility optimality gap

that approaches zero like O( 1
t ).

Theorem 4.1. Let y∗ = [x∗f ;µ(f),∗
l ]f∈F,l∈L be an optimal solution to the problem (4.1)-(4.6)

given in Fact 4.1, i.e., g(f)
n (y(f),∗

n ) = 0,∀f ∈ F ,∀n ∈ N \ Dst(f). If αn ≥ 1
2 (dn + 1),∀n ∈ N in

Algorithm 4.2, where dn is the degree of node n, then for all t ≥ 1, we have

1
t

t−1∑
τ=0

∑
f∈F

Uf (xf (τ)) ≥
∑
f∈F

Uf (x∗f )− 1
t
ζ,

where ζ is a constant defined in Lemma 4.8. Moreover, if we define xf (t) = 1
t

∑t−1
τ=0 xf (τ),∀f ∈
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F , then

∑
f∈F

Uf (xf (t)) ≥
∑
f∈F

Uf (x∗f )− 1
t
ζ.

Proof. Recall that f(y) =
∑
f∈F Uf (xf ). By Lemma 4.8, we have

t−1∑
τ=0

∑
f∈F

Uf (xf (τ)) ≥t
∑
f∈F

Uf (x∗f )− ζ + 1
2‖Q(t)‖2

(a)
≥ t
∑
f∈F

Uf (x∗f )− ζ.

where (a) follows from the trivial fact that ‖Q(t)‖2 ≥ 0.

Dividing both sides by a factor t yields the first inequality in this theorem. The second

inequality follows from the concavity of Uf (·) and Jensen’s inequality.

4.3.3 Queue Length Analysis

Lemma 4.9. Let Q(t), t ∈ {0, 1, . . .} be the virtual queue vectors in Algorithm 4.2. For any

t ≥ 1,

Q(t) =
t−1∑
τ=0

g(y(τ))

Proof. This lemma follows directly from the fact that Q(0) = 0 and queue update equation (4.9)

can be written as Q(t+ 1) = Q(t) + g(y(t)).

The next theorem shows the boundedness of all virtual queues Q(f)
n (t) in Algorithm 4.2.

Theorem 4.2. Let y∗ = [x∗f ;µ(f),∗
l ]f∈F,l∈L be an optimal solution to the problem (4.1)-(4.6)

given in Fact 4.1, i.e., g(f)
n (y(f),∗

n ) = 0,∀f ∈ F ,∀n ∈ N \Dst(f), and λ∗ be a Lagrange multiplier

vector given in Assumption 4.2. If αn ≥ 1
2 (dn + 1)2,∀n ∈ N in Algorithm 4.2, where dn is the

degree of node n, then for all t ≥ 1,

|Q(f)
n (t)| ≤ 2‖λ∗‖+

√
2ζ,∀f ∈ F ,∀n ∈ N \ {Dst(f)}.

where ζ is a constant defined in Lemma 4.8.
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Proof. Let q(λ) = supy∈C
{
f(y)−λTg(y)

}
be the Lagrangian dual function defined in Assump-

tion 4.2. For all τ ∈ {0, 1, . . . , }, by Assumption 4.2, we have

f(y∗) = q(λ∗)
(a)
≥ f(y(τ))− λ∗,Tg(y(τ))

where (a) follows from the definition of q(λ∗). Rearranging terms yields

f(y(τ)) ≤ f(y∗) + λ∗,Tg(y(τ)),∀τ ∈ {0, 1, . . .}.

Fix t > 0. Summing over τ ∈ {0, 1, . . . , t− 1} yields

t−1∑
τ=0

f(y(τ)) ≤tf(y∗) +
t−1∑
τ=0

λ∗,Tg(y(τ))

=tf(y∗) + λ∗,T
t−1∑
τ=0

g(y(τ))

(a)= tf(y∗) + λ∗,TQ(t)
(b)
≤tf(y∗) + ‖λ∗‖‖Q(t)‖

where (a) follows form Lemma 4.9 and (b) follows from Cauchy-Schwarz inequality.

On the other hand, by Lemma 4.8, we have

t−1∑
τ=0

f(y(τ)) ≥ tf(y∗)− ζ + 1
2‖Q(t)‖2.

Combining the last two inequalities and cancelling the common terms yields

1
2‖Q(t)‖2 − ζ ≤ ‖λ∗‖‖Q(t)‖ ⇒

(
‖Q(t)‖ − ‖λ∗‖

)2 ≤ ‖λ∗‖2 + 2ζ

⇒‖Q(t)‖ ≤ ‖λ∗‖+
√
‖λ∗‖2 + 2ζ

(a)⇒‖Q(t)‖ ≤ 2‖λ∗‖+
√

2ζ

where (a) follows from the basic inequality
√
a+ b ≤

√
a+
√
b for any a, b ≥ 0.

Thus, for any f ∈ F and n ∈ N \ {Dst(f)}, we have

|Q(f)
n (t)| ≤ ‖Q(t)‖ ≤ 2‖λ∗‖+

√
2ζ.
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This theorem shows that the absolute values of all virtual queues Q(f)
n (t) are bounded by a

constant B = 2‖λ∗‖ +
√

2ζ from above. By Lemma 4.1 and discussions in Section 4.2.1, the

actual physical queues Z(f)
n (t) evolving via (4.8) satisfy Z

(f)
n (t) ≤ 2B +

∑
l∈O(n) Cl,∀t. This is

summarized in the next corollary.

Corollary 4.1. Let y∗ = [x∗f ;µ(f),∗
l ]f∈F,l∈L be an optimal solution to the problem (4.1)-(4.6)

given in Fact 4.1, i.e., g(f)
n (y(f),∗

n ) = 0,∀f ∈ F ,∀n ∈ N \Dst(f), and λ∗ be a Lagrange multiplier

vector given in Assumption 4.2. If αn ≥ 1
2 (dn + 1)2,∀n ∈ N in Algorithm 4.2, where dn is the

degree of node n, then all actual physical queues Z
(f)
n (t),∀f ∈ F ,∀n ∈ N \ {Dst(f)} in the

network evolving via (4.8) satisfy

Z(f)
n (t) ≤4‖λ∗‖+ 2

√
2ζ +

∑
l∈O(n)

Cl, ∀t.

where ζ is a constant defined in Lemma 4.8.

Define vector x∗ = [x∗f ]f∈F and x(t) = [xf (t)]f∈F where x∗f and xf (t) are defined in Theorem

4.1. Note that if each Uf (xf ) is strongly concave with respect to xf , then x∗ is unique by strong

concavity. (However, [µ(f),∗
l ]l∈L is not necessarily unique.) In this case, Corollary 4.2 shows x(t)

yielded by Algorithm 4.2 converges to the unique maximizer x∗.

Corollary 4.2. If the conditions in Theorem 4.1 hold and each Uf (xf ) is strongly concave with

respect to xf , then Algorithm 4.2 guarantees x(t)→ x∗ as t→∞.

Proof. Assume each Uf (xf ) is strongly concave with respect to xf with modulus cf . Let

c = minf∈F{cf}. Note that C = {[xf ;µ(f)
l ]f∈F,l∈L : (4.3)-(4.6) hold} is a compact set. By

Assumption 4.2, we have y∗ = argmaxy∈C{h(y) − λ∗,Tg(y)}. Recall that h(y) =
∑
f∈F Uf (xf )

and g(y) are separable since they can be written as the sum of scalar functions in terms of xf

and µ
(f)
l . Thus, x∗f and [µ(f),∗

l ]f∈F appear separably and maximize h(y) − λ∗,Tg(y) to obtain

the left-side of (4.32) where each x∗f satisfying (4.6) maximizes a strongly concave part and each

vector [µ(f),∗
l ]f∈F satisfying (4.3)-(4.5) maximizes a concave part. Define y(t) = 1

t

∑t−1
τ=0 y(τ).

Note that y(t) satisfies (4.3)-(4.6) since each y(τ) is generated by Algorithm 4.2. By Corollary
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1.2, for all t ≥ 1,

∑
f∈F

Uf (x∗f )− λ∗,Tg(y∗)

≥
∑
f∈F

Uf (xf (t))− λ∗,Tg(y(t)) +
∑
f∈F

cf
2 (x∗f − xf (t))2

(a)
≥
∑
f∈F

Uf (xf (t))− λ∗,Tg(y(t)) + c

2‖x(t)− x∗‖2

(b)=
∑
f∈F

Uf (xf (t))− λ∗,T
1
t

t−1∑
t=0

g(y[τ ]) + c

2‖x(t)− x∗‖2

(c)=
∑
f∈F

Uf (xf (t))− 1
t
λ∗,TQ(t) + c

2‖x(t)− x∗‖2 (4.32)

where (a) follows from c = minf∈F{cf}; (b) follows from the linearity of g(·) and the definition

of y(t); and (c) follows from Lemma 4.9.

Recall that λ∗,Tg(y∗) = 0 by strong duality of convex programs (Assumption 4.2). Thus,

(4.32) implies

c

2‖x(t)− x∗‖2

≤
∑
f∈F

Uf (x∗f )−
∑
f∈F

Uf (xf (t)) + 1
t
λ∗,TQ(t)

(a)
≤
∑
f∈F

Uf (x∗f )−
∑
f∈F

Uf (xf (t)) + 1
t
‖λ∗‖‖Q(t)‖

(b)
≤ 1
t
ζ + 1

t
‖λ∗‖(2‖λ∗‖+

√
2ζ)

where (a) follows from the Cauchy-Schwarz inequality; and (b) follows from Theorem 4.1, which

implies
∑
f∈F Uf (xf (t)) ≥

∑
f∈F Uf (x∗f )− 1

t ζ,∀t ≥ 1, and Theorem 4.2, which implies ‖Q(t)‖ ≤

2‖λ∗‖+
√

2ζ,∀t ≥ 1.

Taking limits t→∞ on both sides yields that x(t)→ x∗ as t→∞.

4.3.4 Performance of Algorithm 4.2

Theorems 4.1 and Corollary 4.1 together imply that Algorithm 4.2 with αn ≥ 1
2 (dn+1),∀n ∈

N can achieve a vanishing utility optimality gap that decays like O( 1
t ), where t is number of

iterations, and guarantees the physical queues at each node for each session are always bounded
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by a constant that is independent of the utility optimality gap.

This is superior to existing backpressure algorithms from [ES06, Nee10, LSXS15] that can

achieve an O( 1
V ) utility gap only at the cost of an O(V 2) or O(V ) queue length, where V is

an algorithm parameter. To obtain a vanishing utility gap, existing backpressure algorithms in

[ES06, Nee10, LSXS15] necessarily yield unbounded queues. To obtain a vanishing utility gap,

existing backpressure algorithms in [ES06, Nee10] yield unbounded queues. We also comment

that O(V 2) queue bound in the primal-dual type backpressure algorithm [ES06] is actually of

the order V 2‖λ∗‖ + B1 where λ∗ is the Lagrangian multiplier vector attaining strong duality

and B1 is a constant determined by the problem parameters. A recent work [Nee14] also shows

that the O(V ) queue bound in the backpressure algorithm from drift-plus-penalty is of the order

V ‖λ∗‖ + B2 where B2 is also a constant determined by the problem parameters. Since λ∗ is a

constant vector independent of V , both algorithms are claimed to have O(V 2) or O(V ) queue

bounds. By Corollary 4.1, Algorithm 4.2 guarantees physical queues at each node are bounded by

4‖λ∗‖+B3, where B3 is constant given a problem. Thus, the constant queue bound guaranteed

by Algorithm 4.2 is typically smaller than the O(V 2) or O(V ) queue bounds from [ES06] and

[Nee14] even for a small V . (A small V can yield a poor utility performance in the backpressure

algorithms in [ES06, Nee10].)

Theorems 4.1 and Corollary 4.1 require αn ≥ 1
2 (dn + 1),∀n ∈ N in Algorithm 4.2. The

required value of each αn is significantly smaller than α > 1
2
(√
|F| +

√
2|L|

)2 required by

Algorithm 4.1 according to Lemma 4.2 and the general theory developed in Chapter 3.

4.4 Numerical Experiment

In this section, we consider a simple network with 6 nodes and 8 links and 2 sessions as

described in Figure 4.1. This network has two sessions: session 1 from node 1 to node 6 has

utility function log(x1) and session 2 from node 3 to node 4 has utility function 1.5 log(x2). The

log utilities are widely used as metrics of proportional fairness in the network [KMT98]. The

routing path of each session is arbitrary as long as data can be delivered from the source node to

the destination node. For simplicity, assume that each link has capacity 1. The optimal source

session rate to problem (4.1)-(4.6) is x∗1 = 1.2 and x∗2 = 1.8 and link session rates, i.e., static

routing for each session, is drawn in Figure 4.2.
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Figure 4.1: A simple network with 6 nodes, 8 links and 2 sessions.
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Figure 4.2: The optimal routing for the network in Figure 4.1.

To compare the convergence performance of Algorithm 4.2 and the backpressure algorithm in

[Nee10] (with the best utility-delay tradeoff among all existing backpressure algorithms), we run

both Algorithm 4.2 with αn = 1
2
(
dn+1),∀n ∈ N and the backpressure algorithm in [Nee10] with

V = 500 to plot Figure 4.3. It can be observed from Figure 4.3 that Algorithm 4.2 converges to the

optimal source session rates faster than the backpressure algorithm in [Nee10]. The backpressure

algorithm in [Nee10] with V = 400 takes around 2500 iterations to converges to source rates close

to (1.2, 1.8) while Algorithm 4.2 only takes around 800 iterations to converges to (1.2, 1.8) (as

shown in the zoom-in subfigure at the top right corner.) In fact, the backpressure algorithm in

[Nee10] with V = 500 can not converge to the exact optimal source session rate (1.2, 1.8) but can

only converge to its neighborhood with a distance gap determined by the value of V . This is an

effect from the fundamental [O( 1
V ), O(V )] utility-delay tradeoff of the the backpressure algorithm

in [Nee10]. In contrast, Algorithm 4.2 can eventually converge to the the exact optimal source

session rate (1.2, 1.8). A zoom-in subfigure at the bottom right corner in Figure 4.2 verifies this

and shows that the source rate for Session 1 in Algorithm 4.2 converges to 1.2 while the source

rate in the backpressure algorithm in [Nee10] with V = 500 oscillates around a point slightly
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larger than 1.2.
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Figure 4.3: Convergence performance comparison between Algorithm 4.2 and the backpressure
algorithm in [Nee10].

Corollary 4.1 shows that Algorithm 4.2 guarantees each actual queue in the network is

bounded by constant 4‖λ∗‖ + 2
√

2ξ‖y∗‖ +
∑
l∈O(n) Cl. Recall that the backpressure algorithm

in [Nee10] can guarantee the actual queues in the network are bounded by a constant of order

V ‖λ∗‖. Figure 4.4 plots the sum of actual queue length at each node for Algorithm 4.2 and

the backpressure algorithm in [Nee10] with V = 10, 100 and 500. (Recall a larger V in the back-

pressure algorithm in [Nee10] yields a smaller utility gap but a larger queue length.) It can be

observed that Algorithm 4.2 has the smallest actual queue length (see the zoom-in subfigure)

and the actual queue length of the backpressure algorithm in [Nee10] scales linearly with respect

to V .

4.5 Chapter Summary

This chapter develops new backpressure algorithms for joint rate control and routing in multi-

hop data networks. The new backpressure algorithms can achieve vanishing utility optimality

gaps and finite queue lengths. This improves the state-of-art [O(ε), O(1/ε2)] or [O(ε), O(1/ε)]
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Figure 4.4: Actual queue length comparison between Algorithm 4.2 and the backpressure algo-
rithm in [Nee10].

utility-delay tradeoff attained by existing backpressure algorithms [ES06, NMR05, LS04, LSXS15].

4.6 Supplement to this Chapter

4.6.1 Multi-Path Network Utility Maximization with Predetermined

Paths

Consider the multi-path network utility maximization in [LS06] where each session has mul-

tiple given paths. Let xf be the total source rate of each session f ∈ F . Let Pf be the set

of paths for session f . The link session rate µ(f)
l becomes a vector µ

(f)
l = [µ(f,j)

l ]j∈Pf . (Note

that multiple paths for the same session are allowed to overlap.) Define S(f)
l as the set of paths

for session f that are allowed to use link l. Note that S(f)
l are determined by the given paths

for each session. That is, if path j for session f uses link l, then j ∈ S(f)
l ; if no given path for

session f uses link l, then S(f)
l = ∅. The multi-path network utility maximization problem can
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be formulated as follows:

max
∑
f∈F

Uf (xf )

s.t. xf1{n=Src(f)} +
∑
l∈I(n)

∑
j∈Pf

µ
(f,j)
l ≤

∑
l∈O(n)

∑
j∈Pf

µ
(f,j)
l , f ∈ F ,∀n ∈ N \ {Dst(f)}

∑
f∈F

∑
j∈Pf

µ
(f,j)
l ≤ Cl,∀l ∈ L,

µ
(f,j)
l ≥ 0,∀l ∈ L,∀f ∈ F ,∀j ∈ S(f)

l ,

µ
(f,j)
l = 0,∀l ∈ L,∀f ∈ F ,∀j ∈ Pf \ S(f)

l ,

xf ∈ dom(Uf ),∀f ∈ F

The above formulation is in the form of the problem (4.1)-(4.6) except that the variable dimension

is extended.

In this case, Algorithm 4.2 developed to solve the problem (4.1)-(4.6) can be adapted to solve

the above multi-path network utility maximization problem by replacing µ(f)
l with

∑
j∈Pf µ

(f,j)
l

in updates (4.9) and (4.13); and replacing the subproblem (4.16)-(4.19) with

max
µ

(f)
(n,m)

∑
f∈F

[
W (f)
n (t)−W (f)

m (t)
] ∑
j∈Pf

µ
(f,j)
(n,m) −

(
αn + αm

)∑
f∈F

∑
j∈Pf

[
µ

(f,j)
(n,m) − µ

(f,j)
(n,m)(t− 1)

]2
s.t.

∑
f∈F

∑
j∈Pf

µ
(f)
(n,m) ≤ C(n,m)

µ
(f,j)
(n,m) ≥ 0,∀f ∈ F ,∀j ∈ S(f)

(m,n)

µ
(f,j)
(n,m) = 0,∀f ∈ F ,∀j 6∈ S(f)

(m,n)

which again has the same structure as the subproblem (4.16)-(4.19) except that the variable

dimension is extended.

4.6.2 An Example Illustrating the Possibly Large Gap Between Model

(4.7) and Model (4.8)

Consider a network example shown in Figure 4.5. The network has 3k + 1 nodes where only

node 0 is a destination; and ai, i ∈ {1, 2, . . . , k} and bi, i ∈ {1, 2, . . . , k} can have exogenous

arrivals. Assume all link capacities are equal to 1; and the exogenous arrivals are periodic with
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period 2k, as follows:

• Time slot 1: One packet arrives at node a1.

• Time slot 2: One packet arrives at node a2.

• · · ·

• Time slot k: One packet arrives at node ak.

• Time slot k + 1: One packet arrives at node b1.

• Time slot k + 2: One packet arrives at node b2.

• · · ·

• Time slot 2k: One packet arrives at node bk.

Under dynamics (4.7), each packet arrives on its own slot and traverses all links of its path

to exit on the same slot it arrived. The queue backlog in each node is 0 for all time.

Under dynamics (4.8), the first packet arrives at time slot 1 to node a1. This packet visits

node a2 at time slot 2, when the second packet also arrives at a2. One of these packets is

delivered to node a3 at time slot 3, and another packet also arrives to node 3. The nodes

{1, . . . , k} do not have any exogenous arrivals and act only to delay the delivery of all packets

from the ai nodes. It follows that the link from node k to node 0 will send exactly one packet

over each slots t ∈ {2k + 1, 2k + 2, . . . , 2k + k}. Similarly, the link from bk to 0 sends exactly

one packet to node 0 over each of these same slots. Thus, node 0 receives 2 packets on each slot

t ∈ {2k + 1, 2k + 2, . . . , 2k + k}, but can only output 1 packet per slot. The queue backlog in

this node grows linearly and reaches k + 1 at time 2k + k. Thus, the backlog in node 0 can be

arbitrarily large when k is large. This example demonstrates that, even when there is only one

destination, the deviation between virtual queues under dynamics (4.7) and actual queues under

the dynamic (4.8) can be arbitrarily large, even when the in-degree and out-degree of 1 and an

in-degree of at most 2.

4.6.3 Proof of Lemma 4.4

Note that the problem (4.20)-(4.22) satisfies the Slater condition. So the optimal solution to

the problem (4.20)-(4.22) is characterized by KKT conditions [BV04]. Introducing a Lagrange
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a1	 a2	 ak-1	 ak	

b1	 b2	 bk-1	 bk	 0	

1	

2	

k	

Figure 4.5: An example illustrating the possibly large gap between the queue model (4.7) and
the queue model (4.8)

multiplier θ ∈ R+ for the inequality constraint
∑K
k=1 zk ≤ b and a Lagrange multiplier vector ν =

[ν1, . . . , νK ]T ∈ RK+ for the inequality constraints zk ≥ 0, k ∈ {1, 2, . . . ,K}. Let z∗ = [z∗1 , . . . , z∗K ]T

and (θ∗,ν∗) be any primal and dual pair with the zero duality gap. By the KKT conditions, we

have z∗k − ak + θ∗ − ν∗k = 0,∀k ∈ {1, 2, . . . ,K};
∑K
k=1 z

∗
k ≤ b; θ∗ ≥ 0; θ∗

(∑K
k=1 z

∗
k − b

)
= 0; z∗k ≥

0,∀k ∈ {1, 2, . . . ,K}; ν∗k ≥ 0,∀k ∈ {1, 2, . . . ,K}; ν∗kz∗k = 0,∀k ∈ {1, 2, . . . ,K}.

Eliminating ν∗k ,∀k ∈ {1, 2, . . . ,K} in all equations yields θ∗ ≥ ak − z∗k, k ∈ {1, 2, . . . ,K};∑K
k=1 z

∗
k ≤ b; θ∗ ≥ 0; θ∗

(∑K
k=1 z

∗
k− b

)
= 0; z∗k ≥ 0,∀k ∈ {1, 2, . . . ,K}; (z∗k−ak + θ∗)z∗k = 0,∀k ∈

{1, 2, . . . ,K}.

For all k ∈ {1, 2, . . . ,K}, we consider θ∗ < ak and θ∗ ≥ ak separately:

1. If θ∗ < ak , then θ∗ ≥ ak − z∗k holds only when z∗k > 0, which by (z∗k − ak + θ∗)z∗k = 0

implies that z∗k = ak − θ∗.

2. If θ∗ ≥ ak, then z∗k > 0 is impossible, because z∗k > 0 implies that z∗k − ak + θ∗ > 0, which

together with z∗k > 0 contradicts the slackness condition (z∗k − ak + θ∗)z∗k = 0. Thus, if

θ∗ ≥ ak, we must have z∗k = 0.

Summarizing both cases, we have z∗k = max{0, ak − θ∗},∀k ∈ {1, 2, . . . ,K}, where θ∗ is chosen

such that
∑K
k=1 z

∗
k ≤ b, θ∗ ≥ 0 and θ∗

(∑K
k=1 z

∗
k − b

)
= 0.

To find such θ∗, we first check if θ∗ = 0. If θ∗ = 0 is true, the slackness condition θ∗
(∑K

k=1 z
∗
k−

b
)

is guaranteed to hold and we need to further require
∑K
k=1 z

∗
k =

∑K
k=1 max{0, ak} ≤ b. Thus

θ∗ = 0 if and only if
∑K
k=1 max{0, ak} ≤ b. Thus, Algorithm 4.3 check if

∑K
k=1 max{0, ak} ≤ b

holds at the first step and if this is true, then we conclude θ∗ = 0 and we are done!
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Otherwise, we know θ∗ > 0. By the slackness condition θ∗
(∑K

k=1 z
∗
k − b

)
= 0, we must have∑K

k=1 z
∗
k =

∑K
k=1 max{0, ak − θ∗} = b. To find θ∗ > 0 such that

∑K
k=1 max{0, ak − θ∗} = b, we

can apply a bisection search by noting that all z∗k are decreasing with respect to θ∗.

Another algorithm of finding θ∗ is inspired by the observation that if aj ≥ ai,∀i, j ∈

{1, 2, . . . ,K}, then z∗j ≥ z∗i . Thus, we first sort all ak in a decreasing order, say π is the permuta-

tion such that aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(K); and then sequentially check if k ∈ {1, 2, . . . ,K} is the

index such that aπ(k) − θ∗ ≥ 0 and aπ(k+1) − θ∗ < 0. To check this, we first assume k is indeed

such an index and solve the equation
∑k
j=1(aπ(j)−θ∗) = b to obtain θ∗; (Note that in Algorithm

4.3, to avoid recalculating the partial sum
∑k
j=1 aπ(j) for each k, we introduce the parameter

Sk =
∑k
j=1 aπ(j) and update Sk incrementally. By doing this, the complexity of each iteration

in the loop is only O(1).) then verify the assumption by checking if θ∗ ≥ 0, aπ(k) − θ∗ ≥ 0 and

aπ(k+1)− θ∗ ≤ 0. The algorithm is described in Algorithm 4.3 and has complexity O(K log(K)).

The overall complexity is dominated by the step of sorting all ak.

4.6.4 Proof of Lemma 4.6

The objective function (4.30) can be rewritten as

f(y)−
∑
f∈F,

n∈N\Dst(f)

[
W

(f)
n (t)g(f)

n (y(f)
n ) + αn‖y(f)

n − y(f)
n (t− 1)‖2

]
−

∑
f∈F,

n=Dst(f)

αn

∑
l∈I(n)

[µ(f)
l
− µ(f)

l
(t− 1)]2

(a)
=
∑
f∈F

Uf (xf )−
∑
f∈F,

n∈N\Dst(f)

W
(f)
n (t)

[
xf1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l
−
∑
l∈O(n)

µ
(f)
l

]
−

∑
f∈F,

n∈N\Dst(f)

αn
[
[xf − xf (t− 1)]21{n=Src(f)} +

∑
l∈I(n)

[µ(f)
l
− µ(f)

l
(t− 1)]2 +

∑
l∈O(n)

[µ(f)
l
− µ(f)

l
(t− 1)]2

]
−

∑
f∈F,

n=Dst(f)

αn

∑
l∈I(n)

[µ(f)
l
− µ(f)

l
(t− 1)]2

(b)
=
∑
f∈F

[
Uf (xf )−W (f)

Src(f)(t)xf − αSrc(f)[xf − xf (t− 1)]2
]

+
∑

(n,m)∈L

∑
f∈F

[W (f)
n (t)−W (f)

m (t)]µ(f)
(n,m)

−
∑

(n,m)∈L

(αn + αm)
∑
f∈F

[µ(f)
(n,m) − µ

(f)
(n,m)(t− 1)]2 (4.33)

where (a) follows from the fact that g(f)
n (y(f)

n ) = xf1{n=Src(f)}+
∑
l∈I(n) µ

(f)
l −

∑
l∈O(n) µ

(f)
l and

‖y(f)
n −y(f)

n (t−1)‖2 = [xf −xf (t−1)]21{n=Src(f)}+
∑
l∈I(n)[µ

(f)
l −µ

(f)
l (t−1)]2 +

∑
l∈O(n)[µ

(f)
l −

µ
(f)
l (t− 1)]2; and (b) follows by collecting each linear term µ

(f)
l and each quadratic term [µ(f)

l −

µ
(f)
l (t − 1)]2. Note that each link session rate µ

(f)
l appears twice with opposite signs in the
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summation term
∑
f∈F,n∈N\{Dst(f)}W

(f)
n (t)

[
xf1{n=Src(f)}+

∑
l∈I(n) µ

(f)
l −

∑
l∈O(n) µ

(f)
l

]
unless

link l flows into Dst(f) and recall that W (f)
Dst(f) = 0,∀f ∈ F . The quadratic terms are collected in

a similar way. Note that the term
∑
f∈F,n=Dst(f) αn

∑
l∈I(n)[µ

(f)
l −µ

(f)
l (t−1)]2 introduced to the

objective function (4.30) is necessary to guarantee each quadratic term [µ(f)
(m,n) − µ

(f)
(m,n)(t− 1)]2

with the same link index (n,m) but different flow indices f ∈ F to have the same coefficient

αn + αm in (4.33).

Note that the equation (4.33) is now separable for each scalar xf and vector [µ(f)
(n,m)]f∈F . Thus,

the problem (4.30)-(4.31) can be decomposed into independent smaller optimization problems

in the form of the problem (4.14)-(4.15) with respect to each scalar xf , and in the form of the

problem (4.16)-(4.19) with respect to each vector [µ(f)
(n,m)]f∈F .

4.6.5 Proof of Lemma 4.7

Note that W (f)
n (t) appears as a known constant in (4.14). Since Uf (xf ) is concave and

W
(f)
n (t)xf is linear, it follows that (4.14) is strongly concave with respect to xf with modulus

2αn. Since xf (t) is chosen to solve (4.14)-(4.15), by Corollary 1.3, ∀f ∈ F , we have

Uf (xf (t))−W (f)
Src(f)(t)xf (t)− αn[xf (t)− xf (t− 1)]2︸ ︷︷ ︸

(4.34)-I

≥Uf (x∗f )−W (f)
Src(f)(t)x

∗
f − αn[x∗f − xf (t− 1)]2 + αn[x∗f − xf (t)]2︸ ︷︷ ︸

(4.34)-II

. (4.34)

Similarly, we know (4.16) is strongly concave with respect to vector [µf(n,m)]f∈F with modulus
2(αn + αm). By Corollary 1.3, ∀(n,m) ∈ O(n), we have

∑
f∈F

[W (f)
n (t)−W (f)

m (t)]µ(f)
(n,m)(t)− (αn + αm)

∑
f∈F

[µ(f)
(n,m)(t)− µ(f)

(n,m)(t− 1)]2︸ ︷︷ ︸
(4.35)-I

≥
∑
f∈F

[W (f)
n (t)−W (f)

m (t)]µ(f),∗
(n,m) − (αn + αm)

∑
f∈F

[µ(f),∗
(n,m) − µ

(f)
(n,m)(t− 1)]2 + (αn + αm)

∑
f∈F

[µ(f),∗
(n,m) − µ

(f)
(n,m)(t)]2︸ ︷︷ ︸

(4.35)-II

.

(4.35)

Recall that each column vector y(f)
n defined in (4.23) is composed by control actions that

appear in each constraint (4.2); the column vector y = [xf ;µ(f)
l ]f∈F,l∈L is the collection of all
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control actions; and f(y) =
∑
f∈F Uf (xf ). Summing the term (4.34)-I over all f ∈ F and the

term (4.35)-I over all (n,m) ∈ L and using an argument similar to the proof of Lemma 4.6 (Recall

that y(t) is jointly chosen to minimize (4.30) by Lemma 4.6.) yields

∑
f∈F

(4.34)-I +
∑

(n,m)∈N

(4.35)-I

=f(y(t))−
∑
f∈F,

n∈N\Dst(f)

[
W (f)
n (t)g(f)

n (y(f)
n (t)) + αn‖y(f)

n (t)− y(f)
n (t− 1)‖2

]

−
∑
f∈F,

n=Dst(f)

αn
∑
l∈I(n)

[µ(f)
l (t)− µ(f)

l (t− 1)]2. (4.36)

Recall that Φ(t) =
∑
f∈F,n∈N

[
αn1{n 6=Dst(f)}‖y

(f),∗
n −y(f)

n (t)‖2+αn1{n=Dst(f)}
∑
l∈I(n)[µ

(f),∗
l −

µ
(f)
l (t)]2

]
. Summing the term (4.34)-II over all f ∈ F and the term (4.35)-II over all (n,m) ∈ L

yields

∑
f∈F

(4.34)-II +
∑

(n,m)∈N

(4.35)-II = f(y∗) + Φ(t)− Φ(t− 1)−
∑
f∈F,

n∈N\Dst(f)

W (f)
n (t)g(f)

n (y(f),∗
n ),

(4.37)

Combining (4.34)-(4.37) and rearranging terms yields

f(y(t))

≥f(y∗) + Φ(t)− Φ(t− 1)−
∑
f∈F,

n∈N\Dst(f)

W (f)
n (t)g(f)

n (y(f),∗
n ) +

∑
f∈F,

n=Dst(f)

αn
∑
l∈I(n)

[µ(f)
l (t)− µ(f)

l (t− 1)]2

+
∑
f∈F,

n∈N\Dst(f)

[
W (f)
n (t)g(f)

n (y(f)
n (t)) + αn‖y(f)

n (t)− y(f)
n (t− 1)‖2

]
(a)
≥f(y∗) + Φ(t)− Φ(t− 1) +

∑
f∈F,

n∈N\Dst(f)

[
W (f)
n (t)g(f)

n (y(f)
n (t)) + αn‖y(f)

n (t)− y(f)
n (t− 1)‖2

]
(b)=f(y∗) + Φ(t)− Φ(t− 1)

+
∑
f∈F,

n∈N\Dst(f)

[
Q(f)
n (t)g(f)

n (y(f)
n (t)) + g(f)

n (y(f)
n (t− 1))g(f)

n (y(f)
n (t)) + αn‖y(f)

n (t)− y(f)
n (t− 1)‖2

]
(4.38)
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where (a) follows because g(f)
n (y(f),∗

n ) = 0, ∀f ∈ F ,∀n ∈ N \Dst(f), and

∑
f∈F,n=Dst(f)

αn
∑
l∈I(n)

[µ(f)
l (t)− µ(f)

l (t− 1)]2 ≥ 0;

and (b) follows because W (f)
n (t) = Q

(f)
n (t) + g

(f)
n (y(f)

n (t− 1)).

Recall that u1u2 = 1
2u

2
1 + 1

2u
2
2 − 1

2 (u1 − u2)2 for any u1, u2 ∈ R. Thus, for all f ∈ F , n ∈

N \Dst(f), we have

g(f)
n (y(f)

n (t− 1))g(f)
n (y(f)

n (t))

=1
2 [g(f)

n (y(f)
n (t− 1))]2 + 1

2[g(f)
n (y(f)

n (t))]2 − 1
2 [g(f)

n (y(f)
n (t− 1))− g(f)

n (y(f)
n (t))]2. (4.39)

Substituting (4.39) into (4.38) yields

f(y(t))

≥f(y∗) + Φ(t)− Φ(t− 1) +
∑
f∈F,

n∈N\Dst(f)

[
Q(f)
n (t)g(f)

n (y(f)
n (t)) + 1

2 [g(f)
n (y(f)

n (t− 1))]2

+ 1
2[g(f)

n (y(f)
n (t))]2 − 1

2 [g(f)
n (y(f)

n (t− 1))− g(f)
n (y(f)

n (t))]2 + αn‖y(f)
n (t)− y(f)

n (t− 1)‖2
]

(a)
≥f(y∗) + Φ(t)− Φ(t− 1) +

∑
f∈F,

n∈N\Dst(f)

[
Q(f)
n (t)g(f)

n (y(f)
n (t)) + 1

2 [g(f)
n (y(f)

n (t− 1))]2

+ 1
2[g(f)

n (y(f)
n (t))]2 +

(
αn −

1
2β

2
n

)
‖y(f)

n (t)− y(f)
n (t− 1)‖2

]
(b)
≥f(y∗) + Φ(t)− Φ(t− 1) +

∑
f∈F,

n∈N\Dst(f)

[
Q(f)
n (t)g(f)

n (y(f)
n (t)) + 1

2 [g(f)
n (y(f)

n (t))]2
]

(4.40)

where (a) follows from the Fact 4.2, i.e., each g
(f)
n (·) is Lipschitz continuous with modulus βn

and (b) follows because αn ≥ 1
2 (dn + 1), βn ≤

√
dn + 1 and 1

2 [g(f)
n (y(f)

n (t− 1))]2 ≥ 0.

Substituting (4.28) into (4.40) yields

f(y(t)) ≥ f(y∗) + Φ(t)− Φ(t− 1) + ∆(t).

121



Chapter 5

Online Convex Optimization with Stochastic Constraints

Online convex optimization (OCO) is a multi-round learning process with arbitrarily-varying

convex loss functions where the decision maker has to choose decision x(t) ∈ X before observing

the corresponding convex loss function f t(·). For a fixed time horizon T , define the regret of a

learning algorithm with respect to the best fixed decision in hindsight (with full knowledge of all

loss functions) as

regret(T ) =
T∑
t=1

f t(x(t))−min
x∈X

T∑
t=1

f t(x).

The best fixed decision x∗ = argminx∈X
∑T
t=1 f

t(x) typically cannot be implemented. That

is because it would need to be determined before the start of the first round, and this would

require knowledge of the future f t(·) functions for all t ∈ {1, 2, . . . , T}. However, to avoid being

embarrassed by the situation where our performance is significantly exceeded by a stubborn

decision maker guessing x∗ correctly by luck, a desired learning algorithm should have a small

regret. Specifically, we desire a learning algorithm for which regret(T ) grows sub-linearly with

respect to T , i.e., the difference of average loss tends to zero as T goes to infinity when comparing

the dynamic learning algorithm and a lucky stubborn decision maker. The setting of OCO is

introduced in a series of works [CBLW96, KW97, Gor99, Zin03] and is formalized in [Zin03].

OCO has gained considerable amount of research interest recently with various applications such

as online regression, prediction with expert advice, online ranking, online shortest paths, and

portfolio selection. See [SS11, Haz16] for more applications and background.

In [Zin03], Zinkevich shows that O(
√
T ) regret can be achieved by using an online gradient
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descent (OGD) update given by

x(t+ 1) = PX
[
x(t)− γ∇f t(x(t))

]
(5.1)

where γ is the step size, also known as the learning rate, ∇f t(·) is a subgradient of f t(·) and

PX [·] is the projection onto set X . Hazan et al. in [HAK07] show that better regret is possible

under the assumption that each loss function is strongly convex but O(
√
T ) is the best possible

if no additional assumption is imposed.

Zinkevich’s OGD in (5.1) requires the full knowledge of set X and low complexity of the

projection PX [·]. However, in practice, the constraint set X , which is often described by many

functional inequality constraints, can be time varying and may not be fully disclosed to the

decision maker. In [MTY09], Mannor et al. extend OCO by considering time-varying constraint

functions gt(x) which can arbitrarily vary and are only disclosed to us after each x(t) is chosen.

In this setting, Mannor et al. in [MTY09] explore the possibility of designing learning algorithms

such that regret grows sub-linearly and lim supT→∞ 1
T

∑T
t=1 g

t(x(t)) ≤ 0, i.e., the (cumulative)

constraint violation
∑T
t=1 g

t(x(t)) also grows sub-linearly. Unfortunately, Mannor et al. in

[MTY09] prove that this is impossible even when both f t(·) and gt(·) are simple linear functions.

Given the impossibility results shown by Mannor et al. in [MTY09], this chapter consid-

ers OCO where constraint functions gt(x) are not arbitrarily varying but independently and

identically distributed (i.i.d.) generated from an unknown probability model (and functions

f t(x) are still arbitrarily varying and possibly non-i.i.d.). Specifically, this chapter considers on-

line convex optimization (OCO) with stochastic constraint X = {x ∈ X0 : Eω[gk(x;ω)] ≤ 0, k ∈

{1, 2, . . . ,m}} where X0 is a known fixed set; the expressions of stochastic constraints Eω[gk(x;ω)]

(involving expectations with respect to ω from an unknown distribution) are unknown; and sub-

scripts k ∈ {1, 2, . . . ,m} indicate the possibility of multiple functional constraints. In OCO with

stochastic constraints, the decision maker receives loss function f t(x) and i.i.d. constraint func-

tion realizations gtk(x) ∆= gk(x;ω(t)) at each round t. However, the expressions of gtk(·) and f t(·)

are disclosed to the decision maker only after decision x(t) ∈ X0 is chosen. This setting arises

naturally when decisions are restricted by stochastic environments or deterministic environments

with noisy observations. For example, if we consider online routing (with link capacity con-

straints) in wireless networks [MTY09], each link capacity is not a fixed constant (as in wireline
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networks) but an i.i.d. random variable since wireless channels are stochastically time-varying by

nature [TV05]. OCO with stochastic constraints also covers important special cases such as OCO

with long term constraints [MJY12, CGP15, JHA16], stochastic constrained convex optimization

[MYJ13] and deterministic constrained convex optimization [Nes04].

Let x∗ = argmin{x∈X0:E[gk(x;ω)]≤0,∀k∈{1,2,...,m}}
∑T
t=1 f

t(x) be the best fixed decision in hind-

sight (knowing all loss functions f t(x) and the distribution of stochastic constraint functions

gk(x;ω)). Thus, x∗ minimizes the T -round cumulative loss and satisfies all stochastic constraints

in expectation, which also implies lim supT→∞ 1
T

∑T
t=1 g

t
k(x∗) ≤ 0 almost surely by the strong

law of large numbers. Our goal is to develop dynamic learning algorithms that guarantee both

regret
∑T
t=1 f

t(x(t))−
∑T
t=1 f

t(x∗) and constraint violations
∑T
t=1 g

t
k(x(t)) grow sub-linearly.

Note that Zinkevich’s algorithm in (5.1) is not applicable to OCO with stochastic con-

straints since X is unknown and it can happen that X (t) = {x ∈ X0 : gk(x;ω(t)) ≤ 0,∀k ∈

{1, 2, . . . ,m}} = ∅ for certain realizations ω(t), so that projections PX [·] or PX (t)[·] required in

(5.1) are not even well-defined.

Our Contributions

This chapter solves online convex optimization with stochastic constraints. In particular, we

propose a new learning algorithm that is proven to achieve O(
√
T ) expected regret and constraint

violations and O(
√
T log(T )) high probability regret and constraint violations. The results in

this chapter are originally developed in our paper [YNW17]. The proposed new algorithm also

improves upon state-of-the-art results in the following special cases:

• OCO with long term constraints: This is a special case where each gtk(x) ≡ gk(x) is known

and does not depend on time. Note that X = {x ∈ X0 : gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m}} can

be complicated while X0 might be a simple hypercube. To avoid high complexity involved

in the projection onto X as in Zinkevich’s algorithm, work in [MJY12, CGP15, JHA16]

develops low complexity algorithms that use projections onto a simpler set X0 by allowing

gk(x(t)) > 0 for certain rounds but ensuring lim supT→∞ 1
T

∑T
t=1 gk(x(t)) ≤ 0. The best

existing performance is O(Tmax{β,1−β}) regret and O(T 1−β/2) constraint violations where

β ∈ (0, 1) is an algorithm parameter [JHA16]. This gives O(
√
T ) regret with worse O(T 3/4)

constraint violations or O(
√
T ) constraint violations with worse O(T ) regret. In contrast,

our algorithm, which only uses projections onto X0 as shown in Lemma 5.1, can achieve
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O(
√
T ) regret and O(

√
T ) constraint violations simultaneously. In Chapter 6, we focus on

OCO with long term constraints and further develop a different algorithm that can only

solve “OCO with long term constraints” but can achieve O(
√
T ) regret and O(1) constraint

violations.

• Stochastic constrained convex optimization: This is a special case where each f t(x) is

i.i.d. generated from an unknown distribution. This problem has many applications in

operations research and machine learning such as Neyman-Pearson classification and risk-

mean portfolio. The work [MYJ13] develops a (batch) offline algorithm that produces a

solution with high probability performance guarantees only after sampling the problems for

sufficiently many times. That is, during the process of sampling, there is no performance

guarantee. The work [LZ16] proposes a stochastic approximation based (batch) offline

algorithm for stochastic convex optimization with one single stochastic functional inequality

constraint. In contrast, our algorithm is an online algorithm with online performance

guarantees and can deal with an arbitrary number of stochastic constraints.

• Deterministic constrained convex optimization: This is a special case where each f t(x) ≡

f(x) and gtk(x) ≡ gk(x) are known and do not depend on time. In this case, the goal is

to develop a fast algorithm that converges to a good solution (with a small error) with a

few number of iterations; and our algorithm with O(
√
T ) regret and constraint violations is

equivalent to an iterative numerical algorithm with an O(1/
√
T ) convergence rate. Our al-

gorithm is subgradient based and does not require the smoothness or differentiability of the

convex program. Indeed, our algorithm when used to solve general (possibly non-smooth)

deterministic constrained convex programs is a third new Lagrangian method developed in

this thesis. Recall that in Chapter 3, we have developed two other Lagrangian methods

that can only solve deterministic constrained convex optimization but can achieve a faster

O(1/T ) convergence rate. The algorithm developed in this chapter is a primal-dual type

one since its primal update follows a projected gradient dynamic, has an O(1/
√
T ) conver-

gence rate, and does not require any knowledge of the optimal Lagrange multiplier vector.

Recall that the primal-dual subgradient method Algorithm 1.2 has the same O(1/
√
T )

convergence rate but requires an upper bound of optimal Lagrange multipliers, which is

usually unknown in practice.
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.

5.1 Problem Statement and New Algorithm

Let X0 be a known fixed compact convex set. Let f t(x) be a sequence of arbitrarily-varying

convex functions. Let gk(x;ω(t)), k ∈ {1, 2, . . . ,m} be sequences of functions that are i.i.d.

realizations of stochastic constraint functions g̃k(x) ∆= Eω[gk(x;ω)] with random variable ω ∈ Ω

from an unknown distribution. That is, ω(t) are i.i.d. samples of ω. Assume that each f t(·) is

independent of all ω(τ) with τ ≥ t+1 so that we are unable to predict future constraint functions

based on the knowledge of the current loss function. For each ω ∈ Ω, we assume gk(x;ω) are

convex with respect to x ∈ X0. At the beginning of each round t, neither the loss function f t(x)

nor the constraint function realizations gk(x;ω(t)) are known to the decision maker. However,

the decision maker still needs to make a decision x(t) ∈ X0 for round t; and after that f t(x) and

gk(x, ω(t)) are disclosed to the decision maker at the end of round t.

For convenience, we often suppress the dependence of each gk(x;ω(t)) on ω(t) and write

gtk(x) = gk(x;ω(t)). Recall g̃k(x) = Eω[gk(x;ω)] where the expectation is with respect to ω.

Define X = {x ∈ X0 : g̃k(x) = E[gk(x;ω)] ≤ 0,∀k ∈ {1, 2, . . . ,m}}. We further define the

stacked vector of multiple functions gt1(x), . . . , gtm(x) as gt(x) = [gt1(x), . . . , gtm(x)]T and define

g̃(x) = [Eω[g1(x;ω)], . . . ,Eω[gm(x;ω)]]T. We use ‖ · ‖ to denote the Euclidean norm for a vector.

Throughout this chapter, we have the following assumptions:

Assumption 5.1 (Basic Assumptions).

• Loss functions f t(x) and constraint functions gk(x;ω) have bounded subgradients on X0.

That is, there exists D1 > 0 and D2 > 0 such that ‖∇f t(x)‖ ≤ D1 for all x ∈ X0 and all

t ∈ {0, 1, . . .} and ‖∇gk(x;ω)‖ ≤ D2 for all x ∈ X0, all ω ∈ Ω and all k ∈ {1, 2, . . . ,m}.

• There exists constant G > 0 such that ‖g(x;ω)‖ ≤ G for all x ∈ X0 and all ω ∈ Ω.

• There exists constant R > 0 such that ‖x− y‖ ≤ R for all x,y ∈ X0.

Assumption 5.2 (Interior Point Assumption). There exists ε > 0 and x̂ ∈ X0 such that g̃k(x̂) =

Eω[gk(x̂;ω)] ≤ −ε for all k ∈ {1, 2, . . . ,m}.
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5.1.1 New Algorithm

Now consider the following algorithm described in Algorithm 5.1. This algorithm chooses

x(t + 1) as the decision for round t + 1 based on f t(·) and gt(·) without requiring f t+1(·) or

gt+1(·).

Algorithm 5.1 New Algorithm for Online Convex Optimization with Stochastic Constraints
Let V > 0 and α > 0 be constant algorithm parameters. Choose x(1) ∈ X0 arbitrarily and let
Qk(1) = 0,∀k ∈ {1, 2, . . . ,m}. At the end of each round t ∈ {1, 2, . . .}, observe f t(·) and gt(·)
and do the following:

• Choose x(t+ 1) that solves

min
x∈X0

{
V [∇f t(x(t))]T[x− x(t)] +

m∑
k=1

Qk(t)[∇gtk(x(t))]T[x− x(t)] + α‖x− x(t)‖2
}

(5.2)

as the decision for the next round t+ 1, where ∇f t(x(t)) is a subgradient of f t(x) at point
x = x(t) and ∇gtk(x(t)) is a subgradient of gtk(x) at point x = x(t).

• Update each virtual queue Qk(t+ 1),∀k ∈ {1, 2, . . . ,m} via

Qk(t+ 1) = max
{
Qk(t) + gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)], 0

}
. (5.3)

The next lemma summarizes that x(t+ 1) update in (5.2) can be implemented via a simple

projection onto X0.

Lemma 5.1. The x(t+ 1) update in (5.2) is given by

x(t+ 1) = PX0

[
x(t)− 1

2αd(t)
]

where d(t) = V∇f t(x(t)) +
∑m
k=1Qk(t)∇gtk(x(t)) and PX0 [·] is the projection onto convex set

X0.

Proof. The projection by definition is

min
x∈X0

∥∥∥x− [x(t)− 1
2αd(t)]

∥∥∥2

and is equivalent to (5.2) since multiplying the expression to be minimized by α > 0 does not

change the minimizer.
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5.1.2 Intuitions of Algorithm 5.1

Note that if there are no stochastic constraints gtk(x), i.e., X = X0, then Algorithm 5.1 has

Qk(t) ≡ 0,∀t and becomes Zinkevich’s algorithm with γ = V
2α in (5.1) since

x(t+ 1) (a)= argmin
x∈X0

{
V [∇f t(x(t))]T[x− x(t)] + α‖x− x(t)‖2︸ ︷︷ ︸

penalty

}
(b)=PX0

[
x(t)− V

2α∇f
t(x(t))

]
(5.4)

where (a) follows from (5.2); and (b) follows from Lemma 5.1 by noting that d(t) = V∇f t(x(t)).

Call the term marked by an underbrace in (5.4) the penalty. Thus, Zinkevich’s algorithm is to

minimize the penalty term and is a special case of Algorithm 5.1 used to solve OCO over X0.

Let Q(t) =
[
Q1(t), . . . , Qm(t)

]T be the vector of virtual queue backlogs. Let L(t) = 1
2‖Q(t)‖2

be a Lyapunov function and define Lyapunov drift

∆(t) = L(t+ 1)− L(t) = 1
2 [‖Q(t+ 1)‖2 − ‖Q(t)‖2]. (5.5)

The intuition behind Algorithm 5.1 is to choose x(t + 1) to minimize an upper bound of the

expression

∆(t)︸︷︷︸
drift

+V [∇f t(x(t))]T[x− x(t)] + α‖x− x(t)‖2︸ ︷︷ ︸
penalty

(5.6)

The intention to minimize penalty is natural since Zinkevich’s algorithm (for OCO without

stochastic constraints) minimizes penalty, while the intention to minimize drift is motivated

by observing that gtk(x(t)) is accumulated into queue Qk(t + 1) introduced in (5.3) such that

we intend to have small queue backlogs. The drift ∆(t) can be complicated and is in general

non-convex. The next lemma provides a simple upper bound on ∆(t) and follows directly from

(5.3).

Lemma 5.2. At each round t ∈ {1, 2, . . .}, Algorithm 5.1 guarantees

∆(t) ≤
m∑
k=1

Qk(t)
[
gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)]

]
+ 1

2(G+
√
mD2R)2, (5.7)
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where m is the number of constraint functions; and D2, G and R are constants defined in As-

sumption 5.1.

Proof. Recall that for any b ∈ R, if a = max{b, 0} then a2 ≤ b2. Fix k ∈ {1, 2, . . . ,m}. The virtual

queue update equation Qk(t + 1) = max
{
Qk(t) + gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)], 0

}
implies that

1
2 [Qk(t+ 1)]2 ≤1

2
[
Qk(t) + gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)]

]2
=1

2[Qk(t)]2 +Qk(t)
[
gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)]

]
+ 1

2
[
gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)]

]2
(a)= 1

2[Qk(t)]2 +Qk(t)
[
gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)]

]
+ 1

2[hk]2, (5.8)

where (a) follows by defining hk = gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)].

Define s = [s1, . . . , sm]T, where sk = [∇gtk(x(t))]T[x(t + 1) − x(t)],∀k ∈ {1, 2, . . . ,m}; and

h = [h1, . . . , hm]T = gt(x(t)) + s. Then,

‖h‖
(a)
≤‖gt(x(t))‖+ ‖s‖

(b)
≤ G+

√√√√ m∑
k=1

D2
2R

2 = G+
√
mD2R, (5.9)

where (a) follows from the triangle inequality; and (b) follows from the definition of Euclidean

norm, the Cauchy-Schwartz inequality and Assumption 5.1.

Summing (5.8) over k ∈ {1, 2, . . . ,m} yields

1
2‖Q(t+ 1)‖2

≤1
2‖Q(t)‖2 +

m∑
k=1

Qk(t)
[
gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)]

]
+ 1

2‖h‖
2

(a)
≤ 1

2‖Q(t)‖2 +
m∑
k=1

Qk(t)
[
gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)]

]
+ 1

2(G+
√
mD2R)2,

where (a) follows from (5.9). Rearranging the terms yields the desired result.

Note that at the end of round t,
∑m
k=1Qk(t)gtk(x(t))+ 1

2 (G+
√
mD2R)2 is a given constant that

is not affected by decision x(t+ 1). The algorithm decision in (5.2) is now transparent: x(t+ 1)

is chosen to minimize the drift-plus-penalty expression (5.6), where ∆(t) is approximated by the
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bound in (5.7).

5.1.3 Preliminary Analysis and More Intuitions of Algorithm 5.1

The next lemma relates constraint violations and virtual queue values and follows directly

from (5.3).

Lemma 5.3. For any T ≥ 1, Algorithm 5.1 guarantees

T∑
t=1

gtk(x(t)) ≤ ‖Q(T + 1)‖+D2

T∑
t=1
‖x(t+ 1)− x(t)‖,∀k ∈ {1, 2, . . . ,m},

where D2 is the constant defined in Assumption 5.1.

Proof. Fix k ∈ {1, 2, . . . ,m} and T ≥ 1. For any t ∈ {0, 1, . . .}, (5.3) in Algorithm 5.1 gives:

Qk(t+ 1) = max{Qk(t) + gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)], 0}

≥ Qk(t) + gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)]
(a)
≥ Qk(t) + gtk(x(t))− ‖∇gtk(x(t))‖‖x(t+ 1)− x(t)‖
(b)
≥ Qk(t) + gtk(x(t))−D2‖x(t+ 1)− x(t)‖,

where (a) follows from the Cauchy-Schwartz inequality and (b) follows from Assumption 5.1.

Rearranging terms yields

gtk(x(t)) ≤ Qk(t+ 1)−Qk(t) +D2‖x(t+ 1)− x(t)‖.

Summing over t ∈ {1, . . . , T} yields

T∑
t=1

gtk(x(t)) ≤ Qk(T + 1)−Qk(1) +D2

T∑
t=1
‖x(t+ 1)− x(t)‖

(a)= Qk(T + 1) +D2

T∑
t=1
‖x(t+ 1)− x(t)‖

≤ ‖Q(T + 1)‖+D2

T∑
t=1
‖x(t+ 1)− x(t)‖.

where (a) follows from the fact Qk(1) = 0.
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Note that the expression involved in minimization (5.2) in Algorithm 5.1 is strongly convex

with respect to x with modulus 2α and x(t+ 1) is chosen to minimize it. Thus, the next lemma

follows from Corollary 1.2.

Lemma 5.4. Let z ∈ X0 be arbitrary. For all t ≥ 1, Algorithm 5.1 guarantees

V [∇f t(x(t))]T[x(t+ 1)− x(t)] +
m∑
k=1

Qk(t)[∇gtk(x(t))]T[x(t+ 1)− x(t)] + α‖x(t+ 1)− x(t)‖2

≤V [∇f t(x(t))]T[z− x(t)] +
m∑
k=1

Qk(t)[∇gtk(x(t))]T[z− x(t)] + α‖z− x(t)‖2 − α‖z− x(t+ 1)‖2.

The next corollary follows by taking z = x(t) in Lemma 5.4.

Corollary 5.1. For all t ≥ 1, Algorithm 5.1 guarantees

‖x(t+ 1)− x(t)‖ ≤ V D1

2α +
√
mD2

2α ‖Q(t)‖.

Proof. Fix t ≥ 1. Note that x(t) ∈ X0. Taking z = x(t) in Lemma 5.4 yields

V [∇f t(x(t))]T[x(t+ 1)− x(t)] +
m∑
k=1

Qk(t)[∇gtk(x(t))]T[x(t+ 1)− x(t)] + α‖x(t+ 1)− x(t)‖2

≤− α‖x(t)− x(t+ 1)‖2.

Rearranging terms and cancelling common terms yields

2α‖x(t+ 1)− x(t)‖2

≤− V [∇f t(x(t))]T[x(t+ 1)− x(t)]−
m∑
k=1

Qk(t)
[
[∇gtk(x(t))]T[x(t+ 1)− x(t)]

]
(a)
≤V ‖∇f t(x(t))‖‖x(t+ 1)− x(t)‖+ ‖Q(t)‖

√√√√ m∑
k=1
‖∇gtk(x(t))‖2‖x(t+ 1)− x(t)‖2

(b)
≤V D1‖x(t+ 1)− x(t)‖+

√
mD2‖Q(t)‖‖x(t+ 1)− x(t)‖

where (a) follows by the Cauchy-Schwarz inequality (note that the second term on the right side

applies the Cauchy-Schwarz inequality twice); and (b) follows from Assumption 5.1.
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Thus, we have

‖x(t+ 1)− x(t)‖ ≤ V D1

2α +
√
mD2

2α ‖Q(t)‖.

The next corollary follows directly from Lemma 5.3 and Corollary 5.1 and shows that con-

straint violations are ultimately bounded by sequence ‖Q(t)‖, t ∈ {1, 2, . . . , T + 1}.

Corollary 5.2. For any T ≥ 1, Algorithm 5.1 guarantees

T∑
t=1

gtk(x(t)) ≤ ‖Q(T + 1)‖+ V TD1D2

2α +
√
mD2

2
2α

T∑
t=1
‖Q(t)‖,∀k ∈ {1, 2, . . . ,m}

where D1 and D2 are constants defined in Assumption 5.1.

This corollary further justifies why Algorithm 5.1 intends to minimize drift ∆(t). As illus-

trated in the next section, controlled drift can often lead to boundedness of a stochastic process.

Thus, the intuition of minimizing drift ∆(t) is to yield small ‖Q(t)‖ bounds.

5.2 Expected Performance Analysis of Algorithm 5.1

This section shows that if we choose V =
√
T and α = T in Algorithm 5.1, then both expected

regret and expected constraint violations are O(
√
T ).

5.2.1 A Drift Lemma for Stochastic Processes

Let {Z(t), t ≥ 0} be a discrete time stochastic process adapted1 to a filtration {F(t), t ≥ 0}.

For example, Z(t) can be a random walk, a Markov chain or a martingale. The drift analysis is

the method of deducing properties, e.g., recurrence, ergodicity, or boundedness, about Z(t) from

its drift E[Z(t+ 1)−Z(t)|F(t)]. See [Doo53, Haj82] for more discussions or applications on drift

analysis. This chapter proposes a new drift analysis lemma for stochastic processes as follows:

Lemma 5.5. Let {Z(t), t ≥ 0} be a discrete time stochastic process adapted to a filtration

{F(t), t ≥ 0} with Z(0) = 0 and F(0) = {∅,Ω}. Suppose there exists an integer t0 > 0, real

1Random variable Y is said to be adapted to σ-algebra F if Y is F-measurable. In this case, we often write
Y ∈ F . Similarly, random process {Z(t)} is adapted to filtration {F(t)} if Z(t) ∈ F(t), ∀t. See e.g. [Dur10].
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constants θ > 0, δmax > 0 and 0 < ζ ≤ δmax such that

|Z(t+ 1)− Z(t)| ≤δmax, (5.10)

E[Z(t+ t0)− Z(t)|F(t)] ≤

 t0δmax, if Z(t) < θ

−t0ζ, if Z(t) ≥ θ
. (5.11)

hold for all t ∈ {1, 2, . . .}. Then, the following holds

1. E[Z(t)] ≤ θ + t0δmax + t0
4δ2

max
ζ log

( 8δ2
max
ζ2

)
,∀t ∈ {1, 2, . . .}.

2. For any constant 0 < µ < 1, we have Pr(Z(t) ≥ z) ≤ µ,∀t ∈ {1, 2, . . .} where z =

θ + t0δmax + t0
4δ2

max
ζ log

( 8δ2
max
ζ2

)
+ t0

4δ2
max
ζ log( 1

µ ).

Proof. See Section 5.5.1.

The above lemma provides both expected and high probability bounds for stochastic pro-

cesses based on a drift condition. It will be used to establish upper bounds of virtual queues

‖Q(t)‖, which further leads to expected and high probability constraint performance bounds of

our algorithm. For a given stochastic process Z(t), it is possible to show the drift condition (5.11)

holds for multiple t0 with different ζ and θ. In fact, we will show in Lemma 5.7 that ‖Q(t)‖

yielded by Algorithm 5.1 satisfies (5.11) for any integer t0 > 0 by selecting ζ and θ according to

t0. One-step drift conditions, corresponding to the special case t0 = 1 of Lemma 5.5, have been

previously considered in [Haj82, Nee15]. However, Lemma 5.5 (with general t0 > 0) allows us

to choose the best t0 in performance analysis such that sublinear regret and constraint violation

bounds are possible.

5.2.2 Expected Constraint Violation Analysis

Define filtration {W(t), t ≥ 0} with W(0) = {∅,Ω} and W(t) = σ(ω(1), . . . , ω(t)) being the

σ-algebra generated by random samples {ω(1), . . . , ω(t)} up to round t. From the update rule in

Algorithm 5.1, we observe that x(t + 1) is a deterministic function of f t(·),g(·;ω(t)) and Q(t)

where Q(t) is further a deterministic function of Q(t − 1),g(·;ω(t − 1)), x(t) and x(t − 1). By

inductions, it is easy to show that σ(x(t)) ⊆ W(t − 1) and σ(Q(t)) ⊆ W(t − 1) for all t ≥ 1

where σ(Y ) denotes the σ-algebra generated by random variable Y . For fixed t ≥ 1, since Q(t)

133



is fully determined by ω(τ), τ ∈ {1, 2, . . . , t−1} and ω(t) are i.i.d., we know gt(x) is independent

of Q(t). This is formally summarized in the next lemma.

Lemma 5.6. If x∗ ∈ X0 satisfies g̃(x∗) = Eω[g(x∗;ω)] ≤ 0, then Algorithm 5.1 guarantees:

E[Qk(t)gtk(x∗)] ≤ 0,∀k ∈ {1, 2, . . . ,m},∀t ≥ 1. (5.12)

Proof. Fix k ∈ {1, 2, . . . ,m} and t ≥ 1. Since gtk(x∗) = gk(x∗;ω(t)) is independent of Qk(t),

which is determined by {ω(1), . . . , ω(t− 1)}, it follows that

E[Qk(t)gtk(x∗)] = E[Qk(t)]E[gtk(x∗)]
(a)
≤ 0

where (a) follows from the fact that E[gtk(x∗)] ≤ 0 and Qk(t) ≥ 0.

To establish a bound on constraint violations, by Corollary 5.2, it suffices to derive upper

bounds for ‖Q(t)‖. In this subsection, we derive upper bounds for ‖Q(t)‖ by applying the new

drift lemma (Lemma 5.5) developed at the beginning of this section. The next lemma shows that

random process Z(t) = ‖Q(t)‖ satisfies the conditions in Lemma 5.5.

Lemma 5.7. Let t0 > 0 be an arbitrary integer. At each round t ∈ {1, 2, . . . , } in Algorithm 5.1,

the following holds

∣∣‖Q(t+ 1)‖ − ‖Q(t)‖
∣∣ ≤G+

√
mD2R, and

E[‖Q(t+ t0)‖ − ‖Q(t)‖
∣∣W(t− 1)] ≤

 t0(G+
√
mD2R), if ‖Q(t)‖ < θ

−t0 ε2 , if ‖Q(t)‖ ≥ θ
,

where θ = ε
2 t0 + (G+

√
mD2R)t0 + 2αR2

t0ε
+ 2V D1R+(G+

√
mD2R)2

ε , m is the number of constraint

functions; D1, D2, G and R are constants defined in Assumption 5.1; and ε is the constant defined

in Assumption 5.2. (Note that ε < G by the definition of G.)

Proof. See Section 5.5.2.

Lemma 5.7 allows us to apply Lemma 5.5 to random process Z(t) = ‖Q(t)‖ and obtain

E[‖Q(t)‖] = O(
√
T ),∀t by taking t0 = d

√
T e, V =

√
T and α = T , where d

√
T e represents the

smallest integer no less than
√
T . By Corollary 5.2, this further implies the expected constraint

violation bound E[
∑T
t=1 gk(x(t))] ≤ O(

√
T ) as summarized in the next theorem.
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Theorem 5.1 (Expected Constraint Violation Bound). If V =
√
T and α = T in Algorithm

5.1, then for all T ≥ 1, we have

E[
T∑
t=1

gtk(x(t))] ≤ O(
√
T ),∀k ∈ {1, 2, . . . ,m}. (5.13)

where the expectation is taken with respect to all ω(t).

Proof. Define random process Z(t) with Z(0) = 0 and Z(t) = ‖Q(t)‖, t ≥ 1 and filtration

F(t) with F(0) = {∅,Ω} and F(t) = W(t − 1), t ≥ 1. Note that Z(t) is adapted to F(t).

By Lemma 5.7, Z(t) satisfies the conditions in Lemma 5.5 with δmax = G +
√
mD2R, ζ = ε

2

and θ = ε
2 t0 + (G +

√
mD2R)t0 + 2αR2

t0ε
+ 2V D1R+(G+

√
mD2R)2

ε . Thus, by part 1 of Lemma 5.5,

for all t ∈ {1, 2, . . .}, we have E[‖Q(t)‖] ≤ ε
2 t0 +2(G+

√
mD2R)t0 + 2αR2

t0ε
+ 2V D1R+(G+

√
mD2R)2

ε +

t0
8(G+

√
mD2R)2

ε log
( 32(G+

√
mD2R)2

ε2

)
. Taking t0 = d

√
T e, V =

√
T and α = T , we have E[‖Q(t)‖] ≤

O(
√
T ) for all t ∈ {1, 2, . . .}.

Fix T ≥ 1. By Corollary 5.2 (with V =
√
T and α = T ) , we have

∑T
t=1 g

t
k(x(t)) ≤

‖Q(T + 1)‖ +
√
TD1D2

2 +
√
mD2

2
2T

∑T
t=1 ‖Q(t)‖,∀k ∈ {1, 2, . . . ,m}. Taking expectations on both

sides and substituting E[‖Q(t)‖] = O(
√
T ),∀t into it yields E[

∑T
t=1 g

t
k(x(t))] ≤ O(

√
T ).

5.2.3 Expected Regret Analysis

The next lemma refines Lemma 5.4 and is useful to analyze the regret.

Lemma 5.8. Let z ∈ X0 be arbitrary. For all T ≥ 1, Algorithm 5.1 guarantees

T∑
t=1

f t(x(t)) ≤
T∑
t=1

f t(z) + α

V
R2 + V D2

1
4α T + 1

2(G+
√
mD2R)2 T

V︸ ︷︷ ︸
(I)

+ 1
V

T∑
t=1

[ m∑
k=1

Qk(t)gtk(z)
]

︸ ︷︷ ︸
(II)

(5.14)

where m is the number of constraint functions; and D1, D2, G and R are constants defined in

Assumption 5.1.

Proof. See Section 5.5.3.

Note that if we take V =
√
T and α = T , then term (I) in (5.14) is O(

√
T ). Recall that the

expectation of term (II) in (5.14) with z = x∗ is non-positive by Lemma 5.6. The expected regret
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bound of Algorithm 5.1 follows by taking expectations on both sides of (5.14) and is summarized

in the next theorem.

Theorem 5.2 (Expected Regret Bound). Let x∗ ∈ X0 be any fixed solution that satisfies g̃(x∗) ≤

0, e.g., x∗ = argmin
x∈X

{
T∑
t=1

f t(x)}. If V =
√
T and α = T in Algorithm 5.1, then for all T ≥ 1,

E[
T∑
t=1

f t(x(t))] ≤ E[
T∑
t=1

f t(x∗)] +O(
√
T ).

where the expectation is taken with respect to all ω(t).

Proof. Fix T ≥ 1. Taking z = x∗ in Lemma 5.8 yields
∑T
t=1 f

t(x(t)) ≤
∑T
t=1 f

t(x∗) + α
V R

2 +
V D2

1
4α T + 1

2 (G+
√
mD2R)2 T

V + 1
V

∑T
t=1
[∑m

k=1Qk(t)gtk(x∗)
]
. Taking expectations on both sides

and using (5.12) yields
∑T
t=1 E[f t(x(t))] ≤

∑T
t=1 E[f t(x∗)]+R2 α

V + D2
1

4
V
α T + 1

2 (G+
√
mD2R)2 T

V .

Taking V =
√
T and α = T yields

∑T
t=1 E[f t(x(t))] ≤

∑T
t=1 E[f t(x∗)] +O(

√
T ).

5.2.4 Special Case Performance Guarantees

Theorems 5.1 and 5.2 provide expected performance guarantees of Algorithm 5.1 for OCO

with stochastic constraints. The results further imply the performance guarantees in the following

special cases:

• OCO with long term constraints: In this case, gk(x;ω(t)) ≡ gk(x) and there is no

randomness. Thus, the expectations in Theorems 5.1 and 5.2 disappear. For this prob-

lem, Algorithm 5.1 can achieve O(
√
T ) (deterministic) regret and O(

√
T ) (deterministic)

constraint violations.

• Stochastic constrained convex optimization: Note that i.i.d. time-varying f(x;ω(t))

is a special case of arbitrarily-varying f t(x) as considered in our OCO setting. Thus,

Theorems 5.1 and 5.2 still hold when Algorithm 5.1 is applied to solve stochastic constrained

convex optimization minx{E[f(x;ω)] : E[gk(x;ω)] ≤ 0,∀k ∈ {1, 2, . . . ,m},x ∈ X0} in an

online fashion with i.i.d. realizations ω(t) ∼ ω. Since Algorithm 5.1 chooses each x(t)

without knowing ω(t), it follows that x(t) is independent of ω(t′) for any t′ ≥ t by the

i.i.d. property of each ω(t). Fix T > 0, if we run Algorithm 5.1 for T slots and use
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x(T ) = 1
T

∑T
t=1 x(t) as a fixed solution for any future slot t′ ≥ T + 1, then

E[f(x(T );ω(t′)]
(a)
≤ 1
T

T∑
t=1

E[f(x(t);ω(t′))]

(b)= 1
T

T∑
t=1

E[f(x(t);ω(t))]

(c)
≤ 1
T

T∑
t=1

E[f(x∗;ω(t))] +O( 1√
T

)

(d)=E[f(x∗;ω(t′))] +O( 1√
T

)

and

E[gk(x(T );ω(t′)]
(a)
≤ 1
T

T∑
t=1

E[gk(x(T );ω(t′)]

(b)= 1
T

T∑
t=1

E[gk(x(t);ω(t))]

(c)
≤O( 1√

T
),∀k ∈ {1, 2, . . . ,m}

where in both inequality chains (a) follows from Jensen’s inequality and the fact that x(T )

is independent of ω(t′); (b) follows because each x(t) is independent of both ω(t) and

ω(t′), and ω(t) and ω(t′) are i.i.d. realizations of ω; (c) follows from Theorems 5.1 and

5.2 by dividing both sides by T and (d) follows because E[f(x∗;ω(t))] = E[f(x∗;ω(t′))]

for all t ∈ {1, . . . , T} by the i.i.d. property of each ω(t). Thus, if we use Algorithm 5.1

as a (batch) offline algorithm to solve stochastic constrained convex optimization, it has

O(1/
√
T ) convergence and ties with the algorithm developed in [LZ16], which is by design a

(batch) offline algorithm and can only solve stochastic optimization with a single constraint

function.

• Deterministic constrained convex optimization: Similarly to OCO with long term

constraints, the expectations in Theorems 5.1 and 5.2 disappear in this case since f t(x) ≡

f(x) and gk(x;ω(t)) ≡ gk(x). If we use x(T ) = 1
T

∑T
t=1 x(t) as the solution, then f(x(T )) ≤

f(x∗) +O( 1√
T

) and gk(x(T )) ≤ O( 1√
T

), which follows by dividing inequalities in Theorems

5.1 and 5.2 by T on both sides and applying Jensen’s inequality. Thus, Algorithm 5.1 solves

deterministic constrained convex optimization with O( 1√
T

) convergence.
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5.3 High Probability Performance Analysis

This section shows that if we choose V =
√
T and α = T in Algorithm 5.1, then for any

0 < λ < 1, with probability at least 1 − λ, regret is O(
√
T log(T ) log1.5( 1

λ )) and constraint

violations are O
(√
T log(T ) log( 1

λ )
)
.

5.3.1 High Probability Constraint Violation Analysis

Similarly to the expected constraint violation analysis, we can use part 2 of the new drift

lemma (Lemma 5.5) to obtain a high probability bound of ‖Q(t)‖, which together with Corollary

5.2 leads to a high probability constraint violation bound summarized in Theorem 5.3.

Theorem 5.3 (High Probability Constraint Violation Bound). Let 0 < λ < 1 be arbitrary. If

V =
√
T and α = T in Algorithm 5.1, then for all T ≥ 1 and all k ∈ {1, 2, . . . ,m}, we have

Pr
( T∑
t=1

gk(x(t)) ≤ O
(√
T log(T ) log( 1

λ
)
))
≥ 1− λ.

Proof. See Section 5.5.4.

5.3.2 High Probability Regret Analysis

To obtain a high probability regret bound from Lemma 5.8, it remains to derive a high

probability bound of term (II) in (5.14) with z = x∗. The main challenge is that term (II)

is a supermartingale with unbounded differences (due to the possibly unbounded virtual queues

Qk(t)). Most concentration inequalities, e.g., the Hoeffding-Azuma inequality, used in high prob-

ability performance analysis of online algorithms are restricted to martingales/supermartingales

with bounded differences. See for example [CBL06, BDH+08, MJY12]. The following lemma con-

siders supermartingales with unbounded differences. Its proof uses the truncation method to con-

struct an auxiliary well-behaved supermartingale. Similar proof techniques are previously used in

[Vu02, TV15] to prove different concentration inequalities for supermartingales/martingales with

unbounded differences. The truncation method is also previously used in [WYN15] to analyze

the high probability sample path performance of the conventional drift-plus-penalty technique

for opportunistic stochastic optimzation.
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Lemma 5.9. Let {Z(t), t ≥ 0} be a supermartingale adapted to a filtration {F(t), t ≥ 0} with

Z(0) = 0 and F(0) = {∅,Ω}, i.e., E[Z(t+ 1)|F(t)] ≤ Z(t),∀t ≥ 0. Suppose there exits a constant

c > 0 such that {|Z(t + 1) − Z(t)| > c} ⊆ {Y (t) > 0},∀t ≥ 0, where Y (t) is process with Y (t)

adapted to F(t) for all t ≥ 0. Then, for all z > 0, we have

Pr(Z(t) ≥ z) ≤ e−z
2/(2tc2) +

t−1∑
τ=0

Pr(Y (τ) > 0),∀t ≥ 1.

Note that if Pr(Y (t) > 0) = 0,∀t ≥ 0, then Pr({|Z(t + 1) − Z(t)| > c}) = 0,∀t ≥ 0 and

Z(t) is a supermartingale with differences bounded by c. In this case, Lemma 5.9 reduces to the

conventional Hoeffding-Azuma inequality.

The next theorem summarizes the high probability regret performance of Algorithm 5.1 and

follows from Lemmas 5.5-5.9 .

Theorem 5.4 (High Probability Regret Bound). Let x∗ ∈ X0 be any fixed solution that satisfies

g̃(x∗) ≤ 0, e.g., x∗ = argmin
x∈X

{
T∑
t=1

f t(x)}. Let 0 < λ < 1 be arbitrary. If V =
√
T and α = T in

Algorithm 5.1, then for all T ≥ 1, we have

Pr
( T∑
t=1

f t(x(t)) ≤
T∑
t=1

f t(x∗) +O(
√
T log(T ) log1.5( 1

λ
))
)
≥ 1− λ.

Proof. See Section 5.5.6.

5.4 Chapter Summary

This chapter studies OCO with stochastic constraints, where the objective function varies

arbitrarily but the constraint functions are i.i.d. over time. A novel learning algorithm is devel-

oped that guarantees O(
√
T ) expected regret and constraint violations and O(

√
T log(T )) high

probability regret and constraint violations.
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5.5 Supplement to this Chapter

5.5.1 Proof of Lemma 5.5

In this proof, we first establish an upper bound of E[erZ(t)] for some constant r > 0. Part 1

of this lemma follows by applying Jensen’s inequality since erx is convex with respect to x when

r > 0. Part 2 of this lemma follows directly from Markov’s inequality.

The following fact is useful in the proof.

Fact 5.1. ex ≤ 1 + x+ 2x2 for any |x| ≤ 1.

Proof. By Taylor’s expansion, we known for any x ∈ R, there exists a point x̂ in between 0 and x

such that ex = 1+x+ex̂ x
2

2 . (Note that the value of x̂ depends on x and if x > 0, then x̂ ∈ (0, x);

if x < 0, then x̂ ∈ (x, 0); and if x = 0, then x̂ = x. ) Since |x| ≤ 1, we have ex̂ ≤ e ≤ 4. Thus,

ex ≤ 1 + x+ 2x2 for any |x| ≤ 1.

The next lemma provides an upper bound of E[erZ(t)] with constant r = ζ
4t0δ2

max
< 1.

Lemma 5.10. Under the assumption of Lemma 5.5, we have

E[erZ(t)] ≤ ert0δmax

1− ρ erθ,∀t ∈ {0, 1, . . .},

where r = ζ
4t0δ2

max
, ρ = 1− ζ2

8δ2
max

= 1− rt0ζ
2 .

Proof. Since 0 < ζ < δmax, we have 0 < ρ < 1 < erδmax . Define η(t) = Z(t + t0) − Z(t). Note

that |η(t)| ≤ t0δmax,∀t ≥ 0 and |rη(t)| ≤ ζ
4t0δ2

max
t0δmax = ζ

4δmax
≤ 1. Then,

erZ(t+t0) =erZ(t)erη(t) (5.15)
(a)
≤ erZ(t)(1 + rη(t) + 2r2t20δ

2
max)

(b)=erZ(t)(1 + rη(t) + 1
2rt0ζ), (5.16)

where (a) follows from Fact 5.1 by noting that |rη(t)| ≤ 1 and |η(t)| ≤ t0δmax; and (b) follows by

substituting r = ζ
4t0δ2

max
into a single r of the term 2r2t20δ

2
max.

Next, consider the cases Z(t) ≥ θ and Z(t) < θ, separately.
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• Case Z(t) ≥ θ: Taking conditional expectations on both sides of (5.16) yields:

E[erZ(t+t0)|Z(t)] ≤E[erZ(t)(1 + rη(t) + 1
2rt0ζ)|Z(t)]

(a)
≤ erZ(t)(1− rt0ζ + 1

2rt0ζ
)

=erZ(t)(1− rt0ζ

2
)

(b)=ρerZ(t).

where (a) follows from the fact that E[Z(t + t0) − Z(t)|F(t)] ≤ −t0ζ when Z(t) ≥ θ; and

(b) follows from the fact that ρ = 1− rt0ζ
2 .

• Case Z(t) < θ: Taking conditional expectations on both sides of (5.15) yields:

E[erZ(t+t0)|Z(t)] =E[erZ(t)erη(t)|Z(t)]

=erZ(t)E[erη(t)|Z(t)]
(a)
≤ ert0δmaxerZ(t),

where (a) follows from the fact that η(t) ≤ t0δmax.

Putting two cases together yields:

E[erZ(t+t0)] (a)= Pr(Z(t) ≥ θ)E[erZ(t+t0)|Z(t) ≥ θ] + Pr(Z(t) < θ)E[erZ(t+t0)|Z(t) < θ]
(b)
≤ρE[erZ(t)|Z(t) ≥ θ]Pr(Z(t) ≥ θ) + ert0δmaxE[erZ(t)|Z(t) < θ]Pr(Z(t) < θ)
(c)=ρE[erZ(t)] + (ert0δmax − ρ)E[erZ(t)|Z(t) < θ]Pr(Z(t) < θ)
(d)
≤ρE[erZ(t)] + (ert0δmax − ρ)erθ

≤ρE[erZ(t)] + ert0δmaxerθ, (5.17)

where (a) follows by the definition of expectations; (b) follows from the results in the above two

cases; (c) follows from the fact that E[erZ(t)] = Pr(Z(t) ≥ θ)E[erZ(t)|Z(t) ≥ θ] + Pr(Z(t) <

θ)E[erZ(t)|Z(t) < θ]; and (d) follow from the fact that ert0δmax > ρ.

Now, we prove E[erZ(t)] ≤ ert0δmax

1−ρ erθ,∀t ≥ 0, by inductions.

We first consider the base case t ∈ {0, 1, . . . , t0}. Since Z(t) ≤ tδmax,∀t ≥ 0, it follows that
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E[erZ(t)] ≤ ertδmax ≤ ert0δmax ≤ ert0δmax

1−ρ erθ,∀t ∈ {0, 1, . . . , t0}, where the last inequality follows

because erθ

1−ρ ≥ 1.

Now assume that E[erZ(t)] ≤ ert0δmax

1−ρ erθ for all t ∈ {0, 1, . . . , τ} with some τ ≥ t0 and consider

iteration t = τ + 1. By (5.17), we have

E[erZ(τ+1)] ≤ρE[erZ(τ+1−t0)] + ert0δmaxerθ

(a)
≤ρe

rt0δmax

1− ρ erθ + ert0δmaxerθ

=ert0δmax

1− ρ erθ

where (a) follows from the induction hypothesis by noting that 0 ≤ τ + 1− t0 ≤ τ .

Thus, this lemma follows by inductions.

By this lemma, for all t ∈ {0, 1, . . .}, we have

E[erZ(t)] ≤e
rt0δmax

1− ρ erθ. (5.18)

Proof of Part 1: Note that erx is convex with respect to x when r > 0. By Jensen’s

inequality,

erE[Z(t)] ≤E[erZ(t)]
(a)
≤ er(θ+t0δmax)

1− ρ , (5.19)

where (a) follows from (5.18).

Taking logarithm on both sides and dividing by r yields:

E[Z(t)] ≤θ + t0δmax + 1
r

log
( 1

1− ρ
)

(a)=θ + t0δmax + t0
4δ2

max
ζ

log
(8δ2

max
ζ2

)
,

where (a) follows by recalling that r = ζ
4t0δ2

max
and ρ = 1− ζ2

8δ2
max

.
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Proof of Part 2: Fix z. Note that

Pr(Z(t) ≥ z) =Pr(erZ(t) ≥ erz)
(a)
≤ E[erZ(t)]

erz

(b)
≤er(θ−z+t0δmax) 1

1− ρ
(c)=e

ζ

4t0δ2
max

(θ−z+t0δmax)(8δ2
max
ζ2

)
(5.20)

where (a) follows from Markov’s inequality; (b) follows from (5.18); and (c) follows by recalling

that r = ζ
4t0δ2

max
and ρ = 1− ζ2

8δ2
max

.

Define µ = e
ζ

4t0δ2
max

(θ−z+t0δmax)( 8δ2
max
ζ2

)
. It follows that if

z = θ + t0δmax + t0
4δ2

max
ζ

log
(8δ2

max
ζ2

)
+ t0

4δ2
max
ζ

log( 1
µ

),

then we have Pr(Z(t) ≥ z) ≤ µ by (5.20).

5.5.2 Proof of Lemma 5.7

The next lemma will be useful in our proof.

Lemma 5.11. Let x̂ ∈ X0 be a Slater point defined in Assumption 5.2, i.e, g̃k(x̂) = Eω[gk(x̂;ω)] ≤

−ε,∀k ∈ {1, 2, . . . ,m}. Then

E[
m∑
k=1

Qk(t1)gt1k (x̂)|W(t2)] ≤ −εE[‖Q(t1)‖|W(t2)], ∀t2 ≤ t1 − 1

where ε > 0 is defined in Assumption 5.2.

Proof. To prove this lemma, we first show that

E[Qk(t1)gt1k (x̂)|W(t2)] ≤ −εE[Qk(t1)|W(t2)],∀k ∈ {1, 2, . . . ,m},∀t2 ≤ t1 − 1.

Fix k ∈ {1, 2, . . . ,m}. Note that Q(t1) ∈ W(t1 − 1) and gt1k (x̂) is independent of W(t1 − 1).
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Further, if t2 ≤ t1 − 1, then W(t2) ⊆ W(t1 − 1). Thus, we have

E[Qk(t1)gt1k (x̂)|W(t2)] (a)=E
[
E[Qk(t1)gt1k (x̂)|W(t1 − 1)]|W(t2)

]
(b)=E

[
Qk(t1)E[gt1k (x̂)]|W(t2)

]
(c)=E[gt1k (x̂)]E[Qk(t1)|W(t2)]
(d)
≤ − εE[Qk(t1)|W(t2)]

where (a) follows from iterated expectations; (b) follows because gt1k (x̂) is independent ofW(t1−1)

and Qk(t1) ∈ W(t1−1); (c) follows by extracting the constant E[gt1k (x̂)] and (d) follows from the

assumption that x̂ is a Slater point, gt(·) are i.i.d. across t and the fact that Qk(t) ≥ 0.

Now, summing over m ∈ {1, 2, . . . ,m} yields

E[
m∑
k=1

Qk(t1)gt1k (x̂)|W(t2)] ≤− εE[
m∑
k=1

Qk(t1)|W(t2)]

(a)
≤ − εE[‖Q(t1)‖|W(t2)]

where (a) follows from the basic fact that
∑m
k=1 ak ≥

√∑m
k=1 a

2
k when ak ≥ 0,∀k ∈ {1, 2, . . . ,m}.

The bounded difference of |Q(t + 1) −Q(t)| follows directly from the virtual queue update

equation (5.3) and is summarized in the next Lemma.

Lemma 5.12. Let Q(t), t ∈ {0, 1, . . .} be the sequence generated by Algorithm 5.1. Then,

‖Q(t)‖ −G−
√
mD2R ≤ ‖Q(t+ 1)‖ ≤ ‖Q(t)‖+G,∀t ≥ 0.

Proof.

• Proof of ‖Q(t+ 1)‖ ≤ ‖Q(t)‖+G:

Fix t ≥ 0 and k ∈ {1, 2, . . . ,m}. The virtual queue update equation implies that

Qk(t+ 1) = max{Qk(t) + gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)], 0}
(a)
≤ max{Qk(t) + gtk(x(t+ 1)), 0},
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where (a) follows from the convexity of gtk(·).

Note that Qk(t+ 1) ≥ 0 and recall the fact that if 0 ≤ a ≤ max{b, 0}, then a2 ≤ b2 for all

a, b ∈ R. Then, we have [Qk(t+ 1)]2 ≤ [Qk(t) + gtk(x(t+ 1))]2.

Summing over k ∈ {1, 2, . . . ,m} yields

‖Q(t+ 1)‖2 ≤ ‖Q(t) + gt(x(t+ 1))‖2.

Thus, ‖Q(t+ 1)‖ ≤ ‖Q(t) + gt(x(t+ 1))‖ ≤ ‖Q(t)‖+ ‖gt(x(t+ 1))‖ ≤ ‖Q(t)‖+G where

the last inequality follows from Assumption 5.1.

• Proof of ‖Q(t+ 1)‖ ≥ ‖Q(t)‖ −G−
√
mD2R:

Since Qk(t) ≥ 0, it follows that |Qk(t+1)−Qk(t)| ≤ |gtk(x(t))+[∇gtk(x(t))]T[x(t+1)−x(t)]|.

(This can be shown by considering gtk(x(t))+[∇gtk(x(t))]T[x(t+1)−x(t)] ≥ 0 and gtk(x(t))+

[∇gtk(x(t))]T[x(t+1)−x(t)] < 0 separately.) Thus, we have ‖Q(t+1)−Q(t)‖ ≤ G+
√
mD2R,

which further implies ‖Q(t + 1)‖ ≥ ‖Q(t)‖ − G −
√
mD2R by the triangle inequality of

norms.

Now, we are ready to present the main proof of Lemma 5.7. Note that Lemma 5.12 gives∣∣‖Q(t+ 1)‖−‖Q(t)‖
∣∣ ≤ G+

√
mD2R, which further implies that E[‖Q(t+ t0)‖−‖Q(t)‖|Q(t)] ≤

t0(G +
√
mD2R) when ‖Q(t)‖ < θ. It remains to prove E[‖Q(t + 1)‖ − ‖Q(t)‖

∣∣Q(t)] ≤ − ε
2 t0

when ‖Q(t)‖ ≥ θ. Note that ‖Q(0)‖ = 0 < θ.

Fix t ≥ 1 and consider that ‖Q(t)‖ ≥ θ. Let x̂ ∈ X0 and ε > 0 be defined in Assumption

5.2. Note that E[gtk(x̂)] ≤ −ε,∀k ∈ {1, 2, . . . ,m},∀t ∈ {1, 2, . . . } since ω(t) are i.i.d. from the

distribution of ω. Since x̂ ∈ X0, by Lemma 5.4, for all τ ∈ {t, t+ 1, . . . , t+ t0 − 1}, we have

V [∇fτ (x(τ))]T[x(τ + 1)− x(τ)] +
m∑
k=1

Qk(τ)[∇gτk(x(τ))]T[x(τ + 1)− x(τ)] + α‖x(τ + 1)− x(τ)‖2

≤V [∇fτ (x(τ))]T[x̂− x(τ)] +
m∑
k=1

Qk(τ)[∇gτk(x(τ))]T[x̂− x(τ)] + α[‖x̂− x(τ)‖2 − ‖x̂− x(τ + 1)‖2].

Adding
∑m
k=1Qk(τ)gτk(x(τ)) on both sides and noting that gτk(x(τ)) + [∇gτk(x(τ))]T[x̂−x(τ)] ≤
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gτk(x̂) by convexity yields

V [∇fτ (x(τ))]T[x(τ + 1)− x(τ)] +
m∑
k=1

Qk(τ)
[
gτk(x(τ)) + [∇gτk(x(τ))]T[x(τ + 1)− x(τ)]

]
+ α‖x(τ + 1)− x(τ)‖2

≤V [∇fτ (x(τ))]T[x̂− x(τ)] +
m∑
k=1

Qk(τ)gτk(x̂) + α[‖x̂− x(τ)‖2 − ‖x̂− x(τ + 1)‖2].

Rearranging terms yields

m∑
k=1

Qk(t)
[
gτk(x(t)) + [∇gτk(x(τ))]T[x(τ + 1)− x(τ)]

]
≤V [∇fτ (x(τ))]T[x̂− x(τ)]− V [∇fτ (x(τ))]T[x(τ + 1)− x(τ)]

+ α[‖x̂− x(τ)‖2 − ‖x̂− x(τ + 1)‖2]− α‖x(τ + 1)− x(τ)‖2 +
m∑
k=1

Qk(t)gτk(x̂)

≤V [∇fτ (x(τ))]T[x̂− x(τ + 1)] + α[‖x̂− x(τ)‖2 − ‖x̂− x(τ + 1)‖2] +
m∑
k=1

Qk(τ)gτk(x̂)

(a)
≤V ‖∇fτ (x(τ))‖‖x̂− x(τ + 1)‖+ α[‖x̂− x(τ)‖2 − ‖x̂− x(τ + 1)‖2] +

m∑
k=1

Qk(τ)gτk(x̂)

(b)
≤V D1R+ α[‖x̂− x(τ)‖2 − ‖x̂− x(τ + 1)‖2] +

m∑
k=1

Qk(τ)gτk(x̂), (5.21)

where (a) follows from the Cauchy-Schwarz inequality and (b) follows from Assumption 5.1.

By Lemma 5.2, for all τ ∈ {t, t+ 1, . . . , t+ t0 − 1}, we have

∆(τ) ≤
m∑
k=1

Qk(τ)
[
gτk(x(τ)) + [∇gτk(x(τ))]T[x(τ + 1)− x(τ)]

]
+ 1

2(G+
√
mD2R)2

(a)
≤V D1R+ 1

2(G+
√
mD2R)2 + α[‖x̂− x(τ)‖2 − ‖x̂− x(τ + 1)‖2] +

m∑
k=1

Qk(τ)gτk(x̂),

where (a) follows from (5.21).

Summing the above inequality over τ ∈ {t, t+1, . . . , t+t0−1}, taking expectations conditional
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on W(t− 1) on both sides and recalling that ∆(τ) = 1
2‖Q(τ + 1)‖2 − 1

2‖Q(τ)‖2 yields

E[‖Q(t+ t0)‖2 − ‖Q(t)‖2
∣∣W(t− 1)]

≤2V D1Rt0 + t0[G+
√
mD2R]2 + 2αE[‖x̂− x(t)‖2 − ‖x̂− x(t+ t0)‖2|W(t− 1)]

+ 2
t+t0−1∑
τ=t

E[
m∑
k=1

Qk(τ)gτk(x̂)|W(t− 1)]

(a)
≤2V D1Rt0 + t0(G+

√
mD2R)2 + 2αR2 − 2ε

t+t0−1∑
τ=t

E[‖Q(τ)‖|W(t− 1)]

(b)
≤2V D1Rt0 + t0(G+

√
mD2R)2 + 2αR2 − 2ε

t0−1∑
τ=0

E[‖Q(t)‖ − τ(G+
√
mD2R)|W(t− 1)]

=2V D1Rt0 + t0(G+
√
mD2R)2 + 2αR2 − 2εt0‖Q(t)‖+ εt0(t0 − 1)(G+

√
mD2R)

≤2V D1Rt0 + t0(G+
√
mD2R)2 + 2αR2 − 2εt0‖Q(t)‖+ εt20(G+

√
mD2R)

where (a) follows because ‖x̂− x(t)‖2 − ‖x̂− x(t+ t0)‖2 ≤ R2 by Assumption 5.1 and

E[
m∑
k=1

Qk(τ)gτk(x̂)|W(t− 1)] ≤ −εE[‖Q(τ)‖|W(t− 1)],∀τ ∈ {t, t+ 1, . . . , t+ t0 − 1}

by Lemma 5.11; (b) follows because ‖Q(t+ 1)‖ ≥ ‖Q(t)‖ − (G+
√
mD2R),∀t by Lemma 5.12.

This inequality can be rewritten as

E[‖Q(t+ t0)‖2
∣∣W(t− 1)]

≤‖Q(t)‖2 − 2εt0‖Q(t)‖+ 2V D1Rt0 + 2αR2 + t0(G+
√
mD2R)2 + εt20(G+

√
mD2R)

(a)
≤‖Q(t)‖2 − εt0‖Q(t)‖ − εt0[ ε2 t0 + (G+

√
mD2R)t0 + 2αR2

t0ε
+ 2V D1R+ (G+

√
mD2R)2

ε
]

+ 2V D1Rt0 + 2αR2 + t0(G+
√
mD2R)2 + εt20(G+

√
mD2R)

=‖Q(t)‖2 − εt0‖Q(t)‖ − ε2t20
2

≤[‖Q(t)‖ − ε

2 t0]2,

where (a) follows from the hypothesis that ‖Q(t)‖ ≥ θ = ε
2 t0 + (G +

√
mD2R)t0 + 2αR2

t0ε
+

2V D1R+(G+
√
mD2R)2

ε .
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Taking square root on both sides yields

√
E[‖Q(t+ t0)‖2

∣∣W(t− 1)] ≤ ‖Q(t)‖ − ε

2 t0.

By the concavity of function
√
x and Jensen’s inequality, we have

E[‖Q(t+ t0)‖
∣∣W(t− 1)] ≤

√
E[‖Q(t+ t0)‖2|W(t− 1)] ≤ ‖Q(t)‖ − ε

2 t0.

5.5.3 Proof of Lemma 5.8

Fix t ≥ 1. By Lemma 5.4, we have

V [∇f t(x(t))]T[x(t+ 1)− x(t)] +
m∑
k=1

Qk(t)[∇gtk(x(t))]T[x(t+ 1)− x(t)] + α‖x(t+ 1)− x(t)‖2

≤V [∇f t(x(t))]T[z− x(t)] +
m∑
k=1

Qk(t)[∇gtk(x(t))]T[z− x(t)] + α[‖z− x(t)‖2 − ‖z− x(t+ 1)‖2].

Adding constant V f t(x(t)) +
∑m
k=1Qk(t)gtk(x(t)) on both sides; and noting that f t(x(t)) +

[∇f t(x(t))]T[z− x(t)] ≤ f t(z) and gtk(x(t)) + [∇gtk(x(t))]T[z− x(t)] ≤ gtk(z) by convexity yields

V f t(x(t)) + V [∇f t(x(t))]T[x(t+ 1)− x(t)] +
m∑
k=1

Qk(t)
[
gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)]

]
+ α‖x(t+ 1)− x(t)‖2

≤V f t(z) +
m∑
k=1

Qk(t)gtk(z) + α[‖z− x(t)‖2 − ‖z− x(t+ 1)‖2]. (5.22)

By Lemma 5.2, we have

∆(t) ≤
m∑
k=1

Qk(t)
[
gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)]

]
+ 1

2[G+
√
mD2R]2. (5.23)

Summing (5.22) and (5.23), cancelling common terms and rearranging terms yields

V f t(x(t)) ≤V f t(z)−∆(t) +
m∑
k=1

Qk(t)gtk(z) + α[‖z− x(t)‖2 − ‖z− x(t+ 1)‖2]

− V [∇f t(x(t))]T[x(t+ 1)− x(t)]− α‖x(t+ 1)− x(t)‖2 + 1
2[G+

√
mD2R]2 (5.24)
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Note that

− V [∇f t(x(t))]T[x(t+ 1)− x(t)]− α‖x(t+ 1)− x(t)‖2

(a)
≤V ‖∇f t(x(t))‖‖x(t+ 1)− x(t)‖ − α‖x(t+ 1)− x(t)‖2

(b)
≤V D1‖x(t+ 1)− x(t)‖ − α‖x(t+ 1)− x(t)‖2

=− α
[
‖x(t+ 1)− x(t)‖ − V D1

2α
]2 + V 2D2

1
4α

≤V
2D2

1
4α (5.25)

where (a) follows from the Cauchy-Schwarz inequality; and (b) follows from Assumption 5.1.

Substituting (5.25) into (5.24) yields

V f t(x(t)) ≤V f t(z)−∆(t) +
m∑
k=1

Qk(t)gtk(z) + α[‖z− x(t)‖2 − ‖z− x(t+ 1)‖2] + V 2D2
1

4α

+ 1
2[G+

√
mD2R]2.

Summing over t ∈ {1, 2, . . . , T} yields

V

T∑
t=1

f t(x(t)) ≤V
T∑
t=1

f t(z)−
T∑
t=1

∆(t) + α

T∑
t=1

[‖z− x(t)‖2 − ‖z− x(t+ 1)‖2] + V 2D2
1

4α T

+ 1
2(G+

√
mD2R)2T +

T∑
t=1

[ m∑
k=1

Qk(t)gtk(z)
]

(a)=V

T∑
t=1

f t(z) + L(1)− L(T + 1) + α‖z− x(1)‖2 − α‖z− x(T + 1)‖2 + V 2D2
1

4α T

+ 1
2(G+

√
mD2R)2T +

T∑
t=1

[ m∑
k=1

Qk(t)gtk(z)
]

(b)
≤V

T∑
t=1

f t(z) + αR2 + V 2D2
1

4α T + 1
2(G+

√
mD2R)2T +

T∑
t=1

[ m∑
k=1

Qk(t)gtk(z)
]
.

where (a) follows by recalling that ∆(t) = L(t+1)−L(t); and (b) follows because ‖z−x(1)‖ ≤ R

by Assumption 5.1, L(1) = 1
2‖Q(1)‖2 = 0 and L(T + 1) = 1

2‖Q(T + 1)‖2 ≥ 0.

Dividing both sides by V yields the desired result.
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5.5.4 Proof of Theorem 5.3

Define random process Z(t) = ‖Q(t)‖,∀t ∈ {1, 2, . . .}. By Lemma 5.7, Z(t) satisfies the

conditions in Lemma 5.5 with δmax = G+
√
mD2R, ζ = ε

2 and

θ = ε

2 t0 + (G+
√
mD2R)t0 + 2αR2

t0ε
+ 2V D1R+ (G+

√
mD2R)2

ε
.

Fix T ≥ 1 and 0 < λ < 1. Taking µ = λ/(T + 1) in part 2 of Lemma 5.5 yields

Pr(‖Q(t)‖ ≥ γ) ≤ λ

T + 1 ,∀t ∈ {1, 2, . . . , T + 1},

where γ = ε
2 t0+2(G+

√
mD2R)t0+ 2αR2

t0ε
+ 2V D1R+(G+

√
mD2R)2

ε +t0 8(G+
√
mD2R)2

ε log
( 32(G+

√
mD2R)2

ε2

)
+

t0
8(G+

√
mD2R)2

ε log(T+1
λ ).

By the union bound of probability, we have

Pr(‖Q(t)‖ ≥ γ for some t ∈ {1, 2, . . . , T + 1}) ≤ λ.

This implies

Pr(‖Q(t)‖ ≤ γ for all t ∈ {1, 2, . . . , T + 1}) ≥ 1− λ. (5.26)

Taking t0 = d
√
T e, V =

√
T and α = T yields

γ = O(
√
T log(T )) +O(

√
T log( 1

λ
)) = O(

√
T log(T ) log( 1

λ
)) (5.27)

Recall that by Corollary 5.2 (with V =
√
T and α = T ), for all k ∈ {1, 2, . . . ,m}, we have

T∑
t=1

gk(x(t)) ≤ ‖Q(T + 1)‖+
√
TD1D2

2 +
√
mD2

2
2T

T∑
t=1
‖Q(t)‖. (5.28)

It follows from (5.26)-(5.28) that

Pr
( T∑
t=1

gk(x(t)) ≤ O(
√
T log(T ) log( 1

λ
))
)
≥ 1− λ.
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5.5.5 Proof of Lemma 5.9

Intuitively, the second term on the right side in the lemma bounds the probability that

|Z(τ + 1) − Z(τ)| > c for any τ ∈ {0, 1, . . . , t − 1}, while the first term on the right side

comes from the conventional Hoeffding-Azuma inequality. However, it is unclear whether or

not Z(t) is still a supermartigale conditional on the event that |Z(τ + 1) − Z(τ)| ≤ c for any

τ ∈ {0, 1, . . . , t − 1}.That’s why it is important to have {|Z(t + 1) − Z(t)| > c} ⊆ {Y (t) > 0}

and Y (t) ∈ F(t), which means the boundedness of |Z(t+ 1)−Z(t)| can be inferred from another

random variable Y (t) that belongs to F(t). The proof of Lemma 5.9 uses the truncation method

to construct an auxiliary supermargingale.

Recall the definition of stoping time given as follows:

Definition 5.1 ([Dur10]). Let {∅,Ω} = F(0) ⊆ F(1) ⊆ F(2) · · · be a filtration. A discrete

random variable T is a stoping time (also known as an option time) if for any integer t <∞,

{T = t} ∈ F(t),

i.e. the event that the stopping time occurs at time t is contained in the information up to time

t.

The next theorem summarizes that a supermartingale truncated at a stoping time is still a

supermartingale.

Theorem 5.5. (Theorem 5.2.6 in [Dur10]) If random variable T is a stopping time and Z(t) is

a supermartingale, then Z(t ∧ T ) is also a supermartingale, where a ∧ b , min{a, b}.

To prove this lemma, we first construct a new supermartingale by truncating the original

supermartingale at a carefully chosen stopping time such that the new supermartingale has

bounded differences.

Define integer random variable T = inf{t ≥ 0 : Y (t) > 0}. That is, T is the first time t when

Y (t) > 0 happens. Now, we show that T is a stoping time and if we define Z̃(t) = Z(t ∧ T ),

then {Z̃(t) 6= Z(t)} ⊆
⋃t−1
τ=0{Y (τ) > 0},∀t ≥ 1 and Z̃(t) is a supermartingale with differences

bounded by c .

1. To show T is a stoping time: Note that {T = 0} = {Y (0) > 0} ∈ F(0). Fix integer
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t′ > 0, we have

{T = t′} =
{

inf{t ≥ 0 : Y (t) > 0} = t′
}

=
{ t′−1⋂
τ=0
{|Y (τ) ≤ 0}

}⋂
{Y (t′) > 0}

(a)
∈F(t′)

where (a) follows because {Y (τ) ≤ 0} ∈ F(τ) ⊆ F(t′) for all τ ∈ {0, 1, . . . , t′ − 1} and

{Y (t′) > 0} ∈ F(t′). It follows that T is a stoping time.

2. To show {Z̃(t) 6= Z(t)} ⊆
⋃t−1
τ=0{Y (τ) > 0},∀t ≥ 1: Fix t = t′ > 1. Note that

{Z̃(t′) 6= Z(t′)}
(a)
⊆{T < t′} =

{
inf{t > 0 : Y (t) > 0} < t′

}
⊆
t′−1⋃
τ=0
{Y (τ) > 0}

where (a) follows by noting that if T ≥ t′ then Z̃(t′) = Z(t′ ∧ T ) = Z(t′).

3. To show Z̃(t) is a supermartingale with differences bounded by c: Since random

variable T is proven to be a stoping time, Z̃(t) = Z(t∧T ) is a supermartingale by Theorem

5.5. It remains to show |Z̃(t+ 1)− Z̃(t)| ≤ c,∀t ≥ 0. Fix integer t = t′ ≥ 0. Note that

|Z̃(t′ + 1)− Z̃(t′)|

=|Z(T ∧ (t′ + 1))− Z(T ∧ t′)|

=|1{T≥t′+1}[Z(T ∧ (t′ + 1))− Z(T ∧ t′)] + 1{T≤t′}[Z(T ∧ (t′ + 1))− Z(T ∧ t′)]|

=|1{T≥t′+1}[Z(t′ + 1)− Z(t′)] + 1{T≤t′}[Z(T )− Z(T )]|

=1{T≥t′+1}|Z(t′ + 1)− Z(t′)|

Now consider T ≤ t′ and T ≥ t′ + 1 separately.

• In the case when T ≤ t′, it is straightforward that |Z̃(t′+1)−Z̃(t′)| = 1{T≥t′+1}|Z(t′+

1)− Z(t′)| = 0 ≤ c.

• Consider the case when T ≥ t′+1. By the definition of T , we know that {T ≥ t′+1} ={
inf{t ≥ 0 : Y (t) > 0} ≥ t′ + 1

}
⊆
⋂t′
τ=0{Y (τ) ≤ 0} ⊆

⋂t′
τ=0{|Z(τ + 1) − Z(τ)| ≤
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c}, where the last inclusion follows from the fact that {|Z(τ + 1) − Z(τ)| > c} ⊆

{Y (τ) > 0}. That is, when T ≥ t′ + 1, we must have |Z(τ + 1) − Z(τ)| ≤ c for

all τ ∈ {1, . . . , t′}, which further implies that |Z(t′ + 1) − Z(t′)| ≤ c. Thus, when

T ≥ t′ + 1, |Z̃(t′ + 1)− Z̃(t′)| = 1{T≥t′+1}|Z(t′ + 1)− Z(t′)| ≤ c.

Combining two cases together proves |Z̃(t′ + 1)− Z̃(t′)| ≤ c.

Since Z̃(t) is a supermartingale with bounded differences c and Z̃(0) = Z(0) = 0, by the

conventional Hoeffding-Azuma inequality, for any z > 0, we have

Pr(Z̃(t) ≥ z) ≤ e−z
2/(2tc2) (5.29)

Finally, we have

Pr(Z(t) ≥ z) =Pr(Z̃(t) = Z(t), Z(t) ≥ z) + Pr(Z̃(t) 6= Z(t), Z(t) ≥ z)

≤Pr(Z̃(t) ≥ z) + Pr(Z̃(t) 6= Z(t))

(a)
≤ e−z

2/(2tc2) + Pr(
t−1⋃
τ=0

Y (τ) > 0)

(b)
≤e−z

2/(2tc2) +
t−1∑
τ=0

p(τ)

where (a) follows from equation (5.29) and the second bullet in the above; and (b) follows from

the union bound and the hypothesis that Pr(Y (τ) > 0) ≤ p(τ),∀τ .

5.5.6 Proof of Theorem 5.4

Define Z(0) = 0 and Z(t) =
∑t
τ=1

∑m
k=1Qk(τ)gτk(x∗). Recall W(0) = {∅,Ω} and W(t) =

σ(ω(1), . . . , ω(t)),∀t ≥ 1. The next lemma shows that for any c > 0, Z(t) satisfies Lemma 5.9

with F(t) =W(t) and Y (t) = ‖Q(t+ 1)‖ − c
G .

Lemma 5.13. Let x∗ ∈ X0 be any solution satisfying g̃(x∗) ≤ 0, e.g., x∗ = argmin
x∈X

{
T∑
t=1

f t(x)}.

Let c > 0 be an arbitrary constant. Under Algorithm 5.1, if we define Z(0) = 0 and

Z(t) =
t∑

τ=1

m∑
k=1

Qk(τ)gτk(x∗),∀t ≥ 1,
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then {Z(t), t ≥ 0} is a supermartingale adapted to filtration {W(t), t ≥ 0} such that

{|Z(t+ 1)− Z(t)| > c} ⊆ {Y (t) > 0},∀t ≥ 0

where Y (t) = ‖Q(t+ 1)‖ − c
G is a random variable adapted to W(t). (Note that G is a constant

defined in Assumption 5.1.)

Proof. It is easy to say {Z(t), t ≥ 0} is adapted {W(t), t ≥ 0}. It remains to show {Z(t), t ≥ 0}

is a supermartingale. Note that Z(t+ 1) = Z(t) +
∑m
k=1Qk(t+ 1)gt+1

k (x∗) and

E[Z(t+ 1)|W(t)] =E[Z(t) +
m∑
k=1

Qk(t+ 1)gt+1
k (x∗)|W(t)]

(a)=Z(t) +
m∑
k=1

Qk(t+ 1)E[gt+1
k (x∗)]

(b)
≤Z(t)

where (a) follows from the fact that Z(t) ∈ W(t), Q(t+ 1) ∈ W(t) and gt+1(x∗) is independent

of W(t); and (b) follows from E[gt+1
k (x∗)] = g̃k(x∗) ≤ 0 which further follows from ω(t) are i.i.d.

samples. Thus, {Z(t), t ≥ 0} is a supermartingale.

We further note that

|Z(t+ 1)− Z(t)| = |
m∑
k=1

Qk(t+ 1)gt+1
k (x∗)|

(a)
≤ ‖Q(t+ 1)‖G

where (a) follows from the Cauchy-Schwarz inequality and the assumption that ‖gt(x∗)‖ ≤ G.

This implies that if |Z(t+ 1)− Z(t)| > c, then ‖Q(t)‖ > c
G . Thus, {|Z(t+ 1)− Z(t)| > c} ⊆

{‖Q(t+ 1)‖ > c
G}. Since Q(t+ 1) is adapted to W(t), it follows that Y (t) = ‖Q(t+ 1)‖ − c

G is

a random variable adapted to W(t).

By Lemma 5.13, Z(t) satisfies Lemma 5.9. Fix T ≥ 1, Lemma 5.9 implies that

Pr(
T∑
t=1

m∑
k=1

Qk(t)gtk(x∗) ≥ γ) ≤ e−γ
2/(2Tc2)︸ ︷︷ ︸
(I)

+
T−1∑
t=0

Pr(‖Q(t+ 1)‖ > c

G
)︸ ︷︷ ︸

(II)

(5.30)

Fix 0 < λ < 1. In the following, we shall choose γ and c such that both term (I) and term
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(II) in (5.30) are no larger than λ
2 .

Recall that by Lemma 5.7, random process Z̃(t) = ‖Q(t)‖ satisfies the conditions in Lemma

5.5 with δmax = G+
√
mD2R, ζ = ε

2 and

θ = ε

2 t0 + (G+
√
mD2R)t0 + 2αR2

t0ε
+ 2V D1R+ (G+

√
mD2R)2

ε
.

To guarantee term (II) is no lareger than λ
2 , it suffices to choose c such that

Pr(‖Q(t)‖ > c

G
) ≤ λ

2T ,∀t ∈ {1, 2, . . . , T}

By part 2 of Lemma 5.5 (with µ = λ
2T ), the above inequality holds if we choose c = t0

ε
2G +

2t0(G+
√
mD2R)G+ 2αR2

t0ε
G+ 2V D1R+(G+

√
mD2R)2

ε G+ t0
8(G+

√
mD2R)2

ε log
( 32(G+

√
mD2R)2

ε2

)
G+

t0
8(G+

√
mD2R)2

ε log( 2T
λ )G where t0 > 0 is an arbitrary integer.

Once c is chosen, we further need to choose γ such that term (I) in (5.30) is λ
2 . It follows that if

γ =
√

2T log0.5( 2
λ )c =

√
2T log0.5( 2

λ )
[
ε
2 t0G+2t0(G+

√
mD2R)G+ 2αR2

t0ε
G+ 2V D1R+(G+

√
mD2R)2

ε G+

t0
8(G+

√
mD2R)2

ε log
( 32(G+

√
mD2R)2

ε2

)
G+ t0

8(G+
√
mD2R)2

ε log( 2T
λ )G

]
, then the term (I) is equal to

λ
2 .

Thus, we have

Pr(
T∑
t=1

m∑
k=1

Qk(t)gtk(x∗) ≥ γ) ≤ λ,

which further implies,

Pr(
T∑
t=1

m∑
k=1

Qk(t)gtk(x∗) ≤ γ) ≥ 1− λ. (5.31)

Note that if we take t0 = d
√
T e, V =

√
T and α = T , then γ = O

(
T log(T ) log0.5( 1

λ )
)

+

O
(
T log1.5( 1

λ )
)

= O
(
T log(T ) log1.5( 1

λ )
)
.

By Lemma 5.8 (with z = x∗, V =
√
T and α = T ), we have

T∑
t=1

f t(x(t)) ≤
T∑
t=1

f t(x∗) +
√
TR2 + D2

1
4
√
T + 1

2 [G+
√
mD2R]2

√
T + 1√

T

T∑
t=1

[ m∑
k=1

Qk(t)gtk(x∗)
]

(5.32)
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Substituting (5.31) into (5.32) yields

Pr
( T∑
t=1

f t(x(t)) ≤
T∑
t=1

f t(x∗) +O
(√
T log(T ) log1.5( 1

λ
)
))
≥ 1− λ.
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Chapter 6

Online Convex Optimization with Long Term Constraints

This chapter focuses on “online convex optimization with long term constraints”, which is

a special case problem of online convex optimization with stochastic constraints considered in

Chapter 5 such that gtk(x) ≡ gk(x) are perfectly known and do not depend on time. Ideally, this

problem can be solved by Zinkevich’s online gradient descent given by

x(t+ 1) = PX
[
x(t)− γ∇f t(x(t))

]
, (6.1)

where PX [·] represents the projection onto the convex set X = {x ∈ X0 : gk(x) ≤ 0, k ∈

{1, 2, . . . ,m}} and γ is the step size, also known as the learning rate.

In the case when X is a simple set, such as when there are no gk(x) are missing and X0

is a multidimensional box, the projection PX [·] often has a closed form solution or enjoys low

complexity. However, if X is complicated, e.g., functional inequality constraints gk(x) ≤ 0 are

complicated, then the equation (6.1) requires us to solve the following convex program:

min ‖x− [x(t)− γ∇f t(x(t))]‖2 (6.2)

s.t. gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m} (6.3)

x ∈ X0 ∈ Rn (6.4)

which can yield heavy computation and/or storage burden at each round. For instance, the

interior point method (or other Newton-type methods) is an iterative algorithm and takes a

number of iterations to approach the solution to the above convex program. The computation

and memory space complexity at each iteration is between O(n2) and O(n3), where n is the
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dimension of x.

To circumvent the computational challenge of the projection operator, online convex optimiza-

tion with long term constraints is first considered in [MJY12]. In online convex optimization with

long term constraints, complicated functional constraints gk(x) ≤ 0 are relaxed to be soft long

term constraints. That is, we do not require x(t) ∈ X0 to satisfy gk(x(t)) ≤ 0 at each round,

but only require that
∑T
t=1 gk(x(t)), called constraint violations, grows sub-linearly. [MJY12]

proposes two algorithms such that one achieves O(
√
T ) regret and O(T 3/4) constraint violations;

and the other achieves O(T 2/3) for both regret and constraint violations when set X can be

represented by linear constraints. [JHA16] recently extends the algorithm of [MJY12] to achieve

O(Tmax{β,1−β}) regret and O(T 1−β/2) constraint violations where β ∈ (0, 1) is a user-defined

tradeoff parameter. By choosing β = 1/2 or β = 2/3, the [O(
√
T ), O(T 3/4)] or [O(T 2/3), O(T 2/3)]

regret and constraint violations of [MJY12] are recovered. It is easy to observe that the best regret

or constraint violations in [JHA16] are O(
√
T ) under different β values. However, the algorithm

of [JHA16] can not achieve O(
√
T ) regret and O(

√
T ) constraint violations simultaneously.

As discussed in Chapter 5, Algorithm 5.1 developed in Chapter 5 can solve online convex

optimization with long term constraints and achieves O(
√
T ) regret and O(

√
T ) constraint viola-

tions. This chapter proposes a new algorithm that can achieve O(
√
T ) regret and finite constraint

violations that do not grow with T ; and hence yields improved performance in comparison to

prior works [MJY12, JHA16] and our own Algorithm 5.1. This new algorithm is also closely

related to the new Lagrangian dual methods with O(1/t) convergence developed in Chapter 3 for

deterministic constrained convex programs. The results in this chapter are originally developed

in our technical report [YN16b].

Many engineering problems can be directly formulated as online convex optimization with long

term constraints. For example, problems with energy or monetary constraints often define these

in terms of long term time averages rather than instantaneous constraints. In general, we assume

that instantaneous constraints are incorporated into the set X0; and long term constraints are

represented via functional constraints gk(x). Two example problems are given as follows. More

examples can be found in [MJY12] and [JHA16].

• In the application of online display advertising [GT11a, GMPV09], the publisher needs to

iteratively allocate “impressions” to advertisers to optimize some online concave utilities

for each advertiser. The utility is typically unknown when the decision is made but can be
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inferred later by observing user click behaviors under the given allocations. Since each ad-

vertiser usually specifies a certain budget for a period, the “impressions” should be allocated

to maximize advertisers’ long term utilities subject to long term budget constraints.

• In the application of network routing in a neutral or adversarial environment, the decision

maker needs to iteratively make routing decisions to maximize network utilities. Further-

more, link quality can vary after each routing decision is made. The routing decisions

should satisfy the long term flow conservation constraint at each intermediate node so that

queues do not overflow.

6.1 Problem Statement and New Algorithm

This section introduces the problem of online convex optimization with long term constraints

and presents our new algorithm.

6.1.1 Problem Statement

Let X0 be a compact convex set and gk(x), k ∈ {1, 2, . . . ,m} be continuous convex functions.

Denote the stacked vector of multiple functions g1(x), . . . , gm(x) as g(x) = [g1(x), . . . , gm(x)]T.

Define X = {x ∈ X0 : gk(x) ≤ 0, i ∈ {1, 2, . . . ,m}}. Let f t(x) be a sequence of continuous convex

loss functions which are determined by nature (or by an adversary) such that f t(x) is unknown to

the decision maker until the end of round t. For any sequence x(t) yielded by an online algorithm,

define
∑T
t=1 f

t(x(t))−minx∈X
∑T
t=1 f

t(x) as the regret and
∑T
t=1 gk(x(t)), k ∈ {1, 2, . . . ,m} as

the constraint violations. The goal of online convex optimization with long term constraints is

to choose x(t) ∈ X0 for each round t such that both the regret and the constraint violations grow

sub-linearly with respect to T . Throughout this chapter, we consider online convex optimization

with long term constraints satisfying the following assumptions:

Assumption 6.1 (Basic Assumptions).

• The loss functions have bounded gradients on X0. That is, there exists D > 0 such that

‖∇f t(x)‖ ≤ D for all x ∈ X0 and all t.

• There exists a constant β such that ‖g(x)− g(y)‖ ≤ β‖x− y‖ for all x,y ∈ X0, i.e., g(x)

is Lipschitz continuous with modulus β.
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• There exists a constant G such that ‖g(x)‖ ≤ G for all x ∈ X0.

• There exists a constant R such that ‖x− y‖ ≤ R for all x,y ∈ X0.

Note that the existence of G follows directly from the compactness of set X0 and the continuity

of g(x). The existence of R follows directly from the compactness of set X0.

Assumption 6.2 (Interior Point Assumption). There exists ε > 0 and x̂ ∈ X0 such that gk(x̂) ≤

−ε for all k ∈ {1, 2, . . . ,m}.

6.1.2 New Algorithm

Define g̃(x) = cg(x) where c > 0 is an algorithm parameter. Note that each g̃k(x) is still a

convex function and g̃(x) ≤ 0 if and only if g(x) ≤ 0. The next lemma trivially follows.

Lemma 6.1. If online convex optimization with long term constraints satisfies Assumptions 6.1

and 6.2, then

• ‖g̃(x)− g̃(y)‖ ≤ cβ‖x− y‖ for all x,y ∈ X0.

• ‖g̃(x)‖ ≤ cG for all x ∈ X0.

• g̃k(x̂) ≤ −cε for all k ∈ {1, 2, . . . ,m} where x̂ is defined in Assumption 6.2.

Now consider the following algorithm described in Algorithm 6.1. This algorithm chooses

x(t+ 1) as the decision for round t+ 1 based on f t(·) without knowing the cost function f t+1(·).

The remainder of this chapter shows that if the parameters c and α are chosen to satisfy c = T 1/4

and α = 1
2 (β2 +1)

√
T , then Algorithm 6.1 achieves an O(

√
T ) regret bound with finite constraint

violations.

This algorithm introduces a virtual queue vector for constraint functions. The update equa-

tion of this virtual queue vector is similar to Algorithms 3.1 and 3.2 developed in Chapter 3

for deterministic convex programs (with a fixed and known objective function) and the main

difference is that scaled versions of the constraint functions, rather than the original constraint

functions, are used in the virtual queue update equation. In fact, scaling the constraint functions

with a factor c = T 1/4 is the key to achieve finite constraint violations and Algorithm 6.1 can

only achieve O(
√
T ) constraint violations without the scaling factor c. The update for x(t+ 1) is

different from the primal update in Algorithm 3.1 but is closely related to the primal update in
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Algorithm 6.1 New Algorithm for Online Convex Optimization with Long Term Constraints
Let c, α > 0 be constant parameters. Define function g̃(x) = cg(x) for all x ∈ X0. Choose any
x(0) ∈ X0. Initialize Qk(0) = max{−g̃k(x(0)), 0},∀k ∈ {1, 2, . . . ,m}. At the end of each round
t ∈ {0, 1, 2, 3, . . .}, observe f t(·) and do the following:

• Choose x(t+ 1) that solves

min
x∈X0

{
[∇f t(x(t))]T[x− x(t)] + [Q(t) + g̃(x(t))]Tg̃(x) + α‖x− x(t)‖2

}
as the decision for the next round t+ 1, where ∇f t(x(t)) is the gradient of f t(x) at point
x = x(t).

• Update virtual queue vector Q(t+ 1) via

Qk(t+ 1) = max {−g̃k(x(t+ 1)), Qk(t) + g̃k(x(t+ 1))} ,∀k ∈ {1, 2, . . . ,m}.

Algorithm 3.2. In fact, if g(x) are linear functions, Lemma 6.2 shows that the update of x(t) in

Algorithm 6.1 can also be implemented by a convex projection involving the subgradient of that

scaled constraint functions.

Because of the ‖x−x(t)‖2 term, the choice of x(t+1) in Algorithm 6.1 involves minimization

of a strongly convex function. If the constraint functions g(x) are separable (or equivalently,

g̃(x) are separable) with respect to components or blocks of x, e.g., g(x) = Ax − b, then the

primal updates for x(t + 1) can be decomposed into several smaller independent subproblems,

each of which only involves a component or block of x(t + 1). The next lemma further shows

that the update of x(t+ 1) follows a simple gradient update in the case when g(x) is linear.

Lemma 6.2. If g(x) is linear, then the update of x(t + 1) at each round in Algorithm 6.1 is

given by

x(t+ 1) = PX0

[
x(t)− 1

2αd(t)
]

where d(t) = ∇f t(x(t)) +
∑m
k=1[Qk(t) + g̃k(x(t))]∇g̃k(x(t)).

Proof. Fix t ≥ {0, 1, . . .}. Note that d(t) is a constant vector in the update of x(t + 1). The

projection operator can be interpreted as an optimization problem as follows:
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x(t+ 1) = PX0

[
x(t)− 1

2αd(t)
]

(a)⇔ x(t+ 1) = argmin
x∈X0

[∥∥x− [x(t)− 1
2αd(t)]

∥∥2
]

⇔ x(t+ 1) = argmin
x∈X0

[
‖x− x(t)‖2 + 1

α
dT(t)[x− x(t)] + 1

4α2 ‖d(t)‖2
]

(b)⇔ x(t+ 1) = argmin
x∈X0

[
m∑
k=1

[Qk(t+ 1) + g̃k(x(t))]g̃k(x(t)) + dT(t)[x− x(t)] + α‖x− x(t)‖2
]

(c)⇔ x(t+ 1) = argmin
x∈X0

[
[∇f t(x(t))]T[x− x(t)] +

m∑
k=1

[Qk(t) + g̃k(x(t))]g̃k(x(t))

+
m∑
k=1

[Qk(t) + g̃k(x(t))][∇g̃k(x(t))]T[x− x(t)] + α‖x− x(t)‖2
]

(d)⇔ x(t+ 1) = argmin
x∈X0

[
[∇f t(x(t))]T[x− x(t)] + [Q(t) + g̃(x(t))]Tg̃(x) + α‖x− x(t)‖2

]
where (a) follows from the definition of the projection onto a convex set; (b) follows from the fact

the minimizing solution does not change when we remove constant term 1
4α2 ‖d(t)‖2, multiply pos-

itive constant α and add constant term
∑m
k=1[Qk(t)+ g̃k(x(t))]g̃k(x(t)) in the objective function;

(c) follows from the definition of d(t); and (d) follows from the identity [Q(t) + g̃(x(t))]Tg̃(x) =∑m
k=1[Qk(t) + g̃k(x(t))]g̃k(x(t)) +

∑m
k=1[Qk(t) + g̃k(x(t))]∇g̃k(x(t))]T[x − x(t)] for any x ∈ Rn,

which further follows from the linearity of g̃(x).

6.2 Regret and Constraint Violation Analysis

This section analyzes the regret and constraint violations of Algorithm 6.1 for online convex

optimization with long term constraints under Assumptions 6.1-6.2.

6.2.1 Properties of the Virtual Queues and the Drift

Lemma 6.3. In Algorithm 6.1, we have

1. At each round t ∈ {0, 1, 2, . . .}, Qk(t) ≥ 0 for all k ∈ {1, 2, . . . ,m}.

2. At each round t ∈ {0, 1, 2, . . .}, Qk(t) + g̃k(x(t)) ≥ 0 for all k ∈ {1, 2 . . . ,m}.

3. At round t = 0, ‖Q(0)‖2 ≤ ‖g̃(x(0))‖2. At each round t ∈ {1, 2, . . .}, ‖Q(t)‖2 ≥ ‖g̃(x(t))‖2.
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4. At each round t ∈ {0, 1, 2, . . .}, ‖Q(t+ 1)‖ ≤ ‖Q(t)‖+ ‖g̃(x(t+ 1))‖.

Proof. The proof of the first 3 parts is essentially identical to the proof of Lemma 3.1.

1. Fix k ∈ {1, 2, . . . ,m}. The proof is by induction. Note that Qk(0) ≥ 0 by initialization.

AssumeQk(t) ≥ 0 for some t ∈ {0, 1, 2, . . .}. We now proveQk(t+1) ≥ 0. If g̃k(x(t+1)) ≥ 0,

the virtual queue update equation of Algorithm 6.1 gives:

Qk(t+ 1) = max{−g̃k(x(t+ 1)), Qk(t) + g̃k(x(t+ 1))} ≥ Qk(t) + g̃k(x(t+ 1)) ≥ 0.

On the other hand, if g̃k(x(t + 1)) < 0, then Qk(t + 1) = max{−g̃k(x(t + 1)), Qk(t) +

g̃k(x(t+ 1))} ≥ −g̃k(x(t+ 1)) > 0. Thus, in both cases we have Qk(t+ 1) ≥ 0.

2. Fix k ∈ {1, 2, . . . ,m}. Note thatQk(0)+g̃k(x(0)) ≥ 0 by the initialization rule ofQk(0). Fix

t ∈ {0, 1, . . .}. By the virtual queue update equation, we have Qk(t+ 1) = max{−g̃k(x(t+

1)), Qk(t) + g̃k(x(t+ 1))} ≥ −g̃k(x(t+ 1)), which implies that Qk(t+ 1) + g̃k(x(t+ 1)) ≥ 0.

3. Note that ‖Q(0)‖2 ≤ ‖g̃(x(0))‖2 follows by the initialization rule of Qk(0). Fix t ∈

{0, 1, . . .} and k ∈ {1, 2, . . . ,m}. If g̃k(x(t+ 1)) ≥ 0, then

Qk(t+ 1) = max{−g̃k(x(t+ 1)), Qk(t) + g̃k(x(t+ 1))}

≥ Qk(t) + g̃k(x(t+ 1))
(a)
≥ g̃k(x(t+ 1)) = |g̃k(x(t+ 1))|,

where (a) follows from part 1. On the other hand, if g̃k(x(t + 1)) < 0, then Qk(t + 1) =

max{−g̃k(x(t + 1)), Qk(t) + g̃k(x(t + 1))} ≥ −g̃k(x(t + 1)) = |g̃k(x(t + 1))|. Thus, in

both cases, we have Qk(t + 1) ≥ |g̃k(x(t + 1))|. Squaring both sides and summing over

k ∈ {1, 2, . . . ,m} yields ‖Q(t + 1)‖2 ≥ ‖g̃(x(t + 1))‖2. This holds for all t ∈ {0, 1, . . .}.

Thus, we have ‖Q(t)‖2 ≥ ‖g̃(x(t))‖2 for all t ∈ {1, 2, . . .}.

4. Fix t ∈ {0, 1, . . .}. Define vector h = [h1, . . . , hm]T by hk = |g̃k(x(t+1))|,∀k ∈ {1, 2, . . . ,m}.

Note that ‖h‖ = ‖g̃(x(t+ 1))‖. For any k ∈ {1, 2, . . . ,m}, by the virtual update equation
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we have

Qk(t+ 1) = max{−g̃k(x(t+ 1)), Qk(t) + g̃k(x(t+ 1))}

≤ |Qk(t)|+ |g̃k(x(t+ 1))|

= Qk(t) + hk.

Squaring both sides and summing over k ∈ {1, 2, . . . ,m} yields ‖Q(t + 1)‖2 ≤ ‖Q(t) +

h‖2, which is equivalent to ‖Q(t + 1)‖ ≤ ‖Q(t) + h‖. Finally, by the triangle inequality

‖Q(t) + h‖ ≤ ‖Q(t)‖+ ‖h‖ and recalling that ‖h‖ = ‖g̃(x(t+ 1))‖, we have ‖Q(t+ 1)‖ ≤

‖Q(t)‖+ ‖g̃(x(t+ 1))‖.

Lemma 6.4. Let Q(t), t ∈ {0, 1, . . .} be the sequence generated by Algorithm 6.1. For any T ≥ 1,

we have

T∑
t=1

gk(x(t)) ≤ 1
c
Qk(T ),∀k ∈ {1, 2, . . . ,m}.

Proof. Fix k ∈ {1, 2, . . . ,m} and T ≥ 1. For any t ∈ {0, 1, . . . , T − 1}, the update rule of

Algorithm 6.1 gives:

Qk(t+ 1) = max{−g̃k(x(t+ 1)), Qk(t) + g̃k(x(t+ 1))} ≥ Qk(t) + g̃k(x(t+ 1)).

Hence, g̃k(x(t+ 1)) ≤ Qk(t+ 1)−Qk(t). Summing over t ∈ {0, . . . , T − 1} yields

T∑
t=1

g̃k(x(t)) =
T−1∑
t=0

g̃k(x(t+ 1)) ≤ Qk(T )−Qk(0)
(a)
≤ Qk(T )

where (a) follows from the fact Qk(0) ≥ 0, i.e., part 1 in Lemma 6.3. This lemma follows by

recalling that g̃k(x) = cgk(x).

Let Q(t) =
[
Q1(t), . . . , Qm(t)

]T be the vector of virtual queue backlogs. Define L(t) =
1
2‖Q(t)‖2. The function L(t) shall be called a Lyapunov function. Define the Lyapunov drift as

∆(t) = L(t+ 1)− L(t) = 1
2 [‖Q(t+ 1)‖2 − ‖Q(t)‖2]. (6.5)
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Lemma 6.5. At each round t ∈ {0, 1, 2, . . .} in Algorithm 6.1, an upper bound of the Lyapunov

drift is given by

∆(t) ≤ [Q(t)]Tg̃(x(t+ 1)) + ‖g̃(x(t+ 1))‖2. (6.6)

Proof. The virtual queue update equations Qk(t + 1) = max{−g̃k(x(t + 1)), Qk(t) + g̃k(x(t +

1))},∀k ∈ {1, 2, . . . ,m} can be rewritten as

Qk(t+ 1) = Qk(t) + hk(x(t+ 1)),∀k ∈ {1, 2, . . . ,m}, (6.7)

where

hk(x(t)) =

 g̃k(x(t+ 1)), if Qk(t) + g̃k(x(t+ 1)) ≥ −g̃k(x(t+ 1))

−Qk(t)− g̃k(x(t+ 1)), else
∀k.

Fix k ∈ {1, 2, . . . ,m}. Squaring both sides of (6.7) and dividing by factor 2 yield:

1
2 [Qk(t+ 1)]2

=1
2[Qk(t)]2 + 1

2[hk(x(t+ 1))]2 +Qk(t)hk(x(t+ 1))

=1
2[Qk(t)]2 + 1

2[hk(x(t+ 1))]2 +Qk(t)g̃k(x(t+ 1)) +Qk(t)[hk(x(t+ 1))− g̃k(x(t+ 1))]

(a)= 1
2[Qk(t)]2 + 1

2[hk(x(t+ 1))]2 +Qk(t)g̃k(x(t+ 1))

− [hk(x(t+ 1)) + g̃k(x(t+ 1))][hk(x(t))− g̃k(x(t+ 1))]

=1
2 [Qk(t)]2 − 1

2 [hk(x(t+ 1))]2 +Qk(t)g̃k(x(t+ 1)) + [g̃k(x(t+ 1))]2

≤1
2 [Qk(t)]2 +Qk(t)g̃k(x(t+ 1)) + [g̃k(x(t+ 1))]2,

where (a) follows from the fact that Qk(t)[hk(x(t+1))− g̃k(x(t+1))] = −[hk(x(t+1))+ g̃k(x(t+

1))] · [hk(x(t+ 1))− g̃k(x(t+ 1))], which can be shown by considering hk(x(t+ 1)) = g̃k(x(t+ 1))

and hk(x(t+ 1)) 6= g̃k(x(t+ 1)). Summing over k ∈ {1, 2, . . . ,m} yields

1
2‖Q(t+ 1)‖2 ≤ 1

2‖Q(t)‖2 + [Q(t)]Tg̃(x(t+ 1)) + ‖g̃(x(t+ 1))‖2.

Rearranging the terms yields the desired result.
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6.2.2 An Upper Bound of the Drift-Plus-Penalty Expression

Lemma 6.6. Consider online convex optimization with long term constraints under Assumption

6.1. Let x∗ ∈ X0 be any fixed solution that satisfies g(x∗) ≤ 0, e.g., x∗ = argminx∈X
∑T
t=1 f

t(x).

Let c > 0 and η > 0 be arbitrary. If α ≥ 1
2 (c2β2 + η) in Algorithm 6.1, then for all t ≥ 1, we

have

∆(t) + f t(x(t))

≤f t(x∗) + α[‖x∗ − x(t)‖2 − ‖x∗ − x(t+ 1)‖2] + 1
2 [‖g̃(x(t+ 1))‖2 − ‖g̃(x(t))‖2] + 1

2ηD
2

where β and D are constants defined in Assumption 6.1.

Proof. Fix t ≥ 1. Note that part 2 of Lemma 6.3 implies that Q(t) + g̃(x(t)) is component-wise

nonnegative. Hence, [∇f t(x(t))]T[x − x(t)] + [Q(t) + g̃(x(t))]Tg̃(x) is a convex function with

respect to x. Since α‖x−x(t)‖2 is strongly convex with respect to x with modulus 2α, it follows

that

[∇f t(x(t))]T[x− x(t)] + [Q(t) + g̃(x(t))]Tg̃(x) + α‖x− x(t)‖2

is strongly convex with respect to x with modulus 2α.

Since x(t+ 1) is chosen to minimize the above strongly convex function, by Corollary 1.2, we

have

[∇f t(x(t))]T[x(t+ 1)− x(t)] + [Q(t) + g̃(x(t))]Tg̃(x(t+ 1)) + α‖x(t+ 1)− x(t)‖2

≤[∇f t(x(t))]T[x∗ − x(t)] + [Q(t) + g̃(x(t))]Tg̃(x∗) + α‖x∗ − x(t)‖2 − α‖x∗ − x(t+ 1)‖2.
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Adding f t(x(t)) on both sides yields

f t(x(t)) + [∇f t(x(t))]T[x(t+ 1)− x(t)] + [Q(t) + g̃(x(t))]Tg̃(x(t+ 1)) + α‖x(t+ 1)− x(t)‖2

≤f t(x(t)) + [∇f t(x(t))]T[x∗ − x(t)] + [Q(t) + g̃(x(t))]Tg̃(x∗) + α‖x∗ − x(t)‖2

− α‖x∗ − x(t+ 1)‖2

(a)
≤f t(x∗) + [Q(t) + g̃(x(t))]Tg̃(x∗)︸ ︷︷ ︸

≤0

+α[‖x∗ − x(t)‖2 − ‖x∗ − x(t+ 1)‖2]

(b)
≤f t(x∗) + α[‖x∗ − x(t)‖2 − ‖x∗ − x(t+ 1)‖2],

where (a) follows from the convexity of function f t(x); and (b) follows by using the fact that

g̃k(x∗) ≤ 0 and Qk(t) + g̃k(x(t)) ≥ 0 (i.e., part 2 in Lemma 6.3) for all k ∈ {1, 2, . . . ,m} to

eliminate the term marked by an underbrace.

Rearranging terms yields

f t(x(t)) + [Q(t)]Tg̃(x(t+ 1))

≤f t(x∗) + α[‖x∗ − x(t)‖2 − ‖x∗ − x(t+ 1)‖2]− α‖x(t+ 1)− x(t)‖2

− [∇f t(x(t))]T[x(t+ 1)− x(t)]− [g̃(x(t))]Tg̃(x(t+ 1)). (6.8)

For any η > 0, we have

−[∇f t(x(t))]T[x(t+ 1)− x(t)]
(a)
≤‖∇f t(x(t))‖‖x(t+ 1)− x(t)‖

=[ 1
√
η
‖∇f t(x(t))‖][√η‖x(t+ 1)− x(t)‖]

(b)
≤ 1

2η ‖∇f
t(x(t))‖2 + 1

2η‖x(t+ 1)− x(t)‖2

(c)
≤ 1

2ηD
2 + 1

2η‖x(t+ 1)− x(t)‖2, (6.9)

where (a) follows from the Cauchy-Schwarz inequality; (b) follows from the basic inequality

ab ≤ 1
2 (a2 + b2),∀a, b ∈ R; and (c) follows from Assumption 6.1.

Recall that uT
1u2 = 1

2 [‖u1‖2 + ‖u2‖2 − ‖u1 − u2‖2] for any u1,u2 ∈ Rm. Thus, we have

[g̃(x(t))]Tg̃(x(t+ 1)) = 1
2
[
‖g̃(x(t))‖2 + ‖g̃(x(t+ 1))‖2 − ‖g̃(x(t+ 1))− g̃(x(t))‖2

]
. (6.10)
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Substituting (6.9) and (6.10) into (6.8) yields

f t(x(t)) + [Q(t)]Tg̃(x(t+ 1))

≤f t(x∗) + α[‖x∗ − x(t)‖2 − ‖x∗ − x(t+ 1)‖2] + (1
2η − α)‖x(t+ 1)− x(t)‖2 + 1

2ηD
2

+ 1
2‖g̃(x(t+ 1))− g̃(x(t))‖2 − 1

2‖g̃(x(t))‖2 − 1
2‖g̃(x(t+ 1))‖2

(a)
≤f t(x∗) + α[‖x∗ − x(t)‖2 − ‖x∗ − x(t+ 1)‖2] + (1

2c
2β2 + 1

2η − α)‖x(t+ 1)− x(t)‖2 + 1
2ηD

2

− 1
2‖g̃(x(t))‖2 − 1

2‖g̃(x(t+ 1))‖2

(b)
≤f t(x∗) + α[‖x∗ − x(t)‖2 − ‖x∗ − x(t+ 1)‖2] + 1

2ηD
2 − 1

2‖g̃(x(t))‖2 − 1
2‖g̃(x(t+ 1))‖2,

(6.11)

where (a) follows because ‖g̃(x(t + 1)) − g̃(x(t))‖ ≤ cβ‖x(t + 1) − x(t)‖, which further follows

from Lemma 6.1; and (b) follows because α ≥ 1
2 (c2β2 + η).

By Lemma 6.5, we have

∆(t) ≤ [Q(t)]Tg̃(x(t+ 1)) + ‖g̃(x(t+ 1))‖2. (6.12)

Summing (6.11) and (6.12) together yields

∆(t) + f t(x(t))

≤f t(x∗) + α[‖x∗ − x(t)‖2 − ‖x∗ − x(t+ 1)‖2] + 1
2 [‖g̃(x(t+ 1))‖2 − ‖g̃(x(t))‖2] + 1

2ηD
2.

6.2.3 Regret Analysis

Theorem 6.1. Consider online convex optimization with long term constraints under Assump-

tion 6.1. Let x∗ ∈ X0 be any fixed solution that satisfies g(x∗) ≤ 0, e.g., x∗ = argmin
x∈X

{
T∑
t=1

f t(x)}.

1. Let c > 0 and η > 0 be arbitrary. If α ≥ 1
2 (c2β2 + η) in Algorithm 6.1, then for all T ≥ 1,

we have

T∑
t=1

f t(x(t)) ≤
T∑
t=1

f t(x∗) + αR2 + 2c2G2 + 1
2ηD

2T.
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2. If c = T 1/4, η =
√
T and α = 1

2 (β2 + 1)
√
T in Algorithm 6.1, then for all T ≥ 1, we have

T∑
t=1

f t(x(t)) ≤
T∑
t=1

f t(x∗) +O(
√
T ).

Proof. Fix T ≥ 1. Since α ≥ 1
2 (c2β2 + η), by Lemma 6.6, for all t ∈ {1, 2, . . . , T}, we have

∆(t) + f t(x(t))

≤f t(x∗) + α[‖x∗ − x(t)‖2 − ‖x∗ − x(t+ 1)‖2] + 1
2 [‖g̃(x(t+ 1))‖2 − ‖g̃(x(t))‖2] + 1

2ηD
2.

Summing over t ∈ {1, 2, . . . , T} yields

T∑
t=1

∆(t) +
T∑
t=1

f t(x(t))

≤
T∑
t=1

f t(x∗) + α

T∑
t=1

[‖x∗ − x(t)‖2 − ‖x∗ − x(t+ 1)‖2] + 1
2

T∑
t=1

[‖g̃(x(t+ 1))‖2 − ‖g̃(x(t))‖2]

+ 1
2ηD

2T.

Recalling that ∆(t) = L(t+ 1)− L(t) and simplifying summations yields

L(T + 1)− L(1) +
T∑
t=1

f t(x(t))

≤
T∑
t=1

f t(x∗) + α‖x∗ − x(1)‖2 − α‖x∗ − x(T + 1)‖2 + 1
2‖g̃(x(T + 1))‖2 − 1

2‖g̃(x(1))‖2 + 1
2ηD

2T

≤
T∑
t=1

f t(x∗) + α‖x∗ − x(1)‖2 + 1
2‖g̃(x(T + 1))‖2 + 1

2ηD
2T.
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Rearranging terms yields

T∑
t=1

f t(x(t))

≤
T∑
t=1

f t(x∗) + α‖x∗ − x(1)‖2 + 1
2‖g̃(x(T + 1))‖2 + L(1)− L(T + 1) + 1

2ηD
2T

(a)=
T∑
t=1

f t(x∗) + α‖x∗ − x(1)‖2 + 1
2‖g̃(x(T + 1))‖2 + 1

2‖Q(1)‖2 − 1
2‖Q(T + 1)‖2 + 1

2ηD
2T

(b)
≤

T∑
t=1

f t(x∗) + α‖x∗ − x(1)‖2 + 1
2‖Q(1)‖2 + 1

2ηD
2T

(c)
≤

T∑
t=1

f t(x∗) + αR2 + 2c2G2 + 1
2ηD

2T,

where (a) follows form the definition that L(1) = 1
2‖Q(1)‖2 and L(T + 1) = 1

2‖Q(T + 1)‖2; (b)

follows because ‖Q(T + 1)‖2 ≥ ‖g̃(x(T + 1))‖2 by part 3 in Lemma 6.3; and (c) follows because

‖x∗−x(1)‖ ≤ R by Assumption 6.1 and ‖Q(1)‖ ≤ ‖Q(0)‖+‖g̃(x(1))‖ ≤ ‖g̃(x(0))‖+‖g̃(x(1))‖ ≤

2cG, which further follows from part 3 and part 4 in Lemma 6.3 and Lemma 6.1.

Thus, the first part of this theorem follows. Note that if we let c = T 1/4 and η =
√
T ,

then α = 1
2 (β2 + 1)

√
T ≥ 1

2 (c2β2 + η). The second part of this theorem follows by substituting

c = T 1/4, η =
√
T and α = 1

2 (β2 + 1)
√
T into the first part of this theorem. Thus, we have

T∑
t=1

f t(x(t)) ≤
T∑
t=1

f t(x∗) + 1
2(β2 + 1)R2

√
T + 2G2

√
T + 1

2D
2
√
T

=
T∑
t=1

f t(x∗) +O(
√
T ).

6.2.4 An Upper Bound of the Virtual Queue Vector

It remains to establish a bound on constraint violations. Lemma 6.4 implies that this can be

done by bounding ‖Q(t)‖.

Lemma 6.7. Consider online convex optimization with long term constraints under Assumptions
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6.1-6.2. At each round t ∈ {1, 2, . . . , } in Algorithm 6.1, if

‖Q(t)‖ > cG+ αR2 +DR+ 2c2G2

cε

where D,G and R are constants defined in Assumption 6.1 and ε is the constant defined in

Assumption 6.2, then

‖Q(t+ 1)‖ < ‖Q(t)‖.

Proof. Let x̂ ∈ X0 and ε > 0 be defined in Assumption 6.2. Fix t ≥ 0. Since x(t + 1) is chosen

to minimize [∇f t(x(t))]T[x− x(t)] + [Q(t) + g̃(x(t))]Tg̃(x) + α‖x− x(t)‖2, we have

[∇f t(x(t))]T[x(t+ 1)− x(t)] + [Q(t) + g̃(x(t))]Tg̃(x(t+ 1)) + α‖x(t+ 1)− x(t)‖2

≤[∇f t(x(t))]T[x̂− x(t)] + [Q(t) + g̃(x(t))]Tg̃(x̂) + α‖x̂− x(t)‖2

(a)
≤ [∇f t(x(t))]T[x̂− x(t)]− cε

m∑
k=1

[Qk(t) + g̃k(x(t))] + α‖x̂− x(t)‖2

(b)
≤ [∇f t(x(t))]T[x̂− x(t)]− cε‖Q(t) + g̃(x(t))‖+ α‖x̂− x(t)‖2

(c)
≤ [∇f t(x(t))]T[x̂− x(t)]− cε

[
‖Q(t)‖ − ‖g̃(x(t))‖

]
+ α‖x̂− x(t)‖2

where (a) follows because g̃k(x̂) ≤ −cε,∀k ∈ {1, 2, . . . ,m} by Lemma 6.1 and Qk(t) + g̃k(x(t)) ≥

0,∀k ∈ {1, 2, . . . ,m} by part 2 in Lemma 6.3; (b) follows from the basic inequality
∑m
i=1 ai ≥√∑m

i=1 a
2
i for any nonnegative vector a ≥ 0; and (c) follows from the triangle inequality ‖x−y‖ ≥

‖x‖ − ‖y‖,∀x,y ∈ Rm.

Rearranging terms yields

[Q(t)]Tg̃(x(t+ 1))

≤− cε‖Q(t)‖+ cε‖g̃(x(t))‖+ α‖x̂− x(t)‖2 − α‖x(t+ 1)− x(t)‖2

+ [∇f t(x(t))]T[x̂− x(t)]− [∇f t(x(t))]T[x(t+ 1)− x(t)]− [g̃(x(t))]Tg̃(x(t+ 1))

≤− cε‖Q(t)‖+ cε‖g̃(x(t))‖+ α‖x̂− x(t)‖2 + [∇f t(x(t))]T[x̂− x(t+ 1)]− [g̃(x(t))]Tg̃(x(t+ 1))
(a)
≤ − cε‖Q(t)‖+ cε‖g̃(x(t))‖+ α‖x̂− x(t)‖2 + ‖∇f t(x(t))‖‖x̂− x(t+ 1)‖

+ ‖g̃(x(t))‖‖g̃(x(t+ 1))‖
(b)
≤ − cε‖Q(t)‖+ c2εG+ αR2 +DR+ c2G2, (6.13)
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where (a) follows from the Cauchy-Schwarz inequality and (b) follows from Assumption 6.1 and

Lemma 6.1.

By Lemma 6.5, we have

∆(t) ≤[Q(t)]Tg̃(x(t+ 1)) + ‖g̃(x(t+ 1))‖2

(a)
≤ [Q(t)]Tg̃(x(t+ 1)) + c2G2

(b)
≤ − cε‖Q(t)‖+ c2εG+ αR2 +DR+ 2c2G2,

where (a) follows from Lemma 6.1 and (b) follows from (6.13).

Thus, if ‖Q(t)‖ > cG+ αR2+DR+2c2G2

cε , then ∆(t) < 0. That is, ‖Q(t+ 1)‖ < ‖Q(t)‖.

Corollary 6.1. Consider online convex optimization with long term constraints under Assump-

tions 6.1-6.2. At each round t ∈ {1, 2, . . . , } in Algorithm 6.1,

‖Q(t)‖ ≤ 2cG+ αR2 +DR+ 2c2G2

cε
,

where D,G and R are constants defined in Assumption 6.1 and ε > 0 is defined in Assumption

6.2.

Proof. Note that ‖Q(0)‖
(a)
≤ ‖g̃(x(0))‖

(b)
≤ cG and ‖Q(1)‖

(a)
≤ ‖Q(0)‖ + ‖g̃(x(0))‖

(b)
≤ 2cG ≤

2cG + αR2+DR+2c2G2

cε , where (a) follows from Lemma 6.3 and (b) follows from Lemma 6.1. We

need to show ‖Q(t)‖ ≤ 2cG + αR2+DR+2c2G2

cε for all rounds t ≥ 2. This can be proven by

contradiction as follows:

Assume that ‖Q(t)‖ > 2cG + αR2+DR+2c2G2

cε happens at some round t ≥ 2. Let τ be the

first (smallest) round index at which this happens, i.e., ‖Q(τ)‖ > 2cG + αR2+DR+2c2G2

cε . Note

that τ ≥ 2 since we know ‖Q(1)‖ ≤ 2cG + αR2+DR+2c2G2

cε . The definition of τ implies that

‖Q(τ − 1)‖ ≤ 2cG+ αR2+DR+2c2G2

cε . Now consider the value of ‖Q(τ − 1)‖ in two cases.

• If ‖Q(τ − 1)‖ > cG+ αR2+DR+2c2G2

cε , then by Lemma 6.7, we must have ‖Q(τ)‖ < ‖Q(τ −

1)‖ ≤ 2cG+ αR2+DR+2c2G2

cε . This contradicts the definition of τ .

• If ‖Q(τ−1)‖ ≤ cG+ αR2+DR+2c2G2

cε , then by part 4 in Lemma 6.3, we must have ‖Q(τ)‖ ≤

‖Q(τ − 1)‖ + ‖g̃(x(τ))‖
(a)
≤ cG + αR2+DR+2c2G2

cε + cG = 2cG + αR2+DR+2c2G2

cε , where (a)

follows from Lemma 6.1. This also contradicts the definition of τ .
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In both cases, we have a contradiction. Thus, ‖Q(t)‖ ≤ 2cG + αR2+DR+2c2G2

cε for all round

t ≥ 2.

6.2.5 Constraint Violation Analysis

Theorem 6.2. Consider online convex optimization with long term constraints under Assump-

tions 6.1-6.2. Let D,β,G,R and ε be constants defined in Assumptions 6.1-6.2. The following

are ensured by Algorithm 6.1:

1. For all T ≥ 1, we have

T∑
t=1

gk(x(t)) ≤ 2G+ αR2 +DR+ 2c2G2

c2ε
.

2. If c = T 1/4 and α = 1
2 (β2 + 1)

√
T in Algorithm 6.1, then for all T ≥ 1, we have

T∑
t=1

gk(x(t)) ≤ 2G+
1
2 (β2 + 1)R2 + 2G2 +DR

ε
,∀k ∈ {1, 2, . . . ,m}.

Proof. Fix T ≥ 1 and k ∈ {1, 2, . . . ,m}. By Lemma 6.4, we have

T∑
t=1

gk(x(t)) ≤1
c
Qk(T ) ≤ 1

c
‖Qk(T )‖

(a)
≤ 2c

c
G+ αR2 +DR+ 2c2G2

c2ε
,

where (a) follows from Corollary 6.1. Thus, the first part of this theorem follows.

The second part of this theorem follows by substituting c = T 1/4 and α = 1
2 (β2 + 1)

√
T into

the last inequality:

T∑
t=1

gk(x(t)) ≤2G+
1
2 (β2 + 1)

√
TR2 +DR+ 2

√
TG2

√
Tε

≤2G+
1
2 (β2 + 1)R2 + 2G2

ε
+ DR

ε
T−1/2

≤2G+
1
2 (β2 + 1)R2 + 2G2 +DR

ε
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6.2.6 Practical Implementations

The finite constraint violation bound proven in Theorem 6.2 is in terms of constants D,G,R

and ε defined in Assumptions 6.1-6.2. However, the implementation of Algorithm 6.1 only requires

the knowledge of β, which is known to us since the constraint function g(x) does not change.

In contrast, the algorithms developed in [MJY12] and [JHA16] have parameters that must be

chosen based on the knowledge of D, which is usually unknown and can be difficult to estimate

in an online optimization scenario.

6.3 Extensions

This section extends the analysis in the previous section by considering intermediate and

unknown time horizon T .

6.3.1 Intermediate Time Horizon T

Note that parts 1 of Theorems 6.1 and 6.2 hold for any T . For large T , choosing c = T 1/4

and α = 1
2 (β2 + 1)

√
T yields the O(

√
T ) regret bound and finite constraint violations as proven

in parts 2 of both theorems. For intermediate T , the constant factor hidden in the O(
√
T ) bound

can be important and finite constraint violation bound can be relatively large. If parameters in

Assumptions 6.1-6.2 are known, we can obtain the best regret and constraint violation bounds

by choosing c and α as the solution to the following geometric program1:

min
η,c,α,z

z

s.t. αR2 + 2c2G2 + 1
2ηD

2T ≤ z,

2G+ αR2 +DR+ 2c2G2

c2ε
≤ z,

1
2(β2c2 + η) ≤ α,

η, c, α, z > 0.

1By dividing the first two constraints by z and dividing the third constraint by α on both sides, this geometric
program can be written into the standard from of geometric programs. Geometric programs can be reformulated
into convex programs and can be efficiently solved. See [BKVH07] for more discussions on geometric programs.
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In certain applications, we can choose c and α to minimize the regret bound subject to the

constraint violation guarantee by solving the following geometric program:

min
η,c,α

αR2 + 2c2G2 + 1
2ηD

2T

s.t. 2G+ αR2 +DR+ 2c2G2

c2ε
≤ z0,

1
2(β2c2 + η) ≤ α,

η, c, α > 0,

where z0 > 0 is a constant that specifies the maximum allowed constraint violation. Or alterna-

tively, we can consider the problem of minimizing the constraint violation subject to the regret

bound guarantee.

6.3.2 Unknown Time Horizon T

To achieve O(
√
T ) regret and finite constraint violations, the parameters c and α in Algorithm

6.1 depend on the time horizon T . In the case when T is unknown, we can use the classical

“doubling trick” to achieve O(
√
T ) regret and O(log2 T ) constraint violations.

Suppose we have an online convex optimization algorithm A whose parameters depend on

the time horizon. In the case when the time horizon T is unknown, the general doubling trick

[CBL06, SS11] is described in Algorithm 6.2. It is known that the doubling trick can preserve

the order of algorithm A’s regret bound in the case when the time horizon T is unknown. The

next theorem summarizes that by using the “doubling trick” for Algorithm 6.1 with unknown

time horizon T , we can achieve O(
√
T ) regret and O(log2 T ) constraint violations.

Algorithm 6.2 The Doubling Trick [CBL06, SS11]

• Let algorithm A be an algorithm whose parameters depend on the time horizon. Let i = 1.

• Repeat until we reach the end of the time horizon

– Run algorithm A for 2i rounds by using 2i as the time horizon.
– Let i = i+ 1.

Theorem 6.3. If the time horizon T is unknown, then applying Algorithm 6.1 with the “doubling

trick” can yield O(
√
T ) regret and O(log2 T ) constraint violations.
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Proof. Let T be the unknown time horizon. Define each iteration in the doubling trick as a

period. Since the i-th period consists of 2i rounds, we have in total dlog2 T e periods, where dxe

denote the smallest integer no less than x.

1. The proof of O(
√
T ) regret is almost identical to the classical proof. By Theorem 6.1, there

exists a constant C such that the regret in the i-th period is at most C
√

2i. Thus, the total

regret is at most

dlog2 Te∑
i=1

C
√

2i =C
√

2[1−
√

2dlog2 Te]
1−
√

2

=
√

2C√
2− 1

[
√

2
dlog2 Te − 1]

≤
√

2C√
2− 1

√
2

1+log2 T

≤ 2C√
2− 1

√
T

Thus, the regret bound is O(
√
T ) when using the “doubling trick”.

2. The proof of O(log2 T ) constraint violations is simple. By Theorem 6.1, there exists a

constant C such that the constraint violation in the i-th period is at most C. Since we

have dlog2 T e periods, the total constraint violation is Cdlog2 T e.

6.4 Chapter Summary

This chapter considers online convex optimization with long term constraints, where func-

tional constraints are only required to be satisfied in the long term. Prior algorithms in [MJY12]

can achieve O(
√
T ) regret and O(T 3/4) constraint violations for general problems and achieve

O(T 2/3) bounds for both regret and constraint violations when the constraint set can be de-

scribed by a finite number of linear constraints. A recent extension in [JHA16] can achieve

O(Tmax{β,1−β}) regret and O(T 1−β/2) constraint violations where β ∈ (0, 1) in an algorithm

parameter. Algorithm 5.1 developed in Chapter 5 can achieve O(
√
T ) regret and O(

√
T ) con-

straint violations. This chapter proposes a new algorithm that can achieve an O(
√
T ) bound for

regret and an O(1) bound for constraint violations; and hence yields improved performance in
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comparison to prior works [MJY12, JHA16] and our own Algorithm 5.1.
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Chapter 7

Power Control for Energy Harvesting Devices with Out-

dated State Information

Energy harvesting can enable self-sustainable and perpetual wireless devices. By harvesting

energy from the environment and storing it in a battery for future use, we can significantly

improve energy efficiency and device lifetime. Harvested energy can come from solar, wind,

vibrational, thermal, or even radio sources [PS05, SK11, UYE+15]. Energy harvesting has been

identified as a key technology for wireless sensor networks [KHZS07], internet of things (IoT)

[KMS+15], and 5G communication networks [HH15]. However, the development of harvesting

algorithms is complex because the harvested energy is highly dynamic and the device environment

and energy needs are also dynamic. Efficient algorithms should learn when to take energy from

the battery to power device tasks that bring high utility, and when to save energy for future use.

There have been large amounts of work developing efficient power control policies to maximize

the utility of energy harvesting devices. In the highly ideal case where the future system state

(both the wireless channel sate and energy harvesting state) can be perfectly predicted, optimal

power control strategies that maximize the throughput of wireless systems are considered in

[YU12, TY12]. In a more realistic case with only the statistics and causal knowledge of the

system state, power control policies based on Markov Decision Processes (MDP) are considered

in [BGD13, MSZ13]. In the case when the statistical knowledge is unavailable but the current

system state is observable, work [WWW+17] develops suboptimal power control policies based

on approximation algorithms.

However, there is little work on the challenging scenario where neither the distribution in-

formation nor the system state information are known. In practice, the amount of harvested
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energy on each slot is known to us only after it arrives and is stored into the battery. Further,

the wireless environment is often unknown before the power action is chosen. For example, the

wireless channel state in a communication link is measured at the receiver side and then reported

back to the transmitter with a time delay. If the fading channel varies very fast, the channel

state feedback received at the transmitter can be outdated. Another example is power control

for sensor nodes that detect unknown targets where the state of targets is known only after the

sensing action is performed.

In this chapter, we consider utility-optimal power control in an energy harvesting wireless de-

vice with outdated state information and unknown state distribution information. This problem

setup is closely related to but different from the Lyapunov opportunistic power control consid-

ered in works [GGT10, HN13, UUNS11] with instantaneous wireless channel state information.

The policies developed in [GGT10, HN13, UUNS11] are allowed to adapt their power actions to

the instantaneous system states on each slot, which are unavailable in our problem setup. The

problem setup in this chapter is also closely related to online convex optimization where control

actions are performed without knowing instantaneous system states [Zin03, CBL06, SS11]. How-

ever, existing methods for online convex learning require the control actions to be chosen from

a fixed set. This does not hold in our problem since the power to be used can only be drained

from the battery whose backlog is time-varying and dependent on previous actions.

In Chapter 5, we extend the conventional online convex optimization (with a fixed known

action set) to a more general setup with stochastic constraints. The stochastic constraints can

be used to describe the uncertainty of energy harvesting and the fact that consumed energy is

no more than the harvested energy in the long term. However, the stochastic constraint does

not capture the fact that the used energy at any round must be no more than what is available

in the battery and the fact that no more energy can be harvested when the battery is full.

The algorithm developed in Chapter 5 for general online convex optimization with stochastic

constraints only ensure that the stochastic constraint violations grow sublinearly in expectation

and in high probability, which is not sufficient when used as a feasible power control algorithm

for energy harvesting devices.

In this chapter, we develop a new power control algorithm for energy harvesting devices with

outdated state information and show that this power control algorithm can achieve an O(ε)

optimal utility by using a battery with capacity O(1/ε). The results in this chapter are originally
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developed in our paper [YN18a].

7.1 Problem Formulation

Consider an energy harvesting wireless device that operates in normalized time slots t ∈

{1, 2, . . .}. Let ω(t) = [e(t), s(t)] ∈ Ω represent the system state on each slot t, where

• e(t) is the amount of harvested energy for slot t (for example, through solar, wind, radio

signal, and so on).

• s(t) is the wireless device state on slot t (such as the vector of channel conditions over

multiple subbands).

• Ω is the state space for all ω(t) = [e(t), s(t)] states.

Assume {ω(t)}∞t=1 evolves in an independent and identically distributed (i.i.d.) manner according

to an unknown distribution. Further, the state ω(t) is unknown to the device until the end of slot

t. The device is powered by a finite-size battery. At the beginning of each slot t ∈ {1, 2, . . .}, the

device draws energy from the battery and allocates it as an n-dimensional power decision vector

p(t) = [p1(t), . . . , pn(t)]T ∈ P where P is a compact convex set given by

P = {p ∈ Rn :
n∑
i=1

pi ≤ pmax, pi ≥ 0,∀i ∈ {1, 2, . . . , n}}.

Note that pmax is a given positive constant (restricted by hardware) and represents the max-

imum total power that can be used on each slot. The device receives a corresponding utility

U(p(t);ω(t)). Since p(t) is chosen without knowledge of ω(t), the achieved utility is unknown

until the end of slot t. For each ω ∈ Ω, the utility function U(p;ω) is assumed to be continuous

and concave over p ∈ P. An example is:

U(p;ω) =
n∑
i=1

log(1 + pi(t)si(t)) (7.1)

where s(t) = [s1(t), . . . , sn(t)] is the vector of (unknown) channel conditions over n orthogonal

subbands available to the wireless device. In this example, pi(t) represents the amount of power

invested over subband i in a rateless coding transmission scenario, and U(p(t);ω(t)) is the total
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throughput achieved on slot t. We focus on fast time-varying wireless channels, e.g., communica-

tion scenarios with high mobility transceivers, where s(t) known at the transmitter is outdated

since s(t) must be measured at the receiver side and then reported back to the transmitter with

a time delay.

7.1.1 Further Examples

The above formulation admits a variety of other useful application scenarios. For example,

it can be used to treat power control in cognitive radio systems. Suppose an energy limited

secondary user harvests energy and operates over licensed spectrum occupied by primary users.

In this case, s(t) = [s1(t), . . . , sn(t)] represents the channel activity of primary users over each

subband. Since primary users are not controlled by the secondary user, s(t) is only known to the

secondary user at the end of slot t.

Another application is a wireless sensor system. Consider an energy harvesting sensor node

that collects information by detecting an unpredictable target. In this case, s(t) can be the state

or action of the target on slot t. By using p(t) power for signaling and sensing, we receive utility

U(p(t);ω(t)), which depends on state ω(t). For example, in a monitoring system, if the monitored

target performs an action s(t) that we are not interested in, then the reward U(p(t);ω(t)) by

using p(t) is small. Note that s(t) is typically unknown to us at the beginning of slot t and is

only disclosed to us at the end of slot t.

7.1.2 Basic Assumption

Assumption 7.1.

• There exist a constant emax > 0 such that 0 ≤ e(t) ≤ emax,∀t ∈ {1, 2, . . .}.

• Let ∇pU(p;ω) denote a subgradient (or gradient if U(p;ω) is differentiable) vector of

U(p;ω) with respect to p and let ∂
∂pi

U(p;ω),∀i ∈ {1, 2, . . . , n} denote each component

of vector ∇pU(p;ω). There exist positive constants D1, . . . , Dn such that | ∂∂piU(p;ω)| ≤

Di,∀i ∈ {1, 2, . . . , n} for all ω ∈ Ω and all p ∈ P. This further implies there exists D > 0,

e.g., D =
√∑n

i=1D
2
i , such that ‖∇pU(p;ω)‖ ≤ D for all ω ∈ Ω and all p ∈ P, where

‖x‖ =
√∑n

i=1 x
2
i is the standard l2 norm.
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Such constants D1, . . . , Dn exist in most cases of interest, such as for utility functions (7.1)

with bounded si(t) values. 1 The following fact follows directly from Assumption 7.1.

Fact 7.1. For each ω ∈ Ω, U(p, ω) is D-Lipschitz over p ∈ P, i.e.,

|U(p1, ω)− U(p2, ω)| ≤ D‖p1 − p2‖,∀p1,p2 ∈ P

Proof. By the basic subgradient inequality for concave functions:

U(p2, ω) + [∇pU(p2;ω)]T(p1 − p2) ≥ U(p1, ω)

U(p1, ω) + [∇pU(p1;ω)]T(p2 − p1) ≥ U(p2, ω)

Rearranging terms and applying the Cauchy-Schwarz inequality yields

U(p1, ω)− U(p2, ω) ≤ ‖∇pU(p2;ω)‖‖p1 − p2‖

U(p2, ω)− U(p1, ω) ≤ ‖∇pU(p1;ω)‖‖p1 − p2‖

Combining the above inequalities and recalling that all subgradients are bounded by D gives

|U(p1, ω)− U(p2, ω)| ≤ D‖p1 − p2‖.

7.1.3 Power Control and Energy Queue Model

The finite size battery can be considered as backlog in an energy queue. Let E(0) be the

initial energy backlog in the battery and E(t) be the energy stored in the battery at the end of

slot t. The power vector p(t) must satisfy the following energy availability constraint:

∑n
i=1pi(t) ≤ E(t− 1),∀t ∈ {1, 2, . . .}. (7.2)

which requires the consumed power to be no more than what is available in the battery.

Let Emax be the maximum capacity of the battery. If the energy availability constraint (7.2)

1This is always true since si(t) are wireless signal strength attenuations.
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is satisfied on each slot, the energy queue backlog E(t) evolves as follows:

E(t) = min{E(t− 1)−
∑n
i=1pi(t) + e(t), Emax},∀t. (7.3)

7.1.4 An Upper Bound Problem

Let ω(t) = [e(t), s(t)] be the random state vector on slot t. Let E[e] = E[e(t)] denote the

expected amount of new energy that arrives in one slot. Define a function h : P → R by

h(p) = E[U(p;ω(t))].

Since U(p;ω) is concave in p for all ω by Assumption 7.1 and is D-Lipschitz over p ∈ P for all

ω by Fact 7.1, we know h(p) is concave and continuous.

The function h is typically unknown because the distribution of ω is unknown. However, to

establish a fundamental bound, suppose both h and E[e] are known and consider choosing a fixed

vector p to solve the following deterministic problem:

max
p

h(p) (7.4)

s.t.
n∑
i=1

pi − E[e] ≤ 0 (7.5)

p ∈ P (7.6)

where constraint (7.5) requires that the consumed energy is no more than E[e].

Let p∗ be an optimal solution of problem (7.4)-(7.6) and U∗ be its corresponding utility

value of (7.4). Define a causal policy as one that, on each slot t, selects p(t) ∈ P based only

on information up to the start of slot t (in particular, without knowledge of ω(t)). Since ω(t)

is i.i.d. over slots, any causal policy must have p(t) and ω(t) independent for all t. The next

lemma shows that no causal policy p(t), t ∈ {1, 2, . . .} satisfying (7.2)-(7.3) can attain a better

utility than U∗.

Lemma 7.1. Let p(t) ∈ P, t ∈ {1, 2, . . .} be yielded by any causal policy that consumes less
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energy than it harvests in the long term, so lim supT→∞ 1
T

∑T
t=1 E[

∑n
i=1 pi(t)] ≤ E[e]. Then,

lim sup
T→∞

1
T

T∑
t=1

E[U(p(t);ω(t))] ≤ U∗.

Proof. Fix a slot t ∈ {1, 2, . . .}. Then

E[U(p(t);ω(t))] (a)= E[E[U(p(t);ω(t))|p(t)]] (b)= E[h(p(t))] (7.7)

where (a) holds by iterated expectations; (b) holds because p(t) and ω(t) are independent (by

causality).

For each T > 0 define p(T ) = [p1(T ), . . . , pn(T )]T with

pi(T ) = 1
T

T∑
t=1

E[pi(t)],∀i ∈ {1, 2, . . . , n}.

We know by assumption that:

lim sup
T→∞

n∑
i=1

pi(T ) ≤ E[e] (7.8)

Further, since p(t) ∈ P for all slots t, it holds that p(T ) ∈ P for all T > 0. Also,

1
T

T∑
t=1

E[U(p(t);ω(t))] (a)= 1
T

T∑
t=1

E[h(p(t))]

(b)
≤ h

(
E[ 1

T

∑T
t=1p(t)]

)
= h(p̄(T ))

where (a) holds by (7.7); (b) holds by Jensen’s inequality for the concave function h. It follows

that:

lim sup
T→∞

1
T

T∑
t=1

E[U(p(t);ω(t))] ≤ lim sup
T→∞

h(p̄(T )).

Define θ = lim supT→∞ h(p̄(T )). It suffices to show that θ ≤ U∗. Since p̄(T ) is in the compact

set P for all T > 0 and h is continuous, the Bolzano-Weierstrass theorem ensures there is a

subsequence of times Tk such that p(Tk) converges to a fixed vector p0 ∈ P and h(p(Tk))
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converges to θ as k →∞:

lim
k→∞

p(Tk) = p0 ∈ P

lim
k→∞

h(p(Tk)) = θ

Continuity of h implies that h(p0) = θ. By (7.8) the vector p0 = [p0,1, . . . , p0,n]T must satisfy∑n
i=1 p0,i ≤ E[e]. Hence, p0 is a vector that satisfies constraints (7.5)-(7.6) and achieves utility

h(p0) = θ. Since U∗ is defined as the optimal utility value to problem (7.4)-(7.6), it holds that

θ ≤ U∗.

Note that the U∗ utility upper bound of Lemma 7.1 holds for any policy that consumes no

more energy than it harvests in the long term. Policies that satisfy the physical battery con-

straints (7.2)-(7.3) certainly consume no more energy than harvested in the long term. However,

Lemma 7.1 even holds for policies that violate these physical battery constraints. For example,

U∗ is still a valid bound for a policy that is allowed to “borrow” energy from an external power

source when its battery is empty and “return” energy when its battery is full.

7.2 New Algorithm

This subsection proposes a new learning aided dynamic power control algorithm that chooses

power control actions based on system history, without requiring the current system state or its

probability distribution.

7.2.1 New Algorithm

The new dynamic power control algorithm is described in Algorithm 7.1. At the end of slot t,

Algorithm 7.1 chooses p(t+1) based on ω(t) without requiring ω(t+1). To enable these decisions,

the algorithm introduces a (non-positive) virtual battery queue process Q(t) ≤ 0, which shall

later be shown to be related to a shifted version of the physical battery queue E(t).

Note that Algorithm 7.1 does not explicitly enforce the energy availability constraint (7.2).

Let p(t+ 1) be given by (7.10), one may expect to use

p̂(t+ 1) =
min{

∑n
i=1 pi(t+ 1), E(t)}∑n
i=1 pi(t+ 1)

p(t+ 1) (7.11)
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Algorithm 7.1 New Power Control Algorithm for Energy Harvesting Devices with Outdated
State Information
Let V > 0 be a constant algorithm parameter. Initialize virtual battery queue variable Q(0) = 0.
Choose p(1) = [0, 0, . . . , 0]T as the power action at slot 1. At the end of each slot t ∈ {1, 2, . . .},
observe ω(t) = [e(t), s(t)] and do the following:

• Update virtual battery queue Q(t): Update Q(t) via:

Q(t) = min{Q(t− 1) + e(t)−
n∑
i=1

pi(t), 0}. (7.9)

• Power control: Choose

p(t+ 1) = ProjP
{

p(t) + 1
V
∇pU(p(t);ω(t)) + 1

V 2Q(t)1
}

(7.10)

as the power action for the next slot t + 1 where ProjP{·} represents the projection onto
set P, 1 denotes a column vector of all ones and ∇pU(p(t);ω(t)) represents a subgradient
(or gradient if U(p;ω(t)) is differentiable) vector of function U(p;ω(t)) at point p = p(t).
Note that p(t), Q(t) and ∇pU(p(t);ω(t)) are given constants in (7.10).

that scales down p(t+1) to enforce the energy availability constraint (7.2). However, our analysis

in Section 7.3 shows that if the battery capacity is at least as large as an O(V ) constant, then

directly using p(t+ 1) from (7.10) is ensured to always satisfy the energy availability constraint

(7.2). Thus, there is no need to take the additional step (7.11).

7.2.2 Algorithm Inuitions

Lemma 7.2. The power control action p(t+1) chosen in (7.10) is to solve the following quadratic

convex program

max
p

V [∇pU(p(t);ω(t))]T[p− p(t)] +Q(t)1Tp− V 2

2 ‖p− p(t)‖2 (7.12)

s.t. p ∈ P (7.13)

Proof. By the definition of projection, equation (7.10) is to solve

min ‖p−
[
p(t) + 1

V
∇pU(p(t);ω(t)) + 1

V 2Q(t)1
]
‖2

s.t. p ∈ P

By expanding the square, eliminating constant terms and converting the minimization to the
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maximization of its negative object, it is easy to show this problem is equivalent to problem

(7.12)-(7.13).

The convex projection (7.10), or equivalently, the quadratic convex program (7.12)-(7.13) can

be easily solved. See e.g., Lemma 4.4 in Chapter 4 for an algorithm that solves an n-dimensional

quadratic program over set P with complexity O(n logn). Thus, the overall complexity of Algo-

rithm 7.1 is low.

7.3 Performance Analysis of Algorithm 7.1

This section shows Algorithm 7.1 can attain an O(ε) close-to-optimal utility by using a battery

with capacity O(1/ε).

7.3.1 Drift Analysis

Define L(t) = 1
2 [Q(t)]2 and call it a Lyapunov function. Define the Lyapunov drift as ∆(t) =

L(t+ 1)− L(t).

Lemma 7.3. Under Algorithm 7.1, for all t ≥ 0, the Lyapunov drift satisfies

∆(t) ≤ Q(t)[e(t+ 1)−
n∑
i=1

pi(t+ 1)] + 1
2B (7.14)

with constant B = (max{emax, pmax})2, where emax is the constant defined in Assumption 7.1.

Proof. Fix t ≥ 0. Recall that for any x ∈ R if y = min{x, 0} then y2 ≤ x2. It follows from (7.9)

that

[Q(t+ 1)]2 ≤
[
Q(t) + e(t+ 1)−

n∑
i=1

pi(t+ 1)
]2
.

Expanding the square on the right side, dividing both sides by 2 and rearranging terms yields

∆(t) ≤ Q(t)[e(t+ 1)−
∑n
i=1 pi(t+ 1)] + 1

2 [e(t+ 1)−
∑n
i=1 pi(t+ 1)]2.

This lemma follows by noting that |e(t + 1) −
∑n
i=1 pi(t + 1)| ≤ max{emax, pmax} since 0 ≤∑n

i=1 pi(t+ 1) ≤ pmax and 0 ≤ e(t+ 1) ≤ emax.
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Lemma 7.4. Let U∗ be the utility upper bound defined in Lemma 7.1 and p∗ be an optimal

solution to problem (7.4)-(7.6) that attains U∗. At each iteration t ∈ {1, 2, . . .}, Algorithm 7.1

guarantees

V E[U(p(t);ω(t))]−∆(t) ≥ V U∗ + V 2

2 E[Φ(t)]− D2 +B

2

where Φ(t) = ‖p∗ − p(t+ 1)‖2 − ‖p∗ − p(t)‖2, D is the constant defined in Assumption 7.1 and

B is the constant defined in Lemma 7.3.

Proof. Note that
∑n
i=1 p

∗
i ≤ E[e]. Fix t ∈ {1, 2, . . .}. Note that V [∇pU(p(t);ω(t))]T[p− p(t)] +

Q(t)
∑n
i=1 pi is a linear function with respect to p. It follows that

V
[
∇pU(p(t);ω(t))

]T[p− p(t)] +Q(t)
n∑
i=1

pi −
V 2

2 ‖p− p(t)‖2 (7.15)

is strongly concave with respect to p ∈ P with modulus V 2. Since p(t+1) is chosen to maximize

(7.15) over all p ∈ P, and since p∗ ∈ P, by Corollary 1.3, we have

V
[
∇pU(p(t);ω(t))

]T[p(t+ 1)− p(t)] +Q(t)
n∑
i=1

pi(t+ 1)− V 2

2 ‖p(t+ 1)− p(t)‖2

≥V
[
∇pU(p(t);ω(t))

]T[p∗ − p(t)] +Q(t)
n∑
i=1

p∗i −
V 2

2 ‖p
∗ − p(t)‖2 + V 2

2 ‖p
∗ − p(t+ 1)‖2

=V
[
∇pU(p(t);ω(t))

]T[p∗ − p(t)] +Q(t)
n∑
i=1

p∗i + V 2

2 Φ(t).

Subtracting Q(t)e(t+ 1) from both sides and rearranging terms yields

V
[
∇pU(p(t);ω(t))

]T[p(t+ 1)− p(t)] +Q(t)
[ n∑
i=1

pi(t+ 1)− e(t+ 1)
]

≥V
[
∇pU(p(t);ω(t))

]T[p∗ − p(t)] +Q(t)
[ n∑
i=1

p∗i − e(t+ 1)
]

+ V 2

2 Φ(t) + V 2

2 ‖p(t+ 1)− p(t)‖2.

Adding V U(p(t);ω(t)) to both sides and noting that U(p(t);ω(t)) + [∇pU(p(t);ω(t))]T[p∗ −

188



p(t)] ≥ U(p∗;ω(t)) by the concavity of U(p;ω(t)) yields

V U(p(t);ω(t)) + V
[
∇pU(p(t);ω(t))

]T[p(t+ 1)− p(t)] +Q(t)
[ n∑
i=1

pi(t+ 1)− e(t+ 1)
]

≥V U(p∗;ω(t)) +Q(t)
[ n∑
i=1

p∗i − e(t+ 1)
]

+ V 2

2 Φ(t) + V 2

2 ‖p(t+ 1)− p(t)‖2.

Rearranging terms yields

V U(p(t);ω(t)) +Q(t)
[ n∑
i=1

pi(t+ 1)− e(t+ 1)
]

≥V U(p∗;ω(t)) +Q(t)
[ n∑
i=1

p∗i − e(t+ 1)
]

+ V 2

2 Φ(t) + V 2

2 ‖p(t+ 1)− p(t)‖2

− V
[
∇pU(p(t);ω(t))

]T[p(t+ 1)− p(t)] (7.16)

Note that

V
[
∇pU(p(t);ω(t))

]T[p(t+ 1)− p(t)]
(a)
≤ 1

2‖∇pU(p(t);ω(t))‖2 + V 2

2 ‖p(t+ 1)− p(t)‖2

(b)
≤ 1

2D
2 + V 2

2 ‖p(t+ 1)− p(t)‖2 (7.17)

where (a) follows by using basic inequality xTy ≤ 1
2‖x‖

2 + 1
2‖y‖

2 for all x,y ∈ Rn with x =

∇pU(p(t);ω(t)) and y = V [p(t+ 1)− p(t)]; and (b) follows from Assumption 7.1. Substituting

(7.17) into (7.16) yields

V U(p(t);ω(t)) +Q(t)
[ n∑
i=1

pi(t+ 1)− e(t+ 1)
]

≥V U(p∗;ω(t)) +Q(t)
[ n∑
i=1

p∗i − e(t+ 1)
]

+ V 2

2 Φ(t)− 1
2D

2 (7.18)

By Lemma 7.3, we have

−∆(t) ≥ Q(t)
[ n∑
i=1

pi(t+ 1)− e(t+ 1)
]
− B

2 (7.19)
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Summing (7.18) and (7.19); and cancelling common terms on both sides yields

V U(p(t);ω(t))−∆(t) ≥ V U(p∗;ω(t)) +Q(t)
[ n∑
i=1

p∗i − e(t+ 1)
]

+ V 2

2 Φ(t)− D2 +B

2 (7.20)

Note that each Q(t) (depending only on e(τ), p(τ) with τ ∈ {1, 2, . . . , t}) is independent of e(t+1).

Thus,

E
[
Q(t)[

n∑
i=1

p∗i − e(t+ 1)]
]

=E[Q(t)]E[
n∑
i=1

p∗i − e(t+ 1)]

(a)
≥0 (7.21)

where (a) follows because Q(t) ≤ 0 and
∑n
i=1 p

∗
i ≤ E[e] (recall that e(t+ 1) is an i.i.d. sample of

e).

Taking expectations on both sides of (7.20) and using (7.21) and E[U(p∗;ω(t))] = U∗ yields

the desired result.

7.3.2 Utility Optimality Analysis

The next theorem summarizes that the average expected utility attained by Algorithm 7.1 is

within an O(1/V ) distance to U∗ defined in Lemma 7.1.

Theorem 7.1. Let U∗ be the utility bound defined in Lemma 7.1. For all t ∈ {1, 2, . . .}, Algorithm

7.1 guarantees

1
t

t∑
τ=1

E[U(p(τ);ω(τ))] ≥ U∗ − V (pmax)2

2t − B

2V t −
D2 +B

2V (7.22)

where D is the constant defined in Assumption 7.1 and B is the constant defined in Lemma 7.3.

This implies,

lim sup
t→∞

1
t

t∑
τ=1

E[U(p(τ);ω(τ))] ≥ U∗ − D2 +B

2V . (7.23)

In particular, if we take V = 1/ε in Algorithm 7.1, then

1
t

t∑
τ=1

E[U(p(τ);ω(τ))] ≥ U∗ −O(ε),∀t ≥ Ω( 1
ε2

). (7.24)
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Proof. Fix t ∈ {1, 2, . . .}. For each τ ∈ {1, 2, . . . , t}, by Lemma 7.4, we have

E[V U(p(τ);ω(τ))]− E[∆(τ)] ≥ V U∗ + V 2

2 E[Φ(τ)]− D2 +B

2 .

Summing over τ ∈ {1, 2, . . . , t}, dividing both sides by V t and rearranging terms yields

1
t

t∑
τ=1

E[U(p(τ);ω(τ))]

≥U∗ + V

2t

t∑
τ=1

E[Φ(τ)] + 1
V t

t∑
τ=1

E[∆(τ)]− D2 +B

2V

(a)=U∗ + V

2tE[‖p∗ − p(t+ 1)‖2 − ‖p∗ − p(1)‖2] + 1
2V tE[[Q(t+ 1)]2 − [Q(1)]2]− D2 +B

2V

≥U∗ − V

2tE[‖p∗ − p(1)‖2]− 1
2V tE[[Q(1)]2]− D2 +B

2V
(b)
≥U∗ − V (pmax)2

2t − B

2V t −
D2 +B

2V

where (a) follows by recalling that Φ(τ) = ‖p∗−p(τ + 1)‖2−‖p∗−p(τ)‖2 and ∆(τ) = 1
2 [Q(τ +

1)]2 − 1
2 [Q(τ)]2; and (b) follows because ‖p∗ − p(1)‖ = ‖p∗‖ =

√∑n
i=1(p∗i )2 ≤

∑n
i=1 p

∗
i ≤ pmax

and |Q(1)| = |Q(0) + e(1) −
∑n
i=1 pi(1)| = |e(1) −

∑n
i=1 pi(1)| ≤ max{emax, pmax} =

√
B where

B is defined in Lemma 7.3. So far we have proven (7.22).

Equation (7.23) follows directly by taking lim sup on both sides of (7.22). Equation (7.24)

follows by substituting V = 1
ε and t = 1

ε2 into (7.22).

7.3.3 Lower Bound for Virtual Battery Queue Q(t)

Note that Q(t) ≤ 0 by (7.9). This subsection further shows that Q(t) is bounded from below.

The projection ProjP{·} satisfies the following lemma:

Lemma 7.5. For any p(t) ∈ P and vector b ≤ 0, where ≤ between two vectors means component-

wisely less than or equal to, p̃ = ProjP{p(t) + b} is given by

p̃i = max{pi(t) + bi, 0},∀i ∈ {1, 2, . . . , n}. (7.25)
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Proof. Recall that projection ProjP{p(t) + b} by definition is to solve

min
p

n∑
i=1

[pi − [pi(t) + bi]]2 (7.26)

s.t.
n∑
i=1

pi ≤ pmax (7.27)

pi ≥ 0,∀i ∈ {1, 2, . . . , n} (7.28)

Let I ⊆ {1, 2, . . . , n} be the coordinate index set given by I = {i ∈ {1, 2, . . . , n} : pi(t) + bj < 0}.

For any p such that
∑n
i=1 pi ≤ pmax and pi ≥ 0,∀i ∈ {1, 2, . . . , n}, we have

n∑
i=1

[pi − [pi(t) + bi]]2

=
∑
i∈I

[pi − [pi(t) + bi]]2 +
∑

i∈{1,2,...,n}\I

[pi − [pi(t) + bi]]2

≥
∑
i∈I

[pi − [pi(t) + bi]]2

(a)
≥
∑
i∈I

[pi(t) + bi]2

where (a) follows because pi(t)+bi < 0 for i ∈ I and pi ≥ 0,∀i ∈ {1, 2, . . . , n}. Thus,
∑
i∈I [pi(t)+

bi]2 is an object value lower bound of problem (7.26)-(7.28).

Note that p̃ given by (7.25) is feasible to problem (7.26)-(7.28) since p̃i ≥ 0,∀i ∈ {1, 2, . . . , n}

and
∑n
i=1 p̃i ≤

∑n
i=1 pi(t) ≤ pmax because p̃i ≤ pi(t) for all i and p(t) ∈ P. We further note that

n∑
i=1

[p̃i − [pi(t) + bi]]2 =
∑
i∈I

[pi(t) + bi]2.

That is, p̃ given by (7.25) attains the object value lower bound of problem (7.26)-(7.28) and

hence is the optimal solution to problem (7.26)-(7.28). Thus, p̃ = ProjP{p(t) + b}.

Corollary 7.1. If Q(t) ≤ −V (Dmax + pmax) with Dmax = max{D1, . . . , Dn}, then Algorithm

7.1 guarantees

pi(t+ 1) ≤ max{pi(t)−
1
V
pmax, 0},∀i ∈ {1, 2, . . . , n}.

where D1, . . . , Dn are constants defined in Assumption 7.1.
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Proof. Let b = 1
V ∇pU(p(t);ω(t)) + 1

V 2Q(t)1. Since ∂
∂pi

U(p(t);ω(t)) ≤ Di,∀i ∈ {1, 2, . . . , n} by

Assumption 7.1 and Q(t) ≤ −V (Dmax + pmax), we know bi ≤ − 1
V p

max,∀i ∈ {1, 2, . . . , n}. By

Lemma 7.5, we have

pi(t+ 1) = max{pi(t) + bi, 0}

≤max{pi(t)−
1
V
pmax, 0},∀i ∈ {1, 2, . . . , n}.

By Corollary 7.1, if Q(t) ≤ −V (Dmax + pmax), then each component of p(t + 1) decreases

by 1
V p

max until it hits 0. That is, if Q(t) ≤ −V (Dmax + pmax) for sufficiently many slots,

Algorithm 7.1 eventually chooses 0 as the power decision. By virtual queue update equation

(7.9), Q(t) decreases only when
∑n
i=1 pi(t) > 0. These two observations suggest that Q(t) yielded

by Algorithm 7.1 should be eventually bounded from below. This is formally summarized in the

next theorem.

Theorem 7.2. Let V in Algorithm 7.1 be a positive integer. Define positive constant Ql, where

superscript l denotes “lower” bound, as

Ql =V (Dmax + 2pmax + emax) (7.29)

where emax is the constant defined in Assumption 7.1 and Dmax is the constant defined in Corol-

lary 7.1. Algorithm 7.1 guarantees

Q(t) ≥ −Ql,∀t ∈ {0, 1, 2, . . .}.

Proof. By virtual queue update equation (7.9), we know Q(t) can increase by at most emax and

can decrease by at most pmax on each slot. Since Q(0) = 0, we know Q(t) ≥ −Ql for all t ≤ V .

We need to show Q(t) ≥ −Ql for all t > V . This can be proven by contradiction as follows:

Assume Q(t) < −Ql for some t > V . Let τ > V be the first (smallest) slot index when this

happens. By the definition of τ , we have Q(τ) < −Ql and

Q(τ) < Q(τ − 1). (7.30)
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Now consider the value of Q(τ − V ) in two cases (note that τ − V > 0).

• Case Q(τ − V ) ≥ −V (Dmax + pmax + emax): Since Q(t) can decrease by at most pmax

on each slot, we know Q(τ) ≥ −V (Dmax + 2pmax + emax) = −Ql. This contradicts the

definition of τ .

• Case Q(τ − V ) < −V (Dmax + pmax + emax): Since Q(t) can increase by at most emax on

each slot, we know Q(t) < −V (Dmax + pmax) for all τ − V ≤ t ≤ τ − 1. By Corollary 7.1,

for all τ − V ≤ t ≤ τ − 1, we have

pi(t+ 1) ≤ max{pi(t)−
1
V
pmax, 0},∀i ∈ {1, 2, . . . , n}.

Since the above inequality holds for all t ∈ {τ − V, τ − V + 1, . . . , τ − 1}, and since at the

start of this interval we trivially have pi(τ − V ) ≤ pmax,∀i ∈ {1, 2, . . . , n}, at each step of

this interval each component of the power vector either hits zero or decreases by 1
V p

max,

and so after the V steps of this interval we have pi(τ) = 0,∀i ∈ {1, 2, . . . , n}. By (7.9), we

have

Q(τ) = min{Q(τ − 1) + e(τ)−
n∑
i=1

pi(τ), 0}

= min{Q(τ − 1) + e(τ), 0}

≥min{Q(τ − 1), 0}

=Q(τ − 1)

where the final equality holds because the queue is never positive (see (7.9)). This contra-

dicts (7.30).

Both cases lead to contradictions. Thus, Q(t) ≥ −Ql for all t > V .

7.3.4 Energy Availability Guarantee

To implement the power decisions of Algorithm 7.1 for the physical battery system E(t) from

equations (7.2)-(7.3), we must ensure the energy availability constraint (7.2) holds on each slot.

The next theorem shows that Algorithm 7.1 ensures the constraint (7.2) always holds as long as

the battery capacity satisfies Emax ≥ Ql + pmax and the initial energy satisfies E(0) = Emax. It
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also explains that Q(t) used in Algorithm 7.1 is a shifted version of the physical battery backlog

E(t).

Theorem 7.3. If E(0) = Emax ≥ Ql + pmax, where Ql is the constant defined in Theorem 7.2,

then Algorithm 7.1 ensures the energy availability constraint (7.2) on each slot t ∈ {1, 2, . . .}.

Moreover

E(t) = Q(t) + Emax,∀t ∈ {0, 1, 2, . . .}. (7.31)

Proof. Note that to show the energy availability constraint
∑n
i=1 pi(t) ≤ E(t− 1),∀t ∈ {1, 2, . . .}

is equivalent to show

n∑
i=1

pi(t+ 1) ≤ E(t),∀t ∈ {0, 1, 2, . . .}. (7.32)

This lemma can be proven by inductions.

Note that E(0) = Emax and Q(0) = 0. It is immediate that (7.31) holds for t = 0. Since

E(0) = Emax ≥ pmax and
∑n
i=1 pi(1) ≤ pmax, equation (7.32) also holds for t = 0. Assume (7.32)

and (7.31) hold for t = t0 and consider t = t0 + 1. By virtual queue dynamic (7.9), we have

Q(t0 + 1) = min{Q(t0) + e(t0 + 1)−
n∑
i=1

pi(t0 + 1), 0}

Adding Emax on both sides yields

Q(t0 + 1) + Emax

= min{Q(t0) + e(t0 + 1)−
n∑
i=1

pi(t0 + 1) + Emax, Emax}

(a)= min{E(t0) + e(t0 + 1)−
n∑
i=1

pi(t0 + 1), Emax}

(b)=E(t0 + 1)

where (a) follows from the induction hypothesis E(t0) = Q(t0) + Emax and (b) follows from the

energy queue dynamic (7.3). Thus, (7.31) holds for t = t0 + 1.
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Now observe

E(t0 + 1) = Q(t0 + 1) + Emax

(a)
≥ Emax −Ql

≥ pmax

(b)
≥

n∑
i=1

pi(t0 + 2)

where (a) follows from the fact that Q(t) ≥ −Ql,∀t ∈ {0, 1, 2, . . .} by Theorem 7.2; (b) holds

since sum power is never more than pmax. Thus, (7.32) holds for t = t0 + 1.

Thus, this theorem follows by induction.

7.3.5 Utility Optimality and Battery Capacity Tradeoff

By Theorem 7.1, Algorithm 7.1 is guaranteed to attain a utility within an O(1/V ) distance

to the optimal utility U∗. To obtain an O(ε)-optimal utility, we can choose V = d1/εe, where

dxe represents the smallest integer no less than x. In this case, Ql defined in (7.3) is order O(V ).

By Theorem 7.3,we need the battery capacity Emax ≥ Ql + pmax = O(V ) = O(1/ε) to satisfy

the energy availability constraint. Thus, there is a [O(ε), O(1/ε)] tradeoff between the utility

optimality and the required battery capacity.

7.3.6 Extensions

Thus far, we have assumed that ω(t) is known with one slot delay, i.e., at the end of slot t, or

equivalently, at the beginning of slot t+ 1. In fact, if ω(t) is observed with t0 slot delay (at the

end of slot t + t0 − 1), we can modify Algorithm 7.1 by initializing p(τ) = 0, τ ∈ {1, 2, . . . , t0}

and updating Q(t− t0 + 1) = min{Q(t− t0) + e(t− t0 + 1)−
∑n
i=1 pi(t− t0 + 1), 0}, p(t+ 1) =

ProjP{p(t− t0 + 1) + 1
V ∇pU(p(t− t0 + 1);ω(t− t0 + 1)) + 1

V 2Q(t− t0 + 1)1} at the end of each

slot t ∈ {t0, t0 + 1, . . .}. By extending the analysis in this section (from a t0 = 1 version to a

general t0 version), a similar [O(ε), O(1/ε)] tradeoff can be established.
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7.4 Numerical Experiment

In this section, we consider an energy harvesting wireless device transmitting over 2 subbands

whose channel strength is represented by s1(t) and s2(t), respectively. Our goal is to decide the

power action p(t) to maximize the utility/throughput given by (7.1). Let P = {p : p1 + p2 ≤

5, p1 ≥ 0, p2 ≥ 0}. Let harvested energy e(t) satisfy the uniform distribution over interval [0, 3].

Assume both subbands are Rayleigh fading channels where s1(t) follows the Rayleigh distribution

with parameter σ = 0.5 truncated in the range [0, 4] and s2(t) follows the Rayleigh distribution

with parameter σ = 1 truncated in the range [0, 4].

By assuming the perfect knowledge of distributions, we solve the deterministic problem (7.4)-

(7.6) and obtain U∗ = 1.0391. To verify the performance proven in Theorems 7.1 and 7.3, we

run Algorithm 7.1 with V ∈ {5, 10, 20, 40} and E(0) = Emax = Ql + pmax over 1000 independent

simulation runs. In all the simulation runs, the power actions yielded by Algorithm 7.1 always

satisfy the energy availability constraints. We also plot the averaged utility performance in Figure

7.1, where the y-axis is the running average of expected utility. Figure 7.1 shows that the utility

performance can approach U∗ by using larger V parameter.
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Figure 7.1: Utility performance (averaged over 1000 independent simulation runs) of Algorithm
7.1 with E(0) = Emax = Ql + pmax for different V .

In practice, it is possible that for a given V , the battery capacity Emax = Ql + pmax required

in Theorem 7.3 is too large. If we run Algorithm 7.1 with small capacity batteries such that
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∑n
i=1 pi(t + 1) ≥ E(t) for certain slot t, a reasonable choice is to scale down p(t + 1) by (7.11)

and use p̂(t + 1) as the power action. Now, we run simulations by fixing V = 40 in Algorithm

7.1 and test its performance with small capacity batteries. By Theorem 7.3, the required battery

capacity to ensure energy availability is Emax = 685. In our simulations, we choose small Emax ∈

{10, 20, 50} and E(0) = 0, i.e., the battery is initially empty. If p(t + 1) from Algorithm 7.1

violates energy availability constraint (7.2), we use p̂(t+ 1) from (7.11) as the true power action

that is enforced to satisfy (7.2) and update the energy backlog by E(t + 1) = min{E(t) −∑n
i=1 p̂i(t+ 1) + e(t+ 1), Emax}. Figure 7.2 plots the utility performance of Algorithm 7.1 in this

practical scenario and shows that even with small capacity batteries, Algorithm 7.1 still achieves

a utility close to U∗. This further demonstrates the superior performance of our algorithm.
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Figure 7.2: Utility performance (averaged over 1000 independent simulation runs) of Algorithm
7.1 with V = 40 for different Emax.

7.5 Chapter Summary

This chapter develops a new learning aided power control algorithm for energy harvesting

devices, without requiring the current system state or the distribution information. This new

algorithm can achieve an O(ε) optimal utility by using a battery with capacity O(1/ε).
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Chapter 8

Dynamic Transmit Covariance Design in MIMO Fading Sys-

tems With Unknown Channel Distributions and Inaccurate

Channel State Information

During the past decade, the multiple-input multiple-output (MIMO) technique has been

recognized as one of the most important techniques for increasing the capabilities of wireless

communication systems. In the wireless fading channel, where the channel changes over time, the

problem of transmit covariance design is to determine the transmit covariance of the transmitter

to maximize the capacity subject to both long term and short term power constraints. It is

often reasonable to assume that instantaneous channel state information (CSI) is available at the

receiver through training. Most works on transmit covariance design in MIMO fading systems also

assume that statistical information about the channel state, referred to as channel distribution

information (CDI), is available at the transmitter. Under the assumption of perfect channel

state information at the receiver (CSIR) and perfect channel distribution information at the

transmitter (CDIT), prior work on transmit covariance design in point-to-point MIMO fading

systems can be grouped into two categories:

• Instantaneous channel state information at the transmitter: In the ideal case of perfect1

CSIT, optimal transmit covariance design for MIMO links with both long term and short

term power constraints is a water-filling solution [Tel99]. Computation of water-levels

involves a one-dimensional integral equation for fading channels with independent and

identically distributed (i.i.d.) Rayleigh entries or a multi-dimensional integral equation for

1In this paper, CSIT is said to be “perfect” if it is both instantaneous (i.e., has no delay) and accurate.
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general fading channels [JP03]. The involved multi-dimensional integration equation is in

general intractable and can only be approximately solved with numerical algorithms with

huge complexity. MIMO fading systems with dynamic CSIT is considered in [VP07].

• No CSIT: If CSIT is unavailable, the optimal transmit covariance design is in general still

open. If the channel matrix has i.i.d. Rayleigh entries, then the optimal transmit covariance

is known to be the identity transmit covariance scaled to satisfy the power constraint [Tel99].

The optimal transmit covariance in MIMO fading channels with correlated Rayleigh entries

is obtained in [JVG01, JB04]. The transmit covariance design in MIMO fading channels is

further considered in [VLS05] under a more general channel correlation model.

These prior works rely on accurate CDIT and/or on restrictive channel distribution assump-

tions. It can be difficult to accurately estimate the CDI, especially when there are complicated

correlations between entries in the channel matrix. Solutions that base decisions on CDIT can be

suboptimal due to mismatches. Work [PCL03] considers MIMO fading channels without CDIT

and aims to find the transmit covariance to maximize the worst channel capacity using a game

theoretical approach rather than solve the original ergodic capacity maximization problem. In

contrast, the current chapter proposes algorithms that do not require prior knowledge of the

channel distribution, yet perform arbitrarily close to the optimal value of the ergodic capacity

maximization that can be achieved by having CDI knowledge. The results in this chapter are

originally developed in our papers [YN16a, YN17a].

In time-division duplex (TDD) systems with symmetric wireless channels, the CSI can be

measured directly at the transmitter using the unlink channel. However, in frequency-division

duplex (FDD) scenarios and other scenarios without channel symmetry, the CSI must be mea-

sured at the receiver, quantized, and reported back to the transmitter with a time delay [TV05].

Depending on the measurement delay in TDD systems or the overall channel acquisition delay

in FDD systems, the CSIT can be instantaneous or delayed. In general, the CSIT can also be

inaccurate due to the measurement, quantization or feedback error. This paper first considers

the instantaneous (but possibly inaccurate) CSIT case and develops an algorithm that does not

require CDIT. This algorithm can achieve a utility within O(δ) of the best utility that can be

achieved with CDIT and perfect CSIT, where δ is the inaccuracy measure of CSIT. This further

implies that accurate instantaneous CSIT (with δ = 0) is almost as good as having both CDIT

and accurate instantaneous CSIT.
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Next, the case of delayed (but possibly inaccurate) CSIT is considered and a fundamentally

different algorithm is developed for that case. The latter algorithm again does not use CDIT,

but achieves a utility within O(δ) of the best utility that can be achieved even with CDIT, where

δ is the inaccuracy measure of CSIT. This further implies that delayed but accurate CSIT (with

δ = 0) is almost as good as having CDIT.

Related Work and Our Contributions

In the instantaneous (and possibly inaccurate) CSIT case, the proposed dynamic transmit

covariance design extends the general drift-plus-penalty algorithm for stochastic network opti-

mization [Nee03, Nee10] to deal with inaccurate observations of system states. In this MIMO

context, the current chapter shows the algorithm provides strong sample path convergence time

guarantees. The dynamic of the drift-plus-penalty algorithm is similar to that of the stochastic

dual subgradient algorithm, although the optimality analysis and performance bounds are dif-

ferent. The stochastic dual subgradient algorithm has been applied to optimization in wireless

fading channels without CDI, e.g., downlink power scheduling in single antenna cellular systems

[LMS06], power allocation in single antenna broadcast OFDM channels [Rib10], scheduling and

resource allocation in random access channels [HR11], transmit covariance design in multi-carrier

MIMO networks [LHSS09].

In the delayed (and possibly inaccurate) CSIT case, the situation is similar to the scenario of

online convex optimization [Zin03] except that we are unable to observe true history reward func-

tions due to channel error. The proposed dynamic power allocation policy can be viewed as an

online algorithm with inaccurate history information. The current chapter analyzes the perfor-

mance loss due to CSIT inaccuracy and provides strong sample path convergence time guarantees

of this algorithm. The analysis in this MIMO context can be extended to more general online con-

vex optimization with inaccurate history information. Online optimization has been applied in

power allocation in wireless fading channels without CDIT and with delayed and accurate CSIT,

e.g., suboptimal online power allocation in single antenna single user channels [BLEM+09], sub-

optimal online power allocation in single antenna multiple user channels [BLEM+10]. Online

transmit covariance design in MIMO systems with inaccurate CSIT is also considered in recent

works [SMT15, MM16, MB16]. The online algorithms in [SMT15, MM16, MB16] follow either

a matrix exponential learning scheme or an online projected gradient scheme. However, all of
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these works assume that the imperfect CSIT is unbiased, i.e., expected CSIT error conditional on

observed previous CSIT is zero. This assumption of imperfect CSIT is suitable when modeling

the CSIT measurement error or feedback error but cannot capture the CSI quantization error.

In contrast, the current chapter only requires that CSIT error is bounded.

8.1 Signal Model and Problem Formulation

8.1.1 Signal Model

Consider a point-to-point MIMO block fading channel with NT transmit antennas and NR

receive antennas. In a block fading channel model, the channel matrix remains constant at

each block and changes from block to block in an independent and identically distributed (i.i.d.)

manner. Throughout this chapter, each block is also called a slot and is assigned an index

t ∈ {0, 1, 2, . . .}. At each slot t, the received signal [Tel99] is described by

y(t) = H(t)x(t) + z(t)

where t ∈ {0, 1, 2, . . .} is the time index, z(t) ∈ CNR is the additive noise vector, x(t) ∈ CNT

is the transmitted signal vector, H(t) ∈ CNR×NT is the channel matrix, and y(t) ∈ CNR is the

received signal vector. Assume that noise vectors z(t) are i.i.d. normalized circularly symmetric

complex Gaussian random vectors with E[z(t)zH(t)] = INR , where INR denotes an NR × NR

identity matrix.2 Note that channel matrices H(t) are i.i.d. across slot t and have a fixed but

arbitrary probability distribution, possibly one with correlations between entries of the matrix.

Assume there is a constant B > 0 such that ‖H‖F ≤ B with probability one, where ‖·‖F denotes

the Frobenius norm.3 Recall that the Frobenius norm of a complex m× n matrix A = (aij) is

‖A‖F =
√∑m

i=1
∑n
j=1 |aij |2 =

√
tr(AHA) (8.1)

where AH is the Hermitian transpose of A and tr(·) is the trace operator.

2If the size of the identity matrix is clear, we often simply write I.

3A bounded Frobenius norm always holds in the physical world because the channel attenuates the signal.
Particular models such as Rayleigh and Rician fading violate this assumption in order to have simpler distribution
functions [BA03].
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Assume that the receiver can track H(t) exactly at each slot t and hence has perfect CSIR. In

practice, CSIR is obtained by sending designed training sequences, also known as pilot sequences,

which are commonly known to both the transmitter and the receiver, such that the channel

matrix H(t) can be estimated at the receiver [TV05]. CSIT is obtained in different ways in

different wireless systems. In TDD systems, the transmitter exploits channel reciprocity and

use the measured uplink channel as approximated CSIT. In FDD systems, the receiver creates a

quantized version of CSI, which is a function of H(t), and reports back to the transmitter after

a certain amount of delay. In general, there are two possibilities of CSIT availabilities:

• Instantaneous CSIT Case: In TDD systems or FDD systems where the measurement,

quantization and feedback delays are negligible with respect to the channel coherence time,

an approximate version H̃(t) for the true channel H(t) is known at the transmitter at each

time slot t.

• Delayed CSIT Case: In FDD systems with a large CSIT acquisition delay, the transmitter

only knows H̃(t − 1), which is an approximate version of channel H(t − 1), and does not

know H(t) at each time slot t.4

In both cases, we assume the CSIT inaccuracy is bounded, i.e., there exists δ > 0 such that

‖H̃(t)−H(t)‖F ≤ δ for all t.

8.1.2 Problem Formulation

At each slot t, if the channel matrix is H(t) and the transmit covariance is Q(t), then the

MIMO capacity is given by [Tel99]:

log det(I + H(t)Q(t)HH(t))

4In general, the dynamic transmit covariance design developed in this chapter can be extended to deal with
arbitrary CSIT acquisition delay as discussed in Section 8.3.3. For the simplicity of presentations, we assume the
CSIT acquisition delay is always one slot in this chapter.
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where det(·) denotes the determinant operator of matrices. The (long term) average capacity5

of the MIMO block fading channel [Gol05] is given by

EH
[

log det(I + HQHH)
]

where Q can adapt to H when CSIT is available and is a constant matrix when CSIT is unavail-

able. Consider two types of power constraints at the transmitter: A long term average power

constraint EH[tr(Q)] ≤ P̄ and a short term power constraint tr(Q) ≤ P enforced at each slot.

The long term constraint arises from battery or energy limitations while the short term constraint

is often due to hardware or regulation limitations.

If CSIT is available, the problem is to choose Q as a (possibly random) function of the

observed H to maximize the (long term) average capacity subject to both power constraints:

max
Q(H)

EH
[

log det(I + HQ(H)HH)
]

(8.2)

s.t. EH[tr(Q(H))] ≤ P̄ , (8.3)

Q(H) ∈ Q,∀H, (8.4)

where Q is a set that enforces the short term power constraint:

Q =
{
Q ∈ SNT+ : tr(Q) ≤ P

}
(8.5)

where SNT+ denotes the NT × NT positive semidefinite matrix space. To avoid trivialities, we

assume that P ≥ P̄ . In (8.2)-(8.4), we use notation Q(H) to emphasize that Q can depend on

H, i.e., adapt to channel realizations. Under the long term power constraint, the optimal power

allocation should be opportunistic, i.e., use more power over good channel realizations and less

5The expression EH
[

log det(I + HQHH)
]

is also known as the ergodic capacity. In fast fading channels where
the channel coherence time is smaller than the codeword length, ergodic capacity can be attained if each codeword
spans across sufficiently many channel blocks. In slow fading channels where the channel coherence time is larger
than the codeword length, ergodic capacity can be attained by adapting both transmit covariances and data
rates to the CSIT of each channel block (see [LK06] for related discussions). In slow fading channels, the ergodic
capacity is essentially the long term average capacity since it is asymptotically equal to the average capacity of
each channel block (by the law of large numbers). Note that another concept “outage capacity” is sometimes
considered for slow fading channels when there is no rate adaptation and the data rate is constant regardless of
channel realizations (In this case, the data rate can be larger than the block capacity for poor channel realizations
such that “outage” occurs). In this chapter, we have both transmit covariance design and rate adaptation; and
hence consider “ergodic capacity”.
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power over poor channel realizations. It is known that opportunistic power allocation provides a

significant capacity gain in low SNR regimes and a marginal gain in high SNR regimes compared

with fixed power allocation [ÖLR14].

Without CSIT, the optimal transmit covariance design problem is different, given as follows.

max
Q

EH
[

log det(I + HQHH)
]

(8.6)

s.t. EH[tr(Q)] ≤ P̄ , (8.7)

Q ∈ Q, (8.8)

where set Q is defined in (8.5). Again assume P ≥ P̄ . Since the instantaneous CSIT is unavail-

able, the transmit covariance cannot adapt to H. By the convexity of this problem and Jensen’s

inequality, a randomized Q is useless. It suffices to consider a constant Q. Since P ≥ P̄ , this

implies the problem is equivalent to a problem that removes the constraint (8.7) and that changes

the constraint (8.8) to:

Q ∈ Q̃ = {Q ∈ SNT+ : tr(Q) ≤ P̄}

The problems (8.2)-(8.4) and (8.6)-(8.8) are fundamentally different and have different op-

timal objective function values. Most existing works [JP03, JVG01, JB04, VLS05] on MIMO

fading channels can be interpreted as solutions to either of the above two stochastic optimization

under specific channel distributions. Moreover, those works require perfect channel distribution

information (CDI). In this chapter, the above two stochastic optimization problems are solved

via dynamic algorithms that works for arbitrary channel distributions and does not require any

CDI. The algorithms are different for the two cases, and use different techniques.

8.2 Instantaneous CSIT Case

Consider the case of instantaneous but inaccurate CSIT where at each slot t ∈ {0, 1, 2, . . .},

channel H(t) is unknown and only an approximate version H̃(t) is known. In this case, the

problem (8.2)-(8.4) can be interpreted as a stochastic optimization problem where channel H(t)

is the instantaneous system state and transmit covariance Q(t) is the control action at each slot

t. This is similar to the scenario of stochastic optimization with i.i.d. time-varying system states,

where the decision maker chooses an action based on the observed instantaneous system state
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at each slot such that time average expected utility is maximized and the time average expected

constraints are guaranteed. The drift-plus-penalty (DPP) technique reviewed in Chapter 1 is a

mature framework to solve stochastic optimization without distribution information of system

states.

This is different from the conventional stochastic optimization considered by the DPP tech-

nique because at each slot t, the true “system state” H(t) is unavailable and only an approximate

version H̃(t) is known. Nevertheless, a modified version of the standard DPP algorithm is devel-

oped in Algorithm 8.1.

Algorithm 8.1 Dynamic Transmit Covariance Design with Instantaneous CSIT
Let V > 0 be a constant parameter and Z(0) = 0. At each time t ∈ {0, 1, 2, . . .}, observe H̃(t)
and Z(t). Then do the following:

• Choose transmit covariance Q(t) ∈ Q to solve :

max
Q∈Q
{V log det(I + H̃(t)QH̃H(t)− Z(t)tr(Q)}.

• Update Z(t+ 1) = max{0, Z(t) + tr(Q(t))− P̄}.

In Algorithm 8.1, a virtual queue Z(t) with Z(0) = 0 and with update Z(t+1) = max{0, Z(t)+

tr(Q(t))− P̄} is introduced to enforce the average power constraint (8.3) and can be viewed as

the “queue backlog” of long term power constraint violations since it increases at slot t if the

power consumption at slot t is larger than P̄ and decreases otherwise. The next Lemma relates

Z(t) and the average power consumption.

Lemma 8.1. Under Algorithm 8.1, we have

1
t

t−1∑
τ=0

tr(Q(τ)) ≤ P̄ + Z(t)
t
, ∀t > 0.

Proof. Fix t > 0. For all slots τ ∈ {0, 1, . . . , t − 1}, the update for Z(τ) satisfies Z(τ + 1) =

max{0, Z(τ) + tr(Q(τ)) − P̄} ≥ Z(τ) + tr(Q(τ)) − P̄ . Rearranging terms gives: tr(Q(τ)) ≤

P̄ + Z(τ + 1)− Z(τ). Summing over τ ∈ {0, . . . , t− 1} and dividing by factor t gives:

1
t

t−1∑
τ=0

tr(Q(τ)) ≤ P̄ + Z(t)− Z(0)
t

(a)= P̄ + Z(t)
t

where (a) follows from Z(t) = 0.
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For each slot t ∈ {0, 1, 2, . . .} define the reward R(t):

R(t) = log det(I + H(t)Q(t)HH(t)). (8.9)

Define Ropt as the optimal average utility in (8.2). The value Ropt depends on the (unknown)

distribution for H(t). Fix ε > 0 and define V = max{P̄ 2, (P − P̄ )2}/(2ε). If H̃(t) = H(t),∀t,

regardless of the distribution of H(t), the standard DPP technique [Nee10] ensures:

1
t

t−1∑
τ=0

E[R(τ)] ≥ Ropt − ε, ∀t > 0 (8.10)

lim
t→∞

1
t

t−1∑
τ=0

E[tr(Q(τ))] ≤ P̄ (8.11)

This holds for arbitrarily small values of ε > 0, and so the algorithm comes arbitrarily close to

optimality. However, the above is true only if H̃(t) = H(t),∀t.

The development and analysis of Algorithm 8.1 extends the DPP technique in two aspects:

• At each slot t, the standard drift-plus-penalty technique requires accurate “system state”

H(t) and cannot deal with inaccurate “system state” H̃(t). In contrast, Algorithm 8.1 works

with H̃(t). The next subsections show that the performance of Algorithm 8.1 degrades

linearly with respect to CSIT inaccuracy measure δ. If δ = 0, then (8.10) is recovered.

• Inequality (8.11) only treats infinite horizon time average expected power. The next sub-

sections show that Algorithm 8.1 can guarantee

1
t

t−1∑
τ=0

tr(Q(τ)) ≤ P̄ + (B + δ)2 max{P̄ 2, (P − P̄ )2}+ 2ε(P − P̄ )
2εt

for all t > 0. This sample path guarantee on average power consumption is much stronger

than (8.11). In fact, (8.11) is recovered by taking expectation and taking limit t→∞.

8.2.1 Transmit Covariance Update in Algorithm 8.1

This subsection shows the Q(t) selection in Algorithm 8.1 has an (almost) closed-form solu-

tion. The convex program involved in the transmit covariance update of Algorithm 8.1 is in the
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form

max
Q

log det(I + HQHH)− Z

V
tr(Q) (8.12)

s.t. tr(Q) ≤ P (8.13)

Q ∈ SNT+ (8.14)

This convex program is similar to the conventional problem of transmit covariance design with

a deterministic channel H, except that the objective (8.12) has an additional penalty term

−Z
V tr(Q). It is well known that, without this penalty term, the solution is to diagonalize the

channel matrix and allocate power over eigen-modes according to a water-filling technique [Tel99].

The next lemma summarizes that the optimal solution to the problem (8.12)-(8.14) has a similar

structure.

Lemma 8.2. Consider singular value decomposition (SVD) HHH = UHΣU, where U is a

unitary matrix and Σ is a diagonal matrix with non-negative entries σ1, . . . , σNT . Then the

optimal solution to (8.12)-(8.14) is given by Q∗ = UHΘ∗U, where Θ∗ is a diagonal matrix with

entries θ∗1 , . . . , θ∗NT given by:

θ∗i = max
{

0, 1
µ∗ + Z/V

− 1
σi

}
, ∀i ∈ {1, . . . , NT },

where µ∗ is chosen such that
∑NT
i=1 θ

∗
i ≤ P , µ∗ ≥ 0 and µ∗

(∑NT
i=1 θ

∗
i −P

)
= 0. The exact µ∗ can

be determined using Algorithm 8.2 with complexity O(NT logNT ).

Proof. The proof is a simple extension of the classical proof for the optimal transmit covariance

in deterministic MIMO channels, e.g. Section 3.2 in [Tel99], to deal with the additional penalty

term −Z
V tr(Q). See Section 8.7.2 for a complete proof.

The complexity of Algorithm 8.2 is dominated by the sorting of all σi in step (2). Recall

that the water-filling solution of power allocation in multiple parallel channels can also be found

by an exact algorithm (see Section 6 in [PL03]), which is similar to Algorithm 8.2. The main

difference is that Algorithm 8.2 has a first step to verify if µ∗ = 0. This is because unlike the

power allocation in multiple parallel channels, where the optimal solution always uses full power,

the optimal solution to the problem (8.12)-(8.14) may not use full power for large Z due to the
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Algorithm 8.2 Algorithm to Solve Problem (8.12)-(8.14)

1. Check if
∑NT
i=1 max{0, 1

Z/V −
1
σi
} ≤ P holds. If yes, let µ∗ = 0 and θ∗i = max{0, 1

Z/V −
1
σi
},∀i ∈ {1, 2, . . . , NT } and terminate the algorithm; else, continue to the next step.

2. Sort all σi,∈ {1, 2, . . . , NT } in a decreasing order π such that σπ(1) ≥ σπ(2) ≥ · · · ≥ σπ(NT ).
Define S0 = 0.

3. For i = 1 to NT

• Let Si = Si−1 + 1
σπ(i)

. Let µ∗ = i
Si+P −

Z
V .

• If µ∗ ≥ 0, 1
µ∗+Z/V −

1
σπ(i)

> 0 and 1
µ∗+Z/V −

1
σπ(i+1)

≤ 0, then terminate the loop; else,
continue to the next iteration in the loop.

4. Let θ∗i = max
{

0, 1
µ∗+Z/V −

1
σi

}
,∀i ∈ {1, 2, . . . , NT } and terminate the algorithm.

penalty term −Z
V tr(Q) in objective (8.12).

8.2.2 Performance of Algorithm 8.1

Define a Lyapunov function L(t) = 1
2Z

2(t) and its corresponding Lyapunov drift ∆(t) =

L(t+ 1)−L(t). The expression −∆(t) +V R(t) is called the DPP expression. The analysis of the

standard drift-plus-penalty (DPP) algorithm with accurate “system states” relies on a bound of

the DPP expression in terms of Ropt [Nee10]. The performance analysis of Algorithm 8.1, which

can be viewed as a DPP algorithm based on inaccurate “system states”, requires a new bound

of the DPP expression in Lemma 8.3 and a new deterministic bound of virtual queue Z(t) in

Lemma 8.4.

Lemma 8.3. Under Algorithm 8.1, we have

−E[∆(t)] + V E[R(t)] ≥ V Ropt − 1
2 max{P̄ 2, (P − P̄ )2} − 2V P

√
NT (2B + δ)δ,

where B, δ,NT , P and P̄ are defined in Section 8.1.1; and Ropt is the optimal average utility in

the problem (8.2)-(8.4).

Proof. See Section 8.7.3.

Lemma 8.4. Under Algorithm 8.1, we have Z(t) ≤ V (B + δ)2 + (P − P̄ ),∀t > 0, where B, δ, P

and P̄ are defined in Section 8.1.1.
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Proof. We first show that if Z(t) ≥ V (B + δ)2, then Algorithm 8.1 chooses Q(t) = 0. Consider

Z(t) ≥ V (B + δ)2. Let SVD H̃H(t)H̃(t) = UHΣU, where diagonal matrix Σ has non-negative

diagonal entries σ1, . . . , σNT . Note that ∀i ∈ {1, 2, . . . , NT }, σi
(a)
≤ tr(H̃H(t)H̃(t)) (b)= ‖H̃(t)‖2F ≤

(‖H(t)‖F + ‖H̃(t)−H(t)‖F )2 ≤ (B + δ)2 where (a) follows from tr(H̃H(t)H̃(t)) =
∑NT
i=1 σi; and

(b) follows from the definition of Frobenius norm. By Lemma 8.2, Q(t) = UHΘ∗U, where Θ∗ is

diagonal with entries θ∗1 , . . . , θ∗NT given by θ∗i = max
{

0, 1
µ∗+Z(t)/V −

1
σi

}
, where µ∗ ≥ 0. Since

σi ≤ (B + δ)2,∀i ∈ {1, 2, . . . , NT }, it follows that if Z(t) ≥ V (B + δ)2, then 1
µ+Z(t)/V −

1
σi
≤ 0

for all µ ≥ 0 and hence θ∗i = 0,∀i ∈ {1, 2, . . . , NT }. This implies that Algorithm 8.1 chooses

Q(t) = 0 by Lemma 8.2, which further implies that Z(t + 1) ≤ Z(t) by the update equation of

Z(t+ 1).

On the other hand, if Z(t) ≤ V (B + δ)2, then Z(t + 1) is at most V (B + δ)2 + (P − P̄ ) by

the update equation of Z(t+ 1) and the short term power constraint tr(Q(t)) ≤ P .

The next theorem summarizes the performance of Algorithm 8.1 and follows directly from

Lemma 8.3 and Lemma 8.4.

Theorem 8.1. Fix ε > 0 and choose V = max{P̄ 2,(P−P̄ )2}
2ε in Algorithm 8.1, then for all t > 0:

1
t

t−1∑
τ=0

E[R(τ)] ≥ Ropt − ε− φ(δ),

1
t

t−1∑
τ=0

tr(Q(τ)) ≤ P̄ + (B + δ)2 max{P̄ 2, (P − P̄ )2}+ 2ε(P − P̄ )
2εt ,

where φ(δ) = 2P
√
NT (2B + δ)δ satisfying φ(δ)→ 0 as δ → 0, i.e., φ(δ) ∈ O(δ); and B, δ,NT , P

and P̄ are defined in Section 8.1.1. In particular, the average expected utility is within ε + φ(δ)

of Ropt and the sample path time average power is within ε of its required constraint P̄ whenever

t ≥ Ω( 1
ε2 ).

Proof.

Proof of the first inequality: Fix t > 0. For all slots τ ∈ {0, 1, . . . , t − 1}, Lemma 8.3

guarantees that E[R(τ)] ≥ Ropt + 1
V E[∆(τ)]− 1

2V max{P̄ 2, (P − P̄ )2} − 2P
√
NT (2B + δ)δ.
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Summing over τ ∈ {0, . . . , t− 1} and dividing by t gives:

1
t

t−1∑
τ=0

E[R(τ)]

≥Ropt + 1
V t

t−1∑
τ=0

E[∆(τ)]− 1
2V max{P̄ 2, (P − P̄ )2} − 2P

√
NT (2B + δ)δ

(a)=Ropt + 1
2V t

(
[E[Z2(t)]− E[Z2(0)]

)
− 1

2V max{P̄ 2, (P − P̄ )2} − 2P
√
NT (2B + δ)δ

(b)
≥Ropt − 1

2V max{P̄ 2, (P − P̄ )2} − 2P
√
NT (2B + δ)δ

(c)=Ropt − ε− 2P
√
NT (2B + δ)δ

where (a) follows from the definition that ∆(t) = 1
2Z

2(t + 1) − 1
2Z

2(t) and by simplifying the

telescoping sum
∑t−1
τ=0 E[∆(τ)]; (b) follows from Z(0) = 0 and Z(t) ≥ 0; and (c) follows by

substituting V = 1
2ε max{P̄ 2, (P − P̄ )2}.

Proof of the second inequality: Fix t > 0. By Lemma 8.1, we have

1
t

t−1∑
τ=0

tr(Q(τ)) ≤ P̄ + Z(t)
t

(a)= P̄ + (B + δ)2 max{P̄ 2, (P − P̄ )2}+ 2ε(P − P̄ )
2εt

where (a) follows from Lemma 8.4 and V = 1
2ε max{P̄ 2, (P − P̄ )2}.

Theorem 8.1 provides a sample path guarantee on average power, which is much stronger than

the guarantee in (8.11). It also shows that convergence time to reach an ε + O(δ) approximate

solution is O( 1
ε2 ).

8.2.3 Discussion

It is shown that Z(t) in the DPP algorithm is “attracted” to an optimal Lagrangian dual

multiplier of an unknown deterministic convex program in [HMNK13]. In fact, if we have a

good guess of this Lagrangian multiplier and initialize Z(0) close to it, then Algorithm 8.1 has

faster convergence. In addition, the performance bounds derived in Theorem 8.1 are not tightest

possible. The proof of Lemma 8.3 involves many relaxations to derive bounds that are simple but

can still enable Theorem 8.1 to show the effect of missing CDIT can be made arbitrarily small

by choosing the algorithm parameter V properly and the performance degradation of CSIT

211



inaccuracy scales linearly with respect to δ. In fact, tighter but more complicated bounds are

possible by refining the proof of Lemma 8.3.

A heuristic approach to solve the problem (8.2)-(8.4) without channel distribution information

is to sample the channel for a large number of realizations and use the empirical distribution as

an approximate distribution to solve the problem (8.2)-(8.4) directly. This approach has three

drawbacks:

• For a scalar channel, the empirical distribution based on O( 1
ε2 ) realizations is an ε ap-

proximation to the true channel distribution with high probability by the Dvoretzky-

Kiefer-Wolfowitz inequality [Ser09]. However, for an NR ×NT MIMO channel, the multi-

dimensional empirical distribution requiresO(N
2
TN

2
R

ε2 ) samples to achieve an ε approximation

of the true channel distribution [Dev77]. Thus, this approach does not scale well with the

number of antennas.

• Even if the empirical distribution is accurate, the complexity of solving the problem (8.2)-

(8.4) based on the empirical distribution is huge if the channel is from a continuous distri-

bution. This is known as the curse of dimensionality of empirical methods for stochastic

optimization due to the large sample size. In contrast, the complexity of Algorithm 8.1 is

independent of the sample space.

• This approach is an offline method such that a large number of slots are wasted during the

channel sampling process. In contrast, Algorithm 8.1 is an online method with performance

guarantees for all slots.

Note that even if we assume the distribution of H(t) is known and Q∗(H) can be computed

by solving the problem (8.2)-(8.4), the optimal policy Q∗(H) in general cannot achieve Ropt and

can violate the long term power constraints when only the approximate versions H̃(t) are known.

For example, consider a MIMO fading system with two possible channel realizations H1 and H2

with equal probabilities. Suppose the average power constraint is P̄ = 5 and the optimal policy

Q∗(H) satisfies tr(Q∗(H1)) = 8 and tr(Q∗(H2)) = 2. However, if H̃1 6= H1 and H̃2 6= H2, it can

be hard to decide the transmit covariance based on H̃1 or H̃2 since the associations between H̃1

and H1 (or between H̃2 and H2) are unknown. In an extreme case when H̃1 = H̃2 = H1, if the

transmitter uses Q∗(H̃(t)) at each slot t, the average power constraint is violated and hence the

transmit covariance scheme is infeasible. In contrast, Algorithm 8.1 can attain the performance
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in Theorem 8.1 with inaccurate instantaneous CSIT and no CDIT.

8.3 Delayed CSIT Case

Consider the case of delayed and inaccurate CSIT. At the beginning of each slot t ∈ {0, 1, 2, . . .},

channel H(t) is unknown and only quantized channels of previous slots H̃(τ), τ ∈ {0, 1, . . . , t−1}

are known. This is similar to the scenario of online optimization where the decision maker selects

x(t) ∈ X at each slot t to maximize an unknown reward function f t(x) based on the information

of previous reward functions fτ (x(τ)), τ ∈ {0, 1, . . . , t − 1}. The goal is to minimize average

regret 1
t maxx∈X

[∑t−1
τ=0 f

τ (x)
]
− 1

t

∑t−1
τ=0 f

τ (x(τ)). The best possible average regret of online

convex optimization with general convex reward functions is O( 1√
t
) [Zin03, HAK07].

The situation in the current chapter is different from conventional online optimization because

at each slot t, the rewards of previous slots, i.e., R(τ) = log det(I + H(τ)Q(τ)HH(τ)), τ ∈

{0, 1, . . . , t−1}, are still unknown due to the fact that the reported channels H̃(τ) are approximate

versions. Nevertheless, an online algorithm without using CDIT is developed in Algorithm 8.3.

Algorithm 8.3 Dynamic Transmit Covariance Design with Delayed CSIT
Let γ > 0 be a constant parameter and Q(0) ∈ Q be arbitrary. At each time t ∈ {1, 2, . . .},
observe H̃(t− 1) and do the following:

• Let D̃(t− 1) = H̃H(t− 1)(INR + H̃(t− 1)Q(t− 1)H̃H(t− 1))−1H̃(t− 1). Choose transmit
covariance

Q(t) = PQ̃
[
Q(t− 1) + γD̃(t− 1)

]
,

where PQ̃[·] is the projection onto convex set Q̃ = {Q ∈ SNT+ : tr(Q) ≤ P̄}.

Define Q∗ ∈ Q̃ as an optimal solution to the problem (8.6)-(8.8), which depends on the

(unknown) distribution for H(t). Define

Ropt(t) = log det(I + H(t)Q∗HH(t))

as the utility at slot t attained by Q∗.

If the channel feedback is accurate, i.e., H̃(t − 1) = H(t − 1),∀t ∈ {1, 2, . . .}, then D̃(t − 1)

is the gradient of R(t − 1) at point Q(t − 1). Fix ε > 0 and take γ = ε. The results in [Zin03]
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ensure that, regardless of the distribution of H(t):

1
t

t−1∑
τ=0

R(τ) ≥ 1
t

t−1∑
τ=0

Ropt(τ)− 2P̄ 2

εt
− NRB

4

2 ε, ∀t > 0 (8.15)

tr(Q(τ)) ≤ P̄ ,∀τ ∈ {0, 1, . . . , t− 1} (8.16)

The next subsections show that the performance of Algorithm 8.3 with inaccurate channels

degrades linearly with respect to channel inaccuracy δ. If δ = 0, then (8.15) and (8.16) are

recovered.

8.3.1 Transmit Covariance Update in Algorithm 8.3

This subsection shows that the Q(t) selection in Algorithm 8.3 has an (almost) closed-form

solution.

The projection operator involved in Algorithm 8.3 by definition is

min 1
2‖Q−X‖2F (8.17)

s.t. tr(Q) ≤ P̄ (8.18)

Q ∈ SNT+ (8.19)

where X = Q(t− 1) + γD̃(t− 1) is a Hermitian matrix at each slot t.

Without constraint tr(Q) ≤ P̄ , the projection of Hermitian matrix X onto the positive

semidefinite cone Sn+ is simply taking the eigenvalue expansion of X and dropping terms asso-

ciated with negative eigenvalues (see Section 8.1.1. in [BV04]). Work [BX05] considered the

projection onto the intersection of the positive semidefinite cone Sn+ and an affine subspace given

by {Q : tr(AiQ) = bi, i ∈ {1, 2, . . . , p}, tr(BjQ) ≤ dj , j ∈ {1, 2, . . . ,m}} and developed the

dual-based iterative numerical algorithm to calculate the projection. The problem (8.17)-(8.19)

is a special case, where the affine subspace is given by tr(Q) ≤ P̄ , of the projection considered in

[BX05]. Instead of solving the problem (8.17)-(8.19) using numerical algorithms, the next lemma

summarizes that the problem (8.17)-(8.19) has an (almost) closed-form solution.

Lemma 8.5. Consider SVD X = UHΣU, where U is a unitary matrix and Σ is a diagonal

matrix with entries σ1, . . . , σNT . Then the optimal solution to the problem (8.17)-(8.19) is given
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by Q∗ = UHΘ∗U, where Θ∗ is a diagonal matrix with entries θ∗1 , . . . , θ∗NT given by,

θ∗i = max{0, σi − µ∗},∀i ∈ {1, 2, . . . , NT },

where µ∗ is chosen such that
∑NT
i=1 θ

∗
i ≤ P̄ , µ∗ ≥ 0 and µ∗

(∑NT
i=1 θ

∗
i − P̄

)
= 0. The exact µ∗ can

be determined using Algorithm 8.4 with complexity O(NT logNT ).

Proof. See Section 8.7.4.

Algorithm 8.4 Algorithm to Solve Problem (8.17)-(8.19)

1. Check if
∑NT
i=1 max{0, σi} ≤ P̄ holds. If yes, let µ∗ = 0 and θ∗i = max{0, σi},∀i ∈

{1, 2, . . . , NT } and terminate the algorithm; else, continue to the next step.

2. Sort all σi,∈ {1, 2, . . . , NT } in a decreasing order π such that σπ(1) ≥ σπ(2) ≥ · · · ≥ σπ(NT ).
Define S0 = 0.

3. For i = 1 to NT

• Let Si = Si−1 + σi. Let µ∗ = Si−P̄
i .

• If µ∗ ≥ 0, σπ(i)− µ∗ > 0 and σπ(i+1)− µ∗ ≤ 0, then terminate the loop; else, continue
to the next iteration in the loop.

4. Let θ∗i = max{0, σi − µ∗},∀i ∈ {1, 2, . . . , NT } and terminate the algorithm.

8.3.2 Performance of Algorithm 8.3

Define D(t − 1) = HH(t − 1)(INR + H(t − 1)Q(t − 1)HH(t − 1))−1H(t − 1), which is the

gradient of R(t−1) at point Q(t−1) and is unknown to the transmitter due to the unavailability

of H(t− 1). The next lemma relates D̃(t− 1) and D(t− 1).

Lemma 8.6. For all slots t ∈ {1, 2, . . .}, we have

1. ‖D(t− 1)‖F ≤
√
NRB

2.

2. ‖D(t−1)−D̃(t−1)‖F ≤ ψ(δ), where ψ(δ) =
(√
NRB+

√
NR(B+δ)+(B+δ)2NRP̄ (2B+δ)

)
δ

satisfying ψ(δ)→ 0 as δ → 0, i.e., ψ(δ) ∈ O(δ).

3. ‖D̃(t− 1)‖F ≤ ψ(δ) +
√
NRB

2

where B, δ,NR, NT , P and P̄ are defined in Section 8.1.1

Proof. See Section 8.7.5.
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The next theorem summarizes the performance of Algorithm 8.3.

Theorem 8.2. Fix ε > 0 and define γ = ε. Under Algorithm 8.3, we have6 for all t > 0:

1
t

t−1∑
τ=0

R(τ) ≥1
t

t−1∑
τ=0

Ropt(τ)− 2P̄ 2

εt
− (ψ(δ) +

√
NRB

2)2

2 ε− 2ψ(δ)P̄

tr(Q(τ)) ≤P̄ ,∀τ ∈ {0, 1, . . . , t− 1}

where ψ(δ) is the constant defined in Lemma 8.6 and B, δ,NR, P and P̄ are defined in Section

8.1.1. In particular, the sample path time average utility is within O(ε) + 2ψ(δ)P̄ of the optimal

average utility for the problem (8.6)-(8.8) whenever t ≥ 1
ε2 .

Proof. The second inequality trivially follows from the fact that Q(t) ∈ Q̃,∀t ∈ {0, 1, . . .}. It

remains to prove the first inequality. This proof extends the regret analysis of conventional online

convex optimization [Zin03] by considering inexact gradient D̃(t− 1).

For all slots τ ∈ {1, 2, . . .}, the transmit covariance update in Algorithm 8.3 satisfies:

‖Q(τ)−Q∗‖2F

=‖PQ̃
[
Q(τ − 1) + γD̃(τ − 1)

]
−Q∗‖2F

(a)
≤‖Q(τ − 1) + γD̃(τ − 1)−Q∗‖2F

=‖Q(τ − 1)−Q∗‖2F + 2γtr
(
D̃H(τ − 1)(Q(τ − 1)−Q∗)

)
+ γ2‖D̃(τ − 1)‖2F

=‖Q(τ − 1)−Q∗‖2F + 2γtr
(
DH(τ − 1)(Q(τ − 1)−Q∗)

)
+ 2γtr

(
(D̃(t− 1)−D(τ − 1))H(Q(τ − 1)−Q∗)

)
+ γ2‖D̃(τ − 1)‖2F ,

where (a) follows from the non-expansive property of projections onto convex sets. Define ∆(t) =

‖Q(t+1)−Q∗‖2F −‖Q(t)−Q∗‖2F . Rearranging terms in the last equation and dividing by factor

2γ implies

tr
(
DH(τ − 1)(Q(τ − 1)−Q∗)

)
≥ 1

2γ∆(τ − 1)− γ

2 ‖D̃(τ − 1)‖2F − tr
(
(D̃(τ − 1)−D(τ − 1))H(Q(τ − 1)−Q∗)

)
(8.20)

6In our conference version [YN16a], the first inequality of this theorem is mistakenly given by 1
t

∑t−1
τ=0R(τ) ≥

1
t

∑t−1
τ=0R

opt(τ)− P̄
εt
− (ψ(δ)+

√
NRB

2)2

2 ε− 2ψ(δ)P̄ .
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Define fτ−1(Q) = log det(I + H(τ − 1)QHH(τ − 1)). By Fact 8.3 in Section 8.7.1, fτ−1(·) is

concave over Q̃ and D(t − 1) = ∇Qf
τ−1(Q(t − 1)). Note that Q∗ ∈ Q̃. By Fact 8.4 in Section

8.7.1, we have

fτ−1(Q(τ − 1))− fτ−1(Q∗) ≥ tr(DH(τ − 1)(Q(τ − 1)−Q∗)) (8.21)

Note that fτ−1(Q(τ − 1)) = R(τ − 1) and fτ−1(Q∗) = Ropt(τ − 1). Combining (8.20) and (8.21)

yields

R(τ − 1)−Ropt(τ − 1)

≥ 1
2γ∆(τ − 1)− γ

2 ‖D̃(τ − 1)‖2F − tr
(
(D̃(τ − 1)−D(τ − 1))H(Q(τ − 1)−Q∗)

)
(a)
≥ 1

2γ∆(τ − 1)− γ

2 ‖D̃(τ − 1)‖2F − ‖D̃(τ − 1)−D(τ − 1)‖F ‖Q(τ − 1)−Q∗‖F

(b)
≥ 1

2γ∆(τ − 1)− γ

2 (ψ(δ) +
√
NRB

2)2 − 2ψ(δ)P̄

where (a) follows from Fact 8.1 in Section 8.7.1 and (b) follows from Lemma 8.6 and the fact

that ‖Q(τ − 1)−Q∗‖F ≤ ‖Q(τ − 1)‖F + ‖Q∗‖F ≤ tr(Q(τ − 1)) + tr(Q∗) ≤ 2P̄ , which is implied

by Fact 8.1, Fact 8.2 in Section 8.7.1 and the fact that Q(τ − 1),Q∗ ∈ Q̃. Replacing τ − 1 with

τ yields for all τ ∈ {0, 1, . . .}

R(τ)−Ropt(τ) ≥ 1
2γ∆(τ)− γ

2 (ψ(δ) +
√
NRB

2)2 − 2ψ(δ)P̄ (8.22)

Fix t > 0. Summing over τ ∈ {0, 1, . . . , t− 1}, dividing by factor t and simplifying telescope

sum
∑t−1
τ=0 ∆(τ) gives

1
t

t−1∑
τ=0

R(τ)− 1
t

t−1∑
τ=0

Ropt(τ))

≥ 1
2γt (‖Q(t)−Q∗‖2F − ‖Q(0)−Q∗‖2F )− γ

2 (ψ(δ) +
√
NRB

2)2 − 2ψ(δ)P̄

(a)
≥ − 2P̄ 2

γt
− γ

2 (ψ(δ) +
√
NRB

2)2 − 2ψ(δ)P̄

where (a) follows from ‖Q(0) − Q∗‖F ≤ ‖Q(0)‖F + ‖Q∗‖F ≤ tr(Q(0)) + tr(Q∗) ≤ 2P̄ and

‖Q(t)−Q∗‖2F ≥ 0.
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Theorem 8.2 proves a sample path guarantee on the utility. It shows that the convergence

time to reach an O(ε) + 2ψ(δ)P̄ approximate solution is 1/ε2. Note that if δ = 0, then equations

(8.15) and (8.16) are recovered by Theorem 8.2. Theorem 8.2 also isolates the effect of missing

CDIT and CSIT inaccuracy. The error term O(ε) is corresponding to the effect of missing CDIT

and can be made arbitrarily small by choosing a small γ and running the algorithm for more

than 1
ε2 iterations. The observation is that the effect of missing CDIT vanishes as Algorithm

8.3 runs for a sufficiently long time and hence delayed but accurate CSIT is almost as good as

CDIT. The other error term 2ψ(δ)P̄ is corresponding to the effect of CSIT inaccuracy and does

not vanish. The performance degradation due to channel inaccuracy scales linearly with respect

to the channel error since ψ(δ) ∈ O(δ). Intuitively, this is reasonable since any algorithm based

on inaccurate CSIT is actually optimizing another different MIMO system.

8.3.3 Extensions

T -Slot Delayed and Inaccurate CSIT

Thus far, we have assumed that CSIT is always delayed by one slot. In fact, if CSIT is

delayed by T slots, we can modify the update of transmit covariances in Algorithm 8.3 as Q(t) =

PQ̃[Q(t− T ) + γD̃(t− T )]. A T -slot version of Theorem 8.2 can be similarly proven.

Algorithm 8.3 with Time Varying γ

Algorithm 8.3 can be extended to have time varying step size γ(t) = 1√
t

at slot t. The next

lemma shows that such an algorithm can approach an ε + 2ψ(δ)P̄ approximate solution with

O(1/ε2) iterations.

Lemma 8.7. Fix ε > 0. If we modify Algorithm 8.3 by using γ(t) = 1√
t

as the step size γ at

each slot t, then for all t > 0:

1
t

t−1∑
τ=0

R(τ) ≥1
t

t−1∑
τ=0

Ropt(τ)− 2P̄ 2
√
t
− 1√

t
(ψ(δ) +

√
NRB

2)2 − 2ψ(δ)P̄ ,

1
t

t−1∑
τ=0

tr(Q(τ)) ≤P̄ ,

where B, δ,NR, P and P̄ are defined in Section 8.1.1
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Proof. The second inequality again follows from the fact that Q(t) ∈ Q̃,∀t ∈ {0, 1, . . .}. It

remains to prove the first inequality. With γ(t) = 1√
t
, equation (8.22) in the proof of Theorem 8.2

becomes R(τ)−Ropt(τ) ≥ 1
2γ(τ+1)∆(τ)− γ(τ+1)

2 (ψ(δ)+
√
NRB

2)2−2ψ(δ)P̄ for all τ ∈ {0, 1, . . .}.

Fix t > 0. Summing over τ ∈ {0, 1, . . . , t− 1} and dividing by factor t yields that for all t > 0:

1
t

t−1∑
τ=0

R(τ)− 1
t

t−1∑
τ=0

Ropt(τ)

≥ 1
2t

t−1∑
τ=0

√
τ + 1∆(τ)− 1

t

(
t−1∑
τ=0

1
2
√
τ + 1

)
(ψ(δ) +

√
NRB

2)2 − 2ψ(δ)P̄

(a)
≥ − 2P̄ 2

√
t
− 1√

t
(ψ(δ) +

√
NRB

2)2 − 2ψ(δ)P̄

where (a) follows because
∑t−1
τ=0
√
τ + 1∆(τ) =

√
t‖Q(t)−Q∗‖2F−‖Q(0)−Q∗‖2F+

∑t−2
τ=0(
√
τ + 1−

√
τ + 2)‖Q(τ + 1) − Q∗‖2F ≥ −‖Q(0) − Q∗‖2F + 4P̄ 2∑t−2

τ=0(
√
τ + 1 −

√
τ + 2) ≥ −4P̄ 2√t and∑t−1

τ=0
1

2
√
τ+1 ≤

√
t.

An advantage of time varying step sizes is the performance automatically gets improved as

the algorithm runs and there is no need to restart the algorithm with a different constant step

size if a better performance is demanded.

8.4 Rate Adaptation

To achieve the capacity characterized by either the problem (8.2)-(8.4) or the problem (8.6)-

(8.8), we also need to consider the rate allocation associated with the transmit covariance, namely,

we need to decide how much data is delivered at each slot. If the accurate instantaneous CSIT is

available, the transmitter can simply deliver log det(I + H(t)Q(t)HH(t)) amount of data at slot t

once Q(t) is decided. However, in the cases when instantaneous CSIT is inaccurate or only delayed

CSIT is available, the transmitter does not know the associated instantaneous channel capacity

without knowing H(t). These cases belong to the representative communication scenarios where

channels are unknown to the transmitter and rateless codes are usually used as a solution. To

send N bits of source data, the rateless code keeps sending encoded information bits without

knowing instantaneous channel capacity such that the receiver can decode all N bits as long as the

accumulated channel capacity for sufficiently many slots is larger than N . Many practical rateless

codes for scalar or MIMO fading channels have been designed in [ETW12, FLEP10, LTCS16].
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This section provides an information theoretical rate adaptation policy based on rateless codes

that can be combined with the dynamic power allocation algorithms developed in this chapter.

The rate adaptation scheme is as follows: Let N be a large number. Encode N bits of

source data with a capacity achieving code for a channel with capacity no less than N bits

per slot. At slot 0, deliver the above encoded data with transmit covariance Q(0) given by

Algorithm 8.1 or Algorithm 8.3. The receiver knows channel H(0), calculates the channel capacity

R(0) = log det(I + H(0)Q(0)HH(0)); and reports back the scalar R(0) to the transmitter. At

slot 1, the transmitter removes the first R(0) bits from the N bits of source data, encodes the

remaining N −R(0) bits with a capacity achieving code for a channel with capacity no less than

N − R(0) bits per slot; and delivers the encoded data with transmit covariance Q(1) given by

Algorithm 8.1 or Algorithm 8.3. The receiver knows channel H(1), calculates the channel capacity

R(1) = log det(I+H(1)Q(1)HH(1)); and reports back the scalar R(1) to the transmitter. Repeat

the above process until slot T − 1 such that
∑T−1
t=0 R(t) > N .

For the decoding, the receiver can decode all the N bits in a reverse order using the idea

of successive decoding [TV05]. At slot T − 1, since N −
∑T−2
t=1 R(t) < R(T − 1), that is, N −∑T−2

t=0 R(t) < R(T − 1) bits of source data are delivered over a channel with capacity R(T − 1)

bits per slot, the receiver can decode all delivered data (N −
∑T−2
t=0 R(t) bits) with zero error.

Note that N −
∑T−3
t=0 R(t) = R(T − 2) + N −

∑T−2
t=0 R(t) bits are delivered at slot T − 2 over

a channel with capacity R(T − 2) bits per slot. The receiver subtracts the N −
∑T−2
t=0 R(t) bits

that are already decoded such that only R(T −2) bits remain to be decoded. Thus, the R(T −2)

bits can be successfully decoded. Repeat this process until all N bits are decoded.

Using the above rate adaptation and decoding strategy, N bits are delivered and decoded

within T − 1 slots during which the sum capacity is
∑T−1
t=0 R(t) bits. When N is large enough,

the rate loss
∑T−1
t=0 R(t) − N is negligible. This rate adaptation scheme does not require H(t)

and only requires to report back the scalar R(t− 1) to the transmitter at each slot t.
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8.5 Simulations

8.5.1 A Simple MIMO System with Two Channel Realizations

Consider a 2× 2 MIMO system with two equally likely channel realizations:

H1 =

 1.3131ej1.9590π 2.3880ej0.7104π

2.5567ej1.5259π 2.8380ej0.3845π

 ,
H2 =

 1.4781ej0.9674π 1.5291ej0.1396π

0.0601ej0.9849π 0.1842ej1.9126π

 .
This simple scenario is considered as a test case because, when there are only two possible

channels with known channel probabilities, it is easy to find an optimal baseline algorithm by

solving the problem (8.2)-(8.4) or the problem (8.6)-(8.8) directly. The goal is to show that the

proposed algorithms (which do not have channel distribution information) come close to this

baseline. The proposed algorithms can be implemented just as easily in cases when there are an

infinite number of possible channel state matrices, rather than just two. However, in that case

it is difficult to find an optimal baseline algorithm since the problem (8.2)-(8.4) or the problem

(8.6)-(8.8) are difficult to solve.7

The power constraints are P̄ = 2 and P = 3. If CSIT has error, H1 and H2 are ob-

served as H̃1 and H̃2, respectively. Consider two CSIT error cases. CSIT Error Case 1:

H̃1 =

 1.3131ej2π 2.3880ej0.75π

2.5567ej1.5π 2.8380ej0.5π

 and H̃2 =

 1.4781ej1π 1.5291ej0.25π

0.0601ej1π 0.1842ej2π

, where the

magnitudes are accurate but the phases are rounded to the nearest π/4 phase; CSIT Error Case

2: H̃1 =

 1.3ej2π 2.4ej0.5π

2.6ej1.5π 2.8ej0.5π

 and H̃2 =

 1.5ej1π 1.5ej0π

0 0.2ej2π

, where the magnitudes are

rounded to the first digit after the decimal point and the phases are rounded to the nearest π/2

phase.

In the instantaneous CSIT case, consider Baseline 1 where the optimal solution Q∗(H) to the

problem (8.2)-(8.4) is calculated by assuming the knowledge that H1 and H2 appear with equal

probabilities and Q(t) = Q∗(H(t)) is used at each slot t. Figure 8.1 compares the performance

7As discussed in Section 8.2.3, this is known as the curse of dimensionality of empirical methods for stochastic
optimization due to the large sample size.
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of Algorithm 8.1 (with V = 100) under various CSIT accuracy conditions and Baseline 1. It can

be seen that Algorithm 8.1 has a performance close to that attained by the optimal solution to

the problem (8.2)-(8.4) requiring channel distribution information. (Note that a larger V gives

a even closer performance with a longer convergence time.) It can also be observed that the

performance of Algorithm 8.1 becomes worse as CSIT error gets larger.
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Figure 8.1: A simple MIMO system with instantaneous CSIT.

In the delayed CSIT case, consider Baseline 2 where the optimal solution Q∗ to the problem

(8.6)-(8.8) is calculated by assuming the knowledge that H1 and H2 appear with equal probabili-

ties; and Q(t) = Q∗ is used at each slot t. Figure 8.2 compares the performance of Algorithm 8.3

(with γ = 0.01) under various CSIT accuracy conditions and Baseline 2. Note that the average

power is not drawn since the average power constraint is satisfied for all t in all schemes. It can

be seen that Algorithm 8.3 has a performance close to that attained by the optimal solution to

the problem (8.6)-(8.8) requiring channel distribution information. (Note that a smaller γ gives

a even closer performance with a longer convergence time.) It can also be observed that the

performance of Algorithm 8.3 becomes worse as CSIT error gets larger.
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Figure 8.2: A simple MIMO system with delayed CSIT.

8.5.2 A MIMO System with Continuous Channel Realizations

This section considers a 2 × 2 MIMO system with continuous channel realizations. Each

entry in H(t) is equal to uv where u is a complex number whose real part and complex part

are standard normal and v is uniform over [0, 0.5]. In this case, even if the channel distribution

information is perfectly known, the problem (8.2)-(8.4) and the problem (8.6)-(8.8) are infinite

dimensional problems and are extremely hard to solve. In practice, to solve the stochastic

optimization, people usually approximate the continuous distribution by a discrete distribution

with a reasonable number of realizations and solve the approximate optimization that is a large

scale deterministic optimization problem. (Baselines 3 and 4 considered below are essentially

using this idea.)

In the instantaneous CSIT case, consider Baseline 3 where we spend 100 slots to obtain

an empirical channel distribution by observing 100 accurate channel realizations 8; obtain the

8By doing so, 100 slots are wasted without sending any data. The 100 slots are not counted in the simulation.
If they are counted, Algorithm 8.1’s performance advantage over Baseline 3 is even bigger. The delayed CSIT
case is similar.
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optimal solution Q∗(H),H ∈ H to the problem (8.2)-(8.4) using the empirical distribution;

choose Q∗(H) where H = argminH∈H ‖H − H(t)‖F at each slot t. Figure 8.3 compares the

performance of Algorithm 8.1 (with V = 100) and Baseline 3; and shows that Algorithm 8.1 has

a better performance than Baseline 3.
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Figure 8.3: A continuous MIMO system with instantaneous CSIT.

In the delayed CSIT case, consider Baseline 4 where we spend 100 slots to obtain an empirical

channel distribution by observing 100 accurate channel realizations; obtain the optimal solution

Q∗ to the problem (8.6)-(8.8) using the empirical distribution; choose Q∗ at each slot t. Figure

8.4 compares the performance of Algorithm 8.3 (with γ = 0.01) and Baseline 4; and shows that

Algorithm 8.3 has a better performance than Baseline 4.

8.6 Chapter Summary

This chapter considers dynamic transmit covariance design in point-to-point MIMO fading

systems without CDIT. Two different dynamic policies are proposed to deal with the cases of

instantaneous CSIT and delayed CSIT, respectively. In both cases, the proposed dynamic policies
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Figure 8.4: A continuous MIMO system with delayed CSIT.

can achieve O(δ) sub-optimality, where δ is the inaccuracy measure of CSIT.

8.7 Supplement to this Chapter

8.7.1 Linear Algebra and Matrix Derivatives

Fact 8.1 ([HJ85]). For any A,B ∈ Cm×n and C ∈ Cn×k we have:

1. ‖A‖F = ‖AH‖F = ‖AT‖F = ‖ −A‖F .

2. ‖A + B‖F ≤ ‖A‖F + ‖B‖F .

3. ‖AC‖F ≤ ‖A‖F ‖C‖F .

4. |tr(AHB)| ≤ ‖A‖F ‖B‖F .

Fact 8.2 ([HJ85]). For any A ∈ Sn+ we have ‖A‖F ≤ tr(A).

Fact 8.3 ([FHM07]). The function f : Sn+ → R defined by f(Q) = log det(I+HQHH) is concave

and its gradient is given by ∇Qf(Q) = HH(I + HQHH)−1H,∀Q ∈ Sn+.
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The above fact is developed in [FHM07]. A general theory on developing derivatives for

functions with complex matrix variables is available in [Hjø11]. The next fact is the complex

matrix version of the first order condition for concave functions of real number variables, i.e.,

f(y) ≤ f(x) + f ′(x)(y − x),∀x, y ∈ domf if f is concave. We also provide a brief proof for this

fact.

Fact 8.4. Let function f(Q) : Sn+ → R be a concave function and have gradient ∇Qf(Q) ∈ Sn

at point Q. Then, f(Q̂) ≤ f(Q) + tr
(
[∇Qf(Q)]H(Q̂−Q)

)
,∀Q̂ ∈ Sn+.

Proof. Recall that a function is concave if and only if it is concave when restricted to any

line that intersects its domain (see page 67 in [BV04]). For any Q, Q̂ ∈ Sn+, define g(t) =

f(Q + t(Q̂ − Q)). Thus, g(t) is concave over [0, 1]; g(0) = f(Q); and g(1) = f(Q̂). Note

that g′(t) = tr([∇Qf(Q + t(Q̂−Q))]H(Q̂−Q)) by the chain rule of derivatives when the inner

product in complex matrix space Cn×n is defined as 〈A,B〉 = tr(AHB),∀A,B ∈ Cn×n. By the

first-order condition of concave function g(t), we have g(1) ≤ g(0) + g′(0)(1 − 0). Note that

g′(0) = tr([∇Qf(Q)]H(Q̂−Q)). Thus, we have f(Q̂) ≤ f(Q) + tr
(
[∇Qf(Q)]H(Q̂−Q)

)
.

8.7.2 Proof of Lemma 8.2

The proof method is an extension of Section 3.2 in [Tel99], which gives the structure of the

optimal transmit covariance in deterministic MIMO channels.

Note that log det(I + HQHH) (a)= log det(I + QHHH) (b)= log det(I + QUHΣU) (c)= log det(I +

Σ1/2UQUHΣ1/2), where (a) and (c) follows from the elementary identity det(I+AB) = det(I+

BA),∀ACm×n and B ∈ Cn×m; and (b) follows from the fact that HHH = UHΣU. Define Q̃ =

UQUH, which is semidefinite positive if and only if Q is. Note that tr(Q̃) = tr(UQUH) = tr(Q)

by the fact that tr(AB) = tr(BA),∀A ∈ Cm×n,B ∈ Cn×m. Thus, the problem (8.12)-(8.14) is

equivalent to

max
Q̃

log det(I + Σ1/2Q̃Σ1/2)− Z

V
tr(Q̃) (8.23)

s.t. tr(Q̃) ≤ P (8.24)

Q̃ ∈ SNT+ (8.25)

Fact 8.5 (Hadamard’s Inequality, Theorem 7.8.1 in [HJ85]). For all A ∈ Sn+, det(A) ≤
∏n
i=1Aii
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with equality if A is diagonal.

The next claim can be proven using Hadamard’s inequality.

Claim 8.1. The problem (8.23)-(8.25) has a diagonal optimal solution.

Proof. Suppose the problem (8.23)-(8.25) has a non-diagonal optimal solution given by matrix

Q̃. Consider a diagonal matrix Q̂ whose entries are identical to the diagonal entries of Q̃.

Note that tr(Q̂) = tr(Q̃). To show Q̂ is a solution no worse than Q̃, it suffices to show that

log det(I + Σ1/2Q̂Σ1/2) ≥ log det(I + Σ1/2Q̃Σ1/2). This is true becase det(I + Σ1/2Q̂Σ1/2) =∏NT
i=1(1+ Q̂iiσi) =

∏NT
i=1(1+ Q̃iiσi) ≥ det(I+Σ1/2Q̃Σ1/2), where the last inequality follows from

Hadamard’s inequality. Thus, Q̂ is a solution no worse than Q̃ and hence optimal.

By Claim 8.1, we can consider Q̃ = Θ = diag(θ1, θ2, . . . , θNT ) and the problem (8.23)-(8.25)

is equivalent to

max
NT∑
i=1

log(1 + θiσi)−
Z

V

NT∑
i=1

θi (8.26)

s.t.
NT∑
i=1

θi ≤ P (8.27)

θi ≥ 0,∀i ∈ {1, 2, . . . , NT } (8.28)

Note that the problem (8.26)-(8.28) satisfies Slater’s condition. So the optimal solution to

the problem (8.26)-(8.28) is characterized by KKT conditions [BV04]. The remaining part

is similar to the derivation of the water-filling solution of power allocation in parallel chan-

nels, e.g., the proof of Example 5.2 in [BV04]. Introducing Lagrange multipliers µ ∈ R+ for

inequality constraint
∑NT
i=1 θi ≤ P and ν = [ν1, . . . , νNT ]T ∈ R+ for inequality constraints

θi ≥ 0, i ∈ {1, 2, . . . , NT }. Let θ∗ = [θ∗1 , . . . , θ∗NT ]T and (µ∗,ν∗) be any primal and dual optimal

points with zero duality gap. By the KKT conditions, we have − σi
1+θ∗

i
σi

+ Z
V + µ∗ − ν∗i = 0,∀i ∈

{1, 2, . . . , NT };
∑NT
i=1 θ

∗
i ≤ P ;µ∗ ≥ 0;µ∗

(∑NT
i=1 θ

∗
i − P

)
= 0; θ∗i ≥ 0,∀i ∈ {1, 2, . . . , NT }; ν∗i ≥

0,∀i ∈ {1, 2, . . . , NT }; ν∗i θ∗i = 0,∀i ∈ {1, 2, . . . , NT }.

Eliminating ν∗i ,∀i ∈ {1, 2, . . . , NT } in all equations yields µ∗+Z
V ≥

σi
1+θ∗

i
σi
,∀i ∈ {1, 2, . . . , NT };∑NT

i=1 θ
∗
i ≤ P ; µ∗ ≥ 0; µ∗

(∑NT
i=1 θ

∗
i − P

)
= 0; θ∗i ≥ 0,∀i ∈ {1, 2, . . . , NT }; (µ∗ + Z

V −
σi

1+θ∗
i
σi

)θ∗i =

0,∀i ∈ {1, 2, . . . , NT }.

For all i ∈ {1, 2, . . . , NT }, we consider µ∗ + Z
V < σi and µ∗ + Z

V ≥ σi separately:
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1. If µ∗+ Z
V < σi, then µ∗+ Z

V ≥
σi

1+θ∗
i
σi

holds only when θ∗i > 0, which by (µ∗+ Z
V −

σi
1+θ∗

i
σi

)θ∗i

implies that µ∗ + Z
V −

σi
1+θ∗

i
σi

= 0, i.e., θ∗i = 1
µ∗+Z/V −

1
σi

.

2. If µ∗+ Z
V ≥ σi, then θ∗i > 0 is impossible, because θ∗i > 0 implies that µ∗+ Z

V −
σi

1+θ∗
i
σi
> 0,

which together with θ∗i > 0 contradict the slackness condition (µ∗ + Z
V −

σi
1+θ∗

i
σi

)θ∗i = 0.

Thus, if µ∗ + Z
V ≥ σi, we must have θ∗i = 0.

Summarizing both cases, we have θ∗i = max
{

0, 1
µ∗+Z/V −

1
σi

}
,∀i ∈ {1, 2, . . . , NT }, where µ∗ is

chosen such that
∑n
i=1 θ

∗
i ≤ P , µ∗ ≥ 0 and µ∗

(∑NT
i=1 θ

∗
i − P

)
= 0.

To find such µ∗, we first check if µ∗ = 0. If µ∗ = 0 is true, the slackness condition

µ∗
(∑NT

i=1 θ
∗
i − P

)
= 0 holds and we need to further ensure

∑NT
i=1 θ

∗
i =

∑NT
i=1 max

{
0, 1

µ∗+Z/V −
1
σi

}
≤ P . Thus µ∗ = 0 if and only if

∑NT
i=1 max

{
0, 1

Z/V −
1
σi

}
≤ P . Thus, Algorithm 8.2 checks

if
∑NT
i=1 max

{
0, 1

Z/V −
1
σi

}
≤ P holds at the first step. If this is true, then we conclude µ∗ = 0

and we are done!

Otherwise, we know µ∗ > 0. By the slackness condition µ∗
(∑NT

i=1 θ
∗
i −P

)
= 0, we must have∑NT

i=1 θ
∗
i =

∑NT
i=1 max

{
0, 1

µ∗+Z/V −
1
σi

}
= P . To find µ∗ > 0 such that

∑NT
i=1 max

{
0, 1

µ∗+Z/V −
1
σi

}
= P , we could apply a bisection search by noting that all θ∗i are decreasing with respect to

µ∗.

Another algorithm of finding µ∗ is inspired by the observation that if σj ≥ σk,∀j, k ∈

{1, 2, . . . , NT }, then θ∗j ≥ θ∗k. Thus, we first sort all σi in a decreasing order, say π is the permu-

tation such that σπ(1) ≥ σπ(2) ≥ · · · ≥ σπ(NT ); and then sequentially check if i ∈ {1, 2, . . . , NT }

is the index such that σπ(i) − µ∗ ≥ 0 and σπ(i+1) − µ∗ ≤ 0. To check this, we first assume i is

indeed such an index and solve the equation
∑i
j=1

( 1
µ∗+Z/V −

1
σπ(j)

)
= P to obtain µ∗; (Note that

in Algorithm 8.2, to avoid recalculating the partial sum
∑i
j=1

1
σπ(j)

for each i, we introduce the

parameter Si =
∑i
j=1

1
σπ(j)

and update Si incrementally. By doing this, the complexity of each

iteration in the loop is only O(1).) then verify the assumption by checking if 1
µ∗+Z/V −

1
σπ(i)

≥ 0

and 1
µ∗+Z/V −

1
σπ(i+1)

≤ 0. This algorithm is described in Algorithm 8.2.

8.7.3 Proof of Lemma 8.3

Fact 8.6. For all X ∈ Sn+, we have ‖(I + X)−1‖F ≤
√
n.

Proof. Since X ∈ Sn+, matrix X has SVD X = UHΣU, where U is unitary and Σ is diagonal with

non-negative entries σ1, . . . , σn. Then Y = (I + X)−1 = UHdiag( 1
1+σ1

, . . . , 1
1+σn )U is Hermitian.
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Thus, ‖(I + X)−1‖F =
√

tr(Y2) =
√∑n

i=1( 1
1+σi )

2 ≤
√
n.

Fact 8.7. For any H, H̃ ∈ CNR×NT with ‖H‖F ≤ B and ‖H − H̃‖F ≤ δ, we have ‖HHH −

H̃HH̃‖F ≤ (2B + δ)δ.

Proof.

‖HHH− H̃HH̃‖F
(a)
≤‖HHH−HHH̃‖F + ‖HHH̃− H̃HH̃‖F
(b)
≤‖HH‖F ‖H− H̃‖F + ‖HH − H̃H‖F ‖H̃‖F
(c)
≤‖HH‖F ‖H− H̃‖F + ‖HH − H̃H‖F

(
‖H̃−H‖F + ‖H‖F

)
≤2Bδ + δ2

where (a) and (c) follow from part 2 of Fact 8.1; and (b) follows from part 3 of Fact 8.1.

Fix Z(t) and V . Define φ(Q,H) = V log det(I + HQHH) − Z(t)tr(Q) and ψ(L,T) =

V log det(I + LTLH)− Z(t)tr(LHL).

Fact 8.8. Let Q ∈ SNT+ have Cholesky decomposition Q = LHL. Then, φ(Q,H) = V log det(I +

LTLH)−Z(t)tr(LHL) = ψ(L,T) with T = HHH. Moreover, if L is fixed, then ψ(L,T) is concave

with respect to T and has gradient ∇Tψ(L,T) = V LH(I + LTLH)−1L.

Proof. Note that

V log det(I + HQHH)− Z(t)tr(Q)

=V log det(I + HLHLHH)− Z(t)tr(LHL)
(a)=V log det(I + LHHHLH)− Z(t)tr(LHL)
(b)=V log det(I + LTLH)− Z(t)tr(LHL)

=ψ(L,T)

where (a) follows from the elementary identity det(I + AB) = det(I + BA) for any A ∈ Cm×n

and B ∈ Cn×m; and (b) follows from the definition T = HHH.

Note that if L is fixed, then Z(t)tr(LHL) is a constant. It follows from Fact 8.3 that ψ(L,T)

is concave with respect to T and has gradient ∇Tψ(L,T) = V LH(I + LTLH)−1L.
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Let Q∗(H) be an optimal solution to the problem (8.2)-(8.4). Note that Q∗(H) is a mapping

from channel states to transmit covariances and Ropt = E[log det(I + HQ∗(H)HH)]. To simplify

notation, we denote Q∗(t) = Q∗(H(t)), i.e. the transmit covariance at slot t selected according

to Q∗(H). The next lemma relates the performance of Algorithm 8.1 and Q∗ at each slot t.

Lemma 8.8. Let Q(t) be yielded by Algorithm 8.1. At each slot t, we have V log det(I +

H(t)Q(t)HH(t))−Z(t)tr(Q(t)) ≥ V log det(I+H(t)Q∗(t)HH(t))−Z(t)tr(Q∗(t))−2V P
√
NT (2B+

δ)δ.

Proof. Fix t > 0. Let H̃(t) ∈ CNR×NT be the observed (inaccurate) CSIT satisfying ‖H(t) −

H̃(t)‖F ≤ δ. The main proof of this lemma can be decomposed into 3 steps:

• Step 1: Show that φ(Q(t),H(t)) ≥ φ(Q(t), H̃(t)) − V P
√
NT (2B + δ)δ. Let Q(t) =

LH(t)L(t) be an Cholesky decomposition. Define T(t) = HH(t)H(t) and T̃(t) = H̃H(t)H̃(t). By

Fact 8.8, we have ψ(L(t),T(t)) = φ(Q(t),H(t)) and ψ(L(t), T̃(t)) = φ(Q(t), H̃(t)); and ψ is

concave with respect to T. By Fact 8.4, we have

ψ(L(t),T(t))

≥ψ(L(t), T̃(t))− tr
(
[∇Tψ(L(t),T(t))]H(T̃(t)−T(t)

)
(a)
≥ψ(L(t), T̃(t))− ‖∇Tψ(L(t),T(t))‖F ‖T̃(t)−T(t)‖F
(b)
≥ψ(L(t), T̃(t))− V ‖LH(t)(I + L(t)T(t)LH(t))−1L(t)‖F (2B + δ)δ
(c)
≥ψ(L(t), T̃(t))− V P

√
NT (2B + δ)δ

where (a) follows from part 4 in Fact 8.1; (b) follows from ∇Tψ(L(t),T(t)) = V LH(t)(I +

L(t)T(t)LH(t))−1L(t) by Fact 8.8 and ‖T̃(t)−T(t)‖F ≤ δ(2B+δ) which is further implied by Fact

8.7; and (c) follows from ‖LH(t)(I+L(t)T(t)LH(t))−1L(t)‖F ≤ ‖LH(t)‖2F ‖(I+L(t)T(t)LH(t))−1‖F ≤

P
√
NT where the first inequality follows from Fact 8.1 and the second inequality follows from

‖L(t)‖F =
√

tr(LH(t)L(t)) =
√

tr(Q(t)) ≤
√
P and Fact 8.6.

• Step 2: Show that φ(Q(t), H̃(t)) ≥ φ(Q∗(t), H̃(t)). This step simply follows from the fact

that Algorithm 8.1 choses Q(t) to maximize φ(Q, H̃(t)) = V log det(I+H̃(t)QH̃H(t))−Z(t)tr(Q)

and hence Q(t) should be no worse than Q∗(t).

• Step 3: Show that φ(Q∗(t), H̃(t)) ≥ φ(Q∗(t),H(t))−V P
√
NT (2B+δ)δ. This step is similar

to step 1. Let Q∗(t) = MH(t)M(t) be an Cholesky decomposition. Define T(t) = HH(t)H(t) and
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T̃(t) = H̃H(t)H̃(t). By Fact 8.8, we have ψ(M(t),T(t)) = φ(Q∗(t),H(t)) and ψ(M(t), T̃(t)) =

φ(Q∗(t), H̃(t)); and ψ is concave with respect to T. By Fact 8.4, we have

ψ(M(t), T̃(t))

≥ψ(M(t),T(t))− tr
(
[∇Tψ(M(t)), T̃(t)]H[T(t)− T̃(t)]

)
(a)
≥ψ(M(t),T(t))− ‖∇Tψ(M(t), T̃(t))‖F ‖T(t)− T̃(t)‖F
(b)
≥ψ(M(t),T(t))− V ‖MH(t)(I + M(t)T̃(t)MH(t))−1M(t)‖F (2B + δ)δ
(c)
≥ψ(M(t),T(t))− V P

√
NT (2B + δ)δ

where (a) follows from part 4 in Fact 8.1; (b) follows from ∇Tψ(M(t), T̃(t)) = VMH(t)(I +

M(t)T̃(t)MH(t))−1M(t) by Fact 8.8 and ‖T(t) − T̃(t)‖F ≤ δ(2B + δ) which is further im-

plied by Fact 8.7; and (c) follows from ‖MH(t)(I + M(t)T̃(t)LH(t))−1M(t)‖F ≤ ‖MH(t)‖2F ‖(I +

M(t)T̃(t)MH(t))−1‖F ≤ P
√
NT where the first inequality follows from Fact 8.1 and the second

inequality follows from ‖M(t)‖F =
√

tr(MH(t)M(t)) =
√

tr(Q∗(t)) ≤
√
P and Fact 8.6.

Combining the above steps yields φ(Q(t),H(t)) ≥ φ(Q∗(t),H(t))− 2V P
√
NT (2B + δ)δ.

Lemma 8.9. At each time t ∈ {0, 1, 2, . . .}, we have

−∆(t) ≥ −Z(t)
(
tr(Q(t))− P̄

)
− 1

2 max{P̄ 2, (P − P̄ )2}. (8.29)

Proof. Fix t ∈ {0, 1, 2, . . .}. Note that Z(t+ 1) = max{0, Z(t) + tr(Q(t))− P̄} implies that

Z2(t+ 1) ≤
[
Z(t) + tr(Q(t))− P̄

]2
≤Z2(t) + 2Z(t)

(
tr(Q(t))− P̄

)
+ (tr(Q(t))− P̄ )2

(a)
≤Z2(t) + 2Z(t)

(
tr(Q(t)− P̄

)
+ max{P̄ 2, (P − P̄ )2}

where (a) follows from |tr(Q(t))−P̄ | ≤ max{P̄ , P−P̄}, which further follows from 0 ≤ tr(Q(t)) ≤

P . Rearranging terms and dividing by factor 2 yields the desired result.

Now, we are ready to present the main proof of Lemma 8.3. Adding V log det(I+H(t)Q(t)HH(t))
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to both sides in (8.29) yields

−∆(t) + V log det(I + H(t)Q(t)HH(t))

≥V log det(I + H(t)Q(t)HH(t))− Z(t)
(
tr(Q(t))− P̄

)
− 1

2 max{P̄ 2, (P − P̄ )2}

(a)
≥V log det(I + H(t)Q∗(t)HH(t))− Z(t)tr(Q∗(t)− P̄ )− 1

2 max{P̄ 2, (P − P̄ )2}

− 2V P
√
NT (2B + δ)δ

where (a) follows from Lemma 8.8.

Taking expectations on both sides yields

− E[∆(t)] + V E[R(t)]

≥V Ropt − E[Z(t)(tr(Q∗(t))− P̄ )]− 1
2 max{P̄ 2, (P − P̄ )2} − 2V P

√
NT (2B + δ)δ

(a)=V Ropt − E[E[Z(t)(tr(Q∗(t))− P̄ )|Z(t)]]− 1
2 max{P̄ 2, (P − P̄ )2} − 2V P

√
NT (2B + δ)δ

(b)
≥V Ropt − 1

2 max{P̄ 2, (P − P̄ )2} − 2V P
√
NT (2B + δ)δ

where (a) follows by noting that E[Z(t)(tr(Q∗(t)) − P̄ )|Z(t)] is the expectation conditional on

Z(t) and the iterated law of expectations; and (b) follows from E[Z(t)tr(Q∗(t) − P̄ )|Z(t)] =

Z(t)E[tr(Q∗(t))− P̄ ] ≤ 0, where the identity follows because Q∗(t) only depends on H(t) and is

independent of Z(t), and the inequality follows because Z(t) ≥ 0 and E[tr(Q∗(t))− P̄ ] ≤ 0,∀t.

Rearranging terms and dividing both sides by V yields − 1
V E[∆(t)] + E[R(t)] ≥ Ropt −

max{P̄ 2,(P−P̄ )2}
2V − 2P

√
NT (2B + δ)δ.

8.7.4 Proof of Lemma 8.5

A problem similar to the problem (8.17)-(8.19) (with inequality constraint (8.18) replaced

by the equality constraint tr(Q) = P̄ ) is considered in Lemma 14 in [SPB09]. The problem in

[SPB09] is different from (8.17)-(8.19) since inequality constraint (8.18) is not necessarily tight at

the optimal solution to (8.17)-(8.19). However, the proof flow of the current lemma is similar to

[SPB09]. We shall first reduce the problem (8.17)-(8.19) to a simpler convex program with a real

vector variable by characterizing the structure of its optimal solution. After that, we can derive

an (almost) closed-form solution to the simpler convex program by studying its KKT conditions.
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The details of the proof are as follows:

Claim 8.2. If Θ̂ is an optimal solution to the following convex program:

min 1
2‖Θ−Σ‖2F (8.30)

s.t. tr(Θ) ≤ P̄ (8.31)

Θ ∈ SNT+ (8.32)

then Q̂ = UHΘ̂U is an optimal solution to the problem (8.17)-(8.19).

Proof. This claim can be proven by contradiction. Let Θ̂ be an optimal solution to convex

program (8.30)-(8.32) and define Q̂ = UHΘ̂U. Assume that there exists Q̃ ∈ SNT+ such that

Q̃ 6= Q̂ and is a feasible solution to the problem (8.17)-(8.19) that is strictly better than Q̂.

Consider Θ̃ = UQ̃UH and reach a contradiction by showing Θ̃ is strictly better than Θ̂ as

follows:

Note that tr(Θ̃) = tr(UQ̃UH) = tr(Q̃) ≤ P̄ , where the last inequality follows from the

assumption that Q̃ is a feasible solution to the problem (8.17)-(8.19). Also note that Θ̃ ∈ SNT+

since Q̃ ∈ SNT+ . Thus, Θ̃ is feasible to the problem (8.30)-(8.32).

Note that ‖Θ̃ − Σ‖F
(a)= ‖UHΘ̃U − UHΣU‖F

(b)= ‖Q̃ − X‖F
(c)
< ‖Q̂ − X‖F

(d)= ‖UQ̂UH −

UXUH‖F
(e)= ‖Θ̂−Σ‖F , where (a) and (d) follow from the fact that Frobenius norm is unitary

invariant9; (b) follows from the fact that Θ̃ = UQ̃UH and X = UHΣU; (c) follows from the fact

that Q̃ is strictly better than Q̂; and (e) follows from the fact that Q̂ = UHΘ̂U and X = UHΣU.

Thus, Θ̃ is strictly better than Θ̂. A contradiction!

Claim 8.3. The optimal solution to the problem (8.30)-(8.32) must be a diagonal matrix.

Proof. This claim can be proven by contradiction. Assume that the problem (8.30)-(8.32) has an

optimal solution Θ̃ that is not diagonal. Since Θ̃ is positive semidefinite, all the diagonal entries

of Θ̃ are non-negative. Define Θ̂ as a diagonal matrix whose the i-th diagonal entry is equal to

the i-th diagonal entry of Θ̃ for all i ∈ {1, 2, . . . , NT }. Note that tr(Θ̂) = tr(Θ̃) ≤ P̄ and Θ̂ ∈ Sn+.

Thus, Θ̂ is feasible to the problem (8.30)-(8.32). Note that ‖Θ̂ −Σ‖F < ‖Θ̃ −Σ‖F since Σ is

diagonal. Thus, Θ̂ is a solution strictly better than Θ̃. A contradiction! So the optimal solution

to the problem (8.30)-(8.32) must be a diagonal matrix.

9That is ‖AU‖F = ‖A‖F for all A ∈ Cn×n and all unitary matrix U.
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By the above two claims, it suffices to assume that the optimal solution to the problem (8.17)-

(8.19) has the structure Q̂ = UHΘU, where Θ is a diagonal with non-negative entries θ1, . . . , θNT .

To solve the problem (8.17)-(8.19), it suffices to consider the following convex program.

min 1
2

NT∑
i=1

(θi − σi)2 (8.33)

s.t.
NT∑
i=1

θi ≤ P̄ (8.34)

θi ≥ 0,∀i ∈ {1, 2, . . . , NT } (8.35)

Note that the problem (8.33)-(8.35) satisfies Slater’s condition. So the optimal solution to

the problem (8.33)-(8.35) is characterized by KKT conditions [BV04]. Introducing Lagrange

multipliers µ ∈ R+ for inequality constraint
∑NT
i=1 θi ≤ P̄ and ν = [ν1, . . . , νNT ]T ∈ RNT+ for

inequality constraints θi ≥ 0, i ∈ {1, 2, . . . , n}. Let θ∗ = [θ∗1 , . . . , θ∗NT ]T and (µ∗,ν∗) be any primal

and dual pair with the zero duality gap. By KKT conditions, we have θ∗i −σi +µ∗− ν∗i = 0,∀i ∈

{1, 2, . . . , NT };
∑NT
i=1 θ

∗
i ≤ P̄ ;µ∗ ≥ 0;µ∗

(∑NT
i=1 θ

∗
i − P̄

)
= 0; θ∗i ≥ 0,∀i ∈ {1, 2, . . . , NT }; ν∗i ≥

0,∀i ∈ {1, 2, . . . , NT }; ν∗i θ∗i = 0,∀i ∈ {1, 2, . . . , NT }.

Eliminating ν∗i ,∀i ∈ {1, 2, . . . , NT } in all equations yields µ∗ ≥ σi − θ∗i , i ∈ {1, 2, . . . , NT };∑NT
i=1 θ

∗
i ≤ P̄ ; µ∗ ≥ 0; µ∗

[∑NT
i=1 θ

∗
i − P̄

]
= 0; θ∗i ≥ 0,∀i ∈ {1, 2, . . . , NT }; (θ∗i − σi + µ∗)θ∗i =

0,∀i ∈ {1, 2, . . . , NT }.

For all i ∈ {1, 2, . . . , NT }, we consider µ∗ < σi and µ∗ ≥ σi separately:

1. If µ∗ < σi , then µ∗ ≥ σi − θ∗i holds only when θ∗i > 0, which by (θ∗i − σi + µ∗)θ∗i = 0

implies that θ∗i = σi − µ∗.

2. If µ∗ ≥ σi, then θ∗i > 0 is impossible, because θ∗i > 0 implies that θ∗i − σi + µ∗ > 0, which

together with θ∗i > 0 contradicts the slackness condition (θ∗i − σi + µ∗)θ∗i = 0. Thus, if

µ∗ ≥ σi, we must have θ∗i = 0.

Summarizing both cases, we have θ∗i = max{0, σi − µ∗},∀i ∈ {1, 2, . . . , NT }, where µ∗ is chosen

such that
∑NT
i=1 θ

∗
i ≤ P̄ , µ∗ ≥ 0 and µ∗

(∑NT
i=1 θ

∗
i − P̄

)
= 0.

To find such µ∗, we first check if µ∗ = 0. If µ∗ = 0 is true, the slackness condition

µ∗
(∑NT

i=1 θ
∗
i−P̄

)
is guaranteed to hold and we need to further require

∑NT
i=1 θ

∗
i =

∑NT
i=1 max{0, σi} ≤

P̄ . Thus µ∗ = 0 if and only if
∑n
i=1 max{0, σi} ≤ P̄ . Note that Algorithm 8.4 checks if
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∑NT
i=1 max{0, σi} ≤ P̄ holds at the first step and if this is true, then we conclude µ∗ = 0 and we

are done!

Otherwise, we know µ∗ > 0. By the slackness condition µ∗
(∑NT

i=1 θ
∗
i − P̄

)
= 0, we must have∑NT

i=1 θ
∗
i =

∑NT
i=1 max{0, σi − µ∗} = P̄ . To find µ∗ > 0 such that

∑NT
i=1 max{0, σi − µ∗} = P̄ , we

could apply a bisection search by noting that all θ∗i are decreasing with respect to µ∗.

Another algorithm of finding µ∗ is inspired by the observation that if σj ≥ σk,∀j, k ∈

{1, 2, . . . , NT }, then θ∗j ≥ θ∗k. Thus, we first sort all σi in a decreasing order, say π is the permu-

tation such that σπ(1) ≥ σπ(2) ≥ · · · ≥ σπ(NT ); and then sequentially check if i ∈ {1, 2, . . . , NT }

is the index such that σπ(i) − µ∗ ≥ 0 and σπ(i+1) − µ∗ < 0. To check this, we first assume

i is indeed such an index and solve the equation
∑i
j=1

(
σπ(j) − µ∗

)
= P̄ to obtain µ∗; (Note

that in Algorithm 8.4, to avoid recalculating the partial sum
∑i
j=1 σπ(j) for each i, we introduce

the parameter Si =
∑i
j=1 σπ(j) and update Si incrementally. By doing this, the complexity

of each iteration in the loop is only O(1).) then verify the assumption by checking if µ∗ ≥ 0,

σπ(i) − µ∗ ≥ 0 and σπ(i+1) − µ∗ ≤ 0. The algorithm is described in Algorithm 8.4 and has

complexity O(NT log(NT )). The overall complexity is dominated by the step of sorting all σi.

8.7.5 Proof of Lemma 8.6

Proof of Part 1:

The boundedness of D(t−1) can be shown as follows. ‖D(t−1)‖F = ‖HH(t−1)(INR +H(t−

1)Q(t− 1)HH(t− 1))−1H(t− 1)‖F
(a)
≤ ‖H(t− 1)‖2F ‖(INR + H(t− 1)Q(t− 1)HH(t− 1))−1‖F

(b)
≤

√
NRB

2, where (a) follows from Fact 8.1 and (b) follows from ‖H(t− 1)‖F ≤ B and Fact 8.6.

Proof of Part 2:

To simplify the notation, this part uses H, H̃ and Q to represent H(t − 1), H̃(t − 1) and

Q(t− 1), respectively.
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Note that

‖D(t− 1)− D̃(t− 1)‖F

=‖HH(INR + HQHH)−1H− H̃H(INR + H̃QH̃H)−1H̃‖F

≤‖HH(INR + HQHH)−1H− H̃H(INR + HQHH)−1H‖F

+ ‖H̃H(INR + HQHH)−1H− H̃H(INR + HQHH)−1H̃‖F

+ ‖H̃H(INR + HQHH)−1H̃− H̃H(INR + H̃QH̃H)−1H̃‖F

≤‖
(
INR + HQHH)−1‖F ‖H‖F ‖H− H̃‖F + ‖

(
INR + HQHH)−1‖F ‖H̃‖F ‖H− H̃‖F

+ ‖H̃‖2F ‖
(
INR + HQHH)−1 −

(
INR + H̃QH̃H)−1‖F (8.36)

where both inequalities follow from Fact 8.1.

Since ‖H‖F ≤ B and ‖H̃ −H‖ ≤ δ, by Fact 8.1, we have ‖H̃‖F ≤ B + δ. By Fact 8.6, we

have ‖
(
INR + HQHH)−1‖F ≤

√
NR. The following lemma from [SPB09] will be useful to bound

‖
(
INR + HQHH)−1 −

(
INR + H̃QH̃H)−1‖F from above.

Lemma 8.10 (Lemma 6 in [SPB09]). Let F : D ⊆ Cm×n → Cp×q be a complex matrix-valued

function defined on a convex set D, assumed to be continuous on D and differentiable on the

interior of D, with Jacobian matrix10 DXF(X). Then, for any given X,Y ∈ D, there exists

some t ∈ (0, 1) such that ‖F (Y)−F (X)‖F ≤ ‖DXF(tY + (1− t)X)vec(Y−X)‖2 ≤ ‖DXF(tY +

(1−t)X)‖2,mat‖Y−X‖F , where ‖A‖2,mat denotes the spectral norm of A, i.e., the largest singular

value of A.

Lemma 8.10 is essentially a mean value theorem for complex matrix valued functions. The

next corollary is the complex matrix version of elementary inequality | 1
1+x−

1
1+y | ≤ |x−y|,∀x, y ≥

0 and follows directly from Lemma 8.10.

Corollary 8.1. Consider F : Sn+ → Sn+ defined via F(X) = (In + X)−1. Then, ‖F (Y) −

F (X)‖F ≤ n‖Y−X‖F ,∀X,Y ∈ Sn+.

Proof. By [HG07, SPB09], dX−1 = −X−1(dX)X−1. Thus, d(I + X)−1 = −(I + X)−1(dX)(I +

X)−1. By identity vec(ABC) = (CT ⊗A)vec(B), where ⊗ denotes the Kronecker product, we

10The Jacobian matrix is defined as the matrix DXF(X) such that dvec(F(x)) = DXF(X) dvec(X). Note that
the size of DXF(X) is pq ×mn.
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have dvec(F(X)) = −
(
((I + X)−1)T ⊗ (I + X)−1) dvec(X). Thus, DXF(X) = −((I + X)−1)T ⊗

(I + X)−1. Note that for all X ∈ Sn+, ‖− ((I + X)−1)T ⊗ (I + X)−1‖2,mat ≤ ‖((I + X)−1)T ⊗ (I +

X)−1‖F
(a)= ‖((I+X)−1)T ‖F · ‖(I+X)−1‖F = ‖(I+X)−1‖2F

(b)
≤ n, where (a) follows from the fact

that ‖A ⊗ B‖F = ‖A‖F · ‖B‖F ,∀A ∈ Cm×n,B ∈ Cn×l (see Exercise 28, page 253 in [HJ91]);

and (b) follows Fact 8.6. Applying Lemma 8.10 yields ‖F (Y)−F (X)‖F ≤ n‖Y−X‖F ,∀X,Y ∈

Sn+.

Applying the above corollary yields

‖
(
INR + HQHH)−1 −

(
INR + H̃QH̃H)−1‖F

(a)
≤NR‖HQHH − H̃QH̃H‖F

=NR‖HQHH − H̃QHH + H̃QHH − H̃QH̃H‖F
(b)
≤NR

(
‖HQHH − H̃QHH‖F + ‖H̃QHH − H̃QH̃H‖F

)
(c)
≤NR

(
‖Q‖F ‖HH‖F ‖H− H̃‖F + ‖H̃‖F ‖Q‖F ‖HH − H̃H‖F

)
(d)
≤NRP̄ (2B + δ)δ

where (a) follows from Corollary 8.1; (b) and (c) follows from Fact 8.1; and (d) follows from the

fact that ‖H‖F ≤ B and ‖H̃−H‖F ≤ δ, ‖H̃‖F ≤ B + δ, and the fact that ‖Q‖F ≤ tr(Q) ≤ P̄ ,

which is implied by Fact 8.2 and Q ∈ Q̃.

Plugging equations ‖H̃‖F ≤ B+ δ, ‖
(
INR + HQHH)−1‖F ≤

√
NR and ‖

(
INR + HQHH)−1−(

INR + H̃QH̃H)−1‖F ≤ NRP̄ (2B + δ)δ into equation (8.36) yields ‖D(t − 1) − D̃(t − 1)‖F ≤
√
NRBδ+

√
NR(B+δ)δ+(B+δ)2NRP̄ (2B+δ)δ =

(√
NRB+

√
NR(B+δ)+(B+δ)2NRP̄ (2B+δ)

)
δ.

Proof of Part 3:

This part follows from ‖D̃(t− 1)‖F ≤ ‖D̃(t− 1)−D(t− 1)‖F + ‖D(t− 1)‖F .
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Chapter 9

Duality Codes and the Integrality Gap Bound for Index

Coding

Consider a noiseless wireless system with N receivers, W independent packets of the same

size, and a single broadcast station. The broadcast station has all packets. Each receiver has

a subset of the packets as side information, but desires another (disjoint) subset of the packets.

The broadcast station must deliver the packets to their intended receivers. To this end, it makes

a sequence of (possibly coded) transmissions that are overheard by all receivers. The goal is to

find a coding scheme with the minimum number of transmissions (clearance time) such that each

user is able to decode its demanded packets. This problem was introduced by Birk and Kol in

[BK98, BK06] and is known as the index coding problem.

The formulation of the index coding problem is simple, elegant and captures the essence of

broadcasting with side information. It also relates directly to multi-hop network coding problems.

Specifically, work in [RSG10] shows that an index coding problem can be reduced to a network

coding problem. A partial converse of this result is also shown in [RSG10], in that linear versions

of network coding can be redued to linear index coding (see [ERL15] for extended results in this

direction). However, the index coding problem still seems to be intractable. The first index

coding problem investigated by Birk and Kol considers only the case of unicast packets and can

be represented as a directed side information graph. Work by Bar-Yossef et. al. in [BYBJK11]

shows that the performance of the best scalar linear code is equal to the graph parameter minrank

of the side information graph. However, computing the minrank of a given graph is NP-hard

[Pee96]. Further, it is known that restricting to scalar linear codes is generally sub-optimal

[ALS+08, LS09].
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One branch of research on index coding aims to find tight performance bounds. Work in

[BYBJK11] shows that if the index coding problem has an undirected side information graph

(such as when it has symmetric demands) then the minrank is lower-bounded by the independence

number of the graph, and upper-bounded by the clique cover number. For the unicast index

coding problem, work in [BYBJK11] shows that the optimal clearance time (with respect to any

scalar, vector or non-linear code) is lower-bounded by the maximum acyclic subgraph of the side

information graph. Work in [NTZ13] generalizes this to the multicast/groupcast case using a

directed bipartite graph. It shows that the optimum of the general problem is lower-bounded

by the maximum acyclic subgraph induced by deletions of packet vertices, user-vertices and

packet-to-user arcs. In [BKL10], a sequence of linear programs is proposed to bound the optimal

clearance time.

Another branch of research on index coding focuses on studying the performance of specific

codes and specific graph structures. Work in [ALS+08] shows that vector linear codes can have

strictly better performance compared with scalar linear codes. Work in [LS09] demonstrates

that non-linear codes can outperform both scalar and vector linear codes. Instead of finding the

minimum clearance time, Chaudhry et. al. in [CASL11] consider the problem of maximizing the

total number of saved transmissions by exploiting a specific code structure together with graph

theory algorithms. Ong et. al. in [OH12] find the optimal index code in the single uniprior case,

where each user only has a single uniprior packet as side information.

This chapter studies index coding from a perspective of optimization and duality. The results

in this chapter are originally developed in our papers [YN13, YN14]. This chapter illustrates the

inherent duality between the information theoretical lower bound in [BYBJK11][NTZ13] and the

performance of specific codes. Section 9.1 extends the bipartite digraph representation of the

problem in [NTZ13] to a weighted bipartite digraph. Section 9.2 uses this new graph structure

to develop an integer linear program that finds the maximum acyclic subgraph. Section 9.3

considers the linear programming (LP) relaxation of the integer program, and shows that the

dual problem of this relaxation corresponds to a simple form of vector linear codes, called vector

cyclic codes. It follows that the information theoretic optimum is bounded by the integrality

gap between the integer program and its LP relaxation. Section 9.4 shows that in the special

case when the bipartite digraph is planar, the integrality gap is zero. In this case, optimality is

achieved by a scalar cyclic code. Section 9.5 considers a different representation of the original
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integer program that yields a smaller integrality gap. The dual problem of its LP relaxation

leads to a more sophisticated partial clique coding strategy that time-shares between maximum

distance separable (MDS) codes. The smaller integrality gap ensures that these codes are closer

to the lower bound. These results provide new insight into the index coding problem and suggest

that good codes can be found by exploring LP relaxations of the maximum acyclic subgraph

problem.

9.1 Weighted Bipartite Digraph

There are N receivers, also called users. Let U = {u1, . . . , uN} be the set of users. Assume

there are W total packets, all of the same size, labeled {q1, . . . , qW }. For each m ∈ {1, . . . ,W},

define Sm as the set of users in U that already have packet qm as side information, and define

Dm as the set of users in U that demand packet qm. Without loss of generality, assume that

each packet is demanded by at least one user (else, that packet can be eliminated). Thus, the

demand set Dm is non-empty for all m ∈ {1, . . . ,W}. On the other hand, the side information

sets Sm can be empty. Indeed, the set Sm is empty if and only if no user has packet qm as side

information. It is reasonable to assume that the set of users that demand a packet is disjoint

from the set of users that already have that packet as side information, so that Sm ∩Dm = ∅ for

all m ∈ {1, . . . ,W}.

This index coding problem is represented by a bipartite directed graph in [NTZ13][TDN12],

where user vertices are on the left of the graph, packet vertices are on the right, and the Sm and

Dm sets are represented by directed arcs. A directed graph is also called a digraph. It is useful

to extend this representation to a weighted bipartite digraph as follows: Two packets qk and qm

are said to have the same type if Sk = Sm and Dk = Dm. That is, two packets have the same

type if they have the same side information and demand sets. Types arise naturally when users

desire multi-packet files, since packets of the same file typically have the same type.

Let M be the number of packet types, and let P = {p1, . . . , pM} be the set of types. The

index coding problem can be represented by a weighted bipartite digraph G = (U ,P,A,WP) as

follows: Let U be the set of vertices on the left side of the graph and let P be the set of vertices

on the right side of the graph (see Fig. 9.1). The arc set A has a user-to-packet arc (un, pm)

if and only if user un ∈ U has all packets of type pm. The arc set A has a packet-to-user arc
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(pm, un) if and only if user un ∈ U demands all packets of type pm. Finally, defineWP as the set

of integer weights associated with packet vertices in P. The weight wpm ∈ WP of packet vertex

pm ∈ P is equal to the number of packets of type pm. Thus, the total number of packets W

satisfies W =
∑M
m=1 wpm .

A packet is said to be a unicast packet if it is demanded by only one user, and is said to be a

groupcast packet if it is demanded by two or more users. An index coding problem is said to be

unicast if all packets are unicast packets. The index coding problems treated in [BK98][BYBJK11]

are unicast problems. The current chapter also focuses exclusively on the unicast case. However,

rather than use the graph structure of [BYBJK11], for our purposes it is more efficient to use

a weighted bipartite digraph.1 Figure 9.1 shows an example of the weighted bipartite digraph

representation for a unicast index coding problem with 3 user vertices and 3 packet types. In

this example, packet types p1, p2, p3 are demanded by users u1, u2, u3, respectively, so that

D1 = {u1}, D2 = {u2}, D3 = {u3}. Furthermore, the side information sets are as follows:

• Packets of type p1 are contained as side information by users in the set S1 = {u2, u3}.

• Packets of type p2 are contained as side information by the user in the set S2 = {u3}.

• Packets of type p3 are contained as side information by the user in the set S3 = {u1}.

9.2 Acyclic Subgraph Bound and its LP Relaxation

The following definitions from graph theory are useful. A sequence of vertices {s1, s2, . . . , sK}

of a general digraph is defined as a cycle if (si, si+1) ∈ A for all i ∈ {1, 2, . . . ,K − 1}, all vertices

in {s1, s2, . . . , sK−1} are distinct, and s1 = sK . A digraph is acyclic if it contains no cycle. A

set of vertices is called a feedback vertex set if the removal of vertices in this set leaves an acyclic

digraph. In a vertex-weighted digraph, the feedback vertex set with the minimum sum weight is

called the minimum feedback vertex set.

For the weighted bipartite digraph G = (U ,P,A,WP) (as defined in the previous section),

there exists a subset Pfd ⊆ P such that the removal of vertices in Pfd and all the associated

1The unicast problem can be represented by the graph structure in [BYBJK11] by changing each user that
desires more than one packet into multiple virtual users that each want a single packet. This can significantly
expand the size of the graph, particularly when users want large multi-packet files. The graph structure in
the current chapter does not expand the number of users; this is conceptually simpler and is useful for proving
optimality in some cases (see Corollary 9.2).
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u1#
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p1#
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w1=3#

w2=1#

w3=2#

Figure 9.1: The bipartite digraph representation of a unicast index coding problem with 3 user
vertices and 3 packet type vertices.

packet-to-user arcs and user-to-packet arcs leaves an acyclic subgraph. In this case, Pfd is called

a feedback packet vertex set. A trivial feedback packet vertex set is Pfd = P and the corresponding

acyclic subgraph has no packet vertex. This trivial feedback packet vertex set has weight W , since

the sum weight of all packet vertices is W . It is often possible to find a feedback packet vertex set

with sum weight smaller than W . The feedback packet vertex set with the minimum sum weight

is called the minimum feedback packet vertex set. The acyclic subgraph induced by the deletion

of the minimum feedback packet vertex set is called the maximum acyclic subgraph(MAS).

Assume that each transmission from the base station sends a number of bits equal to the

number of bits in each of the fixed length packets. It is trivial to satisfy all demands with W

transmissions, where each of the W packets is successively transmitted without coding. However,

coding can often be used to reduce the number of transmissions. Let Tmin(G) represent the

minimum number of transmissions required to deliver all packets to their intended users for an

index coding problem defined by the weighted bipartite digraph G. The value Tmin(G) considers

all possible coding strategies. A theorem in [NTZ13] provides an information theoretic lower

bound on Tmin(G).

Theorem 9.1 (Theorem 1 and Lemma 1 in [NTZ13]). Consider an index coding problem G =

(U ,P,A,WP). Let Pfd ⊆ P be a feedback packet vertex set and let G′ be the acyclic subgraph
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induced by the deletion of Pfd. If
∑
pm∈G′ wpm = W ′, then Tmin(G) ≥W ′.

While the above theorem holds for general (possibly groupcast) index coding problems, this

chapter uses it in the unicast case. For unicast problems, Theorem 9.1 reduces to an earlier result

on acyclic subgraphs in [BYBJK11] after a suitable transformation of the graph structure.

Suppose the largest cycle in digraph G involves L packet vertices. Define the set of all cycles

in G as C =
⋃L
i=1 Ci, where Ci, i = 2, . . . , L is the set of all cycles involving i packet vertices.

These cycles can possibly overlap, i.e., some of them can share common vertices. The tightest

lower bound provided by Theorem 9.1 is referred to as the maximum acyclic subgraph (MAS)

bound and can be formulated as a linear integer program (IP) as below:

Maximum Acyclic Subgraph IP (P1):

max
xm

M∑
m=1

xmwpm

s.t.
M∑
m=1

xm1{pm∈Ci} ≤ i− 1, ∀Ci ∈ Ci, i = 2, . . . , L

xm ∈ {0, 1}, m = 1, . . . ,M

where xm ∈ {0, 1},m = 1, . . . ,M indicates if packet vertex pm remains in the acyclic subgraph,

objective function
∑M
m=1 xmwpm is the sum weight of the acyclic subgraph, 1{pm∈Ci} is the

indicator function which equals one if and only if packet vertex pm participates in cycle Ci, and∑M
m=1 xm1{pm∈Ci} ≤ i − 1 is the constraint that for each cycle Ci ∈ Ci, at most i − 1 packet

vertices remain in the acyclic subgraph. This problem finds the MAS bound formed by packet

vertex deletion.

The integer constraints of the above problem can be convexified to form the following linear
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programming (LP) relaxation:

Maximum Acyclic Subgraph LP (P1′):

max
xm

M∑
m=1

xmwpm

s.t.
M∑
m=1

xm1{pm∈Ci} ≤ i− 1, ∀Ci ∈ Ci, i = 2, . . . , L

0 ≤ xm ≤ 1, m = 1, . . . ,M

The only difference between problem (P1) and its relaxation (P1′) is that the constraints xm ∈

{0, 1} are changed to 0 ≤ xm ≤ 1. The relaxed problem (P1′) can be solved with standard linear

programming techniques. The number of constraints depends on the number of cycles in the

graph. However, the number of cycles in general graphs can grow exponentially with the number

of vertices, and so (P1′) can be difficult to solve when the graph is large2.

One might not expect the relaxed problem (P1′) to have a physical meaning. Remarkably,

this chapter proves that it does. Indeed, the next section shows that any solution to the relaxed

problem leads to a coding strategy. The clearance time of the coding strategy is equal to the

optimal objective function value of the relaxed problem. Hence, this value is an upper bound on

Tmin(G). This is surprising because the original integer program (P1) provides a lower bound on

Tmin(G) and does not suggest any particular coding strategy.

Define val(P1) as the optimal objective function value of problem (P1), being the size of the

maximum acyclic subgraph. Theorem 9.1 implies that val(P1) ≤ Tmin(G). The optimal objective

function value for the relaxation (P1′) can be written as val(P1′) = val(P1)+gap(P1′,P1), where

gap(P1′,P1) = val(P1′)− val(P1) is the integrality gap between the LP relaxation (P1′) and the

integer program (P1). Since the relaxation (P1′) has less restrictive constraints, the value of

gap(P1′,P1) is always non-negative. The next section proves constructively that:

val(P1) ≤ Tmin(G) ≤ val(P1) + gap(P1′,P1)

Thus, the difference between the minimum clearance time and the maximum acyclic subgraph

2In fact, a linear program with an exponential number of constraints can still be solved in polynomial time via
the ellipsoid method as long as it has an efficient separation oracle [GLS93]. It can be shown that the maximum
acyclic subgraph LP (P1′) has an efficient separation oracle and hence can be solved in polynomial time via the
ellipsoid method.
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bound is bounded by the integrality gap gap(P1′,P1). Furthermore, Section 9.4 shows that

gap(P1′,P1) = 0 in special cases when the digraph G is planar.

9.3 Cyclic Codes and Linear Programming Duality

Inspired by the observation that the lower bound in Theorem 9.1 is closely connected with

cycles in graph G, this section considers cyclic codes that exploit cycles in G. It is shown that the

problem of finding the optimal cyclic code is the dual problem of the LP relaxation (P1′). Thus,

the performance gap between the optimal cyclic code and the optimal index code is ultimately

bounded by the integrality gap gap(P1′,P1).

9.3.1 Cyclic Codes

Suppose there exists a cycle in G that involves K user vertices {u1, u2, . . . , uK} and K packet

vertices {p1, p2, . . . , pK}. In this cycle, user u1 has pK as side information and demands p1, user

u2 has p1 as side information and demands p2, user u3 has p2 as side information and demands

p3, and so on. If the weight of each packet vertex is identically one, a K-cycle coding action can

deliver all K packets by transmitting Zi = pi + pi+1, i = 1, . . . ,K − 1 with K − 1 transmissions,

where addition is the mod-2 summation of each bit in both packets. After transmissions, user

ui ∈ {u2, . . . , uK} can decode packet pi by performing pi−1 +Zi−1 = pi−1 + (pi−1 + pi) = pi. At

the same time, user u1 can decode packet p1 by performing:

Z1 + . . .+ ZK−1 + qK

=(p1 + p2) + (p2 + p3) + . . .+ (pK−1 + pK) + pK

=p1.

A linear index code is said to be a cyclic code if it uses a sequence of coding actions that

involve only cyclic coding actions and direct broadcasts without coding. Linear codes can be

further categorized into scalar linear codes and vector linear codes according to whether the

transmitted message is a linear combination of the original packets or the subpackets obtained

by subdivisions. In scalar linear codes, each packet is considered as an element of a finite field and

the transmitted message is a linear combination of packets over that field. In vector linear codes,
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each packet is assumed to be sufficiently large and can be divided into many smaller subpackets

and the transmitted message is a linear combination of these subpackets instead of the original

packets. The problem of finding the optimal scalar cyclic code to clear G can be formulated as

an IP as below:

Cyclic Code IP (P2):

min
yCi ,ym

L∑
i=2

∑
Ci∈Ci

yCi(i− 1) +
M∑
m=1

ym

s.t. ym +
L∑
i=2

∑
Ci∈Ci

yCi1{pm∈Ci} ≥ wpm , m = 1, . . . ,M

yCi non-negative integer, ∀Ci ∈ Ci, i = 2, . . . , L

ym non-negative integer, m = 1, . . . ,M

where yCi is the number of cyclic coding actions over each cycle Ci,∀Ci ∈ Ci, i = 2, . . . , L,

ym is the number of direct broadcasts over each packet vertex pm,m = 1, . . . ,M , objective

function
∑L
i=2
∑
Ci∈Ci yCi(i − 1) +

∑M
m=1 ym is the total number of transmissions, and ym +∑L

i=2
∑
Ci∈Ci yCi1{pm∈Ci} ≥ wpm is the constraint that all the wpm packets represented by

packet vertex pm are cleared by either cyclic codes or direct broadcasts.

The LP relaxation of the cyclic code IP (P2) is as below:

Cyclic Code LP (P2′):

min
yCi ,ym

L∑
i=2

∑
Ci∈Ci

yCi(i− 1) +
M∑
m=1

ym

s.t. ym +
L∑
i=2

∑
Ci∈Ci

yCi1{pm∈Ci} ≥ wpm , m = 1, . . . ,M

yCi ≥ 0, ∀Ci ∈ Ci, i = 2, . . . , L

ym ≥ 0, m = 1, . . . ,M

The only difference between the above problem and the cyclic code IP (P2) is that the constraints

that yCi and ym are non-negative integers are replaced by the relaxed constraints that yCi ≥ 0

and ym ≥ 0. This gives rise to the optimal vector cyclic code. The optimal vector cyclic code can

be viewed as a scheme for time-sharing of cyclic coding actions over overlapping cycles. With

this interpretation, yCi is proportional to the fraction of time used for cyclic coding actions over
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cycle Ci.

Since all the coefficients in the linear constraints of the cyclic code LP (P2′) are integers, an

optimal solution can be found that has all variables equal to rational numbers. Let an optimal

solution of cyclic code LP (P2′) be y∗Ci ,∀Ci ∈ Ci, i = 2, . . . , L; y∗m,m = 1, . . . ,M , and assume

these values are all rational numbers. The optimal vector cyclic code can be constructed as

follows. First, one can find an integer θ such that θy∗Ci ,∀Ci ∈ Ci, i = 2, . . . , L; θy∗m,m = 1, . . . ,M

are all integers. Next, divide each packet into θ subpackets. After the subdivision, a single

cyclic coding action over a cycle Ci is no longer a linear combination of packets but a linear

combination of subpackets. Further, a single (uncoded) direct broadcast from a packet vertex pm

is no longer the broadcast of one packet but one subpacket. Then, the optimal vector cyclic code

performs θy∗Ci cyclic coding actions over each cycle Ci,∀Ci ∈ Ci, i = 2, . . . , L and broadcasts

θy∗m subpackets over each packet vertex pm,m = 1, . . . ,M . To apply the above vector cyclic

code, the number of bits in each packet must be an integer multiple of θ. This is a reasonable

assumption when the packet size is large. Indeed, if the original packet size is B, each packet can

be expanded to have size B̃ = B + rB , where B̃ is the smallest multiple of θ that is greater than

or equal to B, and rB ∈ {0, 1, . . . , θ − 1}. The expansion ratio is (B + rB)/B, which converges

to 1 as B →∞.

Define gap(P2,P2′) as the integrality gap between the cyclic code IP (P2) and its LP relax-

ation (P2′). Since the relaxation (P2′) has less restrictive constraints, the value of gap(P2,P2′) is

always non-negative. Let val(P2) and val(P2′) be the optimal objective function values for prob-

lems (P2) and (P2′), respectively. Thus, val(P2) and val(P2′) are the clearance times attained

by the optimal scalar cyclic code and vector cyclic code, respectively, and:

val(P2) = val(P2′) + gap(P2,P2′) (9.1)

9.3.2 Duality Between Information Theoretical Lower Bounds and Cyclic

Codes

The duality between the maximum acyclic subgraph lower bound given by Theorem 9.1 and

the optimal cyclic code is formally stated in the following lemma.

Lemma 9.1. The maximum acyclic subgraph LP (P1′) and the cyclic code LP (P2′) form a

primal-dual linear programming pair. In particular, the vector cyclic code associated with problem
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(P2′) achieves a clearance time val(P2′) that satisfies:

val(P2′) = val(P1) + gap(P1′,P1) (9.2)

Proof. The Lagrangian function of the cyclic code LP (P2′) can be written as

L(yCi , ym, λm, µCi , µm)

=
L∑
i=2

∑
Ci∈Ci

yCi(i− 1) +
M∑
m=1

ym +
M∑
m=1

λm
[
wpm − ym −

L∑
i=2

∑
Ci∈Ci

yCi1{pm∈Ci}
]

−
L∑
i=2

∑
Ci∈Ci

µCiyCi −
M∑
m=1

µmym

=
M∑
m=1

λmwpm +
M∑
m=1

ym[1− λm − µm] +
L∑
i=2

∑
Ci∈Ci

yCi
[
(i− 1)−

M∑
m=1

λm1{pm∈Ci} − µCi
]

where λm ≥ 0,m = 1, . . . ,M ; µCi ≥ 0,∀Ci ∈ Ci, i = 2, . . . , L and µm ≥ 0,m = 1, . . . ,M . The

dual problem of (P2′) is defined as:

max
λm≥0
µCi≥0
µm≥0

min
yCi∈R
ym∈R

L(yCi , ym, λm, µCi , µm)

Note that,

min
yCi∈R
ym∈R

L(yCi , ym, λm, µCi , µm) =


∑M
m=1 λmwpm if

(i−1)−
∑M

m=1
λm1{pm∈Ci}−µCi=0,

∀Ci∈Ci,i=2,...,L
1−λm−µm=0,m=1,...,M

−∞ otherwise
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Then, the dual problem of (P2′) can be written as,

max
λm,µCi ,µm

M∑
m=1

λmwpm

s.t. (i− 1)−
M∑
m=1

λm1{pm∈Ci} − µCi = 0,∀Ci ∈ Ci, i = 2, . . . , L

1− λm − µm = 0, m = 1, . . . ,M

λm ≥ 0, m = 1, . . . ,M

µCi ≥ 0, ∀Ci ∈ Ci, i = 2, . . . , L

µm ≥ 0, m = 1, . . . ,M

Eliminating variables µCi ,∀Ci ∈ Ci, i = 2, . . . , L and µm,m = 1, . . . ,M , we obtain

max
λm

M∑
m=1

λmwpm

s.t.
M∑
m=1

λm1{pm∈Ci} ≤ (i− 1), ∀Ci ∈ Ci, i = 2, . . . , L

0 ≤ λm ≤ 1, m = 1, . . . ,M

The above problem is the same as (P1′). Thus, the clearance time of the vector cyclic code

associated with problem (P2′) is equal to the value of the optimal objective function in problem

(P1′), which is val(P1) + gap(P1′,P1).

Thus far, we have proven the following lower and upper bound for the minimum clearance

time of an index coding problem.

val(P1) ≤ Tmin(G) ≤ val(P1) + gap(P1′,P1) (9.3)

where the first inequality follows from Theorem 9.1 and the second inequality follows from Lemma

9.1. Hence, the performance gap between the optimal index code and the optimal vector cyclic

code is ultimately bounded by the integrality gap between the maximum acyclic subgraph IP

(P1) and its LP relaxation (P1′).

There are various techniques for bounding the integrality gaps of integer linear programs,

such as the random rounding methods in [RT87, Rag88]. Rather than explore this direction, the
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next section provides a special case where the gap is equal to zero. This is motivated as follows.

Adding the non-negative value gap(P2,P2′) to the right-hand-side of (9.3) gives:

val(P1) ≤ Tmin(G) ≤ val(P1) + gap(P1′,P1) + gap(P2,P2′)

= val(P2)

where the final equality uses (9.1)-(9.2). In the special case when val(P1) = val(P2), one has

gap(P1′,P1) = gap(P2,P2′) = 0 and val(P2) = Tmin(G), so that the scalar cyclic code given by

the cyclic code IP (P2) is an optimal index code.

9.4 Optimality of Cyclic Codes in Planar Bipartite Graphs

In graph theory, a planar graph is a graph that can be drawn as a picture on a 2-dimensional

plane in a way so that no two arcs meet at a point other than a common vertex. The main result

in this section is the following theorem:

Theorem 9.2. If the bipartite digraph G for a (unicast) index coding problem is planar, then

val(P1) = val(P2), i.e., gap(P1′,P1) = 0 and gap(P2,P2′) = 0. Hence, the (scalar) cyclic code

given by the cyclic code IP (P2) is an optimal index code.

The proof of Theorem 9.2 relies on the cycle-packing and feedback arc set duality in arc-

weighted planar graphs, which is summarized in the following theorem.

Theorem 9.3 (Theorem 2.1 in [GT11b] originally proven in [LY78]). Let G = (V,A,WA) be

an arc-weighted planar digraph where V is the set of vertices, A is the set of arcs and WA is

an integer arc weight assignment which assigns each arc a ∈ A a non-negative integer weight

wa ∈ Z+. Let C be the set of cycles in G. Then we have

min
{∑
a∈A

xawa :
∑
a∈A

xa1{a∈C} ≥ 1,∀C ∈ C;xa ∈ {0, 1},∀a ∈ A
}

= max
{∑
C∈C

yC :
∑
C∈C

yC1{a∈C} ≤ wa,∀a ∈ A; yC ∈ Z+,∀C ∈ C
}
. (9.4)

The integer program on the left-hand-side of (9.4) is a minimum feedback arc set problem,

while the integer program on the right-hand-side of (9.4) is a cycle packing problem. Both
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problems are associated with arc-weighted digraphs. However, our graph is vertex-weighted rather

than arc-weighted. To apply this theorem, we modify the bipartite digraph G to produce an

arc-weighted digraph Gs, which is planar if and only if G is planar. We then show that the

minimum feedback packet vertex set problem and the cycle packing problem in G can be reduced

to the minimum feedback arc set problem and the cycle packing problem in Gs, respectively. The

following subsections develop the proof of Theorem 9.2 and provide some additional consequences.

9.4.1 Complementary Problems

The maximum acyclic subgraph IP (P1) finds the packet weighted maximum acyclic subgraph.

This is equivalent to finding the minimum feedback packet vertex set. Indeed, this is the set

of packets whose deletion induce the packet weighted maximum acyclic subgraph. Thus, an

equivalent problem to the maximum acyclic subgraph IP (P1) is:

(P3)

min
xm

M∑
m=1

xmwpm

s.t.
M∑
m=1

xm1{pm∈Ci} ≥ 1, ∀Ci ∈ Ci, i = 2, . . . , L

xm ∈ {0, 1}, m = 1, . . . ,M

where xm ∈ {0, 1},m = 1, . . . ,M indicates if packet vertex pm is selected into the feedback

packet vertex set, objective function
∑M
m=1 xmwpm is the sum weight of the feedback packet

vertex set, 1{pm∈Ci} is the indicator function which equals one if and only if packet vertex pm

participates in cycle Ci, and
∑M
m=1 xm1{pm∈Ci} ≥ 1 is the constraint that at least one packet

vertex in each cycle is selected into the feedback packet vertex set. If x∗m,m = 1, . . . ,M is the

optimal solution of (P3) and attains the optimal value W0, then x∗m = 1− x∗m,m = 1, . . . ,M is

the optimal solution of (P1) and attains the optimal value W −W0.

Now consider the integer program related to cyclic coding. It is now useful to write the

complementary problem to the cyclic code IP (P2). In [CASL11], Chaudhry et. al. introduced the

concept of complementary index coding problems. Instead of trying to find the minimum number

of transmissions to clear the problem, the complementary index coding problem is formulated

to maximize the number of saved transmissions by exploiting a specific code structure. Recall
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that any K-cycle code can deliver K packets in K − 1 transmissions and hence one transmission

is saved in each K-cycle code. If the weight of each packet is not identically one, then K-

cycle coding actions can be performed wmin = min{wp1 , . . . , wpK} times on the same cycle. By

performing K-cycle coding actions wmin times and then directly broadcasting the remaining

packets (uncoded), the base station can deliver wtotal =
∑K
k=1 wpk packets with wtotal − wmin

transmissions.Thus, wmin transmissions are saved.

The complementary index coding problem which aims to maximize the number of saved

transmissions by exploiting scalar cycles in G is formulated as a linear integer program below:

(P4)

max
yCi

L∑
i=2

∑
Ci∈Ci

yCi

s.t.
L∑
i=2

∑
Ci∈Ci

yCi1{pm∈Ci} ≤ wpm , m = 1, . . . ,M

yCi non-negative integer, ∀Ci ∈ Ci, i = 2, . . . , L

where yCi is the number of cyclic coding actions over each cycle Ci ∈ Ci,∀Ci ∈ Ci, i = 2, . . . , L,

objective function
∑L
i=2
∑
Ci∈Ci yCi is the total number of cyclic coding actions, i.e., total number

of saved transmissions, and
∑L
i=2
∑
Ci∈Ci yCi1{pm∈Ci} ≤ wpm is the constraint that each packet

vertex pm can participate in at most wpm cyclic coding actions. This is important because if

packet vertex pm has already participated wpm times in cyclic coding actions, then all of its

packets have been delivered and new cyclic coding actions that involve this packet vertex can

no longer save any transmissions. If the optimal solution of (P4) is y∗Ci ,∀Ci ∈ Ci, i = 2, . . . , L

and attains the optimal value W0, then the optimal solution of the cyclic code IP (P2) is y∗Ci =

y∗Ci ,∀Ci ∈ Ci, i = 2, . . . , L, y∗m = wpm −
∑L
i=2
∑
Ci∈Ci y

∗
Ci

1{pm∈Ci},m = 1, . . . ,M and attains the

optimal value W −W0.

9.4.2 Packet Split Digraph

Definition 9.1 (Packet Split Digraph). Given a graph G = (U ,P,A,WP), we construct the

corresponding packet split digraph Gs = (Vs,As,Ws) as follows:

1. For each packet vertex pm ∈ P,m = 1, . . . ,M , we create two packet vertices pin
m and pout

m .

Let Vs = U ∪ {pin
1 , p

out
1 , pin

2 , p
out
2 , . . . , pin

M , p
out
M }.
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Figure 9.2: The packet split digraph constructed from the bipartite digraph given in Figure 9.1

2. For each packet vertex pm ∈ P,m = 1, . . . ,M , we create a packet-to-packet arc (pin
m, p

out
m )

in As. For each arc (un, pm) ∈ A, we create a user-to-packet arc (un, pin
m) in As. For each

arc (pm, un) ∈ A, we create a packet-to-user arc (pout
m , un) in As.

3. For each arc (pin
m, p

out
m ) in As, we assign a weight which is equal to wpm ∈ WP . For each arc

(un, pin
m) or (pout

m , un) in As, we assign an integer weight which is larger than
∑M
m=1 wpm .

For any bipartite digraph G, the packet split digraph Gs, which is an arc-weighted digraph, can

always be constructed. Figure 9.2 shows the packet split digraph constructed from the bipartite

digraph in Figure 9.1. In any digraph, a set of arcs is called a feedback arc set if the removal

of arcs in this set leaves an acyclic digraph. If the digraph is arc-weighted, the feedback arc set

with the minimum sum weight is called the minimum feedback arc set.

The following facts summarize the connections between the packet split digraph and the

original digraph.

Fact 9.1. There is a bijection between G and Gs. This bijection maps user vertices, user-to-

packet arcs, packet vertices, and packet-to-user arcs in G to user vertices, user-to-packet arcs,

253



packet-to-packet arcs, and packet-to-user arcs in Gs, respectively. Thus, this bijection also maps

cycles in G to cycles in Gs.

Proof. The bijection can be easily identified according to the construction rule of the packet split

digraph.

Fact 9.2. Every minimum feedback arc set of packet split graph Gs contains only packet-to-packet

arcs and no packet-to-user arcs or user-to-packet arcs.

Proof. In digraph G, each cycle contains at least one packet vertex. By Fact 1, each cycle Gs

contains at least one packet-to-packet arc. As such, the arc set composed of all packet-to-packet

arcs is a feedback arc set of Gs and this feedback arc set contains no packet-to-user arcs or user-

to-packet arcs. Note that the sum weight of this arc set is strictly less than the weight of any

single packet-to-user or user-to-packet arc. Any feedback arc set with a packet-to-user arc or

user-to-packet arc has a sum weight strictly larger than that of this one and hence cannot be a

minimum feedback arc set.

Fact 9.3. If As
fd ⊆ As is a minimum feedback arc set of the packet split digraph Gs, then a

minimum feedback packet vertex set Pfd ⊆ P of G is immediate. In addition, the sum weight of

Pfd is equal to the sum weight of As
fd.

Proof. Let As
fd be a minimum feedback arc set of Gs and the sum weight of As

fd be Wfd. By Fact

2, As
fd contains only packet-to-packet arcs. By Fact 1, the packet vertex set Pfd ⊆ P composed

by packet vertices corresponding to arcs in As
fd is a feedback packet vertex set of G and the sum

weight of Pfd is equal to Wfd. If Pfd is not a minimum feedback packet vertex set, there must

exist a minimum feedback packet vertex set, say P ′fd, whose sum weight W ′fd < Wfd. By Fact 1,

the counterpart of P ′fd in Gs is a feedback arc set and the sum weight of this feedback arc set is

equal to W ′fd. Denote this feedback arc set as As,′fd , then As,′fd has a sum weight strictly less than

Wfd. This contradicts the fact that As
fd is a minimum feedback arc set of Gs. Hence, Pfd must

be a minimum feedback packet set of G.

9.4.3 Optimality of Cyclic Codes in Planar Graphs

The planarity of a digraph is not affected by arc directions, so that a digraph is planar if

and only if its undirected counterpart, where all directed arcs are turned into undirected edges,

254



is planar. The following definitions are useful in characterizing the planarity of an (undirected)

graph.

Definition 9.2 (Page 21 in [Bol98]). Given an edge e = (v1, v2) of a graph G, subdividing the

edge e is the operation of replacing the edge e = (v1, v2) by the path (v1, v0, v2) of length 2 (see

Figure 9.3a).

Definition 9.3 (Page 24 in [Bol98]). Given an edge e = (v1, v2) of a graph G, contracting the

edge e is the operation of merging the vertices v1 and v2 and deleting all resulting loops and

duplicate edges (see Figure 9.3b).

Definition 9.4 (Page 24 in [Bol98]). A graph H is a minor of a graph G if H is a subgraph of

a graph obtained from G by a sequence of edge contractions.

Note that if a graph G is planar, edge subdivisions and contractions preserve the planarity.

Two simplest non-planar graphs are the complete graph with 5 vertices, which is denoted as K5,

and the complete bipartite graph with 3 vertices on one side and 3 vertices on the other side,

which is denoted as K3,3. Both of them are drawn in Figure 9.4. The following theorem provides

a sufficient and necessary condition for the planarity of an undirected graph.

Theorem 9.4 (Page 24 in [Bol98]). A graph G is planar if and only if G contains neither K5

nor K3,3 as a minor.

In the index coding problem, a packet is said to be a uniprior packet [OH12] if it is contained as

side information by only one user. The following lemma is proposed to characterize the planarity

of the packet split graph Gs.

Lemma 9.2. Let G be an index coding problem where each packet vertex is either unicast or

uniprior and let Gs be the packet split digraph of G. Gs is planar if and only if G is planar.

Proof.

• Gs planar ⇒ G planar: This part is relatively easy. Assume Gs is planar and is drawn in a

plane. A planar drawing of G can be obtained by contracting all the packet-to-packet arcs

of Gs into packet vertices. This part holds for any G even if some packet vertex is neither

unicast nor uniprior.
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Figure 9.3: (a) Subdivision of edge (v1, v2). (b) Contraction of edge (v1, v2).
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Figure 9.4: K5 and K3,3
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• G planar ⇒ Gs planar: Assume G is planar and is drawn in a plane. A planar drawing

of Gs can be obtained by subdividing packet-to-user arcs and user-to-packet arcs in G. A

crucial property is that each packet vertex in G has either one outgoing arc (unicast) or one

incoming arc (uniprior). For each packet vertex pm with only one outgoing arc (unicast),

we can subdivide the outgoing arc into two parts; add a new vertex pout
m in the middle and

reindex the vertex pm as pin
m. This preserves planarity, and the newly created vertex pout

m

indeed acts as the corresponding outgoing vertex for packet vertex pm in the desired packet

split digraph Gs (since that packet vertex has only one outgoing arc). The remaining packet

vertices pm that have not participated in these subdivisions must be uniprior and hence

have just one incoming arc. We can subdivide this incoming arc into two parts; add a new

vertex pin
m in the middle and reindex the vertex pm as pout

m . The subdivision operations as

above yield a planar drawing of Gs.

Corollary 9.1. For any unicast index coding problem G, Gs is planar if and only if G is planar.

Now we are ready to present the main result in this section.

Theorem 2: (Restated) If the bipartite digraph G for a (unicast) index coding problem is

planar, then val(P1) = val(P2), i.e., gap(P1′,P1) = 0 and gap(P2,P2′) = 0. Hence, the cyclic

code given by (P2) is an optimal index code.

Proof. Since G is a planar graph and this is a unicast index coding problem, Gs is also a planar

graph by Corollary 9.1. Let Gs = (Vs,As,Ws) be the packet spit digraph of G = (U ,P,A,WP).

Let Cs be the set of cycles in Gs. The minimum feedback arc set problem in Gs can be formulated

as a linear IP as follows:

(P3∗)

min
xa

M∑
a∈A

xawa

s.t.
∑
a∈A

xa1{a∈C} ≥ 1, ∀C ∈ Cs

xa ∈ {0, 1}, a ∈ A
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Similarly, the cycle-packing problem in Gs can formulated as another linear IP as follows:

(P4∗)

max
yC

∑
C∈Cs

yC

s.t.
L∑

C∈Cs
yC1{a∈C} ≤ wa, ∀a ∈ As

yC non-negative integer,∀C ∈ Cs

By Theorem 9.3, if Gs is a planar graph, then (P3∗) and (P4∗) have the same optimal value.

In what follows, we show that the optimal value of (P3) is equal to that of (P3∗) and the optimal

value of (P4) is equal to that of (P4∗).

• (P3) and (P3∗) have the same optimal value: By Fact 3, the minimum feedback

arc set corresponding to the solution of (P3∗) can be converted to a minimum feedback

packet set solution of (P3) which attains the same optimal objective function value as that

of (P3∗). On the other hand, by Fact 1, the optimal solution of (P3) can be converted to

a solution of (P3∗) which attains the same objective value as that of (P3).

• (P4) and (P4∗) have the same optimal value: By Fact 1, there is a bijection from C to

Cs. This is equivalent to say, there is a bijection from variables in (P4) to those in (P4∗). Let

As1 be the set of packet-to-packet arcs and As2 be the set of packet-to-user and user-to-packet

arcs. So As1 ∪As2 = As and As1 ∩As2 = ∅. The constraints
∑
C∈Cs yC1{a∈C} ≤ wa,∀a ∈ As1

in (P4∗) are essentially the same as the constraints
∑L
i=2
∑
Ci∈Ci yCi1{pm∈Ci} ≤ wpm ,m =

1, . . . ,M in (P4). The other inequality constraints
∑
C∈Cs yC1{a∈C} ≤ wa over a ∈ As2 can

be shown to be redundant as follows. Let yC , C ∈ Cs be an arbitrary non-negative integer

vector which satisfies all the constraints
∑
C∈Cs yC1{a∈C} ≤ wa over a ∈ As1. Due to the

bipartite property, each cycle in G contains at least one packet vertex. By Fact 1, each

cycle in Gs contains at least one packet-to-packet arc. Thus, for any C ∈ Cs, there exists
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some a ∈ As1 such that 1{a∈C} = 1. Then, for any ā ∈ As2 we have,

∑
C∈Cs

yC1{ā∈C} ≤
∑
C∈Cs

yC

≤
∑
C∈Cs

[
yC ·

∑
a∈As1

1{a∈C}
]

=
∑
a∈As1

[ ∑
C∈Cs

yC1{a∈C}
]

≤
∑
a∈As1

wa

< wā

where the first inequality follows from the fact that 0 ≤ 1{ā∈C} ≤ 1; the second inequality

follows from the fact that for any C ∈ Cs there exists some a ∈ As1 such that 1{a∈C} = 1;

the third inequality follows from the fact that all the constraints
∑
C∈Cs yC1{a∈C} ≤ wa

over a ∈ As1 are satisfied; and the last inequality follows from the fact that the weight

of any packet-to-user arc or user-to-packet-arc is strictly larger than the sum weight of all

packet-to-packet arcs. This is to say the constraint
∑
C∈Cs yC1{a∈C} ≤ wa over any a ∈ As2

is automatically satisfied and hence redundant. Hence, (P4) and (P4∗) are two equivalent

optimization problems.

Combining the above facts, we can conclude that the optimal value of (P3) is equal to that of

(P4). Denote this value as W0. According to Theorem 9.1, W −W0 is a lower bound on the

clearance time of the index coding problem G. On the other hand, W −W0 is the clearance time

achieved by the scalar cyclic code corresponding to the solution of (P4), or equivalently the cyclic

code IP (P2). Hence, we can conclude that the cyclic code given by the cyclic code IP (P2) is

the optimal index code.

9.4.4 Optimality of Cyclic Codes in the Unicast-Uniprior Index Coding

Problem

In this subsection, we consider the unicast-uniprior index coding problem where each packet

is demanded by one single user and can be contained as side information by at most one single

user. This problem is motivated by the broadcast relay problem [NTZ13] where multiple users
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exchange their individual data through a broadcast relay.

A strong corollary of Theorem 9.2 on the unicast-uniprior index coding problem is presented

as below. This corollary is also an enhancement of the conclusion in Section III.C of [NTZ13]

where the cyclic code is proven to be the optimal index code in the unicast-uniprior index coding

problem with less than or equal to 3 users.

Corollary 9.2. If the number of users in the unicast-uniprior index coding problem is less than

or equal to 4, then cyclic codes are optimal.

Proof. Let G = (U ,P,A,WP) be a unicast-uniprior index coding problem where each packet

vertex has one single outgoing link and one single incoming link and |U| ≤ 4. Let the underlying

undirected graph of G be U(G). The degree of a vertex in an undirected graph is defined as the

number of its adjacent edges. At most 4 vertices in U(G) can have a degree larger than 2. That

is because each packet vertex must have a degree of 2 and only a user vertex can have a degree

larger than 2.

By Theorem 9.4, if U(G) is nonplanar, there must exist a subgraph of U(G) which can be

converted to either K5 or K3,3 after several contracting operations. Note that K5 has 5 nodes

with identical degree of 4 and K3,3 has 6 nodes with identical degree of 3. Also note that no

matter a user-to-packet edge or a packet-to-user edge in U(G) is contracted, one user vertex and

one packet vertex are replaced by one new vertex whose degree is equal to the degree of the user

vertex. As a result, contracting operations performed over U(G) can not generate new nodes

with degree larger than 2. Thus, there doesn’t exist a subgraph of U(G) which has K5 or K3,3

as minor. So graph U(G) must be planar. By Theorem 9.2, the cyclic code is optimal in G.

9.5 Partial Clique Codes: a Duality Perspective

Section 9.3 shows the inherent duality between the maximum acyclic subgraph bound given

by Theorem 9.1 and the optimal cyclic code. In fact, this is not an isolated case. In this section,

a different code structure involving partial clique codes is considered. Partial clique codes are

more sophisticated but often lead to performance improvements over cyclic codes. It is shown

that the problem of finding the optimal partial clique code is the dual problem of another LP

relaxation of the maximum acyclic subgraph IP (P1). The new relaxation is different from (P1′)

and results in a smaller integrality gap.
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9.5.1 Partial Clique Codes

Let P0 ⊆ P be a subset of k (1 ≤ k ≤M) packet vertices and Nout(P0) =
⋃
p∈P0

Nout(p) be the

outgoing neighborhood of P0, i.e., the subset of users who demand packets in P0. If each user in

Nout(P0) has at least d (0 ≤ d ≤ k−1) packet vertices in P0 as side information, and at least one

such user has exactly d, then the subgraph of G induced by P0 and Nout(P0) is called a (k, d)-

partial clique. A (k, d)-partial clique where the weight of each packet vertex is identically 1 can be

cleared with k−d transmissions using k−d independent linear combinations of the packets (such

as using systematic maximum distance separable (MDS) codes in [BK98, TDN12] or random

codes in [HMK+06]). For example, the digraph G in Figure 9.1 itself is a (3, 1)-partial clique. If

the weight of each packet vertex is identically one, then this graph can be cleared by transmitting

2 linear combinations in the form Z1 = α1p1 + α2p2 + α3p3 and Z2 = β1p1 + β2p2 + β3p3, where

the αi and βi values are taken from a finite field F. If the finite field F is large enough, we are

able to find 2 linear combinations that, together with any one known value of p1, p2 or p3, are

linearly independent. Thus, each user ui, i = 1, 2, 3 can decode pi by solving a system of 2 linear

equations and 2 unknowns.

The linear index code of G is said to be a partial clique code if it uses a sequence of coding

actions that involve only partial clique coding actions. Note that the subgraph induced by a

single packet vertex and the user vertex demanding it is by definition a (1, 0)-partial clique. Let

Tk,d, k = 1, . . . ,M, d = 0, . . . , k − 1 be the set of all (k, d)-partial cliques in G. The problem of

finding the optimal scalar partial clique code can be formulated as an IP as below:

Partial Clique Code IP (P5):

min
yTk,d

M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d(k − d)

s.t.
M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d1{pm∈Tk,d} ≥ wpm , m = 1, . . . ,M

yTk,d non-negative integer, ∀Tk,d∈Tk,d,
k=1,...,M,d=0,...,k−1

where yTk,d is the number of partial clique coding actions over each partial clique Tk,d,∀Tk,d ∈

Tk,d, k = 1, . . . ,M, d = 0, . . . , k − 1, objective function
M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d(k − d) is the total
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number of transmissions, and
M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d1{pm∈Tk,d} ≥ wpm is the constraint that all

the wpm packets represented by packet vertex pm are cleared by partial cliques involving it.

The problem of finding the optimal vector partial clique code can be formulated as a LP

problem as below:

Partial Clique Code LP (P5′):

min
yTk,d

M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d(k − d)

s.t.
M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d1{pm∈Tk,d} ≥ wpm ,m = 1, . . . ,M

yTk,d ≥ 0, ∀Tk,d∈Tk,d,
k=1,...,M,d=0,...,k−1

Similar to cyclic codes, the partial clique code LP (P5′) is the LP relaxation of the partial clique

code IP (P5).

The structure of partial clique codes is much more sophisticated than that of cyclic codes.

Typically, partial clique codes have to be implemented over a large enough finite field while cyclic

codes can always be implemented over the binary field. On the other hand, the performance of

partial clique codes in general is better (no worse) than that of cyclic codes. This is summarized

in the following lemma.

Lemma 9.3. In any (unicast) index coding problem, the optimal clearance time attained by scalar

cyclic codes is no less than that attained by scalar partial clique codes. Similarly, the optimal

clearance time attained by vector cyclic codes is no less than that attained by vector partial clique

codes.

Proof. This lemma is proven for scalar codes. However, all the arguments can be carried over

to vector codes after each packet is divided into subpackets. Recall that in any K-cycle, each

user vertex has at least one packet vertex as side information. So each K-cycle code can be

equivalently replaced by a (K, 1)-partial clique code. This uses partial clique coding to achieve

the same clearance time. Thus, the best partial clique coding strategy achieves a clearance time

that is less than or equal to that of the best cyclic coding strategy.

Figure 9.5 shows an example of the index coding problem with 3 users and 3 packets. The

bipartite digraph of this problem is not planar. (In fact, this example is the only unicast index
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u1#

u2#

u3#

p1#

p2#

p3#

w1=1#

w2=1#

w3=1#

Figure 9.5: An example with 3 users and 3 packets where the partial clique code is strictly better
than the cyclic code.

coding problem with 3 users and 3 packets for which the bipartite digraph is non-planar.) It can

be verified that the optimal scalar cyclic code can clear this problem with 2 transmissions. On the

other hand, the bipartite digraph itself is a (3, 2)-partial clique and hence the scalar partial clique

code can clear it with one single transmission. The scalar partial clique code simply transmits

Z = p1 + p2 + p3. In this simple example, the scalar partial clique code is strictly better than

the scalar cyclic code. However, the following theorem shows that partial clique codes have no

performance advantage over cyclic codes in the unicast-uniprior index coding problem.

Theorem 9.5. In any unicast-uniprior index coding problem, the optimal clearance time attained

by scalar cyclic codes is equal to that attained by scalar partial cliques. Similarly, the optimal

clearance time attained by vector cyclic codes is equal to that attained by vector partial cliques.

Proof. This theorem is proven for scalar codes. However, all the arguments can be carried over

to vector codes after each packet is divided into subpackets.

• Claim 1: The optimal clearance time attained by cyclic codes is larger than or equal to

that attained by partial clique codes. This is Lemma 9.3.

• Claim 2: The optimal clearance time attained by cyclic codes is less than or equal to that

attained by partial clique codes. For any partial clique Tk,d (d ≥ 1) utilized in the optimal
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partial clique code, k packets are cleared with k− d transmissions. By definition of partial

cliques, each user vertex in this Tk,d has at least d arcs outgoing to packet vertices in it.

So we are able to find a cycle in it. To find a cycle, we start at any vertex, traverse a path

from vertex to vertex using any outgoing link and discover a cycle when we revisit a vertex.

Denote this cycle as C1 and delete all the packet vertices and the associated outgoing

and incoming arcs from Tk,d. Note that each packet vertex has at most one outgoing arc

and at most one incoming arc in a unicast-uniprior index coding problem. Hence, no two

packet vertices in C1 share the same outgoing neighbor or incoming neighbor. So after the

deletion of the packet vertices and the associated outgoing and incoming arcs, the number

of outgoing arcs of the user vertices involved in C1 decreases by one while the number of

outgoing arcs of the user vertices not involved in C1 does not change. So in the remaining

part of this Tk,d, each user vertex has at least d − 1 outgoing arcs. Repeat the above

process again and again. In the end, we have d cycles and no two cycles share the same

packet vertex. So by performing a cycle code over each cycle Ci, i = 1, . . . , d, we can

save d transmissions in total. Hence, this Tk,d can be cleared with k − d transmissions by

applying cyclic codes. As a result, cyclic codes are no worse than partial clique codes in

the unicast-uniprior index coding problem.

9.5.2 Duality Between Information Theoretical Lower Bounds and Par-

tial Clique Codes

Define an IP as below:

IP (P6)

max
xm

M∑
m=1

xmwpm

s.t.
M∑
m=1

xm1{pm∈Tk,d} ≤ k − d,
∀Tk,d∈Tk,d,

k=1,...,M,d=0,...,k−1

xm ∈ {0, 1}, m = 1, . . . ,M

The physical meaning of IP (P6) is to find the maximum packet weighted subgraph of G formed

by packet vertex deletions such that at least d packet vertices are deleted in each (k, d) partial

clique.
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Lemma 9.4. The partial clique code LP (P5′) and the LP relaxation of IP (P6) are a primal-dual

linear programming pair.

Proof. The Lagrangian function of the partial clique code LP (P5′) can be written as

L(yTk,d , λm, µTk,d) =
M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d(k − d) +
M∑
m=1

λm
[
wpm −

M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d1{pm∈Tk,d}
]

−
M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

µTk,dyTk,d

=
M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d
[
(k − d)−

M∑
m=1

λm1{pm∈Tk,d} − µTk,d
]

+
M∑
m=1

λmwpm

where λm ≥ 0,m = 1, . . . ,M and µTk,d ≥ 0,∀Tk,d ∈ Tk,d, k = 1, . . . ,M, d = 0, . . . , k − 1. The

dual problem of the partial clique code LP (P5′) is defined as:

max
λm≥0
µTk,d≥0

min
yTk,d∈R

L(yTk,d , λm, µTk,d)

Note that,

min
yTk,d∈R

L(yTk,d , λm, µTk,d) =


∑M
m=1 λmwpm

(k−d)−
∑M

m=1
λm1{pm∈Tk,d}−µTk,d=0

∀Tk,d∈Tk,d,k=1,...,M,d=0,...,k−1

−∞ otherwise

Then, the dual problem of the partial clique code LP (P5′) can be written as,

max
λm,µTk,d

M∑
m=1

λmwpm

s.t. (k − d)−
M∑
m=1

λm1{pm∈Tk,d} − µTk,d = 0,∀Tk,d ∈ Tk,d, k = 1, . . . ,M, d = 0, . . . , k − 1

λm ≥ 0, m = 1, . . . ,M

µTk,d ≥ 0, ∀Tk,d∈Tk,d
k=1,...,M,d=0,...,k−1,
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Eliminating variables µTk,d ,∀Tk,d ∈ Tk,d, k = 1, . . . ,M, d = 0, . . . , k − 1, we obtain

max
λm

M∑
m=1

λmwpm

s.t.
M∑
m=1

λm1{pm∈Tk,d} ≤ (k − d), ∀Tk,d∈Tk,d,
∀k=1,...,M,d=0,...,k−1

λm ≥ 0, m = 1, . . . ,M

Now consider all the M packet vertices, i.e., all T1,0 ∈ T1,0. The corresponding constraints∑M
m=1 λm1{pm∈Tk,d} ≤ (k − d),∀T1,0 ∈ T1,0 can be simplified as λm ≤ 1,m = 1, . . . ,M . Hence,

the above linear programming problem is the LP relaxation of (P6).

IP (P6) seems quite different from the maximum acyclic subgraph IP (P1) and it seems

that there exists no duality between the optimal partial clique code and the MAS lower bound.

However, the following lemma shows that the maximum acyclic subgraph IP (P1) and IP (P6)

are two equivalent problems.

Lemma 9.5. For any (unicast) index coding problem G, the maximum acyclic subgraph IP (P1)

and IP (P6) are two equivalent problems.

Proof. Note that the objective function in problem (P1) is the same as that in problem (P6). To

prove problems (P1) and (P6) are equivalent, we show that xm ∈ {0, 1},m = 1, . . . ,M is feasible

to problem (P1) if and only if it is feasible to problem (P6).

• Feasible to (P6) ⇒ feasible to (P1): Assume xm ∈ {0, 1},m = 1, . . . ,M is feasible to (P6).

For any cycle Ci,∀Ci ∈ Ci, i = 2, . . . , L involving i packet vertices in G, let us consider

the partial clique Ti,d formed by the i packet vertices and i user vertices in this i-cycle.

By the definition of a cycle, each user vertex has at least one packet vertex among these

i packet vertices as side information. So d ≥ 1. Since xm ∈ {0, 1},m = 1, . . . ,M satisfies

the inequality constraints in (P6), at least d packet vertices among these i packet vertices

are deleted. Since at least one packet vertex of the cycle is deleted, cycle Ci cannot be

complete. Hence, xm,m = 1, . . . ,M yields an acyclic subgraph of G.

• Feasible to (P1) ⇒ feasible to (P6): Assume xm ∈ {0, 1},m = 1, . . . ,M is feasible to

(P1). For any partial clique Tk,d, if d = 0, then constraint
∑M
m=1 xm1{pm∈Tk,d} ≤ k − d

is trivially satisfied. Without loss of generality, assume 1 ≤ d ≤ k − 1. Then, in this
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partial clique Tk,d, each user vertex has at least d outgoing arcs. So we can find a cycle

in this partial clique. (To find a cycle, we start at any vertex, traverse a path from vertex

to vertex using any outgoing link and discover a cycle when we revisit a vertex.) Since

xm ∈ {0, 1},m = 1, . . . ,M is feasible to (P1), at least one packet vertex in this cycle is

deleted. Assume d1 packet vertices are deleted. These deleted packet vertices are also

vertices in partial clique Tk,d. If d1 ≥ d, then the constraint over Tk,d is satisfied. If

d1 < d, then we continue to consider the remaining part of Tk,d after deleting these d1

packet vertices. In the remaining part, each user vertex has at least d−d1 outgoing arcs. A

similar argument as above shows that we are still able to find a new cycle in the remaining

part and at least one packet vertex in the cycle is deleted. Assume d2 packet vertices in

the new cycle are deleted. If d1 + d2 < d, we can repeat this process until at least d packet

vertices are shown to be deleted. That is to say, constraint
∑M
m=1 xm1{pm∈Tk,d} ≤ k − d

over all Tk,d is satisfied. Hence, xm ∈ {0, 1},m = 1, . . . ,M satisfies the constraints of (P6).

The above lemma indicates that IP (P6) is another representation of the maximum acyclic

subgraph IP (P1). However, this new representation is non-trivial. The LP relaxations of IP

(P6) and the maximum acyclic subgraph IP (P1) correspond to partial clique codes and cyclic

codes, respectively. Lemma 9.3 demonstrates that codes associated with IP (P6) in general have

better performance than codes associated with the maximum acyclic subgraph IP (P1).

9.5.3 Discussion

The integer linear programs (P1) and (P6) are two different representations of the same

problem of finding the maximum acyclic subgraph bound. Different representations of an integer

linear program can yield LP relaxations with different integrality gaps. In Section 9.3 and this

section, we show that the LP relaxation of (P1) is the (dual) problem of finding the optimal

vector cyclic code, and the LP relaxation of (P6) is the (dual) problem of finding the optimal

vector partial clique code. The performance of partial clique codes is no worse than that of

cyclic codes. Hence, the integrality gap of the LP relaxation of (P6) is no larger than that of the

LP relaxation of (P1). The relations between various problems in this chapter are illustrated in

Figure 9.6. Note that (P2′) and (P5′) require a large packet size, while (P5) and (P5′) require
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Figure 9.6: The relations between various problems in Chapter 9.

encoding in a large finite field. The graph parameter minrank is known to be optimal over scalar

linear codes [BYBJK11], and hence lies somewhere in the shaded region between (P5) and the

MAS bound.

Since there are various techniques for obtaining tight LP relaxations of an integer linear

program [NW88], a potential approach to design good code structures for the index coding

problem is to explore different representations of the maximum acyclic subgraph IP (P1) for

which the LP relaxations have small integrality gaps. If the dual problem of such an LP relaxation

can be interpreted as a code, then this is a good code for the index coding problem.

9.6 Chapter Summary

This chapter studies index coding from a perspective of optimization and duality. It illustrates

the inherent duality between the information theoretic maximum acyclic subgraph (MAS) lower

bound and the optimal cyclic codes and partial clique codes. The performance of both codes is

bounded by the respective integrality gap of two different LP relaxations of the integer program

that defines the MAS bound. In the special case when the index coding problem has a planar

digraph representation, the integrality gap associated with cyclic coding is shown to be zero.

So the exact optimality is achieved by cyclic coding. For general (non-planar) problems, the

LP-relaxation associated with partial clique coding provides an integrality gap that is no worse,

and often better, than the previous gap. These results provide new insight into the index coding

problem and suggest that good codes can be found by exploring different relaxations of the MAS

bound problem.
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Chapter 10

Conclusions

In this thesis, we develop new Lagrangian methods for constrained convex programs with

complicated functional constraints. Existing Lagrangian methods either have a slow O( 1
ε2 ) con-

vergence time or can only solve problems with linear equality constraint functions. The new

methods developed in this thesis are proven to have a faster O( 1
ε ) convergence time and can be

implemented in parallel in most cases of interest. The per-iteration complexity of the new meth-

ods is also as small as that of existing Lagrangian methods. The design intuition and performance

analysis of our new methods is different from conventional analysis techniques for existing La-

grangian methods and is based on a drift-plus-penalty type analysis, which is originally proposed

for stochastic network optimization in dynamic queueing networks.

Most existing backpressure algorithms for joint rate control and routing in data networks can

be interpreted as distributive applications of certain Lagrangian methods for a multi-commodity

network flow formulation. By adapting our new Lagrangian methods, we are able to develop new

backpressure algorithms that have the best utility and queue length tradeoff among all known

backpressure algorithms.

The new Lagrangian methods are further adapted to develop new learning algorithms for

online convex optimization with constraints. The two developed learning algorithms are proven

to achieve the best regret and constraint violations for online convex optimization with stochas-

tic constraints and online convex optimization with long term constraints, respectively. Power

control for energy harvesting devices with outdated state information is closely related to on-

line convex optimization with stochastic constraints but is restricted to a more stringent energy

availability constraint. For this problem, we develop dynamic power control policy to achieve an

O(ε) optimal utility by using a battery with capacity O(1/ε).
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In this thesis, we also extend existing stochastic constrained convex optimization techniques

and utilize Lagrangian duality theory for constrained convex optimization to study two other

important problems in wireless communication and network coding. In the first problem, we

adapted the conventional drift-plus-penalty technique for stochastic optimization and Zinkevich’s

projected online gradient descent for online convex optimization to develop new dynamic transmit

covariance design policies for MIMO fading systems with unknown channel distributions and

inaccurate channel state information. In the second problem, we study the index coding problem

and characterize the optimality of two representative linear codes by studying the integrality

gap between the integer linear program from an information theoretical lower bound and its

linear programming relaxations and the Lagrangian duality between various linear programming

relaxations and their dual problems.
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