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ABSTRACT
In this paper, we show how to achieve close-to-optimal util-
ity performance in energy harvesting networks with only fi-
nite capacity energy storage devices. In these networks,
nodes are capable of harvesting energy from the environ-
ment. The amount of energy that can be harvested is time
varying and evolves according to some probability law. We
develop an online algorithm, called the Energy-limited Sch-
eduling Algorithm (ESA), which jointly manages the energy
and makes power allocation decisions for packet transmis-
sions. ESA only has to keep track of the amount of energy
left at the network nodes and does not require any knowl-
edge of the harvestable energy process. We show that ESA
achieves a utility that is within O(ε) of the optimal, for any
ε > 0, while ensuring that the network congestion and the
required capacity of the energy storage devices are deter-
ministically upper bounded by bounds of size O(1/ε). We
then also develop the Modified-ESA algorithm (MESA) to
achieve the sameO(ε) close-to-utility performance, with the
average network congestion and the required capacity of the
energy storage devices being only O([log(1/ε)]2).
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Recent developments in hardware design have en-
abled many general wireless networks to support them-
selves by harvesting energy from the environment. For
instance, by converting mechanical vibration into en-
ergy [1], by using solar panels [2], by utilizing ther-
moeletric generators [3], or by converting ambient radio
power into energy [4]. Such harvesting methods are also
referred to as “recycling” energy [5]. This energy har-
vesting ability is crucial for many network design prob-
lems. It frees the network devices from having an “al-
ways on” energy source and provides a way of operating
the network with a potentially infinite lifetime. These
two advantages are particularly useful for networks that
work autonomously, e.g., wireless sensor networks that
perform monitoring tasks in dangerous fields [6], tacti-
cal networks [7], or wireless handheld devices that op-
erate over a longer period [8], etc.

However, to take full advantage of the energy har-
vesting technology, efficient scheduling algorithms must
consider the finite capacity for energy storage at each
network node. In this paper, we consider the problem
of constructing utility optimal scheduling algorithms in
a discrete stochastic network, where the communica-
tion links have time-varying qualities, and the nodes
are powered by finite capacity energy storage devices
but are capable of harvesting energy. Every time slot,
the network decides how much new data to admit and
how much power to allocate over each communication
link for data transmission. The objective of the net-
work is to maximize the aggregate traffic utility subject
to the constraint that the average network backlog is
finite, and the “energy-availability” constraint is met,
i.e., at all time, the energy consumed is no more than
the energy stored. We see that the “energy-availability”
constraint greatly complicates the design of an efficient
scheduling algorithm, due to the fact that the current
energy expenditure decision may cause energy outage
in the future and thus affect the future decisions. Such
problems can in principle be formulated as dynamic
programs (DP) and be solved optimally. However, the
DP approach typically requires substantial statistical



knowledge of the harvestable energy process and the
channel state process, and often runs into the “curse-of-
dimensionality” problem when the network size is large.

There have been many previous works developing al-
gorithms for such energy harvesting networks. [9] de-
velops algorithms for a single sensor node for achiev-
ing maximum capacity and minimizing delay when the
rate-power curve is linear. [10] considers the problem of
optimal power management for sensor nodes, under the
assumption that the harvested energy satisfies a leaky-
bucket type property. [11] looks at the problem of de-
signing energy-efficient schemes for maximizing the de-
cay exponent of the queue length. [12] develops schedul-
ing algorithms to achieve close-to-optimal utility for en-
ergy harvesting networks with time varying channels.
[13] develops an energy-aware routing scheme that ap-
proaches optimal as the network size increases. Outside
the energy harvesting context, [14] considers the prob-
lem of maximizing the lifetime of a network with finite
energy capacity and constructs a scheme that achieves a
close-to-maximum lifetime. [15] and [16] develop algo-
rithms for minimizing the time average network energy
consumption for stochastic networks with “always on”
energy sources. However, most of the existing results fo-
cus on single-hop networks and often require sufficient
statistical knowledge of the harvestable energy, and re-
sults for multihop networks often do not give explicit
queueing bounds and do not provide explicit character-
izations of the needed energy storage capacities.

We tackle this problem using the Lyapunov optimiza-
tion technique developed in [15] and [17], combined with
the idea of weight perturbation, e.g., [18] and [19]. The
idea of this approach is to construct the algorithm based
on a quadratic Lyapunov function, but carefully perturb
the weights used for decision making, so as to “push”
the target queue levels towards certain nonzero values
to avoid underflow (in our case, the target queue lev-
els are the energy levels at the nodes). Based on this
idea, we construct the Energy-limited Scheduling Al-
gorithm (ESA) for achieving optimal utility in general
multihop energy harvesting networks powered by finite
capacity energy storage devices. ESA is an online al-
gorithm which makes greedy decisions every time slot
without requiring any knowledge of the harvestable en-
ergy and without requiring any statistical knowledge of
the channel qualities. We show that the ESA algorithm
is able to achieve an average utility that is withinO(ε) of
the optimal for any ε > 0, and only requires energy stor-
age devices that are of O(1/ε) sizes. We also explicitly
compute the required storage capacity and show that
ESA also guarantees that the network backlog is deter-
ministically bounded by O(1/ε). Furthermore, we de-
velop the Modified-ESA algorithm (MESA) to achieve
the same O(ε) close-to-optimal utility performance with
energy storage devices that are only of O([log(1/ε)]2)

sizes. We note that the approach of using perturbation
in Lyapunov algorithms is novel. It not only allows us
to resolve the energy outage problem easily, but also
enables an easy analysis of the algorithm performance.

Our paper is mostly related to the recent work [12],
which considers a similar problem. [12] uses a simi-
lar Lyapunov optimization approach (without pertur-
bation) for algorithm design, and achieves a similar
[O(ε), O(1/ε)] utility-backlog performance using energy
storage sizes of O(1/ε) for single-hop networks. Multi-
hop networks are also considered in [12]. However, the
performance bounds for multihop networks are given
in terms of unknown parameters. In our paper, we
compute the explicit O(1/ε) capacity requirements for
the data buffers and energy storage devices for gen-
eral multihop networks for achieving the O(ε) close-to-
optimal utility performance. We then also develop a
scheme to achieve the same utility performance with
only O([log(1/ε)]2) energy storage capacities.

Our paper is organized as follows: In Section 2 we
state our network model and the objective. In Sec-
tion 3 we first derive an upper bound on the maxi-
mum utility. Section 4 presents the ESA algorithm.
The [O(ε), O(1/ε)] performance results of the ESA al-
gorithm are presented in Section 5. We then construct
the Modified-ESA algorithm (MESA) in Section 6. Sim-
ulation results are presented in Section 7.

2. THE NETWORK MODEL
We consider a general interconnected network that

operates in slotted time. The network is modeled by
a directed graph G = (N ,L), where N = {1, 2, ..., N}
is the set of the N nodes in the network, and L =
{[n,m], n,m ∈ N} is the set of communication links in
the network. For each node n, we use N (o)

n to denote
the set of nodes b with [n, b] ∈ L, and use N (in)

n to
denote the set of nodes a with [a, n] ∈ L. We then define
dmax , maxn |N (in)

n | to be the maximum in-degree that
any node n ∈ N can have.
2.1 The Traffic and Utility Model

At every time slot, the network decides how many
packets destined for node c to admit at node n. We
call these traffic the commodity c data and use R(c)

n (t)
to denote the amount of new commodity c data admit-
ted. We assume that 0 ≤ R

(c)
n (t) ≤ Rmax for all n, c

with some finite Rmax at all time. 1 We assume that
each commodity is associated with a utility function

1Note that this setting implicitly assumes that nodes always
have packets to admit. The case when the number of pack-
ets available is random can also be incorporated into our
model and solved by introducing auxiliary variables, as in
[20]. Also note this traffic admission model can be viewed
as “shaping” the arrivals from some external sending nodes.
One future extension of our model is to also consider the
backlogs at these sending nodes.



U
(c)
n (rnc), where rnc is the time average rate of the com-

modity c traffic admitted into node n, defined as rnc =
lim inft→∞ 1

t

∑t−1
τ=0 E

{
R

(c)
n (τ)

}
. Each U

(c)
n (r) function

is assumed to be increasing, continuously differentiable,
and strictly concave in r with a bounded first derivative
and U

(c)
n (0) = 0. We use βnc to denote the maximum

first derivative of U (c)
n (r), i.e., βnc = (U (c)

n )′(0) and de-
note β = maxn,c βnc.

2.2 The Transmission Model
In order to deliver the data to their destinations, each

node needs to allocate power to each link for data trans-
mission at every time slot. To model the effect that
the transmission rates typically also depend on the link
conditions and that the link conditions may be time
varying, we let S(t) be the network channel state, i.e.,
the N -by-N matrix where the (n,m) component of S(t)
denotes the channel condition between nodes n and m.
We assume that S(t) takes values in some finite set
S = (s1, ..., sM ). We will assume in the following that
the pair energy state (defined later) and S(t) is i.i.d. ev-
ery slot. At every time slot, if S(t) = si, then the power
allocation vector P (t) = (P[n,m](t), [n,m] ∈ L), where
P[n,m](t) is the power allocated to link [n,m] at time t,
must be chosen from some feasible power allocation set
P(si). We assume that P(si) is compact for all si, and
that every power vector in P(si) satisfies the constraint
that for each node n, 0 ≤

∑
b∈N (o)

n
P[n,b](t) ≤ Pmax

for some Pmax < ∞. Also, we assume that setting
any P[n,m] in a vector P ∈ P(si) to zero yields another
power vector that is still in P(si). Given the channel
state S(t) and the power allocation vector P (t), the
transmission rate over the link [n,m] is given by the
rate-power function µ[n,m](t) = µ[n,m](S(t),P (t)). For
each si, we assume that the function µ[n,m](si,P ) sat-
isfies the following properties:

Property 1. For any P ,P ′ ∈ P(si), where P ′ is
obtained by changing any single component P[n,m] in P
to zero, we have for some finite constant δ > 0 that:

µ[n,m](si,P ) ≤ µ[n,m](si,P
′) + δP[n,m]. (1)

Property 2. If P ′ is obtained by setting the entry
P[n,b] in P to zero, then:

µ[a,m](si,P ) ≤ µ[a,m](si,P
′), ∀ [a,m] 6= [n, b]. (2)

Property 1 states that the rate obtained over a link
[n,m] is upper bounded by some linear function of the
power allocated to it, whereas Property 2 states that re-
ducing the power over any link does not reduce the rate
over any other links. We see that Property 1 and 2 can
usually be satisfied by most rate-power functions, e.g.,
when the rate function is differentiable and has finite di-
rectional derivatives with respect to power [15], and the
link rates do not improve with increased interference.

We also assume that there exists some finite constant
µmax such that µ[n,m](t) ≤ µmax for all time under any

power allocation vector and any channel state S(t). 2

In the following, we also use µ(c)
[n,b](t) to denote the rate

allocated to the commodity c data over link [n, b] at
time t. It is easy to see that at any time t, we have:∑

c

µ
(c)
[n,b](t) ≤ µ[n,b](t),∀ [n, b]. (3)

2.3 The Energy Queue Model
We now specify the energy model. Every node in the

network is assumed to be powered by a finite capacity
energy storage device, e.g., a battery or ultra-capacitor
[9]. We model such a device using an energy queue. We
use the energy queue size at node n at time t, denoted
by En(t), to measure the amount of the energy left in
the storage device at node n at time t. We assume
that at every time, the nodes are capable of tracking
its current energy level En(t). In any time slot t, the
power allocation vector P (t) must satisfy the following
“energy-availability” constraint: 3∑

b∈N (o)
n

P[n,b](t) ≤ En(t), ∀ n. (4)

That is, the consumed power must be no more than
what is available. Each node in the network is assumed
to be capable of harvesting energy from the environ-
ment, using, for instance, solar panels [9]. However,
the amount of harvestable energy in a time slot is typ-
ically not fixed and varies over time. We use hn(t)
to denote the amount of harvestable energy by node
n at time t, and denote h(t) = (h1(t), ..., hN (t)) the
harvestable energy vector at time t, called the energy
state. We assume that h(t) takes values in some fi-
nite set H = {h1, ...,hK}. We assume that the pair
[h(t),S(t)] is i.i.d. over slots, with marginal distribu-
tions πhi

and πsj
, respectively.

We assume that there exists hmax < ∞ such that
hn(t) ≤ hmax for all n, t. The energy harvested at time
t is assumed to be available for use in time t + 1. In
the following, it is convenient for us to assume that
each energy queue has infinite capacity, and that each
node can decide whether or not to harvest energy on
each slot. We model this harvesting decision by us-
ing en(t) ∈ [0, hn(t)] to denote the amount of energy
that is actually harvested at time t. We will show later
that our algorithm always harvests energy when the en-
2Note that in our transmission model, we did not explic-
itly take into account the reception power. We can easily
incorporate that into our model at the expense of more com-
plicated notations. In that case, our algorithm will also opti-
mize over the reception power consumption, and the results
in this paper still hold.
3We measure time in unit size “slots,” so that our power
P[n,b](t) has units of energy/slot, and P[n,b](t) × (1 slot) is
the resulting energy use in one slot. For simplicity, we sup-
press the implicit multiplication by 1 slot when converting
between power and energy.



ergy queue is below a finite threshold of size O(1/ε) and
drops it otherwise, thus can be implemented with finite
capacity storage devices.
2.4 Queueing Dynamics

Let Q(t) = (Q(c)
n (t), n, c ∈ N ), t = 0, 1, 2, ... be the

data queue backlog vector in the network, where Q(c)
n (t)

is the amount of commodity c data queued at node n.
We assume the following queueing dynamics:

Q(c)
n (t+ 1) ≤

[
Q(c)
n (t)−

∑
b∈N (o)

n

µ
(c)
[n,b](t)

]+ (5)

+
∑

a∈N (in)
n

µ
(c)
[a,n](t) +R(c)

n (t),

with Q
(c)
n (0) = 0 for all n, c ∈ N , Q(c)

c (t) = 0 ∀ t, and
[x]+ = max[x, 0]. The inequality in (5) is due to the
fact that some nodes may not have enough commodity
c packets to fill the allocated rates. In this paper, we
say that the network is stable if the following is met:

Q , lim sup
t→∞

1
t

t−1∑
τ=0

∑
n,c

E
{
Q(c)
n (τ)

}
<∞. (6)

Similarly, let E(t) = (En(t), n ∈ N ) be the vector of
the energy queue sizes. Due to the energy availability
constraint (4), we see that for each node n, the energy
queue En(t) evolves according to the following: 4

En(t+ 1) = En(t)−
∑

b∈N (o)
n

P[n,b](t) + en(t), (7)

with En(0) = 0 for all n. 5 Note again that by using
the queueing dynamic (7), we start by assuming that
each energy queue has infinite capacity. Later we will
show that under our algorithms, all the En(t) values
are determinstically upper bounded, thus we only need
a finite energy capacity in algorithm implementation.

2.5 Utility Maximization with Energy Manage-
ment

The goal of the network is thus to design a joint flow
control, routing and scheduling, and energy manage-
ment algorithm that at every time slot, admits the right
amount of data R(c)

n (t), chooses power allocation vector
P (t) subject to (4), and transmits packets accordingly,
so as to maximize the utility function:

Utot(r) =
∑
n,c

U (c)
n (rnc), (8)

4Note that we do not explicitly consider energy leakage due
to the imperfectness of the energy storage devices. This is a
valid assumption if the rate of energy leakage is very small
compared to the amount spent in each time slot.
5We can also pre-store energy in the energy queue and ini-
tialize En(0) to any finite positive value up to its capacity.
The results in the paper will not be affected.

subject to the network stability constraint (6). Here r =
(rnc,∀n, c ∈ N ) is the vector of the average expected
admitted rates. Below, we will refer to this problem
as the Utility Maximization with Energy Management
problem (UMEM).

2.6 Discussion of the Model
(I) Our model is quite general and can be used to

model many networks where nodes are powered by fi-
nite capacity batteries. For instance, a field monitoring
sensor network [6], or many mobile ad hoc networks
[21]. Also, our model allows the harvestable energy to
be correlated among network nodes. This is particu-
larly useful, as in practice, nodes that are collocated
may have similar harvestable energy conditions.

(II) Although our model looks similar to the utility
maximization model considered in [17] and [22], the
problem considered in this paper is much more com-
plicated. The main difficulty here is imposed by the
constraint (4). Indeed, (4) couples the current power
allocation action and the future actions, in that a cur-
rent action may cause the energy queue to be empty
and hence block some power allocation actions in the
future. Problems involving such “no-underflow” con-
straints, e.g., [23], usually have to be modeled as dy-
namic programs (DP) [24]. However, DP typically suf-
fers from a curse of dimensionality, and requires signifi-
cant knowledge of the network probabilities. The work
in [12] overcomes this “no-underflow” requirement by
enforcing a positive drift constraint on the harvested
energy and using Lyapunov optimization with this new
constraint. Our approach is different and uses a mod-
ified Lyapunov function, which simplifies analysis and
provides more explicit performance guarantees for the
multi-hop case. Our MESA algorithm also fundamen-
tally improves the resulting buffer size tradeoffs from
O(1/ε) to O([log(1/ε)]2).

(III) Finally, note that although we assume S(t) and
h(t) are i.i.d., we have extended our results to the case
when S(t) and h(t) are Markovian in [25]. Moreover,
our algorithm can also be shown to perform well under
arbitrary S(t) and h(t) processes using the universal
scheduling technique developed in [26].

3. UPPER BOUNDING THE OPTIMAL NET-
WORK UTILITY

In this section, we first obtain an upper bound on
the optimal utility. This upper bound will be useful
for our later analysis. The result is presented in the
following theorem, in which we use r∗ to denote the
optimal solution of the UMEM problem, subject to the
constraint that the network nodes are powered by finite
capacity energy storage devices. The V parameter in
the theorem can be any positive constant that is greater
or equal to 1, and is included for our later analysis.



Theorem 1. The optimal network utility Utot(r∗) sat-
isfies: V Utot(r∗) ≤ φ∗, where φ∗ is obtained over the
class of stationary and randomized policies that have the
following structure: allocate constant admission rates
rnc every slot; when S(t) = si, choose a power vector
P

(si)
k and allocate service rate µ

(c)
[n,b](si,P

(si)
k ) to node

n with probability %
(si)
k ; and harvest energy e

(hi)
n,k with

probability ϕ(hi)
k when h(t) = hi, subject to (3), (5) and

(7), without regard to the energy availability constraint
(4), to satisfy:

max : φ = V
∑
n,c

U (c)
n (rnc) (9)

s.t. rnc + E
{ K∑
k=1

%
(si)
k

∑
a∈N (in)

n

µ
(c)
[a,n](si,P

(si)
k )

}

≤ E
{ K∑
k=1

%
(si)
k

∑
b∈N (o)

n

µ
(c)
[n,b](si,P

(si)
k )

}
,∀ (n, c), (10)

E
{ K∑
k=1

%
(si)
k

∑
b∈N (o)

n

P
(si)
k,[n,b]

}
= E

{ K∑
k=1

ϕ
(hi)
k e

(hi)
n,k

}
,∀n,(11)

P
(si)
k ∈ P(si), 0 ≤ %(si)

k , ϕ
(hi)
k ≤ 1,∀si, k,hi,

K∑
k=1

%
(si)
k = 1,

K∑
k=1

ϕ
(hi)
k = 1,∀si,hi,

0 ≤ rnc ≤ Rmax,∀ (n, c), 0 ≤ e(hi)
n,k ≤ h

(hi)
n , ∀ n, k,hi.

Here the expectation is taken over the random channel
states si and energy states hi, and K = N2 +N + 2. 6

Proof. The proof argument is similar to the one
used in [19], hence is omitted for brevity.

In the theorem, (10) says that the rate of incoming
data to node n is no more than the transmission rate
out, and the equality constraint (11) says that the rate
of harvested energy is equal to the energy consump-
tion rate. We note that Theorem 1 indeed holds under
more general ergodic S(t) and h(t) processes, e.g., when
S(t) and h(t) evolve according to some finite state ir-
reducible and aperiodic Markov chains.

4. ENGINEERING THE QUEUES
In this section, we present our Energy-limited Schedul-

ing Algorithm (ESA) for the UMEM problem. ESA is
designed based on the Lyapunov optimization technique
developed in [19] and [17]. The idea of ESA is to con-
struct a Lyapunov scheduling algorithm with perturbed
weights for determining the energy harvesting, power
allocation, routing and scheduling decisions. We will
show that, by carefully perturbing the weights, one can
ensure that whenever we allocate power to the links,
there is always enough energy in the energy queues.
6The numberK is due to the use of Caratheodory’s Theorem
in the proof argument used in [19].

4.1 The ESA Algorithm
To start, we first choose a perturbation vector θ =

(θn, n ∈ N ) (to be specified later). We then define a
perturbed Lyapunov function as follows:

L(t) ,
1
2

∑
n,c∈N

[
Q(c)
n (t)

]2 +
1
2

∑
n∈N

[
En(t)− θn

]2
. (12)

The intuition behind the use of the θ vector is that: by
keeping the Lyapunov function value small, we indeed
“push” the En(t) value towards θn. Thus by carefully
choosing the value of θn, we can ensure that the energy
queues always have enough energy for transmission.

Now denote Z(t) = (Q(t),E(t)), and define a one-
slot conditional Lyapunov drift as follows:

∆(t) , E
{
L(t+ 1)− L(t) | Z(t)

}
. (13)

Here the expectation is taken over the randomness of
the channel state and the energy state, as well as the
randomness in choosing the data admission action, the
power allocation action, the routing and scheduling ac-
tion, and the energy harvesting action. For notation
simplicity, we also define:

∆V (t) , ∆(t)− V E
{∑
n,c

U (c)
n (R(c)

n (t)) | Z(t)
}
. (14)

We have the following lemma regarding the drift:

Lemma 1. Under any feasible data admission ac-
tion, power allocation action, routing and scheduling
action, and energy harvesting action that can be im-
plemented at time t, we have:

∆V (t) ≤ B +
∑
n∈N

(En(t)− θn)E
{
en(t) | Z(t)

}
(15)

−E
{∑
n,c

[
V U (c)

n (R(c)
n (t))−Q(c)

n (t)R(c)
n (t)

]
| Z(t)

}
−E
{∑

n

[∑
c

∑
b∈N (o)

n

µ
(c)
[n,b](t)

[
Q(c)
n (t)−Q(c)

b (t)
]

+(En(t)− θn)
∑

b∈N (o)
n

P[n,b](t)
]
| Z(t)

}
.

Here B = N2( 3
2d

2
maxµ

2
max+R2

max)+ N
2 (Pmax+hmax)2,

and dmax is defined in Section 2 as the maximum in-
degree of any node in the network.

Proof. See Appendix A.
We now present the ESA algorithm. The idea of the

algorithm is to approximately minimize the right-hand
side (RHS) of (15) subject to the energy-availability
constraint (4). In ESA, we use a parameter γ , Rmax+
dmaxµmax, which is used in the link weight definition
to allow deterministic upper bounds on queue sizes.

Energy-limited Scheduling Algorithm (ESA): Initialize
θ. At every slot, observe Q(t), E(t), S(t), and do:



• Energy Harvesting: At time t, if En(t) − θn < 0,
perform energy harvesting and store the harvested
energy, i.e., en(t) = hn(t). Else set en(t) = 0.
Note that this decision on en(t) indeed minimizes
the (En(t)− θn)E

{
en(t) | Z(t)

}
term in (15).

• Data Admission: At every time t, choose R
(c)
n (t)

to be the optimal solution of the following opti-
mization problem:

max : V U (c)
n (r)−Q(c)

n (t)r, s.t. 0 ≤ r ≤ Rmax. (16)

Note that this decision minimizes the terms involv-
ing R(c)

n (t) in the RHS of (15).
• Power Allocation: At every time t, define the weight

of the commodity c data over link [n, b] as:

W
(c)
[n,b](t) ,

[
Q(c)
n (t)−Q(c)

b (t)− γ
]+
. (17)

Then define the link weightW[n,b](t) = maxcW
(c)
[n,b](t),

and choose P (t) ∈ P(si) to maximize:

G(P (t)) ,
∑
n

[ ∑
b∈N (o)

n

µ[n,b](t)W[n,b](t) (18)

+(En(t)− θn)
∑

b∈N (o)
n

P[n,b](t)
]
,

subject to the energy availability constraint (4).
• Routing and Scheduling: For every node n, find

any c∗ ∈ argmaxcW
(c)
[n,b](t). If W (c∗)

[n,b](t) > 0, set:

µ
(c∗)
[n,b](t) = µ[n,b](t), (19)

that is, allocate the full rate over the link [n, b] to
any commodity that achieves the maximum posi-
tive weight over the link. Use idle-fill if needed. If
W

(c∗)
[n,b](t) = 0, we set µ(c)

[n,b](t) = 0 for all c over link
[n, b]. 7

• Queue Update: Update Q(c)
n (t) and En(t) accord-

ing to the dynamics (5) and (7), respectively.
The combined Power Allocation and Routing Schedul-
ing step would have minimized the terms involving µ(c)

[n,b](t)
and P (t) in the RHS of (15) if we had defined γ = 0.
However, we have included a non-zero γ in the differen-
tial backlog definition (17), resulting in a decision that
comes within an additive constant of minimizing the
RHS of (15). The advantage of using this γ is that it
leads to a deterministic bound on all queue sizes, as we
show in the next section.

Note that in the energy harvesting step of ESA, node
n will perform energy harvesting only when the energy
7Note that we will still use the same power allocation
P[n,b](t) (can be nonzero) in this case, although all the rates

µ
(c)

[n,b](t) are zero. We will show that doing this still yields

performance that can be pushed arbitrarily close to optimal.
In the actual implementation, however, we can always save

the power P[n,b](t) when µ
(c)

[n,b](t) = 0 ∀ c. Similar perfor-

mance results can also be obtained.

volume is less than θn. This feature is very important
because it allows one to implement ESA with finite en-
ergy storage capacity. More importantly, we will show
that it provides us with a very easy way to size our
energy storage devices if we want to achieve a utility
that is within O(ε) of the optimal, i.e., use energy stor-
age devices of size O(1/ε). In practice, once the right
energy storage capacity is determined, we can always
modify ESA by having the nodes perform energy har-
vesting in every time slot, in which case nodes always
have more energy than that under ESA and the same
utility performance can be achieved.
4.2 Implementation of ESA

(I) First we note that ESA only requires the knowl-
edge of the instant channel state S(t) and the queue
sizesQ(t) and E(t). It does not even require any knowl-
edge of the energy state process h(t). This is very useful
in practice when the knowledge of the energy source is
difficult to obtain. ESA is also very different from pre-
vious algorithms for energy harvesting network, e.g., [9]
[10], where statistical knowledge of the energy source is
often required.

(II) Note that the implementation of ESA involves
maximizing (18). Thus ESA’s complexity is the same as
the widely used max-weight algorithms, which in gen-
eral requires centralized control and can be NP-hard
[17]. However, in cases when the links do not interfere
with each other, ESA can easily be implemented in a
distributed manner, where each node only has to know
about the queue sizes at its neighbor nodes and can
decide on the power allocation locally. Moreover, one
can look for constant factor approximation solutions of
(18), e.g., [27] and Section 4.7 and 5.2.1 in [17]. Such
approximation results can usually be found in a dis-
tributed manner in polynomial time, and ESA can be
shown to achieve a utility that is at least a constant
factor of Utot(r∗) under these solutions.

5. PERFORMANCE ANALYSIS
We now present the performance results of the ESA

algorithm in the following theorem. Note that we have
also extended the theorem to the case when S(t) and
h(t) evolve according to general finite state irreducible
and aperiodic Markov chains in [25].

Theorem 2. Under the ESA algorithm with θn ,
δβV + Pmax, ∀ n, we have the following:
(a) The data queues and the energy queues satisfy the

following for all time under any arbitrary S(t) and
h(t) processes:

0 ≤ Q(c)
n (t) ≤ βV +Rmax, ∀ (n, c), (20)

0 ≤ En(t) ≤ θn + hmax, ∀ n. (21)

Moreover, when a node n allocates nonzero power
to any of its outgoing links, En(t) ≥ Pmax.



(b) Let r = (rnc,∀ (n, c)) be the time average admitted
rate vector achieved by ESA, then:

Utot(r) =
∑
n,c

U (c)
n (rnc) ≥ Utot(r∗)−

B̃

V
, (22)

where r∗ is an optimal solution of the UMEM prob-
lem, and B̃ = B + N2γdmaxµmax = Θ(1), i.e.,
independent of V .

Proof. See Appendix B.
We note the following of Theorem 2: (I) Part (a)

is a sample path result. Hence it holds even under
non-stationary S(t) and h(t) processes. (II) By tak-
ing ε = 1/V , Part (a) implies that the average data
queue size is O(1/ε). Combining this with Part (b),
we see that that ESA achieves an [O(ε), O(1/ε)] utility-
backlog tradeoff for the UMEM problem. (III) we see
from Part (a) that the energy queue size is deterministi-
cally upper bounded by a constant of size O(1/ε). This
provides an explicit characterization of the size of the
energy storage device needed for achieving the desired
utility performance. Such explicit bounds are particu-
larly useful for system deployments.

6. REDUCING THE BUFFER SIZE
In this section, we show that it is possible to achieve

the sameO(ε) close-to-optimal utility performance guar-
antee using energy storage devices with onlyO([log( 1

ε )]2)
sizes, while guaranteeing a much smaller average data
queue size, i.e., O([log(1/ε)]2). Our algorithm is moti-
vated by the “exponential attraction” result developed
in [22], which states that the probability for the net-
work backlog vector to deviate from some fixed point
typically decreases exponentially with the deviation dis-
tance. Using this result, we will develop the Modified
-ESA (MESA) algorithm. We emphasize that, although
MESA looks similar to the algorithms developed in [22],
it only uses finite energy storage capacities. This fea-
ture makes it very different and requires a new analysis
for its performance (see [25] for the analysis of MESA).

To start, for a given ε, we let V = 1/ε, and define
M = 4[log(V )]2. We then associate with each node
n a virtual energy queue process Ên(t) and a set of
virtual data queues Q̂(c)

n (t) ∀ c. We also associate with
each node n an actual energy queue with size M . We
assume that V is chosen to be such that M

2 > αmax ,
max[Pmax, hmax]. MESA consists of two phases: Phase
I runs the system using the virtual queue processes,
to discover the “attraction point” values of the queues
(as explained below). Phase II then uses these values
to carefully perform the actions so as to ensure energy
availability and reduce network delay.

Modified-ESA (MESA): Initialize θ. Perform:
• Phase I: Choose a sufficiently large T . From time
t = 0, ..., T , run ESA using Q̂(t) and Ê(t) as the
data and energy queues. Obtain the two vectors

Q = (Q(c)
n , ∀ (n, c)) and E = (En,∀n) by having:

Q(c)
n = [Q̂(c)

n (T )− M
2 ]+ and En = [Ên(T )− M

2 ]+.

• Phase II: Reset t = 0. Initialize Ê(0) = E and
Q̂(0) = Q. Also set Q(0) = 0 and E(0) = 0. In
every time slot, first run the ESA algorithm based
on Q̂(t), Ê(t), and S(t), to obtain the action vari-
ables, i.e., the corresponding en(t), R(c)

n (t), and
µ

(c)
[n,b](t) values. Perform Data Admisson, Power

Allocation, and Routing and Scheduling exactly
as ESA, plus the following:

– Energy harvesting: If Ên(t) < En, let ẽn(t) =
[en(t)− (En − Ên(t))]+. Harvest ẽ(t) amount
of energy, i.e., update En(t) as follows:

En(t+ 1) =
(
[En(t)−

∑
b∈N (o)

n

P[n,b](t)]+ + ẽn(t)
)
∧M.

Here a ∧ b = min[a, b]. Else if Ên(t) > En +
M , do not spend any power and update En(t)
according to:

En(t+ 1) = min
[
En(t) + en(t),M

]
.

Else update En(t) according to:

En(t+ 1) =
(
[En(t)−

∑
b∈N (o)

n

P[n,b](t)]+ + en(t)
)
∧M.

– Packet Dropping: For any node n with Ên(t) <
En + Pmax or Ên(t) > En + M , drop all the
packets that should have been transmitted,
i.e., change the input into any Q(c)

n (t) to:

A(c)
n (t) = R(c)

n (t) +
∑

a∈N (in)
n

µ
(c)
[a,n](t)1[Fa(t)].

Here 1[·] is the indicator function and Fa(t) is
the event that Êa(t) ∈ [Ea + Pmax, Ea + M ].
Then further modify the routing and schedul-
ing action under ESA as follows:
∗ If Q̂(c)

n (t) < Q(c)
n , let Ã(c)

n (t) =
[
A

(c)
n (t) −

[Q(c)
n − Q̂(c)

n (t)]
]+, update Q(c)

n (t) by:

Q(c)
n (t+ 1) ≤

[
Q(c)
n (t)−

∑
b∈N (o)

n

µ
(c)
[n,b](t)

]+ + Ã(c)
n (t).

∗ If Q̂(c)
n (t) ≥ Q(c)

n , update Q(c)
n (t) by:

Q(c)
n (t+ 1) ≤

[
Q(c)
n (t)−

∑
b∈N (o)

n

µ
(c)
[n,b](t)

]+ +A(c)
n (t).

– Update Ê(t) and Q̂(t) using (7) and (5).
Note here we have used the [·]+ operator for up-

dating En(t) in the energy harvesting part. This is
due to the fact that the power allocation decisions are
now made based on Ê(t) but not E(t). If Ên(t) never
gets below En or above En + M , then we always have
En(t) = Ên(t)−En. Similarly, if Q̂(c)

n (t) is always above
Q(c)
n and Ên(t) is always in [En + Pmax, En + M ], then



we always have Q(c)
n (t) = Q̂

(c)
n (t) − Q(c)

n . MESA is de-
signed to ensure that Q̂(c)

n (t) and Ên(t) mostly stay in
these “right” ranges. We now summarize the perfor-
mance results of MESA in the following theorem. In
the theorem, we use g(υ,ν) to denote the dual function
of the problem (9), which is shown in [25] to be:

g(υ,ν) = sup
rnc,P (si),e

(hj)
n

∑
si

πsi

∑
hj

πhj

{
V
∑
n,c

U (c)
n (rnc)

−
∑
n

υ(c)
n

[
rnc +

∑
a∈N (in)

n

µ
(c)
[a,n](si,P

(si)) (23)

−
∑

b∈N (o)
n

µ
(c)
[n,b](si,P

(si))
]
−
∑
n

νn
[ ∑
b∈N (o)

n

P
(si)
[n,b] − e

(hj)
n

]}
.

We also write g(υ,ν) as a function of y = (υ,ν) and
use y∗ to denote an optimal solution of g(y).

Theorem 3. Suppose that y∗ = (υ∗,ν∗) is finite
and unique, that θ is chosen such that θn + ν∗n > 0,
∀ n, and that for all y = (υ,ν) with υ � 0,ν ∈ RN ,
the dual function g(y) satisfies:

g(y∗) ≥ g(y) + L||y∗ − y||, (24)

for some constant L > 0 independent of V , that the
system is in steady state at time T , and that a steady
state distribution for the queues exists under ESA. Then
under MESA with a sufficiently large V , with probability
1−O( 1

V 4 ), we have:

Q ≤ O([log(V )]2), (25)
Utot(r) ≥ Utot(r∗)−O(1/V ). (26)

Furthermore, the fraction of packets dropped in the packet
dropping step is O( 1

V log(V ) ).

Proof. See [25].
Note that (24) is indeed the condition needed for prov-
ing the exponential attraction result in [22]. It has been
observed, e.g., in [22] that (24) typically holds in prac-
tice, particularly when the network action set is finite,
in which case the dual function g(y) is polyhedral in y
(see [22] for more discussions). Theorem 3 then shows
that under this condition, one can significantly reduce
the energy capacity needed to achieve the O(ε) close-
to-optimal utility performance and greatly reduce the
network congestion.

7. SIMULATION
In this section we provide simulation results of our al-

gorithms. We consider a data collection network shown
in Fig. 1. Such a network typically appears in the sensor
network scenario where sensors are used to sense data
and forward them to the sink. In this network, there
are 6 nodes. The node S represents the sink node, the
nodes 1, 2, 3 sense data and deliver them to node S via
the relay of nodes 4, 5.

1

4

S

5

2

3

R1

R2

R3

L1

L2

L3

L4

L5

L6

Figure 1: A data collection network.
The channel state of each communication link, rep-

resented by a directed edge, is i.i.d. every time slot
and can be either “G=Good” or “B=Bad” with equal
probabilities. One unit of power can serve two pack-
ets over a link when the channel state is good, but
can only serve one when the channel is bad. We as-
sume Rmax = 3 and the utility functions are given
by: U

(S)
1 (r) = U

(S)
2 (r) = U

(S)
3 (r) = log(1 + r) and

U
(S)
4 (r) = U

(S)
5 (r) = 0. For simplicity, we also assume

that all the links do not interfere with each other. We
assume that for each node, the available energy hn(t) is
i.i.d. and hn(t) = 2/0 with equal probabilities.

It is easy to see that in this case, we can use β = 1,
δ = 2, µmax = 2, dmax = 2, Pmax = 2, and γ =
dmaxµmax + Rmax = 7. Using Theorem 2, we set θn =
δβV +Pmax = 2V + 2. We simulate V ∈ {20, 30, 40, 50,
80, 100, 200}. Each simulation is run for 106 slots. The
simulation results are plotted in Fig. 2. We see that
the total network utility converges quickly to very close
to the optimal value, which can be shown to be roughly
2.03, and that the average data queue size and the av-
erage energy queue size both grow linearly in V .
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Figure 2: Simulation results of ESA.

Fig. 3 also shows two sample-path data queue pro-
cesses and two energy queue processes under V = 100.
It can be verified that all the queue sizes satisfy the
queueing bounds in Theorem 2. We also observe the
“exponential attraction” behavior of the queues, as shown
in [22]. However, different from the simulation results
in previous works, e.g., [22], we see that the queue size
of Q(S)

1 (t) does not approach the fixed point from be-
low. It instead first has a “burst” in the early time slots.
This is due to the fact that the system “waits” for E1(t)
to come close enough to its fixed point. Such an effect
can be mitigated by storing an initial energy of size θ
in the energy queue.

We also simulate the MESA algorithm for the same
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Figure 3: Sample path queue processes.

network with the same θ vector. We use T = 50V
in Phase I for obtaining the vectors E and Q. Fig.
4 plots the performance results. We observe that no
packet was dropped throughout the simulations under
any V values. The utility again quickly converges to
the optimal as V increases. We also see from the second
and third plots that the actual queues only grow poly-
logarithmically in V , i.e., O([log(V )]2), while the virtual
queues, which are the same as the actual queues under
ESA, grows linearly in V . This shows a good match
between the simulations and Theorem 3.
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Figure 4: Simulation results of MESA. 5M is the
total network energy buffer size.

Appendix A – Proof of Lemma 1
Here we prove Lemma 1.

Proof. First by squaring both sides of (5), and using
the fact that for any x ∈ R, ([x]+)2 ≤ x2, we have:

[Q(c)
n (t+ 1)]2 − [Q(c)

n (t)]2 (27)

≤ [
∑

b∈N (o)
n

µ
(c)
[n,b](t)]

2 + [
∑

a∈N (in)
n

µ
(c)
[a,n](t) +R(c)

n (t)]2

−2Q(c)
n (t)

[ ∑
b∈N (o)

n

µ
(c)
[n,b](t)−

∑
a∈N (in)

n

µ
(c)
[a,n](t)−R

(c)
n (t)

]
.

Multiplying both sides by 1
2 , and defining B̂ = 3

2d
2
maxµ

2
max

+R2
max, we have:

1
2
(
[Q(c)

n (t+ 1)]2 − [Q(c)
n (t)]2

)
≤ B̂ (28)

−Q(c)
n (t)

[ ∑
b∈N (o)

n

µ
(c)
[n,b](t)−

∑
a∈N (in)

n

µ
(c)
[a,n](t)−R

(c)
n (t)

]
.

Using a similar approach, we get that:

1
2
(
[En(t+ 1)− θn]2 − [En(t)− θn]2

)
(29)

≤ B̂′ − [En(t)− θn]
[ ∑
b∈N (o)

n

P[n,b](t)− en(t)
]
,

where B̂′ = 1
2 (Pmax + hmax)2. Now by summing (28)

over all (n, c) and (29) over all n, and by defining B =
N2B̂ +NB̂′ = N2( 3

2d
2
maxµ

2
max +R2

max) + 1
2N(Pmax +

hmax)2, we have:

L(t+ 1)− L(t) ≤ B −
∑
n,c

Q(c)
n (t)

[ ∑
b∈N (o)

n

µ
(c)
[n,b](t)

−
∑

a∈N (in)
n

µ
(c)
[a,n](t)−R

(c)
n (t)

]
−
∑
n

[En(t)− θn]
[ ∑
b∈N (o)

n

P[n,b](t)− en(t)
]
.

Taking expectations on both sides over the random chan-
nel and energy states and the randomness over actions
conditioning on Z(t), subtracting from both sides the
term V E

{∑
n,c U

(c)
n (R(c)

n (t)) | Z(t)
}

, and rearranging
the terms, we see that the lemma follows.

Appendix B – Proof of Theorem 2
Here we prove Theorem 2.

Proof. (Part (a)) We first prove (20) using a similar
argument as in [15]. It is easy to see that it holds for
t = 0, since Q

(c)
n (0) = 0 for all (n, c). Now assume

that Q(c)
n (t) ≤ βV + Rmax for all (n, c) at t, we want

to show that it holds for time t + 1. First, if node
n does not receive any new commodity c data, then
Q

(c)
n (t) ≤ Q

(c)
n (t + 1) ≤ βV + Rmax. Second, if node n

receives endogenous commodity c data from any other
node b, then we must have:

Q(c)
n (t) ≤ Q(c)

b (t)− γ ≤ βV +Rmax − γ.

However, since any node can receive at most γ com-
modity c packets, we have Q(c)

n (t + 1) ≤ βV + Rmax.
Finally, if node n receives exogenous packets from out-
side the network, then according to (16), we must have
Q

(c)
n (t) ≤ βV . Hence Q(c)

n (t+ 1) ≤ βV +Rmax.
Now it is also easy to see from the energy storage part

of ESA that En(t) ≤ θn + hmax, which proves (21).
We now show that if En(t) < Pmax, then G(t) will be

maximized by choosing P[n,m](t) = 0 for all m ∈ N (o)
n

at node n. To see this, first note that since all the data
queues are upper bounded by βV + Rmax, we have:
W[n,b](t) ≤ βV −dmaxµmax for all [n, b] and for all time.

Now let the power vector that maximizes G(t) be
P ∗ and assume that there exists some P ∗[n,m] that is
positive. We now create a new power allocation vector
P by setting only P ∗[n,m] = 0 in P ∗. Then we have the



following, in which we have written µ[n,m](S(t),P (t))
only as a function of P (t) to simplify notation:

G(P ∗)−G(P )

=
∑
n

∑
b∈N (o)

n

[
µ[n,b](P

∗)− µ[n,b](P )
]
W[n,b](t)

+(En(t)− θn)P ∗[n,m]

≤
(
µ[n,m](P

∗)− µ[n,m](P )
)
W[n,m](t) + (En(t)− θn)P ∗[n,m].

Here in the last step we have used (2) in Property 2 of
µ[n,m](·,P ), which implies that µ[n,b](P

∗)−µ[n,b](P ) ≤
0 for all b 6= m. Now suppose En(t) < Pmax. We see
then En(t)−θn < −δβV . Using Property 1 and the fact
that W[n,m](t) ≤ βV − dmaxµmax, the above implies:

G(P ∗)−G(P ) < (βV − dmaxµmax)δP ∗[n,m] − δβV P
∗
[n,m]

< 0.

This shows that P ∗ cannot have been the power vec-
tor that maximizes G(t) if En(t) < Pmax. Therefore
En(t) ≥ Pmax whenever node n allocates any nonzero
power over any of its outgoing links. Hence all the power
allocation decisions are feasible. This shows that the
constraint (4) is indeed redundant in ESA and com-
pletes the proof of Part (a).

(Part (b)) We now prove Part (b). We first show that
ESA approximately minimizes the RHS of (15). To see
this, note from Part (A) that ESA indeed minimizes the
following function at time t:

D(t) =
∑
n∈N

(En(t)− θn)en(t) (30)

−
∑
n,c∈N

[
V U (c)

n (R(c)
n (t))−Q(c)

n (t)R(c)
n (t)

]
−
∑
n∈N

[∑
c

∑
b∈N (o)

n

µ
(c)
[n,b](t)

[
Q(c)
n (t)−Q(c)

b (t)− γ
]

+(En(t)− θn)
∑

b∈N (o)
n

P[n,b](t)
]
,

subject to only the constraints: en(t) ∈ [0, hn(t)], R(c)
n (t) ∈

[0, Rmax], P (t) ∈ P(si) and (3), i.e., without the energy-
availability constraint (4). Now define D̃(t) as follows:

D̃(t) =
∑
n∈N

(En(t)− θn)en(t) (31)

−
∑
n,c∈N

[
V U (c)

n (R(c)
n (t))−Q(c)

n (t)R(c)
n (t)

]
−
∑
n∈N

[∑
c

∑
b∈N (o)

n

µ
(c)
[n,b](t)

[
Q(c)
n (t)−Q(c)

b (t)
]

+(En(t)− θn)
∑

b∈N (o)
n

P[n,b](t)
]
.

Note that D̃(t) is indeed the function inside the expec-
tation on the RHS of the drift bound (15). It is easy to

see from the above that:

D(t) = D̃(t) +
∑
n

∑
c

∑
[n,b]∈N (o)

n

µ
(c)
[n,b](t)γ.

Since ESA minimizes D(t), we see that:

D̃E(t) +
∑
n

∑
c

∑
b∈N (o)

n

µ
(c)E
[n,b] (t)γ

≤ D̃ALT (t) +
∑
n

∑
c

∑
b∈N (o)

n

µ
(c)ALT
[n,b] (t)γ,

where the superscript E represents the ESA algorithm,
and ALT represents any other alternate policy. Since

0 ≤
∑
n

∑
c

∑
b∈N (o)

n

µ
(c)
[n,b](t)γ ≤ N

2γdmaxµmax,

we have:
D̃E(t) ≤ D̃ALT (t) +N2γdmaxµmax. (32)

That is, the value of D̃(t) under ESA is no greater than
its value under any other alternative policy plus a con-
stant, including the ones that ignore the energy avail-
ability constraint (4). Further, Part (a) shows that the
energy availability constraint (4) is naturally satisfied
under ESA without explicitly being enforced. Now us-
ing the definition of D̃(t), (15) can be rewritten as:

∆(t)− V E
{∑
n,c

U (c)
n (R(c)

n (t)) | Z(t)
}

≤ B + E
{
D̃E(t) | Z(t)

}
.

Using (32), we get:

∆(t)− V E
{∑
n,c

U (c)
n (R(c)

n (t)) | Z(t)
}

(33)

≤ B̃ + E
{
D̃ALT (t) | Z(t)

}
,

where B̃ = B+N2γdmaxµmax. Now plugging into (33)
the policy in Theorem 1, which by comparing (9) and
(31) can easily be shown to result in E

{
D̃ALT (t) | Z(t)

}
= φ∗, and using the fact that φ∗ ≥ V Utot(r∗), we have:

∆(t)− V E
{∑
n,c

U (c)
n (R(c)

n (t)) | Z(t)
}
≤ B̃ − V Utot(r∗).

Taking expectations over Z(t) and summing the above
over t = 0, ..., T − 1, we have:

E
{
L(T )− L(0)

}
− V

T−1∑
t=0

E
{∑
n,c

U (c)
n (R(c)

n (t))
}

≤ TB̃ − TV Utot(r∗).

Rearranging the terms, using the facts that L(t) ≥ 0
and L(0) = 0, dividing both sides by V T , and taking
the liminf as T →∞, we get:

lim inf
T→∞

1
T

T−1∑
t=0

E
{∑
n,c

U (c)
n (R(c)

n (t))
}
≥ Utot(r∗)− B̃/V.



Using Jensen’s inequality, we see that:∑
n,c

U (c)
n (lim inf

T→∞

1
T

T−1∑
t=0

E
{
R(c)
n (t)

}
) ≥ Utot(r∗)− B̃/V.

This completes the proof of Part (b).
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