
PROC. IEEE INFOCOM 2012 1

Delay and Rate-Optimal Control in a Multi-Class
Priority Queue with Adjustable Service Rates

Chih-ping Li and Michael J. Neely

Abstract—We study two convex optimization problems in a
multi-class M/G/1 queue with adjustable service rates: minimiz-
ing convex functions of the average delay vector, and minimizing
average service cost, both subject to per-class delay constraints.
Using virtual queue techniques, we solve the two problems with
variants of dynamic cµ rules. These algorithms adaptively choose
a strict priority policy, in response to past observed delays in all
job classes, in every busy period. Our policies require limited or
no statistics of the queue. Their optimal performance is proved
by Lyapunov drift analysis and validated through simulations.

I. INTRODUCTION

Dynamic control over multi-class queueing systems has
attracted significant attention for decades due to its wide
applications in computers, communication networks, and man-
ufacturing systems. One particularly useful tool is to char-
acterize the achievable region of a performance measure of
interest, then use optimization methods to develop optimal
control policies (see [1], [2] for examples). One celebrated
result that holds when the performance region is a polymatroid
is that a strict priority policy called the cµ rule minimizes
linear costs (such as sum of average queue lengths) [3]. A
followup question is whether such simple policies exist for
more complex objectives. In this paper, we show that convex
optimization problems in an M/G/1 queue, which has a
polymatroidal delay region, can have adaptive online policies
as simple as the cµ rule.

Consider an M/G/1 queue serving N independent classes
of Poisson arrivals. The controller serves jobs one at a time
in a non-preemptive fashion. After completing a job it makes
a decision about which job class to serve next. It can also
dynamically adjust the service rate. Let the arrival rate of class
n ∈ {1, . . . , N} be λn, and the random variable Sn (with
mean E [Sn]) denote the size of a class n job. All job sizes
are independent across classes and independent and identically
distributed (i.i.d.) within each class. As a technical detail, we
assume that the first four moments of Sn are finite for all n; the
distribution of Sn is otherwise arbitrary. When a job arrives,
we only know its class but not its actual size. The server is
assumed to have an adjustable service rate µ(P (t)), incurring
an instantaneous cost P (t) at time t (such as a power cost).
Assume µ(·) is increasing with µ(0) = 0.

C.-P. Li is with the Laboratory for Information and Decision Systems at
Massachusetts Institute of Technology. M. J. Neely is with the Electrical
Engineering department at the University of Southern California.

This material is supported in part by one or more of the following:
the DARPA IT-MANET program grant W911NF-07-0028, the NSF Career
grant CCF-0747525, NSF grant 0964479, the Network Science Collaborative
Technology Alliance sponsored by the U.S. Army Research Laboratory
W911NF-09-2-0053.

Let Wn be the average queueing delay vector for class n.1

We consider the two problems:
1) Minimizing a separable convex function of the aver-

age delay vector (Wn)
N
n=1 subject to delay constraints

Wn ≤ dn for every class n ∈ {1, . . . , N}. Here, we
assume a constant service rate. That is, we optimize only
over scheduling decisions, and do not consider service
rate control.

2) Under dynamic allocations of the service rate, we min-
imize average service cost subject to delay constraints
Wn ≤ dn for every class n ∈ {1, . . . , N}.

Solving the first problem enables delay fairness across job
classes. This is in the same spirit as the well-known rate
proportional fairness [4] or utility proportional fairness [5], and
we show in Section III-A that the objective function for delay
proportional fairness is quadratic (rather than logarithmic).
One application of the second problem is to minimize power
consumption of a computer using dynamic speed scaling [6],
while providing delay guarantees to different traffic streams.

When the service rate is constant, the set of all achievable
delay vectors in a nonpreemptive M/G/1 queue is a poly-
matroid, a special polytope with vertices achieved by strict
priority policies [7]. It follows that the optimal solution to the
first problem above is achieved by a randomized policy that
updates priorities over busy periods according to a stationary
distribution. We are thus motivated to find an optimal dynamic
policy that updates priorities over busy periods. In the second
problem with service rate control, we find the optimal policy
that updates priorities and service rates over busy periods.

Our construction of dynamic priority policies is based on
using virtual queues to monitor, in each job class, the amount
of past observed delays violating the delay constraint (stored
as virtual queue backlogs). Then, at decision epochs (end of
busy periods), job classes with more severe delay violations
are offered higher priorities until the next decision epoch, and
so on. Technically, using Lyapunov drift analysis, we show
that policies stabilizing the virtual queues are online policies
solving the optimization problems in the M/G/1 queue. These
policies make a “max-weight” decision in every busy period,
where the decisions turn out to be a cµ rule assigning priorities
by sorting weighted virtual queue backlogs.2 We show that the

1We only consider queueing delay, not system delay (queueing plus service),
in this paper. In a nonpreemptive setting, average system and queueing delay
differ only by the mean service time. Thus, results in this paper can naturally
be generalized to optimizing system delays. We use delay and queueing delay
interchangeably in the rest of the paper.

2For the second service rate control problem, we need a “ratio max-weight”
principle [8], [9] to find the optimal priority assignment in every busy period,
because the mean size of a busy period is a function of the service rate.

2

resulting dynamic cµ rules yield performance that is O(1/V)
away from optimal, where V > 0 is a control parameter that
can be chosen sufficiently large for optimality, with a tradeoff
in convergence time [10, Remark 5.11].

In the queueing literature, compared to the vast study of
showing strict priority policies (such as the cµ rule) minimize
linear costs, the study of constrained convex optimization
problems is relatively limited; see [11]–[14] for examples.
Adaptive policies for the control of single-server queues are
developed in [14], [15] using stochastic approximation. Our
adaptive control method in this paper is conceptually simpler
than stochastic approximation, and naturally incorporates time
average constraints.

State-dependent allocation of service rates in a single-server
queue is addressed in [16], [17] and references therein. The
usual approach uses dynamic programming (DP) ideas to show
the monotonic structure of optimal policies. DP seems inad-
equate for our problems because the multi-class assumption
leads to a multi-dimensional state space suffering from the
curse of dimensionality. In addition, DP seems complicated to
incorporate time-average constraints, and requires full statis-
tics of the queue; our policies need only limited statistics.
In this paper we focus on policies that update service rates
over busy periods; this approach leads to tractable analysis
and simplified control.

In the rest of the paper, Section II presents useful notations,
definitions, and control policies of interest in this paper. Sec-
tion III solves the first convex delay optimization problem, and
introduces the notion of delay proportional fairness. Section IV
solves the second service rate control problem. Simulations are
provided in Section V.

Due to space limits, we only present main results in this
paper. See [10, Chapter 5] for detailed proofs and the technical
construction of the dynamic cµ rules.

II. NOTATIONS, DEFINITIONS, AND POLICIES

We consider the M/G/1 queue as a frame-based system,
where each frame consists of an idle period and the following
busy period. Let tk, k ∈ Z+, be the start of the kth frame.
The kth frame is [tk, tk+1) with size Tk , tk+1 − tk. Define
t0 = 0 and assume the system is initially empty. Let An,k be
the set of class n arrivals in frame k. For each job i ∈ An,k,
let W (i)

n,k be its queueing delay.
The average delay under policies that we propose later may

not have well-defined limits. Thus, inspired by [18], we define

Wn , lim sup
K→∞

E
[∑K−1

k=0

∑
i∈An,k

W
(i)
n,k

]
E
[∑K−1

k=0 |An,k|
] (1)

as the average queueing delay for class n ∈ {1, . . . , N},
where |An,k| is the number of class n arrivals in frame k.
We only consider average delays sampled at frame boundaries
for simplicity. See [18] for a discussion on the definition of (1).

The next two assumptions specify the class of control
policies considered in this paper.

Assumption 1. We focus on scheduling policies that are
work-conserving, non-preemptive, and non-anticipative. The

controller can serve one job at a time. At the completion of
every service, it makes a dynamic decision about which job
class to serve next. Jobs in each class can be served in arbitrary
order.

Assumption 2. When the service rate is adjustable, a fixed
service rate µ(Pk), Pk ∈ [Pmin, Pmax], is assigned in the kth
busy period; the decisions are possibly random. Zero service
rates are given in idle periods. The maximum cost Pmax is
assumed finite, but sufficiently large to ensure feasibility of
required delay constraints. The minimum cost Pmin is assumed
large enough so that the queue is stable even if Pmin is used
for all time. Namely, we need

∑N
n=1 λnE [Sn] /µ(Pmin) < 1,

or µ(Pmin) >
∑N

n=1 λnE [Sn].

III. CONVEX DELAY OPTIMIZATION

We solve the convex delay minimization problem:

minimize
N∑

n=1

fn(Wn) (2)

subject to Wn ≤ dn, n = 1, . . . , N (3)

over scheduling policies described in Assumption 1. The
functions fn are continuous, convex, nondecreasing, and non-
negative for all n. Here, we assume a constant service rate,
and that all delay constraints are feasible.

A. Delay Proportional Fairness

We say a delay vector (W
∗
n)

N
n=1 is weighted delay propor-

tional fair if it is optimal under quadratic penalty functions
fn(Wn) =

1
2 cn(Wn)

2 for all n, where cn are given positive
constants. In this case, any feasible delay vector (Wn)

N
n=1

necessarily satisfies

N∑
n=1

f ′n(W
∗
n)(Wn−W

∗
n) =

N∑
n=1

cn (Wn−W
∗
n)W

∗
n ≥ 0, (4)

which is in the same spirit as rate proportional fairness [4]

N∑
n=1

cn
xn − x∗n
x∗n

≤ 0, (5)

where (xn)
N
n=1 is a feasible rate vector and (x∗n)

N
n=1 is the

optimal rate vector. Intuitively, delay proportional fairness has
the product form (4) rather than the ratio form (5) because
we favor large rates but want small delays. To further clarify,
we give a two-user example showing that (4) and (5) provide
the same proportional tradeoff. Let c1 = c2 = 1. In rate
proportional fairness, consider two feasible rates x1 = 100
and x2 = 10; user 2 is 10 times worse than user 1. Then, if
user 1 wants to increase x units of rate, it cannot cause user 2
more than x/10 units of loss. In delay proportional fairness,
we suppose W 1 = 10 and W 2 = 100; user 2 is again 10 times
worse than user 1. Then, according to (4), if user 1 wants to
decrease delay by x units, user 2 can only tolerate up to x/10
units of delay increase, since user 2 is 10 times worse.

3

B. Delay Fairness Policy

For each user n ∈ {1, . . . , N}, we define two discrete-time
virtual delay queues {Zn,k}∞k=0 and {Yn,k}∞k=0, where Zn,k+1

and Yn,k+1 are computed at time tk+1 according to

Zn,k+1 = max
[
Zn,k +

∑
i∈An,k

(
W

(i)
n,k − dn

)
, 0
]
, (6)

Yn,k+1 = max
[
Yn,k +

∑
i∈An,k

(
W

(i)
n,k − rn,k

)
, 0
]
, (7)

where W (i)
n,k denote queueing delays of class n jobs served in

the previous frame [tk, tk+1), and rn,k ∈ [0, dn] are auxiliary
variables chosen at time tk independent of frame size Tk
and per-frame class n arrivals An,k. For each virtual arrival
W

(i)
n,k at both queues, we match a virtual service dn and rn,k

in the Zn,k and Yn,k queue, respectively. Assume initially
Zn,0 = Yn,0 = 0 for all n. Stabilizing the Yn,k queues helps
to minimize convex delay penalty (2) (details omitted due to
space limits). The values of Zn,k reflect the amount of past
delays in class n exceeding the required delay bound dn. We
visualize that if Zn,k is kept small in the long run, then the
average delay constraint Wn ≤ dn should be met. This is
formalized by the next lemma, which shows that the stability
of the Zn,k queue achieves the delay constraint Wn ≤ dn.

Definition 1. We say queue Zn,k is mean rate stable if
limK→∞ E [Zn,K] /K = 0.

Lemma 1. If queue Zn,k is mean rate stable, then Wn ≤ dn.

The next policy solves the convex optimization (2)-(3).

Delay Fairness Policy (DelayFair)

1) In every frame k, prioritize job classes in the decreasing
order of the ratio (Zn,k +Yn,k)/E [Sn], where E [Sn] is
the mean size of a class n job; ties are broken arbitrarily.

2) At the end of frame k, compute Zn,k+1 and Yn,k+1 for
all classes n by (6) and (7), respectively, where rn,k is
the solution to the convex program:

minimize V fn(rn,k)− Yn,k λn rn,k (8)
subject to 0 ≤ rn,k ≤ dn (9)

where V > 0 is a predefined control parameter.
The DelayFair policy requires arrival rates λn and mean job
sizes E [Sn], but not higher-order statistics. The problem (8)-
(9) is easily solved when fn(·) is differentiable.

For pure feasibility problems that only seek to achieve all
delay constraints Wn ≤ dn (so that fn = 0 for all n in (2)-
(3)), we have a different algorithm called DelayFeas. This does
not use the Yn,k queues and does not require any statistics for
arrivals and job sizes.

Delay Feasible Policy (DelayFeas)

• Prioritize job classes in the decreasing order of Zn,k in
every busy period.

• Update Zn,k for all n at the end of every busy period.

C. Performance of DelayFair and DelayFeas

Theorem 1. Given any delay bounds {d1, . . . , dN} that are
feasible under the class of scheduling policies defined in
Assumption 1, both DelayFair and DelayFeas policy stabilize
all Zn,k queues in the mean rate stable sense, and therefore
satisfy delay constraints Wn ≤ dn for all n (by Lemma 1).
In addition, the DelayFair policy yields convex delay cost
satisfying

lim sup
K→∞

N∑
n=1

fn

E
[∑K−1

k=0

∑
i∈An,k

W
(i)
n,k

]
E
[∑K−1

k=0 |An,k|
]


≤ C

∑N
n=1 λn
V

+

N∑
n=1

fn(W
∗
n),

where V > 0 is a predefined control parameter, C > 0 a finite
constant, and the vector (W

∗
n)

N
n=1 is the optimal solution to the

problem (2)-(3). The convex delay cost can be made arbitrarily
close to the optimal

∑N
n=1 fn(W

∗
n) by a sufficiently large V .

IV. DELAY-CONSTRAINED OPTIMAL RATE CONTROL

In this section, we incorporate dynamic allocations of the
service rate. As specified in Assumption 2, we focus on frame-
based policies that allocate a fixed service rate µ(Pk) in the
kth busy period. Here, the frame size Tk, busy period Bk,
per-frame class n arrivals An,k, and queueing delays W (i)

n,k,
all depend on µ(Pk) or cost Pk. Similar to (1), we define the
average service cost

P , lim sup
K→∞

E
[∑K−1

k=0 Pk Bk(Pk)
]

E
[∑K−1

k=0 Tk(Pk)
] , (10)

where Bk(Pk) and Tk(Pk) emphasize the dependence of Bk

and Tk on Pk. It is easy to show that Bk(Pk) and Tk(Pk) are
decreasing in Pk. The goal is to solve the delay-constrained
optimal rate control problem:

minimize: P (11)

subject to: Wn ≤ dn, n = 1, . . . , N (12)

over control policies defined in Assumption 1 and 2.

A. Dynamic Rate Control Policy

We set up the same virtual queues Zn,k as in (6). Assume
initially Zn,0 = 0 for all n.

Dynamic Rate Control (DynRate) Policy

1) In frame k ∈ Z+, use the strict priority policy πk
that prioritizes job classes in the decreasing order of
Zn,k/E [Sn], where E [Sn] is the mean job size of class
n; ties are broken arbitrarily.

2) In the busy period of frame k ∈ Z+, allocate service
rate µ(Pk), where Pk is the solution to

minimize

(
V

N∑
n=1

λnE [Sn]

)
Pk

µ(Pk)

4

+

N∑
n=1

Zn,k λnWn(πk, Pk) (13)

subject to Pk ∈ [Pmin, Pmax], (14)

where V > 0 is a predefined control parameter. The
term Wn(πk, Pk) is the average queueing delay of class
n when service rate µ(Pk) and strict priority policy πk
are used in all busy periods. If job classes are properly
re-ordered according to policy πk so that

Z1,k

E [S1]
≥ . . . ≥ ZN,k

E [SN]
,

then the average delay Wn(πk, Pk) is given by [19]

Wn(πk, Pk) =
1
2

∑N
i=1 λiE

[
X2

i

]
(1−∑n−1

i=0 ρi)(1−
∑n

i=0 ρi)
,

where the random variable Xi , Si/µ(Pk) denotes the
service time of a class i job in frame k, ρi , λiE [Xi]
for i = 1, . . . , N , and ρ0 , 0.

3) Update all Zn,k queues by (6) at every frame boundary.
The DynRate policy needs the knowledge of arrival rates
and the first two moments of job sizes. To remove its de-
pendence on second-order statistics, we can divide (13) by
the (unknown) constant R̃ , 1

2

∑N
n=1 λnE

[
S2
n

]
and redefine

Ṽ = V/R̃. The modified policy has the same performance
(given in Theorem 2 below) as the DynRate policy, but only
depends on first-order statistics.

B. Performance of DynRate

Theorem 2. The DynRate policy satisfies delay constraints
Wn ≤ dn for all classes n and yields average cost P satisfying

P ≤ C
∑N

n=1 λn
V

+ P ∗,

where P ∗ is the optimal average cost in (11)-(12), C > 0 is a
finite constant, and V > 0 is a predefined control parameter.
The gap between P and P ∗ can be made arbitrarily small by
a sufficiently large V .

V. SIMULATIONS

We simulate the DelayFair, DelayFeas, and DynRate policy
in a two-class nonpreemptive M/G/1 queue. Let W(P) be
the queueing delay region under a constant service rate µ(P).
Define ρn , λnE [Xn] and R , 1

2

∑2
n=1 λnE

[
X2

n

]
, where

Xn = Sn/µ(P) is service time of a class n job. We have [7]

W(P) =

 (W 1,W 2)

∣∣∣∣∣∣∣∣
W 1 ≥

R

1− ρ1
, W 2 ≥

R

1− ρ2
,

ρ1W 1 + ρ2W 2 =
(ρ1 + ρ2)R

1− ρ1 − ρ2

 .

(15)
In (15), the two inequalities show that the mean queueing delay
in one class is minimized when it has priority over the other
class. The equality is the M/G/1 conservation law [20].

Every simulation result in this section is a sample average
over 10 runs, each of which lasts for 106 frames.

A. Simulation for DelayFair and DelayFeas

We consider a two-class M/M/1 queue with arrival rates
(λ1, λ2) = (1, 2) and mean service times (E [X1] ,E [X2]) =
(0.4, 0.2). Here we assume a constant service rate. The per-
formance region W of mean queueing delay, using (15), is

W=
{
(W 1,W 2)

∣∣W 1 +W 2 = 2.4,W 1 ≥ 0.4,W 2 ≥ 0.4
}
.

1) The DelayFair Policy: We consider the delay propor-
tional fairness problem:

minimize: f(W 1,W 2) = 0.5 (W 1)
2 + 2 (W 2)

2 (16)

subject to: (W 1,W 2) ∈ W, W 1 ≤ 1.95, W 2 ≤ 1. (17)

The optimal solution to (16)-(17) is (W
∗
1,W

∗
2) = (1.92, 0.48).

We simulate the DelayFair policy for different values of control
parameter V , with results in Table I. The values in parentheses
are sample standard deviations over the 10 simulation runs. As
V increases, DelayFair yields near-optimal delay penalty.

V W 1 W 2 f(W 1,W 2)
100 1.6607 (0.0055) 0.7424 (0.0052) 2.4814 (0.0239)
1000 1.7977 (0.0057) 0.5984 (0.0043) 2.3321 (0.0199)
2000 1.8339 (0.0056) 0.5639 (0.0053) 2.3176 (0.0217)
5000 1.8679 (0.0073) 0.5276 (0.0050) 2.3014 (0.0222)

Optimal: 1.92 0.48 2.304

TABLE I
SIMULATION FOR THE DelayFair POLICY FOR DELAY PROPORTIONAL

FAIRNESS UNDER DIFFERENT VALUES OF V .

2) The DelayFeas Policy: We perform five sets of sim-
ulations to achieve delay constraints Wn ≤ dn for n ∈
{1, 2} using (d1, d2) = (0.45, 2.05), (0.85, 1.65), (1.25, 1.25),
(1.65, 0.85), and (2.05, 0.45); they are all (0.05, 0.05) entry-
wise larger than a feasible point on W . Fig. 1 shows that the
DelayFeas policy adaptively yields feasible average delays in
response to different constraints. Over the 10 simulation runs
in each of the five cases, the sample standard deviation of the
average delay in each job class is at most 0.017; all simulation
runs produce consistent results.

0.4 0.8 1.2 1.6 2
Class 1 average delay

0.4

0.8

1.2

1.6

2

C
la

ss
 2

 a
ve

ra
ge

 d
el

ay

Delay region W
Delay bounds (d1, d2)
Simulation results

Fig. 1. Simulation for the DelayFeas policy to achieve delay constraints
Wn ≤ dn for n ∈ {1, 2} under different (d1, d2).

B. Simulation for the DynRate policy

We consider a two-class M/G/1 queue with arrival rates
(λ1, λ2) = (1, 2). The size of a class 1 job is 0.5 with
probability 0.8, and 3 otherwise. The size of a class 2 job is
always one. We consider the service rate µ(P) =

√
P , where

P takes values in the discrete set {16, 25}.

5

Under dynamic rate control, the full queueing delay region,
denoted by W , is the convex hull of the two individual delay
regions W(16) and W(25) defined in (15) (see Fig. 2), where
W(16) and W(25) are the queueing delay region under a
constant service cost of P = 16 and 25, respectively.

P = 13.5

W 2

W 1

(0.4, 0.325)

W(16)

W(25)

Fig. 2. The performance regionW of mean queueing delay in the simulation
for the DynRate policy.

We use the DynRate policy to solve:

minimize: P (18)

subject to: (W 1,W 2) ∈ W (19)

W 1 ≤ 0.4, W 2 ≤ 0.325 (20)

whereW is the full delay region in Fig. 2. The minimum cost
is achieved by satisfying (20) with equality. By finding the
optimal stationary randomized policy that yields (W 1,W 2) =
(0.4, 0.325), we know the minimum average cost is 13.5.
Table II shows that the average cost and average delay in each
job class under the DynRate policy approaches optimality with
the increase of control parameter V .

V W 1 W 2 P
1 0.3562 (0.00078) 0.3029 (0.00032) 13.802 (0.018)
10 0.3984 (0.00022) 0.3247 (0.00005) 13.510 (0.026)
100 0.4003 (0.00013) 0.3252 (0.00010) 13.504 (0.022)

Optimal: 0.4 0.325 13.5

TABLE II
SIMULATION FOR THE DynRate POLICY UNDER DIFFERENT VALUES OF V

VI. DISCUSSIONS

The adaptive method introduced in this paper implies that
convex optimization problems in multi-class queues can be
reduced to solving a sequence of linear cost minimization
problems, one for each renewal period. In an M/G/1 queue,
these linear cost problems are solved by the cµ rule because
the delay region is a polymatroid. There are many other
queueing systems having polymatroid-type performance re-
gions (see [2], [3] for examples), in which linear costs are
minimized by strict priority strategies. Our method may be
applicable to solving interesting convex optimization problems
and developing online dynamic priority policies there.

REFERENCES

[1] D. Bertsimas, “The achievable region method in the optimal control of
queueing systems; formulations, bounds, and policies,” Queueing Syst.,
vol. 21, no. 3-4, pp. 337–389, Sep. 1995.

[2] D. Bertsimas and J. Niño-Mora, “Conservation laws, extended poly-
matroids, and multiarmed bandit problems; a polyhedral approach to
indexable systems,” Math. of Oper. Res., vol. 21, no. 2, pp. 257–306,
May 1996.

[3] D. D. Yao, “Dynamic scheduling via polymatroid optimization,” in
Performance Evaluation of Complex Systems: Techniques and Tools,
Performance 2002, Tutorial Lectures. London, UK: Springer-Verlag,
2002, pp. 89–113.

[4] F. P. Kelly, “Charging and rate control for elastic traffic,” European
Trans. Telecommunications, vol. 8, pp. 33–37, 1997.

[5] W.-H. Wang, M. Palaniswami, and S. H. Low, “Application-oriented
flow control: Fundamentals, algorithms, and fairness,” IEEE/ACM Trans.
Netw., vol. 14, no. 6, pp. 1282–1291, Dec. 2006.

[6] N. Bansal, T. Kimbrel, and K. Pruhs, “Speed scaling to manage energy
and temperature,” Journal of the ACM, vol. 54, no. 1, Mar. 2007.

[7] E. Gelenbe and I. Mitrani, Analysis and Synthesis of Computer Systems,
2nd ed. Imperial College Press, 2010.

[8] C.-P. Li and M. J. Neely, “Network utility maximization over partially
observable Markovian channels,” in IEEE Proc. Int. Symp. Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
Princeton, NJ, USA, May 2011.

[9] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.

[10] C.-P. Li, “Stochastic optimization over parallel queues: Channel-blind
scheduling, restless bandit, and optimal delay,” Ph.D. dissertation, Uni-
versity of Southern California, 2011.

[11] E. Altman and A. Shwartz, “Optimal priority assignment: a time sharing
approach,” IEEE Trans. Autom. Control, vol. 34, no. 10, pp. 1098 –1102,
Oct. 1989.

[12] K. W. Ross and B. Chen, “Optimal scheduling of interactive and non-
interactive traffic in telecommunication systems,” IEEE Trans. Autom.
Control, vol. 33, no. 3, pp. 261–267, Mar. 1988.

[13] A. Federgruen and H. Groenevelt, “Characterization and optimization
of achievable performance in general queueing systems,” Oper. Res.,
vol. 36, no. 5, pp. 733–741, 1988.

[14] P. P. Bhattacharya, L. Georgiadis, and P. Tsoucas, “Problems of adaptive
optimization in multiclass M/GI/1 queues with bernoulli feedback,”
Math. of Oper. Res., vol. 20, no. 2, pp. 355–380, May 1995.

[15] P. P. Bhattacharya, L. Georgiadis, P. Tsoucas, and I. Viniotis, “Adaptive
lexicographic optimization in multi-class M/GI/1 queues,” Math. of
Oper. Res., vol. 18, no. 3, pp. 705–740, Aug. 1993.

[16] J. M. George and J. M. Harrison, “Dynamic control of a queue with
adjustable service rate,” Oper. Res., vol. 49, no. 5, pp. 720–731, 2001.

[17] S. Stidham and R. Weber, “Monotonic and insensitive optimal policies
for contorl of queues with undiscounted costs,” Oper. Res., vol. 37, no. 4,
pp. 611–625, 1989.

[18] M. J. Neely, “Dynamic optimization and learning for renewal systems,”
in Asilomar Conf. Signals, Systems, and Computers, Nov. 2010.

[19] D. P. Bertsekas and R. G. Gallager, Data Networks, 2nd ed. Prentice
Hall, 1992.

[20] L. Kleinrock, Queueing Systems. Wiley Interscience, 1976, vol. II:
Computer Applications.

