
52

Bregman-style Online Convex Optimization with Energy
Harvesting Constraints

KAMIAR ASGARI∗ and MICHAEL J. NEELY∗, University of Southern California

This paper considers online convex optimization (OCO) problems where decisions are constrained by available

energy resources. A key scenario is optimal power control for an energy harvesting device with a finite

capacity battery. The goal is to minimize a time-average loss function while keeping the used energy less than

what is available. In this setup, the distribution of the randomly arriving harvestable energy (which is assumed

to be i.i.d.) is unknown, the current loss function is unknown, and the controller is only informed by the history

of past observations. A prior algorithm is known to achieve 𝑂 (
√
𝑇 ) regret by using a battery with an 𝑂 (

√
𝑇 )

capacity. This paper develops a new algorithm that maintains this asymptotic trade-off with the number of time

steps𝑇 while improving dependency on the dimension of the decision vector from𝑂 (
√
𝑛) to𝑂 (

√
log(𝑛)). The

proposed algorithm introduces a separation of the decision vector into amplitude and direction components.

It uses two distinct types of Bregman divergence, together with energy queue information, to make decisions

for each component.
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1 INTRODUCTION
Consider a system that draws energy from a battery and allocates it over time to 𝑛 different

subsystems. The system operates in slotted time over a fixed time horizon 𝑡 ∈ {1, 2, . . . ,𝑇 }, where
𝑇 is a given positive integer. Let 𝑋𝑡 = [𝑋𝑡 (1), . . . , 𝑋𝑡 (𝑛)] denote the decision vector on time slot 𝑡 ,

where 𝑋𝑡 (𝑖) is the amount of energy allocated to subsystem 𝑖 ∈ {1, . . . , 𝑛}. The decision vector 𝑋𝑡

incurs a loss 𝐿𝑡 (𝑋𝑡 ) for slot 𝑡 , where 𝐿𝑡 (·) is a convex but unknown function that shall be called a

loss function. The loss function models the penalty and/or utility associated with the decision 𝑋𝑡

(utility can be defined as −1 times the loss). There are three challenges in choosing the decision

vector 𝑋𝑡 :

• The convex loss function 𝐿𝑡 (·) is unknown at the start of slot 𝑡 . The 𝑋𝑡 decision is made

without knowledge of this function. The corresponding loss 𝐿𝑡 (𝑋𝑡 ) is only revealed after the
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52:2 Kamiar Asgari and Michael J. Neely

𝑋𝑡 decision is made. Further, 𝐿𝑡 (·) can vary arbitrarily over the time horizon 𝑡 ∈ {1, . . . ,𝑇 }
(with no associated probability model).

• The decision vector 𝑋𝑡 is constrained by

𝑛∑
𝑖=1

𝑋𝑡 (𝑖) ≤ 𝐵𝑡−1 + 𝐸𝑡 (1)

where 𝐵𝑡−1 is the amount of energy currently available in the battery and 𝐸𝑡 is the random

energy arrival that can either be used or harvested on slot 𝑡 .

• The battery energy evolves according to the following queue update equation:

𝐵𝑡 = min

{
𝐵𝑡−1 −

𝑛∑
𝑖=1

𝑋𝑡 (𝑖) + 𝐸𝑡 , 𝐵𝑚𝑎𝑥

}
∀𝑡 ∈ {1, 2, . . .𝑇 } (2)

where 𝐵𝑚𝑎𝑥 is the battery storage capacity and 𝐵0 is the initial battery energy.

The first bullet point aligns with a class of problems called Online Convex Optimization (OCO)

problems that have been well studied, see for example [5, 8, 15, 16, 30, 44]. The second two bullet

points introduce nontrivial constraints on resource allocation. These constraints are mathematically

challenging to combinewith OCO because the energy queuemaintains amemory of past decisions. If

energy is allocated too aggressively then the battery 𝐵𝑡 can fall to zero. If this happens, then energy

cannot be further allocated until new energy arrivals are harvested. These energy constraints

are crucial for the operation of practical energy-limited systems. It is important to develop a

mathematical technique to incorporate them into the OCO paradigm.

This problem of combining OCO with energy harvesting was first studied in [41], which is also

the motivation of the current paper. There, a drift-plus-penalty technique was combined with OCO

to ensure that, for any 𝜖 > 0, the time-average loss is at most 𝜖 and the battery size needs to be

at most 𝑂 (1/𝜖). When formulated over a fixed time horizon 𝑇 , these results translate into 𝑂 (
√
𝑇 )

regret with battery size 𝑂 (
√
𝑇 ). However, for the algorithm in [41], the coefficient that multiplies

the regret expression has a linear dependence on 𝑛.

This paper seeks to develop a tighter result that reduces the dependence on 𝑛 from 𝑂 (𝑛) to
𝑂 (

√
log(𝑛)). Such reductions are known to be possible for the simpler class of OCO problems

without energy constraints, and in the special case when the decision vector is constrained to a

probability simplex, via the use of Bregman divergence [1, 17, 31] (see also related techniques for the
class of multi-armed bandit problems in [6]). The success of Bregman divergence in that context

offers some hope that such an improvement may be possible for the energy harvesting problem.

This question is important because a reduction to

√
log(𝑛) is a significant improvement when 𝑛 is

large. However, the application of Bregman divergence for the energy harvesting problem is not

trivial. First note that the structure of the constraint (1) is only consistent with a probability simplex

if the time-varying 𝐵𝑡−1 + 𝐸𝑡 on the right-hand-side is replaced by 1. Second, it is not obvious

how to incorporate Bregman divergence into the OCO analysis when there is an energy queue

that maintains a memory of past decisions. We are not aware of prior work that uses Bregman

divergence in this context.

This paper presents a new approach that separates the decision vector 𝑋𝑡 = [𝑋𝑡 (1), . . . , 𝑋𝑡 (𝑛)]
into amplitude and direction components, and then makes decisions for each component that are

informed by the prior loss functions and by the currently available energy 𝐵𝑡 . Specifically, we write

𝑋𝑡 = 𝐴𝑡 · [𝑃𝑡 (1), 𝑃𝑡 (2), . . . , 𝑃𝑡 (𝑛)]
where 𝐴𝑡 is the nonnegative amplitude and [𝑃𝑡 (1), . . . 𝑃𝑡 (𝑛)] is the direction vector. The direction

vector is constrained to the probability simplex and the proposed algorithm chooses this vector
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Bregman-style Online Convex Optimization with Energy Harvesting Constraints 52:3

by minimizing an expression that involves a Kullback-Leibler (KL) divergence term. On the other

hand, the amplitude 𝐴𝑡 is chosen separately by minimizing an expression that involves the battery

𝐵𝑡 and a quadratic divergence term. The KL divergence and the quadratic divergence terms are

two distinct forms of Bregman divergence. Both forms are needed for the algorithm. The algorithm

also incorporates a Lyapunov function that biases the battery state 𝐵𝑡 away from zero.

1.1 Wireless transmission example
Consider rateless coding over a multi-channel wireless transmitter. Each channel 𝑖 ∈ {1, . . . , 𝑛}
offers a bit rate on slot 𝑡 according to a curve that is similar to the Shannon-Hartley capacity

formula:

𝐶𝑡 (𝑖) = 𝐵(𝑖) log
2

(
1 + 𝑋𝑡 (𝑖)𝑆𝑡 (𝑖)

𝑁𝑡 (𝑖)

)
where 𝐶𝑡 (𝑖) is the bit rate for channel 𝑖 on slot 𝑡 (which is a concave function so we define the loss

function as the multiplication of this with −1); 𝑋𝑡 (𝑖) is the power allocated to channel 𝑖 on slot 𝑡 ;

𝑆𝑡 (𝑖)/𝑁𝑡 (𝑖) is the attenuation-to-noise coefficient for channel 𝑖 on slot 𝑡 ; 𝐵(𝑖) is a positive constant
that depends on the available bandwidth and the efficiency of the rateless coding scheme. For

simplicity it shall be assumed that 𝐵(𝑖) is the same for all 𝑖 . The 𝑆𝑡 (𝑖)/𝑁𝑡 (𝑖) values are time-varying,

are possibly different for each channel 𝑖 , and can have arbitrary time and space dependencies. The

values 𝑆𝑡 (𝑖)/𝑁𝑡 (𝑖) can (possibly) be chosen by an adversary. These values are unknown until after
the 𝑋𝑖 (𝑡) decision is made.

The transmitter harvests energy from an inconsistent source such as a solar panel. The new

energy 𝐸𝑡 that arrives for each time slot 𝑡 is an i.i.d sample of a random and unknown distribution.

The transmitter’s goal is to manage the received energy, meaning that it decides how much to store

for the future in its finite capacity battery, and how much to allocate to each channel, in order to

maximize the time average of

∑𝑛
𝑖=1𝐶𝑡 (𝑖) over 𝑡 ∈ {1, . . . ,𝑇 }. The convex loss function is thus

𝐿𝑡 (𝑋𝑡 ) = −
𝑛∑
𝑖=1

𝐵(𝑖) log
2

(
1 + 𝑋𝑡 (𝑖)𝑆𝑡 (𝑖)

𝑁𝑡 (𝑖)

)
To consider an adversarial situation, imagine an adversary as a second “virtual” transmitter

that makes decisions on a virtual system with the same 𝑆𝑡 (𝑖)/𝑁𝑡 (𝑖) sample path. The adversary

has an unlimited battery capacity, knows the expectation E [𝐸𝑡 ], and can choose the 𝑆𝑡 (𝑖)/𝑁𝑡 (𝑖)
values however it likes over time. However, it is constrained to choosing a fixed allocation vector

[𝑋 ∗ (1), . . . , 𝑋 ∗ (𝑛)] that is the same on each slot 𝑡 ∈ {1, . . . ,𝑇 }, where [𝑋 ∗ (1), . . . , 𝑋 ∗ (𝑛)] is a
vector with nonnegative components that sum to E [𝐸𝑡 ]. The goal of the adversary is to choose

a constant vector [𝑋 ∗ (1), . . . , 𝑋 ∗ (𝑛)] and a sample path for 𝑆𝑡 (𝑖)/𝑁𝑡 (𝑖) for 𝑖 and 𝑡 so that the

difference between its average bit rate and the original transmitter’s average bit rate is maximized.

1.2 Why using Bregman divergence is important: An example
As another example, consider a situation where every slot 𝑡 the controller chooses a decision 𝐴𝑡

from a finite set A = {𝑎(0), 𝑎(1), . . . , 𝑎(𝑛)}. A nonnegative reward of 𝑓𝑡 (𝐴𝑡 ) is incurred, where
𝑓 : A → R is an arbitrary (nonconvex and nonconcave) function that varies arbitrarily with time

and that is unknown at the start of each slot 𝑡 when the decision 𝐴𝑡 ∈ A is made. Assume that one

unit of energy is expendedwhenever𝐴𝑡 ∈ {𝑎(1), . . . , 𝑎(𝑛)}; zero units are usedwhen𝐴𝑡 = 𝑎(0); zero
reward is earned if𝐴𝑡 = 𝑎(0). Thus, rewards can only be earned if there is enough energy to choose

𝐴𝑡 ∈ {𝑎(1), . . . , 𝑎(𝑛)}, else, the reward on slot 𝑡 is zero. This can be transformed to the online convex
framework of this paper by defining P𝑛 = {(𝑥0, 𝑥1, . . . 𝑥𝑛) : 𝑥𝑖 ≥ 0 ∀𝑖 ∈ {0, . . . , 𝑛},∑𝑛

𝑖=0 𝑥𝑖 = 1}
and defining the (linear) loss function 𝐿𝑡 : P𝑛 → R by

𝐿𝑡 (𝑥 (0), 𝑥 (1), . . . , 𝑥 (𝑛)) = −
∑𝑛

𝑖=1 𝑥 (𝑖) 𝑓𝑡 (𝑎(𝑖))
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52:4 Kamiar Asgari and Michael J. Neely

Then 𝑋𝑡 = [𝑋𝑡 (0), 𝑋𝑡 (1), . . . , 𝑋𝑡 (𝑛)] is a decision vector that represents the probability of choos-

ing the particular elements {𝑎(0), 𝑎(1), . . . , 𝑎(𝑛)} on slot 𝑡 and 𝐿𝑡 (𝑋𝑡 ) is the corresponding (expected)
loss. When 𝑛 is large, say 𝑛 = 10

10
, algorithms with regret that depends linearly on 𝑛 cannot perform

well. The reduction to 𝑂 (
√
log(𝑛)) achieved in this paper enables reasonable regret bounds (and

battery capacities) even for very large values of 𝑛. For example,

√
log(1010) ≈ 4.798. Of course,

even though the regret bound is small, the per-slot implementation can be high when 𝑛 is very

large because our algorithm chooses 𝑋𝑡 according to a formula that is computed by summing over

𝑛 terms.

1.3 Related work
The OCO problem ofminimizing 𝐿𝑡 (𝑋𝑡 ) for a sequence of convex loss functions 𝐿𝑡 (·) was introduced
in [44], where a subgradient-based algorithm was shown to achieve a regret of𝑂 (

√
𝑇 ), where regret

is measured with respect to the best fixed allocation decision 𝑋 ∗ that could be chosen in hindsight.

Specifically,

𝑅𝑒𝑔𝑟𝑒𝑡 (𝑇 ) = ∑𝑇
𝑡=1 𝐿𝑡 (𝑋𝑡 ) − inf𝑋 ∈X

∑𝑇
𝑡=1 𝐿𝑡 (𝑋 )

where X ⊆ R𝑛 is the convex domain of the 𝐿𝑡 (·) functions. The asymptotic regret of 𝑂 (
√
𝑇 ) is

known to be optimal over the class of general problems, but can be improved to 𝑂 (log(𝑇 )) regret
in the special case when the loss functions are strongly convex with a common strong convexity

parameter [16]. Bregman divergence has been used in [1, 17, 31] for online learning problems,

including bandit problems in [6].

It is impossible to achieve similar regret guarantees for OCO problems with general time-varying

constraints. This is shown in [23] for an example with just one constraint: Any algorithm that

makes efficient decisions that satisfy the constraints over time {1, . . . ,𝑇 /2} necessarily makes

decisions that are either inefficient or violate the constraints when viewed over time {1, . . . ,𝑇 }.
Therefore, constrained OCO problems require more structured assumptions for the constraints.

OCO problems with non-time-varying constraints are studied in [19, 22, 33, 42, 43], and OCO with

time-varying constraints that are i.i.d. over time are studied in [12, 20, 40]. A recent work in [36]

introduces Bregman divergence into the study of constrained OCO, although the formulation does

not have a memory-based energy queue and the context and algorithm developed there are different

from the current paper.

The prior work [41], described in the previous section, treats OCO with energy harvesting but

has 𝑂 (
√
𝑛) dependence on the system dimension. Energy harvesting has also been studied without

the OCO structure, see, for example, [2, 4, 14, 18, 24, 32, 35, 37, 38].

Also, there have been papers focused on handling "inventory constraints" such as [10, 21, 26, 39]

where, for example, [39] provides an algorithm with a theoretical guarantee to solve a problem

where we have a limited capacity inventory. However, the objective function is linear and known

on each slot 𝑡 whereas the objective function in this paper can be nonlinear and unknown at the

time of making each decision. In addition, there are related works focused on the one-way trading

problem and the online knapsack problem which uses techniques that can be applied generally to

OCO with constraints such as [7, 13].

1.4 Our contributions
This paper shows how to use Bregman divergence for OCO energy harvesting. We develop an

algorithm that achieves𝑂 (
√
𝑇 ) regret while reducing the regret coefficient from𝑂 (𝑛) to𝑂 (

√
log(𝑛)).

This is a significant improvement when 𝑛 is large. It should be noted that the

√
𝑇 asymptotic is

optimal and cannot be improved even for simpler OCO problems without energy harvesting

constraints. To avoid the fundamental impossibility result of constrained OCO with arbitrary
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time-varying loss and constraint functions of [23], we assume the energy arrival process {𝐸𝑡 }𝑇𝑡=1 is
independent and identically distributed (i.i.d.) over slots with an unknown distribution. The loss

functions {𝐿𝑡 }𝑇𝑡=1 are arbitrary and are not required to be i.i.d. over slots. Our algorithm uses an

energy queue, a Lyapunov function that biases the battery 𝐵𝑡 away from zero, and a technique that

separates the decision vector into amplitude and direction components.

2 PROBLEM FORMULATION
The system operates over slotted time 𝑡 ∈ {1, 2, . . . ,𝑇 }, where 𝑇 is a positive integer. Fix 𝑛 as a

positive integer and define

X =
{
𝑥 ∈ R𝑛 : 𝐴𝑚𝑖𝑛 ≤

∑𝑛
𝑖=1 𝑥𝑖 ≤ 𝐴𝑚𝑎𝑥 , 𝑥𝑖 ≥ 0, ∀𝑖 ∈ {1, 2, . . . , 𝑛}

}
(3)

where 𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥 are given real numbers that represent the minimum and maximum amount

of energy that can be allocated per slot, where 0 ≤ 𝐴𝑚𝑖𝑛 ≤ 𝐴𝑚𝑎𝑥 . (Typically 𝐴𝑚𝑖𝑛 = 0.) For each

𝑡 ∈ {1, . . . ,𝑇 } define
• 𝐸𝑡 : The random amount of energy arrivals that can be harvested on slot 𝑡 . Assume {𝐸𝑡 }𝑇𝑡=1 is
i.i.d. with an unknown distribution. However, it is assumed that the random variables 𝐸𝑡 are

bounded so that 𝐸𝑚𝑖𝑛 ≤ 𝐸𝑡 ≤ 𝐸𝑚𝑎𝑥 for all 𝑡 , where 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 are constants that satisfy

0 ≤ 𝐸𝑚𝑖𝑛 ≤ 𝐸𝑚𝑎𝑥 . (Typically 𝐸𝑚𝑖𝑛 = 0.)

• 𝐵𝑡−1: The available energy in the battery at the start of slot 𝑡 .

• 𝑋𝑡 = [𝑋𝑡 (1), . . . , 𝑋𝑡 (𝑛)]: The energy decision vector on slot 𝑡 .

• 𝐿𝑡 : X → R: A continuous and convex function that shall be called a loss function.
The sequence of functions {𝐿𝑡 }𝑇𝑡=1 arises according to an arbitrary probability law and is not

necessarily i.i.d. over slots. It is assumed that for each 𝑡 ∈ {1, . . . ,𝑇 }, the random energy arrival

𝐸𝑡 is independent of the realization of function 𝐿𝑡 . The function 𝐿𝑡 is unknown to the system

controller at the start of slot 𝑡 and is only revealed at the end of slot 𝑡 (after the 𝑋𝑡 decision is

made). For example, {𝐿𝑡 }𝑇𝑡=1 might be a deterministic sequence of functions that is fixed on slot 0

but only revealed to the controller gradually over time. Alternatively, {𝐿𝑡 }𝑇𝑡=1 can arise according

to some random process that depends on the (𝐵𝜏 , 𝐸𝜏 , 𝑋𝜏 , 𝐿𝜏 ) history over all slots 𝜏 < 𝑡 (which

still maintains independence between 𝐿𝑡 (·) and 𝐸𝑡 ). This includes the possibility that 𝐿𝑡 is chosen

adversarially by an enemy that chooses loss functions in an effort to disrupt the system.

Fix 𝐵0 = 0 as the initial battery energy. Every slot 𝑡 ∈ {1, . . . ,𝑇 } the controller observes 𝐵𝑡−1 and
𝐸𝑡 and chooses a decision vector 𝑋𝑡 that satisfies∑𝑛

𝑖=1𝑋𝑡 (𝑖) ≤ 𝐵𝑡−1 + 𝐸𝑡 (4)

𝑋𝑡 ∈ X (5)

where (4) implies the total energy used on slot 𝑡 does not exceed the available energy on that slot;

(5) ensures the allocated energy is nonnegative and does not violate the maximum or minimum

levels specified by constants 𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥 . The entire loss function 𝐿𝑡 is revealed at the end of

slot 𝑡 , the corresponding loss 𝐿𝑡 (𝑋𝑡 ) is incurred, and the battery energy is updated via (2).

2.1 Assumptions
Assume that each function 𝐿𝑡 : X → R is continuous, convex, and has subgradients at each point

𝑥 ∈ X. Let ∇𝐿𝑡 (𝑥) denote a subgradient vector for 𝐿𝑡 at the point 𝑥 ∈ X (note that ∇𝐿𝑡 (𝑥) can be a

gradient if 𝐿𝑡 is differentiable). Let
𝜕

𝜕𝑥 (𝑖) 𝐿(𝑥),∀𝑖 ∈ {1, 2, . . . , 𝑛} denote each component of vector

∇𝐿(𝑥). Suppose there is a positive constant 𝐺 such that for all 𝑖 ∈ {1, 2, . . . , 𝑛}, all 𝑡 ∈ {1, 2, . . . ,𝑇 },
and all 𝑥 ∈ X: ��� 𝜕

𝜕𝑥 (𝑖) 𝐿𝑡 (𝑥)
��� ≤ 𝐺 (6)
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52:6 Kamiar Asgari and Michael J. Neely

This implies that | |∇𝐿𝑡 (𝑥) | |∞ ≤ 𝐺 . Assume the 𝐴𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥 , 𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥 constants satisfy

0 ≤ 𝐸𝑚𝑖𝑛 ≤ 𝐸𝑚𝑎𝑥 (7)

0 ≤ 𝐴𝑚𝑖𝑛 ≤ 𝐸𝑚𝑖𝑛 < 𝐴𝑚𝑎𝑥 (8)

This holds whenever 𝐴𝑚𝑖𝑛 = 𝐸𝑚𝑖𝑛 = 0 and 𝐴𝑚𝑎𝑥 > 0. The constraint 𝐴𝑚𝑖𝑛 ≤ 𝐸𝑚𝑖𝑛 ensures the

problem is feasible, so the amount of new energy that arrives every slot is at least the minimum

value needed for allocation. The constraint 𝐸𝑚𝑖𝑛 < 𝐴𝑚𝑎𝑥 makes the problem nontrivial: If this
inequality does not hold then there is no need for a battery because the new energy arrival on each

slot would be at least as large as the amount allowed for allocation.

3 ALGORITHM
3.1 Amplitude and direction components
It is convenient to decompose the decision vector 𝑋𝑡 = [𝑋𝑡 (1), . . . , 𝑋𝑡 (𝑛)] into amplitude and

direction components, so that

𝑋𝑡 = 𝐴𝑡𝑃𝑡

where

𝐴𝑡 =
∑𝑛

𝑖=1𝑋𝑡 (𝑖)
and

𝑃𝑡 = [𝑃𝑡 (1), . . . , 𝑃𝑡 (𝑛)] =
{

𝑋𝑡

𝐴𝑡
if 𝐴𝑡 > 0[

1

𝑛
, 1
𝑛
, ..., 1

𝑛

]
else

3.2 Algorithm specification
The following algorithm chooses 𝐴𝑡 and 𝑃𝑡 every slot 𝑡 . It uses nonnegative system constants

𝐴𝑚𝑎𝑥 , 𝐴𝑚𝑖𝑛 , 𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑖𝑛 , 𝐵𝑚𝑎𝑥 defined above. It also uses positive parameters 𝜂, 𝜆, 𝜃 that shall be

carefully selected later. There is no information available on slot 𝑡 = 1 and so the algorithm

chooses 𝑋1 = [𝐴𝑚𝑖𝑛

𝑛
, . . . ,

𝐴𝑚𝑖𝑛

𝑛
]. The final step in the algorithm chooses𝐴𝑡+1 as a projection of a real

number 𝑧 onto the interval [𝐴𝑚𝑖𝑛,min{𝐴𝑚𝑎𝑥 , 𝐵𝑡 + 𝐸𝑡+1}], denoted [𝑧]min{𝐴𝑚𝑎𝑥 ,𝐵𝑡+𝐸𝑡+1 }
𝐴𝑚𝑖𝑛

. Note that

𝐴𝑚𝑖𝑛 ≤ min{𝐴𝑚𝑎𝑥 , 𝐵𝑡 + 𝐸𝑡+1} because 𝐸𝑡+1 ≥ 𝐸𝑚𝑖𝑛 ≥ 𝐴𝑚𝑖𝑛 .

Algorithm 1: General Amplitude-Direction algorithm

Fix constants 𝐴𝑚𝑎𝑥 , 𝐴𝑚𝑖𝑛 , 𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑖𝑛 , and 𝐵𝑚𝑎𝑥 (0 ≤ 𝐴𝑚𝑖𝑛 ≤ 𝐸𝑚𝑖𝑛);

Fix parameters 𝜂 > 0, 𝜆 > 0, and 𝜃 > 0;

Fix 𝐵0 = 0, 𝑃1 = [ 1𝑛 , · · · ,
1

𝑛
], and 𝐴1 = 𝐴𝑚𝑖𝑛 ;

for 𝑡 ← 1 to 𝑇 do
Define 𝑋𝑡 = 𝐴𝑡𝑃𝑡 ;

Get 𝐿𝑡 (𝑋𝑡 ) and 𝐸𝑡 ;
Put 𝐵𝑡 = min{𝐵𝑡−1 −𝐴𝑡 + 𝐸𝑡 , 𝐵𝑚𝑎𝑥 };
Put 𝑃𝑡+1 (𝑖) = 𝑃𝑡 (𝑖) 𝑒𝑥𝑝 (−𝜆 [∇𝐿𝑡 (𝑋𝑡 ) ] (𝑖))∑𝑛

𝑖=1 𝑃𝑡 (𝑖)𝑒𝑥𝑝 (−𝜆 [∇𝐿𝑡 (𝑋𝑡 ) ] (𝑖)) ,∀𝑖 ∈ {1, 2, · · · , 𝑛};
Put 𝐴𝑡+1 = [𝐴𝑡 + 𝜃 (𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) − 𝜂∇𝐿𝑡 (𝑋𝑡 )⊤𝑃𝑡 ]min{𝐴𝑚𝑎𝑥 ,𝐵𝑡+𝐸𝑡+1 }

𝐴𝑚𝑖𝑛
;

end

3.3 Bregman divergence
This section describes key properties of Bregman divergence, a concept that is useful for development

and analysis of the algorithm. Fix 𝑑 as a positive integer and let 𝐺 ⊆ R𝑑 be a convex set with

nonempty interior. Let Φ : 𝐺 → R be a (possibly nonconvex) function that is continuously

differentiable in the interior of 𝐺 . Let 𝐶 ⊆ 𝐺 be a convex subset that intersects interior(𝐺) and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 52. Publication date: December 2020.



Bregman-style Online Convex Optimization with Energy Harvesting Constraints 52:7

define 𝐶𝑜 = 𝐶 ∩ interior(𝐺). Note that 𝐶0 = 𝐶 in the special case when 𝐺 is an open set, such as

when 𝐺 = R𝑑 . The Bregman divergence 𝐷 : 𝐶 ×𝐶𝑜 → R generated from Φ(·) is

𝐷 (𝑥,𝑦) = Φ(𝑥) − Φ(𝑦) − ∇Φ(𝑦)⊤ · (𝑥 − 𝑦)

If Φ is a convex function then the basic subgradient inequality for convex functions ensures that

𝐷 (𝑥,𝑦) ≥ 0 for all 𝑥 ∈ 𝐶,𝑦 ∈ 𝐶𝑜
. The following result can be found in various forms in [11, 27, 34],

the particular form stated below is proven in [36].
1

Lemma 3.1. (Pushback) Let 𝑓 : 𝐺 → R be a convex function. Fix 𝛼 > 0, 𝑦 ∈ 𝐶𝑜 . Suppose

𝑥 ∈ argmin

𝑥 ∈𝐶
{𝑓 (𝑥) + 𝛼𝐷 (𝑥,𝑦)} (9)

and also suppose 𝑥 ∈ 𝐶𝑜 . Then

𝑓 (𝑥) + 𝛼𝐷 (𝑥,𝑦) ≤ 𝑓 (𝑧) + 𝛼𝐷 (𝑧,𝑦) − 𝛼𝐷 (𝑧, 𝑥) ∀𝑧 ∈ 𝐶 (10)

For intuition about the above lemma, note that inequality (10) would follow immediately by

definition of 𝑥 as a minimizer if the final term −𝐷 (𝑧, 𝑥) on the right-hand-side were removed. The

structure of the minimization problem (9) ensures that the inequality can be strengthened to include

the “pushback” term −𝐷 (𝑧, 𝑥). Two types of Bregman divergence functions shall be used:

• Euclidean distance: Let 𝐺 = 𝐶 = 𝐶𝑜 = R𝑑 . Let Φ : R𝑑 → R be Φ(𝑥) = 1

2
| |𝑥 | |2

2
. Define

𝐷 : R𝑑 × R𝑑 → R by

𝐷 (𝑥,𝑦) = 1

2
| |𝑥 − 𝑦 | |2

2

With this divergence function, it can be shown that the minimization in (9) has a unique

minimizer 𝑥 ∈ R𝑑 . We use this type of divergence for the amplitude decisions 𝐴𝑡 and define

𝐷𝐴 : R × R→ R by

𝐷𝐴 (𝑥,𝑦) = 1

2
(𝑥 − 𝑦)2 (11)

• Generalized Kullback-Leibler divergence: Fix 𝑛 as a positive integer. Let 𝐶 = 𝐺 = [0,∞)𝑛 and

let 𝐶𝑜 = (0,∞)𝑛 . Let Φ : [0,∞)𝑛 → R be Φ(𝑥) = ∑𝑛
𝑖=1 𝑥 (𝑖) log𝑥 (𝑖), where 𝑥 log(𝑥) is defined

to be 0 if 𝑥 = 0. Then 𝐷 : [0,∞)𝑛 × (0,∞)𝑛 → R is defined

𝐷 (𝑥,𝑦) = ∑𝑛
𝑖=1 𝑥 (𝑖) log

𝑥 (𝑖)
𝑦 (𝑖) −

∑𝑛
𝑖=1 𝑥 (𝑖) +

∑𝑛
𝑖=1 𝑦 (𝑖)

With this divergence function, it can be shown that if 𝑓 is a linear function then the minimiza-

tion in (9) has a unique minimizer 𝑥 , and that 𝑥 ∈ (0,∞)𝑛 . We use this type of divergence for

the direction decisions 𝑃𝑡 = [𝑃𝑡 (1), . . . , 𝑃𝑡 (𝑛)] and define 𝐷𝑃 : [0,∞)𝑛 × (0,∞)𝑛 → R by

𝐷𝑃 (𝑥,𝑦) =
∑𝑛

𝑖=1 𝑥 (𝑖) log
𝑥 (𝑖)
𝑦 (𝑖) − 𝑥 (𝑖) + 𝑦 (𝑖) (12)

The technique of optimizing a function using the sum of a sub-gradient term and a Bregman

divergence term is called mirror descent for offline problems [3, 28] and online mirror descent for
online problems [9, 17]. This paper shall use a hybrid version of online mirror descent.

1
The statement in [36] adds an unnecessary condition that𝐶 is compact and contains the origin, although this condition is

not used in the proof given in [36].
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3.4 Algorithm intuition
Recall that the decision vector is 𝑋𝑡 = 𝐴𝑡𝑃𝑡 . Define 𝐻𝑡 (𝐴𝑡 , 𝑃𝑡 ) as the loss function 𝐿𝑡 (𝑋𝑡 ) written
explicitly in terms of the components 𝐴𝑡 ∈ R and 𝑃𝑡 ∈ R𝑛 :

𝐻𝑡 (𝐴𝑡 , 𝑃𝑡 ) = 𝐿𝑡 (𝐴𝑡𝑃𝑡 )

For intuition, temporarily assume the function 𝐿𝑡 (𝑋𝑡 ) is defined for all 𝑋𝑡 ∈ R𝑛 , and the function

𝐻𝑡 is defined over all (𝐴𝑡 , 𝑃𝑡 ) ∈ R × R𝑛 (this assumption is only used in this subsection to motivate

the algorithm, and is not used in the mathematical analysis of the algorithm). Under this temporary

assumption we formally have by the chain rule of differentiation:

𝜕𝐻 (𝐴𝑡 ,𝑃𝑡 )
𝜕𝑎

= ∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡 (13)

𝜕𝐻 (𝐴𝑡 ,𝑃𝑡 )
𝜕𝑝 (𝑖) = 𝐴𝑡∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑢 (𝑖) ∀𝑖 ∈ {1, . . . , 𝑛} (14)

where (13) takes a partial derivative with respect to the first component 𝐴𝑡 ; (14) takes a partial

derivative with respect to the 𝑖th component of the 𝑃𝑡 vector; and 𝑢 (𝑖) denotes a unit vector in R𝑛
with all zeros except for a 1 in entry 𝑖 .

To maintain a battery 𝐵𝑡 far from 0, define

𝑉 (𝑡) = 1

2
(𝐵𝑡 − 𝐵𝑚𝑎𝑥 )2

The function𝑉 (𝑡) shall be called a Lyapunov function. Define Δ(𝑡) = 𝑉 (𝑡 + 1) −𝑉 (𝑡) as the change
in the Lyapunov function over one slot. Recall that the decision vector is 𝑋𝑡 = 𝐴𝑡𝑃𝑡 . The idea is to

make separate decisions for 𝐴𝑡+1 and 𝑃𝑡+1 on each slot 𝑡 + 1 that minimize a bound on:

𝜃Δ(𝑡)︸︷︷︸
1

+𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡 · 𝐴𝑡+1 + 𝐷𝐴 (𝐴𝑡+1, 𝐴𝑡 )︸                                           ︷︷                                           ︸
2

+ 𝜆𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤ · 𝑃𝑡+1 + 𝐷𝑃 (𝑃𝑡+1, 𝑃𝑡 )︸                                    ︷︷                                    ︸
3

(15)

where 𝜃, 𝜂, 𝜆 are positive parameters that shall be chosen later. Term 1 in expression (15) is the

change in the Lyapunov function, often called the drift term in queue optimization [25]. Minimizing

this alone would intuitively maintain a battery level close to 𝐵𝑚𝑎𝑥 . Term 2 in expression (15) relates

to the partial derivative of the loss function with respect to the amplitude component 𝐴𝑡 (compare

to (13)). Minimizing this alone could be viewed as a “partial” online mirror descent method that

uses a divergence 𝐷𝐴 (·, ·) and seeks to minimize the loss function by only using the amplitude

component 𝐴𝑡 (see [28] for use of Bregman divergence terms for subgradient-based optimization,

often called mirror descent).
Term 3 in expression (15) relates to the partial derivative of the loss function with respect to

the direction component 𝑃𝑡 (compare to (14)). Minimizing this alone could almost be viewed as a

partial online mirror descent that uses a divergence 𝐷𝑃 (·, ·) and seeks to minimize the loss function

by only using the direction component 𝑃𝑡 . However, a careful comparison of Term 3 with (14)

shows that the scalar value 𝐴𝑡 is missing! It is not obvious why this scalar value should be missing.

It means that the expression (15) is not treating the partial derivative terms with respect to the

components 𝐴𝑡 and 𝑃𝑡 equally. Rather, it separates out these components, removes a time-varying

𝐴𝑡 term, and weights them by different (constant) parameters 𝜂 and 𝜆. This was done to make the

regret analysis of the overall system possible. As shown in the analysis in the next two sections,

there is a careful selection of parameters 𝜆, 𝜂, and 𝜃 that align all pieces of the problem.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 52. Publication date: December 2020.



Bregman-style Online Convex Optimization with Energy Harvesting Constraints 52:9

At the start of slot 𝑡 + 1, the Δ(𝑡) term in (15) is not a known function of the decisions 𝐴𝑡+1 and
𝑃𝑡+1. It turns out that it suffices to use a bound on Δ(𝑡):

Δ(𝑡) (𝑎)= 1

2

(𝐵𝑡+1 − 𝐵𝑚𝑎𝑥 )2 −
1

2

(𝐵𝑡 − 𝐵𝑚𝑎𝑥 )2

(𝑏)
=

1

2

(min{𝐵𝑡 −𝐴𝑡+1 + 𝐸𝑡+1, 𝐵𝑚𝑎𝑥 } − 𝐵𝑚𝑎𝑥 )2 −
1

2

(𝐵𝑡 − 𝐵𝑚𝑎𝑥 )2

=
1

2

min{𝐵𝑡 − 𝐵𝑚𝑎𝑥 −𝐴𝑡+1 + 𝐸𝑡+1, 0}2 −
1

2

(𝐵𝑡 − 𝐵𝑚𝑎𝑥 )2

(𝑐)
≤ (𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) (−𝐴𝑡+1 + 𝐸𝑡+1)︸                             ︷︷                             ︸

include this part

+1
2

(−𝐴𝑡+1 + 𝐸𝑡 )2 (16)

where (a) holds by definition of Δ(𝑡); (b) holds by the battery update equation (2); (c) holds by the

inequality min{𝑥, 0}2 ≤ 𝑥2. Replacing Δ(𝑡) in (15) with the above upper bound (and including only

the term marked by an underbrace in (16)) means that our algorithm shall seek to minimize:
2

𝜃 (𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) (−𝐴𝑡+1 + 𝐸𝑡+1)︸                               ︷︷                               ︸
1
′

+𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡 · 𝐴𝑡+1 + 𝐷𝐴 (𝐴𝑡+1, 𝐴𝑡 )︸                                           ︷︷                                           ︸
2

+ 𝜆𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤ · 𝑃𝑡+1 + 𝐷𝑃 (𝑃𝑡+1, 𝑃𝑡 )︸                                    ︷︷                                    ︸
3

(17)

3.5 Algorithm development
On slot 𝑡 = 1 there is no information available and our algorithm chooses 𝐴1 = 𝐴𝑚𝑖𝑛 and 𝑃1 =

[ 1
𝑛
, . . . , 1

𝑛
]. On each slot 𝑡 + 1 we choose 𝐴𝑡+1 and 𝑃𝑡+1 to directly minimize their corresponding

terms in (17), which amounts to:

• Selecting 𝑃𝑡+1: Choose 𝑃𝑡+1 ∈ R𝑛 as the solution to:

Minimize: 𝜆∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤ · 𝑃𝑡+1 + 𝐷𝑃 (𝑃𝑡+1, 𝑃𝑡 )
Such that: 0 ≤ 𝑃𝑡+1 (𝑖), ∀𝑖 ∈ {1, · · · , 𝑛}∑𝑛

𝑖=1 𝑃𝑡+1 (𝑖) = 1

(18)

• Selecting 𝐴𝑡+1: Choose 𝐴𝑡+1 ∈ R as the solution to:

Minimize: 𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡 · 𝐴𝑡+1 + 𝐷𝐴 (𝐴𝑡+1, 𝐴𝑡 )
+ 𝜃 (𝐵𝑚𝑎𝑥 − 𝐵𝑡 )𝐴𝑡+1

Such that: 𝐴𝑚𝑖𝑛 ≤ 𝐴𝑡+1 ≤ min{𝐵𝑡 + 𝐸𝑡+1, 𝐴𝑚𝑎𝑥 }
(19)

Then define𝑋𝑡+1 = 𝐴𝑡+1𝑃𝑡+1 and update the battery to obtain 𝐵𝑡+1 via (2). Recall that𝐴𝑚𝑖𝑛 ≤ 𝐸𝑚𝑖𝑛 ≤
𝐸𝑡+1 and so the interval constraint on 𝐴𝑡+1 in (19) is feasible and ensures 𝑋𝑡+1 ∈ X and the sum of

components is no more than the available energy 𝐵𝑡 + 𝐸𝑡+1.
The two problems (18) and (19) have a structure similar to a simple online mirror descent update

(where (19) includes an additional term 𝜃 (𝐵𝑚𝑎𝑥 − 𝐵𝑡 )𝐴𝑡+1 from the Lyapunov drift). By a standard

Lagrange multiplier argument, it is not difficult to show that the solution to (18) is

𝑃𝑡+1 (𝑖) = 𝑃𝑡 (𝑖)
𝑒𝑥𝑝 (−𝜆[∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )] (𝑖))∑𝑛

𝑖=1 𝑃𝑡 (𝑖)𝑒𝑥𝑝 (−𝜆[∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )] (𝑖))
∀𝑖 ∈ {1, . . . , 𝑛} (20)

2
The final term

1

2
(−𝐴𝑡+1 + 𝐸𝑡 )2 in (16) shall be bounded by a constant later and does not affect algorithm decisions.
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Further, the solution to (19) is

𝐴𝑡+1 =
[
𝐴𝑡 + 𝜃 (𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) − 𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡

]
min{𝐴𝑚𝑎𝑥 ,𝐵𝑡+𝐸𝑡+1 }
𝐴𝑚𝑖𝑛

(21)

The resulting algorithm is specified in Section 3.2. Observe from (20) that the 𝑃𝑡 vector has strictly

positive components for all 𝑡 ∈ {1, . . . ,𝑇 }.

4 RELAXATION THEOREM
This section considers a sample path implementation of Algorithm 1 with parameters 𝜂 > 0, 𝜃 > 0,

𝜆 > 0, and constants 𝐸𝑚𝑖𝑛 , 𝐸𝑚𝑎𝑥 , 𝐴𝑚𝑖𝑛 , 𝐴𝑚𝑎𝑥 , 𝐺 that satisfy the assumptions (6)-(8). It is proven

that if the battery size 𝐵𝑚𝑎𝑥 is is chosen wisely, then a special property holds: For each 𝑡 ≥ 1 the

decision 𝐴𝑡+1 produced by the algorithm, which is the solution to (19), is also a solution to the

relaxed problem of choosing 𝐴𝑡+1 ∈ R to solve

Minimize: 𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡 · 𝐴𝑡+1 + 𝐷𝐴 (𝐴𝑡+1, 𝐴𝑡 )
+ 𝜃 (𝐵𝑚𝑎𝑥 − 𝐵𝑡 )𝐴𝑡+1

Such that: 𝐴𝑚𝑖𝑛 ≤ 𝐴𝑡+1 ≤ 𝐴𝑚𝑎𝑥

(22)

The difference between (19) and (22) is that the constraint has been relaxed to𝐴𝑚𝑖𝑛 ≤ 𝐴𝑡+1 ≤ 𝐴𝑚𝑎𝑥 ,

so that this constraint does not depend on the time-varying 𝐵𝑡 + 𝐸𝑡+1 value. This paves the way to

the regret analysis of the next section. The solution to (22) is (compare with (21)):

𝐴𝑡+1 =
[
𝐴𝑡 + 𝜃 (𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) − 𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡

]𝐴𝑚𝑎𝑥

𝐴𝑚𝑖𝑛
(23)

4.1 Relaxed version
Define the relaxed version of Algorithm 1 as the same algorithm but with the 𝐴𝑡+1 decision rule

(21) replaced by (23). Since this decision rule no longer explicitly guarantees 𝐴𝑡+1 ≤ 𝐵𝑡 + 𝐸𝑡+1,
the relaxed version may not be implementable because it may cause the battery energy 𝐵𝑡 to go

negative. The decision rules (21) and (23) are one and the same, so that the relaxed algorithm is

exactly the same as the original, if and only if 𝐵𝑡 never goes negative.

Fix 𝑎 ∈ (0, 𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛] and define

𝐵𝑚𝑎𝑥 =
𝑎 + 𝜂𝐺

𝜃
− 𝐸𝑚𝑖𝑛 +𝐴𝑚𝑖𝑛 +

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛) (24)

It is not difficult to show that this choice of 𝐵𝑚𝑎𝑥 is strictly positive (since 𝐴𝑚𝑎𝑥 > 𝐸𝑚𝑖𝑛 by (8)).

Lemma 4.1. Fix 𝑎 ∈ (0, 𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛] and assume 𝐵𝑚𝑎𝑥 satisfies (24). Fix 𝑡 ≥ 1. Under the decisions
of the relaxed algorithm, if (𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) ≤ −1𝜃 (𝑎 + 𝜂𝐺) then 𝐴𝑡+1 ≤ max{𝐴𝑡 − 𝑎,𝐴𝑚𝑖𝑛}.

Proof. From (6) and the fact that components of 𝑃𝑡 are non-negative and sum to 1, we have:

|∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡 | ≤ 𝐺

So

𝐴𝑡 + 𝜃 (𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) − 𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡 ≤ 𝐴𝑡 + 𝜃 (𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) + 𝜂𝐺
(𝑎)
≤ 𝐴𝑡 − (𝑎 + 𝜂𝐺) + 𝜂𝐺
= 𝐴𝑡 − 𝑎

where (a) holds by the assumption of the lemma. Then from the relaxed update rule (23):

𝐴𝑡+1 ≤ [𝐴𝑡 − 𝑎]𝐴𝑚𝑎𝑥

𝐴𝑚𝑖𝑛
≤ max{𝐴𝑡 − 𝑎,𝐴𝑚𝑖𝑛}

□
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For the next theorem, we recall that 𝐸𝑚𝑖𝑛 < 𝐴𝑚𝑎𝑥 (assumption (8)).

Theorem 4.2. Fix 𝑎 ∈ (0, 𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛] and assume 𝐵𝑚𝑎𝑥 satisfies (24). Under the decisions of the
relaxed algorithm we have 𝐵𝑡 ≥ 0 for all 𝑡 ∈ {1, . . . ,𝑇 } and so the relaxed algorithm and the original
algorithm are identical.

Proof. We shall use induction to show that for all slots 𝑡 ≥ 2 we have:

(𝐵𝑡−1 − 𝐵𝑚𝑎𝑥 ) ≥
−1
𝜃
(𝑎 + 𝜂𝐺) + 𝐸𝑚𝑖𝑛 −𝐴𝑡−1 +

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡−1 −𝐴𝑚𝑎𝑥 ) (25)

To see that this inequality is sufficient to ensure 𝐵𝑡 ≥ 0 for all 𝑡 ∈ {1, . . . ,𝑇 }, we can substitute the

definition of 𝐵𝑚𝑎𝑥 from (24) into (25) to find

𝐵𝑡−1 ≥ 𝐴𝑚𝑖𝑛 −𝐴𝑡−1 +
𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡−1 −𝐴𝑚𝑖𝑛)

(𝑎)
≥ 𝐴𝑚𝑖𝑛 −𝐴𝑡−1 + (𝐴𝑡−1 −𝐴𝑚𝑖𝑛) = 0

where (a) holds because 𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛 > 0 and 𝑎 ∈ (0, 𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛] and so

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
≥ 1 (26)

We first show (25) holds for the base case 𝑡 = 2. From the queue update equation (2) we have

𝐵1 = min {𝐵0 −𝐴1 + 𝐸1, 𝐵𝑚𝑎𝑥 }
(𝑎)
= min {−𝐴𝑚𝑖𝑛 + 𝐸1, 𝐵𝑚𝑎𝑥 }
(𝑏)
≥ min {0, 𝐵𝑚𝑎𝑥 } ≥ 0

(27)

where (a) holds by our initializations 𝐵0 = 0, 𝐴1 = 𝐴𝑚𝑖𝑛 ; (b) holds because 𝐴𝑚𝑖𝑛 ≤ 𝐸𝑚𝑖𝑛 ≤ 𝐸1. Thus,

𝐵1 ≥ 0. From (24) we have

𝐵1 − 𝐵𝑚𝑎𝑥 = 𝐵1 −
𝑎 + 𝜂𝐺

𝜃
+ 𝐸𝑚𝑖𝑛 −𝐴𝑚𝑖𝑛 −

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛)

(𝑎)
≥ −𝑎 + 𝜂𝐺

𝜃
+ 𝐸𝑚𝑖𝑛 −𝐴𝑚𝑖𝑛 −

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛)

(𝑏)
= −𝑎 + 𝜂𝐺

𝜃
+ 𝐸𝑚𝑖𝑛 −𝐴1 −

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑚𝑎𝑥 −𝐴1)

where (a) holds because 𝐵1 ≥ 0; (b) holds because 𝐴1 = 𝐴𝑚𝑖𝑛 .

Now, we show the same inequality holds for slot 𝑡 . There are three cases.

Case 1: If 𝐵𝑡−1 + 𝐸𝑡 −𝐴𝑡 ≥ 𝐵𝑚𝑎𝑥 then from 𝐵𝑡 update rule (2) we have 𝐵𝑡 = 𝐵𝑚𝑎𝑥 . Then

−1
𝜃
(𝑎 + 𝜂𝐺) + 𝐸𝑚𝑖𝑛 −𝐴𝑡 +

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡 −𝐴𝑚𝑎𝑥 )

(𝑎)
≤ 𝐸𝑚𝑖𝑛 −𝐴𝑡 +

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡 −𝐴𝑚𝑎𝑥 )

(𝑏)
≤ 𝐸𝑚𝑖𝑛 −𝐴𝑚𝑎𝑥

(𝑐)
< 0

(𝑑)
= 𝐵𝑡 − 𝐵𝑚𝑎𝑥
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where (a) holds because
−1
𝜃
(𝑎 + 𝜂𝐺) ≤ 0; (b) holds because the assumption in the statement of the

theorem ensures 𝐴𝑚𝑎𝑥 ≥ 𝐸𝑚𝑖𝑛 + 𝑎; (c) holds by assumption (8); (d) holds because 𝐵𝑡 = 𝐵𝑚𝑎𝑥 . So the

claim holds in Case 1.

In the remaining two cases we assume

𝐵𝑡−1 + 𝐸𝑡 −𝐴𝑡 < 𝐵𝑚𝑎𝑥 (28)

which by (2) implies

𝐵𝑡 = 𝐵𝑡−1 + 𝐸𝑡 −𝐴𝑡 (29)

Case 2: Suppose (28) and (𝐵𝑡−1 − 𝐵𝑚𝑎𝑥 ) ≥ −1𝜃 (𝑎 + 𝜂𝐺) hold. By (29) we have

𝐵𝑡 − 𝐵𝑚𝑎𝑥 = 𝐵𝑡−1 − 𝐵𝑚𝑎𝑥 + 𝐸𝑡 −𝐴𝑡

(𝑎)
≥ −1

𝜃
(𝑎 + 𝜂𝐺) + 𝐸𝑡 −𝐴𝑡

(𝑏)
≥ −1

𝜃
(𝑎 + 𝜂𝐺) + 𝐸𝑚𝑖𝑛 −𝐴𝑡 +

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡 −𝐴𝑚𝑎𝑥 )

where (a) holds by the assumption of this Case 2; (b) holds because 𝐸𝑡 ≥ 𝐸𝑚𝑖𝑛 and
𝐴𝑚𝑎𝑥−𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡 −

𝐴𝑚𝑎𝑥 ) ≤ 0. So the claim holds for Case 2.

Case 3: Suppose (28) and (𝐵𝑡−1 − 𝐵𝑚𝑎𝑥 ) < −1𝜃 (𝑎 + 𝜂𝐺) hold. Then from Lemma 4.1 we have

𝐴𝑡 ≤ max{𝐴𝑡−1 − 𝑎,𝐴𝑚𝑖𝑛} (30)

We separate Case 3 into two subcases.

Case 3a: Suppose 𝐴𝑡−1 − 𝑎 ≥ 𝐴𝑚𝑖𝑛 . Then (30) implies

𝐴𝑡 ≤ 𝐴𝑡−1 − 𝑎 (31)

and from (29)

𝐵𝑡 − 𝐵𝑚𝑎𝑥 = 𝐵𝑡−1 − 𝐵𝑚𝑎𝑥 + 𝐸𝑡 −𝐴𝑡

(𝑎)
≥ −1

𝜃
(𝑎 + 𝜂𝐺) + 𝐸𝑚𝑖𝑛 −𝐴𝑡−1 +

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡−1 −𝐴𝑚𝑎𝑥 ) + 𝐸𝑡 −𝐴𝑡

=
−1
𝜃
(𝑎 + 𝜂𝐺) + 𝐸𝑚𝑖𝑛 −𝐴𝑡 +

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡−1 − 𝑎 + 𝑎 −𝐴𝑚𝑎𝑥 ) + 𝐸𝑡 −𝐴𝑡−1

(𝑏)
≥ −1

𝜃
(𝑎 + 𝜂𝐺) + 𝐸𝑚𝑖𝑛 −𝐴𝑡 +

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡 + 𝑎 −𝐴𝑚𝑎𝑥 ) + 𝐸𝑡 −𝐴𝑡−1

(𝑐)
≥ −1

𝜃
(𝑎 + 𝜂𝐺) + 𝐸𝑚𝑖𝑛 −𝐴𝑡 +

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡 −𝐴𝑚𝑎𝑥 )

where (a) holds by (25); (b) holds by (31) and the fact𝐴𝑚𝑎𝑥−𝐸𝑚𝑖𝑛 ≥ 0; (c) holds because𝐴𝑚𝑎𝑥−𝐴𝑡−1 ≥
0 and 𝐸𝑡 − 𝐸𝑚𝑖𝑛 ≥ 0. So the claim holds for Case 3a.

Case 3b: Suppose 𝐴𝑡−1 − 𝑎 < 𝐴𝑚𝑖𝑛 . By (30) we know 𝐴𝑡 ≤ 𝐴𝑚𝑖𝑛 and so 𝐴𝑡 = 𝐴𝑚𝑖𝑛 (since 𝐴𝑡

cannot be less than 𝐴𝑚𝑖𝑛). Thus

𝐴𝑡−1 −𝐴𝑡 ≥ 0 (32)
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By (29) we have

𝐵𝑡 − 𝐵𝑚𝑎𝑥 = 𝐵𝑡−1 − 𝐵𝑚𝑎𝑥 + 𝐸𝑡 −𝐴𝑡

(𝑎)
≥ −1

𝜃
(𝑎 + 𝜂𝐺) + 𝐸𝑚𝑖𝑛 −𝐴𝑡−1 +

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡−1 −𝐴𝑚𝑎𝑥 ) + 𝐸𝑡 −𝐴𝑡

=
−1
𝜃
(𝑎 + 𝜂𝐺) + 𝐸𝑚𝑖𝑛 −𝐴𝑡 +

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡 −𝐴𝑚𝑎𝑥 )

+ 𝐸𝑡 −𝐴𝑡−1 +
𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡−1 −𝐴𝑡 )

(𝑏)
≥ −1

𝜃
(𝑎 + 𝜂𝐺) + 𝐸𝑚𝑖𝑛 −𝐴𝑡 +

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡 −𝐴𝑚𝑎𝑥 )

+ 𝐸𝑡 −𝐴𝑡−1 +
𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

(𝐴𝑡−1 −𝐴𝑡 )

(𝑐)
≥ −1

𝜃
(𝑎 + 𝜂𝐺) + 𝐸𝑚𝑖𝑛 −𝐴𝑡 +

𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑎
(𝐴𝑡 −𝐴𝑚𝑎𝑥 )

where (a) holds by (25); (b) holds because 𝑎 ∈ (0, 𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛] and (𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛) (𝐴𝑡−1 −𝐴𝑡 ) ≥ 0

from (32); (c) holds because 𝐸𝑡 −𝐴𝑡 = 𝐸𝑡 −𝐴𝑚𝑖𝑛 ≥ 0. And so the theorem is proved. □

4.2 Optimizing 𝐵𝑚𝑎𝑥

As 𝑎 ∈ (0, 𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛] was a parameter of choice in (24), we can choose 𝑎 ∈ (0, 𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛] to
minimize the required 𝐵𝑚𝑎𝑥 value for our battery capacity.

𝑎∗ =
[√

𝜃 (𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛) (𝐴𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛)
]𝐴𝑚𝑎𝑥−𝐸𝑚𝑖𝑛

0

and so, assuming 𝜃 is small enough to ensure 𝑎∗ is interior to the interval (0, 𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛], the
battery capacity for this specific choice is

𝐵𝑚𝑎𝑥 =
𝜂

𝜃
𝐺 +

√
(𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛) (𝐴𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛)√

𝜃
− 𝐸𝑚𝑖𝑛 +𝐴𝑚𝑖𝑛 (33)

5 REGRET ANALYSIS OF THE RELAXED ALGORITHM
This section compares performance of the proposed algorithm to a virtual system that uses a fixed

decision 𝑋 ∗ = [𝑋 ∗ (1), . . . , 𝑋 ∗ (𝑛)]. The battery available for the virtual system has infinite capacity,

meaning that at each round it can use as much energy as it wants. However, the fixed vector

𝑋 ∗ = [𝑋 ∗ (1), . . . , 𝑋 ∗ (𝑛)] is required to satisfy

𝐴∗ =
∑𝑛

𝑖=1𝑋
∗ (𝑖) ≤ 𝐸 = E [𝐸𝑡 ] (34)

𝑋 ∗ ∈ X (35)

where X is defined in (3), so 𝐴∗ ≤ min{𝐴𝑚𝑎𝑥 , 𝐸}. This means that the fixed decision of the virtual

algorithm does not use more energy than the average available input energy of our algorithm. The

regret is defined:

𝑅𝑒𝑔𝑟𝑒𝑡 (𝑇 ) = ∑𝑇
𝑡=1 E [𝐿𝑡 (𝑋𝑡 )] − E

[
inf𝑋 ∗∈A

∑𝑇
𝑡=1 𝐿𝑡 (𝑋 ∗)

]
whereA is the set of all 𝑋 ∗ that satisfy (34)-(35). Note that 𝑋 ∗ can be chosen in the setA based on

full knowledge of the 𝐿𝑡 functions.

It is assumed throughout this section that the 𝐵𝑚𝑎𝑥 parameter given in (24) is used, so that

Algorithm 1 and its relaxed version that uses (23) are identical. Define

𝐴∗𝑚𝑎𝑥 = min{𝐴𝑚𝑎𝑥 , 𝐸} (36)
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5.1 Part 1
Fix 𝑡 ≥ 1. Since 𝑃𝑡+1 is the solution to (18), we have by the pushback lemma (Lemma 3.1) that for

any 𝑃∗ in the 𝑛-dimensional simplex:

𝜆∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡+1 + 𝐷𝑃 (𝑃𝑡+1, 𝑃𝑡 ) ≤ 𝜆∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃∗ + 𝐷𝑃 (𝑃∗, 𝑃𝑡 ) − 𝐷𝑃 (𝑃∗, 𝑃𝑡+1)

Adding 𝜆∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡 to both sides and rearranging the terms,

𝜆∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤ (𝑃𝑡 − 𝑃∗) ≤(
𝜆∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤ (𝑃𝑡 − 𝑃𝑡+1) − 𝐷𝑃 (𝑃𝑡+1, 𝑃𝑡 )

)
+

(
𝐷𝑃 (𝑃∗, 𝑃𝑡 ) − 𝐷𝑃 (𝑃∗, 𝑃𝑡+1)

)
(37)

The first part of the right-hand-side of (37) gives

𝜆∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤ (𝑃𝑡+1 − 𝑃𝑡 ) + 𝐷𝑃 (𝑃𝑡+1, 𝑃𝑡 )

(𝑎)
= 𝜆∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤ (𝑃𝑡+1 − 𝑃𝑡 ) +

𝑛∑
𝑖=1

[
𝑃𝑡+1 (𝑖) log

𝑃𝑡+1 (𝑖)
𝑃𝑡 (𝑖)

− 𝑃𝑡+1 (𝑖) + 𝑃𝑡 (𝑖)
]

(𝑏)
= 𝜆∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤ (𝑃𝑡+1 − 𝑃𝑡 ) +

(
𝑛∑
𝑖=1

𝑃𝑡+1 (𝑖) log
𝑃𝑡+1 (𝑖)
𝑃𝑡 (𝑖)

)
(𝑐)
≥ 𝜆∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤ (𝑃𝑡+1 − 𝑃𝑡 ) +

1

2

| |𝑃𝑡+1 − 𝑃𝑡 | |21
(𝑑)
≥ − 𝜆∇||𝐿𝑡 (𝐴𝑡𝑃𝑡 ) | |∞ | |𝑃𝑡+1 − 𝑃𝑡 | |1 +

1

2

| |𝑃𝑡+1 − 𝑃𝑡 | |21
(𝑒)
≥ − 𝜆2

2

| |∇𝐿𝑡 (𝐴𝑡𝑃𝑡 ) | |2∞
(𝑓 )
≥ − 𝜆2

2

𝐺2

where (a) uses the definition (12); (b) uses the fact that the 𝑃𝑡 and 𝑃𝑡+1 are in the 𝑛-dimensional

simplex; (c) uses the Pinsker inequality; (d) is achieved by the Cauchy-Schwarz inequality; (e) holds

by completing the square; (f) is from the finite gradient assumption (6). Replacing this result in (37)

gives

𝜆∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤ (𝑃𝑡 − 𝑃∗) ≤
𝜆2

2

𝐺2 +
(
𝐷𝑃 (𝑃∗, 𝑃𝑡 ) − 𝐷𝑃 (𝑃∗, 𝑃𝑡+1)

)
(38)

5.2 Part 2
Similar to Part 1, since𝐴𝑡+1 is the solution to the optimization (22), we have by the pushback lemma

(Lemma 3.1) that for any 𝐴∗ that satisfies 𝐴𝑚𝑖𝑛 ≤ 𝐴∗ ≤ 𝐴𝑚𝑎𝑥 :

𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡𝐴𝑡+1 + 𝜃 (𝐵𝑚𝑎𝑥 − 𝐵𝑡 )𝐴𝑡+1 + 𝐷𝐴 (𝐴𝑡+1, 𝐴𝑡 )
≤ 𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡𝐴∗ + 𝜃 (𝐵𝑚𝑎𝑥 − 𝐵𝑡 )𝐴∗ + 𝐷𝐴 (𝐴∗, 𝐴𝑡 ) − 𝐷𝐴 (𝐴∗, 𝐴𝑡+1)

Adding (𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡 )𝐴𝑡 to both sides and rearranging equations,(
𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡

)
(𝐴∗ −𝐴𝑡 ) + 𝜃 (𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) (𝐴𝑡+1 −𝐴∗)

≥
(
𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡

)
(𝐴𝑡+1 −𝐴𝑡 ) + 𝐷𝐴 (𝐴𝑡+1, 𝐴𝑡 ) + 𝐷𝐴 (𝐴∗, 𝐴𝑡+1) − 𝐷𝐴 (𝐴∗, 𝐴𝑡 )

(39)
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The first part of RHS gives(
𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡

)
(𝐴𝑡+1 −𝐴𝑡 ) + 𝐷𝐴 (𝐴𝑡+1, 𝐴𝑡 )

(𝑎)
=

(
𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡

)
(𝐴𝑡+1 −𝐴𝑡 ) +

1

2

(𝐴𝑡+1 −𝐴𝑡 )2

(𝑏)
≥ − 𝜂2

2

|∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡 |2

(𝑐)
≥ − 𝜂2

2

𝐺2

where (a) uses the definition (11); (b) is just the simple inequality
1

2
𝑎2 + 𝑎𝑏 ≥ − 1

2
𝑏2, (c) uses the

assumption (6). Substituting this result in (39) gives(
𝜂∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤𝑃𝑡

)
(𝐴∗ −𝐴𝑡 ) + 𝜃 (𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) (𝐴𝑡+1 −𝐴∗)

≥ −𝜂
2

2

𝐺2 + 𝐷𝐴 (𝐴∗, 𝐴𝑡+1) − 𝐷𝐴 (𝐴∗, 𝐴𝑡 )
(40)

5.3 Summing Part1 & Part2
Multiply equation (38) by

𝐴∗

𝜆
and equation (40) by

−1
𝜂
and sum these two resulting inequalities to

obtain

∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤ (𝐴𝑡𝑃𝑡 −𝐴∗𝑃∗) +
𝜃

𝜂
(𝐵𝑚𝑎𝑥 − 𝐵𝑡 ) (𝐴𝑡+1 −𝐴∗) ≤

(𝜂 + 𝜆𝐴∗)𝐺
2

2

− 1

𝜂
(𝐷𝐴 (𝐴∗, 𝐴𝑡+1) − 𝐷𝐴 (𝐴∗, 𝐴𝑡 ))

− 𝐴∗

𝜆
(𝐷𝑃 (𝑃∗, 𝑃𝑡+1) − 𝐷𝑃 (𝑃∗, 𝑃𝑡 ))

The above inequality holds for all 𝑡 ≥ 1. Choose 𝑃1 = [ 1𝑛 , · · · ,
1

𝑛
],𝐴1 = 𝐴𝑚𝑖𝑛 , and take summation

from time 1 to 𝑇

𝑇∑
𝑡=1

(
∇𝐿𝑡 (𝐴𝑡𝑃𝑡 )⊤ (𝐴𝑡𝑃𝑡 −𝐴∗𝑃∗) +

𝜃

𝜂
(𝐵𝑚𝑎𝑥 − 𝐵𝑡 ) (𝐴𝑡+1 −𝐴∗)

)
(𝑎)
≤ (𝜂+𝜆𝐴∗)𝐺

2

2

𝑇

− 1

𝜂
(𝐷𝐴 (𝐴∗, 𝐴𝑇+1) − 𝐷𝐴 (𝐴∗, 𝐴1))

− 𝐴∗

𝜆
(𝐷𝑃 (𝑃∗, 𝑃𝑇+1) − 𝐷𝑃 (𝑃∗, 𝑃1))

(𝑏)
≤ (𝜂+𝜆𝐴∗)𝐺

2

2

𝑇

+ 1

𝜂
𝐷𝐴 (𝐴∗, 𝐴1) +

𝐴∗

𝜆
𝐷𝑃 (𝑃∗, 𝑃1)

(𝑐)
≤ (𝜂+𝜆𝐴∗𝑚𝑎𝑥 )

𝐺2

2

𝑇

+ 1

𝜂
(𝐴∗𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛)2/2 +

𝐴∗𝑚𝑎𝑥

𝜆
log(𝑛)
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where (a) uses the telescopic sum technique (

∑𝑇
𝑡=1 (𝑎𝑡+1 − 𝑎𝑡 ) = 𝑎𝑇+1 − 𝑎1); (b) uses the fact that

𝐷𝐴 (., .) ≥ 0 and 𝐷𝑃 (., .) ≥ 0; for (c) we used (36) along with these two upper bounds 𝐷𝐴 (𝐴∗, 𝐴1) ≤
(𝐴∗𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛)2/2 and 𝐷𝑃 (𝑃∗, 𝑃1) ≤ log(𝑛). These upper bounds are proven as follows. For first

one notice that 𝐴1 = 𝐴𝑚𝑖𝑛 and consider:

Maximize: 𝐷𝐴 (𝐴∗, 𝐴𝑚𝑖𝑛)
Such that: 𝐴𝑚𝑖𝑛 ≤ 𝐴∗ ≤ min{𝐴𝑚𝑎𝑥 , 𝐸}

where the answer is (min{𝐴𝑚𝑎𝑥 , 𝐸} −𝐴𝑚𝑖𝑛)2/2. For the second bound consider:

Maximize: 𝐷𝑃 (𝑃∗, 𝑃1)
Such that: 0 ≤ 𝑃1 (𝑖), ∀𝑖 ∈ {1, · · · , 𝑛}∑𝑛

𝑖=1 𝑃1 (𝑖) = 1

where the answer is log𝑛.

Using the definitions 𝑋𝑡 = 𝐴𝑡𝑃𝑡 and 𝑋
∗ = 𝐴∗𝑃∗ this can be written as

𝑇∑
𝑡=1

(
∇𝐿𝑡 (𝑋𝑡 )⊤ (𝑋𝑡 − 𝑋 ∗) +

𝜃

𝜂
(𝐵𝑚𝑎𝑥 − 𝐵𝑡 ) (𝐴𝑡+1 −𝐴∗)

)
≤ (𝜂 + 𝜆𝐴∗𝑚𝑎𝑥 )

𝐺2

2

𝑇 + 1

𝜂
(𝐴∗𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛)2/2 +

𝐴∗𝑚𝑎𝑥

𝜆
log(𝑛)

Using the loss function convexity and taking expectation

𝑇∑
𝑡=1

E

[
𝐿𝑡 (𝑋𝑡 ) − 𝐿𝑡 (𝑋 ∗) +

𝜃

𝜂
(𝐵𝑚𝑎𝑥 − 𝐵𝑡 ) (𝐴𝑡+1 −𝐴∗)

]
≤ (𝜂 + 𝜆𝐴∗𝑚𝑎𝑥 )

𝐺2

2

𝑇 + 1

𝜂
(𝐴∗𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛)2/2 +

𝐴∗𝑚𝑎𝑥

𝜆
log(𝑛)

(41)

which can be written as

𝑇∑
𝑡=1

E [𝐿𝑡 (𝑋𝑡 ) − 𝐿𝑡 (𝑋 ∗)]

≤ (𝜂 + 𝜆𝐴∗𝑚𝑎𝑥 )
𝐺2

2

𝑇 + 1

𝜂
(𝐴∗𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛)2/2 +

𝐴∗𝑚𝑎𝑥

𝜆
log(𝑛)

+ 𝜃
𝜂

𝑇∑
𝑡=1

E [(𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) (𝐴𝑡+1 − 𝐸𝑡+1 + 𝐸𝑡+1 −𝐴∗)]

(42)

Now consider the following two lemmas.

Lemma 5.1. ∑𝑇
𝑡=1 E [(𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) (𝐸𝑡+1 −𝐴∗)] ≤ 0 (43)

Proof. Since 𝐸𝑡+1 is independent of 𝐵𝑡 we have

𝑇∑
𝑡=1

E [(𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) (𝐸𝑡+1 −𝐴∗)] =
𝑇∑
𝑡=1

E [𝐵𝑡 − 𝐵𝑚𝑎𝑥 ] E [𝐸𝑡+1 −𝐴∗]

≤
𝑇∑
𝑡=1

E [𝐵𝑡 − 𝐵𝑚𝑎𝑥 ] (E [𝐸𝑡+1] − E [𝐸𝑡+1)]

= 0
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where the inequality uses 𝐴∗ =
∑𝑛

𝑖=1𝑋
∗ (𝑖) ≤ 𝐸 = E [𝐸𝑡 ] (by (34)) and 𝐵𝑡 ≤ 𝐵𝑚𝑎𝑥 (as is clear by the

update equation (2)). □

For convenience, define a constant 𝐶 by

𝐶 = max((𝐸𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛)2, (𝐴𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛)2) (44)

Lemma 5.2. We have ∑𝑇
𝑡=1 (𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) (𝐴𝑡+1 − 𝐸𝑡+1) ≤ 𝑇

2
𝐶 + 𝐵𝑚𝑎𝑥

2
(45)

Proof. From equation (2) we have

𝐵𝑡+1 − 𝐵𝑚𝑎𝑥 = min {𝐵𝑡 − 𝐵𝑚𝑎𝑥 + 𝐸𝑡+1 −𝐴𝑡+1, 0}

Since min{𝑥, 0}2 ≤ 𝑥2 for all 𝑥 ∈ R we have

(𝐵𝑡+1 − 𝐵𝑚𝑎𝑥 )2 ≤ (𝐵𝑡 − 𝐵𝑚𝑎𝑥 )2 + (𝐸𝑡+1 −𝐴𝑡+1)2 + 2(𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) (𝐸𝑡+1 −𝐴𝑡+1)
≤ (𝐵𝑡 − 𝐵𝑚𝑎𝑥 )2 +𝐶 + 2(𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) (𝐸𝑡+1 −𝐴𝑡+1)

By summing over 𝑡 ∈ {1, . . . ,𝑇 } we obtain

(𝐵𝑇+1 − 𝐵𝑚𝑎𝑥 )2 ≤ (𝐵1 − 𝐵𝑚𝑎𝑥 )2 +𝑇𝐶 + 2
𝑇∑
𝑡=1

(𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) (𝐸𝑡+1 −𝐴𝑡+1)

0 ≤ (𝐵1 − 𝐵𝑚𝑎𝑥 )2 +𝑇𝐶 + 2
𝑇∑
𝑡=1

(𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) (𝐸𝑡+1 −𝐴𝑡+1)

𝑇∑
𝑡=1

(𝐵𝑡 − 𝐵𝑚𝑎𝑥 ) (𝐴𝑡+1 − 𝐸𝑡+1) ≤
𝑇

2

𝐶 + 𝐵𝑚𝑎𝑥
2

The two last inequalities use the fact that 𝑥2 ≥ 0 and 𝐵1 = 0. □

Substituting inequalities (43) and (45) in the main equation (42) gives

𝑇∑
𝑡=1

E [𝐿𝑡 (𝑋𝑡 ) − 𝐿𝑡 (𝑋 ∗)] ≤ (𝜂 + 𝜆𝐴∗𝑚𝑎𝑥 )
𝐺2

2

𝑇 + 1

𝜂
(𝐴∗𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛)2/2

+ 𝐴
∗
𝑚𝑎𝑥

𝜆
log(𝑛) + 𝜃

𝜂
(𝑇
2

𝐶 + 𝐵𝑚𝑎𝑥
2)

(46)

where 𝐵𝑚𝑎𝑥 also depends on 𝜃 and 𝜂 and is given from (33):

𝐵𝑚𝑎𝑥 =
𝜂

𝜃
𝐺 +
√
(𝐴𝑚𝑎𝑥−𝐸𝑚𝑖𝑛) (𝐴𝑚𝑎𝑥−𝐴𝑚𝑖𝑛)√

𝜃
− 𝐸𝑚𝑖𝑛 +𝐴𝑚𝑖𝑛

So we have the main theorem:

Theorem 5.3. If the Algorithm 1 run with parameters 𝜃 , 𝜂 and 𝜆, and the battery capacity be the
optimal value given by Eq. 33, then the regret will be:

𝑅𝑒𝑔𝑟𝑒𝑡 (𝑇 ) ≤ (𝜂 + 𝜆𝐴∗𝑚𝑎𝑥 )
𝐺2

2

𝑇 + 1

𝜂
(𝐴∗𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛)2/2

+ 𝐴
∗
𝑚𝑎𝑥

𝜆
log(𝑛) + 𝜃

𝜂
(𝑇
2

𝐶 + 𝐵𝑚𝑎𝑥
2)

(47)
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5.4 Choosing the parameters
The regret bound in the right-hand-side of (47) can be minimized over all parameter choices 𝜂 > 0,

𝜃 > 0, and 𝜆 > 0. The optimized 𝜆 is

𝜆∗ =
√

2 log (𝑛)
𝐺2𝑇

(48)

However, optimizing 𝜂 and 𝜃 is not as clean and is most easily done by a numerical search to

minimize the right-hand-side of (47). To illustrate asymptotic tradeoffs of 𝑂 (
√
𝑇 ) and 𝑂 (

√
log(𝑛))

we provide the following example sizings of 𝜂 and 𝜃 that arise from optimizing only the first two

terms in the right-hand-side of (47):

𝜂∗ =
(𝐴∗𝑚𝑎𝑥−𝐴𝑚𝑖𝑛)

𝐺
√
𝑇

and

𝜃 ∗ = 𝐺𝜂∗
√

2

𝑇𝐶
=

√
2

𝐶

(𝐴∗𝑚𝑎𝑥−𝐴𝑚𝑖𝑛)
𝑇

where 𝐶 is defined in (44). So the regret is 𝑂 (
√
𝑇 ln(𝑛)) and the required battery capacity 𝐵𝑚𝑎𝑥 is

𝑂 (
√
𝑇 ) (with no dependence on 𝑛).

5.5 Implementing with large batteries and beyond slot 𝑇
If the battery storage device has physical capacity larger than the 𝐵𝑚𝑎𝑥 value specified in (33), we

can still set the algorithm parameter to this 𝐵𝑚𝑎𝑥 value. Then, we partition the battery storage to a

unit of size 𝐵𝑚𝑎𝑥 that is used only for this algorithm and a remaining unit that can store energy for

other purposes.

The algorithm in this paper was described over a finite time horizon 𝑡 ∈ {1, . . . ,𝑇 } to clearly

illustrate the regret properties and battery requirements. Of course, the algorithm can run forever

(beyond slot𝑇 ). In that case we use𝑇 only to size the parameters of Algorithm 1, but we can run the

algorithm for a time arbitrarily larger than 𝑇 . Using similar analysis, it can be shown that similar

𝑂 (
√
𝑛𝑇 ) regret properties hold over any consecutive𝑇 slots of the sample path. The analysis of this

fact is similar and is omitted for brevity (the only significant difference is that the initial condition

at the start of the 𝑇 -slot path is no longer zero).

5.6 Discussion on change of variable
Our algorithm takes the convex objective 𝐿𝑡 (𝑋 ) and turns it to a function 𝑔𝑡 (𝐴, 𝑃) = 𝐿𝑡 (𝐴.𝑃) that
involves a non-convex multiplication of variables. However, our algorithm chooses each variable

separately by solving a separate optimization problem and the function 𝑔𝑡 (𝐴, 𝑃) is convex with

respect to 𝐴 or 𝑃 (while it is not jointly convex). This approach still works because we exploit

convexity in each separate variable 𝐴, 𝑃 , and also convexity of the original function 𝐿𝑡 . The

separation is needed to overcome key challenges.

6 SIMULATION
In this section we simulate the example explained in Section 1.1 for a case with 𝑛 = 100 channels.

We generate the noise levels in this specific simulation from a Markovian random walk. Specifically,

define 𝑍𝑡 (𝑖) = 𝑆𝑡 (𝑖)/𝑁𝑡 (𝑖). For each 𝑖 ∈ {1, . . . , 100} we generate {𝑍𝑡 (𝑖)}𝑇𝑡=1 as an independent

random walk inside the interval [0, 1/𝑁𝑚𝑖𝑛] where the borders are reflective and the steps are

i.i.d samples of a mean zero Gaussian distribution with variance
1

10000𝑁𝑚𝑖𝑛
. The initial condition is

𝑍0 (𝑖) = 1

2𝑁𝑚𝑖𝑛
for all 𝑖 ∈ {1, · · · , 𝑛}.

The following two simulations use the same objective function described above. To summarize

we have:
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• The steps of each random walk 𝑍𝑡 (𝑖) are i.i.d samples of a mean zero Gaussian distribution

with variance
1

10000𝑁𝑚𝑖𝑛
. The constant 10000 is chosen in a way to make the random walk be

more “continuous” while it is still able to reflect off the boundary several times during the

simulation.

• 𝑍𝑡 (𝑖) = 𝐼
(
𝑍0 (𝑖) +

∑𝑡
𝜏=1 𝑅𝜏 (𝑖)

)
(for all 𝑡 ∈ {1, · · · ,𝑇 } and 𝑖 ∈ {1, · · · , 𝑛} ) where function 𝐼 (·)

is defined:

𝐼 (𝑥) = 2

𝑁𝑚𝑖𝑛

���𝑥𝑁𝑚𝑖𝑛

2
−

⌊
𝑥𝑁𝑚𝑖𝑛

2
+ 1

2

⌋���
• 𝐿𝑡 (𝑥) = −

∑𝑛
𝑖=1 log(1 + 𝑍𝑡 (𝑖)𝑥 (𝑖)) for all 𝑥 ∈ X.

• The gradient upper bound is��� 𝜕
𝜕𝑥 (𝑖) 𝐿𝑡 (𝑥)

��� = ��� 𝑍𝑡 (𝑖)
1+𝑍𝑡 (𝑖)𝑥 (𝑖)

��� ≤ 1

𝑁𝑚𝑖𝑛+𝐴𝑚𝑖𝑛
= 𝐺

• 𝐴𝑚𝑖𝑛 = 0, 𝐴𝑚𝑎𝑥 = 2, 𝑁𝑚𝑖𝑛 = 1, 𝑇 = 10000, 𝑛 = 100.

• The parameter 𝜆 is chosen by (48). The parameters 𝜂 > 0, 𝜃 > 0 are chosen by numerically

minimizing the regret bound (47).

6.1 Algorithm with optimal battery vs. Algorithm with lowered battery
We compare two versions of Algorithm 1, one that uses the proposed 𝐵𝑚𝑎𝑥 given by (33) (for which

analytical guarantees are proven) and the other using a heuristically chosen value 𝐵𝑚𝑎𝑥/2. This is
to test if the proposed sizing of 𝐵𝑚𝑎𝑥 , which was based on a worst-case analysis that ensured the

battery avoids the zero state, was overly conservative. Intuitively, if the lowered-battery heuristic

does not hit zero very often, then, since its decisions are similar to that of the proposed algorithm,

we expect it to have similar regret but with a reduced battery capacity requirement.

In this simulation the input energy (𝐸𝑡 ) are i.i.d samples of a uniform distribution over interval

[0, 1] so 𝐸𝑚𝑖𝑛 = 0, 𝐸𝑚𝑎𝑥 = 1, and 𝐸 = 1

2

There are four figures. Fig. 1 shows the sample path random walk of the "inverse noise" 𝑍𝑡 (𝑖)
for the first three channels 𝑖 ∈ {1, 2, 3} from the 100 channels. Figs. 2, 3, and 4 plot results for

the two different algorithms.
3
Both algorithms show regrets that converge to values smaller than

zero, and so both are significantly better than the best fixed-decision policy (see Fig. 2). The vector

𝑋 ∗ = [𝑋 ∗ (1), . . . , 𝑋 ∗ (𝑛)] for the best fixed-decision policy (used in Fig. 2) was computed offline

with full knowledge of the 𝐿𝑡 (·) functions by minimizing∑𝑇
𝑡=1 𝐿𝑡 (𝑋 ∗)

over all 𝑋 ∗ that satisfy (34)-(35). Thus, Fig. 2 plots the sample-path regret:

𝑅𝑒𝑔𝑟𝑒𝑡 (𝑡) = 1

𝑡

∑𝑡
𝜏=1 𝐿𝜏 (𝑋𝜏 ) − 1

𝑡

∑𝑡
𝜏=1 𝐿𝜏 (𝑋 ∗)

Remarkably, from Fig. 2 it can be seen that the heuristic “lowered-battery” algorithm gets (slightly)

better regret. This is likely because the proposed algorithm is making more conservative decisions

in order to increase the battery level (which starts at 𝐵0 = 0) to values closer to 𝐵𝑚𝑎𝑥 (rather than

𝐵𝑚𝑎𝑥/2). Of course, only the proposed algorithm comes with the analytical performance guarantees

established in previous sections. In Fig. 3 the 𝐵𝑡 is pictured over time for both algorithms. It can be

seen that the proposed algorithm never meets 𝐵𝑡 = 0 while the lowered-battery algorithm goes

to zero multiple times. The amplitude of output energy is shown in Fig. 4. It is clear from Fig. 4

that both algorithms have an average output power equal to the expected energy arrival per slot

(𝐸 = 1/2). The proposed algorithm is far more stable on the output level while the lowered battery

algorithm shows significantly larger time variation.

3
Fig. 2 has been updated due to an error in this figure in the original published paper. The new figure is different but does

not qualitatively change the results.
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Fig. 1. The inverse noise level for channels 1,2, and 3 from all 100 channels

Fig. 2. Regret versus time for proposed algorithm and lowered battery algorithm

6.2 Real life non-i.i.d energy input
In this simulation, the proposed algorithm with a optimal battery receives the real life energy

output of a solar cell. We used the data provided by [29]
4
. The Fig. 5 shows the energy delivered

by the solar cell. The Figs. 6,7, 8 show the results of the simulation. As the input energy is pretty

much periodic, the battery level and the total output energy are also semi periodic. While the input

energy is completely non-i.i.d, still the algorithm managed to keep the battery non-zero all the

time and at the same time providing a satisfying regret.

4
The first𝑇 = 10000 steps of the file "Actual_32.95_-115.15_2006_UPV_100MW_5_Min" has been used. We also normalised

the data by dividing it by two times its average so energy input has the same average as the first simulation.
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Fig. 3. Battery level versus time for proposed algorithm and lowered battery algorithm

Fig. 4. The output power amplitude versus time for proposed algorithm and lowered battery algorithm

7 CONCLUSION
This paper develops an efficient method for online convex optimization (OCO) with energy harvest-

ing constraints. This is a generalization of OCO problems where resource allocations are restricted

by the amount of energy currently stored in a battery, which depends on the amount of energy

used in the past. Our paper focuses on applications to energy-constrained wireless transmission

problems. An algorithm was developed that achieves regret that grows like𝑂 (
√
𝑇 ), which is known

to be optimal (the square root law cannot be improved even for simpler unconstrained OCO prob-

lems). Further, our algorithm improves state-of-the-art from 𝑂 (𝑛) dependence on the dimension

(number of wireless channels) to 𝑂 (
√
log(𝑛)) dependence. This achievement is significant and

nontrivial. To accomplish this, we used a separation of decisions into an amplitude component and

a direction component, a Lyapunov drift term, and two distinct Bregman divergence functions.

These techniques can likely be used to design efficient scheduling policies in other OCO contexts.
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Fig. 5. The energy provided by the solar cell for the transmitter versus time, which is completely non-i.i.d

Fig. 6. Battery level versus time for proposed algorithm with non-i.i.d real life energy input
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