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Abstract—This paper considers dynamic transmit covariance
design in point-to-point MIMO fading systems with unknown
channel state distributions and inaccurate channel state in-
formation subject to both long term and short term power
constraints. First, the case of instantaneous but possibly inac-
curate channel state information at the transmitter (CSIT) is
treated. By extending the drift-plus-penalty technique, a dynamic
transmit covariance policy is developed and is shown to approach
optimality with an O(δ) gap, where δ is the inaccuracy measure
of CSIT, regardless of the channel state distribution and without
requiring knowledge of this distribution. Next, the case of delayed
and inaccurate channel state information is considered. The
optimal transmit covariance solution that maximizes the ergodic
capacity is fundamentally different in this case, and a different
online algorithm based on convex projections is developed. The
proposed algorithm for this delayed-CSIT case also has an O(δ)
optimality gap, where δ is again the inaccuracy measure of CSIT.

I. INTRODUCTION

DURING the past decade, the multiple-input multiple-
output (MIMO) technique has been recognized as one of

the most important techniques for increasing the capabilities
of wireless communication systems. In the wireless fading
channel, where the channel changes over time, the problem
of transmit covariance design is to determine the transmit
covariance of the transmitter to maximize the capacity subject
to both long term and short term power constraints. It is
often reasonable to assume that instantaneous channel state
information (CSI) is available at the receiver through training.
Most works on transmit covariance design in MIMO fading
systems also assume that statistical information about the
channel state, referred to as channel distribution information
(CDI), is available at the transmitter. Under the assumption
of perfect channel state information at the receiver (CSIR)
and perfect channel distribution information at the transmitter
(CDIT), prior work on transmit covariance design in point-
to-point MIMO fading systems can be grouped into two
categories:
• Instantaneous channel state information at the transmitter:

In the ideal case of perfect1 CSIT, optimal transmit co-
variance design for MIMO links with both long term and
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short term power constraints is a water-filling solution [2].
Computation of water-levels involves a one-dimensional
integral equation for fading channels with independent
and identically distributed (i.i.d.) Rayleigh entries or a
multi-dimensional integral equation for general fading
channels [3]. The involved multi-dimensional integration
equation is in general intractable and can only be ap-
proximately solved with numerical algorithms with huge
complexity. MIMO fading systems with dynamic CSIT is
considered in [4].

• No CSIT: If CSIT is unavailable, the optimal transmit
covariance design is in general still open. If the chan-
nel matrix has i.i.d. Rayleigh entries, then the optimal
transmit covariance is known to be the identity transmit
covariance scaled to satisfy the power constraint [2]. The
optimal transmit covariance in MIMO fading channels
with correlated Rayleigh entries is obtained in [5], [6].
The transmit covariance design in MIMO fading channels
is further considered in [7] under a more general channel
correlation model.

The above prior work relies on accurate CDIT and/or on
restrictive channel distribution assumptions. It can be difficult
to accurately estimate the CDI, especially when there are
complicated correlations between entries in the channel matrix.
Solutions that base decisions on CDIT can be suboptimal due
to mismatches. Work [8] considers MIMO fading channels
without CDIT and aims to find the transmit covariance to
maximize the worst channel capacity using a game theoret-
ical approach rather than solve the original ergodic capacity
maximization problem. In contrast, the current paper proposes
algorithms that do not require prior knowledge of the channel
distribution, yet perform arbitrarily close to the optimal value
of the ergodic capacity maximization that can be achieved by
having CDI knowledge.

In time-division duplex (TDD) systems with symmetric
wireless channels, the CSI can be measured directly at the
transmitter using the unlink channel. However, in frequency-
division duplex (FDD) scenarios and other scenarios without
channel symmetry, the CSI must be measured at the receiver,
quantized, and reported back to the transmitter with a time
delay [9].

Depending on the measurement delay in TDD systems or
the overall channel acquisition delay in FDD systems, the
CSIT can be instantaneous or delayed. In general, the CSIT
can also be inaccurate due to the measurement, quantization
or feedback error. This paper first considers the instantaneous
(but possibly inaccurate) CSIT case and develops an algorithm
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that does not require CDIT. This algorithm can achieve a utility
within O(δ) of the best utility that can be achieved with CDIT
and perfect CSIT, where δ is the inaccuracy measure of CSIT.
This further implies that accurate instantaneous CSIT (with
δ = 0) is almost as good as having both CDIT and accurate
instantaneous CSIT.

Next, the case of delayed (but possibly inaccurate) CSIT
is considered and a fundamentally different algorithm is de-
veloped for that case. The latter algorithm again does not
use CDIT, but achieves a utility within O(δ) of the best
utility that can be achieved even with CDIT, where δ is the
inaccuracy measure of CSIT. This further implies that delayed
but accurate CSIT (with δ = 0) is almost as good as having
CDIT.

A. Related work and our contributions
In the instantaneous (and possibly inaccurate) CSIT case,

the proposed dynamic transmit covariance design extends the
general drift-plus-penalty algorithm for stochastic network
optimization [10], [11] to deal with inaccurate observations of
system states. In this MIMO context, the current paper shows
the algorithm provides strong sample path convergence time
guarantees. The dynamic of the drift-plus-penalty algorithm
is similar to that of the stochastic dual subgradient algorithm,
although the optimality analysis and performance bounds are
different. The stochastic dual subgradient algorithm has been
applied to optimization in wireless fading channels without
CDI, e.g., downlink power scheduling in single antenna cellu-
lar systems [12], power allocation in single antenna broadcast
OFDM channels [13], scheduling and resource allocation in
random access channels [14], transmit covariance design in
multi-carrier MIMO networks [15].

In the delayed (and possibly inaccurate) CSIT case, the
situation is similar to the scenario of online convex opti-
mization [16] except that we are unable to observe true
history reward functions due to channel error. The proposed
dynamic power allocation policy can be viewed as an online
algorithm with inaccurate history information. The current
paper analyzes the performance loss due to CSIT inaccuracy
and provides strong sample path convergence time guarantees
of this algorithm. The analysis in this MIMO context can
be extended to more general online convex optimization with
inaccurate history information. Online optimization has been
applied in power allocation in wireless fading channels without
CDIT and with delayed and accurate CSIT, e.g., suboptimal
online power allocation in single antenna single user channels
[17], suboptimal online power allocation in single antenna
multiple user channels [18]. Online transmit covariance design
in MIMO systems with inaccurate CSIT is also considered
in recent works [19], [20], [21]. The online algorithms in
[19], [20], [21] follow either a matrix exponential learning
scheme or an online projected gradient scheme. However, all
of these works assume that the imperfect CSIT is unbiased,
i.e., expected CSIT error conditional on observed previous
CSIT is zero. This assumption of imperfect CSIT is suitable
when modeling the CSIT measurement error or feedback error
but cannot capture the CSI quantization error. In contrast, the
current paper only requires that CSIT error is bounded.

II. SIGNAL MODEL AND PROBLEM FORMULATIONS

A. Signal model

Consider a point-to-point MIMO block fading channel with
NT transmit antennas and NR receive antennas. In a block
fading channel model, the channel matrix remains constant at
each block and changes from block to block in an independent
and identically distributed (i.i.d.) manner. Throughout this
paper, each block is also called a slot and is assigned an
index t ∈ {0, 1, 2, . . .}. At each slot t, the received signal [2] is
described by

y(t) = H(t)x(t) + z(t)

where t ∈ {0, 1, 2, . . .} is the time index, z(t) ∈ CNR is the
additive noise vector, x(t) ∈ CNT is the transmitted signal
vector, H(t) ∈ CNR×NT is the channel matrix, and y(t) ∈ CNR

is the received signal vector. Assume that noise vectors z(t)
are i.i.d. normalized circularly symmetric complex Gaussian
random vectors with E[z(t)zH(t)] = INR , where INR denotes
an NR × NR identity matrix.2 Note that channel matrices H(t)
are i.i.d. across slots t and have a fixed but arbitrary probability
distribution, possibly one with correlations between entries of
the matrix. Assume there is a constant B > 0 such that ‖H‖F ≤
B with probability one, where ‖ · ‖F denotes the Frobenius
norm.3 Recall that the Frobenius norm of a complex m × n
matrix A = (ai j ) is

‖A‖F =
√∑m

i=1
∑n

j=1 |ai j |
2 =

√
tr(AHA) (1)

where AH is the Hermitian transpose of A and tr(·) is the trace
operator.

Assume that the receiver can track H(t) exactly at each slot
t and hence has perfect CSIR. In practice, CSIR is obtained
by sending designed training sequences, also known as pilot
sequences, which are commonly known to both the transmitter
and the receiver, such that the channel matrix H(t) can be
estimated at the receiver [9]. CSIT is obtained in different
ways in different wireless systems. In TDD systems, the
transmitter exploits channel reciprocity and uses the measured
uplink channel as approximated CSIT. In FDD systems, the
receiver creates a quantized version of CSI, which is a function
of H(t), and reports back to the transmitter after a certain
amount of delay. In general, there are two possibilities of CSIT
availabilities:

• Instantaneous CSIT Case: In TDD systems or FDD
systems where the measurement, quantization and feed-
back delays are negligible with respect to the channel
coherence time, an approximate version H̃(t) for the true
channel H(t) is known at the transmitter at each time slot
t.

• Delayed CSIT Case: In FDD systems with a large CSIT
acquisition delay, the transmitter only knows H̃(t − 1),

2If the size of the identity matrix is clear, we often simply write I.
3A bounded Frobenius norm always holds in the physical world because the

channel attenuates the signal. Particular models such as Rayleigh and Rician
fading violate this assumption in order to have simpler distribution functions
[22].
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which is an approximate version of channel H(t−1), and
does not know H(t) at each time slot t.4

In both cases, we assume the CSIT inaccuracy is bounded,
i.e., there exists δ > 0 such that ‖H̃(t) −H(t)‖F ≤ δ for all t.

B. Problem Formulation

At each slot t, if the channel matrix is H(t) and the transmit
covariance is Q(t), then the MIMO capacity is given by [2]:

log det(I +H(t)Q(t)HH(t))

where det(·) denotes the determinant operator of matrices.
The (long term) average capacity5 of the MIMO block fading
channel [24] is given by

EH
[

log det(I +HQHH)
]

where Q can adapt to H when CSIT is available and is a
constant matrix when CSIT is unavailable. Consider two types
of power constraints at the transmitter: A long term average
power constraint EH[tr(Q)] ≤ P̄ and a short term power
constraint tr(Q) ≤ P enforced at each slot. The long term
constraint arises from battery or energy limitations while the
short term constraint is often due to hardware or regulation
limitations.

If CSIT is available, the problem is to choose Q as a
(possibly random) function of the observed H to maximize the
(long term) average capacity subject to both power constraints:

max
Q(H)

EH
[

log det(I +HQ(H)HH)
]

(2)

s.t. EH[tr(Q(H))] ≤ P̄, (3)
Q(H) ∈ Q,∀H, (4)

where Q is a set that enforces the short term power constraint:

Q =
{
Q ∈ SNT

+ : tr(Q) ≤ P
}

(5)

where SNT
+ denotes the NT × NT positive semidefinite matrix

space. To avoid trivialities, we assume that P ≥ P̄. In (2)-(4),
we use notation Q(H) to emphasize that Q can depend on H,
i.e., adapt to channel realizations. Under the long term power
constraint, the optimal power allocation should be opportunis-
tic, i.e., use more power over good channel realizations and
less power over poor channel realizations. It is known that

4In general, the dynamic transmit covariance design developed in this paper
can be extended to deal with arbitrary CSIT acquisition delay as discussed
in Section IV-C. For the simplicity of presentations, we assume the CSIT
acquisition delay is always one slot in this paper.

5The expression EH
[

log det(I + HQHH)
]

is also known as the ergodic
capacity. In fast fading channels where the channel coherence time is smaller
than the codeword length, ergodic capacity can be attained if each codeword
spans across sufficiently many channel blocks. In slow fading channels where
the channel coherence time is larger than the codeword length, ergodic
capacity can be attained by adapting both transmit covariances and data
rates to the CSIT of each channel block (see [23] for related discussions).
In slow fading channels, the ergodic capacity is essentially the long term
average capacity since it is asymptotically equal to the average capacity of
each channel block (by the law of large numbers). Note that another concept
“outage capacity” is sometimes considered for slow fading channels when
there is no rate adaptation and the data rate is constant regardless of channel
realizations (In this case, the data rate can be larger than the block capacity
for poor channel realizations such that “outage” occurs). In this paper, we
have both transmit covariance design and rate adaptation; and hence consider
“ergodic capacity”.

opportunistic power allocation provides a significant capacity
gain in low SNR regimes and a marginal gain in high SNR
regimes compared with fixed power allocation [25].

Without CSIT, the optimal transmit covariance design prob-
lem is different, given as follows.

max
Q

EH
[

log det(I +HQHH)
]

(6)

s.t. EH[tr(Q)] ≤ P̄, (7)
Q ∈ Q, (8)

where set Q is defined in (5). Again assume P ≥ P̄. Since
the instantaneous CSIT is unavailable, the transmit covariance
cannot adapt to H. By the convexity of this problem and
Jensen’s inequality, a randomized Q is useless. It suffices to
consider a constant Q. Since P ≥ P̄, this implies the problem
is equivalent to a problem that removes the constraint (7) and
that changes the constraint (8) to:

Q ∈ Q̃ = {Q ∈ SNT
+ : tr(Q) ≤ P̄}

The problems (2)-(4) and (6)-(8) are fundamentally different
and have different optimal objective function values. Most
existing works [3], [5], [6], [7] on MIMO fading channels
can be interpreted as solutions to either of the above two
stochastic optimization under specific channel distributions.
Moreover, those works require perfect channel distribution
information (CDI). In this paper, the above two stochastic
optimization problems are solved via dynamic algorithms that
works for arbitrary channel distributions and does not require
any CDI. The algorithms are different for the two cases, and
use different techniques.

III. INSTANTANEOUS CSIT CASE

Consider the case of instantaneous but inaccurate CSIT
where at each slot t ∈ {0, 1, 2, . . .}, channel H(t) is unknown
and only an approximate version H̃(t) is known. In this case,
the problem (2)-(4) can be interpreted as a stochastic optimiza-
tion problem where channel H(t) is the instantaneous system
state and transmit covariance Q(t) is the control action at each
slot t. This is similar to the scenario of stochastic optimization
with i.i.d. time-varying system states, where the decision
maker chooses an action based on the observed instantaneous
system state at each slot such that time average expected utility
is maximized and the time average expected constraints are
guaranteed. The drift-plus-penalty (DPP) technique from [11]
is a mature framework to solve stochastic optimization without
distribution information of system states.

This is different from the conventional stochastic optimiza-
tion considered by the DPP technique because at each slot t,
the true “system state” H(t) is unavailable and only an approx-
imate version H̃(t) is known. Nevertheless, a modified version
of the standard DPP algorithm is developed in Algorithm 1.

In Algorithm 1, a virtual queue Z (t) with Z (0) = 0 and with
update Z (t + 1) = max[0, Z (t) + tr(Q(t)) − P̄] is introduced to
enforce the average power constraint (3) and can be viewed as
the “queue backlog” of long term power constraint violations
since it increases at slot t if the power consumption at slot
t is larger than P̄ and decreases otherwise. The next Lemma
relates Z (t) and the average power consumption.
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Algorithm 1 Transmit Covariance Design with instantaneous
CSIT
Let V > 0 be a constant parameter and Z (0) = 0. At each time
t ∈ {0, 1, 2, . . .}, observe H̃(t) and Z (t). Then do the following:
• Choose transmit covariance Q(t) ∈ Q to solve :

max
Q∈Q
{V log det(I + H̃(t)QH̃H(t)) − Z (t)tr(Q)}.

• Update Z (t + 1) = max[0, Z (t) + tr(Q(t)) − P̄].

Lemma 1. Under Algorithm 1, we have

1
t

t−1∑
τ=0

tr(Q(τ)) ≤ P̄ +
Z (t)

t
, ∀t > 0.

Proof: Fix t > 0. For all slots τ ∈ {0, 1, . . . , t − 1}, the
update for Z (τ) satisfies Z (τ + 1) = max[0, Z (τ) + tr(Q(τ)) −
P̄] ≥ Z (τ)+tr(Q(τ))− P̄. Rearranging terms gives: tr(Q(τ)) ≤
P̄ + Z (τ + 1) − Z (τ). Summing over τ ∈ {0, . . . , t − 1} and
dividing by factor t gives:

1
t

t−1∑
τ=0

tr(Q(τ)) ≤ P̄ +
Z (t) − Z (0)

t
(a)
= P̄ +

Z (t)
t

where (a) follows from Z (t) = 0.
For each slot t ∈ {0, 1, 2, . . .} define the reward R(t):

R(t) = log det(I +H(t)Q(t)HH(t)). (9)

Define Ropt as the optimal average utility in (2). The value Ropt

depends on the (unknown) distribution for H(t). Fix ε > 0
and define V = max{P̄2, (P − P̄)2}/(2ε ). If H̃(t) = H(t),∀t,
regardless of the distribution of H(t), the standard DPP
technique [11] ensures:

1
t

t−1∑
τ=0

E[R(τ)] ≥ Ropt − ε, ∀t > 0 (10)

lim
t→∞

1
t

t−1∑
τ=0

E[tr(Q(τ))] ≤ P̄ (11)

This holds for arbitrarily small values of ε > 0, and so the
algorithm comes arbitrarily close to optimality. However, the
above is true only if H̃(t) = H(t),∀t.

The development and analysis of Algorithm 1 extends the
DPP technique in two aspects:
• At each slot t, the standard drift-plus-penalty technique

requires accurate “system state” H(t) and cannot deal
with inaccurate “system state” H̃(t). In contrast, Algo-
rithm 1 works with H̃(t). The next subsections show that
the performance of Algorithm 1 degrades linearly with
respect to CSIT inaccuracy measure δ. If δ = 0, then
(10) is recovered.

• Inequality (11) only treats infinite horizon time aver-
age expected power. The next subsections show that
Algorithm 1 can guarantee 1

t

∑t−1
τ=0 tr(Q(τ)) ≤ P̄ +

(B+δ)2 max{P̄2, (P−P̄)2 }+2ε (P−P̄)
2εt for all t > 0. This sample

path guarantee on average power consumption is much
stronger than (11). In fact, (11) is recovered by taking
expectation and taking limit t → ∞.

A. Transmit covariance updates in Algorithm 1

This subsection shows the Q(t) selection in Algorithm 1
has an (almost) closed-form solution. The convex program
involved in the transmit covariance update of Algorithm 1 is
in the form

max
Q

log det(I +HQHH) −
Z
V

tr(Q) (12)

s.t. tr(Q) ≤ P (13)

Q ∈ SNT
+ (14)

This convex program is similar to the conventional problem
of transmit covariance design with a deterministic channel
H, except that objective (12) has an additional penalty term
−(Z/V )tr(Q). It is well known that, without this penalty term,
the solution is to diagonalize the channel matrix and allocate
power over eigen-modes according to a water-filling technique
[2]. The next lemma summarizes that the optimal solution to
problem (12)-(14) has a similar structure.

Lemma 2. Consider the SVD HHH = UHΣU, where U is a
unitary matrix and Σ is a diagonal matrix with non-negative
entries σ1, . . . , σNT . Then the optimal solution to (12)-(14) is
given by Q∗ = UHΘ∗U, where Θ∗ is a diagonal matrix with
entries θ∗1, . . . , θ

∗
NT

given by:

θ∗i = max
[
0,

1
µ∗ + Z/V

−
1
σi

]
, ∀i ∈ {1, . . . , NT },

where µ∗ is chosen such that
∑NT

i=1 θ
∗
i ≤ P, µ∗ ≥ 0 and

µ∗
[ ∑NT

i=1 θ
∗
i − P

]
= 0. The exact µ∗ can be determined using

Algorithm 2 with complexity O(NT log NT ).

Proof: The proof is a simple extension of the classical
proof for the optimal transmit covariance in deterministic
MIMO channels, e.g. Section 3.2 in [2], to deal with the
additional penalty term −(Z/V )tr(Q). See the conference
version [1] for a complete proof.

Algorithm 2 Algorithm to solve problem (12)-(14)

1) Check if
∑NT

i=1 max{0, 1
Z/V −

1
σi
} ≤ P holds. If yes, let

µ∗ = 0 and θ∗i = max{0, 1
Z/V −

1
σi
},∀i ∈ {1, 2, . . . , NT }

and terminate the algorithm; else, continue to the next
step.

2) Sort all σi, ∈ {1, 2, . . . , NT } in a decreasing order π such
that σπ (1) ≥ σπ (2) ≥ · · · ≥ σπ (NT ) . Define S0 = 0.

3) For i = 1 to NT

• Let Si = Si−1 +
1

σπ (i)
. Let µ∗ = i

Si+P
− (Z/V ).

• If µ∗ ≥ 0, 1
µ∗+Z/V −

1
σπ (i)

> 0 and 1
µ∗+Z/V −

1
σπ (i+1)

≤

0, then terminate the loop; else, continue to the next
iteration in the loop.

4) Let θ∗i = max
[
0, 1

µ∗+Z/V −
1
σi

]
,∀i ∈ {1, 2, . . . , NT } and

terminate the algorithm.

The complexity of Algorithm 2 is dominated by the sorting
of all σi in step (2). Recall that the water-filling solution
of power allocation in multiple parallel channels can also be
found by an exact algorithm (see Section 6 in [26]), which is
similar to Algorithm 2. The main difference is that Algorithm
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2 has a first step to verify if µ∗ = 0. This is because unlike
the power allocation in multiple parallel channels, where the
optimal solution always uses full power, the optimal solution
to problem (12)-(14) may not use full power for large Z due
to the penalty term −(Z/V )tr(Q) in objective (12).

B. Performance of Algorithm 1

Define a Lyapunov function L(t) = 1
2 Z2(t) and its cor-

responding Lyapunov drift ∆(t) = L(t + 1) − L(t). The
expression −∆(t) + V R(t) is called the DPP expression. The
analysis of the standard drift-plus-penalty (DPP) algorithm
with accurate “system states” relies on an upper bound of
the DPP expression in terms of Ropt [11]. The performance
analysis of Algorithm 1, which can be viewed as a DPP
algorithm based on inaccurate “system states”, requires a
new bound of the DPP expression in Lemma 3 and a new
deterministic bound of virtual queue Z (t) in Lemma 4.

Lemma 3. Under Algorithm 1, we have

− E[∆(t)] + VE[R(t)]

≥V Ropt −
1
2

max{P̄2, (P − P̄)2} − 2V P
√

NT (2B + δ)δ,

where B, δ, NT , P and P̄ are defined in Section II-A; and Ropt

is the optimal average utility in problem (2)-(4).

Proof: See Appendix B.

Lemma 4. Under Algorithm 1, we have Z (t) ≤ V (B + δ)2 +

(P − P̄),∀t > 0, where B, δ, P and P̄ are defined in Section
II-A.

Proof: We first show that if Z (t) ≥ V (B + δ)2, then
Algorithm 1 chooses Q(t) = 0. Consider Z (t) ≥ V (B + δ)2.
Let SVD H̃H(t)H̃(t) = UHΣU, where diagonal matrix Σ
has non-negative diagonal entries σ1, . . . , σNT . Note that

∀i ∈ {1, 2, . . . , NT }, σi

(a)
≤ tr(H̃H(t)H̃(t))

(b)
= ‖H̃(t)‖2F ≤

(‖H(t)‖F + ‖H̃(t) − H(t)‖F )2 ≤ (B + δ)2 where (a) follows
from tr(H̃H(t)H̃(t)) =

∑NT

i=1 σi ; and (b) follows from the
definition of Frobenius norm. By Lemma 2, Q(t) = UHΘ∗U,
where Θ∗ is diagonal with entries θ∗1, . . . , θ

∗
NT

given by
θ∗i = max

[
0, 1

µ∗+Z (t )/V −
1
σi

]
, where µ∗ ≥ 0. Since σi ≤

(B+δ)2,∀i ∈ {1, 2, . . . , NT }, it follows that if Z (t) ≥ V (B+δ)2,
then 1

µ+Z (t )/V −
1
σi
≤ 0 for all µ ≥ 0 and hence θ∗i = 0,∀i ∈

{1, 2, . . . , NT }. This implies Algorithm 1 chooses Q(t) = 0 by
Lemma 2, which further implies that Z (t + 1) ≤ Z (t) by the
update equation of Z (t + 1).

On the other hand, if Z (t) ≤ V (B + δ)2, then Z (t + 1) is at
most V (B + δ)2 + (P − P̄) by the update equation of Z (t + 1)
and the short term power constraint tr(Q(t)) ≤ P.

The next theorem summarizes the performance of Algo-
rithm 1 and follows directly from Lemma 3 and Lemma 4.

Theorem 1. Fix ε > 0 and choose V = max{P̄2, (P−P̄)2 }
2ε in

Algorithm 1, then for all t > 0:

1
t

t−1∑
τ=0

E[R(τ)] ≥ Ropt − ε − φ(δ),

1
t

t−1∑
τ=0

tr(Q(τ)) ≤ P̄ +
(B + δ)2 max{P̄2, (P − P̄)2} + 2ε (P − P̄)

2εt
,

where φ(δ) = 2P
√

NT (2B+δ)δ satisfying φ(δ) → 0 as δ → 0,
i.e., φ(δ) ∈ O(δ); and B, δ, NT , P and P̄ are defined in Section
II-A. In particular, the average expected utility is within ε +
φ(δ) of Ropt and the sample path time average power is within
ε of its required constraint P̄ whenever t ≥ Ω( 1

ε2 ).

Proof:
Proof of the first inequality: Fix t > 0. For all slots τ ∈
{0, 1, . . . , t − 1}, Lemma 3 guarantees that E[R(τ)] ≥ Ropt +
1
V E[∆(τ)] − 1

2V max{P̄2, (P − P̄)2} − 2P
√

NT (2B + δ)δ.
Summing over τ ∈ {0, . . . , t − 1} and dividing by t gives:

1
t

t−1∑
τ=0

E[R(τ)]

≥Ropt +
1

Vt

t−1∑
τ=0

E[∆(τ)] −
1

2V
max{P̄2, (P − P̄)2}

− 2P
√

NT (2B + δ)δ
(a)
= Ropt +

1
2Vt

(
[E[Z2(t)] − E[Z2(0)]

)
−

1
2V

max{P̄2, (P − P̄)2}

− 2P
√

NT (2B + δ)δ
(b)
≥ Ropt −

1
2V

max{P̄2, (P − P̄)2} − 2P
√

NT (2B + δ)δ

(c)
= Ropt − ε − 2P

√
NT (2B + δ)δ

where (a) follows from the definition that ∆(t) = 1
2 Z2(t +1)−

1
2 Z2(t) and by simplifying the telescoping sum

∑t−1
τ=0 E[∆(τ)];

(b) follows from Z (0) = 0 and Z (t) ≥ 0; and (c) follows by
substituting V = 1

2ε max{P̄2, (P − P̄)2}.
Proof of the second inequality: Fix t > 0. By Lemma 1, we
have

1
t

t−1∑
τ=0

tr(Q(τ))

≤P̄ +
Z (t)

t
(a)
= P̄ +

(B + δ)2 max{P̄2, (P − P̄)2} + 2ε (P − P̄)
2εt

where (a) follows from Lemma 4 and V = 1
2ε max{P̄2, (P −

P̄)2}.
Theorem 1 provides a sample path guarantee on average

power, which is much stronger than the guarantee in (11).
It also shows that convergence time to reach an ε + O(δ)
approximate solution is O( 1

ε2 ).

C. Discussion

It is shown in [27] that Z (t) in the DPP algorithm is
“attracted” to an optimal Lagrangian dual multiplier of an
unknown deterministic convex program. In fact, if we have
a good guess of this Lagrangian multiplier and initialize
Z (0) close to it, then Algorithm 1 has faster convergence.
In addition, the performance bounds derived in Theorem 1
are not tightest possible. The proof of Lemma 3 involves
many relaxations to derive bounds that are simple but can still
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enable Theorem 1 to show the effect of missing CDIT can be
made arbitrarily small by choosing the algorithm parameter V
properly and the performance degradation of CSIT inaccuracy
scales linearly with respect to δ. In fact, tighter but more
complicated bounds are possible by refining the proof of
Lemma 3.

A heuristic approach to solve problem (2)-(4) without chan-
nel distribution information is to sample the channel for a large
number of realizations and use the empirical distribution as an
approximate distribution to solve problem (2)-(4) directly. This
approach has three drawbacks:
• For a scalar channel, the empirical distribution based on

O( 1
ε2 ) realizations is an ε approximation to the true chan-

nel distribution with high probability by the Dvoretzky-
Kiefer-Wolfowitz inequality [28]. However, for an NR ×

NT MIMO channel, the multi-dimensional empirical dis-
tribution requires O( N 2

T N 2
R

ε2 ) samples to achieve an ε
approximation of the true channel distribution [29]. Thus,
this approach does not scale well with the number of
antennas.

• Even if the empirical distribution is accurate, the com-
plexity of solving problem (2)-(4) based on the empirical
distribution is huge if the channel is from a continuous
distribution. This is known as the curse of dimensionality
for stochastic optimization due to the large sample size.
In contrast, the complexity of Algorithm 1 is independent
of the sample space.

• This approach is an offline method such that a large
number of slots are wasted during the channel sampling
process. In contrast, Algorithm 1 is an online method with
performance guarantees for all slots.

Note that even if we assume the distribution of H(t) is
known and Q∗(H) can be computed by solving problem (2)-
(4), the optimal policy Q∗(H) in general cannot achieve Ropt

and can violate the long term power constraints when only the
approximate versions H̃(t) are known. For example, consider
a MIMO fading system with two possible channel realizations
H1 and H2 with equal probabilities. Suppose the average
power constraint is P̄ = 5 and the optimal policy Q∗(H) satis-
fies tr(Q∗(H1)) = 8 and tr(Q∗(H2)) = 2. However, if H̃1 , H1
and H̃2 , H2, it can be hard to decide the transmit covariance
based on H̃1 or H̃2 since the associations between H̃1 and
H1 (or between H̃2 and H2) are unknown. In an extreme
case when H̃1 = H̃2 = H1, if the transmitter uses Q∗(H̃(t))
at each slot t, the average power constraint is violated and
hence the transmit covariance scheme is infeasible. In contrast,
Algorithm 1 can attain the performance in Theorem 1 with
inaccurate instantaneous CSIT and no CDIT.

IV. DELAYED CSIT CASE

Consider the case of delayed and inaccurate CSIT. At
the beginning of each slot t ∈ {0, 1, 2, . . .}, channel H(t)
is unknown and only quantized channels of previous slots
H̃(τ), τ ∈ {0, 1, . . . , t − 1} are known. This is similar to the
scenario of online optimization where the decision maker
selects x(t) ∈ X at each slot t to maximize an unknown reward
function f t (x) based on the information of previous reward

functions fτ (x(τ)), τ ∈ {0, 1, . . . , t−1}. The goal is to minimize
average regret 1

t maxx∈X
[ ∑t−1

τ=0 fτ (x)
]
− 1

t

∑t−1
τ=0 fτ (x(τ)). The

best possible average regret of online convex optimization with
general convex reward functions is O( 1√

t
) [16], [30].

The situation in the current paper is different from conven-
tional online optimization because at each slot t, the rewards
of previous slots, i.e., R(τ) = log det(I+H(τ)Q(τ)HH(τ)), τ ∈
{0, 1, . . . , t − 1}, are still unknown due to the fact that the
reported channels H̃(τ) are approximate versions. Neverthe-
less, an online algorithm without using CDIT is developed in
Algorithm 3.

Algorithm 3 Transmit Covariance Design with Delayed CSIT
Let γ > 0 be a constant parameter and Q(0) ∈ Q be arbitrary.
At each time t ∈ {1, 2, . . .}, observe H̃(t − 1) and do the
following:
• Let D̃(t − 1) = H̃H(t − 1)(INR + H̃(t − 1)Q(t − 1)H̃H(t −

1))−1H̃(t − 1). Choose transmit covariance Q(t) =
P
Q̃

[
Q(t − 1) + γD̃(t − 1)

]
, where P

Q̃
[·] is the projection

onto convex set Q̃ = {Q ∈ SNT
+ : tr(Q) ≤ P̄}.

Define Q∗ ∈ Q̃ as an optimal solution to problem (6)-(8),
which depends on the (unknown) distribution for H(t). Define

Ropt(t) = log det(I +H(t)Q∗HH(t))

as the utility at slot t attained by Q∗.
If the channel feedback is accurate, i.e., H̃(t − 1) = H(t −

1),∀t ∈ {1, 2, . . .}, then D̃(t − 1) is the gradient of R(t − 1) at
point Q(t − 1). Fix ε > 0 and take γ = ε . The results in [16]
ensure that, regardless of the distribution of H(t):

1
t

t−1∑
τ=0

R(τ) ≥
1
t

t−1∑
τ=0

Ropt(τ) −
2P̄2

εt
−

NRB4

2
ε,∀t > 0 (15)

tr(Q(τ)) ≤P̄,∀τ ∈ {0, 1, . . . , t − 1} (16)

The next subsections show that the performance of Al-
gorithm 3 with inaccurate channels degrades linearly with
respect to channel inaccuracy δ. If δ = 0, then (15) and (16)
are recovered.

A. Transmit Covariance Updates in Algorithm 3

This subsection shows the Q(t) selection in Algorithm 3
has an (almost) closed-form solution.

The projection operator involved in Algorithm 3 by defini-
tion is

min
1
2
‖Q − X‖2F (17)

s.t. tr(Q) ≤ P̄ (18)

Q ∈ SNT
+ (19)

where X = Q(t − 1) + γD̃(t − 1) is a Hermitian matrix at each
slot t.

Without constraint tr(Q) ≤ P̄, the projection of Hermitian
matrix X onto the positive semidefinite cone Sn+ is simply
taking the eigenvalue expansion of X and dropping terms
associated with negative eigenvalues (see Section 8.1.1. in
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[31]). Work [32] considered the projection onto the intersec-
tion of the positive semidefinite cone Sn+ and an affine subspace
given by {Q : tr(AiQ) = bi, i ∈ {1, 2, . . . , p}, tr(B jQ) ≤
d j, j ∈ {1, 2, . . . ,m}} and developed the dual-based iterative
numerical algorithm to calculate the projection. Problem (17)-
(19) is a special case, where the affine subspace is given
by tr(Q) ≤ P̄, of the projection considered in [32]. Instead
of solving problem (17)-(19) using numerical algorithms, the
next lemma summarizes that problem (17)-(19) has an (almost)
closed-form solution.

Lemma 5. Consider SVD X = UHΣU, where U is a unitary
matrix and Σ is a diagonal matrix with entries σ1, . . . , σNT .
Then the optimal solution to problem (17)-(19) is given by
Q∗ = UHΘ∗U, where Θ∗ is a diagonal matrix with entries
θ∗1, . . . , θ

∗
NT

given by,

θ∗i = max[0, σi − µ
∗],∀i ∈ {1, 2, . . . , NT },

where µ∗ is chosen such that
∑NT

i=1 θ
∗
i ≤ P̄, µ∗ ≥ 0 and

µ∗
[ ∑NT

i=1 θ
∗
i − P̄

]
= 0. The exact µ∗ can be determined using

Algorithm 4 with complexity O(NT log NT ).

Proof: See full version [33].

Algorithm 4 Algorithm to solve problem (17)-(19)

1) Check if
∑NT

i=1 max[0, σi] ≤ P̄ holds. If yes, let µ∗ = 0
and θ∗i = max[0, σi],∀i ∈ {1, 2, . . . , NT } and terminate
the algorithm; else, continue to the next step.

2) Sort all σi, ∈ {1, 2, . . . , NT } in a decreasing order π such
that σπ (1) ≥ σπ (2) ≥ · · · ≥ σπ (NT ) . Define S0 = 0.

3) For i = 1 to NT

• Let Si = Si−1 + σi . Let µ∗ = Si−P̄
i .

• If µ∗ ≥ 0, σπ (i) − µ
∗ > 0 and σπ (i+1) − µ

∗ ≤ 0,
then terminate the loop; else, continue to the next
iteration in the loop.

4) Let θ∗i = max[0, σi − µ∗],∀i ∈ {1, 2, . . . , NT } and
terminate the algorithm.

B. Performance of Algorithm 3

Define D(t − 1) = HH(t − 1)(INR +H(t − 1)Q(t − 1)HH(t −
1))−1H(t−1), which is the gradient of R(t−1) at point Q(t−1)
and is unknown to the transmitter due to the unavailability of
H(t − 1). The next lemma relates D̃(t − 1) and D(t − 1).

Lemma 6. For all slots t ∈ {1, 2, . . .}, we have

1) ‖D(t − 1)‖F ≤
√

NRB2;
2) ‖D(t − 1) − D̃(t − 1)‖F ≤ ψ(δ), where ψ(δ) =

(√
NRB+

√
NR (B+δ)+(B+δ)2NR P̄(2B+δ)

)
δ satisfying ψ(δ) → 0

as δ → 0, i.e., ψ(δ) ∈ O(δ);
3) ‖D̃(t − 1)‖F ≤ ψ(δ) +

√
NRB2;

where B, δ, NR, NT , P and P̄ are defined in Section II-A.

Proof: See full version [33].
The next theorem summarizes the performance of Algo-

rithm 3.

Theorem 2. Fix ε > 0 and define γ = ε . Under Algorithm 3,
we have6 for all t > 0:

1
t

t−1∑
τ=0

R(τ) ≥
1
t

t−1∑
τ=0

Ropt(τ) −
2P̄2

εt
−

(ψ(δ) +
√

NRB2)2

2
ε

− 2ψ(δ)P̄

tr(Q(τ)) ≤P̄,∀τ ∈ {0, 1, . . . , t − 1}

where ψ(δ) is the constant defined in Lemma 6 and B, δ, NR, P
and P̄ are defined in Section II-A. In particular, the sample
path time average utility is within O(ε )+2ψ(δ)P̄ of the optimal
average utility for problem (6)-(8) whenever t ≥ 1

ε2 .

Proof: The second inequality trivially follows from the
fact that Q(t) ∈ Q̃,∀t ∈ {0, 1, . . .}. It remains to prove
the first inequality. This proof extends the regret analysis of
conventional online convex optimization [16] by considering
inexact gradient D̃(t − 1).

For all slots τ ∈ {1, 2, . . .}, the transmit covariance update
in Algorithm 3 satisfies:

‖Q(τ) −Q∗‖2F
=‖P

Q̃

[
Q(τ − 1) + γD̃(τ − 1)

]
−Q∗‖2F

(a)
≤ ‖Q(τ − 1) + γD̃(τ − 1) −Q∗‖2F
=‖Q(τ − 1) −Q∗‖2F + 2γtr

(
D̃H(τ − 1)(Q(τ − 1) −Q∗)

)
+ γ2‖D̃(τ − 1)‖2F
=‖Q(τ − 1) −Q∗‖2F + 2γtr

(
DH(τ − 1)(Q(τ − 1) −Q∗)

)
+ 2γtr

(
(D̃(t − 1) − D(τ − 1))H(Q(τ − 1) −Q∗)

)
+ γ2‖D̃(τ − 1)‖2F,

where (a) follows from the non-expansive property of projec-
tions onto convex sets. Define ∆(t) = ‖Q(t+1)−Q∗‖2F−‖Q(t)−
Q∗‖2F . Rearranging terms in the last equation and dividing by
factor 2γ implies

tr
(
DH(τ − 1)(Q(τ − 1) −Q∗)

)
≥

1
2γ
∆(τ − 1) −

γ

2
‖D̃(τ − 1)‖2F

− tr
(
(D̃(τ − 1) − D(τ − 1))H(Q(τ − 1) −Q∗)

)
(20)

Define f (Q) = log det(I + H(τ − 1)QHH(τ − 1)). By Fact
3 in Appendix A, f (·) is concave over Q̃ and D(t − 1) =
∇Q f (Q(t − 1)). Note that Q∗ ∈ Q̃. By Fact 4 in Appendix A,
we have

f (Q(τ − 1)) − f (Q∗) ≥ tr(DH(τ − 1)(Q(τ − 1) −Q∗)) (21)

6In our conference version [1], the first inequality of this theorem is mis-
takenly given by 1

t

∑t−1
τ=0 R(τ) ≥ 1

t

∑t−1
τ=0 Ropt (τ) − P̄

εt −
(ψ (δ)+

√
NRB2 )2

2 ε −
2ψ (δ)P̄.
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Note that f (Q(τ − 1)) = R(τ − 1) and f (Q∗) = Ropt(τ − 1).
Combining (20) and (21) yields

R(τ − 1) − Ropt(τ − 1)

≥
1

2γ
∆(τ − 1) −

γ

2
‖D̃(τ − 1)‖2F

− tr
(
(D̃(τ − 1) − D(τ − 1))H(Q(τ − 1) −Q∗)

)
(a)
≥

1
2γ
∆(τ − 1) −

γ

2
‖D̃(τ − 1)‖2F

− ‖D̃(τ − 1) − D(τ − 1)‖F ‖Q(τ − 1) −Q∗‖F
(b)
≥

1
2γ
∆(τ − 1) −

γ

2
(ψ(δ) +

√
NRB2)2 − 2ψ(δ)P̄

where (a) follows from Fact 1 in Appendix A and (b) follows
from Lemma 6 and the fact that ‖Q(τ − 1) −Q∗‖F ≤ ‖Q(τ −
1)‖F + ‖Q∗‖F ≤ tr(Q(τ − 1)) + tr(Q∗) ≤ 2P̄, which is implied
by Fact 1, Fact 2 in Appendix A and the fact that Q(τ−1),Q∗ ∈
Q̃. Replacing τ − 1 with τ yields for all τ ∈ {0, 1, . . .}

R(τ) − Ropt(τ)

≥
1

2γ
∆(τ) −

γ

2
(ψ(δ) +

√
NRB2)2 − 2ψ(δ)P̄ (22)

Fix t > 0. Summing over τ ∈ {0, 1, . . . , t − 1}, dividing by
factor t and simplifying telescope sum

∑t−1
τ=0 ∆(τ) gives

1
t

t−1∑
τ=0

R(τ) −
1
t

t−1∑
τ=0

Ropt(τ))

≥
1

2γt
(‖Q(t) −Q∗‖2F − ‖Q(0) −Q∗‖2F ) −

γ

2
(ψ(δ) +

√
NRB2)2

− 2ψ(δ)P̄
(a)
≥ −

2P̄2

γt
−
γ

2
(ψ(δ) +

√
NRB2)2 − 2ψ(δ)P̄

where (a) follows from ‖Q(0) −Q∗‖F ≤ ‖Q(0)‖F + ‖Q∗‖F ≤
tr(Q(0)) + tr(Q∗) ≤ 2P̄ and ‖Q(t) −Q∗‖2F ≥ 0.

Theorem 2 proves a sample path guarantee on the utility. It
shows that the convergence time to reach an O(ε ) + 2ψ(δ)P̄
approximate solution is 1/ε2. Note that if δ = 0, then equations
(15) and (16) are recovered by Theorem 2. Theorem 2 also
isolates the effect of missing CDIT and CSIT inaccuracy. The
error term O(ε ) is corresponding to the effect of missing
CDIT and can be made arbitrarily small by choosing a small
γ and running the algorithm for more than 1

ε2 iterations.
The observation is that the effect of missing CDIT vanishes
as Algorithm 3 runs for a sufficiently long time and hence
delayed but accurate CSIT is almost as good as CDIT. The
other error term 2ψ(δ)P̄ is corresponding to the effect of CSIT
inaccuracy and does not vanish. The performance degradation
due to channel inaccuracy scales linearly with respect to the
channel error since ψ(δ) ∈ O(δ). Intuitively, this is reasonable
since any algorithm based on inaccurate CSIT is actually
optimizing another different MIMO system.

C. Extensions

1) T-Slot Delayed and Inaccurate CSIT: Thus far, we have
assumed that CSIT is always delayed by one slot. In fact,
if CSIT is delayed by T slots, we can modify the update of

transmit covariances in Algorithm 3 as Q(t) = P
Q̃

[Q(t −T ) +
γD̃(t − T )]. A T-slot version of Theorem 2 can be similarly
proven.

2) Algorithm 3 with Time Varying γ: Algorithm 3 can be
extended to have time varying step size γ(t) = 1√

t
at slot t.

The next lemma shows that such an algorithm can approach
an ε + 2ψ(δ)P̄ approximate solution with O(1/ε2) iterations.

Lemma 7. Fix ε > 0. If we modify Algorithm 3 by using
γ(t) = 1√

t
as the step size γ at each slot t, then for all t > 0:

1
t

t−1∑
τ=0

R(τ) ≥
1
t

t−1∑
τ=0

Ropt(τ) −
2P̄2
√

t
−

1
√

t
(ψ(δ) +

√
NRB2)2

− 2ψ(δ)P̄

1
t

t−1∑
τ=0

tr(Q(τ)) ≤P̄

where B, δ, NR, P and P̄ are defined in Section II-A.

Proof: The second inequality again follows from the
fact that Q(t) ∈ Q̃,∀t ∈ {0, 1, . . .}. It remains to prove the
first inequality. With γ(t) = 1√

t
, equation (22) in the proof

of Theorem 2 becomes R(τ) − Ropt(τ) ≥ 1
2γ(τ+1)∆(τ) −

γ(τ+1)
2 (ψ(δ) +

√
NRB2)2 − 2ψ(δ)P̄ for all τ ∈ {0, 1, . . .}. Fix

t > 0. Summing over τ ∈ {0, 1, . . . , t − 1} and dividing by
factor t yields that for all t > 0:

1
t

t−1∑
τ=0

R(τ) −
1
t

t−1∑
τ=0

Ropt(τ)

≥
1
2t

t−1∑
τ=0

√
τ + 1∆(τ) −

1
t
*
,

t−1∑
τ=0

1

2
√
τ + 1

+
-

(ψ(δ) +
√

NRB2)2

− 2ψ(δ)P̄
(a)
≥ −

2P̄2
√

t
−

1
√

t
(ψ(δ) +

√
NRB2)2 − 2ψ(δ)P̄

where (a) follows because
∑t−1
τ=0

√
τ + 1∆(τ) =

√
t‖Q(t) −

Q∗‖2F − ‖Q(0) − Q∗‖2F +
∑t−2
τ=0(
√
τ + 1 −

√
τ + 2)‖Q(τ + 1) −

Q∗‖2F ≥ −‖Q(0) − Q∗‖2F + 4P̄2 ∑t−2
τ=0(
√
τ + 1 −

√
τ + 2) ≥

−4P̄2√t and
∑t−1
τ=0

1
2
√
τ+1
≤
√

t.
An advantage of time varying step sizes is the performance

automatically gets improved as the algorithm runs and there is
no need to restart the algorithm with a different constant step
size if a better performance is demanded.

V. RATE ADAPTATION

To achieve the capacity characterized by either problem
(2)-(4) or problem (6)-(8), we also need to consider the rate
allocation associated with the transmit covariance, namely, we
need to decide how much data is delivered at each slot. If
the accurate instantaneous CSIT is available, the transmitter
can simply deliver log det(I + H(t)Q(t)HH(t)) amount of
data at slot t once Q(t) is decided. However, in the cases
when instantaneous CSIT is inaccurate or only delayed CSIT
is available, the transmitter does not know the associated
instantaneous channel capacity without knowing H(t). These
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cases belong to the representative communication scenarios
where channels are unknown to the transmitter and rateless
codes are usually used as a solution. To send N bits of source
data, the rateless code keeps sending encoded information bits
without knowing instantaneous channel capacity such that the
receiver can decode all N bits as long as the accumulated
channel capacity for sufficiently many slots is larger than
N . Many practical rateless codes for scalar or MIMO fading
channels have been designed in [34], [35], [36].

This section provides an information theoretical rate adapta-
tion policy based on rateless codes that can be combined with
the dynamic transmit covariance design algorithms developed
in this paper.

The rate adaptation scheme is as follows: Let N be a
large number. Encode N bits of source data with a capacity
achieving code for a channel with capacity no less than N
bits per slot. At slot 0, deliver the above encoded data with
transmit covariance Q(0) given by Algorithm 1 or Algorithm
3. The receiver knows channel H(0), calculates the channel
capacity R(0) = log det(I+H(0)Q(0)HH(0)); and reports back
the scalar R(0) to the transmitter. At slot 1, the transmitter
removes the first R(0) bits from the N bits of source data,
encodes the remaining N−R(0) bits with a capacity achieving
code for a channel with capacity no less than N − R(0)
bits per slot; and delivers the encoded data with transmit
covariance Q(1) given by Algorithm 1 or Algorithm 3. The
receiver knows channel H(1), calculates the channel capacity
R(1) = log det(I + H(1)Q(1)HH(1)); and reports back the
scalar R(1) to the transmitter. Repeat the above process until
slot T − 1 such that

∑T−1
t=0 R(t) > N .

For the decoding, the receiver can decode all the N bits in a
reverse order using the idea of successive decoding [9]. At slot
T−1, since N−

∑T−2
t=1 R(t) < R(T−1), that is, N−

∑T−2
t=0 R(t) <

R(T − 1) bits of source data are delivered over a channel with
capacity R(T − 1) bits per slot, the receiver can decode all
delivered data (N −

∑T−2
t=0 R(t) bits) with zero error. Note that

N−
∑T−3

t=0 R(t) = R(T−2)+N−
∑T−2

t=0 R(t) bits are delivered at
slot T − 2 over a channel with capacity R(T − 2) bits per slot.
The receiver subtracts the N −

∑T−2
t=0 R(t) bits that are already

decoded such that only R(T − 2) bits remain to be decoded.
Thus, the R(T − 2) bits can be successfully decoded. Repeat
this process until all N bits are decoded.

Using the above rate adaptation and decoding strategy, N
bits are delivered and decoded within T −1 slots during which
the sum capacity is

∑T−1
t=0 R(t) bits. When N is large enough,

the rate loss
∑T−1

t=0 R(t) − N is negligible. This rate adaptation
scheme does not require H(t) and only requires to report back
the scalar R(t − 1) to the transmitter at each slot t.

VI. SIMULATIONS

A. A simple MIMO system with two channel realizations
Consider a 2 × 2 MIMO system with two equally likely

channel realizations:

H1 =

[
1.3131e j1.9590π 2.3880e j0.7104π

2.5567e j1.5259π 2.8380e j0.3845π

]
,

H2 =

[
1.4781e j0.9674π 1.5291e j0.1396π

0.0601e j0.9849π 0.1842e j1.9126π

]
.

This simple scenario is considered as a test case because,
when there are only two possible channels with known channel
probabilities, it is easy to find an optimal baseline algorithm by
solving problem (2)-(4) or problem (6)-(8) directly. The goal
is to show that the proposed algorithms (which do not have
channel distribution information) come close to this baseline.
The proposed algorithms can be implemented just as easily in
cases when there are an infinite number of possible channel
state matrices, rather than just two. However, in that case it is
difficult to find an optimal baseline algorithm since problem
(2)-(4) or problem (6)-(8) are difficult to solve.7

The power constraints are P̄ = 2 and P = 3. If
CSIT has error, H1 and H2 are observed as H̃1 and H̃2,
respectively. Consider two CSIT error cases. CSIT Error

Case 1: H̃1 =

[
1.3131e j2π 2.3880e j0.75π

2.5567e j1.5π 2.8380e j0.5π

]
and H̃2 =

[
1.4781e j1π 1.5291e j0.25π

0.0601e j1π 0.1842e j2π

]
, where the magnitudes are

accurate but the phases are rounded to the nearest π/4

phase; CSIT Error Case 2: H̃1 =

[
1.3e j2π 2.4e j0.5π

2.6e j1.5π 2.8e j0.5π

]

and H̃2 =

[
1.5e j1π 1.5e j0π

0 0.2e j2π

]
, where the magnitudes are

rounded to the first digit after the decimal point and the phases
are rounded to the nearest π/2 phase.

In the instantaneous CSIT case, consider Baseline 1 where
the optimal solution Q∗(H) to problem (2)-(4) is calculated
by assuming the knowledge that H1 and H2 appear with equal
probabilities and Q(t) = Q∗(H(t)) is used at each slot t. Figure
1 compares the performance of Algorithm 1 (with V = 100)
under various CSIT accuracy conditions and Baseline 1. It
can be seen that Algorithm 1 has a performance close to that
attained by the optimal solution to problem (2)-(4) requiring
channel distribution information. (Note that a larger V gives
a even closer performance with a longer convergence time.)
It can also be observed that the performance of Algorithm 1
becomes worse as CSIT error gets larger.

In the delayed CSIT case, consider Baseline 2 where
the optimal solution Q∗ to problem (6)-(8) is calculated by
assuming the knowledge that H1 and H2 appear with equal
probabilities; and Q(t) = Q∗ is used at each slot t. Figure 2
compares the performance of Algorithm 3 (with γ = 0.01)
under various CSIT accuracy conditions and Baseline 2. Note
that the average power is not drawn since the average power
constraint is satisfied for all t in all schemes. It can be seen
that Algorithm 3 has a performance close to that attained
by the optimal solution to problem (6)-(8) requiring channel
distribution information. (Note that a smaller γ gives a even
closer performance with a longer convergence time.) It can
also be observed that the performance of Algorithm 3 becomes
worse as CSIT error gets larger.

B. A MIMO system with continuous channel realizations

This section considers a 2×2 MIMO system with continuous
channel realizations. Each entry in H(t) is equal to uv where

7As discussed in Section III-C, this is known as the curse of dimensionality
for stochastic optimization due to the large sample size.
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Fig. 1. A simple MIMO system with instantaneous CSIT.
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Fig. 2. A simple MIMO system with delayed CSIT.

u is a complex number whose real part and complex part are
standard normal and v is uniform over [0, 0.5]. In this case,
even if the channel distribution information is perfectly known,
problem (2)-(4) and problem (6)-(8) are infinite dimensional
problems and are extremely hard to solve. In practice, to
solve the stochastic optimization, people usually approximate
the continuous distribution by a discrete distribution with a
reasonable number of realizations and solve the approximate
optimization that is a large scale deterministic optimization
problem. (Baselines 3 and 4 considered below are essentially
using this idea.)

In the instantaneous CSIT case, consider Baseline 3 where
we spend 100 slots to obtain an empirical channel dis-
tribution by observing 100 accurate channel realizations 8;
obtain the optimal solution Q∗(H),H ∈ H to problem (2)-

8By doing so, 100 slots are wasted without sending any data. The 100
slots are not counted in the simulation. If they are counted, Algorithm 1’s
performance advantage over Baseline 3 is even bigger. The delayed CSIT
case is similar.

(4) using the empirical distribution; choose Q∗(H) where
H = argminH∈H ‖H−H(t)‖F at each slot t. Figure 3 compares
the performance of Algorithm 1 (with V = 100) and Baseline
3; and shows that Algorithm 1 has a better performance than
Baseline 3.
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Fig. 3. A continuous MIMO system with instantaneous CSIT.

In the delayed CSIT case, consider Baseline 4 where we
spend 100 slots to obtain an empirical channel distribution by
observing 100 accurate channel realizations; obtain the optimal
solution Q∗ to problem (6)-(8) using the empirical distribution;
choose Q∗ at each slot t. Figure 4 compares the performance
of Algorithm 3 (with γ = 0.01) and Baseline 4; and shows
that Algorithm 3 has a better performance than Baseline 4.

Slots: t
0 500 1000 1500

1 t

∑
t−

1
τ
=
0
lo
g
d
et
(I

+
H
(τ
)Q

(τ
)H

H
(τ
))

0.3

0.35

0.4

0.45

0.5

0.55

0.6
A continuous 2×2 MIMO system with delayed CSIT

Baseline 4
Algorithm 3

Fig. 4. A continuous MIMO system with delayed CSIT.

VII. CONCLUSION

This paper considers dynamic transmit covariance design
in point-to-point MIMO fading systems without CDIT. Two
different dynamic policies are proposed to deal with the cases
of instantaneous CSIT and delayed CSIT, respectively. In both
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cases, the proposed dynamic policies can achieve O(δ) sub-
optimality, where δ is the inaccuracy measure of CSIT.

APPENDIX A
LINEAR ALGEBRA AND MATRIX DERIVATIVES

Fact 1 ([37]). For any A,B ∈ Cm×n and C ∈ Cn×k we have:
1) ‖A‖F = ‖AH‖F = ‖AT‖F = ‖ − A‖F .
2) ‖A + B‖F ≤ ‖A‖F + ‖B‖F .
3) ‖AC‖F ≤ ‖A‖F ‖C‖F .
4) |tr(AHB) | ≤ ‖A‖F ‖B‖F .

Fact 2 ([37]). For any A ∈ Sn+ we have ‖A‖F ≤ tr(A).

Fact 3 ([38]). The function f : Sn+ → R defined by f (Q) =
log det(I + HQHH) is concave and its gradient is given by
∇Q f (Q) = HH(I +HQHH)−1H,∀Q ∈ Sn+.

The next fact is the complex matrix version of the first order
condition for concave functions of real number variables, i.e.,
f (y) ≤ f (x) + f ′(x)(y − x),∀x, y ∈ dom f if f is concave.
(See full version [33] for a complete proof.)

Fact 4. Let function f (Q) : Sn+ → R be a concave function
and have gradient ∇Q f (Q) ∈ Sn at point Q. Then, f (Q̂) ≤
f (Q) + tr

(
(∇Q f (Q))H(Q̂ −Q)

)
,∀Q̂ ∈ Sn+.

APPENDIX B
PROOF OF LEMMA 3

Fact 5. For all X ∈ Sn+, we have ‖(I + X)−1‖F ≤
√

n.

Proof: Since X ∈ Sn+, matrix X has SVD X =

UHΣU, where U is unitary and Σ is diagonal with non-
negative entries σ1, . . . , σn . Then Y = (I + X)−1 =

UHdiag( 1
1+σ1

, . . . , 1
1+σn

)U is Hermitian. Thus, ‖(I+X)−1‖F =√
tr(Y2) =

√∑n
i=1( 1

1+σi
)2 ≤

√
n.

Fact 6. For any H, H̃ ∈ CNR×NT with ‖H‖F ≤ B and ‖H −
H̃‖F ≤ δ, we have ‖HHH − H̃HH̃‖F ≤ (2B + δ)δ.

Proof:

‖HHH − H̃HH̃‖F
(a)
≤ ‖HHH −HHH̃‖F + ‖HHH̃ − H̃HH̃‖F
(b)
≤ ‖HH‖F ‖H − H̃‖F + ‖HH − H̃H‖F ‖H̃‖F
(c)
≤ ‖HH‖F ‖H − H̃‖F + ‖HH − H̃H‖F

(
‖H̃ −H‖F + ‖H‖F

)
≤2Bδ + δ2

where (a) and (c) follow from part (2) of Fact 1; and (b)
follows from part (3) of Fact 1.

Fix Z (t) and V . Define φ(Q,H) = V log det(I + HQHH) −
Z (t)tr(Q) and ψ(L,T) = V log det(I + LTLH) − Z (t)tr(LHL).

Fact 7. Let Q ∈ SNT
+ have Cholesky decomposition Q = LHL.

Then, φ(Q,H) = V log det(I+LTLH)−Z (t)tr(LHL) = ψ(L,T)
with T = HHH. Moreover, if L is fixed, then ψ(L,T) is concave
with respect to T and has gradient ∇Tψ(L,T) = VLH (I +
LTLH )−1L.

Proof: Note that

V log det(I +HQHH) − Z (t)tr(Q)

=V log det(I +HLHLHH) − Z (t)tr(LHL)
(a)
= V log det(I + LHHHLH) − Z (t)tr(LHL)
(b)
= V log det(I + LTLH) − Z (t)tr(LHL)
=ψ(L,T)

where (a) follows from the elementary identity det(I+AB) =
det(I+BA) for any A ∈ Cm×n and B ∈ Cn×m ; and (b) follows
from the definition T = HHH.

Note that if L is fixed, then Z (t)tr(LHL) is a constant. It
follows from Fact 3 that ψ(L,T) is concave with respect to T
and has gradient ∇Tψ(L,T) = VLH (I + LTLH )−1L.

Let Q∗(H) be an optimal solution to problem (2)-(4). Note
that Q∗(H) is a mapping from channel states to transmit
covariances and Ropt = E[log det(I+HQ∗(H)HH)]. To simplify
notation, we denote Q∗(t) = Q∗(H(t)), i.e. the transmit
covariance at slot t selected according to Q∗(H). The next
lemma relates the performance of Algorithm 1 and Q∗ at each
slot t.

Lemma 8. Let Q(t) be yielded by Algorithm 1. At each slot
t, we have V log det(I + H(t)Q(t)HH(t)) − Z (t)tr(Q(t)) ≥
V log det(I+H(t)Q∗(t)HH(t))−Z (t)tr(Q∗(t))−2V P

√
NT (2B+

δ)δ.

Proof: Fix t > 0. Let H̃(t) ∈ CNR×NT be the observed
(inaccurate) CSIT satisfying ‖H(t) − H̃(t)‖F ≤ δ. The main
proof of this lemma can be decomposed into 3 steps:
• Step 1: Show that φ(Q(t),H(t)) ≥ φ(Q(t), H̃(t)) −

V P
√

NT (2B + δ)δ. Let Q(t) = LH(t)L(t) be an Cholesky de-
composition. Define T(t) = HH(t)H(t) and T̃(t) = H̃H(t)H̃(t).
By Fact 7, we have ψ(L(t),T(t)) = φ(Q(t),H(t)) and
ψ(L(t), T̃(t)) = φ(Q(t), H̃(t)); and ψ is concave with respect
to T. By Fact 4, we have

ψ(L(t),T(t))

≥ψ(L(t), T̃(t)) − tr
(
[∇Tψ(L(t),T(t))]H(T̃(t) − T(t)

)
(a)
≥ ψ(L(t), T̃(t)) − ‖∇Tψ(L(t),T(t))‖F ‖T̃(t) − T(t)‖F
(b)
≥ ψ(L(t), T̃(t))

− V ‖LH(t)(I + L(t)T(t)LH(t))−1L(t)‖F (2B + δ)δ
(c)
≥ ψ(L(t), T̃(t)) − V P

√
NT (2B + δ)δ

where (a) follows from part (4) in Fact 1; (b) follows
from ∇Tψ(L(t),T(t)) = VLH(t)(I + L(t)T(t)LH(t))−1L(t)
by Fact 7 and ‖T̃(t) − T(t)‖F ≤ δ(2B + δ) which
is further implied by Fact 6; and (c) follows from
‖LH(t)(I + L(t)T(t)LH(t))−1L(t)‖F ≤ ‖LH(t)‖2F ‖(I +
L(t)T(t)LH(t))−1‖F ≤ P

√
NT where the first inequality fol-

lows from Fact 1 and the second inequality follows from
‖L(t)‖F =

√
tr(LH(t)L(t)) =

√
tr(Q(t)) ≤

√
P and Fact 5.

• Step 2: Show that φ(Q(t), H̃(t)) ≥ φ(Q∗(t), H̃(t)). This
step simply follows from the fact that Algorithm 1 choses
Q(t) to maximize φ(Q, H̃(t)) = V log det(I + H̃(t)QH̃H(t)) −
Z (t)tr(Q) and hence Q(t) should be no worse than Q∗(t).
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• Step 3: Show that φ(Q∗(t), H̃(t)) ≥ φ(Q∗(t),H(t)) −
V P
√

NT (2B + δ)δ. This step is similar to step 1. Let
Q∗(t) = MH(t)M(t) be an Cholesky decomposition. Define
T(t) = HH(t)H(t) and T̃(t) = H̃H(t)H̃(t). By Fact 7, we
have ψ(M(t),T(t)) = φ(Q∗(t),H(t)) and ψ(M(t), T̃(t)) =
φ(Q∗(t), H̃(t)); and ψ is concave with respect to T. By Fact
4, we have

ψ(M(t), T̃(t))

≥ψ(M(t),T(t)) − tr
(
[∇Tψ(M(t)), T̃(t)]H[T(t) − T̃(t)]

)
(a)
≥ ψ(M(t),T(t)) − ‖∇Tψ(M(t), T̃(t))‖F ‖T(t) − T̃(t)‖F
(b)
≥ ψ(M(t),T(t))

− V ‖MH(t)(I +M(t)T̃(t)MH(t))−1M(t)‖F (2B + δ)δ
(c)
≥ ψ(M(t),T(t)) − V P

√
NT (2B + δ)δ

where (a) follows from part (4) in Fact 1; (b) follows
from ∇Tψ(M(t), T̃(t)) = VMH(t)(I +M(t)T̃(t)MH(t))−1M(t)
by Fact 7 and ‖T(t) − T̃(t)‖F ≤ δ(2B + δ) which
is further implied by Fact 6; and (c) follows from
‖MH(t)(I + M(t)T̃(t)LH(t))−1M(t)‖F ≤ ‖MH(t)‖2F ‖(I +
M(t)T̃(t)MH(t))−1‖F ≤ P

√
NT where the first inequality

follows from Fact 1 and the second inequality follows from
‖M(t)‖F =

√
tr(MH(t)M(t)) =

√
tr(Q∗(t)) ≤

√
P and Fact 5.

Combining the above steps yields φ(Q(t),H(t)) ≥

φ(Q∗(t),H(t)) − 2V P
√

NT (2B + δ)δ.

Lemma 9. At each time t ∈ {0, 1, 2, . . .}, we have

−∆(t) ≥ −Z (t)
(
tr(Q(t)) − P̄

)
−

1
2

max{P̄2, (P − P̄)2}. (23)

Proof: Fix t ∈ {0, 1, 2, . . .}. Note that Z (t + 1) =
max{0, Z (t) + tr(Q(t)) − P̄} implies that

Z2(t + 1) ≤(Z (t) + tr(Q(t)) − P̄)2

≤Z2(t) + 2Z (t)
(
tr(Q(t)) − P̄

)
+ (tr(Q(t)) − P̄)2

(a)
≤ Z2(t) + 2Z (t)

(
tr(Q(t) − P̄

)
+max{P̄2, (P − P̄)2}

where (a) follows from |tr(Q(t))− P̄ | ≤ max{P̄, P− P̄}, which
further follows from 0 ≤ tr(Q(t)) ≤ P. Rearranging terms and
dividing by factor 2 yields the desired result.

Now, we are ready to present the main proof of Lemma
3. Adding V log det(I +H(t)Q(t)HH(t)) to both sides in (23)
yields

− ∆(t) + V log det(I +H(t)Q(t)HH(t))

≥V log det(I +H(t)Q(t)HH(t)) − Z (t)
(
tr(Q(t)) − P̄

)
−

1
2

max{P̄2, (P − P̄)2}

(a)
≥ V log det(I +H(t)Q∗(t)HH(t)) − Z (t)tr(Q∗(t) − P̄)

−
1
2

max{P̄2, (P − P̄)2} − 2V P
√

NT (2B + δ)δ

where (a) follows from Lemma 8.

Taking expectations on both sides yields

− E[∆(t)] + VE[R(t)]

≥V Ropt − E[Z (t)(tr(Q∗(t)) − P̄)] −
1
2

max{P̄2, (P − P̄)2}

− 2V P
√

NT (2B + δ)δ
(a)
= V Ropt − E[E[Z (t)(tr(Q∗(t)) − P̄) |Z (t)]]

−
1
2

max{P̄2, (P − P̄)2} − 2V P
√

NT (2B + δ)δ

(b)
≥ V Ropt −

1
2

max{P̄2, (P − P̄)2} − 2V P
√

NT (2B + δ)δ

where (a) follows by noting that E[Z (t)(tr(Q∗(t)) − P̄) |Z (t)]
is the expectation conditional on Z (t) and the iterated law of
expectations; and (b) follows from E[Z (t)tr(Q∗(t)−P̄) |Z (t)] =
Z (t)E[tr(Q∗(t)) − P̄] ≤ 0, where the identity follows because
Q∗(t) only depends on H(t) and is independent of Z (t), and
the inequality follows because Z (t) ≥ 0 and E[tr(Q∗(t))−P̄] ≤
0,∀t.

Rearranging terms and dividing both sides by V yields
− 1

V E[∆(t)] + E[R(t)] ≥ Ropt −
max{P̄2, (P−P̄)2 }

2V − 2P
√

NT (2B +
δ)δ.
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