
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, PP. 1869-1882, MARCH 2014 1

Delay-Limited Cooperative Communication with
Reliability Constraints in Wireless Networks
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Abstract—We investigate optimal resource allocation for delay-
limited cooperative communication in time varying wireless
networks. Motivated by real-time applications that have stringent
delay constraints, we develop a dynamic cooperation strategy
that makes optimal use of network resources to achieve a
target outage probability (reliability) for each user subject to
average power constraints. Using the technique of Lyapunov
optimization, we first present a general framework to solve this
problem and then derive quasi-closed form solutions for several
cooperative protocols proposed in the literature. Unlike earlier
works, our scheme does not require prior knowledge of the
statistical description of the packet arrival, channel state and
node mobility processes and can be implemented in an online
fashion.

Keywords—Cooperative Communication, Delay-Limited Commu-
nication, Mobile Ad-Hoc Networks, Reliability, Resource Allocation,
Lyapunov Optimization

I. INTRODUCTION

There is growing interest in the idea of utilizing cooperative
communication [2]–[7] to improve the performance of wireless
networks with time varying channels. The motivation comes
from the work on MIMO systems [25] which shows that
employing multiple antennas on a wireless node can offer
substantial benefits. However, this may be infeasible in small-
sized devices due to space limitations. Cooperative communi-
cation has been proposed as a means to achieve the benefits
of traditional MIMO systems using distributed single antenna
nodes. Much recent work in this area promises significant
gains in several metrics of interest (such as diversity [4]
[5], capacity [6]–[10], energy efficiency [11], [12], etc.) over
conventional methods. We refer the interested reader to a recent
comprehensive survey [2] and its references.

The main idea behind cooperative communication can be
understood by considering a simple 2-hop network consisting
of a source s, its destination d and a set of m relay nodes as
shown in Fig. 1. Suppose s has a packet to send to d in timeslot
t. The channel gains for all links in this network are shown
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Fig. 1. Example 2-hop network with a source, destination and m relays.
The time slot structures for different transmission strategies are also shown.
Due to the half-duplex constraint, cooperative protocols need to operate in
two phases. Hence, there is an inherent loss in the multiplexing gain under
any such cooperative transmission strategy over direct transmission.

in the figure. In direct communication, s uses the full slot to
transmit its packet to d over link s− d as shown in Fig. 1(a).
In conventional multi-hop relaying, s uses the first half of the
slot to transmit its packet to a particular relay node i over link
s − i as shown in Fig. 1(b). If i can successfully decode the
packet, it re-encodes and transmits it to d in the second half
of the slot over link i−d. In both scenarios, to ensure reliable
communication, the source and/or the relay must transmit at
high power levels when the channel quality of any of the links
involved is poor. However, note that due to the broadcast nature
of wireless transmissions, other relay nodes may receive the
signal from the transmission by s and can cooperatively relay
it to d. The destination now receives multiple copies/signals
and can use all of them jointly to decode the packet. Since
these signals have been transmitted over independent paths, the
probability that all of them have poor quality is significantly
smaller. Cooperative communication protocols take advantage
of this spatial diversity gain by making use of multiple relays
for cooperative transmissions to increase reliability and/or re-
duce energy costs. This is different from traditional multi-hop
relaying in which only one node is responsible for forwarding
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at any time and in which the destination does not use multiple
signals to decode a packet.

Because of the half-duplex nature of current wireless de-
vices, a relay node cannot send and receive on the same
channel simultaneously. Therefore, such cooperative commu-
nication protocols typically operate over a two phase slot
structure as shown in Figs. 1(c) and 1(d). In the first phase,
s transmits its packet to the set of relay nodes. In the second
phase, a subset of these relays transmit their signals to d. Note
that the destination may receive the source signal from the first
phase as well. At the end of the second phase, the destination
appropriately combines all of these received signals to decode
the packet. The exact slot structure as well as the signals
transmitted by the relays depend on the cooperative protocol
being used1. For example, Fig. 1(c) shows the slot structure
under a cooperative scheme that transmits over orthogonal
channels. Specifically, the time slot is divided into m + 1
equal mini-slots. In phase one, the source transmits its packet
in the first mini-slot. In the second phase, the relays transmit
one after the other in their own mini-slots. Fig. 1(d) shows
the slot structure under a cooperative scheme in which the
cooperating relays use distributed space-time codes (DSTC)
or a beamforming technique to transmit simultaneously in the
second phase. It should be noted that due to this half-duplex
constraint, there is an inherent loss in the multiplexing gain
under any such cooperative transmission strategy over direct
transmission. Therefore, it is important to develop algorithms
that cooperate opportunistically.

In this work, we consider a mobile ad-hoc network with
delay-limited traffic and cooperative communication. Many
real-time applications (e.g., voice) have stringent delay con-
straints and fixed rate requirements. In slow fading environ-
ments (where decoding delay is of the order of the channel
coherence time), it may not be possible to meet these delay
constraints for every packet. However, these applications can
often tolerate a certain fraction of lost packets or outages.
A variety of techniques are used to combat fading and meet
this target outage probability (including exploiting diversity,
channel coding, ARQ, power control, etc.). Cooperative com-
munication is a particularly attractive technique to improve
reliability in such delay-limited scenarios since it can offer sig-
nificant spatial diversity gains in addition to these techniques.

Much prior work on cooperative communication consid-
ers physical layer resource allocation for a static network,
particularly in the case of a single source. Objectives such
as minimizing sum power, minimizing outage probability,
meeting a target SNR constraint, etc., are treated in this
context [10]–[15]. We draw on this work in the development
of dynamic resource allocation in a stochastic network with
fading channels, node mobility, and random packet arrivals,
where opportunistic cooperation decisions are required. Dy-
namic cooperation was also considered in the prior work [17]
which investigates throughput optimality and queue stability
in a multi-user network with static channels and randomly
arriving traffic using the framework of Lyapunov drift. Our
formulation is different and does not involve issues of queue

1We consider several protocol examples in Sec. V.

stability. Rather, we consider a delay-limited scenario where
each packet must either be transmitted in one slot, or dropped.
This is similar to the concept of delay-limited capacity [18].
Also related to such scenarios is the notion of minimum
outage probability [19]. These quantities are also investigated
in the recent work [14] that considers a 3 node static network
with Rayleigh fading and shows that opportunistic cooperation
significantly improves the delay-limited capacity.

In this work, we use technique of Lyapunov optimization
[23], [24] to develop a control algorithm that takes dynamic
decisions for each new slot. Different from most work that
applies this theory, our solution involves a 2-stage stochastic
shortest path problem due to the cooperative relaying structure.
This problem is non-convex and combinatorial in nature and
does not admit closed form solutions in general. However,
under several important and well known classes of physical
layer cooperation models, we develop techniques for reducing
the problem exactly to an m-stage set of convex programs. The
convex programs themselves are shown to have quasi-closed
form solutions and can be computed in real time for each slot,
often involving simple water-filling strategies that also arise in
related static optimization problems.

II. BASIC NETWORK MODEL

We consider a mobile ad-hoc network with delay-limited
traffic over time varying fading channels. The network consists
of a set N of nodes, all potentially mobile. All nodes are
assumed to be within range of each other, and any node pair
can communicate either through direct transmission or through
a 2-phase cooperative transmission that makes use of other
nodes as relays. The system operates in slotted time and the
channel coefficient between nodes i and j in slot t is denoted
by hij(t). We assume a block fading model [25] for the
channel coefficients so that their value remains fixed during
a slot and changes from one slot to the other according to the
distribution of the underlying fading and mobility processes.

For simplicity, we assume that the set N contains a single
source-destination pair (s, d) and that all other nodes act
simply as cooperative relays. This is similar to the single
source assumption treated in [13]–[15] for static networks. We
derive a dynamic cooperation strategy for this single source
problem in Sec. IV that optimizes a weighted sum of reliability
and power expenditure subject to individual reliability and
average power constraints at the source and at all relays. This
highlights the decisions involved from the perspective of a
source node, and these decisions and the resulting solution
structure are similar to the multiple source-destination pairs
scenario operating under an orthogonal medium access scheme
(such as TDMA or FDMA) studied later in Sec. VII. In the
following, we denote the set of relay nodes by R and the set
{s} ∪R by R̂. All nodes i ∈ R̂ have both long term average
and instantaneous peak power constraints given by P avg

i and
Pmax
i respectively.
We consider two models for the availability of the channel

state information (CSI) at the source. The first is the known
channels, unknown statistics model. Under this model, we
assume that the channel gains between the source node and
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its relay set and destination as well as the channel gains
between the relays and the destination are known every slot.
These could be obtained by sending pilot signals and receiving
feedback. The exact description of CSI under this model
depends on the cooperative communication protocol being
used by the network. For example, when the source and relays
transmit on orthogonal channels or make use of distributed
space-time codes [4], [5], then the CSI information under this
model can represent just the amplitude of the channel coeffi-
cients |hij(t)|. On the other hand, when a cooperative scheme
such as beamforming is used [13], then the CSI information
under this model represents the complete description of the
fading coefficients that includes the phase information. We will
present several examples of cooperative protocols in Sec. V
where we highlight this distinction.

This model has been considered in prior works [13]–[16]
on power allocation in static networks where, in addition to
the current channel gains, a knowledge of the distribution
governing the fading process is assumed. In our work, under
this known channels, unknown statistics model, we do not
assume any knowledge of the distributions governing the
evolution of the channel states, mobility processes, or traffic.
Thus, our algorithm and its optimality properties hold for a
very general class of channel and mobility models that satisfy
certain ergodicity requirements (to be made precise later).

The second model we consider is the unknown channels,
known statistics model. In this case, we assume that the current
set of potential relay nodes is known on each slot t, but
the exact channel realizations between the source and these
relays, and the relays and the destination, are unknown. Rather,
we assume only that the statistics of the fading coefficients
are known between the source and current relays, and the
current relays and destination. However, we still do not require
knowledge of the distributions governing the arriving traffic or
the mobility pattern (which affects the set of relays we will
see in future slots). This is in contrast to prior works that have
considered resource allocation in the presence of partial CSI
only for static networks.

For both models, we use T (t) to represent the collection
of all channel state information known in slot t. For the
known channels, unknown statistics model, when the source
and relays transmit on orthogonal channels or make use of
distributed space-time codes, T (t) represents the collection
of amplitudes of current channel coefficients |hij(t)| between
the source and relays and relays and destination in slot t.
When beamforming is used, then T (t) represents the complete
description of channel coefficients that includes the phase in-
formation. For the unknown channels, known statistics model,
T (t) represents the set of all nodes that are available on slot
t for relaying and the distribution of the fading coefficients.

We assume that T (t) lies in a space of finite but arbitrarily
large size and evolves according to an ergodic process with a
well defined steady state distribution. This variation in channel
state information affects the reliability and power expenditure
associated with the direct and cooperative transmission modes
that are discussed in Sec. II-B.

A. Example of Channel State Information Models

As an example of these models, suppose the nodes move in
a cell-partitioned network according to a Markovian random
walk (see also Fig. 2 in Sec. VIII on Simulations). Each
slot, a node may decide to stay in its current cell or move
to an adjacent cell according to the probability distribution
governing the random walk. Suppose that each slot, the set of
potential relays consists only of nodes in either the same cell
or an adjacent cell of the source. Further, suppose the network
uses a cooperative protocol that operates over orthogonal
channels. Assume that the channel gains between nodes in the
same cell are distributed according to a Rayleigh fading model
with a particular mean and variance, while the gains for nodes
in adjacent cells are Rayleigh distributed with a different mean
and variance. Under the known channels, unknown statistics
model, the T (t) information is the set of current gains |hij(t)|,
and knowledge of the Rayleigh distribution and statistics (such
as mean and variance) is not needed. Under the unknown
channels, known statistics model, the T (t) information is the
set of nodes currently in the same and adjacent cells of the
source, and we assume we know that the fading distribution
is Rayleigh, and we know the corresponding means and
variances. However, neither model requires knowledge of the
mobility model or the traffic rates.

B. Control Options

Suppose the slot size is normalized to integer slots t ∈
{0, 1, 2, . . . , }. In each slot, the source s receives new packets
for its destination d according to an i.i.d. Bernoulli process
As(t) of rate λs. Each packet is assumed to be R bits long
and has a strict delay constraint of 1 slot. Thus, a packet
not served within 1 slot of its arrival is dropped. Further,
packets that are not successfully received by their destinations
due to channel errors are not retransmitted. The source node
has a minimum time-average reliability requirement specified
by a fraction ρs which denotes the fraction of packets that
were transmitted successfully. In any slot t, if source s has a
new packet for transmission, it can use one of the following
transmission modes (Fig. 1):

1) Transmit directly to d using the full slot
2) Transmit to d using traditional relaying over two hops
3) Transmit cooperatively with the set R of relay nodes

using the two phase slot structure
4) Stay idle (so that the packet gets dropped)
We consider all of these transmission modes because, de-

pending on the current channel conditions and energy costs
in slot t, it might be better to choose one over the other. For
example, due to the half-duplex constraint, direct transmission
using the full slot might be preferable to cooperative transmis-
sion over two phases on slots when the source-destination link
quality is good. Note that this is similar to the much studied
framework of opportunistic transmission scheduling in time
varying channels. Further, even in the special case of static
channels, the optimal strategy may involve a mixture of these
modes of operation to meet the target reliability and average
power constraints.
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Let Iη(t) denote the collective control action in slot t under
some policy η that includes the choice of the transmission
mode at the source, power allocations for the source and all
relevant relays, and any additional physical layer choices such
as modulation and coding. Specifically, we have:

Iη(t) = [mode choice,Pη(t), other PHY layer choices]

where the mode choice refers to one of the 4 transmission
modes for the source, and where Pη(t) is the collection of
P η
i (t) for all nodes i ∈ R̂ with P η

i (t) representing the power
allocation for node i in slot t. Note that P η

i (t) = 0 for all i
under transmission mode 4 (idle). If the source s chooses mode
1, we have P η

i (t) = 0 for all relay nodes i ∈ R, whereas
if s chooses mode 2, we have P η

i (t) > 0 for at most one
relay i ∈ R. Note that under any feasible policy η, P η

i (t)
must satisfy the instantaneous peak power constraint every slot
for all i. Also note that under the cooperative transmission
option, the power allocation for the source node and the relays
corresponds to the first and second phase respectively. Thus,
the source is active in the first phase while the relays are active
in the second phase. We denote the set of all valid power
allocations by P and define C as the set of all valid control
actions:

C = {1, 2, 3, 4} × {P} × {other PHY layer choices}

The success/failure outcome of the control action is rep-
resented by an indicator random variable Φs(Iη(t), T (t))
that depends on the current control action and channel state.
Successful transmission of a packet is usually a complicated
function of the transmission mode chosen, the associated
power allocations and channel states, as well as physical layer
details like modulation, coding/decoding scheme, etc. In this
work, the particular physical layer actions are included in the
Iη(t) decision variable. Specifically, given a control action
Iη(t) and a channel state T (t), the outcome is defined as
follows:

Φs(Iη(t), T (t))△=

{
1 if a packet transmitted by s in slot

t is successfully received by d
0 else

(1)

Note that Φs(Iη(t), T (t)) is a random variable, and its con-
ditional expectation given (Iη(t), T (t)) is equal to the success
probability under the given physical layer channel model. Use
of this abstract indicator variable allows a unified treatment
that can include a variety of physical layer models. Under the
known channels, unknown statistics model, Φs(Iη(t), T (t))
can be a determinisitic 0/1 function based on the known
channel state and control action. Specific examples for this
model are considered in Sec. V. Under the unknown channels,
known statistics model (where T (t) represents only the set of
current possible relays and the fading statistics), we assume
we know the value of Pr[Φs(Iη(t), T (t)) = 1] under each
possible control action Iη(t). This model is considered in Sec.
VI. Under both models, we assume that explicit ACK/NACK
information is received at the end of each slot, so that the
source knows the value of Φs(Iη(t), T (t)). For notational

convenience, in the rest of the paper, we use Φη
s(t) instead of

Φs(Iη(t), T (t)) noting that the dependence on (Iη(t), T (t))
is implicit.

C. Discussion of Basic Model
The basic model described above extends prior work on 2-

phase cooperation in static networks to a mobile environment,
and treats the important example scenario where a team of
nodes move in a tight cluster but with possible variation in
the relative locations of nodes within the cluster. We note that
our model and results are applicable to the special case of
a static network as well. Another example scenario captured
by our model is an OFDMA-based cellular network with
multiple users that have both inter-cell and intra-cell mobility.
In each slot, a set of transmitters is determined in each
orthogonal channel (for example, based on a predetermined
TDMA schedule, or dynamically chosen by the base station).
The remaining nodes can potentially act as cooperative relays
in that slot.

The basic model treats scenarios in which a source node can
transmit to its destination, possibly with the help of multiple
relay nodes, in 2 stages. While this is a simplifying assumption,
the framework developed here can be applied to more general
scenarios in which, in a single slot, cooperative relaying over
K stages is performed (for some K > 2) using multi-hop
cooperative techniques (e.g., [20], [21]).

III. CONTROL OBJECTIVE

Let αs and βi for i ∈ R̂ be a collection of non-negative
weights. Then our objective is to design a policy η that solves
the following stochastic optimization problem:

Maximize: αsr̄
η
s −

∑
i∈R̂

βiē
η
i

Subject to: r̄ηs ≥ ρsλs

ēηi ≤ P avg
i ∀ i ∈ R̂

0 ≤ P η
i (t) ≤ Pmax

i ∀ i ∈ R̂, ∀t
Iη(t) ∈ C ∀t (2)

where r̄ηs is the time average reliability for source s under
policy η and is defined as:

r̄ηs
△
= lim

t→∞

1

t

t−1∑
τ=0

E {Φη
s(τ)} (3)

and ēηi is the time average power usage of node i under η:

ēηi
△
= lim

t→∞

1

t

t−1∑
τ=0

E {P η
i (τ)} (4)

Here, the expectation is with respect to the possibly ran-
domized control actions that policy η might take. The αs and
βi weights allow us to consider several different objectives.
For example, setting αs = 0 and βi = 1 for all i reduces
(2) to the problem of minimizing the average sum power



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, PP. 1869-1882, MARCH 2014 5

expenditure subject to minimum reliability and average power
constraints. This objective can be important in the multiple
source scenario when the resources of the relays must be
shared across many users. Setting all of these weights to 0
reduces (2) to a feasibility problem where the objective is
to provide minimum reliability guarantees subject to average
power constraints.

Problem (2) is similar to the general stochastic utility
maximization problem presented in [23], [24]. Suppose (2) is
feasible and let r∗s and e∗i ∀i ∈ R̂ denote the optimal value of
the objective function, potentially achieved by some arbitrary
policy. Using the techniques developed in [22], it can be shown
that it is sufficient to consider only the class of stationary,
randomized policies that take control decisions purely as a
(possibly random) function of the channel state information
T (t) every slot to solve (2). However, computing the optimal
stationary, randomized policy explicitly can be challenging
and often impractical as it requires knowledge of arrival
distributions, channel probabilities and mobility patterns in
advance. Further, as pointed out earlier, even in the special case
of a static channel, the optimal strategy may involve a mixture
of direct transmission, multi-hop, and cooperative modes of
operation, and the relaying modes must select different relay
sets over time to achieve the optimal time average mixture.

However, the technique of Lyapunov optimization [23], [24]
can be used to construct an alternate dynamic policy that
overcomes these challenges and is provably optimal. Unlike
the stationary, randomized policy, this policy does not need to
be computed beforehand and can be implemented in an online
fashion. In the known channels model, it does not need a-priori
statistics of the traffic, channels, or mobility. In the unknown
channels model, it does not need a-priori statistics of the traffic
or mobility. We present this policy in the next section.

IV. OPTIMAL CONTROL ALGORITHM

In this section, we present a dynamic control algorithm
that achieves the optimal solution r∗s and e∗i ∀i ∈ R̂ to
the stochastic optimization problem presented earlier. This
algorithm is similar in spirit to the backpressure algorithms
proposed in [23], [24] for problems of throughput and energy
optimal networking in time varying wireless ad-hoc networks.

The algorithm makes use of a “reliability queue” Zs(t) for
source s. Specifically, let Zs(t) be a value that is initialized
to zero (so that Zs(0) = 0), and that is updated at the end of
every slot t according to the following equation:

Zs(t+ 1) = max[Zs(t)− Φs(t), 0] + ρsAs(t) (5)

where As(t) is the number of arrivals to source s on slot t
(being either 0 or 1), and Φs(t) is 1 if and only if a packet
that arrived was successfully delivered (recall that ACK/NACK
information gives the value of Φs(t) at the end of every slot t).
Additionally, it also uses the following virtual power queues
∀i ∈ R̂:

Xi(t+ 1) = max[Xi(t)− P avg
i , 0] + Pi(t) (6)

All these queues are also initialized to 0 and updated at the
end of every slot t according to the equation above. We note

that these queues are virtual in that they do not represent any
real backlog of data packets. Rather, they facilitate the control
algorithm in achieving the time average reliability and energy
constraints of (2) as follows. If a policy η stabilizes (5), then
we must have that its service rate is no smaller than the input
rate, i.e.,

r̄ηs = lim
t→∞

1

t

t−1∑
τ=0

E {Φη
s(τ)} ≥ lim

t→∞

1

t

t−1∑
τ=0

E {ρsAs(τ)} = ρsλs

Similarly, stabilizing (6) yields the following:

ēηi = lim
t→∞

1

t

t−1∑
τ=0

E {P η
i (τ)} ≤ P avg

i

where we have used definitions (3), (4). This technique of turn-
ing time-average constraints into queueing stability problems
was first used in [22].

To stabilize these virtual queues and optimize the objective
function in (2), the algorithm operates as follows. Let Q(t) =
(Zs(t), Xi(t)) ∀i ∈ R̂ denote the collection of these queues
in timeslot t. Every slot t, given Q(t) and the current channel
state T (t), it chooses a control action I∗(t) that minimizes
the following stochastic metric (for a given control parameter
V ≥ 0):

Minimize: (Xs(t) + V βs)E {Ps(t)|Q(t), T (t)}
+
∑
i∈R

(Xi(t) + V βi)E {Pi(t)|Q(t), T (t)}

− (Zs(t) + V αs)E {Φs(t)|Q(t), T (t)}
Subject to: 0 ≤ Pi(t) ≤ Pmax

i ∀i ∈ R̂
I(t) ∈ C (7)

After implementing I∗(t) and observing the outcome, the
virtual queues are updated using (5), (6). Recall that there
are no actual queues in the system. Our algorithm enforces a
strict 1-slot delay constraint so that Φs(t) = 0 if the packet
is not successfully delivered after 1 slot. The virtual queues
Xi(t), Zs(t) are maintained only in software and act as known
weights in the optimization (7) that guide decisions towards
achieving our time average power and reliability goals. The
control action I∗(t) that optimizes (7) affects the powers Pi(t)
allocated and the Φs(t) value according to (1).

The above optimization is a 2-stage stochastic shortest path
problem [26] where the two stages correspond to the two
phases of the underlying cooperative protocol. Specifically,
when s decides to use the option of transmitting coopera-
tively, the cost incurred in the first stage is given by the
first term (Xs(t) + V βs)E {Ps(t)|Q(t), T (t)}. The cost in-
curred during the second stage is given by

∑
i∈R(Xi(t) +

V βi)E {Pi(t)|Q(t), T (t)} and at the end of this stage, we
get a reward of (Zs(t) + V αs)E {Φs(t)|Q(t), T (t)}. The
transmission outcome Φs(t) depends on the power allocation
decisions in both phases which makes this problem different
from greedy strategies (e.g., [17], [22]). In order to determine
the optimal strategy in slot t, the source s computes the
minimum cost of (7) for all transmission modes described
earlier and chooses one with the least cost.
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Note that this problem is unconstrained since the long term
time average reliability and power constraints do not appear
explicitly as in the original problem. These are implicitly
captured by the virtual queue values. Further, its solution uses
the value of the current channel state T (t) and does not
require knowledge of the statistics that govern the evolution of
the channel state process. Thus, the control strategy involves
implementing the solution to the sequence of such uncon-
strained problems every slot and updating the queue values
according to (5), (6). Assuming i.i.d. T (t) states, the following
theorem characterizes the performance of this dynamic control
algorithm A similar statement can be made for more general
Markov modulated T (t) using the techniques of [23], [24].
For simplicity, here we consider the i.i.d. case.

Theorem 1: (Algorithm Performance) Suppose all queues are
initialized to 0. Then, implementing the dynamic algorithm
(7) every slot stabilizes all queues, thereby satisfying the
minimum reliability and time-average power constraints, and
guarantees the following performance bounds (for some ϵ > 0
that depends on the slackness of the feasibility constraints):

lim
t→∞

1

t

t−1∑
τ=0

E {Zs(τ)} ≤
B + V (αs +

∑
i∈R̂ βiP

max
i )

ϵ

lim
t→∞

1

t

t−1∑
τ=0

∑
i∈R̂

E {Xi(τ)} ≤
B + V (αs +

∑
i∈R̂ βiP

max
i )

ϵ

Further, the time average utility achieved for any V ≥ 0
satisfies:

lim
t→∞

1

t

t−1∑
τ=0

E

αsΦs(τ)−
∑
i∈R̂

βiPi(τ)

 ≥ ζ∗ − B

V

where ζ∗ △
=αsr

∗
s −

∑
i∈R̂ βie

∗
i is the optimal value of the

objective in (2) and B △
=

1+λ2
sρ

2
s+

∑
i∈R̂(Pavg

i )2+(Pmax
i )2

2 .
Proof : Appendix A. �
Thus, one can get within O(1/V ) of the optimal values by

increasing V at the cost of an O(V ) increase in the virtual
queue backlogs. The size of these queues affects the time
required for the time average values to converge to the desired
performance.

In the following sections, we investigate the basic 2-stage re-
source allocation problem (7) in detail and present solutions for
two widely studied classes of cooperative protocols proposed
in the literature: Decode-and-Forward (DF) and Amplify-and-
Forward (AF) [4], [5]. These protocols differ in the way the
transmitted signal from the first phase is processed by the
cooperating relays. In DF, a relay fully decodes the signal. If
the packet is received correctly, it is re-encoded and transmitted
in the second phase. In AF, a relay simply retransmits a scaled
version of the received analog signal. We refer to [4], [5] for an
introduction to the working of these protocols and to [13] for
derivations of expressions for the mutual information achieved
by them.

Let m = |R|. In the following, we assume a Gaussian
channel model with a total bandwidth W and unit noise power
per dimension. We use the information theoretic definition

of a transmission failure (an outage event) as discussed in
[18], [19]. Here, an outage occurs when the total instantaneous
mutual information is smaller than the rate R at which data is
being transmitted.

We first consider the known channels, unknown statistics
model for CSI. In this scenario, (7) becomes a 2-stage de-
terministic shortest path problem because the outcome Φs(t)
due to any control decision and its power allocation can
be computed beforehand. Specifically, Φs(t) = 1 when the
resulting total mutual information exceeds R and Φs(t) = 0
otherwise. Further, this outcome is a function of control actions
taken over two stages when cooperative transmission is used.
This resulting problem is combinatorial and non-convex and
does not admit closed-form solutions in general. However, for
these protocols, we can reduce it to a set of simpler convex
programs for which we can derive quasi-closed form solutions.
Then in Sec. VI, we consider the case when only the statistics
of the channel gains are known. In this case, the outcome Φs(t)
is random function of the control actions (taken over the two
stages in case of cooperative transmission) and (7) becomes a
2-stage stochastic dynamic program. While standard dynamic
programming techniques can be used to compute the optimal
solution, they are typically computationally intensive. There-
fore, for this case, we present a Monte Carlo simulation based
technique to efficiently solve the resulting dynamic program.

V. KNOWN CHANNELS, UNKNOWN STATISTICS

Recall that in order to determine the optimal control action
in any slot t, we must choose between the four modes of
operation as discussed in Sec. II: (1) direct transmission,
(2) multi-hop relay, (3) cooperative, and (4) idle. Let ci(t)
and Ii(t) denote the optimal cost of the metric (7), and the
corresponding action that achieves that metric, assuming that
mode i ∈ {1, 2, 3, 4} is chosen in slot t. Every slot, the
algorithm computes ci(t) and Ii(t) for each mode and then
implements the mode i and the resulting action Ii(t) that
minimizes cost. Note that the cost c4(t) for the idle mode
is trivially 0.

The minimum cost for direct transmission can be computed
as follows. When the source transmits directly, we have
Pi(t) = 0 ∀i ∈ R. The minimum cost c1(t) associated with a
successful direct transmission (Φs(t) = 1) can be obtained by
solving the following convex problem2:

Minimize:
(
Xs(t) + V βs

)
Ps(t)− Zs(t)− V αs

Subject to: W log2

(
1 +

Ps(t)

W
|hsd(t)|2

)
≥ R

0 ≤ Ps(t) ≤ Pmax
s (8)

where the constraint W log
(
1 + Ps(t)

W |hsd(t)|2
)

≥ R rep-
resents the fact that to get Φs(t) = 1, the mutual infor-
mation must exceed R. It is easy to see that if there is a
feasible solution to the above, then for minimum cost, this

2Note that the term −Zs(t) − V αs in the objective is a constant in any
given slot and does not affect the solution. However, we keep it to compare
the net cost between all modes of operation.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, PP. 1869-1882, MARCH 2014 7

constraint must be met with equality. Using this, the minimum
cost corresponding to the direct transmission mode is given
by:

(
Xs(t) + V βs

)
P dir
s (t) − Zs(t) − V αs if P dir

s (t) =
W

|hsd(t)|2 (2
R/W − 1) ≤ Pmax

s . Otherwise, direct transmission
is infeasible and so we set c1(t) = +∞. In this case, direct
transmission will not be considered as the idle mode cost
c4(t) = 0 is strictly better, but we must also compare with
the costs c2(t) and c3(t).

To compute the minimum cost c2(t) associated with multi-
hop transmission, note that in this case, the slot is divided
into two parts (Fig. 1(b)) and Pi(t) > 0 for at most one
i ∈ R. This strategy is a special case of the Regenerative
DF protocol over orthogonal channels (to be discussed next)
that uses only 1 relay and in which the destination does not use
signals received from the first stage for decoding. Therefore,
the optimal cost for this can be calculated using the procedure
for the Regenerative DF case by imposing the single relay
constraint and setting hsd(t) = 0.

Below we present the computation of the minimum cost
c3(t) for the cooperative transmission mode under several
protocols. We first consider examples of cooperative schemes
that either operate over orthogonal channels or make use
of space-time codes. In this setting, as discussed in Sec.
II, the CSI information T (t) refers to the amplitude of the
channel coefficients |hij(t)|. Then, in Sec. V-F we consider a
beamforming based scheme that requires knowledge of both
amplitude and phase information.

In what follows, we drop the time subscript (t) for notational
convenience. Also, we use log to mean log2 throughout the rest
of the paper.

A. Regenerative DF, Orthogonal Channels

Here, the source and relays are each assigned an orthogonal
channel of equal size. An example slot structure is shown in
Fig. 1(c) in which the entire slot is divided into m+ 1 equal
mini-slots. In the first phase of the protocol, s transmits the
packet in its slot using power Ps. In the second phase, a subset
U ⊂ R of relays that were successful in reliably decoding the
packet, re-encode it using the same code book and transmit to
the destination on their channels with power Pi (where i ∈ U).
Given such a set U , the total mutual information under this
protocol is given by [13]:

W

m
log
(
1 +

mPs

W
|hsd|2 +

∑
i∈U

mPi

W
|hid|2

)
This is derived by assuming that the receiver uses Maximal
Ratio Combining to process the signals. As seen in the
expression for the mutual information, such an orthogonal
structure increases the SNR, but utilizes only a fraction of the
available degrees of freedom leading to reduced multiplexing
gain.

Define binary variables xi to be 1 if relay i can reliably
decode the packet after the first stage and 0 else. Then, for
this protocol, (7) is equivalent to the following optimization

problem:

Minimize:(Xs + V βs)Ps +
∑
i∈R

(Xi + V βi)Pi − Zs − V αs

Subject to:
W

m
log
(
1 +

mPs

W
|hsd|2 +

∑
i∈R

xi
mPi

W
|hid|2

)
≥ R

W

m
log
(
1 +

mPs

W
|hsi|2

)
≥ xiR

0 ≤ Ps ≤ Pmax
s

0 ≤ Pi ≤ Pmax
i , xi ∈ {0, 1} ∀i ∈ R (9)

The variables xi capture the requirement that a relay can
cooperatively transmit in the second stage only if it was
successful in reliably decoding the packet using the first stage
transmission. A similar setup is considered in [13] but it treats
the limiting case when W goes to infinity. Because of the
integer constraints on xi, (9) is non-convex. However, we can
exploit the structure of this protocol to reduce the above to
a set of m + 1 subproblems as follows. We first order the
relays in decreasing order of their |hsi|2 values. Define Uk

as the set that contains the first k (where 0 ≤ k ≤ m) relays
from this ordering. Let PUk

s denote the minimum source power
required to ensure that all relays in Uk can reliably decode the
packet after the first stage. We note that for all values of Ps in
the range (PUk

s , P
Uk+1
s ), the relay set that can reliably decode

remains the same, i.e., Uk. Thus, we need to consider only
m+1 subproblems, one for each Uk. The subproblem for any
set Uk is given by:

Minimize: (Xs + V βs)Ps +
∑
i∈Uk

(Xi + V βi)Pi − Zs − V αs

Subject to:
W

m
log
(
1 +

mPs

W
|hsd|2 +

∑
i∈Uk

mPi

W
|hid|2

)
≥ R

PUk
s ≤ Ps ≤ Pmax

s

0 ≤ Pi ≤ Pmax
i ∀i ∈ Uk (10)

This can easily be expressed as the following LP:

Minimize: (Xs + V βs)Ps +
∑
i∈Uk

(Xi + V βi)Pi − Zs − V αs

Subject to: Ps|hsd|2 +
∑
i∈Uk

Pi|hid|2 ≥ θ

PUk
s ≤ Ps ≤ Pmax

s

0 ≤ Pi ≤ Pmax
i ∀i ∈ Uk (11)

where θ = W
m (2Rm/W − 1). The solution to the LP above

has a greedy structure where we start by allocating increasing
power to the nodes (including s) in decreasing order of the
value of |hid|2

(Xi+V βi)
(where i ∈ Uk ∪ {s}) till any constraint is

met.
Therefore, for this protocol, the optimal solution to finding

the cost c3(t) associated with the cooperative transmission
mode in (7) can be computed by solving (11) for each Uk

and picking the one with the least cost. It is interesting to note
that if we impose a constraint on the sum total power of the
relays instead of individual node constraints, then due to the
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greedy nature of the solution to (11), it is optimal to select at
most 1 relay for cooperation. Specifically, this relay is the one
that has the highest value of |hid|2

(Xi+V βi)
.

B. Non-Regenerative DF, Orthogonal Channels

This protocol is similar to Regenerative DF protocol dis-
cussed in Sec. V-A. The only difference is that here, in the
second stage, the subset U ⊂ R relays that were successful
in reliably decoding the packet re-encode it using independent
code books. In this case, the total mutual information is given
by [13]:

W

m
log
(
1 +

mPs

W
|hsd|2

)
+
∑
i∈R

W

m
log
(
1 + xi

mPi

W
|hid|2

)
Using the same definition of binary variables xi as in Sec.V-A,
we can express (7) for this protocol as an optimization prob-
lem that resembles (9). Similar to the Regenerative DF over
orthogonal channels case, we can then reduce this to a set of
m+ 1 subproblems, one for each Uk. The subproblem for set
Uk is given by:

Minimize: (Xs + V βs)Ps +
∑
i∈Uk

(Xi + V βi)Pi − Zs − V αs

Subject to:

log
(
1 +

mPs

W
|hsd|2

)
+
∑
i∈Uk

log
(
1 +

mPi

W
|hid|2

)
≥ mR

W

PUk
s ≤ Ps ≤ Pmax

0 ≤ Pi ≤ Pmax ∀i ∈ Uk (12)

The above problem is convex and we can use the KKT condi-
tions to get the optimal solution (see Appendix B for details).
Define [x]P

max

0
△
=min[max(x, 0), Pmax]. Then the solution to

the subproblem for set Uk is given by:

P ∗
s (Uk) =

[ ν∗

Xs + V βs
− W

m|hsd|2
]Pmax

s

P
Uk
s

P ∗
i (Uk) =

[ ν∗

Xi + V βi
− W

m|hid|2
]Pmax

i

0
∀i ∈ Uk (13)

where ν∗ ≥ 0 is chosen so that the total mutual information
constraint is met with equality. Therefore, the optimal solution
for the cost c3(t) in (7) for this protocol can be computed
by solving (13) for each Uk and picking one with the least
cost. We note that the solution above has a water-filling type
structure that is typical of related resource allocation problems
in static settings.

C. AF, Orthogonal Channels

In this protocol, the source and relays are again assigned an
orthogonal channel of equal size. An example slot structure
is shown in Fig. 1(c). However, instead of trying to decode
the packet, the relays amplify and forward the received signal

from the first stage. The total mutual information under this
protocol is given by [13] [15]:

W

m
log

(
1 +

mPs

W

(
|hsd|2 +

∑
i∈R

ψi

))

where ψi
△
=

Pi|hsi|2|hid|2

Ps|hsi|2+Pi|hid|2+W
m

. Using this, we can express (7)
for this model as follows.

Minimize: (Xs + V βs)Ps +
∑
i∈R

(Xi + V βi)Pi − Zs − V αs

Subject to:
W

m
log

(
1 +

mPs

W

(
|hsd|2 +

∑
i∈R

ψi

))
≥ R

0 ≤ Ps ≤ Pmax
s

0 ≤ Pi ≤ Pmax
i ∀i ∈ R (14)

This problem is non-convex. However, if we fix the source
power Ps, then it becomes convex in the other variables.
This reduction has been used in [15] as well, although it
considers a static scenario with the objective of minimizing
instantaneous outage probability. After fixing Ps, we can
compute the optimal relay powers for this value of Ps by
solving the following:

Minimize:
∑
i∈R

(Xi + V βi)Pi − Zs − V αs

Subject to: Ps|hsd|2 +
∑
i∈R

Psψi ≥ θ

0 ≤ Pi ≤ Pmax
i ∀i ∈ R (15)

where θ = W
m (2Rm/W − 1). The first constraint can be

simplified as:

Ps|hsd|2 +
∑
i∈R

Psψi =Ps(|hsd|2 +
∑
i∈R

|hsi|2)

−
∑
i∈R

P 2
s |hsi|4 + Ps|hsi|2W

m

Ps|hsi|2 + Pi|hid|2 + W
m

Since we have fixed Ps, we can express (15) as:

Minimize:
∑
i∈R

(Xi + V βi)Pi − Zs − V αs

Subject to:
∑
i∈R

P 2
s |hsi|4 + Ps|hsi|2W

m

Ps|hsi|2 + Pi|hid|2 + W
m

≤ θ′

0 ≤ Pi ≤ Pmax
i ∀i ∈ R (16)

where θ′ = Ps(|hsd|2 +
∑

i∈Rs
|hsi|2) − θ. Using the KKT

conditions, the solution the above convex optimization problem
is given by (see Appendix C for details):

P ∗
i =

[√
ν∗(P 2

s |hsi|4 + Ps|hsi|2W
m )

(Xi + V βi)|hid|2
−
Ps|hsi|2 + W

m

|hid|2

]Pmax
i

0

where ν∗ ≥ 0 is chosen so that the second constraint is met
with equality. We note that this solution has a water-filling type
structure as well. Therefore, to compute the optimal solution
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to (7) for this protocol, we would have to solve the above for
each value of Ps ∈ [0, Pmax

s ]. In practice, this computation can
be simplified by considering only a discrete set of values for
Ps. Because we have derived a simple closed form expression
for each Ps, it is easy to compare these values over, say, a
discrete list of 100 options in [0, Pmax

s ] to pick the best one,
which enables a very accurate approximation to optimality in
real time.

D. DF with DSTC
In this protocol, all the cooperating relays in the second

stage use an appropriate distributed space-time code (DSTC)
[5] so that they can transmit simultaneously on the same
channel. The slot structure under this scheme is shown in
Fig.1(d). Suppose in the first phase of the protocol, s transmits
the packet in the first half of the slot using power Ps. In the
second phase, a subset U ⊂ R of relays that were successful
in reliably decoding the packet, re-encode it using a DSTC
and transmit to the destination with power Pi (where i ∈ U )
in the second half of the slot. Given such a set U , the total
mutual information under this protocol is given by [4]:

W

2
log
(
1 +

2Ps

W
|hsd|2 +

∑
i∈U

2Pi

W
|hid|2

)
The factor of 2 appears because only half of the slot is being
used for transmission. As seen in the expression above, unlike
the earlier examples, this protocol does not suffer from reduced
multiplexing gains due to orthogonal channels.

We can now express (7) for this protocol as follows. Define
binary variables xi to be 1 if relay i can reliably decode the
packet after the first stage and 0 else. Then, for this protocol,
(7) is equivalent to the following optimization problem:

Minimize: (Xs + V βs)Ps +
∑
i∈R

(Xi + V βi)Pi − Zs − V αs

Subject to:
W

2
log
(
1 +

2Ps

W
|hsd|2 +

∑
i∈R

xi
2Pi

W
|hid|2

)
≥ R

W

2
log
(
1 +

2Ps

W
|hsi|2

)
≥ xiR

0 ≤ Ps ≤ Pmax
s

0 ≤ Pi ≤ Pmax
i , xi ∈ {0, 1} ∀i ∈ R (17)

By comparing the above with (9), it can be seen that the
computation of minimum cost under this protocol follows the
same procedure as described in Sec. V-A of solving m + 1
subproblems, each an LP, by ordering the relays greedily and
hence we do not repeat it.

E. AF with DSTC
Here, all cooperating relays use amplify and forward along

with DSTC. The total mutual information under this protocol
is given by:

W

2
log

(
1 +

2Ps

W

(
|hsd|2 +

∑
i∈R

ψi

))

where ψi =
Pi|hsi|2|hid|2

Ps|hsi|2+Pi|hid|2+W
2

. Using this, we can express
(7) for this model as follows.

Minimize: (Xs + V βs)Ps +
∑
i∈R

(Xi + V βi)Pi − Zs − V αs

Subject to:
W

2
log

(
1 +

mPs

W

(
|hsd|2 +

∑
i∈R

ψi

))
≥ R

0 ≤ Ps ≤ Pmax
s

0 ≤ Pi ≤ Pmax
i ∀i ∈ R (18)

This is similar to (14) and thus, we fix Ps and use a similar
reduction to get a convex optimization problem whose solution
can be derived using KKT conditions and is given by:

P ∗
i =

[√
ν∗(P 2

s |hsi|4 + Ps|hsi|2W
2 )

(Xi + V βi)|hid|2
−
Ps|hsi|2 + W

2

|hid|2

]Pmax
i

0

where ν∗ ≥ 0 is chosen so that the constraint on the total
mutual information at the destination is met with equality.

F. DF with Beamforming
Finally, we consider an example where the cooperating

relays use coherent beamforming to steer their signals towards
the destination. Note that this strategy needs both the channel
gain amplitude and phase information, in contrast to the
strategies in the previous subsections, which only required
channel gain amplitude information. The slot structure under
this scheme is shown in Fig.1(d). Suppose in the first phase
of the protocol, s transmits the packet in the first half of the
slot using power Ps. In the second phase, a subset U ⊂ R
of relays that were successful in reliably decoding the packet
use beamforming to transmit to the destination with power Pi

(where i ∈ U) in the second half of the slot. Given such a set
U , the total mutual information under this protocol is given by
[13]:

W

2
log

(
1 +

2Ps

W
|hsd|2 +

2

W

(∑
i∈U

√
Pi|hid|

)2)
Using the same definition of binary variables xi as in

Sec.V-A , we can express (7) for this protocol as an opti-
mization problem that resembles (9). As before, we can then
reduce this to a set of m + 1 subproblems, one for each Uk.
The subproblem for set Uk is given by:

Minimize:(Xs + V βs)Ps +
∑
i∈Uk

(Xi + V βi)Pi − Zs − V αs

Subject to: log
(
1 +

2Ps

W
|hsd|2 +

2

W

(∑
i∈U

√
Pi|hid|

)2) ≥ 2R

W

PUk
s ≤ Ps ≤ Pmax

0 ≤ Pi ≤ Pmax ∀i ∈ Uk (19)

The above problem is convex and we can use the KKT
conditions to get the optimal solution in quasi-closed form
(see Appendix D for details).
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VI. UNKNOWN CHANNELS, KNOWN STATISTICS

We next consider the solution to (7) when the source does
not know the current channel gains and is only aware of
their statistics. In this case, (7) becomes a 2-stage stochastic
dynamic program. For brevity, here we focus on its solution
for the cooperative transmission mode.

Suppose the source uses power Ps in the first stage. Let ω
denote the outcome of this transmission. This lies in a space Ω
of possible network states which is assumed to be of a finite
but arbitrarily large size. For example, in the DF protocol,
ω might represent the set of relay nodes that received the
packet successfully after the first stage as well as the mutual
information accumulated so far at the destination. For AF, ω
can represent the SNR value at each relay node and at the
destination.

Let J∗
1 (Ps, ω) be the optimal cost-to-go function for the 2-

stage dynamic program (7) given that the source uses power
Ps in the first stage and the network state is ω at the beginning
of the second stage. Let J∗

0 denote the optimal cost-to-go
function starting from the first stage. Also, let R(ω) denote
the set of relay nodes that can take part in cooperative
transmission when the network state in ω. We define the
following probabilities. Let f(Ps, ω) be the probability that the
outcome of the first stage is ω when the source uses power Ps.
Also, let g(

−→
P R(ω), Ps, ω) be the probability that the receiver

gets the packet successfully when relays in R(ω) use a power
allocation

−→
P R(ω) and the source uses power Ps. Note that

these probabilities are obtained by taking expectation over all
channel state realizations. We assume these are obtained from
the knowledge of the channel statistics.

Using these definitions, we can now write the Bellman
optimality equations [26] for this dynamic program ∀ω ∈ Ω:

J∗
0 = min

Ps

[
(Xs + V βs)Ps +

∑
ω∈Ω

f(Ps, ω)J
∗
1 (Ps, ω)

]
(20)

J∗
1 (Ps, ω) = min−→

P R(ω)

[ ∑
i∈R(ω)

(Xi + V βi)Pi

− (Zs + V αs)g(
−→
P R(ω), Ps, ω)

]
(21)

While this can be solved using standard dynamic program-
ming techniques, it has a computational complexity that grows
with the state space size Ω and can be prohibitive when this is
large. We therefore present an alternate method based on the
idea of Monte Carlo simulation.

A. Simulation Based Method

Suppose the transmitter performs the following simulation.
Fix a source power Ps. Define J∗

0 (Ps) as the optimal cost-
to-go function given that the source uses power Ps. Note that
this is simply the expression on the right hand side of (20)
with Ps fixed. Simulate the outcome of a transmission at this
power n times independently using the values of f(Ps, ω).
Let ωj ∈ Ω denote the outcome of the jth simulation. For
each generated outcome ωj , compute the optimal cost-to-
go function J∗

1 (Ps, ωj) by solving (21) (this could be done

using the knowledge of g(
−→
P R(ω), Ps, ω) either analytically

or numerically). Use this to update Jest
0 (Ps, n), which is an

estimate of J∗
0 (Ps) for a given Ps after n iterations and is

defined as follows:

Jest
0 (Ps, n) = (Xs + V βs)Ps +

1

n

n∑
j=1

J∗
1 (Ps, ωj) (22)

We now show that, for a given Ps, Jest
0 (Ps, n) can be pushed

arbitrarily close to the optimal cost-to-go function J∗
0 (Ps) by

increasing n. Since we have fixed Ps, from (20), we have:

J∗
0 (Ps) = (Xs + V βs)Ps +

∑
ω∈Ω

f(Ps, ω)J
∗
1 (Ps, ω)

Define the following indicator random variables for each
simulation j and ∀ω ∈ Ω:

1ω(Ps, j) =

{
1 if the outcome of simulation j is ω
0 else

Note that by definition E {1ω(Ps, j)} = f(Ps, ω). There-
fore, we can express Jest

0 (Ps, n) in terms of these indicator
variables as follows:

Jest
0 (Ps, n) =(Xs + V βs)Ps +

1

n

n∑
j=1

∑
ω∈Ω

1ω(Ps, j)J
∗
1 (Ps, ω)

We note that
(∑

ω∈Ω 1ω(Ps, j)J
∗
1 (Ps, ω)

)
are i.i.d. ran-

dom variables with mean µ =
∑

ω∈Ω f(Ps, ω)J
∗
1 (Ps, ω)

and variance σ2 =
∑

ω∈Ω f(Ps, ω)(J
∗
1 (Ps, ω))

2 − µ2. Using
Chebyshev’s inequality, we get for any ϵ > 0:

Pr
[
| 1
n

n∑
j=1

(∑
ω∈Ω

1ω(Ps, j)J
∗
1 (Ps, ω)

)
− µ| ≥ ϵ

]
≤ σ2

nϵ2

This shows that the value of the estimate quickly converges
to the optimal cost-to-go value. Thus, this method can be used
to get a good estimate of the optimal cost-to-go function for
a fixed value of Ps in a reasonable number of steps.

VII. MULTI SOURCE-DESTINATION PAIRS

In this section, we extend the basic model of Sec. II to
the case when there are multiple source-destination pairs in
the network. Let the set of source and destination nodes
be given by S and D respectively. We consider the case
when all source-destination pairs have orthogonal channels3.
In particular, we assume that in each slot, a medium access
process χ(t) determines which source nodes get transmission
opportunities. For simplicity, we assume that at most one
source transmits in a slot. This models situations where there
might be a pseudo-random TDMA schedule that determines
a unique transmitter node every slot. It also models situations
where the source nodes use a contention-resolution mechanism

3For the non-orthogonal scenario, there will two sources of outages:
transmission failure at the physical layer and delay violation due to contention
in medium access. Hence, MAC scheduling in addition to physical layer
resource allocation must be considered. This is not the focus of the current
work.
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such as CSMA. Our model can be extended to scenarios
where more than one source node can transmit, potentially
over orthogonal frequency channels.

Let s(t) = s(χ(t)) ∈ S be the source node that gets a
transmission opportunity in slot t. Then, the optimal resource
allocation framework developed in Sec. IV can be applied as
follows. A virtual reliability queue is defined for each source
node s ∈ S and is updated as in (5). Note that in slots where a
source node s does not get a transmission opportunity, Φs(t) =
0. We assume that each incoming packet gets one transmission
opportunity so that the delay constraint of 1 slot per packet
only measures the transmission delay and not the queueing
delay that would be incurred due to contention. Similarly, a
virtual power queue is maintained for each node as in (6)
including the source nodes and relay nodes. Note that in this
model, it is possible for a source node to act as a relay for
another source node when it is not transmitting its own data.
We denote the set of relay nodes (that includes such source
nodes) in slot t as R(t).

Then the optimal control algorithm operates as follows. Let
Q(t) denote the collection of all virtual queues in timeslot t.
Every slot, given Q(t) and any channel state T (t), it chooses
a control action Is(t) that minimizes the following stochastic
metric (for a given control parameter V ≥ 0):

Minimize: (Xs(t) + V βs(t))E
{
Ps(t)|Q(t), T (t)

}
+
∑

i∈R(t)

(Xi(t) + V βi)E {Pi(t)|Q(t), T (t)}

− (Zs(t) + V αs(t))E
{
Φs(t)|Q(t), T (t)

}
Subject to: 0 ≤ Ps(t) ≤ Pmax

s(t)

0 ≤ Pi(t) ≤ Pmax
i ∀i ∈ R(t)

Is(t) ∈ C (23)

This problem can be solved using the techniques described for
the single source case.

VIII. SIMULATIONS

We simulate the dynamic control algorithm (7) in an ad-
hoc network with 3 stationary sources and 7 mobile relays as
shown in Fig. 2. Every slot, the sources receive new packets
destined for the base station according to an i.i.d. Bernoulli
process of rate λ and each packet has a delay constraint of
1 slot. The sources are assumed to have orthogonal channels
and can transmit either directly or cooperatively with a subset
of the relays in their vicinity. We impose a cell-partitioned
structure so that a source can only cooperate with the relays
that are in the same cell in that slot. The relays move from one
cell to the other according to a Markovian random walk. In
the simulation, at the end of every slot, a relay decides to stay
in its current cell with probability 0.8, else decides to move to
an adjacent cell with probability 0.2 (where any of the feasible
adjacent cells are equally likely).

We assume a Rayleigh fading model. The amplitude squares
of the instantaneous gains on the links involving a source, the
set of relays in its cell in that slot and the base station are
exponentially distributed random variables with mean 1. All

source

relay

base station

Fig. 2. A snapshot of the example network used in simulation.

power values are normalized with respect to the average noise
power. All nodes have an average power constraint of 1 unit
and a maximum power constraint of 10 units.

We consider the Regenerative DF cooperative protocol over
orthogonal channels and implement the optimal resource al-
location strategy as computed in (11) for this network. In
the first experiment, we consider the objective of minimizing
the average sum power expenditure in the network given
a minimum reliability constraint ρs = 0.98 and input rate
λs = 0.5 packets/slot for all sources. For this, we set αs = 0
and βi = 1. Fig. 3 shows the average sum power for different
values of the control parameter V . It is seen that this value
converges to 2.6 units for increasing values of V , as predicted
by the performance bounds on the time average utility in
Theorem 1. Fig. 4 shows the resulting average reliability
queue occupancy. It is seen to increase linearly in V , again as
predicted by the bound on the time average queue backlog in
Theorem 1. We emphasize again that there are no actual queues
in the system, and all successfully delivered packets have a
delay exactly equal to 1 slot. The fact that all reliability queues
are stable ensures that we are indeed meeting or exceeding the
98% reliability constraint. Indeed, in our simulations we found
reliability to be almost exactly equal to the 98% constraint, as
expected in an algorithm designed to minimize average power
subject to this constraint. We further note that the instantaneous
reliability queue value Z(t) represents the worst case “excess”
packets that did not meet the reliability constraints over any
interval ending at time t, so that maintaining small Z(t) (with
a small V ) makes the timescales over which the time average
reliability constraints are satisfied smaller.

In the second experiment, we choose both αs = 0 and
βi = 0 so that (2) becomes a feasibility problem. We fix the
average and peak power values to 1 and 10 respectively and
implement (11) for different rate-reliability pairs. In Table I,
we show whether these are feasible or not under three resource
allocation strategies: direct transmission, always cooperative
transmission and dynamic cooperation (that corresponds to
implementing the solution to (11) every slot). It can be seen
that dynamic cooperation significantly increases the feasible
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Fig. 3. Average Sum Power vs. V.

rate-reliability region over direct transmission as well as static
cooperation. For example, it is impossible to achieve 95%
reliability using direct transmission alone, even if the traffic
rate is only 0.2 packets/slot. This can be achieved by an
algorithm that uses the cooperation mode (mode 3) always,
but optimizes over the power allocation decisions of this
cooperation mode as specified in previous sections. However,
always using cooperation fails if we desire 98% reliability,
but using our optimal policy that dynamically mixes between
the different modes, and chooses efficient power allocation
decisions in each mode, can achieve 98% reliability, even at
increased rates up to 0.6 packets/slot.

IX. CONCLUSIONS

In this paper, we considered the problem of optimal resource
allocation for delay-limited cooperative communication in a
mobile ad-hoc network. Using the technique of Lyapunov
optimization, we developed dynamic cooperation strategies
that make optimal use of network resources to achieve a
target outage probability (reliability) for each user subject to
average power constraints. Our framework is general enough
to be applicable to a large class of cooperative protocols. In
particular, in this paper, we derived quasi-closed form solutions
for several variants of the Decode-and-Forward and Amplify-
and-Forward strategies.

APPENDIX A: PROOF OF THEOREM 1

Here, we prove Theorem 1 by comparing the Lyapunov drift
of the dynamic control algorithm (7) with that of an optimal
stationary, randomized policy. Let r∗s and e∗i ∀i ∈ R̂ denote
the optimal value of the objective in (2). Then we have the
following fact4:

Existence of an Optimal Stationary, Randomized Policy: As-
suming i.i.d. T (t) states, there exists a stationary randomized

4This can be shown using the techniques developed in [22].
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Fig. 4. Average Reliability Queue Occupancy vs. V.

policy π that chooses feasible control action Iπ(t) and power
allocations Pπ

i (t) for all i ∈ R̂ every slot purely as a function
of the current channel state T (t) and yields the following for
some ϵ > 0:

E {Φπ
s (t)} ≥ ρsλs + ϵ (24)

E {Pπ
i (t)}+ ϵ ≤ P avg

i (25)

αsE {Φπ
s (t)} −

∑
i∈R

βiE {Pπ
i (t)} = αsr

∗
s −

∑
i∈R

βie
∗
i (26)

Let Q(t) = (Zs(t), Xi(t)) ∀i ∈ R̂ represent the collection
of these queue backlogs in timeslot t. We define a quadratic
Lyapunov function:

L(Q(t))△=
1

2

[
Z2
s (t) +

∑
i∈R̂

X2
i (t)

]

Also define the conditional Lyapunov drift ∆(Q(t)) as
follows:

∆(Q(t))△=E {L(Q(t+ 1))− L(Q(t))|Q(t)}

Using queueing dynamics (5), (6), the Lyapunov drift under
any control policy can be computed as follows:

∆(Q(t)) ≤ B − Zs(t)E {Φs(t)− ρsAs(t)|Q(t)}
−
∑
i∈R̂

Xi(t)E {P avg
i − Pi(t)|Q(t)} (27)

where B =
1+λ2

sρ
2
s+

∑
i∈R̂(Pavg

i )2+(Pmax)2

2 .
For a given control parameter V ≥ 0, we subtract a “reward”

metric V E
{
αsΦs(t)−

∑
i∈R̂ βiPi(t)|Q(t)

}
from both sides
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TABLE I. TABLE SHOWING THE FEASIBILITY OF DIFFERENT RATE-RELIABILITY PAIRS.

(rate, reliability) = (λs, ρs) (0.1, 0.9) (0.2, 0.9) (0.2, 0.95) (0.5, 0.95) (0.5, 0.98) (0.6, 0.98) (0.7, 0.99)
direct transmission X X x x x x x
always cooperate X X X X x x x
optimal strategy X X X X X X x

of the above inequality to get the following:

∆(Q(t))− V E

αsΦs(t)−
∑
i∈R̂

βiPi(t)|Q(t)

 ≤ B

− Zs(t)E {Φs(t)− ρsAs(t)|Q(t)}
−
∑
i∈R̂

Xi(t)E {P avg
i − Pi(t)|Q(t)}

− V E

αsΦs(t)−
∑
i∈R̂

βiPi(t)|Q(t)

 (28)

From the above, it can be seen that the dynamic control al-
gorithm (7) is designed to take a control action that minimizes
the right hand side of (28) over all possible options every slot,
including the stationary policy π. Thus, using (24), (25), (26),
we can write the above as:

∆(Q(t))− V E

αsΦs(t)−
∑
i∈R̂

βiPi(t)|Q(t)

 ≤ B

− Zs(t)ϵ−
∑
i∈R̂

Xi(t)ϵ− V αsr
∗
s −

∑
i∈R̂

βie
∗
i (29)

Theorem 1 now follows by a direct application of the Lyapunov
optimization Theorem [23].

APPENDIX B – SOLUTION TO NON-REGENERATIVE DF
ORTHOGONAL USING KKT CONDITIONS

We ignore the constant terms in the objective. It is easy to
see that the first constraint in (12) must be met with equality.
The Lagrangian is given by:

L =(Xs + V βs)Ps +
∑
i∈Uk

(Xi + V βi)Pi − λs(Ps − PUk
s )

−
∑
i∈Uk

λiPi + βs(Ps − Pmax
s ) +

∑
i∈Uk

βi(Pi − Pmax
i )

+ ν
[
log(1 + θsPs) +

∑
i∈Uk

log(1 + θiPi)−
mR

W

]
where θs = m

W |hsd|2, θi = m
W |hid|2. The KKT conditions are:

λ∗s(P
∗
s − PUk

s ) = 0 λ∗iP
∗
i = 0

β∗
s (P

∗
s − Pmax

s ) = 0 β∗
i (P

∗
i − Pmax

i ) = 0

λ∗s, λ
∗
i , β

∗
s , β

∗
i ≥ 0

(Xs + V βs)− λ∗s + β∗
s +

ν∗θs
1 + θsP ∗

s

= 0

(Xi + V βi)− λ∗i + β∗
i +

ν∗θi
1 + θiP ∗

i

= 0

If ν∗ > 0, then we must have that λ∗s−β∗
s > 0 and λ∗i −β∗

i > 0
for all i. This would mean that P ∗

s = PUk
s and P ∗

i = 0. For
some ν∗ ≤ 0, we have three cases:

1) If λ∗i = β∗
i , we get P ∗

i = −ν∗

Xi+V βi
− 1

θi
2) If λ∗i > β∗

i , then we must have λ∗i > 0 and we get P ∗
i = 0

3) If λ∗i < β∗
i , then we must have β∗

i > 0 and we get
P ∗
i = Pmax

i

Similar results can be obtained for P ∗
s . Combining these, we

get:

P ∗
s =

[
−ν∗

Xs+V βs
− 1

θs

]Pmax
s

P
Uk
s

P ∗
i =

[
−ν∗

Xi+V βi
− 1

θi

]Pmax
i

0

where [X]Pmax
0 denotes min[max(X, 0), Pmax]

APPENDIX C – SOLUTION TO AF ORTHOGONAL USING
KKT CONDITIONS

It is easy to see that the first constraint in (16) must be met
with equality. The Lagrangian is given by:

L =
∑
i∈Rs

(Xi + V βi)Pi −
∑
i∈Rs

λiPi +
∑
∈Rs

βi(Pi − Pmax
i )

+ ν
[∑
∈Rs

P 2
s |hsi|4 + Ps|hsi|2W/m

|hsi|2Ps + |hid|2Pi +W/m
− θ′

]
The KKT conditions are:

λ∗iP
∗
i = 0 β∗

i (P
∗
i − Pmax

i ) = 0 λ∗i , β
∗
i ≥ 0

(Xi + V βi)− λ∗i + β∗
i =

ν∗|hid|2(P 2
s |hsi|4 + Ps|hsi|2W/m)

(|hsi|2Ps + |hid|2P ∗
i +W/m)2

If ν∗ < 0, then we must have that λ∗i − β∗
i > 0 for all i. This

would mean that P ∗
i = 0. For some ν∗ ≥ 0, we have three

cases:

1) If λ∗i = β∗
i , we get P ∗

i =
√

ν∗(P 2
s |hsi|4+Ps|hsi|2W/m)
(Xi+V βi)|hid|2 −

Ps|hsi|2+W/m
|hid|2

2) If λ∗i > β∗
i , then we must have λ∗i > 0 and we get P ∗

i = 0
3) If λ∗i < β∗

i , then we must have β∗
i > 0 and we get

P ∗
i = Pmax

i

Combining these, we get:

P ∗
i =

[√
ν∗(P 2

s |hsi|4+Ps|hsi|2W/m)
(Xi+V βi)|hid|2 − Ps|hsi|2+W/m

|hid|2

]Pmax
i

0

where [X]Pmax
0 denotes min[max(X, 0), Pmax]

APPENDIX D – SOLUTION TO DF BEAMFORMING USING
KKT CONDITIONS

First, note that both the objective and the first constraint in
(19) can be rewritten so that they are linear in Ps. Thus, we
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must have that P ∗
s ∈ {PUk

s , Pmax
s }. Next, the Lagrangian for

(19) is given by:

L =(Xs + V βs)Ps +
∑
i∈Uk

(Xi + V βi)Pi − λs(Ps − PUk
s )

−
∑
i∈Uk

λiPi + βs(Ps − Pmax
s ) +

∑
i∈Uk

βi(Pi − Pmax
i )

+ ν
(
Ps|hsd|2 +

(∑
i∈U

√
Pi|hid|

)2 − θ
)

where θ = W
2 (22R/W − 1). The KKT conditions are:

λ∗s(P
∗
s − PUk

s ) = 0 λ∗iP
∗
i = 0

β∗
s (P

∗
s − Pmax

s ) = 0 β∗
i (P

∗
i − Pmax

i ) = 0

λ∗s, λ
∗
i , β

∗
s , β

∗
i ≥ 0

(Xs + V βs)− λ∗s + β∗
s + ν∗|hsd|2 = 0

(Xi + V βi)− λ∗i + β∗
i + ν∗

(
∑

i∈Uk

√
P ∗
i |hid|)|hid|√
P ∗
i

= 0

Note that if λ∗i −β∗
i > 0, then we have that P ∗

i = 0. Similarly,
if λ∗i − β∗

i < 0, then we have that P ∗
i = Pmax

i . Finally, for
all i for which λ∗i − β∗

i = 0, the P ∗
i satisfy the following set

of linear equations for some ν∗ such that the first constraint
in (19) is met with equality:

(Xi + V βi)
√
P ∗
i + ν∗|hid|(

∑
i∈Uk

√
P ∗
i |hid|) = 0
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