
PROC. IEEE INFOCOM 2014 1

Distributed Stochastic Optimization via Correlated
Scheduling

Michael J. Neely
University of Southern California
http://www-bcf.usc.edu/∼mjneely

Abstract—This paper considers a problem where multiple
users make repeated decisions based on their own observed
events. The events and decisions at each time step determine the
values of a utility function and a collection of penalty functions.
The goal is to make distributed decisions over time to maximize
time average utility subject to time average constraints on the
penalties. An example is a collection of power constrained sensors
that repeatedly report their own observations to a fusion center.
Maximum time average utility is fundamentally reduced because
users do not know the events observed by others. Optimality
is characterized for this distributed context. It is shown that
optimality is achieved by correlating user decisions through a
commonly known pseudorandom sequence. An optimal algorithm
is developed that chooses pure strategies at each time step based
on a set of time-varying weights.

I. INTRODUCTION

Consider a multi-user system that operates over discrete
time with unit time slots t ∈ {0, 1, 2, . . .}. There are N users.
At each time slot t, each user i observes a random event ωi(t)
and makes a control action αi(t) based on this observation.
Let ω(t) and α(t) be vectors of these values:

ω(t) = (ω1(t), ω2(t), . . . , ωN (t))

α(t) = (α1(t), α2(t), . . . , αN (t))

For each slot t, these vectors determine the values of a
system utility u(t) and a collection of system penalties
p1(t), . . . , pK(t) (for some non-negative integer K) via real-
valued functions:

u(t) = û(α(t),ω(t))

pk(t) = p̂k(α(t),ω(t)) ∀k ∈ {1, . . . ,K}

The functions û(·) and p̂k(·) are arbitrary and can possibly be
negative. Negative penalties can be used to represent desirable
system rewards.

The goal is to make distributed decisions over time that
maximize time average utility subject to time average con-
straints on the penalties. Central to this problem is the
assumption that each user i can only observe ωi(t), and
cannot observe the value of ωj(t) for other users j 6= i.
Further, each user i only knows its own action αi(t), but
does not know the actions αj(t) of others. Therefore, each
user only knows a portion of the arguments that go into the
functions û(α(t),ω(t)) and p̂k(α(t),ω(t)) for each slot t.

This work is supported in part by one or more of: the NSF Career
grant CCF-0747525, NSF grant 1049541, the Network Science Collaborative
Technology Alliance sponsored by the U.S. Army Research Laboratory
W911NF-09-2-0053.

This uncertainty fundamentally restricts the time averages that
can be achieved.

Specifically, assume the random event vector ω(t) is inde-
pendent and identically distributed (i.i.d.) over slots (possibly
correlated over entries in each slot). The vector ω(t) takes
values in some abstract event space Ω = Ω1×Ω2×· · ·×ΩN ,
where ωi(t) ∈ Ωi for all i ∈ {1, . . . , N} and all slots t.
Similarly, assume α(t) is chosen in some abstract action
space A = A1 × A2 × · · · × AN , where αi(t) ∈ Ai for
all i ∈ {1, . . . , N} and all slots t. Let u and pk be the time
average expected utility and penalty incurred by a particular
algorithm:

u = lim
t→∞

1

t

t−1∑
τ=0

E [u(τ)]

pk = lim
t→∞

1

t

t−1∑
τ=0

E [pk(τ)]

The following problem is considered:

Maximize: u (1)
Subject to: pk ≤ ck ∀k ∈ {1, . . . ,K} (2)

Decisions are distributed (3)

where ck are a given collection of real numbers that specify
constraints on the time average penalties.

The constraint that decisions must be distributed, specified
in (3), is not mathematically precise. This constraint is more
carefully posed in Section III. Without the distributed schedul-
ing constraint, the problem (1)-(2) reduces to a standard prob-
lem of stochastic network optimization and can be solved via
the drift-plus-penalty method [1]. Such a centralized approach
would allow users to coordinate to form an action vector α(t)
based on full knowledge of the event vector ω(t). The time
average utility achieved by the best centralized algorithm can
be strictly larger than that of the best distributed algorithm.
An example of this gap is given in Section II.

A. Applications to sensor networks

The above formulation is useful for problems where dis-
tributed agents make their own decisions based on partial
system knowledge. An important example is a network of
wireless sensors that repeatedly send reports about system
events to a fusion center. The goal is to make distributed
decisions that maximize time average quality of information.
This scenario was previously considered by Liu et al. in [2].
There, sensors can provide reports every slot t using one

http://www-bcf.usc.edu/~mjneely

PROC. IEEE INFOCOM 2014 2

of multiple reporting formats, such as text, image, or video.
Sensors can also choose to remain idle. Thus, the action spaces
Ai are the same for all sensors i:

αi(t) ∈ Ai M={idle, text, image, video} ∀i ∈ {1, . . . , N}

where the notation “M
=” represents defined to be equal to.

Each format requires a different amount of power and
provides a different level of quality. Define pi(t) = p̂i(αi(t))
as the power incurred by sensor i on slot t, where:

0 = p̂i(idle) < p̂i(text) < p̂i(image) < p̂i(video)

Assume that ωi(t) represents the quality that sensor i would
bring to the fusion center if it reports the event it observes on
slot t using the video format. Define fi(αi(t)) as the fraction
of this quality that is achieved under format αi(t), where:

0 = fi(idle) < fi(text) < fi(image) < fi(video) = 1

The prior work [2] considers the problem of maximizing
time average utility subject to a time average power constraint:∑N

i=1 pi ≤ c

where c is some given positive number. Further, that work
restricts to the special case when the utility function is a
separable sum of functions of user i variables, such as:

u(t) =
∑N
i=1 fi(αi(t))ωi(t)

Such separable utilities cannot model the realistic scenario
of information saturation, where, once a certain amount of
utility is achieved on slot t, there is little value of having ad-
ditional sensors spend power to deliver additional information
on that slot. The current paper considers the case of arbitrary,
possibly non-separable utility functions. An example is:

u(t) = min
[∑N

i=1 f(αi(t))ωi(t), 1
]

This means that once a total quality of 1 is accumulated from
one or more sensors on slot t, there is no advantage in having
other sensors report information on that slot. This scenario is
significantly more challenging to solve in a distributed context.

B. Applications to wireless multiple access

The general formulation of this paper can also treat simple
forms of distributed multiple access problems. Again suppose
there are N wireless sensors that report to a fusion center.
For each i ∈ {1, . . . , N}, define ωi(t) as the quality that
a transmission from sensor i would bring to the system if
it transmits on slot t. Define αi(t) as a binary value that
is 1 if sensor i transmits on slot t, and 0 else. Assume the
network operates according to a simple collision model, where
a transmission from sensor i is successful on slot t if and only
if it is the only sensor that transmits on that slot:

u(t) =
∑N
i=1 ωi(t)

[
αi(t)

∏
j 6=i(1− αj(t))

]
(4)

The above utility function is non-separable. Concurrent work
in [3] considers a similar utility function for wireless energy
harvesting applications.

C. Contributions and related work

The framework of partial knowledge at each user is similar
in spirit to a multi-player Bayesian game [4][5]. There, the
goal is to design competitive strategies that lead to a Nash
equilibrium. The current paper is not concerned with com-
petition or equilibrium. Rather, it seeks distributed strategies
for maximizing the time average of a single utility function
subject to additional time average penalty constraints.

This paper shows that an optimal distributed algorithm can
be designed by having users correlate their decisions through
an independent source of common randomness (Section III).
Related notions of commonly shared randomness are used
in game theory to define a correlated equilibrium, which is
typically easier to compute than a standard Nash equilibrium
[6][7][5][4]. For the current paper, the shared randomness is
crucial for solving the distributed optimization problem. This
paper shows that optimality can be achieved by using a shared
random variable with K + 1 possible outcomes, where K is
the number of penalty constraints. The solution is computable
through a linear program. Unfortunately, the linear program
can have a very large number of variables, even for 2-user
problems. A reduction to polynomial complexity is shown
to be possible in certain cases (Section IV). This paper also
develops an online algorithm that chooses pure strategies every
slot based on a set of weights that are updated at the end
of each slot (Section V). The online technique is based on
Lyapunov optimization concepts [1][8][9].

Much prior work on network optimization treats scenarios
where it is possible to find distributed solutions with no loss
of optimality. For example, network flow problems that are
described by linear or separable convex programs can be
optimally solved in a distributed manner [10][11][12][9]. Work
in [13] uses distributed agents to solve for an optimal vector of
parameters associated with a Markov decision problem. Work
in [14][15][16] develops distributed multiple access methods
that converge to optimality. However, the above problems do
not have random events that create a fundamental gap between
centralized and distributed performance.

Recent work in [17] derives structural results for distributed
optimization in Markov decision systems with delayed infor-
mation. Such problems do exhibit gaps between centralized
and distributed scheduling. The use of private information in
[17] is similar in spirit to the assumption in the current paper
that each user observes its own random event ωi(t). The work
[17] derives a sufficient statistic for dynamic programming. It
does not consider time average constraints and its solutions
do not involve correlated scheduling via a pseudorandom
sequence. Recent work in [3] considers distributed reporting of
events with different qualities, but considers a more restrictive
class of policies that do not use correlated scheduling. The
current paper treats a different model than [17] and [3], and
shows that correlated scheduling is necessary in systems with
constraints. The current paper also provides complexity reduc-
tion results (Section IV), and provides an online algorithm that
does not require knowledge of event probabilities (Section V).

PROC. IEEE INFOCOM 2014 3

II. EXAMPLE SENSOR NETWORK PROBLEM

This section illustrates the benefits of using a common
source of randomness for a simple example. Consider a
network with two sensors that operate over time slots t ∈
{0, 1, 2, . . .}. Every slot, the sensors observe the state of a
particular system and choose whether or not to report their
observations to a fusion center. Let ωi(t) be a binary variable
that is 1 if sensor i observes an event on slot t, and 0 else.
Let α1(t) and α2(t) be the slot t decision variables, so that
αi(t) = 1 if sensor i reports on slot t, and αi(t) = 0 otherwise.
Suppose the fusion center trusts sensor 1 more than sensor 2.
Consider the following example utility function:

u(t) = min[ω1(t)α1(t) + ω2(t)α2(t)/2, 1]

so that û(·) is given by:

û(α1, α2, ω1, ω2) = min[ω1α1 + ω2α2/2, 1] (5)

Therefore, u(t) ∈ {0, 1/2, 1} for all slots t. If ω1(t) = 1 and
sensor 1 reports on slot t, there is no utility increase if sensor
2 also reports.

Each report uses one unit of power. Let pi(t) be the
power incurred by sensor i on slot t, being 1 if it reports
its observation, and 0 otherwise. The power penalties for
i ∈ {1, 2} are:

pi(t) = αi(t) (6)

so that p̂i(α1, α2, ω1, ω2) = αi for i ∈ {1, 2}. Each sensor i
can choose not to report an observation in order to save power.
The difficulty is that neither sensor knows what event was
observed by the other. Therefore, a distributed algorithm might
send reports from both sensors on a given slot. A centralized
scheduler would avoid this because it wastes power without
increasing utility.

Suppose that ω1(t) and ω2(t) are independent of each other
and i.i.d. over slots, with:

Pr[ω1(t) = 1] = 3/4, P r[ω1(t) = 0] = 1/4

Pr[ω2(t) = 1] = 1/2, P r[ω2(t) = 0] = 1/2

For a specific numeric example, consider the problem:

Maximize: u (7)
Subject to: p1 ≤ 1/3 , p2 ≤ 1/3 (8)

Decisions are distributed (9)

A. Independent reporting
Consider the following class of independent scheduling

algorithms: Each sensor i independently decides to report with
probability θi if it observes ωi(t) = 1 (it does not report
if ωi(t) = 0). Since ω(t) is i.i.d. over slots, the resulting
sequences {u(t)}∞t=0, {p1(t)}∞t=0, {p2(t)}∞t=0 are i.i.d. over
slots. The time averages are:

p1 = 3
4θ1 , p2 = 1

2θ2

u = E [u(t)|ω1(t) = 1, ω2(t) = 0] 3
4

1
2

+E [u(t)|ω1(t) = 0, ω2(t) = 1] 1
4

1
2

+E [u(t)|ω1(t) = ω2(t) = 1] 3
4

1
2

= 3
4

1
2θ1 + 1

4
1
2 (θ2/2) + 3

4
1
2 (θ1 + (1− θ1)θ2/2)

For this class of algorithms, utility is maximized by choos-
ing θ1 and θ2 to meet the power constraints with equality. This
leads to θ1 = 4/9, θ2 = 2/3. The resulting utility is:

u = 4/9 ≈ 0.44444

B. Correlated reporting

As an alternative, consider the following three strategies:
• Strategy 1: ω1(t) = 1 =⇒ α1(t) = 1 (else, α1(t) = 0).

Sensor 2 always chooses α2(t) = 0.
• Strategy 2: ω2(t) = 1 =⇒ α2(t) = 1 (else, α2(t) = 0).

Sensor 1 always chooses α1(t) = 0.
• Strategy 3: ω1(t) = 1 =⇒ α1(t) = 1 (else, α1(t) = 0).
ω2(t) = 1 =⇒ α2(t) = 1 (else, α2(t) = 0).

The above three strategies are pure strategies because αi(t)
is a deterministic function of ωi(t) for each sensor i. Now let
X(t) be an external source of randomness that is commonly
known at both sensors on slot t. Assume X(t) is independent
of everything else in the system, and is i.i.d. over slots with:

Pr[X(t) = m] = θm , ∀m ∈ {1, 2, 3}

where θ1, θ2, θ3 are probabilities that sum to 1. Consider the
following algorithm: On slot t, if X(t) = m then choose
strategy m, where m ∈ {1, 2, 3}. This algorithm can be
implemented by letting X(t) be a pseudorandom sequence
that is installed in both sensors at time 0. The resulting time
averages are:

p1 = (θ1 + θ3) 3
4 , p2 = (θ2 + θ3) 1

2

u = θ1
3
4 + θ2

1
2

1
2 + θ3(3

4 + 1
4

1
2

1
2)

A simple linear program can be used to compute the optimal
θm probabilities for this algorithm structure. The result is θ1 =
1/3, θ2 = 5/9, θ3 = 1/9. The resulting utility is:

u = 23/48 ≈ 0.47917

This is strictly larger than the time average utility of 0.44444
achieved by the independent reporting algorithm. Thus, per-
formance can be strictly improved by correlating reports via a
common source of randomness. Alternatively, the same time
averages can be achieved by time sharing: The two sensors
agree to use a periodic schedule of period 9 slots. The first 3
slots of the period use strategy 1, the next 5 slots use strategy
2, and the final slot uses strategy 3.

C. Centralized reporting

Suppose sensors coordinate by observing (ω1(t), ω2(t)) and
then cooperatively selecting (α1(t), α2(t)). It turns out that
an optimal centralized policy is as follows [1]: Every slot t,
observe (ω1(t), ω2(t)) and choose (α1(t), α2(t)) as follows:
• (ω1(t), ω2(t)) = (0, 0) =⇒ (α1(t), α2(t)) = (0, 0).
• (ω1(t), ω2(t)) = (0, 1) =⇒ (α1(t), α2(t)) = (0, 1).
• If (ω1(t), ω2(t)) = (1, 0), independently choose:

(α1(t), α2(t)) =

{
(1, 0) with probability 8/9
(0, 0) with probability 1/9

PROC. IEEE INFOCOM 2014 4

• If (ω1(t), ω2(t)) = (1, 1), independently choose:

(α1(t), α2(t)) =

{
(0, 1) with probability 5/9
(0, 0) with probability 4/9

The resulting optimal centralized time average utility is:

u = 0.5

This is larger than the value 0.47917 achieved by the dis-
tributed algorithm of the previous subsection.

The question remains: Is it possible to construct some other
distributed algorithm that yields u > 0.47917? Results in the
next section imply this is impossible. Thus, the correlated
reporting algorithm of the previous subsection optimizes time
average utility over all possible distributed algorithms that
satisfy the constraints. Therefore, for this example, there
is a fundamental gap between the performance of the best
centralized algorithm and the best distributed algorithm.

III. CHARACTERIZING OPTIMALITY

Consider the general N user problem. Recall that:

ω(t) ∈ ΩM
=Ω1 × · · · × ΩN , α(t) ∈ AM

=A1 × · · · × AN
where the vectors ω(t) are i.i.d. over slots (possibly correlated
over entries in each slot). Assume that the sets Ωi and Ai are
finite with sizes denoted |Ωi| and |Ai|. For each ω ∈ Ω define:

π(ω) = Pr[ω(t) = ω]

Define the history H(t) by:

H(t)M
={(ω(0),α(0)), . . . , (ω(t− 1),α(t− 1))}

This section considers all distributed algorithms, including
those where users know the history H(t). This might be avail-
able through a feedback message that specifies (α(t),ω(t)) at
the end of each slot t. Theorem 1 shows that optimality can
be achieved without this history information.

A. The distributed scheduling constraint
An algorithm for selecting α(t) over slots t ∈ {0, 1, 2, . . .}

is distributed if:
• There is an abstract set X , called a common information

set.
• There is a sequence of commonly known random elements
X(t) ∈ X such that ω(t) is independent of X(t) for each
t ∈ {0, 1, 2, . . .}.

• There are deterministic functions fi(ωi, X) for each i ∈
{1, . . . , N} of the form fi : Ωi ×X → Ai.

• The decisions αi(t) satisfy the following for all slots t:

αi(t) = fi(ωi(t), X(t)) for all i ∈ {1, . . . , N} (10)

Intuitively, the random elements X(t) can be designed as
any source of common randomness on which users can base
their decisions. For example, X(t) can have the form:

X(t) = (t,H(t), Y (t))

where Y (t) is a random element with support and distribution
that can possibly depend on H(t) as well as past values Y (τ)
for τ < t. The only restriction is that X(t) is independent of
ω(t). Because the ω(t) vectors are i.i.d. over slots, X(t) can
be based on any events that occur before slot t.

B. The optimization problem

For notational convenience, define:

p0(t)M
=− u(t) , p̂0(α(t),ω(t))M

=− û(α(t),ω(t))

Maximizing the time average expectation of u(t) is equivalent
to minimizing the time average expectation of p0(t). For each
k ∈ {0, 1, . . . ,K} and each slot t > 0 define:

pk(t)M
=

1
t

∑t−1
τ=0 E [pk(τ)]

The goal is to design a distributed algorithm that solves:

Minimize: lim supt→∞ p0(t) (11)
Subject to: lim supt→∞ pk(t) ≤ ck ∀k ∈ {1, . . . ,K} (12)

Condition (10) holds ∀t ∈ {0, 1, 2, . . .} (13)

It is assumed throughout this paper that the constraints (12)-
(13) are feasible. Define popt0 as the infimum of all limiting
p0(t) values (11) achievable by algorithms that satisfy the
constraints (12)-(13). The infimum is finite because p0(t) takes
values in the same bounded set for all slots t.

C. Optimality via correlated scheduling

A pure strategy is defined as a vector-valued function:

g(ω) = (g1(ω1), g2(ω2), . . . , gN (ωN))

where gi(ωi) ∈ Ai for all i ∈ {1, . . . , N} and all ωi ∈ Ωi.
The function g(ω) specifies a distributed decision rule where
each user i chooses αi as a deterministic function of ωi.
Specifically, αi = gi(ωi). The total number of pure strategy
functions g(ω) is

∏N
i=1 |Ai||Ωi|. Define M as this number, and

enumerate these functions by g(m)(ω) for m ∈ {1, . . . ,M}.
For each m ∈ {1, . . . ,M} and k ∈ {0, 1, . . . ,K} define:

r
(m)
k

M
=
∑

ω∈Ω π(ω)p̂k(g(m)(ω),ω) (14)

The value r(m)
k is the expected value of pk(t) given that users

implement strategy g(m)(ω) on slot t.
Consider a randomized algorithm that, every slot t, inde-

pendently uses strategy g(m)(ω) with probability θm. For each
k ∈ {0, 1, . . . ,K}, this gives an expected penalty E [pk(t)] of:

E [pk(t)] =
∑M
m=1 θmE

[
p̂k
(
g(m)(ω(t)),ω(t)

)]
=

∑M
m=1 θmr

(m)
k

The following linear program solves for θm probabilities that
minimize E [p0(t)] over all algorithms that satisfy this specific
randomized structure, subject to the constraints E [pk(t)] ≤ ck
for k ∈ {1, . . . ,K}:

Minimize:
∑M
m=1 θmr

(m)
0 (15)

Subject to:
∑M
m=1 θmr

(m)
k ≤ ck ∀k ∈ {1, . . . ,K} (16)

θm ≥ 0 ∀m ∈ {1, . . . ,M} (17)∑M
m=1 θm = 1 (18)

Such a randomized algorithm does not use the history H(t).
The next theorem shows this algorithm structure is optimal.

PROC. IEEE INFOCOM 2014 5

Theorem 1: Suppose the problem (11)-(13) is feasible.
Then the linear program (15)-(18) is feasible, and the optimal
objective value (15) is equal to popt0 . Furthermore, there exist
probabilities (θ1, . . . , θM) that solve the linear program and
satisfy θm > 0 for at most K + 1 values of m ∈ {1, . . . ,M}.

Proof: See Appendix.
The above theorem can be used to prove that the correlated

reporting algorithm given in Section II, which uses K + 1 =
3 pure strategies, is optimal for that example (see [18] for
details).

IV. REDUCED COMPLEXITY

The linear program (15)-(18) uses variables
(θ1, θ2, . . . , θM), where M is the number of pure strategies.
The value of M can be very large. This section shows that,
if certain conditions hold, the set of strategy functions can
be pruned to a smaller set without loss of optimality. For
example, consider a two-user problem with binary actions, so
that |Ai| = 2 for i ∈ {1, 2}. Then:

M = 2|Ω1|+|Ω2|

If certain conditions hold, strategies can be restricted to a set
of size M̃ , where:

M̃ = (|Ω1|+ 1)(|Ω2|+ 1)

Thus, an exponentially large set is pruned to a smaller set with
polynomial size.

A. The preferred action property

Suppose the sets Ai and Ωi for each user i ∈ {1, . . . , N}
are given by:

Ai = {0, 1, . . . , |Ai| − 1} (19)
Ωi = {0, 1, . . . , |Ωi| − 1} (20)

For notational convenience, for each i ∈ {1, . . . , N} let
[αi, αi] denote the N -dimensional vector α = (α1, . . . , αN),
where αi is the (N−1)-dimensional vector of αj components
for j 6= i. This notation facilitates comparison of two vectors
that differ in just one coordinate. Define Ai and Ωi as the
set of all possible (N − 1)-dimensional vectors αi and ωi,
respectively.

Definition 1: A penalty function p̂(α,ω) has the preferred
action property if for all i ∈ {1, . . . , N}, all αi ∈ Ai, and all
ωi ∈ Ωi, one has:

p̂([αi, α], [ωi, ω])− p̂([αi, β], [ωi, ω])

≥ p̂([αi, α], [ωi, γ])− p̂([αi, β], [ωi, γ])

whenever α, β are values in Ai that satisfy α > β, and ω, γ
are values in Ωi that satisfy ω < γ.

Intuitively, the above definition means that if user i com-
pares the difference in penalty under the actions αi(t) = α and
αi(t) = β (where α > β), this difference is non-increasing in
the user i observation ωi(t) (assuming all other actions and
events αi and ωi are held fixed).

For example, any function p̂(α,ω) that does not depend on
ω trivially satisfies the preferred action property. This is the

case for the p̂1(·) and p̂2(·) functions in (6) used to represent
power expenditures for the sensor network example of Section
II. Further, the utility function (5) in that example yields
p̂0(·) = −û(·) that satisfies the preferred action property, as
shown by the next lemma.

Lemma 1: Suppose Ai = {0, 1} and Ωi satisfies (20) for
i ∈ {1, . . . , N}. Define:

û(α,ω) = min
[∑N

i=1 φi(ωi)αi, b
]

for some (real-valued) constant b and some (real-valued)
non-decreasing functions φi(ωi). Then the penalty function
p̂0(α,ω) = −û(α,ω) has the preferred action property.

Lemma 2: Suppose Ai = {0, 1} and Ωi satisfies (20) for
i ∈ {1, . . . , N}. Define the utility function û(α,ω) according
to the multi-access example equation (4). Then the penalty
function p̂0(α,ω) = −û(α,ω) has the preferred action
property.

Lemma 3: Suppose Ai and Ωi satisfy (19)-(20). Define
p̂(α,ω) by:

p̂(α,ω) =
∏N
i=1 φi(ωi)ψi(αi)

where φi(ωi), ψi(αi) are non-negative functions for all i ∈
{1, . . . , N}. Suppose that for each i ∈ {1, . . . , N}, φi(ωi) is
non-increasing in ωi and ψi(αi) is non-decreasing in αi. Then
p̂(α,ω) has the preferred action property.

Lemma 4: Suppose Ai and Ωi satisfy (19)-(20), and
p̂1(α,ω), . . . , p̂R(α,ω) are a collection of functions that have
the preferred action property (where R is a given positive
integer). Then for any non-negative weights w1, . . . , wR, the
following function has the preferred action property:

p̂(α,ω) =
∑R
r=1 wrp̂r(α,ω)

The proofs of Lemmas 1-4 are given in [18].

B. Independent events and reduced complexity

Consider the special case when the components of ω(t) =
(ω1(t), . . . , ωN (t)) are mutually independent, so that:

π(ω) =
∏N
i=1 qi(ωi) (21)

where qi(ωi)
M
=Pr[ωi(t) = ωi]. Without loss of generality,

assume qi(ωi) > 0 for all i ∈ {1, . . . , N} and all ωi ∈ Ωi.
Recall that a pure strategy g(ω) is composed of individual
strategy functions gi(ωi) for each user i:

g(ω) = (g1(ω1), . . . , gN (ωN))

Theorem 2: (Non-decreasing strategy functions) If all
penalty functions p̂k(α,ω) for k ∈ {0, 1, . . . ,K} have the
preferred action property, and if ω(t) satisfies the indepen-
dence property (21), then it suffices to restrict attention to
strategy functions gi(ωi) that are non-decreasing in ωi.

Proof: Fix m ∈ {1, . . . ,M}, i ∈ {1, . . . , N}, and fix
two elements ω and γ in Ωi that satisfy ω < γ. Suppose the
linear program (15)-(18) places weight θm > 0 on a strategy
function g(m)(ω) that satisfies g(m)

i (ω) > g
(m)
i (γ) (so the

non-decreasing requirement is violated). The goal is to show
this can be replaced by new strategies that do not violate the

PROC. IEEE INFOCOM 2014 6

non-decreasing requirement for elements ω and γ, without loss
of optimality.

Define α = g
(m)
i (ω) and β = g

(m)
i (γ). Then α > β. Define

two new functions:

g
(m),low
i (ωi) =

{
g

(m)
i (ωi) if ωi /∈ {ω, γ}
β if ωi ∈ {ω, γ}

g
(m),high
i (ωi) =

{
g

(m)
i (ωi) if ωi /∈ {ω, γ}
α if ωi ∈ {ω, γ}

Unlike the original function g
(m)
i (ωi), these new functions

satisfy:

g
(m),low
i (ω) ≤ g

(m),low
i (γ)

g
(m),high
i (ω) ≤ g

(m),high
i (γ)

Define g(m),low(ω) and g(m),high(ω) by replacing the ith
component function g

(m)
i (ωi) of g(m)(ω) with new compo-

nent functions g
(m),low
i (ωi) and g

(m),high
i (ωi), respectively.

Let poldk (t) be the kth penalty incurred in the (old) strategy
that uses g(m)(ω) with probability θm. Let pnewk (t) be the
corresponding penalty under a (new) strategy that, instead of
using g(m)(ω) with probability θm, uses:
• g(m),low(ω) with probability θmqi(γ)/(qi(ω) + qi(γ)).
• g(m),high(ω) with probability θmqi(ω)/(qi(ω) + qi(γ)).
Define E0 as the event that the old strategy uses g(m)(ω).

Let ωi(t) denote the (N − 1)-dimensional vector of compo-
nents ωj(t) for j 6= i. Fix any vector ωi ∈ Ωi. Define αi
as the corresponding (N − 1)-dimensional vector of g(m)

j (ωj)
values for j 6= i. Then:
• If E0 holds, ωi(t) = ωi, ωi(t) = ω, and g(m),low(ω) is

used by the new strategy, then ω(t) = [ωi, ω] and:

pnewk (t) = p̂k

(
g(m),low ([ωi, ω]) , [ωi, ω]

)
= p̂k ([αi, β], [ωi, ω])

Further, since the old strategy used g(m)
i (ω) = α:

poldk (t) = p̂k

(
g(m) ([ωi, ω]) , [ωi, ω]

)
= p̂k ([αi, α], [ωi, ω])

• If E0 holds, ωi(t) = ωi, ωi(t) = γ, and g(m),high(ω) is
used by the new strategy, then ω(t) = [ωi, γ] and:

pnewk (t) = p̂k

(
g(m),high ([ωi, γ]) , [ωi, γ]

)
= p̂k ([αi, α], [ωi, γ])

Further, since the old strategy used g(m)
i (γ) = β:

poldk (t) = p̂k

(
g(m) ([ωi, ω]) , [ωi, ω]

)
= p̂k ([αi, β], [ωi, γ])

• Suppose ωi(t) = ωi, but neither of the above two events
are satisfied on slot t. That is, neither of the events E1 or
E2 are true, where:

E1 M
= E0 ∩ {ωi(t) = ω} ∩ {g(m),low(ω) is used}

E2 M
= E0 ∩ {ωi(t) = γ} ∩ {g(m),high(ω) is used}

Then pnewk (t)− poldk (t) = 0.

It follows that:

E
[
pnewk (t)− poldk (t)|ωi(t) = ωi

]
= θmqi(ω)

(
qi(γ)

qi(ω) + qi(γ)

)
×

[p̂k ([αi, β], [ωi, ω])− p̂k ([αi, α], [ωi, ω])]

+θmqi(γ)

(
qi(ω)

qi(ω) + qi(γ)

)
×

[p̂k ([αi, α], [ωi, γ])− p̂k ([αi, β], [ωi, γ])] (22)

where the above uses the fact that ωi(t) is independent of
ωi(t), so conditioning on ωi(t) = ωi does not change the
distribution of ωi(t). Because p̂k(·) satisfies the preferred
action property and α > β, ω < γ, one has:

[p̂k ([αi, α], [ωi, ω])− p̂k ([αi, β], [ωi, ω])]

≥ [p̂k ([αi, α], [ωi, γ])− p̂k ([αi, β], [ωi, γ])]

and hence (22) is less than or equal to zero. This holds when
conditioning on all possible values of ωi(t), and so:

E
[
pnewk (t)− poldk (t)

]
≤ 0

This holds for all penalties k ∈ {0, 1, . . . ,K}, and so the
modified algorithm still satisfies all constraints with an optimal
value for E [p0(t)]. The interchange can be repeated until all
strategy functions are non-decreasing.

In the special case of binary actions, so that Ai = {0, 1}
for all i ∈ {1, . . . , N}, all non-decreasing strategy functions
gi(ωi) have the following form:

gi(ωi) =

{
0 if ωi < h∗i
1 if ωi ≥ h∗i

(23)

for some threshold h∗i ∈ {0, 1, . . . , |Ωi|}. There are |Ωi| + 1
such threshold functions, whereas the total number of strategy
functions for user i is 2|Ωi|. Restricting to the threshold
functions significantly decreases complexity.

V. ONLINE OPTIMIZATION

The randomized policy of Theorem 1 solves the prob-
lem (11)-(13) with no interaction amongst users. However,
it requires θm values to be computed at time 0 based on
knowledge of the π[ω] probabilities. This section presents a
dynamic algorithm that does not require these probabilities,
and that can adapt if they change. Such an algorithm requires
feedback messages. However, for distributed implementation,
it is assumed throughout that all feedback takes place after
a fixed delay of at least one slot. Theorem 1 ensures the
linear program (15)-(18) still characterizes optimality in this
context. The dynamic algorithm can also be viewed as an
online solution to this linear program.

Let M̃ be the number of pure strategies required for con-
sideration in the linear program (where M̃ is possibly smaller
than M , as discussed in the previous section). Reorder the
functions g(m)(ω) if necessary so that every slot t, the system
chooses a strategy function in the set {g(1)(ω), . . . , g(M̃)(ω)}.

Suppose all users receive feedback specifying the values of
the penalties p1(t), . . . , pK(t) at the end of slot t+D, where
D is a non-negative integer that represents a system delay.

PROC. IEEE INFOCOM 2014 7

Any mechanism for delivering this feedback can be used. For
each constraint k ∈ {1, . . . ,K}, define a virtual queue Qk(t)
and initialize Qk(0) to a commonly known value (typically
0). For each t ∈ {0, 1, 2, . . .} the queue is updated by:

Qk(t+ 1) = max[Qk(t) + pk(t−D)− ck, 0] (24)

Each user can iterate the above equation based on information
available at the end of slot t. Thus, all users know the value
of Qk(t) at the beginning of each slot t. If D > 0, define
pk(−1) = pk(−2) = · · · = pk(−D) = 0. Stabilizing the
above virtual queues ensures the time average penalties satisfy
their constraints [1].

Define Q(t) = (Q1(t), . . . , QK(t)). Define L(t) by:

L(t)M
=

1

2

K∑
k=1

Qk(t)2

Define ∆(t)M
=L(t + 1) − L(t), called the Lyapunov drift.

Motivated by the theory in [1], the approach is to choose prob-
abilities every slot to greedily minimize a bound on the drift-
plus-penalty expression E [∆(t+D) + V p0(t)|Q(t)], where
V is a non-negative weight that affects a performance tradeoff.
The D-shifted drift term ∆(t + D) is different from [1]
and is used because of the delayed feedback structure of the
queue update (24). The intuition is that minimizing ∆(t+D)
maintains queue stability, while adding the weighted penalty
term V p0(t) biases decisions in favor of lower penalties. The
following drift-plus-penalty algorithm results from this greedy
minimization (see detailed development in [18]). Every slot t:
• Users observe the queue vector Q(t).
• Users apply the pure strategy g(m)(ω), where m is the

index in {1, . . . , M̃} that minimizes the expression:

V r
(m)
0 +

K∑
k=1

Qk(t)r
(m)
k (25)

• The delayed penalty information pk(t − D) is observed
and queues are updated via (24).

A. Performance Analysis

Theorem 3: If the problem (11)-(13) is feasible, then under
the drift-plus-penalty algorithm for any V ≥ 0:
• All desired constraints (12)-(13) are satisfied.
• For all t > 0, the time average expectation of p0(t)

satisfies:

1

t

t−1∑
τ=0

E [p0(τ)] ≤ popt0 +
B(1 + 2D)

V
+

E [L(D)]

V t
(26)

where the constant B is defined:

B M
= max
m∈{1,...,M̃}

1

2

K∑
k=1

∑
ω∈Ω

π(ω)
∣∣∣p̂k (g(m)(ω),ω

)
− ck

∣∣∣2
• For all t > 0, the time average expectation of pk(t)

satisfies the following for all k ∈ {1, . . . ,K}:

1

t

t−1∑
τ=0

E [pk(τ)] ≤ ck +O(
√
V/t) (27)

Proof: See [18].
The above theorem shows the time average expectation of

p0(t) is within O(1/V) of optimality. It can be pushed as
close to optimal as desired by increasing the V parameter. The
tradeoff is in the amount of time required for the time average
expected penalties to be close to their desired constraints.

B. The approximate drift-plus-penalty algorithm

The online algorithm assumes perfect knowledge of the
r

(m)
k values. These can be computed by (14) if the event

probabilities π(ω) are known. Suppose these probabilities are
unknown, but delayed samples ω(t −D) are available at the
end of each slot t. Let W be a positive integer that represents
a sample size. The r(m)

k values can be approximated by:

r̃
(m)
k (t) =

1

W

W−1∑
w=0

p̂k

(
g(m)(ω(t−D − w)),ω(t−D − w)

)
The approximate algorithm uses r̃(m)

k (t) values in replace of
r

(m)
k in the expression (25). Analysis in [19] shows that the

performance gap between exact and approximate drift-plus-
penalty implementations is O(1/

√
W).

VI. SIMULATIONS

A. Ergodic performance for a 2 user system

First consider the 2 user sensor network example of Section
II. The approximate drift-plus-penalty algorithm of Section
V-B is used with a delay of D = 10 slots and a moving average
window size of W = 40 slots. The algorithm is not aware of
the system probabilities. The objective of this simulation is
to find how close the achieved utility is to the optimal value
uopt = 23/48 ≈ 0.47917 computed in Section II-B. Recall
that the desired power constraints are pi ≤ 1/3 for each user
i ∈ {1, 2}. The table in Fig. 1 gives results for various values
of V . For V ≥ 50 the achieved utility differs from optimality
only in the fourth decimal place.

V u p1 p2

1 0.344639 0.259764 0.219525
5 0.454557 0.333158 0.267161
10 0.472763 0.333335 0.300415
25 0.478186 0.333346 0.326948
50 0.479032 0.333369 0.332873

100 0.479218 0.333406 0.333334

Fig. 1. Algorithm performance over t = 106 slots (D = 10, W = 40).
Recall that uopt = 23/48 ≈ 0.47917.

B. Ergodic performance for a 3 user system

Consider a network of 3 sensors that communicate reports
to a fusion center. The event processes ωi(t) for each sensor
i ∈ {1, 2, 3} take values in the same 10 element set B:

BM
={0, 1, 2, 3, . . . , 9}

PROC. IEEE INFOCOM 2014 8

Consider binary actions αi(t) ∈ {0, 1}, where αi(t) = 1
corresponds to sensor i sending a report, and incurs a power
cost of 1 for that sensor. The penalty and utility functions are:

p̂i(αi, ωi) = αi ∀i ∈ {1, 2, 3}

û(α,ω) = min

[
α1ω1

10
+
α2ω2 + α3ω3

20
, 1

]
Thus, sensor 1 brings more utility than the other sensors.

Assume ω1(t), ω2(t), ω3(t) are mutually independent and
uniformly distributed over B. The requirements for Theorem
2 hold, and so one can restrict attention to the 11 threshold
functions gi(ωi) of the type (23). As it does not make sense
to report when ωi(t) = 0, the functions gi(ω) = 1 for all
ω can be removed. This leaves only 10 threshold functions
at each user, for a total of 103 = 1000 strategy functions
g(m)(ω) to be considered every slot. The approximate drift-
plus-penalty algorithm of Section V-B is simulated over t =
106 slots with a delay D = 10 and for various choices of
the moving average window size W and the parameter V .
All average power constraints were met for all choices of V
and W . The achieved utility is shown in Fig. 2. The utility
increases to a limiting value as V is increased. This limiting
value can be improved by adjusting the number of samples
W used in the moving average. Increasing W from 40 to 200
gives a small improvement in performance. There is only a
negligible improvement when W is further increased to 400
(the curves for W = 200 and W = 400 look identical).

0 20 40 60 80 100
0.25

0.3

0.35

0.4

0.45

0.5

V

T
im

e
 a

v
e
ra

g
e
 u

ti
lit

y

Time average utility versus V

W=40

W=200

W=400

Fig. 2. Achieved utility u versus V for various choices of W .

Fig. 3 demonstrates how the V parameter affects the rate
of convergence to the desired constraints. The window size
is fixed to W = 40 and the value max[p1(t), p2(t), p3(t)] is
plotted for t ∈ {0, 1, . . . , 2000} (where pi(t) is the empirical
average power expenditure of user i up to slot t). This value
approaches the constraint 1/3 more slowly when V is large.

C. Adaptation to non-ergodic changes

The initial queue state determines the coefficient of an
O(1/t) transient in the performance bounds of the system
(consider the E [L(D)] /(V t) term in (26)). Thus, if system
probabilities change abruptly, the system can be viewed as
restarting with a different initial condition. Thus, one expects
the system to react robustly to such changes.

To illustrate this, consider the same 3-user system of the
previous subsection, using V = 50,W = 40. The event

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Average power versus time

A
v
e
ra

g
e
 p

o
w

e
r

u
p
 t
o
 t
im

e
 t

Time t

V=100

V=50

V=10

Fig. 3. An illustration of the rate of convergence to the desired constraint 1/3
for various choices of V . The curves plot max[p1(t), p2(t), p3(t)] versus t.

processes ωi(t) have the same probabilities as given in the
previous subsection for slots t < 4000 and t > 8000. Call this
distribution type 1. However, for slots t ∈ {4000, . . . , 8000},
the ωi(t) processes are independently chosen with a different
distribution as follows:
• Pr[ω1(t) = 0] = Pr[ω1(t) = 9] = 1/2.
• Pr[ω2(t) = k] = 1/4 for k ∈ {6, 7, 8, 9}.
• Pr[ω3(t) = k] = 1/4 for k ∈ {6, 7, 8, 9}.

This is called distribution type 2.
Fig. 4 shows average utility and average power over the

first 12000 slots. Values at each slot t are averaged over 2000
independent system runs. The two dashed horizontal lines in
the top plot of the figure are long term time average utilities
achieved over 106 slots under probabilities that are fixed at
distribution type 1 and type 2, respectively. It is seen that the
system adapts to the non-ergodic change by quickly adjusting
to the new optimal average utility. The figure also plots average
power of user 1 versus time, with a dashed horizontal line at
the power constraint 1/3. A noticeable disturbance in average
power occurs at the non-ergodic changes in distribution.

0 2000 4000 6000 8000 10000 12000

0.35

0.4

0.45

0.5

0.55

0.6

Utility (averaged over 2000 runs) versus time (W=40)

A
v
e
ra

g
e
 u

ti
lit

y

Time t

0 2000 4000 6000 8000 10000 12000
0.2

0.3

0.4

0.5

User 1 power (averaged over 2000 runs) versus time (W=40)

A
v
e
ra

g
e
 p

o
w

e
r

Time t

Fig. 4. A sample path of average utility and power versus time. Values at
each time slot t are obtained by averaging the actual utility and power used
by the algorithm on that slot over 2000 independent simulation runs.

VII. CONCLUSIONS

This paper treated distributed scheduling in a multi-user
system where users know their own observations and actions,
but not those of others. Optimal distributed policies were
constructed by correlating decisions via a source of common

PROC. IEEE INFOCOM 2014 9

randomness. The optimal policy is computable via a linear
program if all system probabilities are known, and through
an online algorithm with virtual queues if probabilities are
unknown. The online algorithm assumes there is delayed
feedback about previous penalties and rewards. The algorithm
was shown in simulation to adapt when system probabilities
change. If the penalty and utility functions satisfy a preferred
action property, a complexity reduction result was shown to
reduce the number of pure strategies required for consider-
ation. In some cases, this reduces an exponentially complex
algorithm to one that has only polynomial complexity.

APPENDIX — PROOF OF THEOREM 1

Define the (K + 1)-dimensional penalty vectors:

p(t) = (p0(t), p1(t), . . . , pK(t))

p̂(α,ω) = (p̂0(α,ω), p̂1(α,ω), . . . , p̂K(α,ω))

For each m ∈ {1, . . . ,M}, define:

r(m) M=
∑

ω∈Ω π(ω)p̂(g(m)(ω),ω) = (r
(m)
0 , r

(m)
1 , . . . , r

(m)
K)

Define R as the convex hull of these vectors:

RM
=Conv

(
{r(1), . . . , r(M)}

)
Lemma 5: Let α(t) be decisions of an algorithm that satis-

fies the distributed scheduling constraint (10) every slot. Then:
(a) E [p(t)] ∈ R for all t ∈ {0, 1, 2, . . .}.
(b) p(t) ∈ R for all t ∈ {1, 2, 3, . . .}, where

p(t)M
=

1
t

∑t−1
τ=0 E [p(τ)]

Proof: Part (b) follows immediately from part (a) together
with the fact that R is convex. To prove part (a), fix a slot
t ∈ {0, 1, 2, . . .}. By (10), the users make decisions:

α(t) = (f1(ω1(t), X(t)), . . . , fN (ωN (t), X(t)))

For each X(t) ∈ X and ω ∈ Ω, define:

gX(t)(ω) = (f1(ω1, X(t)), . . . , fN (ωN , X(t)))

Then, given X(t), the function gX(t)(ω) is a pure strategy.
Hence, gX(t)(ω) = g(m)(ω) for some m ∈ {1, . . . ,M}.
Define mX(t) as the value m ∈ {1, . . . ,M} for which this
holds. Thus, gX(t)(ω) = g(mX(t))(ω), and:

E [p(t)|X(t)] = E [p̂(α(t),ω(t))|X(t)]

= E
[
p̂
(
g(mX(t))(ω(t)),ω(t)

)
|X(t)

]
=

∑
ω∈Ω

π(ω)p̂
(
g(mX(t))(ω),ω

)
= r(mX(t))

Taking expectations of both sides and using the law of iterated
expectations gives:

E [p(t)] =
∑M
m=1 Pr[mX(t) = m]r(m)

The above is a convex combination of {r(1), . . . , r(M)}, and
hence is in R.

Lemma 6: There exist real numbers r1, r2, . . . , rK that sat-
isfy the following:

rk ≤ ck ∀k ∈ {1, . . . ,K} (28)
(popt0 , r1, r2, . . . , rK) ∈ R (29)

Furthermore, the vector in (29) is on the boundary of R.
Proof: The proof is an application of Lemma 5 and is

omitted for brevity (see [18]).
Because R = Conv({r(1), . . . , r(M)}), Lemma 6 implies

there are probabilities θm that sum to 1 such that:

(popt0 , r1, . . . , rK) =
∑M
m=1 θmr

(m)

where the rk values satisfy (28). Because R is a (K + 1)-
dimensional set and the above vector is on the boundary of
R, a simple extension of Caratheodory’s theorem ensures the
vector can be expressed with at most K + 1 non-zero θm
values. This proves Theorem 1.

REFERENCES

[1] M. J. Neely. Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.

[2] B. Liu, P. Terlecky, A. Bar-Noy, R. Govindan, M. J. Neely, and
D. Rawitz. Optimizing information credibility in social swarming
applications. IEEE Trans. on Parallel and Distributed Systems, vol.
23, no. 6, pp. 1147-1158, June 2012.

[3] N. Michelusi and M. Zorzi. Optimal random multiaccess in energy har-
vesting wireless sensor networks. Proc. IEEE International Conference
on Communications, to appear.

[4] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT
Press, Cambridge, MA, 1994.

[5] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University Press,
NY, NY, 2009.

[6] R. Aumann. Subjectivity and correlation in randomized strategies.
Journal of Mathematical Economics, vol. 1, pp. 67-96, 1974.

[7] R. Aumann. Correlated equilibrium as an expression of bayesian
rationality. Econometrica, vol. 55, pp. 1-18, 1987.

[8] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and
cross-layer control in wireless networks. Foundations and Trends in
Networking, vol. 1, no. 1, pp. 1-149, 2006.

[9] M. J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. IEEE/ACM Transactions on Net-
working, vol. 16, no. 2, pp. 396-409, April 2008.

[10] X. Lin and N. B. Shroff. Joint rate control and scheduling in multihop
wireless networks. Proc. of 43rd IEEE Conf. on Decision and Control,
Paradise Island, Bahamas, Dec. 2004.

[11] L. Xiao, M. Johansson, and S. P. Boyd. Simultaneous routing and
resource allocation via dual decomposition. IEEE Transactions on
Communications, vol. 52, no. 7, pp. 1136-1144, July 2004.

[12] S. H. Low and D. E. Lapsley. Optimization flow control, i: Basic
algorithm and convergence. IEEE/ACM Transactions on Networking,
vol. 7 no. 6, pp. 861-875, Dec. 1999.

[13] C. C. Moallemi and B. Van Roy. Distributed optimization in adaptive
networks. Advances in Neural Information Processing Systems, vol. 16,
MIT Press, 2004.

[14] L. Jiang and J. Walrand. A distributed csma algorithm for throughput
and utility maximization in wireless networks. Proc. Allerton Conf. on
Communication, Control, and Computing, Sept. 2008.

[15] S. Rajagopalan and D. Shah. Reversible networks, distributed optimiza-
tion, and network scheduling: What do they have in common? Proc.
Conf. on Information Sciences and Sytems (CISS), 2008.

[16] L. Jiang and J. Walrand. Scheduling and Congestion Control for Wireless
and Processing Networks. Morgan & Claypool, 2010.

[17] A. Nayyar. Sequential Decision Making in Decentralized Systems. PhD
thesis, University of Michigan, 2011.

[18] M. J. Neely. Distributed stochastic optimization via correlated schedul-
ing. ArXiv technical report, arXiv:1304.7727v2, May 2013.

[19] M. J. Neely, S. T. Rager, and T. F. La Porta. Max weight learning
algorithms for scheduling in unknown environments. IEEE Transactions
on Automatic Control, vol. 57, no. 5, pp. 1179-1191, May 2012.

	Introduction
	Applications to sensor networks
	Applications to wireless multiple access
	Contributions and related work

	Example sensor network problem
	Independent reporting
	Correlated reporting
	Centralized reporting

	Characterizing optimality
	The distributed scheduling constraint
	The optimization problem
	Optimality via correlated scheduling

	Reduced complexity
	The preferred action property
	Independent events and reduced complexity

	Online optimization
	Performance Analysis
	The approximate drift-plus-penalty algorithm

	Simulations
	Ergodic performance for a 2 user system
	Ergodic performance for a 3 user system
	Adaptation to non-ergodic changes

	Conclusions
	References

