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Abstract—It is well known that max-weight policies based on a
queue backlog index can be used to stabilize stochastic networks,
and that similar stability results hold if a delay index is used.
Using Lyapunov Optimization, we extend this analysis to design a
utility maximizing algorithm that uses explicit delay information
from the head-of-line packet at each user. The resulting policy is
shown to ensure deterministic worst-case delay guarantees, and
to yield a throughput-utility that differs from the optimally fair
value by an amount that is inversely proportional to the delay
guarantee. Our results hold for a general class of 1-hop networks,
including packet switches and multi-user wireless systems with
time varying reliability.

I. INTRODUCTION

We consider the problem of scheduling for maximum
throughput-utility in a 1-hop network with random packet
arrivals and time varying channel reliability. Every slot, the
network controller assesses the condition of its channels and
selects a set of links for transmission. The success of each
transmission depends on the collection of links selected and
their corresponding reliabilities. The goal is to maximize a
concave, non-decreasing function of the time average through-
put on each link. Such a function represents a utility function
that acts as a measure of fairness for the achieved throughput
vector.

In the case when the traffic is inside the network capacity
region, the utility-optimal throughput vector is simply the
vector of arrival rates, and the problem reduces to a network
stability problem. In this case, it is well known that the network
can be stabilized by max weight policies that schedule links
every slot to maximize a weighted sum of transmission rates,
where the weights are queue backlogs. This is typically shown
via a Lyapunov drift argument (see [1] and references therein).
This technique for stable control of a queueing network was
first used for link and server scheduling in [2][3], and has
since become a powerful method to treat stability in different
contexts, including switches and computer networks [4][5][6],
wireless systems and ad-hoc mobile networks with rate and
power allocation [7][8][9], and systems with probabilistic
channel errors [10][11].

In the case when traffic is either inside or outside of the
capacity region, it is known that the max-weight policy can
be combined with a flow control policy to jointly stabilize the
network while maximizing throughput-utility. This is shown
in [1][12][13] via a Lyapunov Optimization argument, and
in [14] via a fluid limit analysis. Utility optimization for the
special case of “infinitely backlogged” sources is shown in
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[15][16][17], and was perhaps first addressed for time-varying
wireless downlinks without explicit queueing in [18][19].

The stability works [2]-[11] all use backlog-based trans-
mission rules, as do the works in [1], [12]-[17] which treat
joint stability and utility optimization. However, work in [20]
introduces an interesting delay-based Lyapunov function for
proving stability, where the delay of the head-of-line packet is
used as a weight in the max-weight decision. This approach
intuitively provides tighter control of the actual queueing
delays. Indeed, a single head-of-line packet is scheduled based
on the delay it has experienced, rather than on the amount
of additional packets that arrived after it. This delay-based
approach to queue stability is extended in [21], where the Mod-
ified Largest Weighted Delay First algorithm is developed, and
in [22] which uses a delay-based exponential rule. However,
[20]-[22] use delay-based rules only in the context of queue
stability. To our knowledge, there are no prior works that use
delay-based scheduling to address the important issue of joint
stability and utility optimization.

This paper fills that gap. We use a delay-based Lyapunov
function, and extend the analysis to treat joint stability and
performance optimization via the Lyapunov Optimization tech-
nique from our prior work [1][12][13]. The extension is not
obvious. Indeed, the flow control decisions in the prior work
[1][12][13] are made immediately when a new packet arrives,
which directly affects the drift of backlog-based Lyapunov
functions. However, such decisions do not directly affect the
delay value of the head-of-line packets, and hence do not
directly affect the drift of delay-based Lyapunov functions. We
overcome this challenge with a novel flow control policy that
queues all arriving data, but makes packet dropping decisions
just before advancing a new packet to the head-of-line. This
policy is structurally different from the utility optimization
works [1], [12]-[19]. We show that this new structure leads
to deterministic guarantees on the worst-case delay of any
non-dropped packet, while also yielding throughput-utility that
is arbitrarily close to optimal. Specifically, for any integer
D ≥ 2, we can construct an algorithm that ensures all non-
dropped packets have delay less than or equal to D slots, with
total throughput-utility that differs from optimal by O(1/D).
The deterministic delay guarantee is particularly challenging
to establish, and for this we introduce a new technique of
concavely extending a utility function.

Similar [O(1/D), O(D)] performance tradeoffs are shown
for queue-based Lyapunov functions in our previous work
[1][12][13] (see also [23][24] for deterministic queue backlog
bounds, and [25][26] for improved tradeoffs), but these guar-
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antees apply only to queue size, rather than delay.1 The deter-
ministic delay guarantees we obtain in this present paper are
quite strong and show the advantages of our new flow control
structure. However, a disadvantage is that admit/drop decisions
are delayed until a packet is at the head-of-line, rather than
being determined immediately upon arrival. Further, due to
correlation issues unique to this delay-based scenario, analysis
is simplified if we assume the scheduler knows the vector of
arrival rates to each link (although we also treat the case when
arrival rates are unknown). Nevertheless, it is important to
analyze these delay-based policies because they improve our
understanding of network delay, and because the deterministic
guarantees they offer are useful for many practical systems.

While our algorithm can be used to enforce any desired
delay guarantee, it is important to emphasize that it does not
maximize throughput-utility subject to this guarantee. Such
a problem can be addressed with dynamic programming and
Markov decision theory, which bring with them the curse of
dimensionality (see structural results and approximations in
[28] and weighted stochastic shortest path approaches in [29]).
In the present paper, we claim only that the achieved utility
is within O(1/D) of the largest possible utility achievable
by any stabilizing algorithm. However, because (for large D)
our utility is close to this ideal utility value, it is even closer
to the maximum utility that can be achieved subject to the
worst-case delay constraint. Further, our approach offers the
low complexity advantages associated with Lyapunov drift and
Lyapunov Optimization. Specifically, the policy makes real-
time transmission decisions based only on the current system
state, and does not require a-priori knowledge of the channel
state probabilities. The flow control decisions here can also
be implemented in a distributed fashion at each link, as is
the case with most other Lyapunov based utility optimization
algorithms (this is not necessarily the case for dynamic pro-
gramming or Markov decision theory approaches).

It is important to distinguish our work, which considers
actual network delay, with work that approximates network
delay as a convex function of a flow rate (such as in [30][27]).
While it is known that average queue congestion and delay is
convex if traffic is probabilistically split [31], this is not neces-
sarily true (or relevant) for dynamically controlled networks,
particularly when the control depends on the queue backlogs
and delays themselves. Actual network delay problems involve
not only optimization of rate based utility functions, but
engineering of the Lagrange multipliers (which are related to
queue backlogs) associated with those utility functions.

In the next section we present the network model. Section
III develops our main algorithm for delay-based flow control
and utility optimization. The utility performance and worst-
case delay guarantees are proven in Section IV.

II. NETWORK MODEL

The network is assumed to be a 1-hop network that operates
in discrete time with normalized timeslots t ∈ {0, 1, 2, . . .}.
There are L links, and packets arrive randomly every slot and

1Of course average delay and average backlog are directly related through
Little’s Theorem [27], but this is not true for worst-case backlog and delay.

are queued separately for transmission over each link. We let
A(t) = (A1(t), . . . , AL(t)) be the process of random packet
arrivals, where Al(t) is the number of packets that arrive to
link l on slot t. For simplicity, we assume all packets have fixed
size, and that there is at most one packet arrival to each link per
slot, so that Al(t) ∈ {0, 1} for all links l and slots t. The arrival
vector A(t) is assumed to be i.i.d. over slots, and further
the arrival processes Al(t) for different links in each slot are
assumed to be independent. Let Q(t) = (Q1(t), . . . , QL(t))
denote the integer number of packets currently stored in each
of the L queues. All packets are marked with their integer
arrival slot, which is used to determine their delay in the
system. The one-step queueing equation for each link l is:

Ql(t+ 1) = max[Ql(t)− µl(t)−Dl(t), 0] +Al(t) (1)

where µl(t) represents the amount of packets successfully
served on slot t, and Dl(t) represents the number of packets
dropped on slot t. A packet can be dropped at any time, al-
though in our specific algorithm we impose a 2-stage structure
that first makes a transmission decision and then makes a
dropping decision in reaction to the feedback obtained from
the transmission.

A. Time Varying Link Reliability

For simplicity, we assume that each link can transmit at most
one packet per slot, so that µl(t) ∈ {0, 1} for all links l and all
slots t. Let x(t) = (x1(t), . . . , xL(t)) denote a transmission
vector, where xl(t) ∈ {0, 1}, and xl(t) = 1 if link l attempts
transmission on slot t. Let X denote the set of all allowable
link transmission vectors, possibly being the set of all 2L

such vectors, but also possibly incorporating some constraints
(such as permutation constraints for N ×N packet switches).
In principle, it is useful to assume a link can transmit even
if it does not have a packet, in which case a null packet
is transmitted. Let S(t) = (S1(t), . . . , SL(t)) denote a link
condition vector for slot t, which determines the probability
of successful transmission on each slot. Specifically, given
particular x(t) and S(t) vectors, the probability of successful
transmission on link l is given by a reliability function:

Pr[ link l success |x(t),S(t)] = Ψl(x(t),S(t)) (2)

The reliability function Ψl(x,S) for each l ∈ {1, . . . , L}
is general and is assumed only to take real values between
0 and 1 (representing probabilities), and to have the property
that Ψl(x,S) = 0 whenever xl = 0. We assume that the
channel condition vector S(t) is i.i.d. over slots, taking values
in a set S of arbitrary cardinality, and that S(t) is known
to the network controller at the beginning of each slot t. In
practice, S(t) represents the result of a channel measurement
or estimation that is done every slot. The estimate might be
inexact, in which case the reliability function Ψl(x(t),S(t))
represents the probability that the actual network channels on
slot t are sufficient to support the attempted transmission over
link l (given x(t) and the estimate S(t) for slot t).

We assume the reliability function is known. Recent online
techniques for estimation of packet error rates are considered
in [32]. In the context of [32], a number of other decision
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parameters to be chosen on each slot also affect reliability,
such as modulation, power levels, subband selection, coding
type, etc. These choices can be represented as a parameter
space I. In this case, the reliability function can be extended
to include the parameter choice I(t) ∈ I made every slot:
Ψl(x(t),S(t), I(t)). This does not change our mathematical
analysis (see also Remark 1 in Section III-F), although for
simplicity we focus on the reliability function structure of (2).

We assume that ACK/NACK information is given at the end
of the slot to inform each link if its transmission was successful
or not. Packets that are not successful do not leave the queue
(unless they are dropped in a packet drop decision). With this
model of link success, the transmission variable µl(t) in (1)
is given by:

µl(t) = xl(t)1l(t)

where 1l(t) is an indicator variable that is 1 if the transmission
over link l is successful, and 0 otherwise. That is:

1l(t) =
{

1 with probability Ψl(x(t),S(t))
0 with probability 1−Ψl(x(t),S(t))

The successes/failures over each link on slot t are assumed
to be independent of past history given the current x(t) and
S(t) values. The successes/failures might be correlated over
each link. This is not captured in the Ψl(x,S) functions alone,
and can only be fully described by a joint success distribution
function for all 2L possible success/failure outcomes for a
given x and S. However, it turns out that the network
capacity region, and hence the associated maximum utility
point, is independent of such inter-link success correlations
[11]. Hence, it suffices to use only the marginal distribution
functions Ψl(x,S) for each l ∈ {1, . . . , L}.

B. Examples of Packet Switches and Wireless Networks

The above model applies to a wide class of 1-hop networks.
For example, it applies to the N × N packet switch models
of [4][6] by defining S(t) to be a null vector (so that there
is no notion of channel variation), and by defining the set X
of all allowable link vectors to be the set of all vectors that
satisfy the permutation constraints associated with the N ×N
crossbar. For wireless networks with interference but without
time varying channels, the set X can be defined as all link
activations that do not interfere with each other (i.e., that do
not produce collisions), as in [2]. The reliability function Ψl(·)
can be used to extend the model to treat cases where interfering
links result in probabilistic reception (rather than collision).

Further, the opportunistic scheduling systems of [3] with
time-varying ON/OFF channels can be modeled with S(t)
being the vector of ON/OFF channel states on each slot, and
with the function Ψl(x,S) taking the value 1 whenever xl = 1
and Sl = ON , and 0 otherwise. Finally, the model supports
probabilistic reception in the case when the link reliability can
vary from slot to slot.

A simple example is when Sl(t) represents the current
probability that a link l transmission would be successful, so
that:

Ψl(x(t),S(t)) =
{
Sl(t) if xl(t) = 1
0 if xl(t) = 0

This example has the success probability over link l a pure
function of xl(t) and Sl(t), and hence implicitly assumes
that the set X limits all simultaneous link transmissions to
orthogonal channels. More complex inter-channel interference
models can be described by more complex Ψl(x,S) functions.

III. DELAY-BASED FLOW CONTROL

Let λ = E {A(t)} be the vector of arrival rates, so that
λl = E {Al(t)} is the arrival rate to link l (in units of
packets/slot). The network capacity region Λ is defined as
the closure of the set of all long-term throughput vectors
that the system can support. The set Λ is known to be the
same as the closure of the set of all arrival rate vectors
λ for which there exists a stabilizing scheduling algorithm,
subject to the constraint that the flow controllers are turned
off (so that no packets are dropped and Dl(t) = 0 for all l
and all t) [1] [11]. Specifically, in [11] it is shown that the
set Λ is given by the set of all time average transmission
rates that can be achieved by stationary and randomized
algorithms, called S-only algorithms, that observe S(t) every
slot t and choose a (possibly random) transmission vector
x(t) ∈ X according to a probability distribution that depends
only on the observed channel state S(t). Thus, for every
vector r ∈ Λ, with r = (r1, . . . , rL), there is a S-only
policy x∗(t), with a corresponding random service vector
µ∗(t) = (x∗1(t)1∗1(t), . . . , x∗L(t)1∗L(t)) that yields for each
l ∈ {1, . . . , L}:

rl = E {µ∗l (t)} = E {x∗l (t)Ψl(x∗(t),S(t))} (3)

where the expectation in (3) is with respect to the distribution
of S(t) and the distribution of x∗(t) given S(t).

A. The Optimization Objective

Let g(y) be a continuous and concave utility function of the
L-dimensional vector y = (y1, . . . , yL), where y is used to
represent the time average throughput on each link (in units of
packets/slot). The function can take positive or negative values,
and is assumed to be defined over the hyper-cube 0 ≤ y ≤ 1,
where inequality is taken entrywise, and 0 and 1 are vectors
with all entries equal to 0 and 1, respectively. Assume that
g(y) is non-decreasing in each entry yl. An example is the
separable utility function:

g(y) =
∑L
l=1 gl(yl) (4)

where for each link l, gl(yl) is a concave and non-decreasing
function of yl, defined over the interval 0 ≤ yl ≤ 1. We make
the following additional assumption.

Assumption 1: For each l ∈ {1, . . . , L}, the lth right partial
derivative of g(y), over all y ∈ [0, 1]L such that yl < 1, is
bounded above by a finite constant νl, where νl ≥ 0.2

Assumption 1 implies that for any vectors y and w such
that y ∈ [0, 1]L, w ∈ [0, 1]L, and y +w ∈ [0, 1]L we have:

g(y +w) ≤ g(y) +
L∑
l=1

νlwl (5)

2Right partial derivatives exist for any concave function, including non-
differentiable functions such as g(y) = min[y1, . . . , yL].
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Note that Assumption 1 does not hold for the logarithmic util-
ity function

∑
l log(yl) associated with proportional fairness

[33]. However, it does hold for the following useful utility
function example, which is often a good alternative way to
treat network fairness:

g(y) =
∑
l νl log(1 + yl) (6)

Further, it holds for approximations of the proportional fair-
ness function, such as using

∑
l log(ε + yl) for some small

value of ε.
For each link l, define Yl(t) as:

Yl(t) = λl −Dl(t) (7)

Let y(t) be the time average expectation of Yl(t) over t slots:

y(t)M=λl − 1
t

∑t−1
τ=0 E {D(τ)} (8)

where D(τ) = (D1(τ), . . . , DL(τ)) is the drop vector for
slot τ . Let y denote the limit of y(t) as t → ∞ (assumed
temporarily to exist). The vector y is the difference between
the rate of arrivals and packet drops, and hence (if queues are
stable) represents the throughput vector. The goal is to design
a delay-based transmission scheme with packet dropping that
solves the following problem:

Maximize: g(y) (9)
Subject to: y ∈ Λ (10)

0 ≤ yl ≤ λl for all l ∈ {1, . . . , L} (11)

Let g∗ be the supremum utility value for the above problem.
In addition to striving to achieve a utility that is close to
g∗, we desire the actual delays of non-dropped packets to be
deterministically bounded.

B. The Concavely Extended Utility Function

Suppose that g(y) satisfies Assumption 1, and define the
concave extension of g(y) as the function ĝ(y) defined over
the extended hyper-cube −1 ≤ y ≤ 1 as follows:

ĝ(y)M=g(max[y,0]) +
∑L
l=1 νl min[yl, 0]

where max[y,0] represents an entry-wise max:

max[y,0]M=(max[y1, 0],max[y2, 0], . . . ,max[yL, 0])

It can be shown that ĝ(y) is concave and non-decreasing in
each entry over the extended hyper-cube −1 ≤ y ≤ 1, and
that:

g(y) = ĝ(y) whenever 0 ≤ y ≤ 1

Further, because (5) holds, it can be shown that for any vector
y such that −1 ≤ y ≤ 1:

ĝ(y) ≤ ĝ(y′l) + νl(yl + 1) (12)

where the vector y′l is formed from the vector y by replacing
the single entry yl with −1.

In the case when g(y) has the separable form (4), the
concave extension is given by ĝ(y) =

∑
l ĝl(yl), where

each function ĝl(yl) concavely extends the function gl(yl),
originally defined over the interval 0 ≤ yl ≤ 1, to the interval
−1 ≤ yl ≤ 1, as shown in Fig. 1. This method of concavely

extending the utility function is crucial to engineer the network
delays to be bounded (in particular, it is needed to allow
γl(t) = −1 in (24)).

yl-1 0 1

gl(0)slope νl

Fig. 1. An illustration of the concave extension of gl(yl).

C. Problem Transformation with Virtual Queues

It is not difficult to show that the stochastic network
optimization problem (9)-(11) can be transformed using a
vector γ(t) of auxiliary variables [1] [12] that are chosen
every slot according to the constraints −1 ≤ γl(t) ≤ 1. The
transformed problem is:

Maximize: ĝ(γ) (13)
Subject to: Ql <∞ for all l ∈ {1, . . . , L} (14)

yl ≥ γl for all l ∈ {1, . . . , L} (15)
−1 ≤ γl ≤ 1 for all l ∈ {1, . . . , L} (16)
Q and y are achievable on the network (17)

where Ql is defined:

Ql
M= lim supt→∞

1
t

∑t−1
τ=0 E {Ql(τ)}

We say that a non-negative discrete time stochastic process
Ql(t) is strongly stable if Ql <∞.

This transformation can be intuitively understood as fol-
lows: The constraint (11) automatically holds for any achiev-
able control policy, as the throughput cannot be larger than the
raw arrival rate, and hence is satisfied whenever (17) holds.
The constraint (10) is ensured by the stability constraint (14) in
the transformed problem. Finally, one can always choose the
auxiliary vector γ(t) = y(t) to ensure that (15) and (16) are
satisfied (note that 0 ≤ yl ≤ 1 for all l, because arrival rates
cannot be larger than 1). The fact that g(y) is non-decreasing
in each entry and that ĝ(y) = g(y) whenever 0 ≤ y ≤ 1
ensures that it suffices to consider all constraints (15) holding
with equality, so that any control algorithm that solves (13)-
(17) also solves (9)-(11).

The auxiliary variables γ(t) are important for solving prob-
lems of maximizing a concave function of a time average, and
are crucial for network utility maximization with randomly
arriving traffic [1] [12].3 To ensure that the constraints (15)
are satisfied, we use a virtual queue Zl(t) for each link l,
with update equation as follows:

Zl(t+ 1) = max[Zl(t)− λl +Dl(t) + γl(t), 0] (18)

Stabilizing this virtual queue ensures that the time average
value of Yl(t), defined in (7), is greater than or equal to the

3Cases of “infinitely backlogged sources” do not need such auxiliary
variables [13] [12].
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time average of γl(t) [24], which ensures (15). Specifically,
using the definition Yl(t) in (7), from (18) it is clear that:

Zl(t+ 1) ≥ Zl(t)− Yl(t) + γl(t)

and hence (by summing the above over τ ∈ {0, . . . , t−1} and
dividing by t):

Zl(t)− Zl(0)
t

+
1
t

t−1∑
τ=0

Yl(τ) ≥ 1
t

t−1∑
τ=0

γl(τ)

Taking expectations of both sides and using Zl(0) = 0 yields:

E {Zl(t)}
t

+ yl(t) ≥ γl(t) (19)

where yl(t) is the time average expected value of Yl(τ),
defined in (8), and γl(t) is defined similarly. It follows from
(19) that if E {Zl(t)} /t → 0 (a property that is satisfied if
Zl(t) is strongly stable, as shown in [24]), and if yl(t) and
γl(t) have well defined limits yl and γl, then yl ≥ γl, so that
the constraints (15) are satisfied.

Implementation of the virtual queue (18) assumes the arrival
rates λl are known for each link l. If these are unknown, one
can modify the virtual queue update rule (18) to:

Zl(t+ 1) = max[Zl(t)−Al(t−W ) +Dl(t) + γl(t), 0]

where W is a suitably large positive integer (using W =
dV maxl{νl}e+2 works well). The use of a W -shifted arrival
process Al(t−W ) is unique to this delay-based analysis, and
is required to handle subtle correlation issues between packet
inter-arrival times and virtual queue states. For simplicity, here
we analyze only the case when update equation (18) is used.

D. The Delay-Based Lyapunov Function

We now impose the following structure on our control
policy: Every slot, a packet transmission decision is made first.
If a transmission over link l is successful (so that µl(t) = 1),
then the packet is removed from the queue and no packet
is dropped from link l (so that Dl(t) = 0). Else, if link l
either did not attempt transmission or if its transmission was
unsuccessful, we can possibly decide to drop the packet, but no
other packet can be dropped from link l. Thus, every slot t we
have 0 ≤ µl(t) +Dl(t) ≤ 1. We show later that this structure
does not hinder our maximum utility objective. Further, it is
useful to consider the possibility of transmitting or dropping a
null packet when the queue is empty, so that µl(t) and Dl(t)
in principle can be chosen independently of queue backlog.

Let Hl(t) represent the waiting time of the head-of-line
packet in link l on slot t, and define Hl(t) = 0 if there are
no packets in link l at this time. A new packet that arrives
to an empty queue on slot t is not placed to the head-of-line
until the next slot, and is designated to have a waiting time
of 1 at slot t + 1. Define αl(t) as an indicator variable that
is 1 if Ql(t) > 0, and is zero if the queue is empty. Let
βl(t) = 1 − αl(t). Similar to [20], we observe that Hl(t)
satisfies the following update rule:

Hl(t+ 1) = αl(t) max[Hl(t) + 1− (µl(t) +Dl(t))Tl(t), 0]
+βl(t)Al(t) (20)

where Tl(t) represents the interarrival time between the head-
of-line packet and the subsequent packet (possibly unknown
to the network controller if the subsequent packet has not yet
arrived). Because arrivals are Bernoulli, Tl(t) is a geometric
random variable with success probability λl, that takes values
in the set {1, 2, 3, . . .}.

The equation (20) can be understood as follows: If αl(t) =
0, then βl(t) = 1 so that queue l is empty. In this case, the
value of Hl(t + 1) is 1 if and only if there is a new arrival
on slot t. Alternatively, if αl(t) = 1, then βl(t) = 0. Suppose
in this case that the head-of-line packet is neither served nor
dropped (so that µl(t) +Dl(t) = 0). Then its delay increases
by 1, as described by (20). On the other hand, if the head-
of-line packet is either served or dropped (so that µl(t) +
Dl(t) = 1), then the next packet enters the head-of-line, with
a total waiting time equal to Hl(t) + 1 − Tl(t) (where the
additional “+1” comes because this operation takes one more
slot). The above dynamics also capture the possibility that the
inter-arrival time is greater than or equal to Hl(t)+1, in which
case the queue is empty on slot t+ 1 with Hl(t+ 1) = 0.

Without loss of generality, assume that λl > 0 for all links
l ∈ {1, . . . , L} (else, just remove the links that have no traffic).
Define Θ(t)M=[Z(t);H(t)], where Z(t) and H(t) are vectors
of the virtual queues in (18) and the head-of-line values in
(20). We use the following non-negative Lyapunov function:

L(Θ(t))M=
1
2

L∑
l=1

Zl(t)2 +
1
2

L∑
l=1

λlHl(t)2

E. Minimizing the Drift-Minus-Utility

Define ∆(Θ(t)) as the one-step conditional Lyapunov drift:

∆(Θ(t))M=E {L(Θ(t+ 1))− L(Θ(t)) | Θ(t)}

Using our Lyapunov Optimization framework in [1], our
strategy is to make transmission and packet dropping decisions
to minimize a bound on the following drift-minus-utility
expression every slot:

∆(Θ(t))− V E {ĝ(γ(t)) | Θ(t)}

where V is a non-negative control parameter that is chosen as
desired, and will affect an explicit utility-delay tradeoff. We
have the following preliminary lemmas:

Lemma 1: Every slot t, for any value of Θ(t), and under
any control policy, the Lyapunov drift satisfies:

∆(Θ(t)) ≤ B −
∑
l

Zl(t)E {Yl(t)− γl(t) | Θ(t)}

−
∑
l

λlHl(t)E {(µl(t) +Dl(t))Tl(t)− 1 | Θ(t)}

where B is a finite constant.
Proof: The proof follows by squaring (18) and (20) and

using αl(t)Hl(t) = Hl(t), αl(t)βl(t) = 0, µl(t)2 = µl(t),
Dl(t)2 = Dl(t), and is omitted for brevity.

Lemma 2: Every slot t, for any value of Θ(t), and under
any control policy for which Tl(t) is independent of Dl(t),
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µl(t), and Θ(t) for all links l, we have:

∆(Θ(t))− V E {ĝ(γ(t)) | Θ(t)} ≤ B − V E {ĝ(γ(t)) | Θ(t)}
−
∑
l

Zl(t)E {λl −Dl(t)− γl(t) | Θ(t)}

−
∑
l

Hl(t)E {µl(t) +Dl(t)− λl | Θ(t)}

where B is the same constant from Lemma 1.
Proof: Let χ(t) represent [Θ(t); (µl(t) + Dl(t))]. Using

the law of iterated expectations, we have:

E {(µl(t) +Dl(t))Tl(t) | Θ(t)}
= E {E {(µl(t) +Dl(t))Tl(t) | χ(t)} | Θ(t)}
= E {(µl(t) +Dl(t))E {Tl(t) | χ(t)} | Θ(t)}

=
1
λl

E {(µl(t) +Dl(t)) | Θ(t)}

where we have used the fact that Tl(t) is independent of χ(t)
and is a geometric random variable with E {Tl(t)} = 1/λl.
Lemma 2 follows by plugging this identity into Lemma 1 and
subtracting V E {ĝ(γ(t)) | Θ(t)} from both sides.

Our dynamic policy below makes control decisions for γ(t),
D(t), and x(t) (and hence µ(t)) to minimize the right hand
side of the drift-minus-utility bound in Lemma 2.

F. The Delay-Based Flow Control and Scheduling Algorithm

Every slot t, observe Z(t), H(t), and S(t), and perform
the following operations, described as four control phases:

1) Auxiliary Variable Selection: Choose γ(t) =
(γ1(t), . . . , γL(t)) as the solution to the following:

Maximize: V ĝ(γ(t))−
∑
l Zl(t)γl(t)

Subject to: −1 ≤ γl(t) ≤ 1 for all l ∈ {1, . . . , L}

In the case of the separable utility function (4), this
amounts to solving L single-variable concave optimiza-
tions over an interval, and has a closed form solution
when the derivative of ĝl(γl) has a closed form inverse.

2) Transmission Scheduling: Observe Θ(t), S(t) and choose
a transmission vector x(t) to solve the following:

Maximize:
∑
l xl(t) min[Hl(t), Zl(t)]Ψl(x(t),S(t))

Subject to: x(t) ∈ X

3) Packet Dropping: For each link l that has a head-of-
line packet that was not successfully transmitted in the
scheduling phase (either because its transmission was not
attempted, or its transmission failed), drop the packet if
Zl(t) ≤ Hl(t). Else, keep it in the head-of-line.

4) Queue Updates: Update the virtual queues Zl(t) ac-
cording to (18), using the values of γl(t) and Dl(t)
as determined from the above auxiliary variable and
packet dropping phases. Also update the actual queues
and the head-of-line values according to (1) and (20) by
simply removing any packet that was either successfully
transmitted or dropped.

Theorem 1: Suppose all queues are initially empty, and
that Assumption 1 holds. If the above control policy is

implemented with a particular constant V > 0, then achieved
utility satisfies:

lim inf
t→∞

g(y(t)) ≥ g∗ −B/V (21)

where y(t) is defined in (8) and g∗ is the optimal utility.
Finally, for all slots t and all links l, we have:

Ql(t) ≤ Hl(t) ≤ Hl,max
M=dV νle+ 2 , Zl(t) ≤ Hl,max (22)

The above theorem provides the strong deterministic guar-
antee that head-of-line packets in queue l always have delay
less than or equal to Hl,max, and hence all non-dropped
packets in queue l have delay upper bounded by this value.
Thus, if we wish to enforce the constraint that worst-case delay
in all queues is less than or equal to Dmax, we can choose V
to satisfy dV maxl{νl}e+ 2 = Dmax. As the delay constraint
Dmax is relaxed, the value V goes to infinity, and hence
by (21) we know that utility converges to the optimal value
g∗. The proof of Theorem 1 also provides a more detailed
statement regarding the utility achieved over any finite horizon
of t slots (see inequality (29) of the next section).

Remark 1: In the case when link reliability is also affected
by a set of additional decision parameters I(t) ∈ I, as
discussed in Section II-A, the transmission scheduling decision
in phase 2 of the algorithm is modified to maximize:∑

l

xl(t) min[Hl(t), Zl(t)]Ψl(x(t),S(t), I(t)) (23)

subject to x(t) ∈ X and I(t) ∈ I. Theorem 1 holds exactly
as stated under this modification, with the understanding that
the optimal utility value g∗ may change due to the increased
options for scheduling. The machine learning framework of
[32] suggests a technique for approximating the reliability
function value under the many decision options in I and X
and under a (possibly approximate) channel state S(t). Max-
weight learning algorithms in [34] also suggest ways of opti-
mizing functionals of the type (23) for unknown environments.

IV. PERFORMANCE ANALYSIS

Here we prove Theorem 1. We first prove the deterministic
bound (22), which uses a preliminary lemma.

Lemma 3: If Zl(t) > V νl for a particular slot t and link l,
then the auxiliary variable selection in the first phase of the
control algorithm chooses γl(t) = −1 for that slot.

Proof: The value of γl(t) is determined by maximizing
V ĝ(γ)−

∑
m Zm(t)γm over −1 ≤ γ ≤ 1. By (12) we know

that for any vector γ such that −1 ≤ γ ≤ 1:

V ĝ(γ)−
∑
m Zm(t)γm ≤

V ĝ(γ′l) + V νl(γl + 1)−
∑
m Zm(t)γm

where γ′l is formed from γ by replacing entry γl with −1.
Because V νl < Zl(t), the right hand side of the above bound
is maximized at γl = −1, so that:

V ĝ(γ)−
∑
m

Zm(t)γm ≤ V ĝ(γ′l)−
∑
m 6=l

Zm(t)γm + Zl(t)

and equality holds if and only if γl = −1. Hence, the auxiliary
variable optimization must choose γl(t) = −1.
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Proof: (Deterministic Bound (22)) Fix a link l. We
simultaneously show that Zl(t) and Hl(t) are both upper
bounded by dV νle + 2 for all t ≥ 0. This clearly holds for
t = 0 when all queues are empty. Suppose this bound holds
for Zl(t) and Hl(t) at some time t. We prove it also holds for
time t+ 1.

Note from (18) that Zl(t) can increase by at most 2 every
slot (since Dl(t) ≤ 1 and γl(t) ≤ 1 for all t). If Zl(t) ≤
dV νle, then Zl(t+1) ≤ dV νle+2 and the bound holds. Else,
we have dV νle < Zl(t) ≤ dV νle+ 2, and so by Lemma 3 we
know that γl(t) = −1. Because Dl(t) ≤ 1 for all t, we have:

Dl(t) + γl(t) ≤ 0 (24)

Hence, from the update equation for Zl(t+1) in (18), we have
Zl(t+ 1) ≤ Zl(t) ≤ dV νle+ 2, so the bound again holds.

To show that Hl(t+ 1) is bounded by the same value, first
suppose that Hl(t) ≤ dV νle + 1. Because the head-of-line
delay can increase by at most 1 every slot, we know that Hl(t+
1) ≤ dV νle+2. In the opposite case when Hl(t) > dV νle+1,
we know that Hl(t) = dV νle + 2 (since, by assumption for
slot t, Hl(t) must be an integer that is bounded by dV νle+2).
It follows that Hl(t) ≥ Zl(t), and so by the packet dropping
procedure in phase 3 of the algorithm, the head-of-line packet
will either be successfully transmitted on this slot, or dropped.
It follows that in slot t+1 there will be either no head-of-line
packet (so that Hl(t+1) = 0), or there will be a new head-of-
line packet, in which case its delay is no more than the delay
of the previous head-of-line packet.

Thus, both Hl(t+1) and Zl(t+1) are bounded by dV νle+2.
By induction, the result holds for all t. Finally, because there
is at most one packet arrival to link l per slot, it is clear that
the number of packets in the queue is no more than the current
delay of the head-of-line packet, so that Ql(t) ≤ Hl(t).

Lemma 4: The control policy chooses decision variables
that minimize the right hand side of the drift-minus-utility
inequality in Lemma 2.

Proof: See Appendix A.
We now prove the utility bound (21). We first use a

preliminary lemma, which demonstrates that our structure of
making a transmission decision first, and then choosing to drop
at most one packet per queue, does not limit optimality.

Lemma 5: Let y∗ be the optimal time average throughput
vector that solves (9)-(11), so that g(y∗) = g∗, and y∗ satisfies
the constraints y∗ ∈ Λ and 0 ≤ y∗ ≤ λ. Then there is a S-
only algorithm that is independent of the current Θ(t), and that
observes S(t) and makes a randomized transmission decision
x∗(t) (leading to a vector µ∗(t) of successful transmissions),
and then makes randomized packet drop decisions D∗(t) in
reaction to the ACK/NACK feedback, such that:

E {µ∗(t)} = y∗ , E {D∗(t)} = λ− y∗ (25)

Proof: The proof follows easily from the fact (3), and is
omitted for brevity.

Proof: (Utility Bound (21)) Because our control algorithm
satisfies the drift inequality in Lemma 2, and (by Lemma 4)
it minimizes the right hand side of this inequality every slot,

we know that:

∆(Θ(t))− V E {ĝ(γ(t)) | Θ(t)} ≤ B − V E {ĝ(γ∗(t)) | Θ(t)}
−
∑
l

Zl(t)E {λl −D∗l (t)− γ∗l (t) | Θ(t)}

−
∑
l

Hl(t)E {µ∗l (t) +D∗l (t)− λl | Θ(t)}

where γ∗(t), D∗(t), and µ∗(t) are from any S-only policy
(independent of Θ(t)). Taking expectations of both sides of
the above and using the law of iterated expectations yields:

E {L(Θ(t+ 1))} − E {L(Θ(t))} − V E {ĝ(γ(t))} ≤
B − V E {ĝ(γ∗(t))}

−
∑
l

E {Zl(t)}E {λl −D∗l (t)− γ∗l (t)}

−
∑
l

E {Hl(t)}E {µ∗l (t) +D∗l (t)− λl} (26)

Now choose the alternative auxiliary variable decision:

γ∗(t) = y∗ (27)

This is a feasible decision because the optimal vector y∗

satisfies 0 ≤ y∗l ≤ 1 for all l, and so clearly −1 ≤ γ∗l ≤ 1
for all l. Further, choose the alternative decisions for D∗(t)
and µ∗(t) that are the S-only decisions that yield (25) from
Lemma 5. Plugging (27) and (25) into the right hand side of
(26) and using the fact that g(y∗) = g∗ yields:

E {L(Θ(t+ 1))}−E {L(Θ(t))}−V E {ĝ(γ(t))} ≤ B−V g∗

The above holds for all t ≥ 0. Summing over τ ∈ {0, . . . , t−
1} and dividing by t yields:

E {L(Θ(t))} − E {L(Θ(0))}
t

−V
t

t−1∑
τ=0

E {ĝ(γ(τ))} ≤ B−V g∗

Using the fact that L(·) ≥ 0 and rearranging terms yields:

1
t

t−1∑
τ=0

E {ĝ(γ(τ))} ≥ g∗ −B/V − E {L(Θ(0))}
V t

Using Jensen’s inequality in the concave function ĝ(·) yields:

ĝ(γ(t)) ≥ g∗ −B/V − E {L(Θ(0))}
V t

(28)

where γ(t) is defined as:

γ(t)M= 1
t

∑t−1
τ=0 E {γ(τ)}

However, because each Zl(t) queue is deterministically
bounded by the finite constant Hl,max, we have from (19):

y(t) +Hmax/t ≥ γ(t)

where Hmax = (Hl,max)|Ll=1. Plugging this into (28) and
using the fact that ĝ(·) is non-decreasing in each entry yields:

ĝ(y(t) +Hmax/t) ≥ g∗ −B/V −
E {L(Θ(0))}

V t
(29)

The above holds for all t. By continuity of ĝ(·) and the fact
that Hl,max/t→ 0, we have:

lim inf
t→∞

ĝ(y(t)) ≥ g∗ −B/V (30)
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Using the definition of y(t) in (8) it can be shown that for
all l and all t we have 0 ≤ yl(t) ≤ 1. Because g(y) = ĝ(y)
whenever 0 ≤ y ≤ 1, we have:

lim inf
t→∞

ĝ(y(t)) = lim inf
t→∞

g(y(t))

Using this in (30) proves (21).

V. CONCLUSION

We have established a delay-based policy for joint stability
and utility optimization. The policy provides deterministic
worst-case delay bounds, with total throughput-utility that
is inversely proportional to the delay guarantee. The Lya-
punov Optimization approach for this delay-based problem
is significantly different from that of backlog-based policies.
Further, delay-based scheduling must overcome difficult issues
involving the correlation between inter-arrival times and virtual
queue states. Several new techniques were introduced to solve
the problem, including the structure of dropping packets at
the head-of-line (rather than immediately upon arrival), intro-
ducing the concept of concavely extending a utility function,
and using a delayed arrival process Al(t −W ) in the virtual
queues to maintain required independence. We believe these
results add significantly to our understanding of network delay
and delay-efficient control laws.

APPENDIX A — PROOF OF LEMMA 4

Here we show that the given delay-based control algorithm
maximizes the following expression, which is an expression
that considers only the terms in the right hand side of the drift
bound in Lemma 2 that involve control parameters:

V E {ĝ(γ(t)) | Θ(t)} −
∑
l

Zl(t)E {Dl(t) + γl(t) | Θ(t)}

+
∑
l

Hl(t)E {µl(t) +Dl(t) | Θ(t)}

Note that the γl(t) terms appear separably in this drift expres-
sion, and hence they can be optimally chosen by observing
Θ(t) and maximizing:

V ĝ(γ)−
∑
l

Zl(t)γl(t)

subject to −1 ≤ γl(t) ≤ 1 for all links l. This is precisely the
first phase of the control algorithm.

Note that the remaining terms can be rearranged as:∑
l

Hl(t)E {µl(t) | Θ(t)}+
∑
l

(Hl(t)−Zl(t))E {Dl(t) | Θ(t)}

Define ml(t) as an indicator function that is 1 if Hl(t) ≥
Zl(t), and 0 else. It is clear that if ml(t) = 1 and if there
is a head-of-line packet in link l, then this packet should be
dropped (if it is not already transmitted successfully), and
these should not be dropped if ml(t) = 0. This is exactly
the packet-dropping phase (phase 3) in the control algorithm.

It now suffices to choose an optimal transmission vector
x(t), where xl(t) ∈ {0, 1}. Recall that µl(t) = xl(t)1l(t),
where 1l(t) is an indicator function that is 1 if and only if
the packet in link l was transmitted successfully. Noting that

Dl(t) = 1 only for ml(t) = 1, the above expression is thus
(written without the conditional expectation for convenience):∑
l

Hl(t)xl(t)1l(t) +
∑
l

(Hl(t)− Zl(t))Dl(t)xl(t)ml(t)

+
∑
l

Dl(t)(Hl(t)− Zl(t))(1− xl(t))ml(t)

=
∑
l

Hl(t)xl(t)1l(t)

+
∑
l

(Hl(t)− Zl(t))(1− 1l(t))xl(t)ml(t)

+
∑
l

(Hl(t)− Zl(t))(1− xl(t))ml(t)

where we have used the fact that if xl(t) = 1 and ml(t) = 1,
then Dl(t) = 1 if and only if 1l(t) = 0 (so that if a packet for
which ml(t) = 1 is transmitted unsuccessfully, it is necessarily
dropped). Likewise, we have used the fact that if xl(t) = 0
and ml(t) = 1, then Dl(t) = 1.

Rearranging terms of the above that involve control deci-
sions yields:∑

l

xl(t)[Hl(t)1l(t)−ml(t)1l(t)(Hl(t)− Zl(t))]

Further rearrangements yield:∑
l

xl(t)1l(t)[Hl(t)−ml(t)(Hl(t)− Zl(t))] (31)

However, we have:

Hl(t)−ml(t)(Hl(t)− Zl(t)) = min[Hl(t), Zl(t)]

This is because ml(t) = 1 if and only if Hl(t) ≥ Zl(t), so that
ml(t) = 1 implies the expression is Hl(t)−(Hl(t)−Zl(t)) =
Zl(t) = min[Hl(t), Zl(t)], and likewise ml(t) = 0 implies the
expression is Hl(t) = min[Hl(t), Zl(t)]. Plugging this identity
into the expression (31) yields:∑

l

xl(t)1l(t) min[Hl(t), Zl(t)]

Taking conditional expectations of the above with respect to
Θ(t) yields:

E

{∑
l

xl(t)1l(t) min[Hl(t), Zl(t)] | Θ(t)

}
We seek a control rule that observes S(t) and Θ(t) and choses
x(t) ∈ X , so that the above expression is maximized. Define
χ(t) = [S(t),Θ(t),x(t)]. By iterated expectations the above
expression is:

E

{
E

{∑
l

xl(t)1l(t) min[Hl(t), Zl(t)] | χ(t)

}
| Θ(t)

}

= E

{∑
l

xl(t)Ψl(x(t),S(t)) min[Hl(t), Zl(t)] | Θ(t)

}
where we have used the fact that E {1l(t) | χ(t)} =
Ψ(x(t),S(t)). The above expectation is thus minimized by
observing the current S(t) and allocating x(t) ∈ X according
to phase 2 of the control algorithm.
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