Distributed Stochastic Optimization via Correlated Scheduling

Michael J. Neely
University of Southern California

Abstract—This paper considers a problem where multiple devices make repeated decisions based on their own observed events. The events and decisions at each time step determine the values of a utility function and a collection of penalty functions. The goal is to make distributed decisions over time to maximize time average utility subject to time average constraints on the penalties. An example is a collection of power constrained sensors that repeatedly report their own observations to a fusion center. Maximum time average utility is fundamentally reduced because devices do not know the events observed by others. Optimality is characterized for this distributed context. It is shown that optimality is achieved by correlating decision devices through a commonly known pseudorandom sequence. An optimal algorithm is developed that chooses pure strategies at each time step based on a set of time-varying weights.

Index Terms—Wireless sensor networks, optimal control, decentralized control

I. INTRODUCTION

Consider a multi-device system that operates over discrete time with unit time slots \(t \in \{0, 1, 2, \ldots \} \). There are \(N \) devices. At each time slot \(t \), each device \(i \) observes a random event \(\omega_i(t) \) and makes a control action \(\alpha_i(t) \) based on this observation. Let \(\omega(t) \) and \(\alpha(t) \) be vectors of these values:

\[
\omega(t) = (\omega_1(t), \omega_2(t), \ldots, \omega_N(t)) \\
\alpha(t) = (\alpha_1(t), \alpha_2(t), \ldots, \alpha_N(t))
\]

For each slot \(t \), these vectors determine the values of a system utility \(u(t) \) and a collection of system penalties \(p_1(t), \ldots, p_K(t) \) (for some nonnegative integer \(K \)) via real-valued functions:

\[
u(t) = \hat{u}(\alpha(t), \omega(t)) \\
p_k(t) = \hat{p}_k(\alpha(t), \omega(t)) \quad \forall k \in \{1, \ldots, K\}
\]

The functions \(\hat{u}(\cdot) \) and \(\hat{p}_k(\cdot) \) are arbitrary and can possibly be negative. Negative penalties can be used to represent desirable system rewards.

The goal is to make distributed decisions over time that maximize time average utility subject to time average constraints on the penalties. Central to this problem is the assumption that each device \(i \) can only observe \(\omega_i(t) \), and cannot observe the value of \(\omega_j(t) \) for other devices \(j \neq i \). Further, each device \(i \) only knows its own action \(\alpha_i(t) \), but does not know the actions \(\alpha_j(t) \) of others. Therefore, each device only knows a portion of the arguments that go into the functions \(\hat{u}(\alpha(t), \omega(t)) \) and \(\hat{p}_k(\alpha(t), \omega(t)) \) for each slot \(t \). This uncertainty fundamentally restricts the time averages that can be achieved.

Specifically, assume the random event vector \(\omega(t) \) is independent and identically distributed (i.i.d.) over slots (possibly correlated over entries in each slot). The vector \(\omega(t) \) takes values in some abstract event set \(\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_N \), where \(\omega_i(t) \in \Omega_i \) for all \(i \in \{1, \ldots, N\} \) and all slots \(t \). Similarly, \(\alpha(t) \) is chosen in some abstract action set \(A = A_1 \times A_2 \times \cdots \times A_N \), where \(\alpha_i(t) \in A_i \) for all \(i \in \{1, \ldots, N\} \) and all slots \(t \). The sets \(\Omega_i \) and \(A_i \) are assumed to be finite for each \(i \in \{1, \ldots, N\} \). Let \(\pi \) and \(\vec{p}_k \) be the time average expected utility and penalty incurred by a particular algorithm:

\[
\pi = \lim_{t \to \infty} \frac{1}{t} \sum_{\tau=0}^{t-1} \mathbb{E}[u(\tau)] \\
\vec{p}_k = \lim_{t \to \infty} \frac{1}{t} \sum_{\tau=0}^{t-1} \mathbb{E}[p_k(\tau)]
\]

The following problem is considered:

Maximize: \(\pi \) \hfill (1)

Subject to: \(\vec{p}_k \leq c_k \quad \forall k \in \{1, \ldots, K\} \) \hfill (2)

Decisions are distributed \(\forall i \in \{1, \ldots, N\} \) \hfill (3)

where \(c_k \) are a given collection of real numbers that specify constraints on the time average penalties.

The constraint that decisions must be distributed, specified in (3), is not mathematically precise. This constraint is more carefully posed in Section III. Without the distributed scheduling constraint, the problem (1)-(2) reduces to a standard problem of stochastic network optimization and can be solved via the drift-plus-penalty method [2]. Such a centralized approach would allow devices to coordinate to form an action vector \(\alpha(t) \) based on full knowledge of the event vector \(\omega(t) \). The time average utility achieved by the best centralized algorithm can be strictly larger than that of the best distributed algorithm. An example of this gap is given in Section II. The distributed problem (1)-(2) is more complex than the centralized problem (1)-(3), because each device only has partial knowledge of the system.

A. Applications to sensor networks

The above formulation is useful for problems where distributed agents make their own decisions based on partial system knowledge. An important example is a network of
wireless sensors that repeatedly send reports about system events to a fusion center. The goal is to make distributed decisions that maximize time average quality of information. This scenario was previously considered by Liu et al. in [3]. There, sensors can provide reports every slot \(t \) using one of multiple reporting formats, such as text, image, or video. Sensors can also choose to remain idle. Thus, the action sets \(\mathcal{A}_i \) are the same for all sensors \(i \):

\[
\alpha_i(t) \in \mathcal{A}_i \triangleq \{\text{idle, text, image, video}\} \quad \forall i \in \{1, \ldots, N\}
\]

where the notation “\(\triangle \)” represents defined to be equal to.

Each format requires a different amount of power and provides a different level of quality. Define \(p_i(t) = \tilde{p}_i(\alpha_i(t)) \) as the power incurred by sensor \(i \) on slot \(t \), where:

\[
0 = \tilde{p}_i(\text{idle}) \leq \tilde{p}_i(\text{text}) \leq \tilde{p}_i(\text{image}) \leq \tilde{p}_i(\text{video})
\]

Let \(\omega_i(t) \) be the quality value of the sensor \(i \) observation on slot \(t \). For example, this might depend on the current distance between sensor \(i \) and the observed event, or the angle, noise level, and so on. Define \(f_i(\alpha_i(t)) \) as the fraction of this quality that is achieved under format \(\alpha_i(t) \), where:

\[
0 = f_i(\text{idle}) \leq f_i(\text{text}) \leq f_i(\text{image}) \leq f_i(\text{video}) = 1
\]

The prior work [3] considers the problem of maximizing time average utility subject to a time average power constraint:

\[
\sum_{i=1}^{N} \tilde{p}_i \leq c
\]

where \(c \) is some given positive number. Further, that work restricts to the special case when the utility function is a separable sum of functions of device \(i \) variables, such as:

\[
u(t) = \sum_{i=1}^{N} f_i(\alpha_i(t))\omega_i(t)
\]

Such separable utilities cannot model the realistic scenario of information saturation, where, once a certain amount of utility is achieved on slot \(t \), there is little value of having additional sensors spend power to deliver additional information on that slot. The current paper considers the case of arbitrary, possibly non-separable utility functions. An example is:

\[
u(t) = \min \left[\sum_{i=1}^{N} f_i(\alpha_i(t))\omega_i(1), 1 \right]
\]

This means that once a total quality of 1 is accumulated from one or more sensors on slot \(t \), there is no advantage in having other sensors report information on that slot. This scenario is significantly more challenging to solve in a distributed context.

B. Applications to wireless multiple access

The general formulation of this paper can also treat simple forms of distributed multiple access problems. Again suppose there are \(N \) wireless sensors that report to a fusion center. For each \(i \in \{1, \ldots, N\} \), define \(\omega_i(t) \) as the quality that a transmission from sensor \(i \) would bring to the system if it transmits on slot \(t \). Define \(\alpha_i(t) \) as a binary value that is 1 if sensor \(i \) transmits on slot \(t \), and 0 else. Assume the network operates according to a simple collision model, where a transmission from sensor \(i \) is successful on slot \(t \) if and only if it is the only sensor that transmits on that slot:

\[
u(t) = \sum_{i=1}^{N} \omega_i(t) \left[\alpha_i(t) \prod_{j \neq i} (1 - \alpha_j(t)) \right]
\]

The above utility function is non-separable. Concurrent work in [4] considers a similar utility function for wireless energy harvesting applications.

C. Channel variation and uncertainty

The general utility function of this paper can also be used to treat wireless transmission over time-varying channels. For a simple example, suppose each device uses an orthogonal link. Define \(\omega_i(t) = (\eta_i(t), S_i(t)) \), where \(\eta_i(t) \) is the quality of the current sensor \(i \) observation, and \(S_i(t) \) is the current transmission rate available over link \(i \) (both assumed to be known only to sensor \(i \)). Define \(\mathbf{\eta} = (\eta_1, \ldots, \eta_N), \mathbf{S} = (S_1, \ldots, S_N) \), and write \(\omega = (\mathbf{\eta}, \mathbf{S}) \), assumed to have a finite number of possibilities. Consider a format selection problem. For each format \(\alpha_i \in \mathcal{A}_i \), let \(f(\alpha_i) \) be the fraction of quality achieved and let \(b(\alpha_i) \) be the amount of bits needed. The utility function is:

\[
u(\alpha, \mathbf{\eta}, \mathbf{S}) = \min \left[\sum_{i=1}^{N} \eta_i f(\alpha_i) \prod_{i \leq S_i} 1, 1 \right]
\]

where \(b(\alpha_i) = \sum_{i \leq S_i} 1 \) is an indicator function that is 1 if \(b(\alpha_i) \geq S_i \), and 0 else. This example is similar to [4], but assumes that a message is not received if its size exceeds the current link capacity.

As a variation on this model, suppose channel vectors \(\mathbf{S}(t) \) again vary with time, but none of the components are known to any sensor. Thus, each sensor observes only the quality value, so that \(\omega_i(t) = \eta_i(t) \). Define \(Pr[\mathbf{S} | \mathbf{\eta}] = Pr[\mathbf{S} | \mathbf{\eta}(t) = \mathbf{\eta}] \). A new utility function \(\tilde{\nu}(\cdot) \) can be defined:

\[
\tilde{\nu}(\alpha, \mathbf{\eta}) = \sum_{\mathbf{S}} Pr[\mathbf{S} | \mathbf{\eta}] \tilde{\nu}(\alpha_i, (\mathbf{\eta}, \mathbf{S}))
\]

where \(\tilde{\nu}(\cdot) \) is given in (5). If channel states and observation qualities are independent then \(Pr[\mathbf{S} | \mathbf{\eta}] = Pr[\mathbf{S}] \).

D. Contributions and related work

The framework of partial knowledge at each device is similar in spirit to a multi-player Bayesian game [5][6]. There, the goal is to design competitive strategies that lead to a Nash equilibrium. The current paper is not concerned with competition or equilibrium. Rather, it seeks distributed strategies for maximizing the time average of a single utility function subject to additional time average penalty constraints.

This paper shows that an optimal distributed algorithm can be designed by having devices correlate their decisions through an independent source of common randomness (Section III). Related notions of commonly shared randomness are used in game theory to define a correlated equilibrium, which is typically easier to compute than a standard Nash equilibrium [7][8][6][5]. For the current paper, the shared randomness is crucial for solving the distributed optimization problem. This paper shows that optimality can be achieved by using a shared
random variable with \(K + 1 \) possible outcomes, where \(K \) is the number of penalty constraints. The solution is computable through a linear program. Unfortunately, the linear program can have a very large number of variables, even for 2-device problems. A reduction to polynomial complexity is shown to be possible in certain cases (Section [V]). This paper also develops an online algorithm that chooses pure strategies every slot based on a set of weights that are updated at the end of each slot (Section [V]). The online technique is based on Lyapunov optimization concepts [2][9][10].

Much prior work on network optimization treats scenarios where it is possible to find distributed solutions with no loss of optimality. For example, network flow problems that are described by linear or separable convex programs can be optimally solved in a distributed manner [11][12][13][10]. Work in [14] uses distributed agents to solve for an optimal vector of parameters associated with a Markov decision problem. Work in [15][16][17] develops distributed multiple access methods. A reduction to polynomial complexity is shown where it is possible to find distributed solutions with no loss of optimality. Recent work in [18] derives structural results for distributed optimization in Markov decision systems with delayed information. Such problems do exhibit gaps between centralized and distributed performance. The use of private information in [18] is similar in spirit to the assumption in the current paper that each device observes its own random event \(\omega_i(t) \). The work [18] derives a sufficient statistic for dynamic programming. It does not consider time average constraints and its solutions do not involve correlated scheduling via a pseudo-random sequence. Recent work in [4] considers distributed reporting of events with different qualities, but considers a more restrictive class of policies that do not use correlated scheduling. The current paper treats a different model than [18] and [4], and shows that correlated scheduling is necessary in systems with constraints. The current paper also provides complexity reduction results (Section [V]), and provides an online algorithm that does not require knowledge of event probabilities (Section [V]).

II. EXAMPLE SENSOR NETWORK PROBLEM

This section illustrates the benefits of using a common source of randomness for a simple example. Consider a network with two sensors that operate over time slots \(t \in \{0, 1, 2, \ldots \} \). Each sensor observes the state of a particular system and chooses whether or not to report their observations to a fusion center. Let \(\omega_i(t) \) be a binary variable that is 1 if sensor \(i \) observes an event on slot \(t \), and 0 otherwise. Let \(\alpha_1(t) \) and \(\alpha_2(t) \) be the slot \(t \) decision variables, so that \(\alpha_i(t) = 1 \) if sensor \(i \) reports on slot \(t \), and \(\alpha_i(t) = 0 \) otherwise. Suppose the fusion center trusts sensor 1 more than sensor 2. Consider the following example utility function:

\[
 u(t) = \min[\omega_1(t)\alpha_1(t) + \omega_2(t)\alpha_2(t)/2, 1]
\]

so that \(\hat{u}(\cdot) \) is given by:

\[
 \hat{u}(\alpha_1, \alpha_2, \omega_1, \omega_2) = \min[\omega_1\alpha_1 + \omega_2\alpha_2/2, 1]
\]

Therefore, \(u(t) \in \{0, 1/2, 1\} \) for all slots \(t \). If \(\omega_1(t) = 1 \) and sensor 1 reports on slot \(t \), there is no utility increase if sensor 2 also reports. Each report uses one unit of power. Let \(p_i(t) \) be the power incurred by sensor \(i \) on slot \(t \), being 1 if it reports its observation, and 0 otherwise. The power penalties for \(i \in \{1, 2\} \) are:

\[
 p_i(t) = \alpha_i(t)
\]

so that \(\hat{p}_i(\alpha_1, \alpha_2, \omega_1, \omega_2) = \alpha_i \) for \(i \in \{1, 2\} \). Each sensor \(i \) can choose not to report an observation in order to save power. The difficulty is that neither sensor knows what event was observed by the other. Therefore, a distributed algorithm might send reports from both sensors on a given slot. A centralized scheduler would avoid this because it wastes power without increasing utility.

Suppose that \(\omega_1(t) \) and \(\omega_2(t) \) are independent of each other and i.i.d. over slots, with:

\[
\begin{align*}
 Pr[\omega_1(t) = 1] &= 3/4, \quad Pr[\omega_1(t) = 0] = 1/4 \\
 Pr[\omega_2(t) = 1] &= 1/2, \quad Pr[\omega_2(t) = 0] = 1/2
\end{align*}
\]

For a specific numeric example, consider the problem:

Maximize: \(\pi \)

Subject to: \(p_1 \leq 1/3 \), \(p_2 \leq 1/3 \)

Decisions are distributed

A. Policy agreement assumptions

It is assumed throughout this paper that, before slot 0, the devices can coordinate and agree on a scheduling policy to use. However, the devices must implement this policy in a distributed manner on all slots \(t \geq 0 \).

B. Independent reporting

Consider the following class of algorithms, which we refer to as the independent reporting algorithms: Each sensor \(i \) independently decides to report with probability \(\theta_i \) if it observes \(\omega_i(t) = 1 \) (it does not report if \(\omega_i(t) = 0 \)). Since \(\omega(t) \) is i.i.d. over slots, the resulting sequences \(\{u(t)\}_{t=0}^{\infty}, \{p_1(t)\}_{t=0}^{\infty}, \{p_2(t)\}_{t=0}^{\infty} \) are i.i.d. over slots. The time averages are:

\[
\bar{p}_1 = \frac{3}{4} \theta_1, \quad \bar{p}_2 = \frac{1}{2} \theta_2
\]

\[
\bar{\pi} = E[u(t) | \omega_1(t) = 1, \omega_2(t) = 0] = \frac{3}{4} \frac{3}{4} + \frac{1}{4} \frac{1}{2} + \frac{1}{4} \frac{1}{2} = \frac{3}{4} \frac{3}{4} + \frac{1}{4} \frac{1}{2} + \frac{1}{4} \frac{1}{2} \theta_1 + \frac{1}{4} \theta_2/2
\]

For this class of algorithms, utility is maximized by choosing \(\theta_1 \) and \(\theta_2 \) to meet the power constraints with equality. This leads to \(\theta_1 = 4/9, \theta_2 = 2/3 \). The resulting utility is:

\[
\bar{\pi} = 4/9 = 0.44444
\]
C. Correlated reporting

As an alternative, consider the following three strategies:

- **Strategy 1:** $\omega_1(t) = 1 \implies \alpha_1(t) = 1$ (else, $\alpha_1(t) = 0$). Sensor 2 always chooses $\alpha_2(t) = 0$.
- **Strategy 2:** $\omega_2(t) = 1 \implies \alpha_2(t) = 1$ (else, $\alpha_2(t) = 0$). Sensor 1 always chooses $\alpha_1(t) = 0$.
- **Strategy 3:** $\omega_1(t) = 1 \implies \alpha_1(t) = 1$ (else, $\alpha_1(t) = 0$). $\omega_2(t) = 1 \implies \alpha_2(t) = 1$ (else, $\alpha_2(t) = 0$).

The above three strategies are pure strategies because $\alpha_i(t)$ is a deterministic function of $\omega_i(t)$ for each sensor i. Now let $X(t)$ be an external source of randomness that is commonly known at both sensors on slot t. Assume $X(t)$ is independent of everything else in the system, and is i.i.d. over slots with:

$$Pr[X(t) = m] = \theta_m, \quad \forall m \in \{1, 2, 3\}$$

where $\theta_1, \theta_2, \theta_3$ are probabilities that sum to 1. Consider the following algorithm: On slot t, if $X(t) = m$ then choose strategy m, where $m \in \{1, 2, 3\}$. This algorithm can be implemented by letting $X(t)$ be a pseudorandom sequence that is installed in both sensors at time 0. The resulting time averages are:

$$\bar{p}_1 = (\theta_1 + \theta_3)\frac{3}{2}, \quad \bar{p}_2 = (\theta_2 + \theta_3)\frac{1}{2}$$

$$\bar{\pi} = \theta_1\frac{1}{2} + \theta_2\frac{1}{2} + \theta_3(\frac{1}{2} + \frac{1}{3} + \frac{1}{2})$$

A simple linear program can be used to compute the optimal θ_m probabilities for this algorithm structure. The result is $\theta_1 = 1/3, \theta_2 = 5/9, \theta_3 = 1/9$. The resulting utility is:

$$\bar{\pi} = 23/48 \approx 0.47917$$

This is strictly larger than the time average utility of 0.44444 achieved by the independent reporting algorithm. Thus, performance can be strictly improved by correlating reports via a common source of randomness. Alternatively, the same time averages can be achieved by time sharing: The two sensors agree to use a periodic schedule of period 9 slots. The first 3 slots of the period use strategy 1, the next 5 slots use strategy 2, and the final slot uses strategy 3.

D. Centralized reporting

Suppose sensors coordinate by observing $(\omega_1(t), \omega_2(t))$ and then cooperatively selecting $(\alpha_1(t), \alpha_2(t))$. It turns out that an optimal centralized policy is as follows [2]: Every slot t, observe $(\omega_1(t), \omega_2(t))$ and choose $(\alpha_1(t), \alpha_2(t))$ as follows:

- $(\omega_1(t), \omega_2(t)) = (0, 0) \implies (\alpha_1(t), \alpha_2(t)) = (0, 0)$.
- $(\omega_1(t), \omega_2(t)) = (0, 1) \implies (\alpha_1(t), \alpha_2(t)) = (0, 1)$.
- If $(\omega_1(t), \omega_2(t)) = (1, 0)$, independently choose:

 $$(\alpha_1(t), \alpha_2(t)) = \begin{cases} (1, 0) & \text{with probability } \frac{8}{9} \\ (0, 0) & \text{with probability } \frac{1}{9} \end{cases}$$

- If $(\omega_1(t), \omega_2(t)) = (1, 1)$, independently choose:

 $$(\alpha_1(t), \alpha_2(t)) = \begin{cases} (0, 1) & \text{with probability } \frac{5}{9} \\ (0, 0) & \text{with probability } \frac{4}{9} \end{cases}$$

The resulting optimal centralized time average utility is:

$$\bar{\pi} = 0.5$$

This is larger than the value 0.47917 achieved by the distributed algorithm of the previous subsection.

The question remains: Is it possible to construct some other distributed algorithm that yields $\pi > 0.47917$? Results in the next section imply this is impossible. Thus, the correlated reporting algorithm of the previous subsection optimizes time average utility over all possible distributed algorithms that satisfy the constraints. Therefore, for this example, there is a fundamental gap between the performance of the best centralized algorithm and the best distributed algorithm.

III. Characterizing optimality

Consider the general N device problem. Recall that:

$$\omega(t) \in \Omega := \Omega_1 \times \cdots \times \Omega_N, \quad \alpha(t) \in A := A_1 \times \cdots \times A_N$$

where the vectors $\omega(t)$ are i.i.d. over slots (possibly correlated over entries in each slot). Assume that the sets Ω_i and A_i are finite with sizes denoted $|\Omega_i|$ and $|A_i|$. For each $\omega \in \Omega$ define:

$$\pi(\omega) = Pr[\omega(t) = \omega]$$

Define the history $H(t)$ by:

$$H(t) \triangleq \{ (\omega(0), \alpha(0), \ldots, (\omega(t - 1), \alpha(t - 1)) \}$$

This section considers all distributed algorithms, including those where devices know the history $H(t)$. This might be available through a feedback message that specifies $(\alpha(t), \omega(t))$ at the end of each slot. Theorem 1 shows that optimality can be achieved without this history information.

It is important to make the distributed scheduling constraint [3] mathematically precise. One might attempt to use the following condition: For all slots t, the decisions made by each device $i \in \{1, \ldots, N\}$ must satisfy:

$$Pr[\alpha_i(t) = \alpha_i | \omega_i(t) = \omega_i, H(t)] = Pr[\alpha_i(t) = \alpha_i | \omega(t) = \omega, H(t)]$$

for all vectors $\omega = (\omega_1, \ldots, \omega_N) \in \Omega_1 \times \cdots \times \Omega_N$ and all $\alpha_i \in A_i$. The condition (12) specifies that $\alpha_i(t)$ is conditionally independent of $\omega_i(t)$ given $\omega(t), H(t)$. While this condition is indeed required, it turns out that it is not restrictive enough. Appendix B provides an example utility function for which there is an algorithm that satisfies (12) but yields expected utility strictly larger than that of any true distributed algorithm (as defined in the next subsection).

A. The distributed scheduling constraint

An algorithm for selecting $\alpha(t)$ over slots $t \in \{0, 1, 2, \ldots\}$ is distributed if:

- There is an abstract set X, called a common information set.
- There is a sequence of commonly known random elements $X(t) \in X$ such that $\omega(t)$ is independent of $X(t)$ for each $t \in \{0, 1, 2, \ldots\}$.
- There are deterministic functions $f_i(\omega_i, X)$ for each $i \in \{1, \ldots, N\}$ of the form $f_i : \Omega_i \times X \rightarrow A_i$.
- The decisions $\alpha_i(t)$ satisfy the following for all slots t:

 $$\alpha_i(t) = f_i(\omega_i(t), X(t)) \quad \text{for all } i \in \{1, \ldots, N\}$$

(13)
Intuitively, the random elements $X(t)$ can be designed as any source of common randomness on which devices can base their decisions. For example, $X(t)$ can have the form:

$$X(t) = (t, \mathcal{H}(t), Y(t))$$

where $Y(t)$ is a random element with support and distribution that can possibly depend on $\mathcal{H}(t)$ as well as past values $Y(\tau)$ for $\tau < t$. The only restriction is that $X(t)$ is independent of $\omega(t)$. Because the $\omega(t)$ vectors are i.i.d. over slots, $X(t)$ can be based on any events that occur before slot t.

B. The optimization problem

For notational convenience, define:

$$p_0(t) \triangleq -u(t), \quad \hat{p}_0(\alpha(t), \omega(t)) \triangleq -\hat{u}(\alpha(t), \omega(t))$$

Maximizing the time average expectation of $u(t)$ is equivalent to minimizing the time average expectation of $p_0(t)$. For each $k \in \{0, 1, \ldots, K\}$ and each slot $t > 0$ define:

$$\overline{p}_k(t) \triangleq \frac{1}{t} \sum_{\tau=0}^{t-1} \mathbb{E}[p_k(\tau)]$$

The goal is to design a distributed algorithm that solves:

Minimize: \[\limsup_{t \to \infty} \overline{p}_0(t) \quad (15) \]

Subject to: \[\limsup_{t \to \infty} \overline{p}_k(t) \leq c_k \quad \forall k \in \{0, 1, \ldots, K\} \quad (16) \]

Condition (13) holds $\forall t \in \{0, 1, 2, \ldots\}$.

where c_k are a given collection of real numbers. The above problem is a more precise formulation of (1)-3.

It is assumed throughout this paper that the constraints (16)-(17) are feasible. Define p^opt_0 as the minimum of all limiting $p_0(t)$ values (15) achievable by algorithms that satisfy the constraints (16)-(17). The infimum is finite because $p_0(t)$ takes values in the same bounded set for all slots t.

C. Optimality via correlated scheduling

A pure strategy is defined as a vector-valued function:

$$g(\omega) = (g_1(\omega_1), g_2(\omega_2), \ldots, g_N(\omega_N))$$

where $g_i(\omega_i) \in A_i$ for all $i \in \{1, \ldots, N\}$ and all $\omega_i \in \Omega_i$. The function $g(\omega)$ specifies a distributed decision rule where each device i chooses α_i as a deterministic function of ω_i. Specifically, $\alpha_i = g_i(\omega_i)$. The total number of pure strategy functions $g(\omega)$ is $\prod_{i=1}^{N} |A_i|^{\Omega_i}$. Define M as this number, and enumerate these functions by $g^{(m)}(\omega)$ for $m \in \{1, \ldots, M\}$.

For each $m \in \{1, \ldots, M\}$ and $k \in \{0, 1, \ldots, K\}$ define:

$$r_k^{(m)} \triangleq \sum_{\omega \in \Omega} \pi(\omega) \hat{p}_k(g^{(m)}(\omega), \omega)$$

The value $r_k^{(m)}$ is the expected value of $p_k(t)$ given that devices implement strategy $g^{(m)}(\omega)$ on slot t.

Consider a randomized algorithm that, every slot t, independently uses strategy $g^{(m)}(\omega)$ with probability θ_m. For each $k \in \{0, 1, \ldots, K\}$, this gives an expected penalty $\mathbb{E}[p_k(t)]$ of:

$$\mathbb{E}[p_k(t)] = \sum_{m=1}^{M} \theta_m \mathbb{E}[\hat{p}_k(g^{(m)}(\omega(t)), \omega(t))] = \sum_{m=1}^{M} \theta_m r_k^{(m)}$$

The following linear program solves for θ_m probabilities that minimize $\mathbb{E}[p_0(t)]$ over all algorithms that satisfy this specific randomized structure, subject to the constraints $\mathbb{E}[p_k(t)] \leq c_k$ for $k \in \{1, \ldots, K\}$:

Minimize: \[\sum_{m=1}^{M} \theta_m r_0^{(m)} \quad (19) \]

Subject to: \[\sum_{m=1}^{M} \theta_m r_k^{(m)} \leq c_k \quad \forall k \in \{1, \ldots, K\} \quad (20) \]

$\theta_m \geq 0 \quad \forall m \in \{1, \ldots, M\}$ \quad (21)

$\sum_{m=1}^{M} \theta_m = 1$ \quad (22)

Such a randomized algorithm does not use the history $\mathcal{H}(t)$. The next theorem shows this algorithm structure is optimal.

Theorem 1: Suppose the problem (15)-(17) is feasible. Then the linear program (19)-(22) is feasible, and the optimal objective value (19) is equal to p^opt_0. Furthermore, there exist probabilities $(\theta_1, \ldots, \theta_M)$ that solve the linear program and satisfy $\theta_m > 0$ for at most $K + 1$ values of $m \in \{1, \ldots, M\}$.

Proof: See Appendix A.

The above theorem can be used to prove that the correlated reporting algorithm given in Section II which uses $K + 1 = 3$ pure strategies, is optimal for that example (see [19] for details).

IV. Reduced complexity

The linear program (19)-(22) uses variables $(\theta_1, \theta_2, \ldots, \theta_M)$, where M is the number of pure strategies. The value of M can be very large. This section shows that, under certain conditions, the set of strategy functions can be pruned to a smaller set without loss of optimality. For example, consider a two-device problem with binary actions, so that $|A_i| = 2$ for $i \in \{1, 2\}$. Then:

$$M = 2^{|\Omega_1| + |\Omega_2|}$$

If certain conditions hold, strategies can be restricted to a set of size \tilde{M}, where:

$$\tilde{M} = (|\Omega_1| + 1)(|\Omega_2| + 1)$$

Thus, an exponentially large set is pruned to a smaller set with polynomial size.

The conditions required for this complexity reduction are that the events $\omega_1(t), \ldots, \omega_2(t)$ are mutually independent, and that all penalty functions satisfy a preferred action property. The next subsection defines this property and provides examples when the property holds. The final subsection proves the complexity reduction theorem.

A. The preferred action property

Suppose the sets A_i and Ω_i for each device $i \in \{1, \ldots, N\}$ are given by:

$$A_i = \{0, 1, \ldots, |A_i| - 1\} \quad (23)$$

$$\Omega_i = \{0, 1, \ldots, |\Omega_i| - 1\} \quad (24)$$

For notational convenience, for each $i \in \{1, \ldots, N\}$ let $[\alpha_{\tau}, \alpha_i]$ denote the N-dimensional vector $\alpha = (\alpha_1, \ldots, \alpha_N)$, where α_{τ} is the $(N-1)$-dimensional vector of α_j components.
for \(j \neq i\). This notation facilitates comparison of two vectors that differ in just one coordinate. Define \(A_\tau\) and \(\Omega_\tau\) as the set of all possible \((N - 1)\)-dimensional vectors \(\alpha_\tau\) and \(\omega_\tau\) respectively.

Definition 1: A penalty function \(\hat{p}(\alpha, \omega)\) has the preferred action property if for all \(i \in \{1, \ldots, N\}\), all \(\alpha_\tau \in A_\tau\), and all \(\omega_\tau \in \Omega_\tau\), one has:

\[
\hat{p}(\alpha_\tau, \omega_\tau, \gamma) - \hat{p}(\alpha_\tau, \gamma) \geq \hat{p}(\alpha_\tau, \omega_\tau, \gamma) - \hat{p}(\alpha_\tau, \beta, \gamma) \tag{25}
\]

whenever \(\alpha, \beta\) are values in \(A_i\) that satisfy \(\alpha > \beta\), and \(\omega, \gamma\) are values in \(\Omega_i\) that satisfy \(\omega < \gamma\).

The above definition means that if device \(i\) compares the difference in penalty under the actions \(\alpha_i(t) = \alpha\) and \(\alpha_i(t) = \beta\) (where \(\alpha > \beta\)), this difference is nonincreasing in the device \(i\) observation \(\omega_i(t)\) (assuming all other actions and events \(\alpha_\tau\) and \(\omega_\tau\) are held fixed). This requires the elements of sets \(A_i\) and \(\Omega_i\) to have an ordering, defined by (23)-(24), for which this property makes sense. For intuition, fix all other parameters except for \(\omega_i\) and \(\alpha_i\), and let \(f_{\omega_i}(\alpha_i)\) be the resulting penalty function. Imagine fixing \(\omega_i\) and sweeping through \(\alpha_i \in \{0, \ldots, |A_i| - 1\}\). This draws a function that changes incrementally as \(\alpha_i\) is increased. For simplicity, assume these changes are nonnegative, so that larger \(\alpha_i\) values represent more powerful actions. Intuitively, the ordering on \(\Omega_i\) specifies a sequence of less and less “impactful” observations \(\omega_i\). All of the incremental changes in \(f_{\omega_i}(\alpha_i)\) are greater than or equal to the corresponding changes in the event if \(\omega_i\) were changed to a “less impactful” event \(\omega_i\) (so that \(\omega_i > \omega_i\)). For example, this holds when \(\omega_i\) is a scaling parameter such that \(f_{\omega_i}(\alpha_i) = (1/\omega_i + 1)f(\alpha_i)\) for some nondecreasing function \(f(\alpha_i)\).

Theorem 2 in this section shows that this property, together with independence of the components \((\omega(t), \ldots, \omega(N)(t))\), ensure that one can restrict attention to nondecreasing strategy functions without loss of optimality. Intuitively, this is because penalty minimization requires “more powerful” actions to be used for “less impactful” events.

For example, any function \(\hat{p}(\alpha, \omega)\) that does not depend on \(\omega\) trivially satisfies the preferred action property. This is the case for the \(\hat{p}_1(\cdot)\) and \(\hat{p}_2(\cdot)\) functions in (3) used to represent power expenditures for the sensor network example of Section 11. Further, it can be shown that the utility functions in (5) and (7) yield penalty functions \(\hat{p}_1(\cdot) = -\hat{u}(\cdot)\) that satisfy the preferred action property. More general functions are described in the following lemmas.

Lemma 1: Suppose \(A_i\) and \(\Omega_i\) satisfy (23)-(24). Define \(\hat{p}(\alpha, \omega)\) by:

\[
\hat{p}(\alpha, \omega) = \prod_{i=1}^{N} \phi_i(\omega_i)\psi_i(\alpha_i) \tag{26}
\]

where \(\phi_i(\omega_i)\), \(\psi_i(\alpha_i)\) are nonnegative functions for all \(i \in \{1, \ldots, N\}\). Suppose that for each \(i \in \{1, \ldots, N\}\), \(\phi_i(\omega_i)\) is nonincreasing in \(\omega_i\) and \(\psi_i(\alpha_i)\) is nondecreasing in \(\alpha_i\). Then \(\hat{p}(\alpha, \omega)\) has the preferred action property.

Lemma 2: Suppose \(A_i\) and \(\Omega_i\) satisfy (23)-(24), and \(\hat{p}_1(\alpha, \omega), \ldots, \hat{p}_R(\alpha, \omega)\) are a collection of functions that have the preferred action property (where \(R\) is a given positive integer). Then for any nonnegative weights \(w_1, \ldots, w_R\), the following function has the preferred action property:

\[
\hat{p}(\alpha, \omega) = \sum_{r=1}^{R} w_r \hat{p}_r(\alpha, \omega) \tag{27}
\]

Lemma 3: Any function \(\hat{p}(\alpha, \omega)\) that has the following three properties must also have the preferred action property:

1. \(A_i = \{0,1\}\) for \(i \in \{1, \ldots, N\}\).
2. \(\hat{p}(\alpha, \omega)\) is nonincreasing in the vector \(\omega\). That is, for all \(\alpha \in A_i\) and all vectors \(\omega, \gamma \in \Omega_i\) that satisfy \(\omega \leq \gamma\) (with inequality taken entrywise), one has:

\[
\hat{p}(\alpha, \omega) \geq \hat{p}(\alpha, \gamma) \tag{28}
\]

- Given \(\alpha_i = 0, \hat{p}(\alpha, \omega)\) does not depend on \(\omega_i\). That is, for all \(i \in \{1, \ldots, N\}\), all possible values of \(\alpha_\tau \in A_\tau\), \(\omega_\tau \in \Omega_\tau\) and all \(\omega, \gamma \in \Omega_i\), one has:

\[
\hat{p}(\alpha_\tau, 0, \omega) = \hat{p}(\alpha_\tau, 0, \gamma) \tag{29}
\]

Then the functions in (5) and (7) satisfy the requirements of Lemma 3.

B. Proofs of Lemmas 1-3

Proof: (Lemma 1) Suppose \(\hat{p}(\alpha, \omega)\) satisfies (26). Fix \(i \in \{1, \ldots, N\}\), fix \(\alpha_\tau, \omega_\tau\), and fix \(\alpha, \beta \in A_i, \omega, \gamma \in \Omega_i\) that satisfy \(\alpha > \beta\) and \(\omega < \gamma\). The goal is to show that (25) holds. By substituting (26) into (25) and canceling common (nonnegative) factors, it suffices to show:

\[
\phi_i(\omega)\psi_i(\alpha) - \phi_i(\omega)\psi_i(\beta) \geq \phi_i(\gamma)\psi_i(\alpha) - \phi_i(\gamma)\psi_i(\beta) \tag{30}
\]

This is equivalent to:

\[
\phi_i(\omega)(\psi_i(\alpha) - \psi_i(\beta)) \geq \phi_i(\gamma)(\psi_i(\alpha) - \psi_i(\beta)) \tag{31}
\]

Since \(\alpha > \beta\) and \(\psi_i(\alpha) - \psi_i(\beta)\geq 0\), By canceling the common (nonnegative) factor, it suffices to show:

\[
\phi_i(\omega) \geq \phi_i(\gamma) \tag{32}
\]

This is true because \(\omega < \gamma\) and \(\phi_i(\omega)\) is nonincreasing.

Proof: (Lemma 2) Suppose \(\hat{p}(\alpha, \omega)\) satisfies (27). Fix \(i \in \{1, \ldots, N\}\), fix \(\alpha_\tau, \omega_\tau\), and fix \(\alpha, \beta \in A_i, \omega, \gamma \in \Omega_i\) that satisfy \(\alpha > \beta\) and \(\omega < \gamma\). Since each function \(\hat{p}_r(\alpha, \omega)\) has the preferred action property, one has for all \(r \in \{1, \ldots, R\}:\)

\[
\hat{p}_r(\alpha_\tau, \omega_\tau, \gamma) - \hat{p}_r(\alpha_\tau, \beta, \omega_\tau) \geq \hat{p}_r(\alpha_\tau, \omega_\tau, \gamma) - \hat{p}_r(\alpha_\tau, \beta, \omega_\tau) \tag{33}
\]

Multiplying the above inequality by the nonnegative constants \(w_r\) and summing over \(r \in \{1, \ldots, R\}\) proves that \(\hat{p}(\alpha, \omega)\) has the preferred action property.

Proof: (Lemma 3) Fix \(i \in \{1, \ldots, N\}\), fix \(\alpha_\tau, \omega_\tau\), and fix \(\alpha, \beta \in \{0,1\}, \omega, \gamma \in \Omega_i\) that satisfy \(\alpha > \beta\) and \(\omega < \gamma\). Since \(\alpha, \beta\) are binary numbers that satisfy \(\alpha > \beta\), it must be that \(\alpha = 1, \beta = 0\). The goal is to show:

\[
\hat{p}(\alpha_\tau, 1, \omega_\tau, \gamma) - \hat{p}(\alpha_\tau, 0, \omega_\tau, \gamma) \geq \hat{p}(\alpha_\tau, 1, \omega_\tau, \gamma) - \hat{p}(\alpha_\tau, 0, \omega_\tau, \gamma) \tag{34}
\]

Since the second term on the left-hand-side is the same as the second term on the right-hand-side, it suffices to show:

\[
\hat{p}(\alpha_\tau, 1, \omega_\tau, \gamma) \geq \hat{p}(\alpha_\tau, 1, \omega_\tau, \gamma) \tag{35}
\]

The above inequality is true because \(\omega < \gamma\) and \(\hat{p}(\alpha, \omega)\) is nonincreasing in the vector \(\omega\).
C. Independent events and reduced complexity

Consider the special case when the components of $\omega(t) = (\omega_1(t), \ldots, \omega_N(t))$ are mutually independent, so that:

$$\pi(\omega) = \prod_{i=1}^N q_i(\omega_i)$$

(29)

where $q_i(\omega) \triangleq P_r[\omega_i(t) = \omega_i]$. Without loss of generality, assume $q_i(\omega_i) > 0$ for all $i \in \{1, \ldots, N\}$ and all $\omega_i \in \Omega_i$. Recall that a pure strategy $g(\omega)$ is composed of individual strategy functions $g_i(\omega_i)$ for each device i:

$$g(\omega) = (g_1(\omega_1), \ldots, g_N(\omega_N))$$

Theorem 2: (Nondecreasing strategy functions) If all penalty functions $\hat{p}_k(\alpha, \omega)$ for $k \in \{0, 1, \ldots, K\}$ have the preferred action property, and if $\omega(t)$ satisfies the independence property (29), then it suffices to restrict attention to strategy functions $g_i(\omega_i)$ that are nondecreasing in ω_i.

Proof: Fix $m \in \{1, \ldots, M\}$, $i \in \{1, \ldots, N\}$, and fix two elements ω and γ in Ω, that satisfy $\omega < \gamma$. Suppose the linear program (19)-(22) places weight $\theta_m > 0$ on a strategy function $g_i^{(m)}(\omega)$ that satisfies $g_i^{(m)}(\omega) > g_i^{(m)}(\gamma)$ (so the nondecreasing requirement is violated). The goal is to show this can be replaced by new strategies that do not violate the nondecreasing requirement for elements ω and γ, without loss of optimality.

Define $\alpha = g_i^{(m)}(\omega)$ and $\beta = g_i^{(m)}(\gamma)$. Then $\alpha > \beta$. Define two new functions:

$$g_i^{(m),\text{low}}(\omega_i) = \begin{cases} g_i^{(m)}(\omega_i) & \text{if } \omega_i \notin \{\omega, \gamma\} \\ \beta & \text{if } \omega_i \in \{\omega, \gamma\} \end{cases}$$

$$g_i^{(m),\text{high}}(\omega_i) = \begin{cases} g_i^{(m)}(\omega_i) & \text{if } \omega_i \notin \{\omega, \gamma\} \\ \alpha & \text{if } \omega_i \in \{\omega, \gamma\} \end{cases}$$

Unlike the original function $g_i^{(m)}(\omega_i)$, these new functions satisfy:

$$g_i^{(m),\text{low}}(\omega) \leq g_i^{(m),\text{low}}(\gamma)$$

$$g_i^{(m),\text{high}}(\omega) \leq g_i^{(m),\text{high}}(\gamma)$$

Define $g_i^{(m),\text{low}}(\omega)$ and $g_i^{(m),\text{high}}(\omega)$ by replacing the ith component function $g_i^{(m)}(\omega_i)$ of $g^{(m)}(\omega)$ with new component functions $g_i^{(m),\text{low}}(\omega_i)$ and $g_i^{(m),\text{high}}(\omega_i)$, respectively. Let $p_k^{\text{old}}(t)$ be the kth penalty incurred in the (old) strategy that uses $g_i^{(m)}(\omega)$ with probability θ_m. Let $p_k^{\text{new}}(t)$ be the corresponding penalty under a (new) strategy that, instead of using $g_i^{(m)}(\omega)$ with probability θ_m, uses:

- $g_i^{(m),\text{low}}(\omega)$ with probability $\theta_m q_i(\gamma) / (q_i(\omega) + q_i(\gamma))$.
- $g_i^{(m),\text{high}}(\omega)$ with probability $\theta_m q_i(\omega) / (q_i(\omega) + q_i(\gamma))$.

Define E_0 as the event that the old strategy uses $g_i^{(m)}(\omega)$. Let $\omega_j(t)$ denote the $(N-1)$-dimensional vector of components $\omega_j(t)$ for $j \neq i$. Fix any vector $\omega_j \in \Omega_j$. Define α as the corresponding $(N-1)$-dimensional vector of $g_j^{(m)}(\omega_j)$ values for $j \neq i$. Then:

- If E_0 holds, $\omega_j(t) = \omega_j$, $\omega_i(t) = \omega$, and $g^{(m),\text{low}}(\omega)$ is used by the new strategy, then $\omega(t) = [\omega_j, \omega]$ and:

$$p_k^{\text{new}}(t) = \hat{p}_k \left(g_i^{(m),\text{low}} ([\omega_j, \omega]), [\omega_j, \omega] \right) = \hat{p}_k \left([\alpha, \beta], [\omega_j, \omega] \right)$$

Further, since the old strategy used $g_i^{(m)}(\omega) = \alpha$:

$$p_k^{\text{old}}(t) = \hat{p}_k \left(g_i^{(m)}(\omega_j, \omega), [\omega_j, \omega] \right) = \hat{p}_k \left([\alpha, \alpha], [\omega_j, \omega] \right)$$

- If E_0 holds, $\omega_j(t) = \omega_j$, $\omega_i(t) = \gamma$, and $g^{(m),\text{high}}(\omega)$ is used by the new strategy, then $\omega(t) = [\omega_j, \gamma]$ and:

$$p_k^{\text{new}}(t) = \hat{p}_k \left(g_i^{(m),\text{high}} ([\omega_j, \gamma]), [\omega_j, \gamma] \right) = \hat{p}_k \left([\alpha, \beta], [\omega_j, \gamma] \right)$$

Further, since the old strategy used $g_i^{(m)}(\gamma) = \beta$:

$$p_k^{\text{old}}(t) = \hat{p}_k \left(g_i^{(m)}([\omega_j, \omega]), [\omega_j, \omega] \right) = \hat{p}_k \left([\alpha, \beta], [\omega_j, \gamma] \right)$$

- Suppose $\omega_j(t) = \omega_j$, but neither of the above two events are satisfied on slot t. That is, neither of the events E_1 or E_2 are true, where:

$$E_1 \triangleq E_0 \cap \{\omega_i(t) = \omega\} \cap \{g^{(m),\text{low}}(\omega) \text{ is used}\}$$

$$E_2 \triangleq E_0 \cap \{\omega_i(t) = \gamma\} \cap \{g^{(m),\text{high}}(\omega) \text{ is used}\}$$

Then $p_k^{\text{new}}(t) - p_k^{\text{old}}(t) = 0$. It follows that:

$$E \left[p_k^{\text{new}}(t) - p_k^{\text{old}}(t) | \omega_j(t) = \omega_j \right] = \theta_m q_i(\gamma) \left(q_i(\omega) + q_i(\gamma) \right) \times$$

$$\left[\hat{p}_k \left([\alpha, \beta], [\omega_j, \omega] \right) - \hat{p}_k \left([\alpha, \alpha], [\omega_j, \omega] \right) \right] + \theta_m q_i(\omega) \left(q_i(\omega) + q_i(\gamma) \right) \times$$

$$\left[\hat{p}_k \left([\alpha, \beta], [\omega_j, \gamma] \right) - \hat{p}_k \left([\alpha, \beta], [\omega_j, \gamma] \right) \right]$$

where the above uses the fact that $\omega_i(t)$ is independent of $\omega_j(t)$, so conditioning on $\omega_j(t) = \omega_j$ does not change the distribution of $\omega_i(t)$. Because $\hat{p}_k(\cdot)$ satisfies the preferred action property and $\alpha > \beta$, $\omega_i(t)$ does not change its probability $\omega(t)$, then:

$$\left[\hat{p}_k \left([\alpha, \beta], [\omega_j, \omega] \right) - \hat{p}_k \left([\alpha, \beta], [\omega_j, \omega] \right) \right] \geq \left[\hat{p}_k \left([\alpha, \beta], [\omega_j, \gamma] \right) - \hat{p}_k \left([\alpha, \beta], [\omega_j, \gamma] \right) \right]$$

and hence (30) is less than or equal to zero. This holds when conditioning on all possible values of $\omega_j(t)$, and so:

$$E \left[p_k^{\text{new}}(t) - p_k^{\text{old}}(t) \right] \leq 0$$

This holds for all penalties $k \in \{0, 1, \ldots, K\}$, and so the modified algorithm still satisfies all constraints with an optimal value for $E[p_k(t)]$. The interchange can be repeated until all strategy functions are nondecreasing. \qed

In the special case of binary actions, so that $A_i = \{0, 1\}$ for all $i \in \{1, \ldots, N\}$, all nondecreasing strategy functions $g_i(\omega_i)$ have the following form:

$$g_i(\omega_i) = \begin{cases} 0 & \text{if } \omega_i < h_i^* \\ 1 & \text{if } \omega_i \geq h_i^* \end{cases}$$

(31)

for some threshold $h_i^* \in \{0, 1, \ldots, |\Omega_i|\}$. There are $|\Omega_i| + 1$ such threshold functions, whereas the total number of strategy functions for device i is $2^{|\Omega_i|}$. Restricting to the threshold functions significantly decreases complexity.
V. Online Optimization

The randomized policy of Theorem 1 solves the problem (15)-(17) with no interaction amongst devices and with no history information. However, it requires θ_m values to be computed at time 0 based on knowledge of the $\pi(\omega)$ probabilities. This section presents a dynamic algorithm that does not require these probabilities, and that can adapt if they change. Such an algorithm requires feedback messages. However, for distributed implementation, it is assumed throughout that all feedback takes place after a fixed delay. In particular, each device i knows $\omega_i(t)$ at the beginning of slot t, but cannot receive information related to $\omega_j(t)$ (for $j \neq i$) until, at the earliest, the end of slot t. Theorem 1 ensures the linear program (19)-(22) still characterizes optimality in this context. Indeed, optimality is defined in Section III over all distributed algorithms, including those that use full history information. The dynamic algorithm in this section is shown to come arbitrarily close to optimal. The algorithm can also be viewed as an online solution to the linear program (19)-(22).

Let \mathcal{M} be any set of pure strategies over which the linear program (19)-(22) is known to have an optimal solution that satisfies $\theta_m > 0$ only when $m \in \mathcal{M}$. In the worst case, \mathcal{M} is the set of all pure strategies. However, if the special structure required for Theorem 2 holds, then \mathcal{M} can be defined as a significantly smaller set. Let $\tilde{\mathcal{M}}$ be the size of set \mathcal{M}. Reorder the functions $g^{(m)}(\omega)$ if necessary so that every slot t, the system chooses a strategy function in the set $\{g^{(1)}(\omega), \ldots, g^{(\tilde{\mathcal{M}})}(\omega)\}$.

Suppose all devices receive feedback specifying the values of the penalties $p_1(t), \ldots, p_K(t)$ at the end of slot $t + D$, where $D \geq 0$ is a system delay. Note that a delay of $D = 0$ still conforms to distributed implementation, since $D = 0$ implies the feedback occurs at the end of slot t. Any mechanism for delivering this feedback can be used. For each constraint $k \in \{1, \ldots, K\}$ specified in (16), define a virtual queue $Q_k(t)$ and initialize $Q_k(0)$ to a commonly known value (typically 0). For each $t \in \{0, 1, 2, \ldots\}$ the queue is updated by:

$$Q_k(t + 1) = \max\{Q_k(t) + p_k(t - D) - c_k, 0\}$$

(32)

where c_k is the desired bound on the limit of $\bar{Q}_k(t)$ (specified in (16)). Each device can iterate the above equation based on information available at the end of slot t. Thus, all devices know the value of $Q_k(t)$ at the beginning of each slot t. If $D > 0$, define $p_k(-1) = p_k(-2) = \cdots = p_k(-D) = 0$.

Lemma 4: Under any decision rule for choosing strategy functions over time, for all $t > 0$ one has:

$$\bar{p}_k(t) \leq c_k + \frac{c_k D}{t} + \frac{E[Q_k(t + D)]}{t} - \frac{E[Q_k(0)]}{t}$$

(33)

where $\bar{p}_k(t)$ is defined in (14).

Proof: From (32) the following holds for all slots $t \in \{0, 1, 2, \ldots\}$:

$$Q_k(t + 1) = Q_k(t) + p_k(t - D) - c_k$$

Thus:

$$Q_k(t + 1) - Q_k(t) \geq p_k(t - D) - c_k$$

Summing over $t \in \{0, 1, \ldots, t + D - 1\}$ for $t > 0$ gives:

$$Q_k(t + D) - Q_k(0) \geq \sum_{t=0}^{t+D-1} p_k(t - D) - c_k(t + D)$$

Since $p(\omega) = 0$ for $t < 0$, this implies:

$$Q_k(t + D) - Q_k(0) \geq \sum_{t=0}^{t-1} p_k(t - D) - c_k(t + D)$$

Rearranging terms and taking expectations proves the result.

Lemma 4 ensures the constraints (16) are satisfied whenever the condition $\lim_{t \to 0} \frac{E[Q_k(t)]}{t} = 0$ holds for all $k \in \{1, \ldots, K\}$, a condition called mean rate stability [2].

A. Lyapunov optimization

Define $Q(t) = (Q_1(t), \ldots, Q_K(t))$. Define $L(t)$ as the squared norm of $Q(t)$ (divided by 2 for convenience later):

$$L(t) \triangleq \frac{1}{2}||Q(t)||^2 = \frac{1}{2} \sum_{k=1}^{K} Q_k(t)^2$$

Define $\Delta(t) = L(t + 1) - L(t)$, called the Lyapunov drift. Consider the following structure for the control decisions: Every slot t the queues $Q(t)$ are observed. Then a collection of nonnegative values $\beta_m(t)$ are created that satisfy $\sum_{m=1}^{\tilde{\mathcal{M}}} \beta_m(t) = 1$ (if desired, the $\beta_m(t)$ values can be chosen as a function of the $Q(t)$ values). Then an index $m \in \{1, \ldots, \tilde{\mathcal{M}}\}$ is randomly and independently chosen according to the probability mass function $\beta_m(t)$, and the decision rule $g^{(m)}(\omega(t))$ is used for slot t. Thus, a specific algorithm with this structure is determined by specifying how the $\beta_m(t)$ probabilities are chosen on each slot t.

Motivated by the theory in [2], the approach is to choose probabilities every slot to greedily minimize a bound on the drift-plus-penalty expression $\mathbb{E}[\Delta(t + D) + V_0(t)Q(t)]$, where V is a nonnegative weight that affects a performance tradeoff. The D-shifted drift term $\Delta(t + D)$ is different from [2] and is used because of the delayed feedback structure of the queue update (32). The intuition is that minimizing $\Delta(t + D)$ maintains queue stability, while adding the weighted penalty term $V_0(t)$ biases decisions in favor of lower penalties. The following lemma provides a bound on the drift-plus-penalty expression under any $\beta_m(t)$ probabilities.

Lemma 5: Fix $V \geq 0$. Under the above decision structure, one has for slot t:

$$\mathbb{E}[\Delta(t + D) + V_0(t)Q(t)]$$

$$\leq B(1 + 2D) + V \sum_{m=1}^{\tilde{\mathcal{M}}} \beta_m(t) r_0^{(m)}$$

$$+ \sum_{k=1}^{K} Q_k(t) \left[\sum_{m=1}^{\tilde{\mathcal{M}}} \beta_m(t) r_k^{(m)} - c_k \right]$$

(34)

where $r_k^{(m)}$ is defined in (13), and the constant B is defined:

$$B \triangleq \frac{1}{2} \sum_{k=1}^{K} \sum_{m=1}^{\tilde{\mathcal{M}}} \pi(\omega) [\bar{p}_k(g^{(m)}(\omega), \omega) - c_k]^2$$
Proof: Note that for all $k \in \{0, 1, \ldots, K\}$:

$$
\mathbb{E}[p_k(t)|Q(t)] = \frac{\mathbb{E}[p_k(\alpha(t), \omega(t))Q(t)]}{\mathbb{E}[Q(t)]} = \frac{\sum_{m=1}^{M} \sum_{\omega \in \Omega} \beta_m(t)\pi(\omega)\hat{p}_k(g^{(m)}(\omega), \omega)}{\sum_{m=1}^{M} \beta_m(t)r_k^{(m)}}
$$

Therefore, to prove (34) it suffices to prove:

$$
\mathbb{E}[\Delta(t + D)|Q(t)] \leq B(1 + 2D) + \sum_{k=1}^{K} Q_k(t)\mathbb{E}[p_k(t) - c_k|Q(t)]
$$

Summing over $k \in \{1, \ldots, K\}$ and dividing by 2 gives:

$$
\frac{\Delta(t + D)}{2} \leq \frac{1}{2} \sum_{k=1}^{K} \left((p_k(t) - c_k)^2 + \sum_{k=1}^{K} Q_k(t)(p_k(t) - c_k) \right) \leq \mathbb{E}[\Delta(t + D)|Q(t)] \leq B(1 + 2D) + \sum_{k=1}^{K} Q_k(t)\mathbb{E}[p_k(t) - c_k|Q(t)]
$$

Taking conditional expectations of the above proves (35) upon application of the following inequalities (see [19]):

$$
\sum_{k=1}^{K} \mathbb{E}[(p_k(t) - c_k)^2|Q(t)] \leq B(1 + 2D) + \sum_{k=1}^{K} Q_k(t)(p_k(t) - c_k) \leq 2BD
$$

B. The distributed drift-plus-penalty algorithm

Observe that the probability mass function $\beta_m(t)$ that minimizes the right-hand-side of (34) is the one that, with probability 1, chooses the index $m \in \{1, \ldots, M\}$ that minimizes the expression (breaking ties arbitrarily):

$$
V^{(m)}_0 + \sum_{k=1}^{K} Q_k(t)r_k^{(m)}
$$

This gives rise to the following drift-plus-penalty algorithm:

For all $k \in \{0, 1, \ldots, K\}$:

- Devices observe the queue vector $Q(t)$.
- Devices apply the pure strategy $g^{(m)}(\omega)$, where m is the index in $\{1, \ldots, M\}$ that minimizes (34).
- The delayed penalty information $p_k(t - D)$ is observed and queues are updated via (32).

Notice that this algorithm still assumes knowledge of $\pi(\omega)$ since it uses the $r_k^{(m)}$ values in (33). The next theorem characterizes its performance, and the following subsection provides an approximate implementation that does not require $\pi(\omega)$.

C. Performance Analysis

Theorem 3: If the problem (15)–(17) is feasible, then under the distributed drift-plus-penalty algorithm for any $V \geq 0$, $D \geq 0$:

- All desired constraints (16)–(17) are satisfied.
- For all $t > 0$, the time average expectation of $p_0(t)$ satisfies:

$$
\mathbb{E}[p_0(t)] \leq p_0^{opt} + B(1 + 2D) + \mathbb{E}[L(D)] / V t
$$

- For all $t > 0$, the time average expectation of $p_k(t)$ satisfies the following for all $k \in \{1, \ldots, K\}$:

$$
\mathbb{E}[p_k(t)] \leq c_k + \frac{c_k D}{t} + O(\sqrt{V/t})
$$

The above theorem shows the time average expectation of $p_0(t)$ is within $O(1/V)$ of optimality. It can be pushed as close to optimal as desired by increasing the V parameter. The tradeoff is in the amount of time required for the time average expected penalties to be close to their desired constraints. It can be shown that if $D = 0$ and a mild Slater condition is satisfied, then the bound (38) can be improved to (see [19]):

$$
\mathbb{E}[p_k(t)] \leq c_k + O(V/t) + O(\log(t)/t)
$$

Proof: (Theorem 3) Every slot $\tau \in \{0, 1, 2, \ldots\}$ the distributed drift-plus-penalty algorithm chooses probabilities $\beta_m(\tau)$ that minimize the right-hand-side of the expression (34). Thus:

$$
\mathbb{E}[\Delta(\tau + D) + Vp_0(\tau)|Q(\tau)]
\leq B(1 + 2D) + V \sum_{m=1}^{M} \beta_m(t)\hat{p}_k(g^{(m)}(\omega), \omega)
\leq B(1 + 2D) + V \sum_{m=1}^{M} \theta_m r_k^{(m)} - c_k
$$

where θ_m is any alternative probability mass function defined over $m \in \{1, \ldots, M\}$. Using the probabilities θ_m that optimally solve the linear program (19)–(22) gives:

$$
\mathbb{E}[\Delta(\tau + D) + Vp_0(\tau)|Q(\tau)] \leq B(1 + 2D) + V p_0^{opt}
$$

Taking expectations of both sides and using iterated expectations gives:

$$
\mathbb{E}[\Delta(\tau + D)] + V \mathbb{E}[p_0(\tau)] \leq B(1 + 2D) + V p_0^{opt}
$$
Summing over $\tau \in \{0, 1, \ldots, t - 1\}$ for $t > 0$ gives:

$$
\mathbb{E}[L(t + D)] - \mathbb{E}[L(D)] + V \sum_{\tau=0}^{t-1} \mathbb{E}[p_0(\tau)] \leq B(1 + 2D) + t + Vp_0^{opt}t
$$

(40)

Using the fact that $\mathbb{E}[L(t + D)] \geq 0$ and rearranging terms proves (37).

Again rearranging (40) yields:

$$
\mathbb{E}[L(t + D)] \leq (C + FV)t
$$

(41)

where C is defined:

$$
C \triangleq \mathbb{E}[L(D)] + B(1 + 2D)
$$

and F is defined as a constant that satisfies the following for all slots τ:

$$
F \geq p_0^{opt} - \mathbb{E}[p_0(\tau)]
$$

Such a constant exists because $p_0(\tau)$ has a finite number of possible outcomes. Using the definition of $L(t + D)$ in (41) gives:

$$
\mathbb{E} \left[\left| Q(t + D) \right|^2 \right] \leq 2(C + FV)t
$$

By Jensen’s inequality:

$$
\mathbb{E} \left[\left| Q(t + D) \right|^2 \right] \leq \sqrt{2(C + FV)t}
$$

Thus:

$$
\mathbb{E} \left[\left| Q(t + D) \right| \right] \leq \sqrt{2(C + FV)t}
$$

Thus, for all $k \in \{1, \ldots, K\}$:

$$
\mathbb{E} \left[Q_k(t + D) \right] \leq \sqrt{2(C + FV)t}
$$

Substituting this inequality into (33) gives:

$$
\bar{p}_k(t) \leq c_k + \frac{c_k D}{t} + \sqrt{\frac{2(C + FV)}{t}}
$$

which proves (38). The inequality (38) immediately implies that all desired constraints are satisfied.

D. The approximate drift-plus-penalty algorithm

The algorithm of Section [V-B] assumes perfect knowledge of the $r_k^{(m)}$ values. These can be computed by (13) if the event probabilities $\pi(\omega)$ are known. Suppose these probabilities are unknown, but delayed samples $\omega(t - D)$ are available at the end of each slot t. Let W be a positive integer that represents a sample size. The $r_k^{(m)}$ values can be approximated by:

$$
r_k^{(m)}(t) = \frac{1}{W} \sum_{w=0}^{W-1} \hat{p}_k \left(g^{(m)}(\omega(t - D - w)), \omega(t - D - w) \right)
$$

The approximate algorithm uses $\hat{r}_k^{(m)}(t)$ values in place of $r_k^{(m)}$ in the expression (36). Analysis in [20] shows that the performance gap between exact and approximate drift-plus-penalty implementations is $O(1/\sqrt{W})$, so that the approximate algorithm is very close to the exact algorithm when W is large.

E. Separable penalty functions

A simpler and exact implementation of the distributed drift-plus-penalty algorithm of Section [V-B] is possible, without requiring knowledge of the probability distribution for $\omega(t)$, when penalty functions have the following separable form for all $k \in \{0, 1, \ldots, K\}$:

$$
\hat{p}_k(\alpha, \omega) = \sum_{i=1}^{N} \hat{p}_i k(\alpha_i, \omega_i)
$$

(42)

where $\hat{p}_i k(\alpha_i, \omega_i)$ are any functions of $(\alpha_i, \omega_i) \in A_i \times \Omega_i$. Choosing an $m \in \{1, \ldots, M\}$ that minimizes the expression (36) is equivalent to observing the queues $Q(t)$ and then choosing a strategy function $g(\omega) = (g_1(\omega_1), \ldots, g_N(\omega_N))$ to minimize:

$$
\sum_{\omega \in \Omega} \pi(\omega) \left[V \hat{p}_0(g(\omega), \omega) + \sum_{k=1}^{K} Q_k(t) \hat{p}_k(g(\omega), \omega) \right]
$$

With the structure (42), this expression becomes:

$$
\sum_{\omega \in \Omega} \sum_{i=1}^{N} \pi(\omega) \left[V \hat{p}_0(g_i(\omega_i), \omega_i) + \sum_{k=1}^{K} Q_k(t) \hat{p}_k(g_i(\omega_i), \omega_i) \right]
$$

The above is minimized by the following for each $i \in \{1, \ldots, N\}$:

$$
g_i(\omega_i) = \arg \min_{\alpha_i \in A_i} \left(V \hat{p}_0(\alpha_i, \omega_i) + \sum_{k=1}^{K} Q_k(t) \hat{p}_k(\alpha_i, \omega_i) \right)
$$

Thus, the minimization step in the drift-plus-penalty algorithm reduces to having each device observe its own $\omega_i(t)$ value and then setting $\alpha_i(t) = g_i(\omega_i(t))$, where the function $g_i(\omega_i)$ is defined above. The queue update (32) is the same as before. Since this algorithm is the same as that of Theorem 3, the theorem ensures that for any $D \geq 0$, the achieved utility can be pushed arbitrarily close to the distributed optimum (by selecting an appropriately large value of V).

Further, for these separable problems, there is no optimality gap between centralized and distributed algorithms. That is because, in the special case $D = 0$, the above algorithm is also the same as the optimal (centralized) drift-plus-penalty algorithm of [2]. Thus, for $D = 0$, achieved average utility converges to the centralized optimum as $V \rightarrow \infty$. However, we already know that for any $D \geq 0$, achieved average utility converges to the distributed optimum as $V \rightarrow \infty$. So, in this separable case, the distributed optimum must be the same as the centralized optimum.

F. Complexity issues

The dynamic algorithm of this section can be implemented using any set of pure strategies \mathcal{M}. Using a small set is useful because it reduces the complexity of choosing an $m \in \mathcal{M}$ to minimize (36). However, the optimality results of this section hold only when \mathcal{M} is large enough to support an optimal solution to the linear program (19)-(22). When the structural results of Theorem 2 hold, the set \mathcal{M} can be restricted to a set that uses only nondecreasing strategy functions.
G. Where is the common randomness?

The distributed randomized algorithm of Section III-C based on the linear program of Theorem 1 assumes devices meet before slot 0 to agree on a policy and on a pseudorandom sequence to use. On the other hand, the distributed dynamic algorithm in this section does not have this explicit agreement before slot 0, and does not require a commonly known pseudorandom sequence. Yet, the dynamic algorithm still comes arbitrarily close to the distributed optimum! Where is the common source of randomness in this algorithm? The answer is that the time-varying queue weights $Q_k(t)$ act as the common source of randomness. The devices correlate their decisions through these commonly known weights. This is a practical way to inject common randomness. Because there is no explicit agreement step, the algorithm can adapt when system probabilities change non-ergodically. This is illustrated via simulation in the next section.

VI. SIMULATIONS

A. Ergodic performance for a 2 device system

First consider the 2 device sensor network example of Section II. The approximate drift-plus-penalty algorithm of Section V-D is used with a delay of $D = 10$ slots and a moving average window size of $W = 40$ slots. The algorithm is not aware of the system probabilities. The objective of this simulation is to find how close the achieved utility is to the optimal value $u^{opt} = 23/48 \approx 0.47917$ computed in Section II-C. Recall that the desired power constraints are $p_i \leq 1/3$ for each device $i \in \{1, 2\}$. The table in Fig. 1 gives results for various values of V. For $V \geq 50$ the achieved utility differs from optimality only in the fourth decimal place.

<table>
<thead>
<tr>
<th>V</th>
<th>$\bar{\pi}$</th>
<th>\bar{p}_1</th>
<th>\bar{p}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.344639</td>
<td>0.259764</td>
<td>0.219525</td>
</tr>
<tr>
<td>5</td>
<td>0.454557</td>
<td>0.333158</td>
<td>0.267161</td>
</tr>
<tr>
<td>10</td>
<td>0.472763</td>
<td>0.333335</td>
<td>0.300415</td>
</tr>
<tr>
<td>25</td>
<td>0.478186</td>
<td>0.333346</td>
<td>0.326948</td>
</tr>
<tr>
<td>50</td>
<td>0.479032</td>
<td>0.333369</td>
<td>0.332873</td>
</tr>
<tr>
<td>100</td>
<td>0.479218</td>
<td>0.333406</td>
<td>0.333334</td>
</tr>
</tbody>
</table>

Fig. 1. Algorithm performance over $t = 10^6$ slots ($D = 10$, $W = 40$). Recall that $u^{opt} = 23/48 \approx 0.47917$.

B. Ergodic performance for a 3 device system

Consider a network of 3 sensors that communicate reports to a fusion center. The event processes $\omega_i(t)$ for each sensor $i \in \{1, 2, 3\}$ take values in the same 10 element set B:

\[B = \{0, 1, 2, 3, \ldots, 9\} \]

Consider binary actions $\alpha_i(t) \in \{0, 1\}$, where $\alpha_i(t) = 1$ corresponds to sensor i sending a report, and incurs a power cost of 1 for that sensor. The penalty and utility functions are:

\[
\hat{p}_i(\alpha, \omega) = \alpha_i \quad \forall i \in \{1, 2, 3\}
\]

\[
\hat{u}(\alpha, \omega) = \min \left[\frac{\alpha_1 \omega_1}{10} + \frac{\alpha_2 \omega_2 + \alpha_3 \omega_3}{20} , 1 \right]
\]

Thus, sensor 1 brings more utility than the other sensors.

Assume $\omega_1(t), \omega_2(t), \omega_3(t)$ are mutually independent and uniformly distributed over B. The requirements for Theorem 2 hold, and so one can restrict attention to the 11 threshold functions $g_i(\omega_i)$ of the type (31). As it does not make sense to report when $\omega_i(t) = 0$ (since that would waste power with no increase in utility), the functions $g_i(\omega) = 1$ for all ω can be removed. This leaves only 10 threshold functions at each device, for a total of $10^3 = 1000$ strategy functions $g^{(m)}(\omega)$ to be considered every slot. The approximate drift-plus-penalty algorithm of Section V-D is simulated over $t = 10^6$ slots with a delay $D = 10$ and for various choices of the moving average window size W and the parameter V. All average power constraints were met for all choices of V and W. The achieved utility is shown in Fig. 2. The utility increases to a limiting value as V is increased. This limiting value can be improved by adjusting the number of samples W used in the moving average. Increasing W from 40 to 200 gives a small improvement in performance. There is only a negligible improvement when W is further increased to 400 (the curves for $W = 200$ and $W = 400$ look identical).

Fig. 3 demonstrates how the V parameter affects the rate of convergence to the desired constraints. The window size is fixed to $W = 40$ and the value $\max[p_1(t), p_2(t), p_3(t)]$ is plotted for $t \in \{0, 1, \ldots, 2000\}$ (where $p_i(t)$ is the empirical average power expenditure of device i up to slot t). This value approaches the constraint $1/3$ more slowly when V is large.

Fig. 2. Achieved utility $\bar{\pi}$ versus V for various choices of W.

Fig. 3. An illustration of the rate of convergence to the desired constraint $1/3$ for various choices of V. The curves plot $\max[p_1(t), p_2(t), p_3(t)]$ versus t.
C. Adaptation to non-ergodic changes

The initial queue state determines the coefficient of an $O(1/t)$ transient in the performance bounds of the system (consider the $\mathbb{E}[L(D)]/(V_t)$ term in (37)). Thus, if system probabilities change abruptly, the system can be viewed as restarting with a different initial condition. Thus, one expects the system to react robustly to such changes.

To illustrate this, consider the same 3-device system of the previous subsection, using $V = 50$, $W = 40$. The event processes $\omega_i(t)$ have the same probabilities as given in the previous subsection for slots $t < 4000$ and $t > 8000$. Call this distribution type 1. However, for slots $t \in \{4000, \ldots, 8000\}$, the $\omega_i(t)$ processes are independently chosen with a different distribution as follows:

- $Pr[\omega_1(t) = 0] = Pr[\omega_1(t) = 9] = 1/2$.
- $Pr[\omega_2(t) = k] = 1/4$ for $k \in \{6, 7, 8, 9\}$.
- $Pr[\omega_3(t) = k] = 1/4$ for $k \in \{6, 7, 8, 9\}$.

This is called distribution type 2.

Fig. 4 shows average utility and average power over the first 12000 slots. Values at each slot t are averaged over 2000 independent system runs. The two dashed horizontal lines in the top plot of the figure are long term time average utilities achieved over 10^6 slots under probabilities that are fixed at distribution type 1 and type 2, respectively. It is seen that the system adapts to the non-ergodic change by quickly adjusting to the new optimal average utility. The figure also plots average power of device 1 versus time, with a dashed horizontal line at the power constraint $1/3$. A noticeable disturbance in average power occurs at the non-ergodic changes in distribution.

![Utility and Power Comparison](image)

Fig. 4. A sample path of average utility and power versus time. Values at each time slot t are obtained by averaging the actual utility and power used by the algorithm on that slot over 2000 independent simulation runs.

VII. CONCLUSIONS

This paper treated distributed scheduling in a multi-device system where devices know their own observations and actions, but not those of others. Optimal distributed policies were constructed by correlating decisions via a source of common randomness. The optimal policy is computable via a linear program if all system probabilities are known, and through an online algorithm with virtual queues if probabilities are unknown. The online algorithm assumes there is delayed feedback about previous penalties and rewards. The algorithm was shown in simulation to adapt when system probabilities change. If the penalty and utility functions satisfy a preferred action property, a complexity reduction result was shown to reduce the number of pure strategies required for consideration. In some cases, this reduces an exponentially complex algorithm to one that has only polynomial complexity.

APPENDIX A — PROOF OF THEOREM 1

Define the $(K + 1)$-dimensional penalty vectors:

$$p(t) = (p_0(t), p_1(t), \ldots, p_K(t))$$

$$\hat{p}(\alpha, \omega) = (\hat{p}_0(\alpha, \omega), \hat{p}_1(\alpha, \omega), \ldots, \hat{p}_K(\alpha, \omega))$$

For each $m \in \{1, \ldots, M\}$, define:

$$r^{(m)} = \sum_{\omega \in \Omega} \pi(\omega)\hat{p}(g^{(m)}(\omega), \omega) = (r_0^{(m)}, r_1^{(m)}, \ldots, r_K^{(m)})$$

Define \mathcal{R} as the convex hull of these vectors:

$$\mathcal{R} = \text{Conv}\{(r^{(1)}, \ldots, r^{(M)})\}$$

The set \mathcal{R} is convex, closed, and bounded.

Lemma 6: Let $\alpha(t)$ be decisions of an algorithm that satisfies the distributed scheduling constraint (13) every slot. Then:

(a) $\mathbb{E}[p(t)] \in \mathcal{R}$ for all $t \in \{0, 1, 2, \ldots\}$.

(b) $\mathbb{E}[p(t)] \in \mathcal{R}$ for all $t \in \{1, 2, 3, \ldots\}$, where

$$p(t) = \frac{1}{t} \sum_{\tau=0}^{t-1} \mathbb{E}[p(\tau)]$$

Proof: Part (b) follows immediately from part (a) together with the fact that \mathcal{R} is convex. To prove part (a), fix a slot $t \in \{0, 1, 2, \ldots\}$. By (13), the devices make decisions:

$$\alpha(t) = (f_1(\omega_1(t), X(t)), \ldots, f_N(\omega_N(t), X(t)))$$

For each $X(t) \in \mathcal{X}$ and $\omega \in \Omega$, define:

$$g_{X(t)}(\omega) = (f_1(\omega_1(t), X(t)), \ldots, f_N(\omega_N(t), X(t)))$$

Then, given $X(t)$, the function $g_{X(t)}(\omega)$ is a pure strategy.

Hence, $g_{X(t)}(\omega) = g^{(m)}(\omega)$ for some $m \in \{1, \ldots, M\}$. Define $m_{X(t)}$ as the value $m \in \{1, \ldots, M\}$ for which this holds. Thus, $g_{X(t)}(\omega) = g^{(m_{x(t)})}(\omega)$, and:

$$\mathbb{E}[p(t)|X(t)] = \mathbb{E}[\hat{p}(\alpha(t), \omega(t))|X(t)]$$

$$= \mathbb{E} \left[\hat{p} \left(g^{(m_{x(t)})}(\omega(t)), \omega(t) \right) | X(t) \right]$$

$$= \sum_{\omega \in \Omega} \pi(\omega)\hat{p} \left(g^{(m_{x(t)})}(\omega), \omega \right)$$

$$= r^{(m_{x(t)})}$$

Taking expectations of both sides and using the law of iterated expectations gives:

$$\mathbb{E}[p(t)] = \sum_{m=1}^{M} Pr[m_{X(t)} = m] r^{(m)}$$

The above is a convex combination of $\{r^{(1)}, \ldots, r^{(M)}\}$, and hence is in \mathcal{R}. □

Lemma 7: There exist real numbers r_1, r_2, \ldots, r_K that satisfy the following:

$$r_k \leq c_k \quad \forall k \in \{1, \ldots, K\}$$

$$\left(p_0^{\text{opt}}, r_1, r_2, \ldots, r_K \right) \in \mathcal{R}$$

Furthermore, the vector in \mathcal{R} is on the boundary of \mathcal{R}.
Proof: Fix q as a positive integer. Consider an algorithm that satisfies the distributed scheduling constraint for every slot. For $k \in \{0, 1, \ldots, K\}$, let $p_k(t)$ be the resulting time average expected penalties. Assume the algorithm satisfies:

$$p_0^{\text{opt}} \leq \limsup_{t \to \infty} p_0(t) \leq p_0^{\text{opt}} + 1/q \quad (45)$$

$$\limsup_{t \to \infty} p_k(t) \leq c_k \quad \forall k \in \{1, \ldots, K\} \quad (46)$$

Such an algorithm must exist because p_0^{opt} is the infimum objective value for all algorithms that satisfy the constraints (16–17).

Lemma 6 implies that $p(t) = (p_0(t), \ldots, p_K(t)) \in \mathcal{R}$ for all $t > 0$. Let t_n be a subsequence of times over which $p_0(t_n)$ achieves its lim sup. Since $p(t_n)$ is in the closed and bounded set \mathcal{R} for all $t_n > 0$, the Bolzano-Wierstrass theorem implies there is a subsequence $p(t_{n_m})$ that converges to a point $r(q) \in \mathcal{R}$, where $r(q) = (r_0(q), \ldots, r_K(q))$. Thus:

$$r_0(q) = \lim_{m \to \infty} p_0(t_{n_m}) = \limsup_{t \to \infty} p_0(t) \quad (47)$$

$$r_k(q) = \lim_{m \to \infty} p_k(t_{n_m}) \leq \limsup_{t \to \infty} p_k(t) \quad \forall k \in \{1, \ldots, K\} \quad (48)$$

Using (46) in the last inequality above gives:

$$r_k(q) \leq c_k \quad \forall k \in \{1, \ldots, K\} \quad (48)$$

Further, substituting (47) into (45) gives:

$$p_0^{\text{opt}} \leq r_0(q) \leq p_0^{\text{opt}} + 1/q \quad (49)$$

This holds for all positive integers q. Thus, $\{r(q)\}_{q=1}^{\infty}$ is an infinite sequence of vectors in \mathcal{R} such that $r(q)$ satisfies (48) and (49) for all $q \in \{1, 2, 3, \ldots\}$. Because \mathcal{R} is closed and bounded, the sequence $\{r(q)\}_{q=1}^{\infty}$ has a limit point $r = (r_0, r_1, \ldots, r_K) \in \mathcal{R}$ that satisfies $r_0 = p_0^{\text{opt}}$ and $r_k \leq c_k$ for all $k \in \{1, \ldots, K\}$. This proves (43) and (44).

To prove that r is on the boundary of \mathcal{R}, it suffices to note that for any $\epsilon > 0$:

$$(p_0^{\text{opt}} - \epsilon, r_1, \ldots, r_K) \notin \mathcal{R}$$

Indeed, if this were not true, it would be possible to construct a distributed algorithm that satisfies all desired constraints and yields a time average expected value of $p_0(t)$ equal to $p_0^{\text{opt}} - \epsilon$, which contradicts the definition of p_0^{opt}.

Because $\mathcal{R} = \text{Conv} ((r_1^{(1)}, \ldots, r_M^{(M)}))$, Lemma 7 implies there are probabilities θ_m that sum to 1 such that:

$$(p_0^{\text{opt}}, r_1, \ldots, r_K) = \sum_{m=1}^{M} \theta_m r^{(m)}$$

where the r_k values satisfy (43). Because \mathcal{R} is a $(K + 1)$-dimensional set, Carathéodory’s theorem ensures the above can be written using at most $K + 2$ non-zero θ_m values. However, because the above vector is on the boundary of \mathcal{R}, a simple extension of Carathéodory’s theorem ensures it can be written using at most $K + 1$ non-zero θ_m values. This proves Theorem 1.

APPENDIX B — A COUNTEREXAMPLE

This appendix shows it is possible for an algorithm to satisfy the conditional independence assumption while yielding utility strictly larger than that of any distributed algorithm. Consider a two device system with $\omega_1(t), \omega_2(t)$ independent and i.i.d. Bernoulli processes with:

$$Pr[\omega_1(t) = 1] = Pr[\omega_2(t) = 0] = 1/2 \quad \forall i \in \{1, 2\}$$

The actions are constrained to:

$$\alpha_1(t) \in \{-1, 1\}, \quad \alpha_2(t) \in \{-1, 1\}$$

Define the utility function:

$$\hat{u}(\alpha_1, \alpha_2, \omega_1, \omega_2) = g(\omega_1, \omega_2)\alpha_1\alpha_2$$

where $g(\omega_1, \omega_2) = 1 - 2\omega_1\omega_2$. Then $\hat{u}(\cdot) \in \{-1, 1\}$. Fig. 5 indicates when the utility is 1.

<table>
<thead>
<tr>
<th>ω_1</th>
<th>ω_2</th>
<th>$g(\omega_1, \omega_2)$</th>
<th>Conditions required for $\hat{u} = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$\alpha_1 = \alpha_2$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$\alpha_1 = \alpha_2$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$\alpha_1 = \alpha_2$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>$\alpha_1 \neq \alpha_2$</td>
</tr>
</tbody>
</table>

Fig. 5. A table showing the conditions needed for $\hat{u}(\alpha_1, \alpha_2, \omega_1, \omega_2) = 1$.

Consider now the following centralized algorithm: Every slot t, observe $(\omega_1(t), \omega_2(t))$ and compute $g(\omega_1(t), \omega_2(t))$.

- If $g(\omega_1(t), \omega_2(t)) = 1$, independently choose:
 $$\alpha_1(t), \alpha_2(t) = \begin{cases}
 (1, 1) & \text{with probability } 1/2 \\
 (-1, -1) & \text{with probability } 1/2
 \end{cases}$$

- If $g(\omega_1(t), \omega_2(t)) = -1$, independently choose:
 $$\alpha_1(t), \alpha_2(t) = \begin{cases}
 (1, -1) & \text{with probability } 1/2 \\
 (-1, 1) & \text{with probability } 1/2
 \end{cases}$$

The randomization ensures that regardless of $(\omega_1(t), \omega_2(t))$:

$$Pr[\alpha_1(t) = 1 | \omega_1(t), \omega_2(t)] = \frac{1}{2}$$

$$Pr[\alpha_2(t) = 1 | \omega_1(t), \omega_2(t)] = \frac{1}{2}$$

and hence the conditional independence assumption is satisfied. This algorithm guarantees the utility function is 1 for all possible outcomes, and so the expected utility is also 1. However, it can be shown that an optimal distributed algorithm is the pure strategy $\alpha_1(t) = \alpha_2(t) = 1$ for all t (regardless of $\omega_1(t), \omega_2(t)$), which yields an expected utility of only $1/2$.

REFERENCES

Michael J. Neely received B.S. degrees in both Electrical Engineering and Mathematics from the University of Maryland, College Park, in 1997. He was then awarded a 3 year Department of Defense NDSEG Fellowship for graduate study at the Massachusetts Institute of Technology, where he received an M.S. degree in 1999 and a Ph.D. in 2003, both in Electrical Engineering. He joined the faculty of Electrical Engineering at the University of Southern California in 2004, where he is currently an Associate Professor. His research is in the area of stochastic network optimization and queueing theory, with applications to wireless networks, mobile ad-hoc networks, and switching systems. Michael received the NSF Career award in 2008, the Viterbi School of Engineering Junior Research Award in 2009, and the Okawa Foundation Research Grant Award in 2012. He is a member of Tau Beta Pi and Phi Beta Kappa.