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Dynamic Index Coding for Wireless Broadcast
Networks

Michael J. Neely , Arash Saber Tehrani , Zhen Zhang

Abstract— We consider a wireless broadcast station that trans-
mits packets to multiple users. The packet requests for each
user may overlap, and some users may already have certain
packets. This presents a problem of broadcasting in the presence
of side information, and is a generalization of the well known
(and unsolved) index coding problem of information theory.
Rather than achieving the full capacity region, we develop a
code-constrained capacity region, which restricts attention to a
pre-specified set of coding actions. We develop a dynamic max-
weight algorithm that allows for random packet arrivals and
supports any traffic inside the code-constrained capacity region.
Further, we provide a simple set of codes based on cycles in the
underlying demand graph. We show these codes are optimal for
a class of broadcast relay problems.

I. INTRODUCTION

Consider a wireless broadcast station that transmits packets
to N wireless users. Packets randomly arrive to the broadcast
station. Each packet p is desired by one or more users
in the set {1, . . . , N}. Further, there may be one or more
users that already have the packet stored in their cache. The
broadcast station must efficiently transmit all packets to their
desired users. We assume time is slotted with unit slots t ∈
{0, 1, 2, . . .}, and that a single packet can be transmitted by the
broadcast station on every slot. This packet is received error-
free at all users. We assume that only the broadcast station
can transmit, so that users cannot transmit to each other.

If the broadcast station has P packets at time 0, and no
more packets arrive, then the mission can easily be completed
in P slots by transmitting the packets one at a time. However,
this approach ignores the side-information available at each
user. Indeed, it is often possible to complete the mission in
fewer than P slots if packets are allowed to be mixed before
transmission. A simple and well known example for 2 users is
the following: Suppose user 1 has packet B but wants packet
A, while user 2 has packet A but wants packet B. Sending each
packet individually would take 2 slots, but these demands can
be met in just one slot by transmitting the mixed packet A+B,
the bit-wise XOR of A and B. Such examples are introduced
in [1][2][3] in the context of wireless network coding.

The general problem, where each packet is contained as
side information in an arbitrary subset of the N users, is much
more complex. This problem is introduced by Birk and Kol
in [4][5], and is known as the index coding problem. Methods
for completing a general index coding mission in minimum
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time are unknown. However, the recent work [6] shows that if
one restricts to a class of linear codes, then the minimum time
is equal to the rank of the minimum rank matrix that solves
a certain matrix completion problem. The matrix completion
problem is NP-hard in general, and hence index coding is
complex even when restricted to a simpler class of codes.

Nevertheless, it is important to develop systematic ap-
proaches to these problems. That is because current wireless
cellular systems cannot handle the huge traffic demands that
are expected in the near future. This is largely due to the con-
sistent growth of wireless video traffic. Fortunately, much of
the traffic is for popular content. That is, users often download
the same information. Thus, it is quite likely that a system
of N users will have many instances of side information,
where some users already have packets that others want. This
naturally creates an index coding situation. Thus, index coding
is both rich in its mathematical complexity and crucial for
supporting future wireless traffic.

The problem we consider in this paper is even more complex
because packets can arrive randomly over time. This is a
practical scenario and creates the need for a dynamic approach
to index coding. We assume there are M traffic types, where
a type is defined by the subset of users that desire the packets
and the subset that already has the packets. Let λm be the
arrival rate, in packets/slot, for type M traffic. We approach
this problem by restricting coding actions to an abstract set A.
We then show how to achieve the code constrained capacity
region ΛA, being the set of all rate vectors (λm)Mm=1 that can
be supported using coding actions in the set A. The set ΛA is
typically a strict subset of the capacity region Λ, which does
not restrict the type of coding action. Our work can be applied
to any set A, and hence can be used in conjunction with any
desired codes. However, we focus attention on a simple class
of codes that involve only bit-wise XOR operations, based
on cycles in the underlying demand graph. In special cases
of broadcast relay problems, we show that these codes can
achieve the full capacity region Λ.

The capacity region Λ is directly related to the conceptually
simpler static problem of clearing a fixed batch of packets in
minimum time. Further, index coding concepts are most easily
developed in terms of the static problem. Thus, this paper is
divided into two parts: We first introduce the index coding
problem in the static case, and we describe example coding
actions in that case. Section III extends to the dynamic case
and develops two max-weight index coding techniques, one
that requires knowledge of the arrival rates (λm), and one
that does not. The max-weight algorithms developed in this
paper are new and contribute to the general theory of dynamic
scheduling. They can be used in other types of networks where
controllers make sequences of actions, each action taking a
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different number of slots and delivering a different vector of
packets.

While the static index coding problem has been studied
before [6][5][4], our work provides new insight even in the
static case. We introduce a new directed bipartite demand
graph that allows for arbitrary demand subsets and possibly
“multiple multicast” situations, where some packets are de-
sired by more than one user. We also form a useful weighted
compressed graph that facilitates the solution to the minimum
clearance time problem in certain cases. This extends the graph
models in [6], which do not consider the possibility of multiple
multicast sessions. Work in [6] develops a maximum acyclic
subgraph bound on minimum clearance time for problems
without multiple multicast sessions. We extend this bound to
our general problem using a different and independent proof
technique. Further, we consider a class of broadcast relay
problems for which the bound can be achieved with equality.

The next section introduces index coding in the static case,
shows its relation to a bipartite demand graph, and presents
the acyclic subgraph bound. Section III introduces the general
dynamic formulation and develops our max-weight algorithms.
Section IV considers an important class of broadcast relay
networks for which a simple set of codes are optimal.

II. THE STATIC MINIMUM CLEARANCE TIME PROBLEM

This section introduces the index coding problem in the
static case, where we want to clear a fixed batch of packets in
minimum time. Consider a wireless system with N users, P
packets, and a single broadcast station. We assume N and P
are positive integers. Let N and P represent the set of users
and packets, respectively:

N = {1, . . . , N} , P = {1, . . . , P}

The broadcast station has all packets in the set P . Each user
n ∈ N has an arbitrary subset of packets Hn ⊆ P , and
wants to receive an arbitrary subset of packets Rn ⊆ P , where
Hn ∩ Rn = φ, where φ represents the empty set. Assume
that all packets consist of B bits, all packets are independent
of each other, and the B-bit binary string for each packet is
uniformly distributed over each of the 2B possibilities.

We can represent this system by a directed bipartite demand
graph G defined as follows (see Fig. 1):
• User nodes N are on the left.
• Packet nodes P are on the right.
• A directed link (n, p) from a user node n ∈ N to a packet

node p ∈ P exists if and only if user n has packet p. That
is, if and only if p ∈ Hn.

• A directed link (p, n) from a packet node p ∈ P to a
user node n ∈ N exists if and only if user n wants to
receive packet p. That is, if and only if p ∈ Rn.

As an example for the 3-user, 5-packet graph of Fig. 1, the
have and receive sets for nodes 1 and 2 are:

H1 = {5} , R1 = {1, 2}
H2 = φ , R2 = {1, 2, 4}

We restrict attention to packets that at least one node wants.
Thus, without loss of generality, throughout we assume the
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Fig. 1. An example directed bipartite demand graph with 3 users and 5
packets.

graph G is such that all packet nodes p ∈ P contain at least
one outgoing link. Thus:

P = {1, . . . , P} = ∪Nn=1Rn (1)

In this static problem, the broadcast station has all packets
in the set P at time 0, and no more packets ever arrive. Every
slot t ∈ {0, 1, 2, . . .} the broadcast station can transmit one
B-bit message over the broadcast channel. This message is
received without error at all of the user nodes in the set N .
The goal is for the broadcast station to send messages until
all nodes receive the packets they desire.

Define a mission-completing coding action with T slots to
be a sequence of messages that the broadcast station transmits
over the course of T slots, such that all users are able to decode
their desired packets at the end of the T slots. We restrict
attention to deterministic zero-error codes that enable decoding
with probability 1. The initial information held by each user
n ∈ N is given by the set of packets Hn (possibly empty).
Let MM

={M1, . . . ,MT } represent the messages transmitted
by the broadcast station over the course of the T slot coding
action. At the end of this action, each node n ∈ N has
information {Hn,M}. Because the coding action is assumed
to complete the mission, this information is enough for each
node n to decode its desired packets Rn. That is, we can
write:

{Hn,M} ⇐⇒ {Hn,M,Rn} (2)

where the above represents equivalence in the information
set, meaning that the information on the left-hand-side can
be perfectly reconstructed from the information on the right-
hand-side, and vice versa. Clearly the information on the left
in (2) is a subset of the information on the right, and hence
can trivially be reconstructed. The information on the right in
(2) can be reconstructed from that on the left because the code
is mission-completing.

For a given graph G with P packet nodes, define Tmin(G) as
the minimum clearance time of the graph, being the minimum
number of slots required to complete the mission, considering
all possible coding techniques. Clearly Tmin(G) ≤ P . Our
goal is to understand Tmin(G).

For a directed graph, we say that a simple directed cycle of
length K is a sequence of nodes {n1, n2, . . . , nK , n1} such
that (ni, ni+1) is a link in the graph for all i ∈ {1, . . . ,K−1},
(nK , n1) is a link in the graph, and all nodes {n1, . . . , nK}
involved in the cycle are distinct. For simplicity, throughout



PROC. IEEE INFOCOM 2012 3

this paper we use the term cycle to represent a simple directed
cycle. We say that the graph G is acyclic if it contains no
cycles. Note that directed acyclic graphs have a much different
structure than undirected acyclic graphs. Indeed, the graph
in Fig. 1 is acyclic even though its undirected counterpart
(formed by replacing all directed links with undirected links)
has cycles.

Our first result is to prove that if a directed bipartite demand
graph G is acyclic, then coding cannot reduce the minimum
clearance time. This result was first proven in [6] in the case
without “multiple multicasts,” so that each packet is desired
by at most one user. That result uses an argument based on
machinery of the mutual information function. It also treats a
more general case where codes can have errors. Further, their
proof is developed as a consequence of a more general and
more complex result. Our work restricts to zero-error codes,
but allows the possibility of multiple-multicast sessions. We
also use a different proof technique, developed independently,
which emphasizes the logical consequences of users being able
to decode. Our proof uses only the following two facts:

Fact 1: Every directed acyclic graph with a finite number
of nodes has at least one node with no outgoing links. Such
a node is called a “leaf” node.

Fact 2: If the graph contains only one user node, then
Tmin(G) = P , where P is the number of packets that this
user desires.

Fact 1 follows simply by starting at any node in the graph
and traversing a path from node to node, using any outgoing
link, until we find a leaf node (such a path cannot continue
forever because the graph is finite and has no cycles). Fact 2
is a basic information theory observation about the capacity
of a single error-free link.

Theorem 1: If the graph G is acyclic, then Tmin(G) = P ,
where P is the total number of packets in the graph.

Proof: See Appendix A.
As an example, because the graph G in Fig. 1 is acyclic,

we have Tmin(G) = 5. Theorem 1 shows that coding cannot
help if G is acyclic, so that the best one can do is just transmit
all packets one at a time. Therefore, any type of coding must
exploit cycles on the demand graph.

A. Lower Bounds from Acyclic Subgraphs

Theorem 1 provides a simple lower bound on Tmin(G) for
any graph G. Consider a graph G, and form a subgraph G′ by
performing one or more of the following pruning operations:

• Remove a packet node, and all of its incoming and
outgoing links.

• Remove a user node, and all of its incoming and outgoing
links.

• Remove a packet-to-user link (p, n).

After performing these operations, we must also delete any
residual packets that have no outgoing links. Any sequence of
messages that completes the mission for the original graph G
will also complete the mission for the subgraph G′. This leads
to the following simple lemma.

Lemma 1: For any subgraph G′ formed from a graph G by
one or more of the above pruning operations, we have:

Tmin(G′) ≤ Tmin(G)
Combining this lemma with Theorem 1, we see that we

can take a general graph G with cycles, and then perform the
above pruning operations to reduce to an acyclic subgraph G′.
Then Tmin(G) is lower bounded by the number of packets in
this subgraph. Thus, the best lower bound corresponds to the
acyclic subgraph generated from the above operations, and
that has the largest number of remaining packets. Note that
the above pruning operations do not include the removal of a
user-to-packet link (n, p) (without removing either the entire
user or the entire packet), because such links represent side
information that can be helpful to the mission.

B. Particular code actions

Theorem 1 considers all possible zero-error coding tech-
niques. However, because the general index coding problem
is difficult, it is useful to restrict the solution space to consider
only sequences of simple types of coding actions. Recall that
coding actions must exploit cycles. One natural action is the
following: Suppose we have a cycle in G that involves a subset
of K users. For simplicity label the users {1, . . . ,K}. In the
cycle, user 2 wants to receive a packet X1 that user 1 has,
user 3 wants to receive a packet X2 that user 2 has, and so
on. Finally, user 1 wants to receive a packet XK that user K
has. The structure can be represented by:

1→ 2→ 3→ . . .→ K → 1 (3)

where an arrow from one user to another means the left user
has a packet the right user wants. Of course, the users in this
cycle may want many other packets, but we are restricting
attention only to the packets X1, . . . , XK . Assume these
packets are all distinct.

In such a case, we can satisfy all K users in the cycle with
the following K−1 transmissions: For each k ∈ {1, . . . ,K−
1}, the broadcast station transmits a message Mk

M
=Xk +

Xk+1, where addition represents the mod-2 summation of the
bits in the packets. Each user k ∈ {2, . . . ,K} receives its
desired information by adding Mk−1 to its side information:

Xk +Mk−1 = Xk + (Xk−1 +Xk) = Xk−1

Finally, user 1 performs the following computation (using the
fact that it already has packet X1):

X1 +M1 +M2 + . . .+MK−1

= X1 + (X1 +X2) + (X2 +X3) + . . .+ (XK−1 +XK)

= (X1 +X1) + (X2 +X2) + . . .+ (XK−1 +XK−1)

+XK

= XK

Thus, such an operation can deliver K packets in only K−1
transmissions. We call such an action a K-cycle coding action.
We define a 1-cycle coding action to be a direct transmission.
Note that 2-cycle coding actions are the most “efficient,”
having a packet/transmission efficiency ratio of 2/1, compared



PROC. IEEE INFOCOM 2012 4

to K/(K − 1) for K ≥ 2, which approaches 1 (the efficiency
of a direct transmission) as K → ∞. While it is generally
sub-optimal to restrict to such cyclic coding actions, doing
so can still provide significant gains in comparison to direct
transmission. Further, we show in Section IV that such actions
are optimal for certain classes of broadcast relay problems.

Another important type of code action takes advantage of
“double-cycles” in G: Suppose for example that user 1 wants
packet A and has packets B and C, user 2 wants packet B
and has packets A and C, and user 3 wants packet C and has
packets A and B. Then these demands can be fulfilled with
the single transmission A + B + C, being a binary XOR of
packets A, B, C. The efficiency ratio of this action is 3/1.

III. DYNAMIC INDEX CODING

Now consider a dynamic setting where the broadcast station
randomly receives packets from M traffic flows. Each flow
m ∈ {1, . . . ,M} contains fixed-length packets that must be
delivered to a subset Nm of the users, and these packets are
contained as side-information in a subset Sm of the users. We
assume Nm ∩ Sm = φ, since any user n ∈ Nm who wants
the packet clearly does not already have the packet as side
information. In the general case, M can be the number of all
possible disjoint subset pair combinations. However, typically
the value of M will be much smaller than this, such as when
each traffic flow represents packets from a very large file, and
there are only M active file requests.

Assume time is slotted with unit slots t ∈ {0, 1, 2, . . .}, and
let A(t) = (A1(t), . . . , AM (t)) be the number of packets that
arrive from each flow on slot t. For simplicity of exposition,
we assume the vector A(t) is i.i.d. over slots with expectation:

E {A(t)} = λ = (λ1, . . . , λM )

where λm is the arrival rate of packets from flow m, in units
of packets/slot. For simplicity, we assume that Am(t) ∈ {0, 1}
for all m and all t, so that at most one new packet can arrive
per flow per slot. This is reasonable because the maximum
delivery rate in the system is one packet per slot, and so any
packets that arrive as a burst can be “smoothed” and delivered
to the network layer at the broadcast station one slot at a time.
Packets of each flow m are stored in a separate queue kept
at the broadcast station, and exit the queue upon delivery to
their intended users.

We now segment the timeline into frames, each frame
consisting of an integer number of slots. At the beginning
of each frame r, the network controller chooses a coding
action α[r] within an abstract set A of possible actions. For
each α ∈ A, there is a frame size T (α) and a clearance
vector µ(α). The frame size T (α) is the number of slots
required to implement action α, and is assumed to be a
positive integer. The clearance vector µ(α) has components
(µ1(α), . . . , µM (α)), where µm(α) is the number of type
m packets delivered as a result of action α. We assume
µm(α) is a non-negative integer. When frame r ends, a new
frame starts and the controller chooses a (possibly new) action
α[r+1] ∈ A. We assume each coding action only uses packets
that are delivered as a result of that action, so that there is no

“partial information” that can be exploited on future frames.
We further assume there are a finite (but arbitrarily large)
number of coding actions in the set A, and that there are
positive numbers Tmax and µmax such that 1 ≤ T (α) ≤ Tmax
and 0 ≤ µ(α) ≤ µmax for all α ∈ A.

Assume that frame 0 starts at time 0. Define t[0] = 0, and
for r ∈ {0, 1, 2, . . .} define t[r] as the slot that starts frame r.
Let Q[r] = (Q1[r], . . . , QM [r]) be the queue backlog vector
at the beginning of each frame r ∈ {0, 1, 2, . . .}. Then:

Qm[r+ 1] = max[Qm[r]−µm(α[r]), 0] + arrivalsm[r] (4)

where arrivalsm[r] is the number of type m arrivals during
frame r:

arrivalsm[r]M=

t[r]+T (α[r])−1∑
τ=t[r]

Am(τ) (5)

The max[·, 0] operator in the queue update equation (4) in
principle allows actions α[r] ∈ A to be chosen independently
of the queue backlog at the beginning of a frame. In this case,
if the action α[r] attempts to deliver one or more packets from
queues that are empty, null packets are created and delivered.
In practice, these null packets do not need to be delivered.

Our focus is on index coding problems with action sets A
defined by a specific set coding options, such as the set of
all cyclic coding actions. For example, an action α that is a
2-cyclic coding action that uses packets of type m and k has
T (α) = 1 and µ(α) being a binary vector with 1s in entries
m and k and zeros elsewhere. However, the above model is
general and can also apply to other types of problems, such
as multi-hop networks where actions α ∈ A represent some
sequence of multi-hop network coding.

A. The Code-Constrained Capacity Region

We say that queue Qm[r] is rate stable if:

lim
R→∞

Qm[R]

R
= 0 (with probability 1)

It is not difficult to show that Qm[R] is rate stable if and only
if the arrival rate λm is equal to the delivery rate of type m
traffic [7]. The code-constrained capacity region ΛA is the
set of all rate vectors (λ1, . . . , λM ) for which there exists an
algorithm for selecting α[r] ∈ A over frames that makes all
queues rate stable.

Theorem 2: A rate vector λ is in the code-constrained
capacity region ΛA if and only if there exist probabilities p(α)
such that

∑
α∈A p(α) = 1 and:

λm ≤
∑
α∈A p(α)µm(α)∑
α∈A p(α)T (α)

∀m ∈ {1, . . . ,M} (6)

Proof: The proof that such probabilities p(α) necessarily
exist whenever λ ∈ ΛA is given in Appendix B. Below we
prove sufficiency. Suppose such probabilities p(α) exist that
satisfy (6). We want to show that λ ∈ ΛA. To do so, we
design an algorithm that makes all queues Qm[r] in (4) rate
stable. By rate stability theory in [7], it suffices to design an
algorithm that has a frame average arrival rate to each queue
Qm[r] that is less than or equal to the frame average service
rate (both in units of packets/frame).
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Consider the algorithm that, every frame r, independently
chooses action α ∈ A with probability p(α). Let α∗[r]
represent this random action chosen on frame r. Then
{T (α∗[r])}∞r=0 is an i.i.d. sequence, as is {µm(α∗[r])}∞r=0 for
each m ∈ {1, . . . ,M}. By the law of large numbers, the frame
average arrival rate arrivalsm and the frame average service
µm (both in packets/frame) are equal to the following with
probability 1:

µm = E {µm(α∗[r])} =
∑
α∈Ap(α)µm(α)

arrivalsm = λmE {T (α∗[r])} = λm
∑
α∈Ap(α)T (α)

We thus have for each m ∈ {1, . . . ,M}:

arrivalsm
µm

=
λm
∑
α∈A p(α)T (α)∑

α∈A p(α)µm(α)
≤ 1

where the final inequality follows by (6).

B. Max-Weight Queueing Protocols

Theorem 2 shows that all traffic can be supported by
a stationary and randomized algorithm that independently
chooses actions α∗[r] ∈ A with probability distribution p(α).
This does not require knowledge of the queue backlogs.
However, computing probabilities p(α) that satisfy (6) would
require knowledge of the arrival rates λm, and is a difficult
computational task even if these rates are known. We provide
two dynamic algorithms that use queue backlog information.
These can also be viewed as online computation algorithms
for computing probabilities p(α). Both are similar in spirit
to the max-weight approach to dynamic scheduling in [8],
but the variable frame lengths require a new approach that
contributes to the general theory of dynamic scheduling. Our
first algorithm assumes knowledge of the arrival rates λm.

Max-Weight Code Selection Algorithm 1 (Known λ): At
the beginning of each frame r, observe the queue backlogs
Qm[r] and perform the following:
• Choose code action α[r] ∈ A as the maximizer of:

M∑
m=1

Qm[r][µm(α[r])− λmT (α[r])] (7)

where ties are broken arbitrarily.
• Update the queue equation via (4).
The next algorithm uses a ratio rule, and does not require

knowledge of the rates λm:
Max-Weight Code Selection Algorithm 2 (Unknown λ):

At the beginning of each frame r, observe the queue backlogs
Qm[r] and perform the following:
• Choose code action α[r] ∈ A as the maximizer of:

M∑
m=1

Qm[r]

[
µm(α[r])

T (α[r])

]
(8)

where ties are broken arbitrarily.
• Update the queue equation via (4).
Theorem 3: Suppose that λ ∈ ΛA. Then all queues are rate

stable under either of the two algorithms above.
Proof: See Appendix C.

It can further be shown that if there is a value ρ such that
0 ≤ ρ < 1, and if λ ∈ ρΛA, being a ρ-scaled version of ΛA,
then both algorithms give average queue size O(1/(1 − ρ)).
Thus, the average backlog bound increases to infinity as the
arrival rates are pushed closer to the boundary of the capacity
region. We omit the proof for brevity (see [9]).

Define Ã as the action space that restricts to direct trans-
missions, 2-cycle code actions, 3-cycle code actions, and the
1-slot A + B + C code action that exploits double cycles,
as described in Section II-B. Algorithm 2 has a particularly
simple implementation on action space Ã and when each
packet has at most one destination. Indeed, we note that cycles
can be defined purely on the user set N , and any candidate
cycle that involves a user-to-user part i → j should use a
packet of commodity m ∈ {1, . . . ,M} that maximizes Qm[r]
over all commodities m that consist of packets intended for
user j and contained as side information at user i.

C. Example Simulation for 3 Users
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Fig. 2. Simulation of dynamic index coding for a 3 user system.

Fig. 2 presents simulation results for a system with N = 3
users, with action space Ã as defined above. We consider
only algorithm 2, which does not require knowledge of rates
λm, and compare against uncoded transmissions. All packets
are intended for at most one user. Packets intended for user
n ∈ {1, 2, 3} arrive as independent Bernoulli processes with
identical rates λ. We assume each packet is independently in
the cache of the other two users with probability 1/2. Thus,
there are four types of packets intended for user 1: Packets
not contained as side information anywhere, packets contained
as side information at user 2 only, packets contained as side
information at user 3 only, and packets contained as side
information at both users 2 and 3. Users 2 and 3 similarly
have 4 traffic types, for a total of M = 12 traffic types.

Each data point in Fig. 2 represents a simulation over
5 million frames at a given value of λ. The figure plots
the resulting total average number of packets in the system
(summed over all 12 queues). The case of direct (uncoded)
transmission is also shown. Uncoded transmission can support
a maximum rate of λ = 1/3 (for a total traffic rate of 1). It
is seen that algorithm 2 can significantly outperform uncoded
transmission, achieving stability at rates up to λ = 0.57 (for
a total traffic rate of 1.71).
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Fig. 3. An illustration of a 2-user broadcast relay system, with the 3 possible
transmission modes shown. In mode 3, packet p3 is received at both users.

IV. BROADCAST RELAY NETWORKS

Consider now the following related problem: There are
again N users and a single broadcast station. However, the
broadcast station initially has no information, and acts as a
relay to transfer independent unicast data between the users.
Further, the users only know their own data, and initially have
no knowledge of data sourced at other users. Time is again
slotted, and every slot we can choose from one of N+1 modes
of transmission. The first N transmission modes involve an
error-free packet transmission from a single user to the relay.
The (N+1)th transmission mode is where the relay broadcasts
a single packet that is received error-free at each of the N
users. Fig. 3 illustrates an example system with 2 users, where
the 3 possible transmission modes are shown. For simplicity,
we assume the user transmissions cannot be overheard by other
users, and the users first send all packets to the relay. The relay
then can make coding decisions for its downlink transmissions.

A. The Minimum Clearance Time Relay Problem

First consider a static problem where a batch of packets
must be delivered in minimum time. Let Pij represent the
number of packets that user i wants to send to user j, where
i, j ∈ {1, . . . , N}. All packets are independent, and the total
number of packets is P , where:

P =
∑N
i=1

∑N
j=1Pij

This problem is related to the index coding problem as follows:
Suppose on the first P slots, all users send their packets to the
relay on the uplink channels. It remains for the relay to send all
users the desired data, and these users have side information.
The resulting side information graph G is the same as in the
general index coding problem. However, it has the following
special structure: The only user that has side information about
a packet is the source user of the packet. Specifically:
• Each packet is contained as side information in exactly

one user. Thus, each packet node of G has a single
incoming link from some user that is its source.

• Each packet has exactly one user as its destination. Thus,
each packet node of G has a single outgoing link to some
user that is its destination.

This special structure leads to a simplified graphical model
for demands, which we call the weighted compressed graph
WC(G) of G. The graphWC(G) is formed from G as follows:
It is a directed graph defined on the user nodes N only,
and contains a link (a, b) if and only if the original graph G
specifies that user node a has a packet that user node b wants.

Further, each link (a, b) is given a positive integer weight Pab,
the number of packets user a wants to send to user b. It is easy
to show that WC(G) is acyclic if and only if G is acyclic.
Hence, coding can only help if WC(G) contains cycles, and
so Tmin(G) = P whenever WC(G) is acyclic.

We say the weighted compressed graphWC(G) has disjoint
cycles if each link participates in at most one simple cycle. An
example is shown in Fig. 4. Consider such a graph that has
C disjoint cycles. Let wminc be the min-weight link on each
disjoint cycle c ∈ {1, . . . , C}.

Theorem 4: If the broadcast relay problem has a weighted
compressed graph WC(G) with disjoint cycles, then:

Tmin(G) = P −
∑C
c=1 w

min
c (9)

and so the full clearance time (including the P uplink transmis-
sions) is the above number plus P . Further, optimality can be
achieved over the class of cyclic coding actions, as described
in Section II-B.

As an example, the graph WC(G) in Fig. 4a has P = 48,
three disjoint cycles with wmin1 = 4, wmin2 = 4, wmin3 = 1,
and so Tmin(G) = 48− 4− 4− 1 = 39.
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Fig. 4. (a) A graph WC(G) with three disjoint cycles, and (b) its pruned
graph WC(G′).

Proof: For brevity, we present only an abbreviated argument
to prove (9). First prune the graph WC(G) by removing the
min-weight link on each of the disjoint cycles (breaking ties
arbitrarily). This corresponds to removing those packets from
the original graph G, to produce a new graph G′ with exactly
P −

∑C
c=1 w

min
c packets. The weighted compressed graph

WC(G′) is the subgraph of WC(G) with the min-weight links
on each disjoint cycle removed (see Fig. 4a and Fig. 4b). Both
G′ and WC(G′) are acyclic, and so:

Tmin(G) ≥ Tmin(G′) = P −
∑C
c=1 w

min
c

It remains only to construct a coding algorithm that achieves
this lower bound. This can be done easily by using wminc

separate cyclic coding actions for each of the disjoint cycles
(using a k-cycle coding action for any cycle of length k), and
then directly transmitting the remaining packets.

B. Traffic Structure and Optimality of Cyclic Coding

Suppose we have a broadcast relay problem with N users,
packet matrix (Pij), and with the following additional struc-
ture: Each user i ∈ {1, . . . , N} wants to send data to only
one other user. That is, the matrix (Pij) has at most one non-
zero entry in each row i ∈ {1, . . . , N}. We now show that
the resulting graph WC(G) has disjoint cycles. To see this,
suppose it is not true, so that there are two overlapping cycles.
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Then there must be a shared link (a, b) that continues to a link
(b, k) for cycle 1 and (b,m) for cycle 2, where k 6= m. This
means node b has two outgoing links, a contradiction because
matrix (Pij) has at most one non-zero entry in row b, and
hence at most one outgoing link from node b. We conclude
thatWC(G) has disjoint cycles, and so cyclic coding is optimal
via Theorem 4.

A similar argument holds if each user wants to receive from
at most one other user, so that (Pij) has at most one non-zero
entry in every column. Again,WC(G) has disjoint cycles, and
so cyclic coding is optimal.

C. Dynamic Broadcast Relay Scheduling

Now consider the dynamic case where packets from source
user i and destination user j arrive with rate λij packets/slot.
Suppose we have an abstract set of coding actions A, where
each action involves a subset of packets, and first transmits
these packets to the relay before any coding at the relay.
Let T (α) be the number of slots to complete the action, and
(µij(α)) be the matrix of packets delivered by the action.
It can be shown that capacity can be approached arbitrarily
closely by repetitions of minimum-clearance time scheduling
on large blocks of the incoming data (similar to the capacity
treatment in [10] for a limit of large packet size). Hence, if
Tmin(G) can be optimally solved using only cyclic-coding
actions, then capacity is also achieved in the max-weight
algorithms when A is restricted to cyclic-coding actions. It
follows that such actions are optimal for rate matrices (λij)
with at most one non-zero entry per row, and for rate matrices
(λij) with at most one non-zero entry per column.

D. Counterexamples

Fig. 5. Two example graphs WC(G) for broadcast relay problems.

Can we minimize clearance time by grabbing any available
2-cycle, then any available 3-cycle if no 2-cycle is available,
and so on? Not necessarily. A simple counterexample is shown
in Fig. 5a. The graph has 5 users and 7 packets {A, . . . , G},
where each link has a single packet. Using the middle 3-cycle
2 → 3 → 4 → 2 by transmitting B + D and D + E leaves
a remaining acyclic graph with 4 packets, and hence would
take 4 more transmissions, for a total of 6 slots. However,
using the two side cycles (with 2 transmissions each) and then
transmitting the remaining packet E clears everything in 5
slots, which is optimal because the maximum acyclic subgraph
has 5 packets (just remove links B and D).

One may wonder if all broadcast relay graphs can be
optimally cleared with cyclic coding. We can show this is
true for N = 2 and N = 3 [9]. However, this is not true

in general for N > 3. Fig. 5b shows a counterexample with
N = 6. Suppose each link has a single packet, so that we
have 9 packets {A, . . . , I}. It can be shown that the maximum
acyclic subgraph has 7 packets, and so Tmin(G) ≥ 7, but
the best cyclic coding method uses 8 slots. Here is a way to
achieve 7 slots: Send messages M1 = E+G+F , M2 = H+E,
M3 = H+D, M4 = A+B+H , M5 = C+B, M6 = C+G,
M7 = C + I + D. The decodings at users 2, 3, 4, 5, 6 are
straightforward by combining their side information with just
a single message. The decoding at user 1 is done as follows:
M1 +M2 +M3 +M6 +M7 = F + I . Since user 1 knows F ,
it can decode I . M3 +M4 +M5 +M7 = A+ I , since user 1
knows I it can get A.

APPENDIX A — PROOF OF THEOREM 1

Proof: (Theorem 1) We already know that Tmin(G) ≤ P .
It suffices to show that Tmin(G) ≥ P . Consider any mission-
completing coding action that takes T slots. We show that
T ≥ P . Let M be the sequence of messages transmitted.
Then every node n ∈ N is able to decode its desired packets,
being packets in the set Rn, from the information {Hn,M},
being the information it has at the end of the coding action.
That is, we have:

{Hn,M} ⇐⇒ {Hn,M,Rn} ∀n ∈ {1, . . . , N} (10)

Because the graph is acyclic, there must be at least one
node with no outgoing links (by Fact 1). Choose such a node,
and label this node n1. The node n1 cannot be a packet node,
because we have assumed that all packet nodes have outgoing
links. Thus, n1 ∈ N . Because node n1 has no outgoing links,
it has Hn1

= φ and thus has no initial side information about
any of the packets. Thus, it is able to decode all packets in
the set Rn1

by the messages M alone. That is:

M ⇐⇒ {M,Rn1
} (11)

We want to show that this node n1 can decode all packets in
the set P , so that:

M ⇐⇒ {M,P} (12)

If we can show that (12) holds, then the sequence of messages
M is also sufficient to deliver P independent packets to node
n1, and node n1 did not have any initial side information about
these packets. Thus, the number of slots T used in the coding
action must be at least P by Fact 2, proving the result. Thus,
it suffices to prove (12).

We prove (12) by induction on k, for k ∈ {1, . . . , N −
1}: Assume that there is a labeling of k distinct user nodes
{n1, n2, . . . , nk} such that:

{M} ⇐⇒ {M,Rn1 , . . . ,Rnk
} (13)

This property holds for the base case k = 1 by (11). We now
assume that (13) holds for a general k ∈ {1, . . . , N − 1}, and
prove it must also hold for k+1. Take the graph G, and delete
the user nodes {n1, . . . , nk}, also deleting all links outgoing
from and incoming to these nodes. This may create packet
nodes with no outgoing links: Delete all such packet nodes.
Note that all deleted packet nodes (if any) must be in the set
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{Rn1
, . . . ,Rnk

}, being the set of packets desired by the users
that are deleted. The resulting subgraph must still be acyclic,
and hence it must have a node nk+1 with no outgoing links.
This node must be a user node, as we have deleted all packet
nodes with no outgoing links.

Because the user node nk+1 has no outgoing links, it
either had Hnk+1

= φ (so that it never had any outgoing
links), or all of its outgoing links were pointing to packet
nodes that we have deleted, and so those packets were in
the set {Rn1

, . . . ,Rnk
}. That is, we must have Hnk+1

⊆
{Rn1

, . . . ,Rnk
}. Therefore:

{M,Hnk+1
} ⊆ {M,Rn1

, . . . ,Rnk
} (14)

However, at the end of the coding action, node nk+1 has
exactly the information on the left-hand-side of (14), and hence
this information is sufficient to decode all packets in the set
Rnk+1

. Thus, the information on the right-hand-side of (14)
must also be sufficient to decode Rnk+1

, so that:

{M,Rn1
, . . . ,Rnk

} ⇐⇒ {M,Rn1
, . . . ,Rnk

,Rnk+1
}

But this together with (13) yields:

{M} ⇐⇒ {M,Rn1 , . . . ,Rnk
,Rnk+1

}

which completes the induction step.
By induction over k ∈ {1, . . . , N − 1}, it follows that:

{M} ⇐⇒ {M,Rn1
, . . . ,RnN

} (15)

However, by re-labeling we have:

{Rn1
, . . . ,RnN

} = {R1, . . . ,RN} = P (16)

where the final equality holds by (1). Combining (15) and (16)
proves (12).

APPENDIX B – PROOF OF NECESSITY FOR THEOREM 2

Let {α[r]}∞r=0 be a sequence of actions, chosen over frames,
that makes all queues Qm[r] rate stable. We show there must
exist probabilities p(α) that satisfy (6). For notation simplicity,
define am[r]M=arrivalsm[r], where arrivalsm[r] is defined in
(5). For each positive integer R and each m ∈ {1, . . . ,M},
define am[R] and µm[R] as the following averages:

am[R]M=
1
R

∑R−1
r=0 am[r] , µm[R]M=

1
R

∑R−1
r=0 µm(α[r])

Now define F(α,R) as the set of frames r ∈ {0, . . . , R− 1}
that use action α, and define |F(α,R)| as the number of these
frames, so that

∑
α∈A |F(α,R)| = R. We then have:

am[R] =
∑
α∈A

|F(α,R)|
R

1
|F(α,R)|

∑
r∈F(α,R) am[r] (17)

µm[R] =
∑
α∈A

|F(α,R)|
R µm(α) (18)

The set A is finite. Thus, the values {(|F(α,R)|/R)}∞R=1 can
be viewed as an infinite sequence of bounded vectors (with
dimension equal to the size of set A) defined on the index R ∈
{1, 2, 3, . . .}, and hence must have a convergent subsequence.
Let Rk represent the sequence of frames on this subsequence,
so that there are values p(α) for all α ∈ A such that:

lim
k→∞

|F(α,Rk)|/Rk = p(α)

The values p(α) inherit the property of being non-negative and
summing to 1. By (18) we have for all m ∈ {1, . . . ,M}:

lim
k→∞

µm[Rk] =
∑
α∈Ap(α)µm(α) (19)

Likewise, from (17) and the law of large numbers (used over
each α ∈ A for which limk→∞ |F(α,Rk)| = ∞, and noting
that am[r] is i.i.d. with mean T (α)λm for all r ∈ F(α,R))
we have with probability 1:

lim
k→∞

am[Rk] =
∑
α∈Ap(α)T (α)λm (20)

Because each queue Qm[r] is rate stable, we have with
probability 1 that for all m ∈ {1, . . . ,M}:

lim
k→∞

Qm[Rk]/Rk = 0 (21)

However, from the queue update equation (4) we have for all
r ∈ {0, 1, 2, . . .}:

Qm[r + 1] ≥ Qm[r]− µm(α[r]) + am[r]

Summing the above over r ∈ {0, 1, . . . , Rk − 1} and dividing
by Rk yields:

Qm[Rk]−Qm[0]

Rk
≥ −µm[Rk] + am[Rk]

Taking a limit as k →∞ and using (19)-(21) yields:

0 ≥ −
∑
α∈Ap(α)µm(α) + λm

∑
α∈Ap(α)T (α) (22)

APPENDIX C — PROOF OF THEOREM 3

We prove rate stability for Algorithm 2, which uses a ratio
rule. The proof for Algorithm 1 is simpler and is omitted for
brevity (see [9]). We have the following preliminary lemma.

Lemma 2: (Sufficient Condition for Rate Stability [11]):
Let Q[r] be a non-negative stochastic process defined over
the integers r ∈ {0, 1, 2, . . .}. Suppose there are constants B,
C, D such that for all frames r ∈ {0, 1, 2, . . .} we have:

E
{

(Q[r + 1]−Q[r])2
}
≤ D (23)

E
{
Q[r]2

}
≤ Br + C (24)

Then limr→∞Q[r]/r = 0 with probability 1.
The condition (23) is immediately satisfied in our system

because the queue changes over any frame are bounded. Thus,
to prove rate stability, it suffices to show that (24) holds for all
queues and all frames. That is, it suffices to prove the second
moment of queue backlog grows at most linearly.

For each frame r ∈ {0, 1, 2, . . .}, define the following
quadratic function L[r], called a Lyapunov function:

L[r]M=
1
2

∑M
m=1Qm[r]2

Define the conditional Lyapunov drift ∆[r] to be the expected
change in L[r] from one frame to the next:

∆[r]M=E {L[r + 1]− L[r]|Q[r]} (25)

where Q[r] = (Q1[r], . . . , QM [r]) is the queue backlog vector
on frame r. The above conditional expectation is with respect
to the random arrivals over the frame and the (possibly
random) coding action chosen for the frame.
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Lemma 3: Under any (possibly randomized) decision for
α[r] ∈ A that is causal (i.e., that does not know the future
values of arrivals over the frame), we have for each frame r:

∆[r] ≤ B +
∑M
m=1Qm[r]E {λmT (α[r])− µm(α[r])|Q[r]}

where B is a finite constant that satisfies:

B ≥ 1
2

∑M
m=1E

{
arrivalsm[r]2 + µm(α[r])2|Q[r]

}
Such a finite constant B exists because frame sizes are
bounded, as are the arrivals per slot.

Proof: For simplicity of notation, define bm[r]M=µm(α[r]),
and am[r]M=arrivalsm[r]. The queue update equation is thus:

Qm[r + 1] = max[Qm[r]− bm[r], 0] + am[r]

Note that for any non-negative values Q, a, b we have:

(max[Q− b, 0] + a)2 ≤ Q2 + b2 + a2 + 2Q(a− b)

Using this and squaring the queue update equation yields:

Qm[r+1]2 ≤ Qm[r]2+bm[r]2+am[r]2+2Qm[r][am[r]−bm[r]]

Summing over all m, dividing by 2, and taking conditional
expectations yields:

∆[r] ≤ B +
∑M
m=1Qm[r]E {am[r]− bm[r]|Q[r]} (26)

By definition of am[r] in (5) we have:1

E {am[r]|Q[r]} = E
{∑t[r]+T (α[r])−1

τ=t[r] Am(τ)|Q[r]
}

= E {λmT (α[r])|Q[r]} (27)

Plugging this identity into (26) proves the result.
We now prove that Algorithm 2 yields rate stability.
Proof: (Theorem 3—Stability Under Algorithm 2) Suppose

that Algorithm 2 is used, so that we choose α[r] every frame
r via (8). We first claim that for each frame r and for all
possible Q[r] we have:

E
{∑M

m=1Qm[r]µm(α[r])|Q[r]
}

E {T (α[r])|Q[r]}
≥

E
{∑M

m=1Qm[r]µm(α∗[r])|Q[r]
}

E {T (α∗[r])|Q[r]}
(28)

where α∗[r] is any other (possibly randomized) code action
that could be chosen over the options in the set A. This can
be shown as follows: Suppose we want to choose α[r] ∈ A
via a possibly randomized decision, to maximize the ratio of
expectations in the left-hand-side of (28). Such a decision
would satisfy (28) by definition, since it would maximize
the ratio of expectations over all alternative policies α∗[r].
However, it is known that such a maximum is achieved via a
pure policy that chooses a particular α ∈ A with probability
1 (see Chapter 7 of [7]). The best pure policy is thus the one
that observes the queue backlogs Q[r] and chooses α[r] ∈ A
to maximize the deterministic ratio, which is exactly how
Algorithm 2 chooses its action (see (8)).

1Equality (27) uses causality and the i.i.d. nature of the arrival process. It is
formally proven by conditioning on T (α[r]) and using iterated expectations.

We can thus plug any alternative (possibly randomized)
decision α∗[r] into the right-hand-side of (28). Consider the
randomized algorithm that independently selects α ∈ A
every frame, independent of queue backlogs, according to
the distribution p(α) in Theorem 2. Let α∗[r] represent the
randomized decision under this policy. Then from (6) we have
for all m ∈ {1, . . . ,M}:

λm ≤
E {µm(α∗[r])}
E {T (α∗[r])}

=
E {µm(α∗[r])|Q[r]}
E {T (α∗[r])|Q[r]}

where the last equality holds because α∗[r] is chosen indepen-
dently of Q[r]. Using this in (28) yields:

E
{∑M

m=1Qm[r]µm(α[r])|Q[r]
}

E {T (α[r])|Q[r]}
≥

M∑
m=1

Qm[r]λm

Rearranging terms above yields:∑M
m=1Qm[r]E {λmT (α[r])− µm(α[r])|Q[r]} ≤ 0 (29)

Plugging (29) into the drift bound of Lemma 3 yields:

∆[r] ≤ B

Taking expectations of the above and using the definition of
∆[r] in (25) yields:

E {L[r + 1]} − E {L[r]} ≤ B ∀r ∈ {0, 1, 2, . . .}

Summing the above over r ∈ {0, 1, . . . , R− 1} yields:

E {L[R]} − E {L[0]} ≤ BR

and hence by definition of L[R] we have for all R > 0:∑M
m=1E

{
Qm[R]2

}
≤ 2E {L[0]}+ 2BR

Thus, the second moments of all queues grow at most linearly,
from which we guarantee rate stability by Lemma 2.
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