
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 1

Dynamic Index Coding for Wireless Broadcast
Networks

Michael J. Neely , Arash Saber Tehrani , Zhen Zhang

Abstract— We consider a wireless broadcast station that trans-
mits packets to multiple users. The packet requests for each
user may overlap, and some users may already have certain
packets. This presents a problem of broadcasting in the presence
of side information, and is a generalization of the well known
(and unsolved) index coding problem of information theory. We
represent the problem by a bipartite demand graph. Uncoded
transmission is optimal if and only if this graph is acyclic.
Next, we define a code-constrained capacity region that restricts
attention to any pre-specified set of coding actions. A dynamic
max-weight algorithm that acts over variable length frames is
developed. The algorithm allows for random packet arrivals and
supports any traffic inside the code-constrained capacity region.
A simple set of codes that exploit cycles in the demand graph
are shown to be optimal for a class of broadcast relay problems.

Index Terms— network coding, optimization, queueing analysis

I. INTRODUCTION

Consider a wireless broadcast station that transmits packets
to N wireless users. Packets randomly arrive to the broadcast
station. Each packet p is desired by one or more users
in the set {1, . . . , N}. Further, there may be one or more
users that already have the packet stored in their cache. The
broadcast station must efficiently transmit all packets to their
desired users. We assume time is slotted with unit slots t ∈
{0, 1, 2, . . .}, and that a single packet can be transmitted by the
broadcast station on every slot. This packet is received error-
free at all users. We assume that only the broadcast station
can transmit, so that users cannot transmit to each other.

If the broadcast station has P packets at time 0, and no
more packets arrive, then the mission can easily be completed
in P slots by transmitting the packets one at a time. However,
this approach ignores the side-information available at each
user. Indeed, it is often possible to complete the mission in
fewer than P slots if packets are allowed to be mixed before
transmission. A simple and well known example for 2 users is
the following: Suppose user 1 has packet B but wants packet
A, while user 2 has packet A but wants packet B. Sending each
packet individually would take 2 slots, but these demands can
be met in just one slot by transmitting the mixed packet A+B,
the bit-wise XOR of A and B. Such examples are introduced
in [2][3][4] in the context of wireless network coding.

The general problem, where each packet is contained as
side information in an arbitrary subset of the N users, is much

The authors are with the Electrical Engineering department at the University
of Southern California, Los Angeles, CA.

This paper was presented in part at the IEEE INFOCOM conference,
Orlando, Florida, March 2012 [1]. This material is supported in part by one
or more of the following: the NSF Career grant CCF-0747525, NSF grant
0964479, the Network Science Collaborative Technology Alliance sponsored
by the U.S. Army Research Laboratory W911NF-09-2-0053.

more complex. This problem is introduced by Birk and Kol
in [5][6], and is known as the index coding problem. Methods
for completing a general index coding mission in minimum
time are unknown. However, the recent work [7] shows that
if one restricts to a class of linear codes, then the minimum
time is equal to the rank of the minimum rank matrix that
solves a certain matrix completion problem. Unfortunately,
the matrix completion problem is NP-hard in general. NP-
hardness results for index coding over binary fields are shown
in [8]. Work in [9] shows that linear index coding is equivalent
to certain difficult problems in matroid theory as well as to
linear network coding for multi-hop networks. However, such
network coding problems are known to be difficult even to
approximate [10].

Overall, optimal (linear or non-linear) index coding seems
to be intractable. Nevertheless, it is important to develop
systematic approaches to these problems. That is because
current wireless cellular systems cannot handle the huge
traffic demands that are expected in the near future. This is
largely due to the consistent growth of wireless video traffic.
Fortunately, much of the traffic is for popular content. That is,
users often download the same information. Thus, it is quite
likely that a system of N users will have many instances of
side information, where some users already have packets that
others want. This naturally creates an index coding situation.
Thus, index coding is both rich in its mathematical complexity
and useful for supporting future wireless traffic.

The problem considered in this paper is even more complex
because packets can arrive randomly over time. This is a
practical scenario and creates the need for a dynamic approach
to index coding. We assume there are M traffic types, where
a type is defined by the subset of users that desire the packets
and the subset that already has the packets. Let λm be the
arrival rate, in packets/slot, for type m traffic. We approach
this problem by restricting coding actions to an abstract set A.
We then show how to achieve the code constrained capacity
region ΛA, being the set of all rate vectors (λ1, . . . , λM) that
can be supported using coding actions in the set A. The set ΛA
is typically a strict subset of the capacity region Λ, which does
not restrict the type of coding action. Our work can be applied
to any set A. Hence, it can be used with any desired codes,
including scalar linear [7], vector linear [11], nonlinear [12],
and heuristics based on set clusterings and graph colorings
(see, for example, [13][8]). However, we focus attention on a
simple class of codes that only use bit-wise XOR operations
and that exploit cycles in a demand graph. In special cases of
broadcast relay problems, we show these codes can achieve
the full capacity region Λ. We also consider a class of Reed-
Solomon erasure codes [14] for extended problems.

Prior work in [15] develops an achievable rate region for

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 2

index coding under a restricted class of linear pollution-free
coding schemes. The solution is a linear program with known
traffic rates, and does not consider a dynamic setting where
data arrives randomly with unknown rates. Our framework
can be applied to dynamic versions of the problem in [15]
by defining the set A to be those coding actions that satisfy
the pollution-free requirement. However, one can achieve a
larger region simply by adding more coding actions to A. For
example, the simple 3-cycle XOR coding action, described in
Section II-B, does not meet the pollution-free requirement but
is important for achieving capacity in a large class of broadcast
relay networks.

The capacity region Λ is directly related to the conceptually
simpler static problem of clearing a fixed batch of packets
in minimum time. Further, index coding concepts are most
easily developed in terms of the static problem. Thus, this
paper is divided into two parts: We first introduce the index
coding problem in the static case, and we describe example
coding actions in that case. Section III extends to the dynamic
case and develops two max-weight index coding techniques,
one that requires knowledge of the arrival rates (λ1, . . . , λM),
and one that does not. The max-weight algorithms developed
in this paper are new and contribute to the general theory
of dynamic scheduling. They can be used in other types of
networks where controllers make sequences of actions, each
action taking a different number of slots and delivering a
different vector of packets.

While the static index coding problem has been studied
before [7][6][5], our work provides new insight even in the
static case. We introduce a new directed bipartite demand
graph that allows for arbitrary demand subsets and possibly
“multiple multicast” situations, where some packets are de-
sired by more than one user. We also form a useful weighted
compressed graph that facilitates the solution to the minimum
clearance time problem in certain cases. This extends the graph
models in [7], which do not consider the possibility of multiple
multicast sessions. Work in [7] develops a maximum acyclic
subgraph bound on clearance time for problems without mul-
tiple multicast sessions. We extend this bound to our general
problem using a different and independent proof technique.
Further, we consider a class of broadcast relay problems for
which the bound can be achieved with equality.

The next section introduces index coding in the static case,
shows its relation to a bipartite demand graph, and presents
the acyclic subgraph bound. Section III introduces the general
dynamic formulation and develops our max-weight algorithms.
Section IV considers an important class of broadcast relay
networks for which a simple set of codes are optimal.

II. THE STATIC MINIMUM CLEARANCE TIME PROBLEM

This section introduces the index coding problem in the
static case, where we want to clear a fixed batch of packets in
minimum time. Consider a wireless system with N users, P
packets, and a single broadcast station. We assume N and P
are positive integers. Let N and P represent the set of users
and packets, respectively:

N = {1, . . . , N} , P = {1, . . . , P}

1

2

3

1

2

3

4

5User set N

Packet set P

1

Fig. 1. An example directed bipartite demand graph with 3 users and 5
packets.

The broadcast station has all packets in the set P . Each user
n ∈ N has an arbitrary subset of packets Hn ⊆ P , and wants
to receive an arbitrary subset of packets Rn ⊆ P . Assume
Hn ∩ Rn = φ, where φ represents the empty set. Assume
that all packets consist of B bits, all packets are independent
of each other, and the B-bit binary string for each packet is
uniformly distributed over each of the 2B possibilities.

We can represent this system by a directed bipartite demand
graph G defined as follows (see Fig. 1):
• User nodes N are on the left.
• Packet nodes P are on the right.
• A directed link (n, p) from a user node n ∈ N to a packet

node p ∈ P exists if and only if user n has packet p. That
is, if and only if p ∈ Hn.

• A directed link (p, n) from a packet node p ∈ P to a
user node n ∈ N exists if and only if user n wants to
receive packet p. That is, if and only if p ∈ Rn.

As an example for the 3-user, 5-packet graph of Fig. 1, the
have and receive sets for nodes 1 and 2 are:

H1 = {5} , R1 = {1, 2}
H2 = φ , R2 = {1, 2, 4}

We restrict attention to packets that at least one node wants.
Thus, without loss of generality, throughout we assume the
graph G is such that all packet nodes p ∈ P contain at least
one outgoing link. Thus:

P = {1, . . . , P} = ∪Nn=1Rn (1)

In this static problem, the broadcast station has all packets
in the set P at time 0, and no more packets ever arrive. Every
slot t ∈ {0, 1, 2, . . .} the broadcast station can transmit one
B-bit message over the broadcast channel. This message is
received without error at all of the user nodes in the set N .
The goal is for the broadcast station to send messages until
all nodes receive the packets they desire.

Define a mission-completing coding action with T slots to
be a sequence of messages that the broadcast station transmits
over the course of T slots, such that all users are able to
decode their desired packets at the end of the T slots. We
restrict attention to deterministic zero-error codes that enable
correct decoding with probability 1. The initial information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 3

held by each user n ∈ N is given by the set of packets
Hn (possibly empty). Let MM

={M1, . . . ,MT } represent the
messages transmitted by the broadcast station over the course
of the T slot coding action. At the end of this action, each
node n ∈ N has information {Hn,M}. Because the coding
action is assumed to complete the mission, this information
is enough for each node n to decode its desired packets Rn.
That is, we can write:

{Hn,M} ⇐⇒ {Hn,M,Rn} (2)

where the above represents equivalence in the information
set, meaning that the information on the left-hand-side can
be perfectly reconstructed from the information on the right-
hand-side, and vice versa. Clearly the information on the left
in (2) is a subset of the information on the right, and hence
can trivially be reconstructed. The information on the right in
(2) can be reconstructed from that on the left because the code
is mission-completing.

For a given graph G with P packet nodes, define Tmin(G) as
the minimum clearance time of the graph, being the minimum
number of slots required to complete the mission, considering
all possible coding techniques (including nonlinear codes).
Clearly Tmin(G) ≤ P . Our goal is to understand Tmin(G).

For a directed graph, we say that a simple directed cycle of
length L is a sequence of nodes {x1, x2, . . . , xL, x1} such that
(xi, xi+1) is a link in the graph for all i ∈ {1, . . . , L − 1},
(xL, x1) is a link in the graph, and all nodes {x1, . . . , xL}
involved in the cycle are distinct. For simplicity, throughout
this paper we use the term cycle to represent a simple directed
cycle. We say that the graph G is acyclic if it contains no
cycles. Note that directed acyclic graphs have a much different
structure than undirected acyclic graphs. Indeed, the graph
in Fig. 1 is acyclic even though its undirected counterpart
(formed by replacing all directed links with undirected links)
has cycles.

Our first result is to prove that if the directed bipartite
demand graph G is acyclic, then coding cannot reduce the
minimum clearance time. A related result was proven in [7]
using a different graph structure for the special case without
“multiple multicasts,” so that each packet is desired by at most
one user. That result uses an argument based on machinery of
the mutual information function. It also treats a more general
case where codes can have errors. Further, it is developed as a
consequence of a more general and more complex result. Our
work restricts to zero-error codes, but allows the possibility
of multiple-multicast sessions. We also use a different proof
technique, developed independently, which emphasizes the
logical consequences of users being able to decode their
information. Our proof uses only the following two facts:

Fact 1: Every directed acyclic graph with a finite number
of nodes has at least one node with no outgoing links. Such
a node is called a “leaf” node.

Fact 2: If the graph contains only one user node, then
Tmin(G) = P , where P is the number of packets that this
user desires.

Fact 1 follows simply by starting at any node in the graph
and traversing a path from node to node, using any outgoing
link, until we find a leaf node (such a path cannot continue

forever because the graph is finite and has no cycles). Fact 2
is a basic information theory observation about the capacity
of a single error-free link.

Theorem 1: If the graph G is acyclic, then Tmin(G) = P ,
where P is the total number of packets in the graph.

Proof: See Appendix A.
As an example, because the graph G in Fig. 1 is acyclic,

we have Tmin(G) = 5. Theorem 1 shows that coding cannot
help if G is acyclic, so that the best one can do is just transmit
all packets one at a time. Therefore, any type of coding must
exploit cycles on the demand graph.

A. Lower bounds from acyclic subgraphs

Theorem 1 provides a simple lower bound on Tmin(G) for
any graph G. Consider a graph G, and form a subgraph G′ by
performing one or more of the following pruning operations:
• Remove a packet node, and all of its incoming and

outgoing links.
• Remove a user node, and all of its incoming and outgoing

links.
• Remove a packet-to-user link (p, n).

After performing these operations, we must also delete any
residual packets that have no outgoing links. Any sequence of
messages that completes the mission for the original graph G
will also complete the mission for the subgraph G′. This leads
to the following simple lemma.

Lemma 1: For any subgraph G′ formed from a graph G by
one or more of the above pruning operations, we have:

Tmin(G′) ≤ Tmin(G)
Combining this lemma with Theorem 1, we see that we

can take a general graph G with cycles, and then perform the
above pruning operations to reduce to an acyclic subgraph G′.
Then Tmin(G) is lower bounded by the number of packets in
this subgraph. Thus, the best lower bound corresponds to the
acyclic subgraph generated from the above operations, and
that has the largest number of remaining packets. Note that
the above pruning operations do not include the removal of a
user-to-packet link (n, p) (without removing either the entire
user or the entire packet), because such links represent side
information that can be helpful to the mission.

B. Cyclic code actions

Because the general index coding problem is difficult, it is
useful to restrict the solution space to consider only sequences
of simple types of coding actions. Recall that coding actions
must exploit cycles. One natural action is the following:
Suppose there is a cycle in G that involves a subset of K
users. For simplicity label the users {1, . . . ,K}. In the cycle,
user 2 wants to receive a packet X1 that user 1 has, user
3 wants to receive a packet X2 that user 2 has, and so on.
Finally, user 1 wants to receive a packet XK that user K has.
The structure can be represented by:

1→ 2→ 3→ . . .→ K → 1 (3)

where an arrow from one user to another means the left user
has a packet the right user wants. Of course, the users in this

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 4

cycle may want many other packets, but we are restricting
attention only to the packets X1, . . . , XK . Assume these
packets are all distinct.

In such a case, we can satisfy all K users in the cycle with
the following K−1 transmissions: For each k ∈ {1, . . . ,K−
1}, the broadcast station transmits a message Mk

M
=Xk+Xk+1,

where addition represents the mod-2 summation of the bits in
the packets. Each user k ∈ {2, . . . ,K} receives its desired
information by adding Mk−1 to its side information:

Xk +Mk−1 = Xk + (Xk−1 +Xk) = Xk−1

Finally, user 1 performs the following computation (using the
fact that it already has packet X1):

X1 +M1 +M2 + . . .+MK−1

= X1 + (X1 +X2) + (X2 +X3) + . . .+ (XK−1 +XK)

= (X1 +X1) + (X2 +X2) + . . .+ (XK−1 +XK−1)

+XK

= XK

Thus, such an operation can deliver K packets in only K−1
transmissions. We call such an action a K-cycle coding action.
We define a 1-cycle coding action to be a direct transmission.
Note that 2-cycle coding actions are the most “efficient,”
having a packet/transmission efficiency ratio of 2/1, compared
to K/(K − 1) for K ≥ 2, which approaches 1 (the efficiency
of a direct transmission) as K → ∞. While it is generally
sub-optimal to restrict to such cyclic coding actions, doing
so can still provide significant gains in comparison to direct
transmission. Further, we show in Section IV that such actions
are optimal for certain classes of broadcast relay problems.

C. Edge-disjoint cycles

Consider any bipartite demand graph G with N users and
P packets. Define a multicast packet as a packet node p ∈ P
that has more than one outgoing edge (so that this packet
must be delivered to more than one user). Define a unicast
packet as a packet node p ∈ P that has only one outgoing
edge. Consider any collection of distinct edge-disjoint cycles
in G that involve only unicast packets. Define the size of the
collection as the number of cycles in the collection. Note that
no two cycles in this collection can share a packet node. That
is because any unicast packet has exactly one outgoing edge,
so two cycles that share the packet must also share that edge
(and hence cannot be edge-disjoint). Define C(G) as the size of
the largest collection of edge-disjoint cycles in G that involve
only unicast packets.

Lemma 2: Cyclic coding actions can be used to achieve a
clearance time of P − C(G), and hence:

Tmin(G) ≤ P − C(G)
Proof: Identify a collection of C(G) edge-disjoint cycles

that do not involve any multicast packets. Define pc as the
number of packets in the cth cycle of this collection. For each
cycle c, use a pc-cycle coding action to deliver all pc packets
of this cycle using pc−1 slots. This takes

∑C(G)
c=1 [pc−1] slots.

Since none of these packets is a multicast packet, none have to

be delivered to any additional users. There are P −∑C(G)
c=1 pc

remaining packets, and these can be delivered sequentially us-
ing direct (uncoded) transmission. This completes the mission
in the following time:(∑C(G)

c=1 [pc − 1]
)

+
(
P −∑C(G)

c=1 pc

)
= P − C(G)

Lemma 3: If all distinct cycles of G are edge-disjoint and
involve only unicast packets, then:

Tmin(G) = P − C(G)

Proof: Lemma 2 shows that Tmin(G) ≤ P − C(G). It
remains to show the reverse inequality. If C(G) = 0 then G
is acyclic and Tmin(G) = P by Theorem 1. Otherwise, prune
G to form an acyclic graph as follows: There are C(G) > 0
cycles. For each cycle, choose a single packet that participates
in the cycle. All C(G) of these chosen packets are distinct.
Delete all of these packets (and their corresponding incoming
and outgoing links) to form a pruned graph G′. This pruned
graph is acyclic and has exactly P − C(G) packets, and so
Tmin(G′) = P −C(G) by Theorem 1. However, these pruning
operations ensure Tmin(G′) ≤ Tmin(G) by Lemma 1.

Appendix E presents additional clearance time results in
terms of a weighted compressed graph WC(G) that involves
only user nodes.

D. A simple coding gain analysis

Here we present a coding gain analysis for a randomly
formed graph G. Consider a system where each user desires a
single unicast packet, and independently has each other packet
in its cache with probability θ. Let {1, . . . , N} represent the
set of users and let {p1, . . . , pN} represent the set of packets.
Assume each user n ∈ {1, . . . , N} desires only packet pn, and
has packet pi in its cache with probability θ (independently for
each i 6= n). Assume N is even, and consider the following
(N/2)-step method for greedily finding a collection of edge-
disjoint 2-cycles:

• Step 1: Define N1 as the set of all users {1, . . . , N}.
Define u1 = 1. Greedily select any 2-cycle that involves
user u1 and exactly one other user ũ1 ∈ N1. If such a
2-cycle exists, define X1 = 1 and define N2 = N1 −
{u1, ũ1}. Else, define X1 = 0 and define N2 = N1 −
{u1}.

• Step k ∈ {2, . . . , N/2}: Define uk as the lowest-index
user in the set Nk. Greedily select any 2-cycle that
involves user uk and another user ũk ∈ Nk. If such
a 2-cycle exists, define Xk = 1 and define Nk+1 =
Nk − {uk, ũk}. Else, define Xk = 0 and define Nk+1 =
Nk − {uk}.

At each step k ∈ {1, . . . , N/2}, the set Nk consists of
users that have not been pairwise tested for a 2-cycle on any
previous step. This algorithm finds a collection of X distinct
2-cycles, where X =

∑N/2
k=1Xk. All 2-cycles involve distinct

user nodes and hence they are edge-disjoint. This method does
not necessarily produce the largest collection of edge-disjoint

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 5

cycles, and so X ≤ C(G). Taking expectations gives:

E [X] =

N/2∑
k=1

E [Xk] =

N/2∑
k=1

Pr[Xk = 1]

Two particular users n and m can be used to form a 2-cycle
if the graph G has edges (n, pm) and (m, pn). The probability
of this is θ2, and this event is independent over different user
pairs. Then Pr[X1 = 1] = 1− (1− θ2)N−1. Further, at each
step k ∈ {1, . . . , N/2}, the set Nk has at least N − 2(k − 1)
users (including user uk), and so for each k ∈ {1, . . . , N/2}
we have:

Pr[Xk = 1] ≥ 1− (1− θ2)N−2(k−1)−1

Thus:

E [X] ≥
N/2∑
k=1

[1− (1− θ2)N−2(k−1)−1]

=
N

2
−
N/2∑
k=1

(1− θ2)2k−1

=
N

2
−
[

(1− θ2)(1− (1− θ2)N)

1− (1− θ2)2

]
Since we have X edge-disjoint 2-cycles, we can use 2-cycle
coding actions to reduce the number of required transmissions
from N to N − X . This gives a reduction ratio of (N −
X)/N = 1 − X/N . Thus, the expected value of this ratio
satisfies the following upper bound:

1− E [X]

N
≤ 1

2
+

1

N

[
(1− θ2)(1− (1− θ2)N)

1− (1− θ2)2

]
For any θ > 0, the upper bound converges to 1/2 as N →∞.
Fig. 2 plots this upper bound as a function of θ for different
values of N . For example, if θ = 0.1, the upper bound is
0.8930 for N = 50 (ensuring at least a 10.7% improvement
for this case), and is 0.5497 when N = 1000 (ensuring at
least a 45.03% improvement for this case).

10
−3

10
−2

10
−1

10
0

0.5

0.6

0.7

0.8

0.9

1

Upper bound on expected redution ratio versus θ

Cache probability θ (log scale)

E
x
p
e
c
te

d
 r

e
d
u
c
ti
o
n
 r

a
ti
o
 b

o
u
n
d

N=50

N=100

N=200

N=500

N=1000

Fig. 2. The expected reduction ratio bound for greedy 2-cycle coding.

E. Examples of stronger coding actions

Improvements beyond a factor of 2 can be achieved by
considering stronger coding actions. Here is a simple but
important example: Suppose user 1 wants packet A and has
packets B and C, user 2 wants packet B and has packets A

and C, and user 3 wants packet C and has packets A and B.
These demands can be fulfilled with the single transmission
A + B + C, being a binary XOR of packets A, B, C. The
efficiency ratio of this action is 3/1, which is larger than the
efficiency of any K-cycle coding action.

A more general class of actions involve multicasting to a
cluster of users: Let K be a set of K distinct packets. Let U be
the set of users who desire at least one packet in the set K. For
each user u ∈ U , define hu(K) as the number of packets in K
that user u already has as side information, so that hu(K) ∈
{0, 1, . . . ,K − 1}. Define hmin(K) = minu∈U hu(K). Reed-
Solomon erasure coding over finite fields can be used to
correctly deliver all K packets to all users in the cluster U with
K −hmin(K) slots [14]. This can also be done using random
codes with a success probability that can be made arbitrarily
close to 1 by choosing a suitably large field size [16]. This
type of coding is used in the partition multicast index coding
heuristic in [17].

III. DYNAMIC INDEX CODING

Now consider a dynamic setting where the broadcast station
randomly receives packets from M traffic flows. Each flow
m ∈ {1, . . . ,M} contains fixed-length packets that must be
delivered to a subset Nm of the users, and these packets are
contained as side-information in a subset Sm of the users.
Assume Nm ∩ Sm = φ, since a user n ∈ Nm who wants a
particular packet clearly does not already have this packet as
side information. In the general case, M can be the number
of all possible disjoint subset pair combinations. However,
typically the value of M will be much smaller than this, such
as when each traffic flow represents a stream of packets from
a very large file, and there are only M active file requests.

Assume time is slotted with unit slots t ∈ {0, 1, 2, . . .}, and
let A(t) = (A1(t), . . . , AM (t)) be the number of packets that
arrive from each flow on slot t. For simplicity of exposition,
assume the vector A(t) is i.i.d. over slots with expectation:

E [A(t)] = λ = (λ1, . . . , λM)

where λm is the arrival rate of packets from flow m, in units
of packets/slot. Assume that second moments of Am(t) are
bounded for each flow m. Packets of each flow m are stored
in a separate queue kept at the broadcast station, and exit the
queue upon delivery to their intended users.

We now segment the timeline into variable length frames,
each frame consisting of an integer number of slots. At the
beginning of each frame r, the network controller chooses
a coding action α[r] within an abstract set A of possible
actions. For each α ∈ A, there is a frame size T (α) and a
clearance vector µ(α). The frame size T (α) is the number of
slots required to implement action α, and is assumed to be a
positive integer. The clearance vector µ(α) has components
(µ1(α), . . . , µM (α)), where µm(α) is the number of type
m packets delivered as a result of action α. We assume
µm(α) is a non-negative integer. When frame r ends, a new
frame starts and the controller chooses a (possibly new) action
α[r+1] ∈ A. We assume each coding action only uses packets
that are delivered as a result of that action, so that there is no

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 6

“partial information” that can be exploited on future frames.
We further assume there are a finite (but arbitrarily large)
number of coding actions in the set A, and that there are
positive numbers Tmax and µmax such that 1 ≤ T (α) ≤ Tmax
and 0 ≤ µ(α) ≤ µmax for all α ∈ A.

Assume that frame 0 starts at time 0. Define t[0] = 0, and
for r ∈ {0, 1, 2, . . .} define t[r] as the slot that starts frame r.
LetQ[r] = (Q1[r], . . . , QM [r]) be the queue backlog vector at
the beginning of each frame r ∈ {0, 1, 2, . . .}. Then Qm[0] =
0 for all m ∈ {1, . . . ,M}, and:

Qm[r+ 1] = max[Qm[r]−µm(α[r]), 0] + arrivalsm[r] (4)

where arrivalsm[r] is the number of type m arrivals during
frame r:

arrivalsm[r]M=

t[r]+T (α[r])−1∑
τ=t[r]

Am(τ) (5)

The max[·, 0] operator in the queue update equation (4) in
principle allows actions α[r] ∈ A to be chosen independently
of the queue backlog at the beginning of a frame. In this case,
if the action α[r] attempts to deliver one or more packets from
queues that are empty, null packets are created and delivered.
In practice, these null packets do not need to be delivered.

Our focus is on index coding problems with action sets A
defined by a specific set of coding options, such as the set of
all cyclic coding actions. For example, an action α that is a
2-cycle coding action that uses packets of type m and k has
T (α) = 1 and µ(α) being a binary vector with 1s in entries
m and k and zeros elsewhere. However, the above model is
general and can also apply to other types of problems, such
as multi-hop networks where actions α ∈ A represent some
sequence of multi-hop network coding.

A. The code-constrained capacity region

We say that queue Qm[r] is rate stable if:

lim
R→∞

Qm[R]

R
= 0 (with probability 1)

It is not difficult to show that Qm[R] is rate stable if and only
if the arrival rate λm is equal to the delivery rate of type m
traffic [18]. The code-constrained capacity region ΛA is the
set of all (non-negative) rate vectors (λ1, . . . , λM) for which
there exists an algorithm for selecting α[r] ∈ A over frames
that makes all queues rate stable.

Theorem 2: A (non-negative) rate vector λ is in the code-
constrained capacity region ΛA if and only if there exist
probabilities p(α) such that

∑
α∈A p(α) = 1 and:

λm ≤
∑
α∈A p(α)µm(α)∑
α∈A p(α)T (α)

∀m ∈ {1, . . . ,M} (6)

Proof: The proof that such probabilities p(α) necessarily
exist whenever λ ∈ ΛA is given in Appendix B. Below we
prove sufficiency. Suppose such probabilities p(α) exist that
satisfy (6). We want to show that λ ∈ ΛA. To do so, we
design an algorithm that makes all queues Qm[r] in (4) rate
stable. By rate stability theory in [18], it suffices to design an
algorithm that has a frame average arrival rate to each queue

Qm[r] that is less than or equal to the frame average service
rate (both in units of packets/frame).

Consider the algorithm that, every frame r, independently
chooses action α ∈ A with probability p(α). Let α∗[r]
represent this random action chosen on frame r. Then
{T (α∗[r])}∞r=0 is an i.i.d. sequence, as is {µm(α∗[r])}∞r=0 for
each m ∈ {1, . . . ,M}. By the law of large numbers, the frame
average arrival rate arrivalsm and the frame average service
µm (both in packets/frame) are equal to the following with
probability 1:

µm = E [µm(α∗[r])] =
∑
α∈Ap(α)µm(α)

arrivalsm = λmE [T (α∗[r])] = λm
∑
α∈Ap(α)T (α)

We thus have for each m ∈ {1, . . . ,M}:
arrivalsm

µm
=
λm
∑
α∈A p(α)T (α)∑

α∈A p(α)µm(α)
≤ 1

where the final inequality follows by (6).

B. Max-weight queueing protocols

Theorem 2 shows that all traffic can be supported by
a stationary and randomized algorithm that independently
chooses actions α∗[r] ∈ A with probability distribution p(α).
This does not require knowledge of the queue backlogs.
However, computing probabilities p(α) that satisfy (6) would
require knowledge of the arrival rates λm, and is a difficult
computational task even if these rates are known. We provide
two dynamic algorithms that use queue backlog information.
These can also be viewed as online computation algorithms for
computing probabilities p(α). Both are similar in spirit to the
max-weight approach to dynamic scheduling in [19], but the
variable frame lengths require a new approach that contributes
to the general theory of dynamic scheduling.

Our first algorithm assumes knowledge of the arrival rates
λm.

Max-Weight Code Selection Algorithm 1 (Known λ): At
the beginning of each frame r, observe the queue backlogs
Qm[r] and perform the following:
• Choose coding action α[r] ∈ A as the maximizer of:

M∑
m=1

Qm[r][µm(α[r])− λmT (α[r])] (7)

where ties are broken arbitrarily.
• Update the queue equation via (4).
The next algorithm uses a ratio rule, and does not require

knowledge of the rates λm:
Max-Weight Code Selection Algorithm 2 (Unknown λ):

At the beginning of each frame r, observe the queue backlogs
Qm[r] and perform the following:
• Choose coding action α[r] ∈ A as the maximizer of:

M∑
m=1

Qm[r]

[
µm(α[r])

T (α[r])

]
(8)

where ties are broken arbitrarily.
• Update the queue equation via (4).

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 7

Theorem 3: Suppose that λ ∈ ΛA. Then all queues are rate
stable under either of the two algorithms above.

Proof: See Appendix C.
It can further be shown that if there is a value ρ such that

0 ≤ ρ < 1, and if λ ∈ ρΛA, being a ρ-scaled version of ΛA,
then both algorithms give average queue size O(1/(1 − ρ)).
Thus, the average backlog bound increases to infinity as the
arrival rates are pushed closer to the boundary of the capacity
region. This is proven in Appendix D.

A related situation of variable frame lengths is treated in
[20] for selecting variable-size coding schemes for transmis-
sion over a single point-to-point channel. It uses semi-Markov
decision theory to develop a delay-optimal threshold rule.
The threshold is approximated by truncating the state space
of the queue and using knowledge of the arrival probability
distribution to perform value iterations. That method cannot
be extended to multi-queue systems without a curse of di-
mensionality. However, Algorithm 2 above can be applied to
a multi-queue version of the problem in [20] to yield stability
with O(1/(1 − ρ)) average queue bounds, without requiring
pre-computations or knowledge of the arrival rates. Of course,
Algorithm 2 does not necessarily optimize average delay.

C. Implementation for cyclic coding

Consider using the above algorithms in the special case
when all packets are unicast packets and the set A consists
of direct transmissions and cyclic coding actions. Fix K ≥ 2.
A K-cycle coding action must specify both the cycle of K
users involved and the particular packet that each user sends.
Consider a K-cycle of users given by:

n1 → n2 → n3 . . .→ nK → n1

Let p1, p2, . . . , pK be the packets chosen. Then p1 is contained
as side information at user 1 and desired by user 2, p2 is
contained as side information at user 2 and desired by user 3,
and so on. All packets p1, . . . , pK are unicast and are desired
by different users, and hence are from distinct sessions. Let
m1, . . . ,mK be the corresponding sessions. DefineM1 as the
set of sessions in {1, . . . ,M} that involve packets contained
as side information at user 1 and desired by user 2. Define
M2 as the set of sessions in {1, . . . ,M} that involve packets
contained as side information at user 2 and desired by user
3, and so on. Then we must choose sessions m1, . . . ,mK so
that mi ∈ Mi for all i ∈ {1, . . . ,K}. The value of (8) for
this K-cycle coding action is:

1

K − 1

K∑
i=1

Qmi
[r]

Given the particular cycle of K users, the above value is max-
imized over all possible session choices by greedily choosing
mi = arg maxm∈Mi Qm[r] for each i ∈ {1, . . . ,K}. The
value is then compared across different cycles of K users and
different choices of K. A similar greedy selection can be done
for maximizing the expression (7).

D. Implementation for cluster multicast coding

Consider the cluster multicast coding actions described in
Section II-E, which use Reed-Solomon erasure coding [14].1

From the M queues, choose a cluster of K queues and label
this set K. We can send a single packet from each queue in
the set K using K − hmin(K) slots. This is a max-weight
variation on the partition multicast method for index coding
in [17]. The max-weight expression of Algorithm 2 for this
cluster K on frame r is:∑

m∈K

Qm[r]

K − hmin(K)
(9)

E. Example simulation for 3 users

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

Average system backlog versus λ

λ

A
v
e
ra

g
e
 s

y
s
te

m
 b

a
c
k
lo

g
Uncoded

Algorithm 1

Algorithm 2

Fig. 3. Simulation of dynamic index coding for a 3 user system. Average
system backlog is in units of packets and includes all queues in the system.

Define A as the action space that restricts to direct trans-
missions, 2-cycle coding actions, 3-cycle coding actions, and
the 1-slot A + B + C coding action described in Section II-
E. Fig. 3 presents simulation results for this action space and
for a system with N = 3 users. We simulate algorithms 1
and 2 and compare against uncoded transmissions. All packets
are intended for at most one user. Packets intended for user
n ∈ {1, 2, 3} arrive as independent Bernoulli processes with
identical rates λ. We assume each packet is independently in
the cache of the other two users with probability θ = 0.5.
Thus, there are four types of packets intended for user 1:
Packets not contained as side information anywhere, packets
contained as side information at user 2 only, packets contained
as side information at user 3 only, and packets contained as
side information at both users 2 and 3. Users 2 and 3 similarly
have four traffic types, for a total of M = 12 traffic types.

Each data point in Fig. 3 represents a simulation over
5 million frames at a given value of λ. The figure plots
the resulting total average number of packets in the system
(summed over all 12 queues). The case of direct (uncoded)
transmission is also shown. Uncoded transmission can support
a maximum rate of λ = 1/3 (for a total traffic rate of 1). It
is seen that algorithms 1 and 2 can significantly outperform
uncoded transmission, achieving stability at rates up to λ =
0.57 (for a total traffic rate of 1.71). Remarkably, Algorithm 2
yields slightly less average backlog than Algorithm 1, even

1Alternatively, we could use random coding as in [16] if the system can
tolerate a small but non-zero error probability.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 8

though it does not use traffic arrival rates λm. While not
shown in the figure, it is interesting to note that when the
A + B + C coding option was removed from the set A, the
vertical asymptote for algorithms 1 and 2 was at λ = 0.5333
rather than λ = 0.57.

0 1 2 3 4 5

x 10
4

0

5

10

15

20

25

30

35

40

Frame index r

T
o
ta

l
s
y
s
te

m
 b

a
c
k
lo

g

Sample path of Algorithm 2 backlog

Fig. 4. Sample path of total backlog for Algorithm 2 over 50000 frames.
Statistics change halfway through the simulation. The dashed horizontal lines
are the average backlogs associated with the two different sets of statistics.

Because Algorithm 2 does not require arrival rate infor-
mation, it is highly adaptive to unexpected changes. Fig.
4 illustrates a sample path of total average backlog under
Algorithm 2 in a scenario where the traffic changes halfway
through the simulation. The simulation is over 50×103 frames.
In the first half of the simulation the arrival rate is λ = 0.45
and the cache probability is the same as before (θ = 0.5). In
the second half, the arrival rate increases to λ = 0.5 and the
cache probability for packets intended for user 1 decreases
to θ1 = 0.4 (the cache probabilities for traffic intended for
the other users do not change). The algorithm quickly adapts
and the average backlog settles into the larger value associated
with the new statistics.

F. Example simulation for 50 users

Fig. 5 shows a simulation for 50 users using the cluster
multicasting technique with Reed-Solomon erasure codes (as
described in Section III-D). Specifically, the coding action
space A restricts to using erasure codes on clusters of size
1, 2, 3, and 4. There are 50 sessions. Packets arrive from each
session according to independent Bernoulli processes with rate
λ. Each user wants packets from a distinct session. At time
0, the side information at each user is drawn randomly and
independently with probability θ for each of the M − 1 other
sessions that it does not desire. Results are plotted for the case
θ = 0.2. The case of uncoded transmission is also plotted. The
simulation shows that erasure coding increases throughput by
roughly 80% in this example.

IV. BROADCAST RELAY NETWORKS

Consider now the following related problem: There are
again N users and a single broadcast station. However, the
broadcast station initially has no information, and acts as a
relay to transfer independent unicast data between the users.
Further, the users only know their own data, and initially have
no knowledge of data sourced at other users. Time is again

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

20

40

60

80

Rate λ for each of the 50 sessions

A
v
e
ra

g
e
 s

y
s
te

m
 b

a
c
k
lo

g

Average system backlog for cluster multicast coding

Uncoded

Cluster multicast
coding

Fig. 5. Simulation over 105 frames of cluster multicast coding for 50 users
and side information probability θ = 0.2.

slotted, and every slot we can choose from one of N+1 modes
of transmission. The first N transmission modes involve an
error-free packet transmission from a single user to the relay.
The (N+1)th transmission mode is where the relay broadcasts
a single packet that is received error-free at each of the N
users. Fig. 6 illustrates an example system with 2 users, where
the 3 possible transmission modes are shown. For simplicity,
we assume the user transmissions cannot be overheard by other
users, and the users first send all packets to the relay. The relay
then can make coding decisions for its downlink transmissions.

A. The minimum clearance time relay problem

First consider a static problem where a batch of packets
must be delivered in minimum time. Let Pij represent the
number of packets that user i wants to send to user j, where
i, j ∈ {1, . . . , N}. All packets are independent, and the total
number of packets is P , where:

P =
∑N
i=1

∑N
j=1Pij

This problem is related to the index coding problem as follows:
Suppose on the first P slots, all users send their packets to the
relay on the uplink channels. It remains for the relay to send all
users the desired data, and these users have side information.
The resulting side information graph G is the same as in the
general index coding problem. However, it has the following
special structure: The only user that has side information about
a packet is the source user of the packet. Specifically:
• Each packet is contained as side information in exactly

one user. Thus, each packet node of G has a single
incoming link from some user that is its source.

1 2

Relay

Mode 1

p1

1 2

Relay

Mode 2

p2

1 2

Relay

Mode 3

p3 p3

1

Fig. 6. An illustration of a 2-user broadcast relay system, with the 3 possible
transmission modes shown. In mode 3, packet p3 is received at both users.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 9

• Each packet has exactly one user as its destination. Thus,
each packet node of G has a single outgoing link to some
user that is its destination.

This special structure leads to a simplified graphical model
for demands, which we call the weighted compressed graph
WC(G) of G. The graphWC(G) is formed from G as follows:
It is a directed graph defined on the user nodes N only,
and contains a link (a, b) if and only if the original graph G
specifies that user node a has a packet that user node b wants.
Further, each link (a, b) is given a positive integer weight Pab,
the number of packets user a wants to send to user b. It is easy
to show that WC(G) is acyclic if and only if G is acyclic.
Hence, coding can only help if WC(G) contains cycles, and
so Tmin(G) = P whenever WC(G) is acyclic.

We say the weighted compressed graph WC(G) has edge-
disjoint cycles if each of its links participates in at most one
simple cycle. An example is shown in Fig. 7. Consider such a
graph that has C edge-disjoint cycles. Let wminc be the min-
weight link on each edge-disjoint cycle c ∈ {1, . . . , C}.

Theorem 4: If the broadcast relay problem has a weighted
compressed graph WC(G) with edge-disjoint cycles, then:

Tmin(G) = P −∑C
c=1 w

min
c (10)

and so the full clearance time (including the P uplink transmis-
sions) is the above number plus P . Further, optimality can be
achieved over the class of cyclic coding actions, as described
in Section II-B.

As an example, the graph WC(G) in Fig. 7a has P = 48,
three edge-disjoint cycles with wmin1 = 4, wmin2 = 4, wmin3 =
1, and so Tmin(G) = 48− 4− 4− 1 = 39.

1

2 3

4

5 6

7
7

7

4

5

5 5

3

3

1

2 3

4

5 6

7
7

7

4

5

5 5

3

3

4

4

1

1

2

3

(a) (b)

1

Fig. 7. (a) A graph WC(G) with three edge-disjoint cycles, and (b) its
pruned graph WC(G′).

Proof: (Theorem 4) First prune the graph WC(G) by
removing the min-weight link on each of the edge-disjoint
cycles (breaking ties arbitrarily). This removes the correspond-
ing packets from the original graph G to produce a new
graph G′ with exactly P −∑C

c=1 w
min
c packets. The weighted

compressed graph WC(G′) is the subgraph of WC(G) with
the min-weight links on each edge-disjoint cycle removed (see
Fig. 7a and Fig. 7b). Both G′ andWC(G′) are acyclic, and so:

Tmin(G) ≥ Tmin(G′) = P −∑C
c=1 w

min
c

It remains only to construct a coding algorithm that achieves
this lower bound. This can be done easily by using wminc

separate cyclic coding actions for each of the edge-disjoint

cycles (using a k-cycle coding action for any cycle of length
k), and then directly transmitting the remaining packets.

A subgraph of WC(G) is a graph on the same nodes N
but with some link weights Pij set to 0. The following lemma
shows that the number of packets in any acyclic subgraph of
WC(G) is a lower bound on the minimum clearance time.

Lemma 4: Let WC(G) be the weighted compressed graph
for a broadcast relay problem with demand graph G. If
an acyclic subgraph of WC(G) contains P ′ packets, then
Tmin(G) ≥ P ′.

Proof: The proof is similar to that of Theorem 4 and
omitted for brevity.

B. Traffic structure and optimality of cyclic coding

Suppose we have a broadcast relay problem with N users,
packet matrix (Pij), and with the following additional struc-
ture: Each user i ∈ {1, . . . , N} wants to send data to only one
other user. That is, the matrix (Pij) has at most one non-zero
entry in each row i ∈ {1, . . . , N}. We now prove the resulting
graph WC(G) has edge-disjoint cycles. To see this, suppose it
is not true. Then there are two different cycles that share a link
(a, b) that leads to a link (b, k) for cycle 1 and (b,m) for cycle
2, where k 6= m. This means node b has two outgoing links, a
contradiction because matrix (Pij) has at most one non-zero
entry in row b, and hence at most one outgoing link from node
b. We conclude that WC(G) has edge-disjoint cycles, and so
cyclic coding is optimal via Theorem 4.

A similar argument holds if each user wants to receive from
at most one other user, so that (Pij) has at most one non-zero
entry in every column. Again,WC(G) has edge-disjoint cycles,
and so cyclic coding is optimal.

C. Optimality for N ≤ 3

This section proves that cyclic coding is optimal for broad-
cast relay networks when there are only 2 or 3 users, regardless
of the number of packets and the side information configu-
rations. Assume there are N = 3 users (the case N = 2
follows as a special case when link weights into and out of
node 3 are set to 0). The first panel of Fig. 8 illustrates the
general graph WC(G) for the case N = 3. The link weights
are Pij for i, j ∈ {1, 2, 3} (i 6= j), where Pij are non-negative
integers. The number of packets is P =

∑N
i=1

∑N
j=1 Pij .

We construct a clearance time procedure that involves only
direct transmission, 2-cycle coding actions, and 3-cycle coding
actions. If the 3-node graph WC(G) has edge-disjoint cycles,
we are done (recall Theorem 4).

Consider now the general case where cycles might share
edges. Define min12, min23, min31 as the weight of the min-
weight link for each of the three possible 2-cycles:

min12 = min[P12, P21]

min23 = min[P23, P32]

min31 = min[P31, P13]

Now prune the graph WC(G) by removing the min-weight
link for each 2-cycle. This results in a graph WC(G′) with 3
nodes and (at most) 3 links, and with a total number of packets

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 10

1

2

3

P21

P13

P32
P12 P23

P31

Initial graph WC(G)

1

2

3
P13

P32
P12

Case 1 (example)

1

2

3

P12 P23

P31

Case 2 (part 1)

1

2

3

P21
P23

P31

Case 2 (part 2)

1

Fig. 8. An illustration of the general broadcast relay graph WC(G) with
N = 3 users, and the two cases required for the proof.

equal to P −min12 −min23 −min31, as shown in Cases 1
and 2 in the figure. We have two cases.

Case 1: The resulting graphWC(G′) is acyclic. An example
of this case is shown as case 1 in Fig. 8. Thus, we know
Tmin(G) ≥ Tmin(G′) = P −min12 −min23 −min31. This
clearance time bound can be achieved by using 2-cycle coding
actions on each of the three 2-cycles, and then transmitting the
remaining packets uncoded.

Case 2: The resulting graph WC(G′) consists of a single
3-cycle. The cycle must either be clockwise or counter-
clockwise. Without loss of generality, assume clockwise (see
Fig. 8, case 2 part 1). Note that:

P12 ≥ P21 , P23 ≥ P32 , P31 ≥ P13 (11)

This is because we have formed WC(G′) by removing the
min-weight link on each of the three 2-cycles.

Let z = min[P12 − P21, P23 − P32, P31 − P13], so that z is
a non-negative integer. Without loss of generality, assume the
min value for z is achieved by link (1, 2), so that z = P12 −
P21. To WC(G′), add back the link (2, 1) (with weight P21),
and remove the link (1, 2), to yield a graph WC(G′′) that is
an acyclic subgraph of the original graphWC(G), as shown in
case 2 part 2 of Fig. 8. The acyclic subgraphWC(G′′) contains
exactly P21+P23+P31 packets. Thus, the minimum clearance
time of the original graph WC(G) is at least P21 + P23 +
P31. However, this can easily be achieved. Do the following:
Perform 2-cycle coding actions on each of the three 2-cycles
of the original graph WC(G), to remove a number of packets
on each cycle equal to the min weight link of that cycle. This
removes 2P21 + 2P32 + 2P13 packets in P21 +P32 +P13 slots
(recall the three min weights are given by (11)). Then perform
3-cycle coding actions to remove 3z packets in 2z slots. Then
perform direct transmission to remove the remaining packets,
being a total of x = P − 2P21 − 2P32 − 2P13 − 3z. The total

number of transmissions is:

P21 + P32 + P13 + 2z + x

= P21 + P32 + P13 + 2z

+P − 2P21 − 2P32 − 2P13 − 3z

= P − P21 − P32 − P13 − z
= P12 + P23 + P31 − z
= P12 + P23 + P31 − (P12 − P21)

= P21 + P23 + P31

and so the above scheme is optimal.

D. Dynamic broadcast relay scheduling

Now consider the dynamic case where packets from source
user i and destination user j arrive with rate λij packets/slot.
Suppose we have an abstract set of coding actions A, where
each action involves a subset of packets, and first transmits
these packets to the relay before any coding at the relay.
Let T (α) be the number of slots to complete the action, and
(µij(α)) be the matrix of packets delivered by the action.
It can be shown that capacity can be approached arbitrarily
closely by repetitions of minimum-clearance time scheduling
on large blocks of the incoming data (similar to the capacity
treatment in [12] for a limit of large packet size). Hence, if
Tmin(G) can be optimally solved using only cyclic-coding
actions, then capacity is also achieved in the max-weight
algorithms when A is restricted to cyclic-coding actions. It
follows that such actions are optimal for rate matrices (λij)
with at most one non-zero entry per row, and for rate matrices
(λij) with at most one non-zero entry per column.

Similarly, it follows that cyclic coding is optimal for the
case of N = 2 or N = 3. Thus, Theorem 2 establishes the
full capacity region Λ in those cases. The case N = 2 yields a
2-dimensional capacity region (being the set of all supportable
2×2 rate matrices with zeros on the diagonal). The case N = 3
yields a 6-dimensional capacity region (being the set of all
supportable 3× 3 rate matrices with zeros on the diagonal).

E. Counterexamples

(a) (b)

1

2

3

4

5

A

B

C

D

E

F

G

1

2

3

4

5

6

A

B

D
C

I

H

E

GF

1

Fig. 9. Two example graphs WC(G) for broadcast relay problems.

Can we minimize clearance time by grabbing any available
2-cycle, then any available 3-cycle if no 2-cycle is available,
and so on? Not necessarily. A simple counterexample is shown

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 11

in Fig. 9a. The graph has 5 users and 7 packets {A, . . . , G},
where each link has a single packet. Using the middle 3-cycle
2 → 3 → 4 → 2 by transmitting B + D and D + E leaves
a remaining acyclic graph with 4 packets, and hence would
take 4 more transmissions, for a total of 6 slots. However,
using the two side cycles (with 2 transmissions each) and then
transmitting the remaining packet E clears everything in 5
slots, which is optimal because the maximum acyclic subgraph
has 5 packets (just remove links B and D).

One may wonder if all broadcast relay graphs can be
optimally cleared with cyclic coding. Section IV-C shows this
is true for N = 2 and N = 3. However, this is not true
in general. Fig. 9b shows a counterexample with N = 6.
Suppose each link has a single packet, so that we have 9
packets {A, . . . , I}. It can be shown that the maximum acyclic
subgraph has 7 packets, and so Tmin(G) ≥ 7, but the best
cyclic coding method uses 8 slots. Here is a way to achieve
7 slots: Send messages M1 = E + G + F , M2 = H + E,
M3 = H+D, M4 = A+B+H , M5 = C+B, M6 = C+G,
M7 = C + I + D. The decodings at users 2, 3, 4, 5, 6 are
straightforward by combining their side information with just
a single message. The decoding at user 1 is done as follows:
M1 +M2 +M3 +M6 +M7 = F + I . Since user 1 knows F ,
it can decode I . M3 +M4 +M5 +M7 = A+ I , since user 1
knows I it can get A.

V. CONCLUSIONS

This work presents a dynamic approach to index coding.
This problem is important for future wireless communica-
tion where instances of side information can be exploited.
While optimal index coding for general problems seems to
be intractable, this paper develops a code-constrained capacity
region that restricts actions to a pre-specified set of codes. Two
max-weight algorithms were developed that support randomly
arriving traffic whenever the arrival rate vector is inside the
code-constrained capacity region. The first algorithm requires
knowledge of the rate vector, and the second does not. Sim-
ulations verify network stability up to the boundary of the
code-constrained capacity region and illustrate improvements
in both throughput and delay over uncoded transmission.

It was shown that, for coding to provide gains in comparison
to direct transmission, it must exploit cycles in the demand
graph. A simple set of codes based on cycles was considered
and shown to be optimal (so that the code-constrained capacity
region is equal to the unconstrained capacity region) for certain
classes of problems. This was proven by providing coding
techniques that match a fundamental acyclic subgraph bound.
These results add to the theory of information networks, and
can be used to improve efficiency in communication systems.

APPENDIX A — PROOF OF THEOREM 1

Proof: (Theorem 1) We already know that Tmin(G) ≤ P .
It suffices to show that Tmin(G) ≥ P . Consider any mission-
completing coding action that takes T slots. We show that
T ≥ P . Let M be the sequence of messages transmitted.
Then every node n ∈ N is able to decode its desired packets,
being packets in the set Rn, from the information {Hn,M},

being the information it has at the end of the coding action.
That is, we have:

{Hn,M} ⇐⇒ {Hn,M,Rn} ∀n ∈ {1, . . . , N} (12)

Because the graph is acyclic, there must be at least one
node with no outgoing links (by Fact 1). Choose such a node,
and label this node n1. The node n1 cannot be a packet node,
because we have assumed that all packet nodes have outgoing
links. Thus, n1 ∈ N . Because node n1 has no outgoing links,
it has Hn1

= φ and thus has no initial side information about
any of the packets. Thus, it is able to decode all packets in
the set Rn1 by the messages M alone. That is:

M ⇐⇒ {M,Rn1} (13)

We want to show that this node n1 can decode all packets in
the set P , so that:

M ⇐⇒ {M,P} (14)

If we can show that (14) holds, then the sequence of messages
M is also sufficient to deliver P independent packets to node
n1, and node n1 did not have any initial side information about
these packets. Thus, the number of slots T used in the coding
action must be at least P by Fact 2, proving the result. Thus,
it suffices to prove (14).

We prove (14) by induction on k, for k ∈ {1, . . . , N −
1}: Assume that there is a labeling of k distinct user nodes
{n1, n2, . . . , nk} such that:

{M} ⇐⇒ {M,Rn1 , . . . ,Rnk
} (15)

This property holds for the base case k = 1 by (13). We now
assume that (15) holds for a general k ∈ {1, . . . , N − 1}, and
prove it must also hold for k+1. Take the graph G, and delete
the user nodes {n1, . . . , nk}, also deleting all links outgoing
from and incoming to these nodes. This may create packet
nodes with no outgoing links: Delete all such packet nodes.
Note that all deleted packet nodes (if any) must be in the set
{Rn1 , . . . ,Rnk

}, being the set of packets desired by the users
that are deleted. The resulting subgraph must still be acyclic,
and hence it must have a node nk+1 with no outgoing links.
This node must be a user node, as we have deleted all packet
nodes with no outgoing links.

Because the user node nk+1 has no outgoing links, it
either had Hnk+1

= φ (so that it never had any outgoing
links), or all of its outgoing links were pointing to packet
nodes that we have deleted, and so those packets were in
the set {Rn1

, . . . ,Rnk
}. That is, we must have Hnk+1

⊆
{Rn1

, . . . ,Rnk
}. Therefore:

{M,Hnk+1
} ⊆ {M,Rn1

, . . . ,Rnk
} (16)

However, at the end of the coding action, node nk+1 has
exactly the information on the left-hand-side of (16), and hence
this information is sufficient to decode all packets in the set
Rnk+1

. Thus, the information on the right-hand-side of (16)
must also be sufficient to decode Rnk+1

, so that:

{M,Rn1 , . . . ,Rnk
} ⇐⇒ {M,Rn1 , . . . ,Rnk

,Rnk+1
}

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 12

But this together with (15) yields:

{M} ⇐⇒ {M,Rn1 , . . . ,Rnk
,Rnk+1

}
which completes the induction step.

By induction over k ∈ {1, . . . , N − 1}, it follows that:

{M} ⇐⇒ {M,Rn1
, . . . ,RnN

} (17)

However, by re-labeling we have:

{Rn1
, . . . ,RnN

} = {R1, . . . ,RN} = P (18)

where the final equality holds by (1). Combining (17) and (18)
proves (14).

APPENDIX B – PROOF OF NECESSITY FOR THEOREM 2

Let {α[r]}∞r=0 be a sequence of actions, chosen over frames,
that makes all queues Qm[r] rate stable. We show there must
exist probabilities p(α) that satisfy (6). For each positive
integer R and each m ∈ {1, . . . ,M}, define am[R] and µm[R]
as the following averages over the first R frames:

am[R] M
=

1
R

∑R−1
r=0 arrivalsm[r]

µm[R] M
=

1
R

∑R−1
r=0 µm(α[r])

where arrivalsm[r] is defined in (5). Now define F(α,R)
as the set of frames r ∈ {0, . . . , R − 1} that use action α,
and define |F(α,R)| as the number of these frames, so that∑
α∈A |F(α,R)| = R. We then have:

am[R] =
∑
α∈A
|F(α,R)|

R
×

1

|F(α,R)|
∑

r∈F(α,R)

arrivalsm[r] (19)

µm[R] =
∑
α∈A
|F(α,R)|

R
µm(α) (20)

The set A is finite. Thus, the values {(|F(α,R)|/R)}∞R=1 can
be viewed as an infinite sequence of bounded vectors (with
entries indexed by α and dimension equal to the size of set A)
defined on the index R ∈ {1, 2, 3, . . .}, and hence must have
a convergent subsequence. Let Rk represent the sequence of
frames on this subsequence, so that there are values p(α) for
all α ∈ A such that:

lim
k→∞

|F(α,Rk)|/Rk = p(α)

Further, by (20) we have for all m ∈ {1, . . . ,M}:
lim
k→∞

µm[Rk] =
∑
α∈Ap(α)µm(α) (21)

Likewise, from (19) and the law of large numbers (used over
each α ∈ A for which limk→∞ |F(α,Rk)| = ∞, and noting
that arrivalsm[r] is i.i.d. with mean T (α)λm for all r ∈
F(α,R)) we have with probability 1:

lim
k→∞

am[Rk] =
∑
α∈A

p(α)T (α)λm (22)

Because |F(α,Rk)|/Rk ≥ 0 for all α ∈ A and all Rk, and∑
α∈A |F(α,Rk)|/Rk = 1 for all Rk, the same holds for the

limiting values p(α). That is, p(α) ≥ 0 for all α ∈ A, and:

∑
α∈A p(α) = 1. Because each queue Qm[r] is rate stable,

we have with probability 1 that for all m ∈ {1, . . . ,M}:

lim
k→∞

Qm[Rk]

Rk
= 0 (23)

However, from the queue update equation (4) we have for all
r ∈ {0, 1, 2, . . .}:

Qm[r + 1] ≥ Qm[r]− µm(α[r]) + arrivalsm[r]

Summing the above over r ∈ {0, 1, . . . , Rk − 1} and dividing
by Rk yields:

Qm[Rk]−Qm[0]

Rk
≥ −µm[Rk] + am[Rk]

Taking a limit as k →∞ and using (21)-(23) yields:

0 ≥ −∑α∈Ap(α)µm(α) + λm
∑
α∈A

p(α)T (α) (24)

This proves the result.

APPENDIX C — PROOF OF THEOREM 3

We first prove rate stability for Algorithm 2, which uses a
ratio rule. The proof for Algorithm 1 is simpler and is given
after. We have the following preliminary lemma.

Lemma 5: (Sufficient Condition for Rate Stability [21]):
Let Q[r] be a non-negative stochastic process defined over
the integers r ∈ {0, 1, 2, . . .}. Suppose there are constants B,
C, D such that for all frames r ∈ {0, 1, 2, . . .} we have:

E
[
(Q[r + 1]−Q[r])2

]
≤ D (25)

E
[
Q[r]2

]
≤ Br + C (26)

Then limr→∞Q[r]/r = 0 with probability 1.
The condition (25) is immediately satisfied in our system

because second moments of queue changes over any frame are
bounded. Thus, to prove rate stability, it suffices to show that
(26) holds for all queues and all frames. That is, it suffices
to prove the second moment of queue backlog grows at most
linearly.

For each frame r ∈ {0, 1, 2, . . .}, define the following
quadratic function L[r], called a Lyapunov function:

L[r]M=
1
2

∑M
m=1Qm[r]2

Define the Lyapunov drift ∆[r]M=L[r + 1]− L[r].
Lemma 6: Under any (possibly randomized) decision for

α[r] ∈ A that is causal (i.e., that does not know the future
values of arrivals over the frame), we have for each frame r:

E [∆[r]|Q[r]]

≤ B +
∑M
m=1Qm[r]E [λmT (α[r])− µm(α[r])|Q[r]]

where B is a finite constant that satisfies:

B ≥ 1
2

∑M
m=1E

[
arrivalsm[r]2 + µm(α[r])2|Q[r]

]
Such a finite constant B exists because second moments of
arrivals and service over a frame are bounded.

Proof: For simplicity of notation, define bm[r]M=µm(α[r]),
and am[r]M=arrivalsm[r]. The queue update equation is thus:

Qm[r + 1] = max[Qm[r]− bm[r], 0] + am[r]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 13

For any non-negative values Q, a, b we have:

(max[Q− b, 0] + a)2 ≤ Q2 + b2 + a2 + 2Q(a− b)

Using this and squaring the queue update equation yields:

Qm[r+1]2 ≤ Qm[r]2+bm[r]2+am[r]2+2Qm[r][am[r]−bm[r]]

Summing over all m, dividing by 2, and taking conditional
expectations yields:

E [∆[r]|Q[r]] ≤ B +
∑M
m=1Qm[r]E [am[r]− bm[r]|Q[r]]

(27)
Now note that:2

E [am[r]|Q[r]] = E

t[r]+T (α[r])−1∑
τ=t[r]

Am(τ)|Q[r]


= E [λmT (α[r])|Q[r]] (28)

Plugging this identity into (27) proves the result.
We now prove that Algorithm 2 yields rate stability.
Proof: (Theorem 3—Stability Under Algorithm 2) Suppose

that Algorithm 2 is used, so that we choose α[r] every frame
r via (8). We first claim that for each frame r and for all
possible Q[r] we have:

E
[∑M

m=1Qm[r]µm(α[r])|Q[r]
]

E [T (α[r])|Q[r]]
≥

E
[∑M

m=1Qm[r]µm(α∗[r])|Q[r]
]

E [T (α∗[r])|Q[r]]
(29)

where α∗[r] is any other (possibly randomized) coding action
that could be chosen over the options in the set A. This can
be shown as follows: Suppose we want to choose α[r] ∈ A
via a possibly randomized decision, to maximize the ratio of
expectations in the left-hand-side of (29). Such a decision
would satisfy (29) by definition, since it would maximize
the ratio of expectations over all alternative policies α∗[r].
However, it is known that such a maximum is achieved via a
pure policy that chooses a particular α ∈ A with probability
1 (see Chapter 7 of [18]). The best pure policy is thus the one
that observes the queue backlogs Q[r] and chooses α[r] ∈ A
to maximize the deterministic ratio, which is exactly how
Algorithm 2 chooses its action (see (8)).

Thus, (29) holds. We can rewrite (29) as:

E
[∑M

m=1Qm[r]µm(α[r])|Q[r]
]

E [T (α[r])|Q[r]]
≥

M∑
m=1

Qm[r]
E [µm(α∗[r])|Q[r]]

E [T (α∗[r])|Q[r]]
(30)

We can thus plug any alternative (possibly randomized) de-
cision α∗[r] into the right-hand-side of (30). Consider the
randomized algorithm that independently selects α ∈ A
every frame, independent of queue backlogs, according to
the distribution p(α) in Theorem 2. Let α∗[r] represent the

2Equality (28) uses causality and the i.i.d. nature of the arrival process. It is
formally proven by conditioning on T (α[r]) and using iterated expectations.

randomized decision under this policy. Then from (6) we have
for all m ∈ {1, . . . ,M}:

λm ≤
E [µm(α∗[r])]

E [T (α∗[r])]
=

E [µm(α∗[r])|Q[r]]

E [T (α∗[r])|Q[r]]
(31)

where the last equality holds because α∗[r] is chosen indepen-
dently of Q[r]. Using this in (30) yields:

E
[∑M

m=1Qm[r]µm(α[r])|Q[r]
]

E [T (α[r])|Q[r]]
≥

M∑
m=1

Qm[r]λm

Rearranging terms above yields:∑M
m=1Qm[r]E [λmT (α[r])− µm(α[r])|Q[r]] ≤ 0 (32)

Plugging (32) into the drift bound of Lemma 6 yields:

E [∆[r]|Q[r]] ≤ B
Taking expectations and using the definition of ∆[r] yields:

E [L[r + 1]]− E [L[r]] ≤ B ∀r ∈ {0, 1, 2, . . .}
Summing the above over r ∈ {0, 1, . . . , R− 1} yields:

E [L[R]]− E [L[0]] ≤ BR
and hence for all R > 0:∑M

m=1E
[
Qm[R]2

]
≤ 2E [L[0]] + 2BR

Thus, the second moments of all queues grow at most linearly,
from which we guarantee rate stability by Lemma 5.

We now prove that Algorithm 1 yields rate stability.
Proof: (Theorem 3—Stability Under Algorithm 1) Note

that Algorithm 1 is designed to observe queue backlogs Q[r]
every frame r, and take a control action α[r] ∈ A to minimize
the right-hand-side of the drift bound in Lemma 6. Therefore,
we have:

E [∆[r]|Q[r]]

≤ B +

M∑
m=1

Qm[r]E [λmT (α∗[r])− µm(α∗[r])|Q[r]]

where α∗[r] is any other (possibly randomized) decision. If
α∗[r] makes a decision independent of Q[r] we have:

E [∆[r]|Q[r]]

≤ B +

M∑
m=1

Qm[r]E [λmT (α∗[r])− µm(α∗[r])] (33)

Consider again randomized algorithm α∗[r] that independently
and randomly selects an action in A every frame, independent
of queue backlogs, according to the distribution p(α) in Theo-
rem 2. Then (31) again holds, so that for all m ∈ {1, . . . ,M}:

E [λmT (α∗[r])− µm(α∗[r])] ≤ 0

Substituting the above into the right-hand-side of (33) gives:

E [∆[r]|Q[r]] ≤ B
from which we then obtain rate stability in the same way as
in the proof for Algorithm 2.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 14

APPENDIX D — PROOF OF THE QUEUE SIZE BOUND

Here we show that if λ ∈ ρΛA, where 0 ≤ ρ < 1, then both
Algorithm 1 and Algorithm 2 yield finite average backlog of
size O(1/(1− ρ)).

Proof: (Queue Bound for Algorithm 1) Because λ ∈ ρΛA,
we have:

(λm/ρ) ∈ ΛA

Thus, from Theorem 2 there is a randomized algorithm α∗[r]
that makes decisions independent of queue backlogs to yield
the following for all m ∈ {1, . . . ,M}:

λm
ρ
≤ E [µm(α∗[r])]

E [T (α∗[r])]
(34)

Define T ∗ M=E [T (α∗[r])]. Using this and rearranging the above
gives:

E [µm(α∗[r])] ≥ λmT ∗/ρ ∀m ∈ {1, . . . ,M}
Substituting the above into (33) gives:

E [∆[r]|Q[r]] ≤ B +

M∑
m=1

Qm[r]T ∗λm(1− 1/ρ)

Taking expectations and using the definition of ∆[r] gives:

E [L[r + 1]]− E [L[r]] ≤ B +

M∑
m=1

E [Qm[r]]T ∗λm(1− 1/ρ)

Summing over r ∈ {0, . . . , R − 1} (for any integer R > 0)
gives:

E [L[R]]−E [L[0]] ≤ BR+

R−1∑
r=0

M∑
m=1

E [Qm[r]]T ∗λm(1−1/ρ)

Using the fact that E [L[R]] ≥ 0 and E [L[0]] = 0, dividing by
R, and rearranging terms gives:

1

R

R−1∑
r=0

M∑
m=1

λmE [Qm[r]] ≤ Bρ

T ∗(1− ρ)

Because T ∗ ≥ 1, the above bound can be simplified to
Bρ/(1 − ρ). The above holds for all R, and so the expected
queue backlog is O(1/(1 − ρ)). Further, from [21] we can
derive that the following holds with probability 1:

lim sup
R→∞

1

R

R−1∑
r=0

M∑
m=1

λmQm[r] ≤ Bρ

T ∗(1− ρ)

Proof: (Queue Bound for Algorithm 2) Recall that (30)
holds for every frame r and all possible Q[r] for Algorithm 2.
Using α∗[r] as an algorithm that makes randomized decisions
on frame r that are independent of Q[r] gives:

E
[∑M

m=1Qm[r]µm(α[r])|Q[r]
]

E [T (α[r])|Q[r]]
≥∑M

m=1Qm[r]E [µm(α∗[r])]

E [T (α∗[r])]
(35)

where we have removed the conditional expectations on the
right-hand-side. Because (λm/ρ) ∈ ΛA, we know that there

is an algorithm that makes independent and randomized deci-
sions to yield (34). Plugging (34) into the right-hand-side of
(35) gives:

E
[∑M

m=1Qm[r]µm(α[r])|Q[r]
]

E [T (α[r])|Q[r]]
≥

M∑
m=1

Qm[r]λm/ρ

Rearranging gives:
M∑
m=1

Qm[r]E [µm(α[r])|Q[r]] ≥

1

ρ

M∑
m=1

Qm[r]E [λmT (α[r])|Q[r]]

Using this in the drift bound of Lemma 6 gives:

E [∆[r]|Q[r]]

≤ B +

M∑
m=1

Qm[r]E
[
λmT (α[r])− λm

ρ
T (α[r])|Q[r]

]
That is:

E [∆[r]|Q[r]]

≤ B +

M∑
m=1

Qm[r]λm(1− 1/ρ)E [T (α[r])|Q[r]]

≤ B +

M∑
m=1

Qm[r]λm(1− 1/ρ)

where we have used the fact that E [T (α[r])|Q[r]] ≥ 1, and
1 − 1/ρ ≤ 0. We thus have by the same argument as in the
previous proof that for any R > 0:

1

R

R−1∑
r=0

M∑
m=1

λmE [Qm[r]] ≤ ρB

1− ρ

and with probability 1:

lim sup
R→∞

1

R

R−1∑
r=0

M∑
m=1

λmQm[r] ≤ ρB

1− ρ

APPENDIX E — GENERAL COMPRESSED GRAPHS

The weighted compressed graph WC(G) was introduced in
Section IV for the special case of broadcast relay networks.
Such a graph is also useful for general index coding problems.
Consider any directed bipartite demand graph G with user
nodes N and packet nodes P . Define WC(G) as a weighted
graph on user nodes N with link weights Pij defined as the
(integer) number of distinct packets that user i has as side
information that are wanted by user j. We say the graph has
a link (i, j) if and only if Pij > 0. This general definition of
WC(G) is consistent with the definition given for broadcast
relay graphs in Section IV. An example of a graph G and its
weighted compressed graph WC(G) is given in Fig. 10.

In the special case when G is the graph of a broadcast relay
problem, G and WC(G) contain the same information. This
is not true for general demand graphs G. Indeed, the weight

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 15

1

2

3

A

B

C

D

EUser set N

Packet set P

2 1 3
1

2

1

Weighted Compressed Graph WC(G)

1

Fig. 10. An example graph G and its weighted compressed graph WC(G).

Pij in the graph WC(G) tells us that node i has Pij distinct
packets that are wanted by node j, but does not specify which
packets these are, or if these packets also take part in the
weight count on other links ofWC(G). In the example of Fig.
10, packet C affects the link weight for both links (1, 3) and
(1, 2). Also, unlike broadcast relay problems, the sum of the
weights of WC(G) is not necessarily equal to the number of
packets P in G.

Lemma 7: The original demand graph G is acyclic if and
only if WC(G) is acyclic.

Proof: This is simple and omitted for brevity.
Suppose that WC(G) has edge-disjoint cycles, and let C be

the number of such cycles. For each cycle c ∈ {1, . . . , C}, let
w

(c)
min represent the weight of the minimum weight link within

the set of links in the cycle.
Theorem 5: Let G be a demand graph with N nodes and

P packets. Suppose that WC(G) has edge-disjoint cycles, that
there are C such cycles, and that all packets of these cycles
are distinct and are unicast packets. Then:

Tmin(G) = P −
C∑
c=1

w
(c)
min (36)

Furthermore, the minimum clearance time can be achieved
by performing cyclic coding w

(c)
min times for each cycle c ∈

{1, . . . , C}, and then transmitting all the remaining packets
without coding.

Proof: For each cycle c ∈ {1, . . . , C}, select a link with a
link weight equal to w(c)

min (breaking ties arbitrarily). Let P(c)

be the set of all packets associated with this link. All packets
in ∪Cc=1P(c) are distinct (by assumption), and the total number
of these packets is:

| ∪Cc=1 P(c)| =
C∑
c=1

w
(c)
min

Now consider the subgraph G′ formed from G by removing
all packet nodes in the set ∪Cc=1P(c). The number of packets
P ′ in this graph is:

P ′ = P −
C∑
c=1

w
(c)
min

Further, we have Tmin(G′) ≤ Tmin(G). Note that WC(G′)
is formed from WC(G) by removing the min-weight link on
each of the C cycles. Thus, WC(G′) is acyclic, so that G′ is
acyclic, and so Tmin(G′) = P ′ by Theorem 1. It follows that:

Tmin(G) ≥ P ′

Thus, any algorithm for clearing all packets in the graph G
must use at least P ′ slots. However, a clearance time of P ′ can
be achieved by cyclic coding over each of the C edge-disjoint
cycles (noting that these packets are all distinct and unicast)
and using direct transmission for the remaining packets.

Corollary 1: Suppose all cycles of WC(G) are vertex-
disjoint and involve only unicast packets. Then Tmin(G)
satisfies (36).

Proof: Vertex-disjoint implies edge-disjoint. Also, vertex-
disjoint cycles that involve only unicast packets must involve
distinct packets. The result then follows from Theorem 5.

Corollary 2: If the demand graph G has P packets but only
two users (so that N = 2), then:

Tmin(G) = P −min[P12, P21]
Proof: The graph WC(G) contains only 2 users and hence

has at most one cycle, which is trivially edge-disjoint and
involves distinct packets. Further, the cycle (if there is one) can
only involve unicast packets. This is because any packet that
participates in the cycle must be contained as side information
at one of the two nodes, and hence is only desired by the single
remaining node. The result then follows by Theorem 5.

REFERENCES

[1] M. J. Neely, A. S. Tehrani, and Z. Zhang. Dynamic index coding for
wireless broadcast networks. Proc. IEEE INFOCOM, March 2012.

[2] Y. Wu, P. A. Chou, and S-Y Kung. Information exchange in wireless
networks with network coding and physical-layer broadcast. Conference
on Information Sciences and Systems, Johns Hopkins University, March
2005.

[3] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Médard. The importance of
being opportunistic: practical network coding for wireless environments.
Proc. 43rd Annual Allerton Conf. on Communication, Control, and
Computing, Oct. 2005.

[4] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft. Xors
in the air: Practical wireless network coding. Proc. ACM SIGCOMM,
2006.

[5] Y. Birk and T. Kol. Informed-source coding-on-demand (iscod) over
broadcast channels. Proc. IEEE INFOCOM, 1998.

[6] Y. Birk and T. Kol. Coding-on-demand by an informed source (iscod)
for efficient broadcast of different supplemental data to caching clients.
IEEE Transactions on Information Theory, vol. 52, pp. 2825-2830, 2006.

[7] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol. Index coding with side
information. IEEE Transactions on Information Theory, vol. 57, no. 3,
March 2011.

[8] S. El Rouayheb, M. A. R. Chaudhry, and A. Sprintson. On the minimum
number of transmissions in single-hop wireless coding problems. Proc.
IEEE Information Theory Workshop, 2007.

[9] S. El Rouayheb, A. Sprintson, and C. Georghiades. On the index coding
problem and its relation to network coding and matroid theory. IEEE
Transactions on Information Theory, vol. 56, no. 7, pp. 3187-3195, July
2010.

[10] M. Langberg and A. Sprintson. On the hardness of approximating the
network coding capacity. IEEE Transactions on Information Theory,
vol. 57, no. 2, pp. 1008-1014, Feb. 2011.

[11] N. Alon, E. Lubetzky, U. Stav, A. Weinstein, and A. Hasidim. Broad-
casting with side information. Proc. 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 823-832, Oct. 2008.

[12] E. Lubetzky and U. Stav. Nonlinear index coding outperforming the
linear optimum. IEEE Transactions on Information Theory, vol. 55, no.
8, pp. 3544-3551, Aug. 2009.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, PP. 7525-7540, NOV. 2013 16

[13] M. A. R. Chaudhry and A. Sprintson. Efficient algorithms for index
coding. Proc. IEEE INFOCOM Workshops, April 2008.

[14] I. S. Reed and X. Chen. Error-Control Coding for Data Networks.
Kluwer Academic Publishers, Norwell, MA, 2001.

[15] Y. Wu, J. Padhye, R. Chandra, V. Padmanabhan, and P. A. Chou.
The local mixing problem. Proc. Information Theory and Applications
Workshop, La Jolla, Feb. 2006.

[16] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong. A random linear network coding approach to multicast. IEEE
Transactions on Information Theory, vol. 52, no. 10, pp 4413-4430, Oct.
2006.

[17] A. Saber Tehrani, A. G. Dimakis, and M. J. Neely. Bipartite index
coding. Proc. IEEE International Symposium on Information Theory
(ISIT), 2012.

[18] M. J. Neely. Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.

[19] L. Tassiulas and A. Ephremides. Dynamic server allocation to parallel
queues with randomly varying connectivity. IEEE Transactions on
Information Theory, vol. 39, no. 2, pp. 466-478, March 1993.

[20] B. S. Vineeth and U. Mukherji. Average-delay optimal policies for the
point-to-point channel. Proc. 7th Intl. Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), June
2009.

[21] M. J. Neely. Stability and probability 1 convergence for queueing
networks via Lyapunov optimization. Journal of Applied Mathematics,
vol. 2012, doi:10.1155/2012/831909, 2012.

