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Abstract— This paper considers a wireless link with randomly
arriving data that is queued and served over a time-varying
channel. It is known that any algorithm that comes within ¢
of the minimum average power required for queue stability
must incur average queue size at least Q(log(1/¢)). However, the
optimal convergence time is unknown, and prior algorithms give
convergence time bounds of O(1/¢?). This paper shows that it is
possible to achieve the optimal O(log(1/¢)) average queue size
tradeoff with an improved convergence time of O(log(1/¢)/e).
Further, this is shown to be within a logarithmic factor of the best
possible convergence time. The method uses the simple drift-plus-
penalty technique with an improved convergence time analysis.

I. INTRODUCTION

This paper considers power-aware scheduling in a wireless
link with a time-varying channel and randomly arriving data.
Arriving data is queued for eventual transmission. The trans-
mission rate out of the queue is determined by the current
channel state and the current power allocation decision. Specif-
ically, the controller can make an opportunistic scheduling
decision by observing the channel before allocating power.
For a given € > 0, the goal is to push average power to within
€ of the minimum possible average power required for queue
stability while ensuring optimal queue size and convergence
time tradeoffs.

A major difficulty is that the data arrival rate and the
channel probabilities are unknown. Hence, the convergence
time of an algorithm includes the learning time associated with
estimating probability distributions or “sufficient statistics”
of these distributions. The optimal learning time required to
achieve the average power and backlog objectives, as well
as the appropriate sufficient statistics to learn, are unknown.
This open question is important because it determines how
fast an algorithm can adapt to its environment. A contribution
of the current paper is the development of an algorithm
that, under suitable assumptions, provides an optimal power-
backlog tradeoff while provably coming within a logarithmic
factor of the optimal convergence time. This is done via the
existing drift-plus-penalty algorithm but with an improved
convergence time analysis.

Work on opportunistic scheduling was pioneered by Tas-
siulas and Ephremides in [1], where the Lyapunov method
and the max-weight algorithms were introduced for queue
stability. Related opportunistic scheduling work that focuses
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on utility optimization is given in [2][3][4][S]1[6][7]1[8][9] using
dual, primal-dual, and stochastic gradient methods, and in [10]
using index policies. The basic drift-plus-penalty algorithm of
Lyapunov optimization can be viewed as a dual method, and
is known to provide, for any € > 0, an e-approximation to
minimum average power with a corresponding O(1/¢) tradeoff
in average queue size [9][11]. This tradeoff is not optimal.
Work by Berry and Gallager in [12] shows that, for queues
with strictly concave rate-power curves, any algorithm that
achieves an e-approximation must incur average backlog of
Q(M), even if that algorithm knows all system probabili-
ties. Work in [13] shows this tradeoff is achievable (to within
a logarithmic factor) using an algorithm that does not know
the system probabilities. The work [13] further considers the
exceptional case when rate-power curves are piecewise linear.
In that case, an improved tradeoff of O(log(1/€)) is both
achievable and optimal. This is done using an exponential
Lyapunov function together with a drift-steering argument.
Work in [14][15] shows that similar logarithmic tradeoffs are
possible via the basic drift-plus-penalty algorithm with Last-
in-First-Out scheduling.

Now consider the question of convergence time, being the
time required for the average queue size and power guarantees
to kick in. This convergence time question is unique to prob-
lems of stochastic scheduling when system probabilities are
unknown. If probabilities were known, the optimal fractions
of time for making certain decisions could be computed
offline (possibly via a very complex optimization), so that
system averages would “kick in” immediately at time 0. Thus,
convergence time in the context of this paper should not
be confused with algorithmic complexity for non-stochastic
optimization problems.

Unfortunately, prior work that treats stochastic scheduling
with unknown probabilities, including the basic drift-plus-
penalty algorithm as well as extensions that achieve square
root and logarithmic tradeoffs, give only O(1/€?) convergence
time guarantees. Recent work in [16] treats convergence time
for a related problem of flow rate allocation and concludes that
constraint violations decay as c(€)/t, where c(¢) is a constant
that depends on € and ¢ is the total time the algorithm has been
in operation. While the work [16] does not specify the size
of the c(e) constant, it can be shown that c(e) = O(1/e).
Intuitively, this is because the c(e) value is related to an
average queue size, which is O(1/¢). The time ¢ needed
to ensure constraint violations are at most € is found by
solving c(e)/t = e. The simple answer is t = O(1/€?),
again exhibiting O(1/€?) convergence time! This leads one
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to suspect that O(1/€?) is optimal.

This paper shows, for the first time, that O(1/€?) con-
vergence time is not optimal. Specifically, under the same
piecewise linear assumption in [13], and for the special case of
a system with just one queue, it is shown that the existing drift-
plus-penalty algorithm yields an e-approximation with both
O(log(1/€)) average queue size and O(log(1/e€)/e) conver-
gence time. This is an encouraging result that shows learning
times for power-aware scheduling can be pushed much smaller
than expected.

The next section specifies the problem formulation. Section
III shows a lower bound on convergence time of Q(1/¢).
Section IV develops an algorithm that achieves this bound
to within a logarithmic factor.

II. SYSTEM MODEL

Consider a wireless link with randomly arriving traffic. The
system operates in slotted time with slots ¢t € {0,1,2,...}.
Data arrives every slot and is queued for transmission. Define:

Q(t) = queue backlog on slot ¢
a(t) = new arrivals on slot ¢
wu(t) = service offered on slot ¢

The values of Q(t), a(t), u(t) are nonnegative and their units
depend on the system of interest. For example, they can take
integer units of packets (assuming packets have fixed size), or
real units of bits. Assume the queue is initially empty, so that
Q(0) = 0. The queue dynamics are:

Qt + 1) = max[Q(t) + a(t) — p(t), 0] (1)

Assume that {a(f)}72, is an independent and identically
distributed (i.i.d.) sequence with mean A = E [a(t)]. For sim-
plicity, assume the amount of arrivals in one slot is bounded
by a constant a,qz, s0 that 0 < a(t) < amq, for all slots ¢.

If the controller decides to transmit data on slot ¢, it uses
one unit of power. Let p(t) € {0,1} be the power used on
slot . The amount of data that can be transmitted depends on
the current channel state. Let w(t) be the amount of data that
can be transmitted on slot ¢ if power is allocated, so that:

u(t) = p(t)w(t)

Assume that w(t) is i.i.d. over slots and takes values in a
finite set 2 = {wg, w1, wa,...,wn }, where wy = 0 and w; is
a positive real number for all 4 € {1,..., M }. Assume these
values are ordered so that:

O=wy<w <wy < - <wpy

For each wy, € Q, define w(wy) = Prlw(t) = w].

Every slot ¢ the system controller observes w(t) and then
chooses p(t) € {0,1}. The choice p(t) = 1 activates the
link for transmission of w(¢) units of data. Fewer than w(t)
units are transmitted if Q(¢) < wu(t) (see the queue equation
(1)). The largest possible average transmission rate is [E [w(t)],
which is achieved by using p(t) = 1 for all ¢. It is assumed
throughout that 0 < A < E [w(t)].

A. Optimization goal

For a real-valued random process b(7) that evolves over
slots 7 € {0,1,2,...}, define its time average expectation
over t > 0 slots as:

B2 S E b @
T7=0

WA

where represents “defined to be equal to.” With this
notation, (t), p(t), Q(t) respectively denote the time average
expected transmission rate, power, and queue size over the first
t slots.
The basic stochastic optimization problem of interest is:
Minimize: lim sup,_, .. D(t) 3)
liminfy oo @(t) > A 4)

p(t) € {0,1} Vte{0,1,2,..} (5)

Subject to:

The assumption A < E [w(¢)] ensures the above problem is
always feasible, so that it is possible to satisfy constraints (4)-
(5) using p(t) = 1 for all ¢. Define p* as the infimum average
power for the above problem. An algorithm is said to produce
an e-approximation at time t if, for a given € > 0:

p(t) < p"+e
A—Rt) < e

An algorithm is said to produce an O(e)-approximation if the
€ symbols on the right-hand-side of the above two inequalities
are replaced by some constant multiples of e.

Fix € > 0. This paper shows that a simple drift-plus-penalty
algorithm that takes € as an input parameter (and that has no
knowledge of the arrival rate or channel probabilities) can be
used to ensure there is a time T, called the convergence time,
for which:

o The algorithm produces an O(e)-approximation for all

t>1Te..

e The algorithm ensures the following for all ¢ €

{0,1,2,...}:

Q(t) < O(log(1/€)) (6)

o T. = O(log(1/¢)/e).

The average queue size bound (6) is known to be optimal,
in the sense that no algorithm can provide a sub-logarithmic
guarantee [13]. The next section shows that the convergence
time O(log(1/e)/€) is within a logarithmic factor of the
optimal convergence time.

III. A LOWER BOUND ON CONVERGENCE TIME
A. Intuition

One type of power allocation policy is an w-only policy that,
every slot ¢, observes w(t) and independently chooses p(t) €
{0,1} according to some stationary conditional probabilities
Prp(t) = 1|lw(t) = w] that are specified for all w € Q. The
resulting average power and transmission rate is:

Elpt)] = M, w(we)Prip(t) = lw(t) = w]
E [u(t)] Sl mwi)wr Prip(t) = 1w (t) = wy]
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It is known that the problem (3)-(5) is solvable over the class
of w-only policies [9]. Specifically, if the arrival rate A\ and
the channel probabilities 7(wy) were known in advance, one
could offline compute an w-only policy to satisfy:

Efpt)] = p* (7)
Ep®)] = A ®)

This is a 0-approximation for all ¢ > 0. However, such an
algorithm would typically incur infinite average queue size
(since the service rate equals the arrival rate). Further, it
is not possible to implement this algorithm without perfect
knowledge of A and 7(wy,) for all wy, € Q.

Suppose one temporarily allows for infinite average queue
size. Consider the following thought experiment (similar to
that considered for utility optimal flow allocation in [16]).
Consider an algorithm that does not know the system proba-
bilities and hence makes a single mistake at time 0, so that:

Elp(0)] =p" +c

where ¢ > 0 is some constant gap away from the optimal av-
erage power p*. However, suppose a genie gives the controller
perfect knowledge of the system probabilities at time 1, and
then for slots ¢ > 1 the network makes decisions to achieve
the ideal averages (7)-(8). The resulting time average expected
power over the first £ > 1 slots is:

= p e (t — 1)p " * c
pt)="——+——=p +;

Thus, to reach an e-approximation, this genie-aided algorithm
requires a convergence time ¢t = c/e = O(1/¢).

B. An example with Q)(1/¢€) convergence time

The above thought experiment does not prove an 2(1/¢)
bound on convergence time because it assumes the algorithm
makes decisions according to (7)-(8) for all slots ¢ > 1, which
may not be the optimal way to compensate for the mistake
on slot 0. This section defines a simple system for which
convergence time is at least {2(1/¢) under any algorithm.

Consider a system with deterministic arrivals of 1 packet
every slot (so A = 1). There are three possible channel states
w(t) € {1, 2,3}, with probabilities:

T3)=y,m(2)=zm(l)=1-y—=

For each slot ¢t > 0, define the system history H(t) =
{(a(0),w(0),p(0)),...,(a(t—1),w(t—1),p(t — 1)) }. Define
H(0) = 0. For each slot ¢, a general algorithm observes
the history #(t), the current w(t), and makes a (possibly
randomized) decision for p(t) € {0,1}. On a single slot, it is
not difficult to show that the minimum average power E [p(t)]
required to achieve a given average service rate 1 = E [u(¢)]
is characterized by the following function h(u):

/3 if0<pu<3y
h(u)E Qv+ (n—3y)/2 if 3y < p < 3y+2z
w—2y—=z if3y+22<pu<2y+2+1

There are two significant vertex points (u,h(n)) for this
function. The first is (3y,y), achieved by allocating power

if and only if w(t) = 3. The second is (3y + 2z,y + 2),
achieved by allocating power if and only if w(t) € {2, 3}. For
A € [0,2y + z + 1], it is known that h(A) is the minimum
average power required to support an arrival rate of A [9].

Define R as the set of points (u, p) that lie on or above the
curve h(p):

R={(,p) ER}0<pu<2y+2z+1,h(p) <p<1}
The set R is convex. Under any algorithm one has:
(E[u(n)],Elp(r)]) e R vr€{0,1,2,...}
For a given ¢ > 1, the following two vectors must be in R:

(E [u(0)], E[p(0)])

t—1

(10, P0)

(p1,p1)

That (1, p1) is in R follows because it is the average of points
in R, and R is convex. By definition of (z(¢),D(t)):

@0 5(0) = §(0,00) + (1) )

Fix e such that 0 < € < 1/64. An e-approximation to the
target point (1, (1)) requires 7z(t) and p(¢) to satisfy:

A(t) =1 -, B(t) < h(1)+e

Fix a particular algorithm and define 0,(0) = Pr[p(t) =
1lw(0) = 4] for ¢ € {1, 2, 3}. The controller has no information
about the probabilities y and z at time 0, and so the algorithm
must specify the 6;(0) values without knowledge of y and z.
Suppose a genie reveals y and z on slot 1, and the network
makes decisions on slots {1,...,¢t—1} that resultin a (u1,p1)
vector that optimally compensates for any mistake on slot 0.
Thus, (1,p1) is assumed to be the vector in R that ensures
(9) produces an e-approximation in the smallest time ¢.

The following proof considers the cases 62(0) < 1/2 and
62(0) > 1/2. In both cases, the nonlinear structure of the h(u)
curve prevents a fast recovery from the initial mistake.

o Case 1: Suppose 05(0) < 1/2. Consider y =0,z = 1/4.
Then 7(1) = 3/4,7(2) = 1/4, and w(t) = 2 is the most
efficient state. The h(u) curve is shown in Fig. 1. The
minimum average power to support A = 1 is h(l) =
3/4, and so the target point is X = (1,3/4). The point
(1o, po) = (E[u(0)], E [p(0)]) is:

_ (62(0) | 30:(0) 62(0)  36:(0)
(Mmpo)—( 5 1 4 + 1 )

The set of possible (uo,po) is formed by considering all
62(0) € [0,1/2], 61(0) € [0,1]. This set lies inside the
left (orange) shaded region of Fig. 1. To see this, note that
if 62(0) is fixed at a certain value, the resulting (1o, po)
point lies on a line segment of slope 1 that is formed
by sweeping 6, (0) through the interval [0, 1]. If 65(0) =
1/2, that line segment is between points (1/4,1/8) and
(1,7/8) in Fig. 1. If 65(0) < 1/2 then the line segment
is shifted to the left.

The small triangular (green) shaded region in Fig. 1,
with one vertex at point A, is the target region. The

(10)
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Fig. 1.  The performance region for case 1. The line segments between
(1/4,1/8) and C and between (1,7/8) and B intersect at point A.

vector ((t),p(t)) must lie in this region to be an e-
approximation. The point A is defined:

A=X+(—¢c,e)=(1—¢3/4+¢)

It suffices to search for an optimal compensation vector
(w1, p1) on the curve (p, h(w)). This is because the aver-
age power from a point (1, p1) above the curve (1, h(1))
can be reduced, without affecting 11, by choosing a point
on the curve. By geometry, (p1,p1) must be on the line
segment between points B and C' in Fig. 1, where:

€ €

B = X_<1—166’1—166>
11e 11e

¢ = X+<1—166’1—166>

Indeed, if (u1,p1) is on the curve (u,h(w)) but not in
between B and C, then a convex combination of (g, po)
and (u1,p1) cannot lie in the target region (as required
by (9)-(10)). Observe that:

I(m(t),p(t) — X|| < ev/2 (11)
[[(p1,01) = X[ < O(e) (12)
(10, p0) — (p1.p1)l] > V2/16 (13)

where (11) follows by considering the maximum distance
between X and any point in the (green) triangular region
that defines an e-approximation, (12) holds because any
vector on the line segment between B and C' is O(e)
distance away from X, and (13) holds because the
distance between any point on the line segment between
B and C and a point in the left (orange) shaded region
is at least v/2 /16 (being the distance between the two
parallel lines of slope 1). Starting from (11) one has:

V2 > ||(u(t),p(t) — X]|
= [[(1/)(1o, po) + (1 = 1/t) (11, p1) — X
= |[(1/)[(1o, po) — (p1,p1)] — [X — (1, p1)]l]
> (1/t)]|(o, po) — (1, p1)|| = [|X — (p1, p1)]|
> V2/(16t) — O(e)

where the first equality holds by (9), the second-to-
last inequality uses the triangle inequality ||W — Z|| >
[|W1|—]|Z|| for any vectors W, Z, and the final inequality
uses (12) and (13). So v/2/(16t) < O(e). It follows that
t > Q(1/e).

o Case 2: Suppose 62(0) > 1/2. However, suppose y =
z = 1/2. Again it can be shown that ¢ > Q(1/€) (see
[17]) for details).

IV. THE DYNAMIC ALGORITHM

This section shows that a simple drift-plus-penalty algorithm
achieves O(log(1/€)/e) convergence time and O(log(1/e))
average queue size.

A. Problem structure

Without loss of generality, assume 7(wy) > 0 for all k& €
{1,..., M} (else, remove wy, from the set {2). The value of
7(wp) is possibly zero. For each p € [0, E [w(¢)]], define h(u)
as the minimum average power required to achieve an average
transmission rate of p. It is known that p* = h(\). Further, it is
not difficult to show that h(u) is non-decreasing, convex, and
piecewise linear with h(0) = 0 and h(E [w(t)]) = 1 — m(wp).
The point (0, 0) is a vertex point of the piecewise linear curve
h(p). There are M other vertex points, achieved by the w-only
policies of the form:

p(t)Z{(l)

for k € {1,..., M}. This means that a vertex point is achieved
by only using channel states w(¢) that are on or above a
certain threshold wy. Lowering the threshold value by selecting
a smaller wy, allows for a larger E [u(t)] at the expense of
sometimes using less efficient channel states. The proof that
this class of policies achieves the vertex points follows by a
simple interchange argument that is omitted for brevity.

For ease of notation, define wys 1200 and fiprq120.
Let {u1, 2, -, piar, ar+1 ) be the set of transmission rates
at which there are vertex points. Specifically, for k €
{1,..., M}, uy corresponds to the threshold wy, in the policy
(14). That is:

if w(t) > wy

otherwise (14)

M

e 2B w(t)w(t) > w] = > wim(w;)
1=k

15)

Note that:
0=pin1 < pnr < prvg—1 <+ < pn = Efw(?)]

It follows that h(uy) is the corresponding average power for
vertex k, so that (ug,h(ux)) is a vertex point of the curve

h(p):

M
h(pk) = Priw(t) > wi] =Y m(wi) (16)

i=k

The numbers {p1, o, ..., fiar, fiar+1} represent a set of
measure 0 in the interval [0,E [w(¢)]]. It is assumed that the
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arrival rate A is a number in [0, E [w(t)]] that lies strictly be-
tween two points gp+1 and up, for some index b € {1,..., M }.
That is:

Hor1 < A< iy

Thus, the point (A, h(\)) can be achieved by timesharing
between the vertex points (1p11, h(1p11)) and (pp, h(1p)):

A= Oupyr + (1= 0w (17)
p*=h(\) = O0h(ppt1) + (1 —0)h(up) (18)

for some probability 6 that satisfies 0 < 6 < 1.

B. The drift-plus-penalty algorithm

For each slot t € {0,1,2,...}, define L(t) = $Q(t)?
and A(t) = L(t + 1) — L(¢). Let V be a nonnegative real
number. The drift-plus-penalty algorithm from [9][11] makes
a power allocation decision that, every slot ¢, minimizes a
bound on A(t)+Vp(t). The value V' can be chosen as desired
and affects a performance tradeoff. This technique is known
to yield average queue size of O(V) with deviation from
optimal average power no more than O(1/V) [9][11]. This
holds for general multi-queue networks. By defining e = 1/V,
this produces an O(e€) approximation with average queue size
O(1/e). Further, it can be shown that convergence time is
O(1/€?) (see Appendix D in [18] and/or [19]).

In the context of the simple one-queue system of the
current paper, the drift-plus-penalty algorithm reduces to the
following: Every slot ¢, observe Q(t) and w(¢) and choose
p(t) € {0,1} to minimize:

Vp(t) — Q(t)w(t)p(t)
That is, choose p(t) according to the following rule:

mw—{é if Q(Ow(t) > V

otherwise
The current paper shows that, for this special case of a system
with only one queue, the above algorithm leads to an improved
queue size and convergence time tradeoff.

19)

C. The induced Markov chain

The drift-plus-penalty algorithm induces a Markov structure
on the system. The system state is Q)(¢) and the state space is
the set of nonnegative real numbers. Observe from (19) that
the drift-plus-penalty algorithm has the following behavior:

e Q(t) € [V/wpt1,V/wp) = p(t) = 1 if and only if

w(t) > wpt1. In this case one has (from (15) and (16)):

E[p@®)|Q(t) € [V/wot1, V/ws)] tor1  (20)
Ep#)|Q) € [V/wps1, V/wy)] = h(ppr1) (21)

e Q(t) € [V/wy,V/wp—1) = p(t) = 1 if and only if
w(t) > wp. In this case one has:

Elu®)[Q(®) € [V/iwe, V/wp-1)] = m  (22)

Ep()|Q(t) € [V/wy, V/wp—1)] = h(u) (23)

where V/0 is defined as oo (in the case w,—1 = wp = 0), and

wp+1 = 00 so that V/wpr41 = 0.

Now define intervals Z(1), 7(2) 7G3) T7(4) (see Fig. 2):

AR [0, V/wp11)
I(z) é [V/wb+1, V/wb)
I(S) é [V/wb, V/wb_l)
W 2 [V/wp_1,0)

If V/wyy1 = 0 then T is defined as the empty set, and
if V/wy_1 = oo then ZY) is defined as the empty set. The
equalities (20)-(23) can be rewritten as:

E[uQW) eT®] = (24)
E[p®IQM) €Z?| = h(us) 25)
E[n®)lQ®) eI?] = w 26)
E[p()Q(t) € 7¥] = hiu) )

Recall that under the drift-plus-penalty algorithm (19), if
Q(t) € Z® then the set of all w(t) that lead to a transmission
is equal to {w € Qlw > wpy1}. If Q(t) € Z(), then the set of
all w(t) that lead to a transmission depends on the particular
value of Q(t). However, since interval Z(!) is to the left of
interval Z(?), the set of all w(t) that lead to a transmission
when Q(t) € T is always a subset of {w € Qlw > wyi1}.
Similarly, since Z(¥) is to the right of Z(), the set of all w(t)
that lead to a transmission when Q(t) € Z(* is a superset of
the set of all w(¢) that lead to a transmission when Q(t) € Z(3),
Therefore, under the drift-plus-penalty algorithm one has:

E[u®Q®) eTV] < p (28)
[p(t>|@<t>ez<“ < h(e) (29)
[u<t>|c2<t>ez<4> > (30)
[p(t)lQ(t) > () G1)

For each i € {1,2, 3,4} define the indicator function:

Im}_{ (1) if Q(t) € 7

otherwise
For each slot ¢ > 0 and each i € {1,2, 3,4}, define T(i)(t) as
the expected fraction of time that Q(t) € Z(V:

HQ(t) €

‘ t—1
7 (t)é% > E [1{Qu) e 1)
7=0
It follows that (using (25), (27), (29)):

pt) < TOOh(sr1) + 17 (0)h(us)
) )

ATV () + T (2) (32)

where the final term follows because p(¢) < 1 for all slots ¢.
Similarly (using (24), (26), (28)):

i) < 1% Omsr + 17O

TV +TYOE )] 33)
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Fig. 2. An illustration of the four intervals Z; for ¢ € {1,2,3,4}.

where the final term follows because E [1(t)|Q(t) € W] <
E [w(t)]. Likewise (using (24), (26), (30)):

at) > 1°

which holds because E [n(t)|Q(t) € ZM] > 0.
In the next section it is shown that:

"o + TV O + TV Oy (34)

o 7(t) is close to A when ¢ is sufficiently large.
. T (t) and 7 (t) are close to 6 and 1 — 0, respectively,
when t and V are sufficiently large.

V. ANALYSIS

A. The distance between Ti(t) and A

Recall that w), is the largest possible value of w(t). Assume
that V > w?,.

Lemma I1: If V' > w?3,, then under the drift-plus-penalty
algorithm:

a) One has p(t) = u(t) = 0 whenever Q(t) < wy.

b) The queueing equation (1) can be replaced by the
following for all slots ¢ € {0,1,2,...}:

Qt+1) = Q) +a(t) — p(t)
Proof: Suppose V' > w?2,. To prove (a), suppose that
Q(t) < war. Since w(t) < wys for all ¢, one has:

Qt)w(t) < QW)wm <wi <V

and so the algorithm (19) chooses p(t) = 0, so that u(t) is
also 0. This proves part (a). Part (a) implies that Q(t) > u(t)
for all slots ¢, which immediately implies part (b). O

Lemma 2: If V > w2, and Q(0) = go with probability 1
(for some constant gy > 0), then for every slot ¢ > 0:

at) =A-E[Q(t) — q] /t
Proof: By Lemma 1 one has for all slots 7 € {0,1,2,...}:

Q(r+1) - Q(7) = a(r) — u(r)
Taking expectations gives:
E[Q(T+1)] —E[Q(7)] = A — E [u(7)]
Summing the above over 7 € {0,1,2,...,t — 1} gives:

E[QW)] ~E[QO)] = M — S E[u(r)

Dividing by ¢ proves the result. O

B. The distance between T(g)(t) and 0

The following lemma shows that if T(l)(t), T (t), and
E [Q(t) — qo] /t are close to 0, then Tt (t) is close to 6.
Lemma 3: If V > w3, and Q(0) = go with probability 1
(for some constant gy > 0), then for all slots £ > 0:
™ () ~ v(1)]
Mo — Ho+1

0 — 1)

IN

T E [w(t)] + ¥ (1)
Mo — Hb+1

0 +

where 9 (t)2E [Q(t) — qo] /1.
Proof: Fix t > 0. Lemma 2 implies:

A= () + (1)
> T2y + T O + T (O + 0(8)
= 1Y@ + (1 =TV — TV (s + (1)

where the first inequality holds by (34). Substituting the
identity for A given in (17) into the above inequality gives:

Oppr1 + (1 —0) s
> TP Wy + (1 =17 (1)

Rearranging terms proves that:

Ty + 6 (t)

(1)
177(t) — (¢t -
0 — [,ub ( ) ¢( )] < 1(2)(t)
Ho — Ho+1
The second inequality is proven similarly (see [17]). O

C. Positive and negative drift

Define E[Q(t+ 1) — Q(¢)|Q(t)] as the conditional drift.
Assume that V' > w?/, so that Lemma 1 implies Q(t + 1) —
Q(t) = a(t) — wu(t) for all slots t. Thus:

ElQi+1)-Q®[Q®)] = Elat)— p®)|Q(t)]
— A—ER@)Q)]

where the final equality follows because a(t) is independent
of Q(t). From (24) and (28) one has for all slots ¢:

E[p@®)|Q®)] < o1 if Q) < V/wy
Likewise, from (26) and (30) one has:

Ep®IQ®)] = o if Q(t) = V/wy

Define positive constants Sy and [Sr (associated with drift
when Q(t) is to the Left and Right of the threshold V/wy) by:

BLEXN — tos1 »  BrEwp — A

It follows that:

E[Q(t+1) —QM)IQM)] = B if Q(t) <V/wy (35)
ElQt+1)—MIQ®)] < —Br if Qt) 2 V/wy (36)

In particular, the system has positive drift if Q(t) < V/wy, and
negative drift otherwise (see Fig. 2). Remarkably, the threshold
drift structure naturally achieved by the drift-plus-penalty algo-
rithm (which does not have knowledge of system probabilities)
is qualitatively similar to the structure intentionally designed
in [12] using full probability information.



PROC. IEEE INFOCOM, 2015

D. A basic drift lemma

Consider a real-valued random process Z(t) over slots ¢ €
{0,1,2,...}. The following drift lemma is similar in spirit to
results in [20][15], but focuses on a finite time horizon with
an arbitrary initial condition Z(0) = zo (rather than on steady
state), and on expectations at a given time (rather than time
averages). The lemma will be applied using Z(t) = Q(t) for
bounds on Q(t) and T (t). The lemma will be applied using
Z(t) = V/w, — Q(t) to bound T(l)(t). Assume there is a
constant 6,4, > 0 such that with probability 1:

1Z(t+1) — Z(t)] < Omas VE€ {0,1,2,...}  (37)

Suppose there are constants # € R and 3 > 0 such that:

Omax  If Z(t) <0
— <
B2+ 1) - z0lz0] < { e 2050
Note that if (37) holds then (38) automatically holds for the
special case Z(t) < 6. Thus, the negative drift case Z(t) > 0
is the important case for condition (38). Further, if (37)-(38)
both hold, then the constant 5 necessarily satisfies:

(38)

Lemma 4: Suppose Z(t) is a random process that satisfies
(37)-(38) for given constants 6, 0,,4,, S (with 8 € R and
0 < B < maz)- Suppose Z(0) = zy (with probability 1) for
some zy € R. Then for every slot ¢ > 0 the following holds:

E [eTZ(ﬂ <D+ (e — D)pt (39)
where constants r, p, D are defined:
A B
L —=— 40
" 02,00+ Omacl/3 @0
p A 1- rB3/2 41)
D a (67“67,“11 _ p)er9 (42)
= 1, ;

Note that the property 0 < 3 < §;,4, can be used to show
that 0 < p < 1.

Proof: (Lemma 4) The proof is by induction. The inequality
(39) trivially holds for ¢ = 0. Suppose (39) holds at some slot
t > 0. The goal is to show that it also holds on slot ¢ + 1.
Let r be a positive number that satisfies 0 < 704, < 3. It
is known from results in [20] that for any real number z that
satisfies |z| < dpaz:

(smax 2
"< 14ra+ (rdmaz) (43)

(1 = r0maz/3)

Define §(t) = Z(t + 1) — Z(t) and note that |0(¢)| < dmax
for all ¢. Then:

erZ(t+1) — erZ(t)ertS(t)

Smaz)?
< erZ®) |4 S(t (rdmaa
= € Tt ST = 6aa/3)

where the final inequality holds by (43). Choose r such that:

(Tamaw)2 < Tﬁ
2(1 = 16mae/3) = 2

](44)

(45)

It is not difficult to show that the value of r given in (40)
simultaneously satisfies (45) and 0 < 79,4, < 3. For this
value of r, substituting (45) into (44) gives:

e AU < o2 1 4§ (t) + 1 B/2) (46)

Now consider the following two cases:

o Case 1: Suppose Z(t) > 6. Taking conditional expecta-
tions of (46) gives:

E [em””lz(t)} < E [erz(”[l +ro(t) +rB/2]12(t)
< O —rB+rB/2 @7
_ erZ(t)p

where (47) follows by (38), and the final equality holds
by definition of p in (41).
o Case 2: Suppose Z(t) < 6. Then:
E [erZ(t-ﬁ—l)‘Z(t)} - E {erZ(t)eré(t)lz(t)

< erZ(t)erd,,“”,

Putting these two cases together gives:

E |:erZ(t+1):|

< pE[e?®|z(1) > o} Pr(Z(t) > 6]
tertner [ 20| Z(t) < 6] PrZ(t) < 0
— 4E -erZ(t):|

(e — p)E [eT‘Z“)\Z(t) < 9} Pr(Z(t) < 6]

< pE _erZ(t):| + (erémam _ p)er9

where the final inequality uses the fact that e™0mas > 1 > p.
By the induction assumption it is known that (39) holds on
slot ¢. Substituting (39) into the right-hand-side of the above
inequality gives:

E [eT»Z(t-i-l)] < p[D+(e" — D)yl
+(€T§m‘”’ _ p)ere
= D + (e']'zo - D) pt+1

where the final equality holds by the definition of D in (42).
This completes the induction step. O

Let 1{Z(7) > 6 + ¢} be an indicator function that is 1 if

Z(1) > 60+ ¢, and 0 else.

Corollary 1: 1f the assumptions of Lemma 4 hold, then for

any ¢ > 0 and any slots T" and ¢ that satisfy 0 < T < ¢:

t—1
S ENZ() 20+ 0}
=0

T0max _ —rc T(Zo—c—e) T

e e T e

S i g i (48)
1—p t t(1—p)

where r and p are defined in (40)-(41). Further, if zg < 6 then
for any ¢ > 0:

e*’f’C(eTismaz _ P+ 1/t)

(1-p)

L E0{Z() 20+ e} < )
7=0
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Proof: Inequality (49) follows from (48) by using T" = 0.
See [17] for a proof of (48). O

The intuition behind the right-hand-side of (48) is that the
first term represents a “steady state” bound as t — oo, which
decays like e~"¢. The last two terms (in brackets) are due to
the transient effect of the initial condition zy. This transient
can be significant when zy > 6. In that case, er(z0—c=0) might
be large, and a time 7' is required to shrink this term by
multiplication with the factor p’.

E. Bounding E [Q(t)] and T (t)
Let Q(t) be the backlog process under the drift-plus-

penalty algorithm. Assume that V' > w32, and the ini-
tial condition is Q(0) = g¢o for some constant go. Define

Smaz= max[ws, Amaz] as the largest possible change in Q(t)
over one slot, so that:

Qt+1) — Q)| < dmar VE€{0,1,2,...}
From (36) it holds that:
Omaz  if Q(t) < V/wp

E[Q(t+1) - Q(1)|Q(t)] < { —Br  if Q(t) > V/ws

It follows that the process Q(t) satisfies the conditions (37)-
(38) required for Lemma 4. Specifically, define Z(t) = Q(t),
20 = qo, 0 = V/wy, B = Br.

Lemma 5: If 0 < g9 < V/w, and V' > w3, then for all
slots ¢ > 0 one has:

V 1 TROmaz __
BlQw) < 2+ o (1+ T E8) o)
Wy, TR 1—pr
where constants rr and pr are defined:
A BR
= 50
pr = 1—1rBR/2 (51)

Proof: For ease of notation, let “r” and “p” respectively
denote “rgr” and “pgr” given in (50) and (51). Define § =
V/wy and § = Br. By (39) one has for all ¢ > 0 (using
Z(0) = Q(0) = qo):

E [erQ(t)] <

< D + eTV/wb

D+ (e"® — D)p

where D is given in (42), and where the final inequality uses
Dp' >0 and gy < V/wy. Using Jensen’s inequality gives:

SERQW] < 4 Vi

Taking a log of both sides and dividing by r leads to the result.

]

Lemma 6: If 0 < gy < V/w, and V > w?,, then for all
slots £ > 0O:

T(4) (t) S O(G*TRV(ﬁ*%b))

where rp is given by (50).

Proof: For ease of notation, this proof uses “r” to denote
“rp.” If the interval Z(*) does not exist then T (t) =0 and
the result is trivial. Now suppose interval Z(*) exists (so that

the interval Z®) is not the final interval in Fig. 2). Define
0= V/wb, Cc = V(l/wb_l — l/wb), 5 = ﬂR, P = 1-— TﬁR/Q.
Then 1{Q(7) > 0 + ¢} = 1 if and only if Q(7) > V/wp_1,
which holds if and only if Q(7) € Z,. Thus, for all slots ¢ > 0:

t—1
00 = Y EQ(M) 20+l
7=0

e (e — p 4 1/t)
I—p

VG *%b)(erémw 41/t
L—p

where (52) holds by (49) (which applies since zg = qp < 6).

The right-hand-side of the above inequality is indeed of the
form O(e_rv(“’bfl _“’7)). O

IN

(52)

F. Bounding i (t)

One can similarly prove a bound on T (t). The intuition is
that the positive drift in region Z(?) of Fig. 2, together with the
fact that the size of interval Z(?) is ©(V'), makes the fraction
of time the queue is to the left of V/wj, decay exponentially
as we move further left. The result is given below. Recall that
Q(0) = qo for some constant gy > 0.

Lemma 7: If go > 0 and V > w?,, then for all slots ¢ > 0
one has:

TV < o)/t + 0@ ™Y G Ty

where 7, is defined:

AL

.. 672na.L + 5maxﬂL/3 .
Intuitively, the first term in the above lemma (that is, the

O(V')/t term) bounds the contribution from the transient time
starting from the initial state Q(0) = ¢o and ending when
the threshold V/wy, is crossed. The second term represents a
“steady state” probability assuming an initial condition V/wy,.
The proof defines a new process Z(t) = V/w, — Q(t). It then
applies inequality (48) of Corollary 1, with a suitably large
time 7" > 0, to handle the initial condition zo = V/wp, — qo.
Proof: (Lemma 7) Omitted for brevity (see [17]). O

TLé

G. Optimal backlog and near-optimal convergence time
Define:

minrn (-5 ) (5 )
Y= min |TR —— |,rL{ — —
Wp—1 Wp Wh Wh+1

Results of Lemmas 5-7 imply that if the drift-plus-penalty
algorithm (19) is used with V' > wJQM, and if the initial queue
state satisfies 0 < go < V/wy, then for all ¢ > 0:

Q) < o) (53)
E[Q®)]/t < OWV)/t (54)
) < o) (55)
1) < oY) +0(W)/t (56)

Indeed, (53)-(54) follow from Lemma 5, while (55) and (56)
follow from Lemmas 6 and 7, respectively.
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Fix € > 0 and define:
V. = max|(1/7)log(1/e),wi]
T. = log(l/e)/e

Then V = O(log(1/¢€)) and e~V = O(e¢). Inequalities (53)-
(56) immediately imply the following facts:

o Fact 1: For all slots ¢ > 0 one has Q(t) < O(log(1/e)).
o Fact 2: For all slots ¢ > T, one has E [Q

o Fact 3: For all slots ¢ > 0 one has T(4)(
)

For example, Fact 2 follows from (54) since:
ElQ®)]/t <O(V)/t <O(V)/Te = O(e)
Fact 2 and Lemma 2 ensure that for t > T:
i(t) = A — O(e)
Facts 2, 3, 4 and Lemma 3 ensure that for ¢ > T:

T2 -0l <0 , 17 -1-0)<0()

(57)

Substituting the above into (32) proves that for ¢ > T.:

pt) < Oh(ppr1) + (1= 0)h(m) + O(e)
p* +O(e)

where the final equality holds by (18). The guarantees (57) and
(58) show that the drift-plus-penalty algorithm gives an O(€)-
approximation with convergence time 7, = O(log(1/€)/e).
This is within a factor log(1/€) of the convergence time lower
bound given in Section III. Hence, the algorithm has near-
optimal convergence time.

Further, it is known that if the rate-power curve h(u)
has at least two piecewise linear segments and if the point
(A, h(X)) does not lie on the segment closest to the origin,
then any algorithm that yields an O(e)-approximation must
have average queue size that satisfies Q(t) > Q(log(1/€))
[13]. Fact 1 shows the drift-plus-penalty algorithm meets this
bound with equality. Hence, it provides an optimal average
queue size tradeoff, and near optimal convergence time.

(58)

VI. CONCLUSIONS

This paper considers convergence time for minimizing av-
erage power in a wireless transmission link with time varying
channels and random traffic. Prior algorithms produce an e-
approximation with convergence time O(1/e?). This paper
shows, for a simple example, that no algorithm can get
convergence time better than O(1/e). It then shows that
this ideal convergence time tradeoff can be approached to
within a logarithmic factor. Furthermore, the resulting average
queue size is at most O(log(1/e)), which is known to be
an optimal tradeoff. This establishes fundamental convergence
time, queue size, and power characteristics of wireless links.
It shows that learning times in an unknown environment can
be pushed much faster than expected.
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