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Abstract—One practical open problem is the development of a
distributed algorithm that achieves near-optimal utility using only
a finite (and small) buffer size for queues in a stochastic network.
This paper studies utility maximization (or cost minimization) in
a finite-buffer regime and considers the corresponding delay and
reliability (or rate of packet drops) tradeoff. A floating-queue
algorithm allows the stochastic network optimization framework
to be implemented with finite buffers at the cost of packet
drops. Further, the buffer size requirement is significantly smaller
than previous works in this area. With a finite buffer size of
B packets, the proposed algorithm achieves within O(e−B) of
the optimal utility while maintaining average per-hop delay of
O(B) and an average per-hop drop rate of O(e−B) in steady
state. From an implementation perspective, the floating-queue
algorithm requires little modification of the well-known Drift-
Plus-Penalty policy (including MaxWeight and Backpressure
policies). As a result, the floating-queue algorithm inherits the
distributed and low complexity nature of these policies.

I. INTRODUCTION

Stochastic network optimization is a general framework for
solving a network optimization problem with randomness [1].
The framework generates a control algorithm that achieves
a specified objective, such as minimizing power cost or
maximizing throughput utility. It is assumed that the network
has random states that evolve over discrete time. Every time
slot, a network controller observes the current network state
and makes a control decision. The network state and control
decision together incur some cost and, at the same time, serves
some amount of traffic from network queues. The algorithm is
designed to greedily minimize a drift-plus-penalty expression
every slot. This greedy procedure is known to minimize time
average network cost subject to queue stability.

This general framework has been used to solve several
network optimization problems such as network routing [2],
throughput maximization [3], dynamic power allocation [4],
quality of information maximization [5]. The framework yields
low-complexity algorithms which do not require any statistical
knowledge of the network states. Therefore, these algorithms
are easy to implement and are robust to environment changes.
Further, they achieve an [O(1/V ), O(V )] utility-delay trade-
off, where V > 0 is a parameter that can be chosen as desired
to achieve a specific operating point on the [O(1/V ), O(V )]
utility-delay tradeoff curve.

Prior works attempt to improve network delay without
sacrificing reliability, where reliability is measured by the rate
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of packet drops. Previous works [6] and [7] use an exponential
Lyapunov function and assumed knowledge of an ε parameter,
where ε measures a distance associated with the optimal op-
eration point. They achieve an optimal [O(1/V ), O(log(V ))]
utility-delay tradeoff. A simpler methodology allows packet
drops in order to obtain an [O(1/V ), O([log(V )]2)] utility-
delay tradeoff [8], [9]. In [8], a steady state behavior is ob-
served to learn a placeholder parameter to achieve the tradeoff
in steady state. However, the algorithm does not gracefully
adapt to changes of the network state distribution. It would
need another mechanism to sense changes and then recompute
a new placeholder parameter with each change. The Last-
In-First-Out (LIFO) queue discipline is employed to resolve
this issue [9]. However, these works, which achieve average
queue size that grows logarithmically in V , still assume the
availability of infinite buffer space [7]–[9].

A practical implementation of the LIFO scheme is devel-
oped in [10]. The work in [10] also introduces a floating-
queue algorithm, operating under the LIFO scheme, to deal
with finite buffers. The algorithm in [10] is heuristic, and it
is not clear how to analyze its behavior. The current work is
inspired by this floating queue idea of [10] and adopts the
same “floating queue” terminology, even though the floating-
queue algorithm developed here is different from [10]. Indeed,
the floating queue technique of this paper operates under the
First-In-First-Out (FIFO) scheme. It splits each queue into two
queues (one for real and one for fake packets) and yields
analytical guarantees on utility, delay, and packet drops.

Several backpressure approaches [11]–[13] attempt to im-
prove network delay. However, those focus on specific as-
pects and do not have the theoretical utility-delay tradeoff.
Stochastic network optimization with finite buffers has been
studied previously in [14]. That work uses a non-standard
Lyapunov function and knowledge of an ε parameter to derive
an upper bound on the required buffer size. However, the ε
parameter can be difficult to determine in practice, and the
resulting utility-delay tradeoff is still [O(1/V ), O(V )]. An
implementation of that work is studied in [15].

This paper develops a floating-queue approach to general
stochastic network optimization with finite buffers. Our algo-
rithm is inspired by finite buffer heuristics in [10] and the
steady state analysis in [8]. We propose the floating-queue
algorithm to solve the learning issue in [8]. The result obtains
the best of both worlds: It achieves the desired steady state
performance but is just as adaptive to network changes as
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LIFO scheduling. For finite buffers of size B, deviation from
utility optimality is shown to decrease like O(e−B) and packet
drops are shown to have rate O(e−B), while average per-hop
delay is O(B).

This paper is organized as follows. The system model is
described in Section II. Section III describes the standard
drift-plus-penalty approach. The floating queue algorithm is
introduced in Section IV. Performance of the floating-queue
algorithm is analyzed in Section V and is validated by simu-
lation in Section VI. Section VII concludes the paper.

II. SYSTEM MODEL

The network model of this paper is similar to that of [8].
Consider a network with N queues that evolve in discrete
(slotted) time t ∈ {0, 1, 2, . . . }. At each time slot, a network
controller observes the current network state before making
a decision. The goal of the controller is to minimize a time
average cost subject to network stability. An example of time
average cost is average power incurred over the network.
Utility maximization can be treated by defining the slot-t cost
as −1 times a slot-t reward. An example utility maximization
problem is to maximize time average network throughput.
The rest of the paper deals with cost minimization, with the
understanding that this can also treat utility maximization.

A. Network State

The network experiences randomness every time slot. This
randomness is called the network state and can represent
a vector of channel conditions and/or random arrivals for
slot t. Assume there are M different network states. Define
S = {s1, s2, . . . , sM} as the set of all possible states. Let
S(t) denote the network state experienced by the network at
time t. Let πm ∈ [0, 1] be the steady state probability that
S(t) = sm, i.e., πm = P {S(t) = sm}. For simplicity, it is
assumed that S(t) is independent and identically distributed
(i.i.d.) over slots. The same results can be shown in the general
case of ergodic but non-i.i.d. processes (see [8]). The network
controller can observe S(t) before making the slot-t decision,
but the πm probabilities are not known to the controller.

B. Control Decision

Every time slot, the network controller chooses a decision
from a set of feasible actions which depends on the current
network state. Formally, define XS(t) as the decision set
depending on S(t), and let x(t) denote the decision chosen by
the controller at time t, where x(t) ∈ XS(t). Assume the action
set X sm is finite for every sm ∈ S . On slot t, these control
decision and network state (x(t), S(t)) affects the network in
2 aspects:

1) A cost is incurred. The cost is f(t),f(x(t), S(t)) :
XS(t) → R. An example cost is energy expenditure. Another
example is −1 times the amount of newly admitted packets.

2) Queues are served. The service variables are µij(t),
representing the integer amount of packets taken from queue i
and transmitted to queue j, for all i, j ∈ N,{1, . . . , N}. This
is determined by a function µij(t),µij(x(t), S(t)) : XS(t) →

Fig. 1. Arrivals and services at a standard queue

Z+. Further, the decision admits µ0i(t),µ0i(x(t), S(t)) :
XS(t) → Z+ integer amount of exogenous packets to queue
i ∈ N . Packets depart from the network at queue j ∈ N with
an integer amount µj0(t),µj0(x(t), S(t)) : XS(t) → Z+.
Note that we set µii(t) = 0 for all i ∈ N ∪ {0} and for
all t. This is illustrated in Figure 1.

For every sm ∈ S , we assume functions f(·, sm) and
µij(·, sm) for i, j ∈ N ∪ {0} are time-invariant, and mag-
nitudes of

∑N
i=0 µin(·, sm) and

∑N
j=0 µnj(·, sm) are upper

bounded by constant δ(max) ∈ (0,∞) for every n ∈ N .
Furthermore, the network optimization is assumed to satisfy
the following Slater condition [8]: Let |X | be the cardinality of
set X . For every sm ∈ S and k ∈ {1, . . . , |X sm |}, there exist
probabilities ζsmk (such that

∑|X sm |
k=1 ζsmk = 1 for all sm ∈ S)

that define a stationary and randomized algorithm. Whenever
the network controller observes S(t) = sm, the stationary and
randomized algorithm chooses action xsmk with conditional
probability ζsmk . The Slater condition assumes there exists such
a stationary and randomized algorithm satisfying:

M∑
m=1

|X sm |∑
k=1

πmζ
sm
k

 N∑
i=0

µin(xsmk , sm)−
N∑
j=0

µnj(x
sm
k , sm)


≤ −η for all n ∈ N ,

for some η > 0. In fact, this assumption is the standard Stater
condition of convex optimization [16].

C. Standard Queue

The network consists of N standard queues. Let Qn(t)
denote the backlog in queue n at time t, and let
Q(t),(Q1(t), . . . , QN (t)) be the vector of these backlogs.
The backlog dynamic of queue n ∈ {1, . . . , N} is

Qn(t+1) = max

Qn(t)−
N∑
j=0

µnj(t), 0

+

N∑
i=0

µin(t). (1)

When there are not enough packets in a queue, i.e, Qn(t) <∑N
j=0 µnj(t), blank packets are used to fill up transmissions.

D. Stochastic Formulation

The controller seeks to minimize the expected time-average
cost while maintaing queue stability. The expected time aver-
age cost is defined by

f̄ = lim sup
T→∞

1

T

T−1∑
t=0

E [f(t)],
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Initialization: Q(0) = 0
for t ∈ {0, 1, 2, . . .} do

Observer S(t) and Q(t).
Choose x(t) that solves (3).
Update Qn(t+ 1) according to (1) ∀n ∈ N .

end for
Fig. 2. The drift-plus-penalty algorithm

and the queue stability is satisfied when

lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E [Qn(t)] <∞.

The stochastic network optimization problem is

Minimize f̄ (2)
Subject to queue stability.

III. DRIFT-PLUS-PENALTY METHOD

A. Drift-Plus-Penalty Method

The drift-plus-penalty method of [1] can solve problem (2)
via a greedy decision at each time slot that does not require
knowledge of the steady state probabilities. The method has
parameter V ≥ 0. In the special case of V = 0, this policy is
also called “MaxWeight” or “Backpressure”:

Drift-Plus-Penalty Policy: At every time t ∈ {0, 1, 2, . . . },
the network controller observes network state S(t) and back-
log vector Q(t). Decision x(t) ∈ XS(t) is chosen to solve:

Minimize V f(x(t), S(t)) (3)

+

N∑
n=1

Qn(t)

 N∑
i=0

µin(x(t), S(t))−
N∑
j=0

µnj(x(t), S(t))


Subject to x(t) ∈ XS(t).

Depending on the separability structure of problem (3), it
can be decomposed to smaller subproblems that can be solved
distributively. The algorithm is summarized in Figure 2.

It has been shown in [1] that

f (DPP) ≤ f (opt) +O(1/V ) (4)

lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E [Qn(t)] = O(V ), (5)

where f (DPP) is the expected time average cost achieved by
the drift-plus-penalty policy, and f (opt) is the optimal cost of
problem (2). The inequality (4) implies that the drift-plus-
penalty policy achieves cost within O(1/V ) of the optimal
cost, which can be made as small as desired by choosing
a sufficiently large value of V . The equality (5) implies
that average queue backlog grows linearly with V . Applying
Little’s law gives the [O(1/V ), O(V )] utility-delay tradeoff
(see [17] for a standard description of Little’s law).

Notice that the drift-plus-penalty algorithm assumes infinite
buffer size at each queue, even though the average queue size
is bounded by O(V ).

B. Deterministic Problem

In order to consider a finite buffer regime, the steady-state
behavior of the drift-plus-penalty algorithm is considered. In
[8], the stochastic problem (2) is shown to have an associated
deterministic problem as follows:

Minimize V

M∑
m=1

πmf(xsm , sm) (6)

Subject to
M∑
m=1

πm

N∑
i=0

µin(xsm , sm)

≤
M∑
m=1

πm

N∑
j=0

µnj(x
sm , sm) ∀n ∈ N (7)

xsm ∈ X sm ∀m ∈ {1, . . . ,M}.

Let γ = (γ1, . . . , γN ) be a vector of dual variables associ-
ated with constraint (7). The dual function of problem (6) is
defined as:

g(γ) =

M∑
m=1

πm inf
xsm∈X sm

{
V f(xsm , sm)

+

N∑
n=1

γn

[
N∑
i=0

µin(xsm , sm)−
N∑
j=0

µnj(x
sm , sm)

]}
. (8)

This dual function (8) is concave. Therefore, the following
dual problem is a convex optimization problem:

Maximize g(γ) (9)

Subject to γ ∈ RN+ .

Let γV ∗ = (γV ∗1 , . . . , γV ∗N ) be a vector of Lagrange mul-
tipliers, which solves the dual problem (9) with parameter
V . The following theorem from [9] describes a steady state
property of the drift-plus-penalty algorithm:

Theorem 1: Suppose γV ∗ is unique, the Slater condition
holds, and the dual function g(γ) satisfies:

g(γV ∗) ≥ g(γ) + L
∥∥γV ∗ − γ∥∥ for all γ ∈ RN+ ,

for some constant L > 0, independent of V . Then under
the drift-plus-penalty policy, there exist constants D,K, c∗,
independent of V , such that for any β ≥ 0, the following
upper bound holds

P(D,Kβ) ≤ c∗e−β , (10)

where

P(D,Kβ)

, lim sup
T→∞

1

T

T−1∑
t=0

P
{
∃n,

∣∣Qn(t)− γV ∗n
∣∣ > D +Kβ

}
. (11)

Proof: Please see the full proof in [8].
As all transmissions, admissions, and departures are inte-

gers, the queue vector has a countably infinite number of
possibilities, and under a mild ergodic assumption the steady
state distribution of {Q(t) : t ≥ 0} exists. In this ergodic
case, the P(D,Kβ) value in (11) becomes the steady state
probability that backlog deviates more than D+Kβ away from



PROC. IEEE INFOCOM, APRIL 2015 4

Fig. 3. Transformation of a standard queue to a floating queue

the vector of Lagrange multipliers. Note that the probability in
(10) vanishes exponentially in β. This implies that, in steady
state, a large portion of arrivals and services occurs when the
queue backlog vector is close to the Lagrange multiplier vector
γV ∗. Thus, if we can admit and serve this portion of traffic
using finite-buffer queues, the network still operates near its
optimal point.

IV. FLOATING-QUEUE ALGORITHM

In this section, the floating-queue algorithm is presented
as a way to implement the drift-plus-penalty algorithm using
finite buffers. The algorithm preserves the dynamics of the
drift-plus-penalty algorithm and hence inherits several of its
performance guarantees.

Recall that standard queue n ∈ N has dynamic (1). To
simplify notation, let an(t),

∑N
i=0 µin(t) denote aggregated

arrivals to queue n, and let bn(t),
∑N
j=0 µnj(t) denote ag-

gregated services from queue n at time t. This implies that
δ(max) upper bounds both an(t) and bn(t). The dynamic (1)
can be written as

Qn(t+ 1) = max [Qn(t)− bn(t), 0] + an(t).

For the rest of this paper, the above dynamic is considered for a
standard queue. Note that an(t) and bn(t) are fully determined
after knowing all µij(t) from the drift-plus-penalty algorithm.

A. Queue Transformation

In the floating-queue algorithm, each standard queue n ∈ N
of Section II-C is a combination of a real queue and a
fake queue. The real queue has buffer size B for stor-
ing real packets. The fake queue contains fake packets
and only requires a counter to implement. Let Qrn(t) and
Qfn(t) denote respectively the amount of backlogs in the real
queue and the fake queue of the standard queue n. Define
Qr(t),(Qr1(t), . . . , QrN (t)) and Qf (t),(Qf1 (t), . . . , QfN (t))
as vectors of real and fake queue backlogs. We use the term
floating queue n to refer to the 2-queue combination consisting
of real and fake queues n.

B. Real and Fake Parts of Arrivals and Services

At each queue n ∈ N , let brn(t) and bfn(t) denote the
aggregated real and fake serviced packets at time t. the
floating-queue algorithm always serves real packets before
fake packets as:

brn(t) = min [Qrn(t), bn(t)] (12)

bfn(t) = bn(t)− brn(t). (13)

It is easy to see that bn(t) = brn(t) + bfn(t). Also, brn(t) and
bfn(t) are fully determined, since bn(t) and Qrn(t) are known.

To differentiate the real and fake packets in the drift-plus-
penalty variable µij(t), let µrij(t) and µfij(t) denote the real
and fake parts of µij(t) for i, j ∈ N ∪ {0}. All µij(t) are
non-negative integers. Since µii(t) = 0, we have µrii(t) =
µfii(t) = 0 for all i ∈ N ∪ {0}. All exogenous arrivals are
considered as real packets, so knowing the value of µ0j(t), we
set µr0j(t) = µ0j(t) and µf0j(t) = 0 for every j ∈ {1, . . . , N}.
The real and fake parts of µij(t) for i ∈ N , j ∈ N ∪ {0} can
be set arbitrarily to satisfy:

brn(t) =

N∑
j=0

µrnj(t), bfn(t) =

N∑
j=0

µfnj(t) ∀n ∈ N

µij(t) = µrij(t) + µfij(t) ∀i ∈ N , j ∈ N ∪ {0}

Therefore, all µrij(t) and µfij(t) for all i, j ∈ N ∪{0} are fully
determined. This is illustrated in Figure 3.

Let arn(t) =
∑N
i=0 µ

r
in(t) and afn(t) =

∑N
i=1 µ

f
in(t) be

the aggregated real and fake parts of an(t). They are fully
determined and an(t) = arn(t) + afn(t).

The floating-queue algorithm always admits a real packet
to a real queue as much as allowed by its buffer space. Let
ar
′

n (t) denote the amount of packets in arn(t) that are admitted
to the real queue n at time t. Another part of arn(t), which is
dropped, is denoted by dn(t) and becomes fake packets. Let
af
′

n (t) denote the admitted fake arrivals, including original fake
arrivals afn(t) and dropped packets dn(t). The arrival dynamic
of queue n ∈ N is

ar
′

n (t) = min [B −Qrn(t), arn(t)] (14)

dn(t) = arn(t)− ar
′

n (t) (15)

af
′

n (t) = afn(t) + dn(t). (16)

It is easy to see that ar
′

n (t) + af
′

n (t) = arn(t) + afn(t).

C. Real and Fake Queuing Dynamics

The dynamics of real and fake queues of standard queue
n ∈ N are

Qrn(t+ 1) = Qrn(t)− brn(t) + ar
′

n (t) (17)

Qfn(t+ 1) = max
[
Qfn(t)− bfn(t), 0

]
+ af

′

n (t). (18)

Lemma 1: From any time t0, when Q(t0) = Qr(t0) +
Qf (t0), it follows for all t ∈ {t0, t0 + 1, t0 + 2, . . .} that

Q(t) = Qr(t) +Qf (t).

Proof: We prove this lemma by induction. For t0,
Q(t0) = Qr(t0) + Qf (t0) by the assumption. Suppose
Q(t) = Qr(t) +Qf (t) at time t. At queue n ∈ N , we have

Qn(t+ 1) = max [Qn(t)− bn(t), 0] + an(t)

= max
[
Qrn(t) +Qfn(t)− brn(t)− bfn(t), 0

]
+ ar

′

n (t) + af
′

n (t). (19)
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Initialization: Qr(0) = 0 and Qf (0)
for t ∈ {0, 1, 2, . . .} do

Observer S(t) and let Q(t) = Qr(t) +Qf (t).
Choose x(t) that solves (3).
Calculate (an(t), bn(t)) ∀n ∈ N .
Calculate (brn(t), bfn(t)) as (12) and (13) ∀n ∈ N .
Adjust (ar

′

n (t), af
′

n (t)) as (14)–(16) ∀n ∈ N .
Qrn(t+ 1) = Qrn(t)− br′n (t) + ar

′

n (t) ∀n ∈ N .
Qfn(t+ 1) = max

[
Qfn(t)− bfn(t), 0

]
+ af

′

n (t) ∀n ∈ N .
end for

Fig. 4. The floating-queue algorithm

When there are not enough real packets, Qrn(t) < bn(t),
it follows that Qrn(t) − brn(t) = 0 from (12). Equation (19)
becomes

Qn(t+ 1) = max
[
Qfn(t)− bfn(t), 0

]
+ af

′

n (t) + ar
′

n (t) + 0

= Qfn(t+ 1) +Qrn(t+ 1).

When there are enough real packets, Qrn(t) ≥ bn(t), we
have that bfn(t) = 0 from (12) and (13). Equation (19) becomes

Qn(t+ 1) = Qfn(t) + af
′

n (t) +Qrn(t)− brn(t) + ar
′

n (t)

= Qfn(t+ 1) +Qrn(t+ 1).

Thus, Qn(t+ 1) = Qfn(t) +Qrn(t) for all n ∈ N .
The implication of Lemma 1 is that, although the floating-

queue algorithm implements these real and fake queues instead
of the standard queues, the dynamics of Q(t) and Qr(t) +
Qf (t) are the same. Hence, when decision x(t) is chosen by
solving (3) with Qr(t) +Qf (t) instead of Q(t), all decisions
{x(t)}∞t=0 under the standard algorithm (in Figure 2) are
identical to the decisions {x(t)}∞t=0 under the floating-queue
algorithm (in Figure 4), given that Qr(0) + Qf (0) = Q(0).
Yet, the buffer size of each real queue in the floating-queue
algorithm is B. Let Qf (0) ∈ ZN+ be a pre-defined initial
condition for the fake queues. The floating-queue algorithm
is summarized in Figure 4.

We prove a useful lemma of the floating-queue algorithm,
which will be used in Section V-B.

Lemma 2: Under the floating-queue algorithm, when the
buffer size of the real queue n ∈ N is B ≥ 2δ(max), if dn(t) >
0, then Qfn(t+ 1) > Qfn(t).

Proof: Event dn(t) > 0 implies that arn(t) > ar
′

n (t) from
(15) and ar

′

n (t) = B−Qrn(t) from (14), so Qrn(t) > B−arn(t).
When B ≥ 2δ(max), we have Qrn(t) > 2δ(max)−arn(t) ≥ δ(max),
and there are enough real packets for all services. Therefore,
all services take real packets and brn(t) = bn(t) and bfn(t) = 0
from (12) and (13). From (18) and (16), we have

Qfn(t+1) = Qfn(t)+af
′

n (t) = Qfn(t)+afn(t)+dn(t) > Qfn(t).

The interpretation of Lemma 2 is that, for any queue n with
buffer size B ≥ 2δ(max), if real packets are dropped at time t,
then the fake backlogs at time t+ 1 always increase.

V. PERFORMANCE ANALYSIS

The steady-state performance of the floating-queue algo-
rithm is analyzed by bounding from below the admitted real
arrivals at each queue n ∈ N . Define Θn(t),(

arn(t), afn(t), ar
′

n (t), af
′

n (t), brn(t), bfn(t), Qrn(t), Qfn(t)
)

as a sample path of the arrivals, services, and backlogs of
queue n that is generated by the floating-queue algorithm at
time t. For any positive integer T and starting time t0, a sample
path of queue n from t0 to t0+T is denoted by {Θn(t)}t0+Tt=t0

.
Note that Qn(t) can be recovered from this sample path as
Qn(t) = Qrn(t) +Qfn(t).

From sample path Θn(t), the amount of real arrivals are
arn(t), and the amount of admitted real arrivals are ar

′

n (t),
which depend on the floating-queue mechanism (14). To lower
bound this admitted real arrival ar

′

n (t), we construct another
mechanism, called “lower-bound policy”, that operates over
the sample path. It has a different rule for counting admitted
real packets (later defined as ârn(t)), which is part of the
real arrivals arn(t). We will show (Lemma 6) that the amount
of admitted real arrivals under the floating-queue algorithm
is lower bounded by the amount of admitted real arrivals
under the lower-bound policy. Using this lower bound, the
performance of the floating-queue algorithm can be analyzed.

A. Lower-Bound Policy

In this section, queue n ∈ N is fixed and the lower-bound
policy is defined for this queue. For simplicity, assume that
the buffer size B is even and B ≥ 2δ(max).

Recall that γV ∗ is the Lagrange multiplier of problem (9),
and δ(max) is the upper bound on an(t) and bn(t). Define

Bn,
[
γV ∗n −B/2 + δ(max), γV ∗n +B/2− δ(max)

]
.

Let ârn(t) denote the number of admitted real packets under
the lower-bound policy at time t. Given any sample path Θn(t)
having real arrivals arn(t) and total backlogs Qn(t), the lower-
bound policy counts real packets as

ârn(t) =

{
arn(t) , Qn(t) ∈ Bn
0 , Qn(t) /∈ Bn.

(20)

Let d̂n(t) denote the number of dropped packets under the
lower-bound policy at time t. It satisfies

d̂n(t) = arn(t)− ârn(t). (21)

Notice that ârn(t) and d̂n(t) are artificial numbers and are not
real and fake packets in a real system. These values can be
determined by arn(t) and Qn(t) of sample path Θn(t).

B. Sample Path Analysis

The goal of this section is to show (Lemma 6) that, for any
sample path {Θn(t)}∞t=t0 of queue n ∈ N and any positive
integer T , the admitted real arrivals under the floating-queue
algorithm with buffer size B is lower bounded by

t0+T−1∑
t=t0

ar
′

n (t) ≥
t0+T−1∑
t=t0

ârn(t)−B.
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Fig. 5. Time interval T (T ) is partitioned into TH(T ) and TL(T ).

Fig. 6. Partitioning TL(T ) into intervals of tk , t′k , t−k,j , and t+k,j

In this section, queue n is fixed and analyzed; however, the
analysis results hold for every queue n ∈ N .

For any starting time t0 and any positive integer T , define
T (T ),{t0, . . . , t0 + T} as a time interval of consideration. It
can be partitioned into disjoint sets TH(T ) and TL(T ), which
are illustrated in Figure 5, where

TH(T ),
{
t ∈ T (T ) : Qfn(t) ≥ γV ∗n −B/2

}
TL(T ),

{
t ∈ T (T ) : Qfn(t) < γV ∗n −B/2

}
.

Time interval TL(T ) can be partitioned into disjointed
intervals of time that starts when the fake queue in the sample
path satisfies Qfn(t) < γV ∗n −B/2 and ends when it does not.
This is illustrated in Figure 6. For k ∈ {1, 2, . . . }, let

tk = arginft∈{t′k−1+1,...,t0+T}
{
Qfn(t) < γV ∗n −B/2

}
t′k = arginft∈{tk+1,...,t0+T}

{
Qfn(t) ≥ γV ∗n −B/2

}
− 1,

where t′0 = t0 − 1 and arginft∈{A,...,B}{C(t)} = B + 1 if
A > B or C(t) is not satisfied for all t ∈ {A, . . . , B}. Let
K(T ) = argmaxk≥0 {tk < t0 + T + 1} denote the number of
intervals {tk, . . . , t′k} contained in T (T ).

When K(T ) > 0, the time interval in interval {tk, . . . , t′k}
for k ∈ {1, 2, . . . ,K(T )} can be partitioned into in-
tervals between local minima and local maxima. Define
U(t), arginfτ∈{t+1,t+2,... }

{
Qfn(τ) > Qfn(t)

}
to be the first

time index after t that the fake queue increases. For k ∈
{1, 2, . . . ,K(T )}, j ∈ {1, 2, . . . }, let

t−k,j = min

[
arginft∈{t+k,j−1+1,...,t′k}

{
Qfn(t) < Qfn(t− 1) and

Qfn(t) ≤ Qfn(τ) ∀τ ∈ {t+ 1, . . . , U(t)}
}
, t′k

]

t+k,j = min
[
arginft∈{t−k,j+1,...,t′k}

{
Qfn(t) > Qfn(t+ 1)

}
, t′k

]
,

where t+k,0 = tk − 1 and Qfn(t0 − 1) = ∞. Intuitively,
during {tk, . . . , t′k}, t

−
k,j is the first time index that the jth

local minimum is reached, and t+k,j is the last time index of
the jth local maximum. This is illustrated in Figure 6. Let
J(k) = arginfj>0

{
t+k,j = t′k

}
denote the number of local

maxima during {tk, . . . , t′k}.
For a technical reason (used in Lemma 4), let TA(T ),{(tk−

1) ∈ T (T ) : k ∈ {1, . . . ,K(T )}. The following lemmas hold
for the real arrivals in TH(T )\TA(T ) and TL(T ) ∪ TA(T ).

Lemma 3: When B ≥ 2δ(max), given any sample path
{Θn(t)}t0+Tt=t0

, the following relation holds∑
t∈TH(T )\TA(T )

ar
′

n (t) ≥
∑

t∈TH(T )\TA(T )

ârn(t).

Proof: Two cases are examined.
1) When Qn(t) ∈ Bn for any t ∈ TH(T )\TA(T ), we have

ar
′

n (t) = arn(t), because real queue n has enough buffer space:

Qrn(t) = Qn(t)−Qfn(t)

≤
(
γV ∗n +B/2− δ(max)

)
−
(
γV ∗n −B/2

)
≤ B − δ(max).

The first inequality holds because of Qn(t) ∈ Bn and t ∈
TH(T ). For the lower-bound policy, we have ârn(t) = arn(t),
because Qn(t) ∈ Bn. So ar

′

n (t) = ârn(t).
2) When Qn(t) /∈ Bn for any t ∈ TH(T )\TA(T ), we have

ar
′

n (t) ≥ ârn(t) = 0, because Qn(t) /∈ Bn and ar
′

n (t) ≥ 0.
These two cases implies the lemma.
Lemma 4: When B ≥ 2δ(max), given sample path

{Θn(t)}t0+Tt=t0
with Qrn(t0) = 0, the following holds∑

t∈TL(T )∪TA(T )

ar
′

n (t) ≥
∑

t∈TL(T )∪TA(T )

ârn(t).

Proof: For k ∈ {1, . . . ,K(T )}, j ∈ {1, . . . , J(k)}, 3
cases are examined.

1) For real arrivals arn(t) during t ∈
{
tk − 1, . . . , t−k,1 − 2

}
(if exists), the fake backlogs Qfn(t) is non-increasing by
the definition of t−k,1. From Lemma 2, the non-increasing
implies no packet drops and ar

′

n (t) = arn(t) for t ∈{
tk − 1, . . . , t−k,1 − 2

}
. Since ârn(t) ≤ arn(t), it follows

that
∑t−k,1−2
t=tk−1 a

r′

n (t) ≥
∑t−k,1−2
t=tk−1 â

r
n(t). For a special case

when t1 = t0, same argument can be used to obtain∑t−1,1−2
t=t1 ar

′

n (t) ≥
∑t−1,1−2
t=t1 ârn(t).

2) For real arrivals arn(t) during t ∈
{
t−k,j − 1, . . . , t+k,j

}
, it

can be shown that
∑t+k,j

t=t−k,j−1
ar
′

n (t) ≥
∑t+k,j

t=t−k,j−1
ârn(t). This

result is proven in [18].
3) For real arrivals arn(t) during t ∈{
t+k,j + 1, . . . , t−k,j+1 − 2

}
(if exists), the fake backlogs

Qfn(t) is non-increasing by the definitions of t+k,j and t−k,j+1.

Lemma 2 implies that
∑t−k,j+1−2
t=t+k,j+1

ar
′

n (t) ≥
∑t−k,j+1−2
t=t+k,j+1

ârn(t).
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Since Qrn(t0) = 0, the time interval {tk, . . . , t′k} for k ∈
{1, . . . ,K(T )} starts with either the first case or the second
case and ends with the second case. Thus, it is clear that, if
real arrivals under the lower-bound policy are dominated over
every subinterval, then they are also dominated over the union
of these subintervals.

Lemma 5: When B ≥ 2δ(max), given sample path
{Θn(t)}∞t=t0 with Qrn(t0) = 0 and positive integer T , it holds
that

t0+T−1∑
t=t0

ar
′

n (t) ≥
t0+T−1∑
t=t0

ârn(t).

Proof: Disjoint time intervals TH(T − 1)\TA(T − 1) and
TL(T − 1) ∪ TA(T − 1) are the partitions of T (T − 1). Then
Lemma 3 and Lemma 4 imply the lemma.

The above lemma is not general, since it requires Qrn(t0) =
0. Now its general version is provided.

Lemma 6: When B ≥ 2δ(max), given any sample paths
{Θn(t)}∞t=t0 and positive integer T , it holds for any Qrn(t0) ∈
{0, 1, . . . , B} that

t0+T−1∑
t=t0

ar
′

n (t) ≥
t0+T−1∑
t=t0

ârn(t)−B.

Proof: Construct sample path
{

Θ̃n(t)
}∞
t−1

with Θ̃n(t) =(
ãrn(t), ãfn(t), ãr

′

n (t), ãf
′

n (t), b̃rn(t), b̃fn(t), Q̃rn(t), Q̃fn(t)
)

and

• t−1 < t0,
• Θ̃n(t) = Θn(t) for all t ∈ {t0, t0 + 1, . . . },
• Q̃fn(t) = Qfn(t0) for all t ∈ {t−1, . . . , t0 − 1},
• Q̃rn(t−1) = 0, Q̃rn(t0) = Qrn(t0) =

∑t0−1
t=t−1

ãr
′

n (t),
• ãf

′

n (t) = b̃rn(t) = b̃fn(t) = 0 for all t ∈ {t−1, . . . , t0− 1}.
The last two conditions automatically set the values of{
ãrn(t), ãfn(t), Q̃rn(t)

}t0−1
t−1

. This new sample path satisfies

Lemma 5. Let ˆ̃arn(t) denote the admitted real arrivals un-
der the lower-bound policy of the new sample path. Since∑t0+T−1
t=t0

ãr
′

n (t) =
∑t0+T−1
t=t0

ar
′

n (t), it follows that

t0−1∑
t=t−1

ãr
′

n (t) +

t0+T−1∑
t=t0

ar
′

n (t) =

t0−1∑
t=t−1

ãr
′

n (t) +

t0+T−1∑
t=t0

ãr
′

n (t)

≥
t0−1∑
t=t−1

ˆ̃arn(t) +

t0+T−1∑
t=t0

ˆ̃arn(t) =

t0−1∑
t=t−1

ˆ̃arn(t) +

t0+T−1∑
t=t0

ârn(t).

The first inequality is the application of Lemma 5, and the last
equality holds, because {Qn(t)}∞t=t0 of both original and new
sample paths are identical.

Therefore, we have

t0+T−1∑
t=t0

ar
′

n (t) ≥
t0+T−1∑
t=t0

ârn(t)−B.

The inequality uses the facts that
∑t0−1
t=t−1

ˆ̃arn(t) ≥ 0 and∑t0−1
t=t−1

ãr
′

n (t) = Qrn(t0) ≤ B.

C. Performance of Floating-Queue Algorithm

1) Average Drops: The average drops at each queue is
analyzed using the steady state and sample path results. Recall
that constants D,K, c∗ are defined in Theorem 1.

Lemma 7: Suppose B > 2(δ(max) +D). In the steady state,
the average drops at real queue n ∈ N under the floating-
queue algorithm is bounded by

lim
T→∞

1

T

t0+T−1∑
t=t0

E [dn(t)] ≤ δ(max)c∗e
−[B/2−δ(max)−D]

K .

Proof: We consider queue n ∈ N . Let I {A} be an
indicator function of statement A such that I {A} = 1 if
statement A is true; otherwise I {A} = 0. Equation (20)
can be written as ârn(t) = arn(t)I {Qn(t) ∈ Bn} = arn(t) −
arn(t)I {Qn(t) /∈ Bn}. Then we have that

1

T

t0+T−1∑
t=t0

E [ârn(t)]

=
1

T

t0+T−1∑
t=t0

E [arn(t)− arn(t)I {Qn(t) /∈ Bn}]

Dividing the result in Lemma 6 by T and taking an
expectation yields

1

T

t0+T−1∑
t=t0

E
[
ar
′

n (t)
]
≥ 1

T

t0+T−1∑
t=t0

E [ârn(t)]− B

T
.

Combining the above two relations gives

1

T

t0+T−1∑
t=t0

E
[
ar
′

n (t)
]
≥ 1

T

t0+T−1∑
t=t0

E [arn(t)]− B

T

− 1

T

t0+T−1∑
t=t0

E [arn(t)I {Qn(t) /∈ Bn}].

It follow from (15) that

1

T

t0+T−1∑
t=t0

E [dn(t)] ≤ 1

T

t0+T−1∑
t=t0

δ(max)P {Qn(t) /∈ Bn}+
B

T

Taking limit as T approaches infinity yields

lim
T→∞

1

T

t0+T−1∑
t=t0

E [dn(t)]

≤ δ(max) lim
T→∞

1

T

t0+T−1∑
t=t0

P {Qn(t) /∈ Bn}. (22)

In steady state, Theorem 1 with β = B/2−δ(max)−D
K yields

lim
T→∞

1

T

t0+T−1∑
t=t0

P {Qn(t) /∈ Bn}

≤ lim sup
T→∞

1

T

t0+T−1∑
t=t0

P
{
∃n,

∣∣Qn(t)− γV ∗n
∣∣ > B/2− δ(max)

}
= P(D,B/2− δ(max) −D) ≤ c∗e−[B/2−δ

(max)−D]/K .

Applying the above bound to (22) proves the lemma.
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2) Delay: At each queue, the average delay experienced by
real packets is derived by invoking Little’s law [17]. Define

ārn, lim
T→∞

1

T

t0+T−1∑
t=t0

E [arn(t)], ān, lim
T→∞

1

T

t0+T−1∑
t=t0

E [an(t)].

Lemma 8: Suppose B > 2(δ(max) +D). In the steady state,
the average delay at real queue n ∈ N under the floating-
queue algorithm is bounded by

Per-hop delay ≤ B

ārn − δ(max)c∗e−[B/2−δ(max)−D]/K
.

Proof: Since the buffer size of queue n ∈ N is B, Little’s
law implies:

Per-hop Delay = B

/[
lim
T→∞

1

T

t0+T−1∑
t=t0

E
[
ar
′

n (t)
]]

= B

/[
lim
T→∞

1

T

t0+T−1∑
t=t0

E [arn(t)− dn(t)]

]

≤ B
/[

ārn − δ(max)c∗e−[B/2−δ
(max)−D]/K

]
.

The implication of Lemma 8 is that, when B is large enough
such that δ(max)c∗e−[B/2−δ

(max)−D]/K and the number of drops
at other queues are negligible, ārn is approximately ān, and the
average delay is O(B).

3) Objective Cost: The average objective cost is
considered in two cases. Let f (FQ)(t) denote the cost
under the floating-queue algorithm at time t, and
f (FQ), limT→∞

1
T

∑t0+T−1
t=t0

E
[
f (FQ)(t)

]
denote the expected

time-average cost under the floating-queue algorithm.
Drop-Independent Cost:

In this case, packet drops do not affect the objective cost. Such
cost can be the energy expenditure that is spent to transmit
both real and fake packets. Due to this independence, the
average cost follows immediately from the result of drift-plus-
penalty policy (4).

Theorem 2: Suppose each real queue has buffer size B >
2(δ(max) + D). When V > 0 and packet drops do not incur
any penalty cost, the floating-queue algorithm achieves:

f (FQ) = f (DPP) ≤ f (opt) +O(1/V )

Per-hop delay ≤ O(B/(1− e−B)) = O(B)

Average drops ≤ O(e−B).

It can be shown that the transient time of the drift-plus-penalty
algorithm is O(V ), so parameter V cannot be set to infinity.

Drop-Dependent Cost:
In this case, packet drops affect the objective cost. Such cost
can be the amount of admitted packets. Let κ < ∞ be a
maximum penalty cost per one unit of packet drop. Then we
have the following result.

Theorem 3: Suppose B > 2(δ(max) +D). When V > 0 and
κ is a maximum penalty cost per one unit of packet drop, the

Fig. 7. Line network

floating-queue algorithm achieves:

f (FQ) ≤ f (opt) +O(1/V ) +O(e−B)

Per-hop delay ≤ O(B/(1− e−B)) = O(B)

Average drops ≤ O(e−B)

Proof: Recall that f(t) is a cost incurred at time t under
the drift-plus-penalty policy. At each time t, we have

f (FQ)(t) ≤ f(t) + κ

N∑
n=1

dn(t).

Summing from t0 to t0 +T − 1, dividing by T , and taking an
expectation gives

1

T

t0+T−1∑
t=t0

E
[
f (FQ)(t)

]
≤ 1

T

t0+T−1∑
t=t0

E [f(t)]

+
κ

T

t0+T−1∑
t=t0

N∑
n=1

E [dn(t)].

Taking a limit as T approaches infinity gives

lim
T→∞

1

T

t0+T−1∑
t=t0

E
[
f (FQ)(t)

]
≤ f (DPP) + κNδ(max)c∗e−[B/2−δ

(max)−D]/K

≤ f (opt) +O(1/V ) +O(e−B)

VI. SIMULATION

A line network with 4 queues, shown in Figure 7, is
simulated in two scenarios. The common network configu-
ration is as follows. In each time slot, an exogenous packet
arrives with probability 0.92. Transmission µij(t) is orthog-
onal and depends on channel state that is “good” with
probability 0.9 and “bad” with probability 0.1 for (i, j) ∈
{(1, 2), (2, 3), (3, 4), (4, 0)}.

A. Power Minimization

In this scenario, all exogenous arrivals are admitted. When
channel state is “good”, one packet is transmitted using 1 unit
of power; otherwise 2 units of power are used. The goal is to
stabilize this network while minimizing the power usage. Note
that the optimal average minimum power is 1×0.9+2×0.02 =
0.94 per hop, and the average total power is 3.76.

Simulation results of this scenario are shown Figure 8. The
time average power expenditure is 3.761 for all buffer sizes
B. In Figure 8, the average delay increases linearly with the
buffer size, and the average drops decrease exponentially with
the buffer size. This result confirms the bounds in Theorem 2.
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Fig. 8. Results of power minimization problem with V = 200
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Fig. 9. Results of throughput maximization problem with V = 200

B. Throughput Maximization

In this scenario, a network decides to admit random exoge-
nous arrival in each time slot. The goal is to maximize the
time-average end-to-end throughput, which are real packets.
Packet drops reduce the value of this objective function.
Transmission µij(t) = 1 is possible if its channel state is
“good”; otherwise the transmission is not allowed. Note that
the maximum admission rate is 0.9, because of the limitation
of the average transmission rate. Figure 9 shows the simulation
results of this scenario, which comply with the bounds in
Theorem 3.

VII. CONCLUSION

We propose the general floating-queue algorithm that allows
the stochastic network optimization framework to operate with
finite buffers. When the buffer size at each queue is B, we
prove the proposed algorithm achieves within O(e−B) of
optimal utility, while the average per-hop delay is O(B). The
finiteness incurs O(e−B) drops, decreasing exponentially. We
confirm the theoretical results with simulations.
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