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Power Aware Wireless File Downloading: A
Lyapunov Indexing Approach to A Constrained
Restless Bandit Problem

Xiaohan Wei and Michael J. Neely

Abstract—This paper treats power-aware throughput maxi-
mization in a multi-user file downloading system. Each user can
receive a new file only after its previous file is finished. The
file state processes for each user act as coupled Markov chains
that form a generalized restless bandit system. First, an optimal
algorithm is derived for the case of one user. The algorithm
maximizes throughput subject to an average power constraint.
Next, the one-user algorithm is extended to a low complexity
heuristic for the multi-user problem. The heuristic uses a simple
online index policy. In a special case with no power-constraint,
the multi-user heuristic is shown to be throughput optimal.
Simulations are used to demonstrate effectiveness of the heuristic
in the general case. For simple cases where the optimal solution
can be computed offline, the heuristic is shown to be near-optimal
for a wide range of parameters.

I. INTRODUCTION

Consider a wireless access point, such as a base station
or femto node, that delivers files to N different wireless
users. The system operates in slotted time with time slots
t € {0,1,2,...}. Each user can download at most one file at
a time. File sizes are random and complete delivery of a file
requires a random number of time slots. A new file request
is made by each user at a random time after it finishes its
previous download. Let F,,(t) € {0,1} represent the binary
file state process foruser n € {1,..., N}. The state F,,(t) =1
means that user n is currently active downloading a file, while
the state F,(t) = 0 means that user n is currently idle.

Idle times are assumed to be independent and geometrically
distributed with parameter A, for each user n, so that the
average idle time is 1/\,,. Active times depend on the random
file size and the transmission decisions that are made. Every
slot ¢, the access point observes which users are active and
decides to serve a subset of at most M users, where M is
the maximum number of simultaneous transmissions allowed
in the system (M < N is assumed throughout). The goal is
to maximize a weighted sum of throughput subject to a total
average power constraint.

The file state processes F),(t) are coupled controlled
Markov chains that form a total state (F(t),...,Fn(t))
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that can be viewed as a restless multi-armed bandit system.
Such problems are complex due to the inherent curse of
dimensionality.

This paper first computes an online optimal algorithm for
1-user systems, i.e., the case N = 1. This simple case avoids
the curse of dimensionality and provides valuable intuition.
The optimal policy here is nontrivial and uses the theory of
Lyapunov optimization for renewal systems [2]. The resulting
algorithm makes a greedy transmission decision that affects
success probability and power usage. The decision is based
on a drift-plus-penalty index. Next, the algorithm is extended
as a low complexity online heuristic for the N-user problem.
The heuristic has the following desirable properties:

o Implementation of the N-user heuristic is as simple as
comparing indices for /N different 1-user problems.

o The N-user heuristic is analytically shown to meet the
desired average power constraint.

o The N-user heuristic is shown in simulation to perform
well over a wide range of parameters. Specifically, it is
very close to optimal for example cases where an offline
optimal can be computed.

o The N-user heuristic is shown to be optimal in a special
case with no power constraint and with certain addi-
tional assumptions. The optimality proof uses a theory
of stochastic coupling for queueing systems [3].

Prior work on wireless optimization uses Lyapunov func-
tions to maximize throughput in cases where the users
are assumed to have an infinite amount of data to send
[31[4][51[6][7]1[81[9], or when data arrives according to a fixed
rate process that does not depend on delays in the network
(which necessitates dropping data if the arrival rate vector is
outside of the capacity region) [5][7]. These models do not
consider the interplay between arrivals at the transport layer
and file delivery at the network layer. For example, a web user
in a coffee shop may want to evaluate the file she downloaded
before initiating another download. The current paper captures
this interplay through the binary file state processes F),(t).
This creates a complex problem of coupled Markov chains.
This problem is fundamental to file downloading systems.
The modeling and analysis of these systems is a significant
contribution of the current paper.

To understand this issue, suppose the data arrival rate is
fixed and does not adapt to the service received over the
network. If this arrival rate exceeds network capacity by a
factor of two, then at least half of all data must be dropped.
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This can result in an unusable data stream, possibly one
that contains every odd-numbered packet. A more practical
model assumes that full files must be downloaded and that
new downloads are only initiated when previous ones are
completed. A general model in this direction would allow each
user to download up to K files simultaneously. This paper
considers the case K = 1, so that each user is either actively
downloading a file, or is idle.! The resulting system for N
users has a nontrivial Markov structure with 2% states.

Markov decision problems (MDPs) can be solved offline via
linear programming [10]. This can be prohibitively complex
for large dimensional problems. Low complexity solutions for
coupled MDPs are possible in special cases when the coupling
involves only time average constraints [11]. Finite horizon
coupled MDPs are treated via integer programming in [12]
and via a heuristic “task decomposition” method in [13]. The
problem of the current paper does not fit the framework of
[11]-[13] because it includes both time-average constraints
(on average power expenditure) and instantaneous constraints
which restrict the number of users that can be served on one
slot. The latter service restriction is similar to a traditional
restless multi-armed bandit (RMAB) system [14].

RMAB problem considers a population of N parallel MDPs
that continue evolving whether in operation or not (although in
different rules). The goal is to choose the MDPs in operation
during each time slot so as to maximize the expected reward
subject to a constraint on the number of MDPs in operation.
The problem is in general complex (see P-SPACE hardness
results in [15]). A standard low-complexity heuristic for such
problems is the Whittle’s index technique [14]. However,
the Whittle’s index framework applies only when there are
two options on each state (active and passive). Further, it
does not consider the additional time average cost constraints.
The Lyapunov indexing algorithm developed in the current
paper can be viewed as an alternative indexing scheme that
can always be implemented and that incorporates additional
time average constraints. It is likely that the techniques of
the current paper can be extended to other constrained RMAB
problems. Prior work in [3] develops a Lyapunov drift method
for queue stability, and work in [2] develops a drift-plus-
penalty ratio method for optimization over renewal systems.
The current work is the first to use these techniques as a low
complexity heuristic for multidimensional Markov problems.

Work in [3] uses the theory of stochastic coupling to show
that a longest connected queue algorithm is delay optimal in
a multi-dimensional queueing system with special symmetric
assumptions. The problem in [3] is different from that of the
current paper. However, a similar coupling approach is used
in Section IV to show that, for a special case with no power
constraint, the Lyapunov indexing algorithm is throughput
optimal in certain asymmetric cases. As a consequence, the
proof shows the policy is also optimal for a different setting

'One way to allow a user n to download up to K files simultaneously is
as follows: Define K virtual users with separate binary file state processes.
The transition probability from idle to active in each of these virtual users is
An/K. The conditional rate of total new arrivals for user n (given that m
files are currently in progress) is then A, (1—m/K) form € {0,1,..., M}.

with M servers, N single-buffer queues, and arbitrary packet
arrival rates (A1,...,An).

II. SINGLE USER SCENARIO

Consider a file downloading system that consists of only one
user that repeatedly downloads files. Let F'(¢) € {0,1} be the
file state process of the user. State “1” means there is a file in
the system that has not completed its download, and “0” means
no file is waiting. The length of each file is independent and
is either exponentially distributed or geometrically distributed
(described in more detail below). Let B denote the expected
file size in bits. Time is slotted. At each slot in which there
is an active file for downloading, the user makes a service
decision that affects both the downloading success probability
and the power expenditure. After a file is downloaded, the
system goes idle (state 0) and remains in the idle state for a
random amount of time that is independent and geometrically
distributed with parameter A > 0.

A transmission decision is made on each slot ¢ in which
F(t) = 1. The decision affects the number of bits that are sent,
the probability these bits are successfully received, and the
power usage. Let () denote the decision variable at slot ¢ and
let A represent an abstract action set with a finite number of
elements. The set A can represent a collection of modulation
and coding options for each transmission. Assume also that
A contains an idle action denoted as “0.” The decision «(t)
determines the following two values:

o The probability of successfully downloading a file
o(a(t)), where ¢(-) € [0,1] with ¢(0) = 0.

o The power expenditure p(«(t)), where p(-) is a nonneg-
ative function with p(0) = 0.

The user chooses a(t) = 0 whenever F'(t) = 0. The user
chooses a(t) € A for each slot ¢ in which F(t) = 1, with
the goal of maximizing throughput subject to a time average
power constraint.

The problem can be described by a two state Markov
decision process with binary state F'(t). Given F'(t) = 1, a file
is currently in the system. This file will finish its download
at the end of the slot with probability ¢(«(t)). Hence, the
transition probabilities out of state 1 are:

PrF(t+1) =0[F(t) =1] =
PriF(t+1) =1|F(t) =1] =

pla(t)) (1)
1-¢(a(®)) 2

Given F'(t) = 0, the system is idle and will transition to the
active state in the next slot with probability A, so that:

] = A 3)
1—A @)

Define the throughput, measured by bits per slot, as:

1 T—1
liminf — " Be(a(t))
t=0

T—oo T
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The file downloading problem reduces to the following:

T

Maximize: hj{gloréf T ; Bo(a(t)) Q)
=

Subject to: lim sup — Z pla(t)) <8 (6)
T—o00 T =0

a(t) e AVt €{0,1,2,...} such that F'(t) =1
(7
Transition probabilities satisfy (1)-(4) )

where /3 is a positive constant that determines the desired
average power constraint.

A. The memoryless file size assumption

The above model assumes that file completion success
on slot ¢ depends only on the transmission decision «(t),
independent of history. This implicitly assumes that file length
distributions have a memoryless property where the residual
file length is independent of the amount already delivered.
Further, it is assumed that if the controller selects a trans-
mission rate that is larger than the residual bits in the file,
the remaining portion of the transmission is padded with fill
bits. This ensures error events provide no information about
the residual file length beyond the already known 0/1 binary
file state. Of course, error probability might be improved
by removing padded bits. However, this affects only the last
transmission of a file and has negligible impact when expected
file size is large in comparison to the amount that can be
transmitted in one slot. Note that padding is not needed in
the special case when all transmissions send one fixed length
packet.

The memoryless property holds when each file ¢ has inde-
pendent length B; that is exponentially distributed with mean
length B bits, so that:

Pr[B; > z] = e */B for z > 0

For example, suppose the transmission rate r(t) (in units of
bits/slot) and the transmission success probability q(t) are
given by general functions of «(t):

) = #alt)
at) = dalt)

Then the file completion probability ¢(«(t)) is the probability
that the residual amount of bits in the file is less than or
equal to r(t), and that the transmission of these residual bits
is a success. By the memoryless property of the exponential
distribution, the residual file length is distributed the same as
the original file length. Thus:

dla(t)) = qa®)Pr(B; < (at))]
Fla(t) q _
= q(a(t) /0 Ee_’”/de ©9)

Alternatively, history independence holds when each file
i consists of a random number Z; of fixed length packets,
where Z; is geometrically distributed with mean Z = 1/pu.

Assume each transmission sends exactly one packet, but dif-
ferent power levels affect the transmission success probability

q(t) = ¢(a(t)). Then:
p(a(t)) = pg(alt))

The memoryless file length assumption allows the file state
to be modeled by a simple binary-valued process F'(t) €
{0, 1}. However, actual file sizes may not have an exponential
or geometric distribution. One way to treat general distribu-
tions is to approximate the file sizes as being memoryless
by using a ¢(a(t)) function defined by either (9) or (10),
formed by matching the average file size B or average number
of packets Z. The decisions «(t) are made according to the
algorithm below, but the actual event outcomes that arise from
these decisions are not memoryless. A simulation comparison
of this approximation is provided in Section V, where it is
shown to be remarkably accurate (see Fig. 7).

The algorithm in this section optimizes over the class of all
algorithms that do not use residual file length information.
This maintains low complexity by ensuring a user has a
binary-valued Markov state F'(t) € {0,1}. While a system
controller might know the residual file length, incorporating
this knowledge creates a Markov decision problem with an
infinite number of states (one for each possible value of
residual length) which significantly complicating the scenario.

(10)

B. Lyapunov optimization

This subsection develops an online algorithm for problem
(5)-(8). First, notice that file state “1” is recurrent under any
decisions for a(t). Denote tj, as the k-th time when the system
returns to state “1.” Define the renewal frame as the time
period between tj, and ¢y ;. Define the frame size:

T[k] = tk+1 - tk

Notice that T'[k] = 1 for any frame k in which the file does
not complete its download. If the file is completed on frame k,
then T'[k] = 14 Gy, where Gy, is a geometric random variable
with mean E [G] = 1/A. Each frame k involves only a single
decision «(ty) that is made at the beginning of the frame.
Thus, the total power used over the duration of frame k is:

thr1—1

> pla(t)) = pla(ty)

t=ty

(an

Using a technique similar to that proposed in [2], we treat the
time average constraint in (6) using a virtual queue Q[k] that
is updated every frame k by:

Q[k + 1] = max {Q[k] + p(a(tr)) — BT[K], 0}

with initial condition Q[0] = 0. The algorithm is then param-
eterized by a constant V' > 0 which affects a performance
tradeoff. At the beginning of the k-th renewal frame, the user
observes virtual queue Q[k] and chooses «(tx) to maximize
the following drift-plus-penalty (DPP) ratio [2]:

VBo(a(ty)) — Qklp(a(ir))

B3, BT []a(tr)] (1

(12)
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The numerator of the above ratio adds a “queue drift term”
—Q[k]p(a(ty)) to the “current reward term” V Bo(a(ty)).
The intuition is that it is desirable to have a large value of
current reward, but it is also desirable to have a large drift
(since this tends to decrease queue size). Creating a weighted
sum of these two terms and dividing by the expected frame
size gives a simple index. The next subsections show that,
for the context of the current paper, this index leads to an
algorithm that pushes throughput arbitrarily close to optimal
(depending on the chosen V' parameter) with a strong sample
path guarantee on average power expenditure.
The denominator in (13) can easily be computed:

E[TH] o ()] = 1+ 21D
Thus, (13) is equivalent to
o VBO(0l) = Qlip(a(s)

a(ty)eA

L+ o(a(tr))/A

Since there are only a finite number of elements in A, (14)
is easily computed. This gives the following algorithm for the
single-user case:

Algorithm 1.

o At each time ty, the user observes virtual queue Q[k]
and chooses a(ty,) as the solution to (14) (where ties are
broken arbitrarily).

o The value Q[k + 1] is computed according to (12) at the
end of the k-th frame.

C. Average power constraints via queue bounds

Lemma 1. If there is a constant C > 0 such that Q[k] < C
Sforall k € {0,1,2,...}, then:

1 T—1
limsup = 3 pla(t) <
t=0

T—o0
Proof. From (12), we know that for each frame k:
Qlk+1] = Q[k] + p(a(ty)) — T[k]B
Rearranging terms and using T'[k] = tg+1 — ti gives:

pla(ty)) < (tkv1 — t)B + Qk + 1] — Q[]
Fix K > 0. Summing over k € {0,1,--- , K — 1} gives:
(tx —to)B + Q[K] — Q[0]
txB+C

The sum power over the first K frames is the same as the sum
up to time tx — 1, and so:

S plalt) <
k=0

IN

tx—1

Y pla) < txp+C

t=0
Dividing by tx gives:
trg—1

pla(t) < B+ C/tk.
t=0

1

tic

Taking K — oo, then,

trg—1
limsup - ; pla(t) < (15)

Now for each positive integer T, let K (T) be the integer such
that tx 7y < T < tx(r)4+1- Since power is only used at the
first slot of a frame, one has:

tK(T)fl

> pla®)

t=0

1
tr(T)

1 T-1
7> plalt) <
t=0

Taking a limsup as 7" — oo and using (15) yields the result.
O

The next lemma shows that the queue process under our
proposed algorithm is deterministically bounded. Define:

min _ :
prto= o i @)
P = ag‘ego}p(a)

Assume that p™™"™ > (.

Lemma 2. If Q[0] = 0, then under our algorithm we have for
all k > 0:

QI < max{ VB

min
p

+pmaw _ ﬁ’ 0}

Proof. First, consider the case when p™®® < . From (12)
and the fact that T'[k] > 1 for all k, it is clear the queue can
never increase, and so Q[k] < Q[0] = 0 for all k£ > 0.

Next, consider the case when p™** > [3. We prove the
assertion by induction on k. The result trivially holds for k =
0. Suppose it holds at k = [ for [ > 0, so that:

Qlll < 2o 5" — 3
p
We are going to prove that the same holds for £ = [+ 1. There
are two cases:

) Q[ < p‘f,ﬁl. In this case we have by (12):
QU+1 < QU+ -5

2) —p‘ffn <QU < —p‘ﬁE + p™e® — 3. In this case, we use
proof by contradiction. If p(a(t;)) = 0 then the queue
cannot increase, so:

VB
QIU+1]<Q[ < »

+pma7; _B

On the other hand, if p(a(t;)) > 0 then p(a(t;)) > p™i"
and so the numerator in (14) satisfies:

VB¢(a(t) - Qlilp(alty)) < VB-Q[p™"
< 0
and so the maximizing ratio in (14) is negative. However,

the maximizing ratio in (14) cannot be negative because
the alternative choice «(f;) = 0 increases the ratio
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to 0. This contradiction implies that we cannot have

p(a(t)) > 0.
O

The above is a sample path result that only assumes
parameters satisfy A > 0, B > 0, and 0 < ¢(-) < 1. Thus,
the algorithm meets the average power constraint even if it
uses incorrect values for these parameters. The next subsection
provides a throughput optimality result when these parameters
match the true system values.

D. Optimality over randomized algorithms

Consider the following class of i.i.d. randomized algo-
rithms: Let 6(«) be non-negative numbers defined for each
a € A, and suppose they satisfy > . . 0(a) = 1. Let o*(t)
represent a policy that, every slot ¢ for which F(t) = 1,
chooses a*(t) € A by independently selecting strategy «
with probability 8(«). Then (p(a*(tx)), p(a*(tg))) are inde-
pendent and identically distributed (i.i.d.) over frames k. Under
this algorithm, it follows by the law of large numbers that the
throughput and power expenditure satisfy (with probability 1):

)

tlggofz T THE[B(a(t)] /A
___Ep(w)

tlgéloTZp 1+ E[p(er(tr)] /A

It can be shown that optimality of problem (5)-(8) can be
achieved over this class. Thus, there exists an i.i.d. randomized
algorithm «*(t) that satisfies:

BElo(m)
HE[[ <( <( %W

E
FEp ) = P a7

where p* is the optimal throughput for the problem (5)-(8).

(16)

E. Key feature of the drift-plus-penalty ratio

Define H[k] as the system history up to frame k, which
includes which includes the actions taken «[0], - - , a[k — 1]
frame lengths T[0],--- ,T[k — 1], the busy period in each
frame, the idle period in each frame, and the queue value Q[k]
(since this is determined by the random events before frame
k). Consider the algorithm that, on frame k, observes Q[k] and
chooses a(ty) according to (14). The following key feature of
this algorithm can be shown (see [2] for related results):

E [-VBo(a(ts)) + Qlk]p(a(tr))|H[K]
E[1+ ¢(altr))/AHIE]
E[-VBg(a*(t)) + Qklp(a* (tr))[H[K]]
- E 14 ¢(a*(tk))/ Al H[K]
where a* (i) is any (possibly randomized) alternative decision
that is based only on H[k]. This is an intuitive property:
By design, the algorithm in (14) observes [k] and then

chooses a particular action «(t;) to minimize the ratio over all
deterministic actions. Thus, as can be shown, it also minimizes

the ratio over all potentially randomized actions. Using the
(randomized) i.i.d. decision a* () from (16)-(17) in the above
and noting that this alternative decision is independent of H [k]
gives:

E [-VBe(a(t)) + QLKIp(a(te))[H[K]
E 1+ ¢(a(ty)) /A H[E]]

< —Vu* + QK]S
(18)

F. Performance theorem

Theorem 1. The proposed algorithm achieves the constraint
lim supp_, o %ZtT:_Ol p(a(t)) < B and yields throughput
satisfying (with probability 1):

Co

T—1
| =
I}THi)IOI})f T ;zo Bo(a(t)) > p* — A (19)

where Cy is a constant.”

Proof. First, for any fixed V, Lemma 2 implies that the
queue is deterministically bounded. Thus, according to
Lemma 1, the proposed algorithm achieves the constraint
lim supy_, o 7 Zt 0 "p(a(t)) < B. The rest is devoted to
proving the throughput guarantee (19).

Define:

L(QIH) = 3QIH.

We call this a Lyapunov function. Define a frame-based
Lyapunov Drift as:

Alk] = L(Q[k +1]) — L(Q[K])
According to (12) we get
QU+ 11 < (QIK] + pla(ts)) — T(k]B)”.
Thus
afe] < PO ZTWEE | kg paee)) - 714)3)

Taking a conditional expectation of the above given H[k] and
recalling that 7{[k] includes the information Q[k] gives:

E[A[K][H[K]] < Co + QKIE [p(e(tr)) — STIK]|H[K] (20)

where C is a constant that satisfies the following for all
possible histories H[k]:

Such a constant C exists because the power p(a(ty)) is de-
terministically bounded, and the frame sizes T[k] are bounded
in second moment regardless of history.

Adding the “penalty” —E [V Bo(a(ty))|#[k]] to both sides
of (20) gives:

E [A[k] — VBo(a(te))|H[K]]
< Co+E [-VBo(a(tr)) + QK] (p(e(tr)) — BT[K])[H[K]]
= Co — Q[k|BE [T'[k]|H][K]]

E [T[k]|H[K] E [-VBo(a(tr)) + Q[klp(alty))|H[k]]

E[T[k]|H[F]

2The constant Co is independent of V' and is given in the proof.
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Expanding T[k] in the denominator of the last term gives:

E [A[k] — VBo(a(te))|H[K]]
< Co — Q[K]BE [T[K][H[K]] + E [T[k]|H[k]] x
E [-VBo(a(tr)) + Qklp(a(te))|H[K]]

E 1+ ¢(a(te))/AH[K]]
Substituting (18) into the above expression gives:
E [A[k] = VBe(a(ty))H[F]
< Co — Q[K|BE [T[k][H[K]]
HE[TR|H[E] (=V " + BQK])

= Co— Vu'E[T[k]|H[K]] 21
Rearranging gives:
E [A[K] + V(W' T[k] — Bo(a(te))|H[K] < Co  (22)

The above is a drift-plus-penalty expression. Because we
already know the queue Q[k] is deterministically bounded, it
follows that:

k=1
This, together with (22), implies by the drift-plus-penalty
result in Proposition 2 of [19] that (with probability 1):

lim sup — I Z *T

K—o0

ot
Bo(aft ))}svo

Thus, for any € > 0 one has for all sufficiently large K:

| Kl

= S TIH
k=0

Rearranging implies that for all sufficiently large K:

K-14H

ko Bé(a(tk)) > - (Co/V +e)
K— - K—
i—o Tk % i Tlk]

> ur—(Co/V +e)

where the final inequality holds because T'[k] > 1 for all k.
Thus:

+ €

~Bo(a(n))] <

to Bolat) . .
kK:_Ol T[k] ZH (CO/V + )
The above holds for all € > 0. Taking a limit as e — 0 implies:
o Bélalt))
boo T
Notice that ¢(«(t)) only changes at the boundary of each
frame and remains O within the frame. Thus, we can replace

the sum over frames k£ by a sum over slots ¢t. The desired
result follows. O

lim inf
K—oo

“_Cy)V.

lim inf
K—oo

The theorem shows that throughput can be pushed within
O(1/V) of the optimal value p*, where V' can be chosen as
large as desired to ensure throughput is arbitrarily close to
optimal. The tradeoff is a queue bound that grows linearly
with V according to Lemma 2, which affects the convergence
time required for the constraints to be close to the desired time
averages (as described in the proof of Lemma 1).

User 1

User 2

User N

Fig. 1. A system with /N users. The shaded node for each user n indicates
the current file state Fy, (¢) of that user. There are 2% different state vectors.

III. MULTI-USER FILE DOWNLOADING

This section considers a multi-user file downloading system
that consists of N single-user subsystems. Each subsystem is
similar to the single-user system described in the previous sec-
tion. Specifically, for the n-th user (where n € {1,..., N}):

« The file state process is F),(t) € {0,1}.

o The transmission decision is «,(t) € A,, where A, is
an abstract set of transmission options for user n.

o The power expenditure on slot ¢ is p,(ay,(t)).

o The success probability on a slot ¢ for which F,(t) =1
is ¢n(aun(t)), where ¢, () is the function that describes
file completion probability for user n.

o The idle period parameter is A\, > 0.

o The average file size is B,, bits.

Assume that the random variables associated with different
subsystems are mutually independent. The resulting Markov
decision problem has 2%V states, as shown in Fig. 1. The
transition probabilities for each active user depends on which
users are selected for transmission and on the corresponding
transmission modes. This is a restless bandit system because
there can also be transitions for non-selected users (specifi-
cally, it is possible to transition from inactive to active).

To control the downloading process, there is a central server
with only M threads (M < N), meaning that at most M jobs
can be processed simultaneously. So at each time slot, the
server has to make decisions selecting at most M out of N
users to transmit a portion of their files. These decisions are
further restricted by a global time average power constraint.
The goal is to maximize the aggregate throughput, which is
defined as

Nl
[]=

o

3

|

3

=

Q

)

=

lim inf
T— 00

where c1,cs,...,cn are a collection of positive weights that
can be used to prioritize users. Thus, this multi-user file
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downloading problem reduces to the following:

T-1 N

Wx%M—ZXﬂn%%D (23)
—00

t=0 n=1

T-1 N
S.t.: limsup — Z an ap(t 24)

T—oo t=0 n—1
}:](an@»;gﬂi vt e {0,1,2,---} (25)

n=1

PriF,(t+1)=1| F,(t) =0 =\, (26)
PriF,(t+1) =0 Fy(t) = 1] = ¢n(an(t)) 27
where the constraints (26)-(27) hold for all n € {1,...,N}

and t € {0,1,2,
defined as:

..}, and where I(-) is the indicator function

0, ifz=0:;
I(x) = { 1, otherwise.

A. Lyapunov indexing algorithm

This section develops our indexing algorithm for the
multi-user case using the single-user case as a stepping
stone. The major difficulty is the instantaneous constraint
25:1 I(a,(t)) < M. Temporarily neglecting this constraint,
we use Lyapunov optimization to deal with the time average
power constraint first.

We introduce a virtual queue Q(t), which is again O at ¢ = 0.
Instead of updating it on a frame basis, the server updates this
queue every slot as follows:

Qt+1) maX{ +an an(t) — B, 0} (28)

Define N/ () as the set of users beginning their renewal frames
at time ¢, so that F,,(t) = 1 for all such users. In general,
N (t) is a subset of N' = {1,2,--- , N}. Define [N (t)| as the
number of users in the set A/ (¢).

At each time slot ¢, the server observes the queue state Q(t)
and chooses (aq(t),...,an(t)) in a manner similar to the
single-user case. Specifically, for each user n € N (t) define:

A VCnEnd)n (an (t)) - Q(t)pn (an (t))
L+ dn(an(t))/An
This is similar to the expression (14) used in the single-user

optimization. Call g, (o, (t)) a reward. Now define an index
for each subsystem n by:

gn(an(t))

(29)

max g (an(t)) (30)

n(t) =
’y ( ) an(f)e-Aw

which is the maximum possible reward one can get from the
n-th subsystem at time slot ¢. Thus, it is natural to define the
following myopic algorithm: Find the (at most) M subsystems
in A/(¢t) with the greatest rewards, and serve these with their
corresponding optimal «,,(t) options in A,, that maximize

gn(an(t)).

Algorithm 2.

o At each time slot t, the server observes virtual queue
state Q(t) and computes the indices using (30) for all
n e N(t).

o Activate the min[M,|N(t)|] subsystems with greatest
indices, using their corresponding actions o, (t) € A,
that maximize gy (o, (t)).

e Update Q(t) according to (28) at the end of each slot t.

B. Theoretical performance analysis

In this subsection, we show that the above algorithm always
satisfies the desired time average power constraint. Define:

min _
Pn o oy, Enjlnn\{O} (an)
pmzn — HllIl p:lnzn

max _
Pn = max pn (cn)
A = maxec,

n
B = max B,

Assume that p™" > 0.

Lemma 3. Under the above Lyapunov indexing algorithm, the
queue {Q(t)}2,, is deterministically bounded. Specifically, we
have for all t € {0,1,2,...}:

V mazB

’I'VLZ’IL

o < { VT 4 S e ol

n=1

Proof. First, consider the case when Zn 1 P < B. Since
Q(0) = 0, it is clear from the updating rule (28) that Q(t)
will remain O for all ¢.

Next, consider the case when Zn 1P0¢% > . We prove
the assertion by induction on ¢. The result trivially holds for
t = 0. Suppose at t = ¢/, we have:

+ meaz _

We are going to prove that the same statement holds for ¢ =
t’ + 1. We further divide it into two cases:

1) Q( /) < chazB

prin
increases by at most Zn 1D
have:

Q(t/) é V mamB

mzn

. In this case, since the queue

— (8 on one slot, we

V ma:rB

mzn

Q' +1) <

2 2 4 meaz o

2) VCTnamEWL@T max gmav

B Q) < VB L SN e g
In this case, since (bn(an(t’ )) < 1, there is no possi-
bility that Ve, By o (an(t')) > Q(t)pn(an(t’)) unless
ay, (t") = 0. Thus, the Lyapunov indexing algorithm of
minimizing (29) chooses «,(t') = 0 for all n. Thus, all
indices are 0. This implies that Q(#'+1) cannot increase,
and we get Q(t' +1) < Y B | SN pmer — .

O

mzn

mml
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Theorem 2. The proposed Lyapunov indexing algorithm
achieves the constraint:

1 T—1 N
i sup o ;;p (an(t)) < B

Proof. Using Lemma 1 under the special case that each
frame only occupies one slot, we get that if {Q(¢)}2, is
deterministically bounded, then the time average constraint is
satisfied. Then, according to Lemma 3 we are done. O

IV. MULTI-USER OPTIMALITY IN A SPECIAL CASE

In general, it is very difficult to prove optimality of the
above multi-user algorithm. There are mainly two reasons.
The first reason is that multiple users might renew themselves
asynchronously, making it difficult to define a “renewal frame”
for the whole system. Thus, the proof technique in Theorem 1
is infeasible. The second reason is that, even without the time
average constraint, the problem degenerates into a standard
restless bandit problem where the optimality of indexing is
not guaranteed.

This section considers a special case of the multi-user file
downloading problem where the Lyapunov indexing algorithm
is provably optimal. The special case has no time average
power constraint. Further, for each user n € {1,..., N}:

o Each file consists of a random number of fixed length

packets with mean B,, = 1/,,.

o The decision set A, = {0,1}, where 0 stands for “idle”
and 1 stands for “download.” If «,,(t) = 1, then user n
successfully downloads a single packet.

o Pnlan(t)) = unan(t).

o Idle time is geometrically distributed with mean 1/\,,.

o The special case p, =1 — X\, is assumed.

The assumption that the file length and idle time parame-
ters u,, and \, satisfy ;,, = 1 — )\, is restrictive. However,
there exists certain queueing system which admits exactly
the same markov dynamics as the system considered here
when the assumption holds (described in Section IV-A
below). More importantly, it allows us to implement the
stochastic coupling idea to prove the optimality.

The goal is to maximize the sum throughput (in units of
packets/slot), which is defined as:

T—-1 N

timinf 3" 3" Buo(an(n).

t=0 n=1

€2y

In this special case, the multi-user file downloading problem
reduces to the following:

T—-1 N

Max: lim! mf% S an(t) (32)
v t=0 n=1
St Y an(t) <M Vte{0,1,2,--} (33)
n=1

an(t) € {0, F,(t)} (34)

PriF,(t+1)=1| F,(t)=0] =\, (35)
PT[Fn(t +1)=0] Fut) = 1] = an(t)(1 = An)

(36)

Idle (a, = 0)

Fig. 2. Markovian dynamics of the n-th system.

where the equality (36) uses the fact that p,, = 1 — A\,,. A
picture that illustrates the Markov structure of constraints (34)-
(36) is given in Fig. 2

A. A system with N single-buffer queues

The above model, with the assumption p, = 1 — A,, is
structurally equivalent to the following: Consider a system of
N single-buffer queues, M servers, and independent Bernoulli
packet arrivals with rates A, to each queue n € {1,..., N}.
This considers packet arrivals rather than file arrivals, so
there are no file length variables and no parameters p,, in this
interpretation. Let A(t) = (A1(t),..., An(¢t)) be the binary-
valued vector of packet arrivals on slot ¢, assumed to be i.i.d.
over slots and independent in each coordinate. Assume all
packets have the same size and each queue has a single buffer
that can store just one packet. Let F,(t) be 1 if queue n has
a packet at the beginning of slot ¢, and 0 else. Each server
can transmit at most 1 packet per slot. Let a,(t) be 1 if
queue n is served on slot ¢, and O else. An arrival A, (¢)
occurs at the end of slot ¢ and is accepted only if queue n
is empty at the end of the slot (such as when it was served
on that slot). Packets that are not accepted are dropped. The
Markov dynamics are described by the same figure as before,
namely, Fig. 2. Further, the problem of maximizing throughput
is given by the same equations (32)-(36). Thus, although the
variables of the two problems have different interpretations,
the problems are structurally equivalent. For simplicity of
exposition, the remainder of this section uses this single-buffer
queue interpretation.

B. Optimality of the indexing algorithm

Since there is no power constraint, for any V' > 0 the
Lyapunov indexing policy (30) in Section III-A reduces to
the following (using ¢, = 1, Q(t) = 0): If there are fewer
than M non-empty queues, serve all of them. Else, serve the
M non-empty queues with the largest values of +,,, where:

1

S S
1+ (1= M)/ An

Tn =
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Thus, the Lyapunov indexing algorithm in this context reduces
to serving the (at most M) non-empty queues with the largest
A, values each time slot. For the remainder of this section,
this is called the Max-\ policy. The following theorem shows
that Max-\ is optimal in this context.

Theorem 3. The Max-) policy is optimal for the problem (32)-
(36). In particular, under the single-buffer queue interpreta-
tion, it maximizes throughput over all policies that transmit
on each slot t without knowledge of the arrival vector A(t).

For the N single-buffer queue interpretation, the total
throughput is equal to the raw arrival rate Zfil A; minus the
packet drop rate. Intuitively, the reason Max-\ is optimal is
that it chooses to leave packets in the queues that are least
likely to induce packet drops. An example comparison of the
throughput gap between Max-\ and Min-\ policies is given
in Appendix A.

The proof of Theorem 3 is divided into two parts. The first
part uses stochastic coupling techniques to prove that Max-\
dominates all alternative work-conserving policies. A policy
is work-conserving if it does not allow any server to be idle
when it could be used to serve a non-empty queue. The second
part of the proof shows that throughput cannot be increased
by considering non-work-conserving policies.

C. Preliminaries on stochastic coupling

Consider two discrete time processes X = {X (¢)}£2,, and
Y £ {Y()}2,. The notation X =,; ) means that X’ and
Y are stochastically equivalent, in that they are described by
the same probability law. Formally, this means that their joint
distributions are the same, so for all ¢t € {0,1,2,...} and all
(20,...,2¢) € R

PT‘[X(O) S Zo,...,X(t) S Zt]
= Pr[Y(0) < zp,...,Y(t) < z]

The notation X <; ) means that X is stochastically less than
or equal to Y, as defined by the following theorem.

Theorem 4. ([3]) The following three statements are equiva-
lent:

) X <aD.
2) Prlg(X(0),X(1),---,X(t)) > 2] < Prlg(Y(0),
Y(1),---,Y(t)) > 2| for all t € Z%, all 2, and for

all functions g : R™ — 'R that are measurable and
nondecreasing in all coordinates.

3) There exist two stochastic processes X' and V' on a
common probability space that satisfy X =, X', Y =4
V', and X'(t) <Y'(t) for every t € ZT.

The following additional notation is used in the proof of
Theorem 3.

o Arrival vector {A(t)}2,, where A(t) = [Ai(t)
As(t) -+ An(t)]. Bach A, () is an independent binary
random variable that takes 1 w.p. A, and 0 w.p. 1 — \,.

o Buffer state vector {F(¢)}2,, where F(t) = [Fi(t)
Fy(t) -+ Fn(t)]. So F,(t) = 1 if queue n has a packet
at the beginning of slot ¢, and F,,(t) = 0 else.

o Total packet process U = {U(t)},, where U(t) =
Zgzl F,(t) represents the total number of packets in
the system on slot ¢. Since each queue can hold at most
one packet, we have 0 < U(t) < N for all slots t.

D. Stochastic ordering of buffer state process

The next lemma is the key to proving Theorem 3. The
lemma considers the multi-queue system with a fixed but
arbitrary initial buffer state F(0). The arrival process A (%)
is as defined above. Let U™** be the total packet process
under the Max-\ policy. Let U™ be the corresponding process
starting from the same initial state F(0) and having the same
arrivals A(t), but with an arbitrary work-conserving policy 7.

Lemma 4. The total packet processes U™ and UM satisfy:

uﬂ' Sst uMa.r-A (37)

Proof. Without loss of generality, assume the queues are
sorted so that A\, < Ay41, n = 1,2,--- /N — 1. Define
{F7(t)}2, as the buffer state vector under policy m. De-
fine {F™>**(¢)}22, as the corresponding buffer states under
the Max-A policy. By assumption the initial states satisfy
F™(0) = F*>*(0). Next, we construct a third process U*
with a modified arrival vector process {A*(¢)}2, and a
corresponding buffer state vector {F*(¢)}5°, (with the same
initial state F*(0) = F™(0)), which satisfies:

1) U* is also generated from the Max-\ policy.

2) U =4 UY™>. Since the total packet process is com-
pletely determined by the initial state, the scheduling
policy, and the arrival process, this is equivalent to
saying {A*(t)}2°, and {A(t)}£2, have the same prob-
ability law.

3) U™(t) < UAt) vt > 0.

Since the arrival process A (t) is i.i.d. over slots, in order to
guarantee 2) and 3), it is sufficient to construct A*(t) coupled
with A (t) for each ¢ so that the following two properties hold
for all t > O:

o The random variables A(t) and A*(t) have the same
probability law. Specifically, both produce arrivals ac-
cording to Bernoulli processes that are independent
over queues and over time, with Pr[A,(t) = 1] =
PriA)(t)=1] =\, forall n € {1,...,N}.

o Forall j € {1,2,--- N},

iF::(t) < iFﬁ(t),

The construction is based on an induction.

At t = 0 we have F7(0) = F*(0). Thus, (38) naturally
holds for ¢ = 0. Now fix 7 > 0 and assume (38) holds
for all slots up to time ¢t = 7. If 7 > 1, further assume the
arrivals {A*(t)}7_; have been constructed to have the same
probability law as {A(¢)}7_J. Since arrivals on slot 7 occur
at the end of slot 7, the arrivals A*(7) must be constructed.
We are going to show there exists an A*(7) that is coupled
with A(7) so that it has the same probability law and it also
ensures (38) holds for ¢t = 7 + 1.

(38)
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Since arrivals occur after the transmitting action, we divide
the analysis into two parts. First, we analyze the temporary
buffer states after the transmitting action but before arrivals
occur. Then, we define arrivals A*(7) at the end of slot 7 to
achieve the desired coupling.

Define F™(7) and F*(7) as the temporary buffer states right
after the transmitting action at slot 7 but before arrivals occur
under policy 7 and policy Max-), respectively. Thus, for each

queve n € {1,...,N}:
Fi(r) = Fi(r)—ag(7) (39)
Fy(r) = Fy(1)—an(r) (40)

where a7 (1) and a;)(7) are the slot 7 decisions under policy
m and Max-), respectively. Since (38) holds for 5 = N on
slot 7, the total number of packets at the start of slot 7 under
policy m is less than or equal to that under Max-\. Since both
policies m and Max-\ are work-conserving, it is impossible
for policy 7 to transmit more packets than Max-\ during slot
7. This implies:

N ~
7)< ) EN(r)

N
> (41)
n=1

Indeed, if 7 transmits the same number of packets as Max-\
on slot 7, then (41) clearly holds. On the other hand, if 7
transmits fewer packets than Max-J\, it must transmit fewer
than M packets (since M is the number of servers). In this
case, the work-conserving nature of 7 implies that all non-
empty queues were served, so that F7(7) = 0 for all n and
(41) again holds. We now claim the following holds:

Lemma 5.

J J
Z’{ SZ (r) Vje{1,2,--- N}y (@2

Proof. See Appendix B. O

Now let j™(I) and j*(I) be the subscript of I-th empty
temporary buffer (with order starting from the first queue)
corresponding to F7(7) and F*(7), respectively. It follows
from (42) that the 7 system on slot 7 has at least as many
empty temporary buffer states as the Max-\ policy, and:

K(7)}

where K (7) < N is the the number of empty temporary buffer
states under Max-\ at time slot 7. Since A\; < A; if and only
if ¢ < 7, (43) further implies that

T < M) Ve {1,2,--- (43)

Ajmy S Ay VEE{L2,--  K(7)} (44)

Now construct the arrival vector A*(7) for the system with
the Max-A policy in the following way:

1— )\ Y
AN n(17) =0, wp. 71 X OF
A =0=4q MR
Aj/\(l)(T) =1, wp. 5= pysTRanE
(46)

Notice that (46) uses valid probability distributions because of
(44). This establishes the slot 7 arrivals for the Max-\ policy
for all of its K(7) queues with empty temporary buffer states.
The slot 7 arrivals for its queues with non-empty temporary
buffers will be dropped and hence do not affect the queue
states on slot 7 4+ 1. Thus, we define arrivals A?(T) to be
independent of all other quantities and to be Bernoulli with
Pr[A}(r) = 1] = A, for all j in the set:

NI\, ()

Now we verify that A(7) and A*(7) have the same probability
law. First condition on knowledge of K (7) and the particular
4™(1) and j (1) values for I € {1,...,K(7)}. All queues j
with non-empty temporary buffer states on slot 7 under Max-\
were defined to have arrivals A;‘(T) as independent Bernoulli
variables with PT[A)‘( ) = 1} = ;. It remains to verify those
queues within {j*(1 ) LMK ( ))} According to (46), for
any queue j*(I) in set {] (1), ,7MK (7))}, it follows

j€{132a"'

1 - )\]’\(l)

A _ — z
r AJA(Z)(T) =0 = (1 — 1_ )\jﬂ(l)

A=)
= 1-2p

and so Pr[AX7) = 1] = \; for all j e {j 030
Further, mutual independence of { A~ (7 )} =1 1mphes mu-
tual independence of {4 ;) (T)}{S{ ). Finally, these quantities
are conditionally independent of events before slot 7, given
knowledge of K (7) and the particular 57 (1) and j*(I) values
for I € {1,...,K(7)}. Thus, conditioned on this knowledge,
A (1) and A*(7) have the same probability law. This holds
for all possible values of the conditional knowledge K (7) and
4™ (1) and j*(1). It follows that A(7) and A*(7) have the same
(unconditioned) probability law.

Finally, we show that the coupling relations (45) and (46)
produce such FA(7 4 1) satisfying

J J
SOFIr+1) <> Fr(r+1), Vi€ {2, N} 47)
n=1 n=1
According to (45) and (46),
Ajr (1) < Ay (7), V€L, K()},
thus
l l
> Apriy (1) Y AN (1), VIE{L - K(1)}. (48)
i=1 =1

Pick any j € {1,2,---,N}. Let I™ be the number of empty
temporary buffers within the first j queues under policy T, i.e.

" = max
IT(D<g

Similarly define:
I = max I
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Then, it follows:

J ™
ZF;;(TH) = > F r)+ZAjw(i)(T) (49)
= n=1 7
ZF)‘T+1 = i +ZAA (r)  (50)

n=1 n=1

We know that ™ > [,
o If I™ =[*, then from (49):

J
S F(r+1)
n=1

So there are two cases:

, »
> Er)+ ZAJ-ui)(r)
Z () + ZA i (i) (T

= ZJ:FQ‘(T—F 1)

IN

where the inequality follows from (42) and from (48)
with [ = [*. Thus, (47) holds.
o If I™ > [*, then from (49):

J J »
SOEIr+1) =Y FN(r)+ Y Ajrp(1)
n=1 n=1 1=1

-
+ > Ajep(n)

=1 1

where the first inequality follows from the fact that

"
Z Aj"(i) (7)

i=lr+1

IN

~
3

~
>

and the second inequality follows from (48).

Thus, (38) holds for ¢ = 7 + 1 and the induction step is
done. O

Corollary 1. The Max-\ policy maximizes throughput within
the class of work-conserving policies.

Proof. Let S™(t) be the number of packets transmitted under
any work-conserving policy 7 on slot ¢, and let S™**(¢) be the

corresponding process under policy Max-\. Lemma 4 implies
UT(t) <g UM*. Then:

E[S™(1)]

E [min[U™(¢), M]]
E [min[U(¢), M]]

E 5% (0)
where the inequality follows from Theorem 4, with the under-
standing that g(U(0), ..., U(t)) £ min[U(t), M] is a function
that is nondecreasing in all coordinates. O

IN

E. Extending to non-work-conserving policies

Corollary 1 establishes optimality of Max-\ over the class
of all work-conserving policies. To complete the proof of
Theorem 3, it remains to show that throughput cannot be
increased by allowing for non-work-conserving policies. It
suffices to show that for any non-work-conserving policy, there
exists a work-conserving policy that gets the same or better
throughput. The proof is straightforward and we give only a
proof sketch for brevity. Consider any non-work-conserving
policy 7, and let F/7(t) be its buffer state process on slot ¢ for
each queue n. For the same initial buffer state and arrival
process, define the work-conserving policy 7’ as follows:
Every slot t, policy 7’ initially allocates the M servers to
exactly the same queues as policy m. However, if some of these
queues are empty under policy 7, it reallocates those servers
to any non-empty queues that are not yet allocated servers (in
keeping with the work-conserving property). Let F7 l (t) be
the buffer state process for queue n under policy 7’. It is not
difficult to show that F(¢) > FT (t) for all queues n and
all slots t. Therefore, on every slot ¢, the amount of blocked
arrivals under policy 7 is always greater than or equal to that
under policy 7’. This implies the throughput under policy =
is less than or equal to that of policy 7'.

V. SIMULATION EXPERIMENTS

In this section, we demonstrate near optimality of the multi-
user Lyapunov indexing algorithm by extensive simulations.
In the first part, we simulate the case in which the file length
distribution is geometric, and show that the suboptimality gap
is extremely small. In the second part, we test the robustness
of our algorithm for more general scenarios in which the
file length distribution is not geometric. For simplicity, it is
assumed throughout that all transmissions send a fixed sized
packet, all files are an integer number of these packets, and
that decisions a,(t) € A, affect the success probability of
the transmission as well as the power expenditure.

A. Lyapunov indexing with geometric file length

In the first simulation we use N = 8, M = 4 with action
set A, = {0,1} Vn; The settings are generated randomly and
specified in Table I, and the constraint 5 = 5.

The algorithm is run for 1 million slots in each trial and each
point is the average of 100 trials. We compare the performance
of our algorithm with the optimal randomized policy. The
optimal policy is computed by constructing composite states
(i.e. if there are three users where user 1 is at state 0, user 2 is
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TABLE 1
PROBLEM PARAMETERS
User | A\n Ln, dn(1) | cn pn(1)
1 0.0028 | 0.5380 | 0.4842 | 4.7527 | 3.9504
2 0.4176 | 0.5453 | 0.4908 | 2.0681 | 3.7391
3 0.0888 | 0.5044 | 0.4540 | 2.8656 | 3.5753
4 0.3181 | 0.6103 | 0.5493 | 2.4605 | 2.1828
5 0.4151 | 0.9839 | 0.8855 | 4.5554 | 3.1982
6 0.2546 | 0.5975 | 0.5377 | 3.9647 | 3.5290
7 0.1705 | 0.5517 | 0.4966 | 1.5159 | 2.5226
8 0.2109 | 0.7597 | 0.6837 | 3.6364 | 2.5376

at state 1 and user 3 is at state 1, we view 011 as a composite
state), and then reformulating this MDP into a linear program
(see [20]) with 5985 variables and 258 constraints.

In Fig. 3, we show that as our tradeoff parameter V' gets
larger, the objective value approaches the optimal value and
achieves a near optimal performance. Fig. 4 and Fig. 5 show
that V' also affects the virtual queue size and the constraint gap.
As V' gets larger, the average virtual queue size becomes larger
and the gap becomes smaller. We also plot the upper bound of
queue size we derived from Lemma 3 in Fig. 4, demonstrating
that the queue is bounded. In order to show that V' is indeed a
trade-off parameter affecting the convergence time, we plotted
Fig. 6. It can be seen from the figure that as V gets larger,
the number of time slots needed for the running average to
roughly converge to the optimal power expenditure becomes
larger.

— Lyapunov Indexing
- - -Optimal Throughput

4.8

Throughput

»
o

38 L L L L L L
0 10 20 30 40 50 60 70

V value

Fig. 3. Throughput versus tradeoff parameter V

In the second simulation, we explore the parameter space
and demonstrate that in general the suboptimality gap of our
algorithm is negligible. First, we define the relative error as
the following:

|OBJ — OPT)
OPT
where OBJ is the objective value after running 1 million
slots of our algorithm and OPT is the optimal value. We
first explore the system parameters by letting \,,’s and p,,’s
take random numbers within 0 and 1, letting c,, take random
number within 1 and 5, choosing V' = 70 and fixing the

relative error = (&2))]

4.9

— Lyapunov Indexing| |
- - -Power Constraint
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» » >
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Fig. 4. The time average power consumption versus tradeoff parameter V.
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Fig. 5. Average virtual queue backlog versus tradeoff parameter V.
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Fig. 6. Running average power consumption versus tradeoff parameter V.
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TABLE II
PROBLEM PARAMETERS UNDER GEOMETRIC, UNIFORM AND POISSON
DISTRIBUTION

User | pn | Unif. Poiss. | An Pn (1) Cn pn (1)
interval | mean
1 173 | [1,5] 3 0.4955 | 0.1832 | 4.3261 2.8763
2 172 | [1,3] 2 0.1181 | 0.4187 1.6827 | 2.0549
3 172 [1,3] 2 0.1298 | 0.4491 1.9483 | 2.1469
4 1/7 | [1,13] 7 0.4660 | 0.0984 | 2.7495 | 3.4472
5 1/4 | [1,7] 4 0.1661 | 0.1742 | 1.5535 | 3.2801
6 173 | [1,5] 3 0.2124 | 0.3101 | 4.3151 3.5648
7 172 | [1,3] 2 0.5295 | 0.4980 | 3.6701 | 2.4680
8 1/5 | [1,9] 5 0.2228 | 0.1971 | 4.0185 | 2.2984
9 1/4 | [1,7] 4 0.0332 | 0.1986 | 3.0411 2.5747

remaining parameters the same as the last experiment. We
conduct 1000 Monte-Carlo experiments and calculate the
average relative error, which is 0.00083.

Next, we explore the control parameters by letting the p,, (1)
take random number within 2 and 4, and letting ¢, (1)/pn
values random numbers between 0 and 1, choosing V = 70
and fixing the remaining parameters the same as the first
simulation. The relative error is 0.00057. Both experiments
show that the suboptimality gap is extremely small.

B. Lyapunov indexing with non-memoryless file lengths

In this part, we test the sensitivity of the algorithm to
different file length distributions. In particular, the uniform
distribution and the Poisson distribution are implemented
respectively, while our algorithm still treats them as a geo-
metric distribution with same mean. We then compare their
throughputs with the geometric case.

We use N = 9, M = 4 with action set A,, = {0, 1} Vn. The
settings are specified in Table II with constraint 3 = 5. Notice
that for geometric and uniform distribution, the file lengths are
taken to be integer values. The algorithm is run for 1 million
slots in each trial and each point is the average of 100 trials.

While the decisions are made using these values, the affect
of these decisions incorporates the actual (non-memoryless)
file sizes. Fig. 7 shows the throughput-versus-V relation for
the two non-memoryless cases and the memoryless case with
matched means. The performance of all three is similar. This
illustrates that the indexing algorithm is robust under different
file length distributions.

VI. CONCLUSIONS

We have investigated a file downloading system where the
network delays affect the file arrival processes. The single-
user case was solved by a variable frame length Lyapunov
optimization method. The technique was extended as a well-
reasoned heuristic algorithm for the multi-user case. Such
heuristics are important because the problem is a multi-
dimensional Markov decision problem with very high com-
plexity. The heuristic is simple, can be implemented in an on-
line fashion, and was analytically shown to achieve the desired
average power constraint. Moreover, under a special case with
no average power constraint, stochastic coupling was used to

— Geometric

7F . — Uniform
Geometric —— Poisson

85 Uniform

Poisson

Throughput

0 10 20 30 40 50 60 70
V value

Fig. 7. Throughput versus tradeoff parameter V' under different file length
distributions.

prove the heuristic is throughput optimal. Simulations suggest
that the algorithm is in general very close to optimal. Further,
simulations suggest that non-memoryless file lengths can be
accurately approximated by the algorithm. These methods can
likely be applied in more general situations of restless multi-
armed bandit problems with constraints.

APPENDIX A—COMPARISON OF MAX-A\ AND MIN-\

This appendix shows that different work conserving policies
can give different throughput for the N single-buffer queue
problem of Section IV-A. Suppose we have two single-
buffer queues and one server. Let A;, Ay be the arrival
rates of the i.i.d. Bernoulli arrival processes for queues
1 and 2. Assume A\; # A,. There are 4 system states:
(0,0), (0,1), (1,0), (1,1), where state (¢, ) means queue 1
has ¢ packets and queue 2 has j packets. Consider the (work
conserving) policy of giving queue 1 strict priority over queue
2. This is equivalent to the Max-\ policy when A\; > Ao, and
is equivalent to the Min-)\ policy when A; < Aa. Let 8( A1, A2)
be the steady state throughput. Then:

O(A1,A2) =pio+po1 +Ppia

where p;; is the steady state probability of the resulting
discrete time Markov chain. One can solve the global balance
equations to show that 0(1/2,1/4) > 6(1/4,1/2), so that the
Max-\ policy has a higher throughput than the Min-A policy.
In particular, it can be shown that:

o Max-)\ throughput: 6(1/2,1/4) = 0.7

e Min-\ throughput: (1/4,1/2) ~ 0.6786

APPENDIX B—PROOF OF LEMMA 5

This section proves that:

J J
SOET(r) <> ENr) Vje{l2- N} (52
n=1 n=1

The case j = N is already established from (41). Fix j €
{1,2,...,N —1}. Since 7 cannot transmit more packets than
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Max
two

Y

2)

[1]

[2]

[3]

[4]

[5]

[6]

[8]

-\ during slot 7, inequality (52) is proved by considering

cases:
Policy 7 transmits less packets than policy Max-\. Then
« transmits less than M packets during slot 7. The work-
conserving nature of 7 implies all non-empty queues
were served, so F7(7) = 0 for all n and (52) holds.
Policy 7 transmits the same number of packets as
policy Max-\. In this case, consider the temporary buffer
states of the last NV — j queues under policy Max-\. If
PO 41 F2(1) = 0, then clearly the following holds

N N
Y. Eln) = Y F).
n=j+1 n=j+1
Subtracting (53) from (41) immediately gives (52). If
ZTILJ'H FX(7) > 0, then all M servers of the Max-\
system were devoted to serving the largest A\, queues.
So only packets in the last N — j queues could be

transmitted by Max-A during the slot 7. In particular,

(53)

a)(7) =0 forall n € {1,...,5}, and so (by (40)):
j J
YN =) Far) (54)
n=1 n=1
Thus:
J
S OET(r) <Y Fr(7) (55)
n=1 n=1
J
<> FM7) (56)
n=1
j ~
= EF7), (57)
n=1

where (55) holds by (39), (56) holds because (38) is true
on slot t = 7, and the last equality holds by (54). This
proves (52).
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