
Optimal Power Cost Management Using Stored Energy in
Data Centers

Rahul Urgaonkar, Bhuvan Urgaonkar†, Michael J. Neely‡, Anand Sivasubramaniam†
Advanced Networking Dept., Dept. of CSE†, Dept. of EE‡

Raytheon BBN Technologies, The Pennsylvania State University†, University of Southern California‡
Cambridge MA, University Park PA†, Los Angeles CA‡

rahul@bbn.com, {bhuvan,anand}@cse.psu.edu†, mjneely@usc.edu‡

ABSTRACT
Since the electricity bill of a data center constitutes a signif-
icant portion of its overall operational costs, reducing this
has become important. We investigate cost reduction op-
portunities that arise by the use of uninterrupted power
supply (UPS) units as energy storage devices. This rep-
resents a deviation from the usual use of these devices as
mere transitional fail-over mechanisms between utility and
captive sources such as diesel generators. We consider the
problem of opportunistically using these devices to reduce
the time average electric utility bill in a data center. Us-
ing the technique of Lyapunov optimization, we develop an
online control algorithm that can optimally exploit these
devices to minimize the time average cost. This algorithm
operates without any knowledge of the statistics of the work-
load or electricity cost processes, making it attractive in the
presence of workload and pricing uncertainties. An inter-
esting feature of our algorithm is that its deviation from
optimality reduces as the storage capacity is increased. Our
work opens up a new area in data center power management.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; De-
sign studies

General Terms
Algorithms, Performance, Theory

Keywords
Power Management, Data Centers, Stochastic Optimization,
Optimal Control

1. INTRODUCTION
Data centers spend a significant portion of their overall

operational costs towards their electricity bills. As an ex-
ample, one recent case study suggests that a large 15MW

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’11, June 7–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0262-3/11/06 ...$10.00.

0 20 40 60 80 100 120 140 160
0

50

100

150

Hour

P
ri
c
e

 (
$

/M
W

−
H

o
u

r)

Figure 1: Avg. hourly spot market price during the
week of 01/01/2005-01/07/2005 for LA1 Zone [1].

data center (on the more energy-efficient end) might spend
about $1M on its monthly electricity bill. In general, a data
center spends between 30-50% of its operational expenses
towards power [10]. A large body of research addresses
these expenses by reducing the energy consumption of these
data centers. This includes designing/employing hardware
with better power/performance trade-offs [9,17,20], software
techniques for power-aware scheduling [12], workload migra-
tion, resource consolidation [6], among others. Power prices
exhibit variations along time, space (geography), and even
across utility providers. As an example, consider Fig. 1 that
shows the average hourly spot market prices for the Los An-
geles Zone LA1 obtained from CAISO [1]. These correspond
to the week of 01/01/2005-01/07/2005 and denote the aver-
age price of 1 MW-Hour of electricity. Consequently, mini-
mization of energy consumption need not coincide with that
of the electricity bill.

Given the diversity within power price and availability, at-
tention has recently turned towards demand response (DR)
within data centers. DR within a data center (or a set
of related data centers) attempts to optimize the electric-
ity bill by adapting its needs to the temporal, spatial, and
cross-utility diversity exhibited by power price. The key
idea behind these techniques is to preferentially shift power
draw (i) to times and places or (ii) from utilities offering
cheaper prices. Typically some constraints in the form of
performance requirements for the workload (e.g., response
times offered to the clients of a Web-based application) limit
the cost reduction benefits that can result from such DR.
Whereas existing DR techniques have relied on various forms
of workload scheduling/shifting, a complementary knob to
facilitate such movement of power needs is offered by energy
storage devices, typically uninterrupted power supply (UPS)
units, residing in data centers.

A data center deploys captive power sources, typically
diesel generators (DG), that it uses for keeping itself powered
up when the utility experiences an outage. The UPS units
serve as a bridging mechanism to facilitate this transition
from utility to DG: upon a utility failure, the data center is
kept powered by the UPS unit using energy stored within
its batteries, before the DG can start up and provide power.
Whereas this transition takes only 10-20 seconds, UPS units
have enough battery capacity to keep the entire data center
powered at its maximum power needs for anywhere between
5-30 minutes. Tapping into the energy reserves of the UPS
unit can allow a data center to improve its electricity bill.
Intuitively, the data center would store energy within the
UPS unit when prices are low and use this to augment the
draw from the utility when prices are high.

In this paper, we consider the problem of developing an
online control policy to exploit the UPS unit along with the
presence of delay-tolerance within the workload to optimize
the data center’s electricity bill. This is a challenging prob-
lem because data centers experience time-varying workloads
and power prices with possibly unknown statistics. Even
when statistics can be approximated (say by learning us-
ing past observations), traditional approaches to construct
optimal control policies involve the use of Markov Decision
Theory and Dynamic Programming [5]. It is well known
that these techniques suffer from the “curse of dimensional-
ity”where the complexity of computing the optimal strategy
grows with the system size. Furthermore, such solutions
result in hard-to-implement systems, where significant re-
computation might be needed when statistics change.

In this work, we make use of a different approach that
can overcome the challenges associated with dynamic pro-
gramming. This approach is based on the recently developed
technique of Lyapunov optimization [8] [15] that enables the
design of online control algorithms for such time-varying
systems. These algorithms operate without requiring any
knowledge of the system statistics and are easy to imple-
ment. We design such an algorithm for optimally exploiting
the UPS unit and delay-tolerance of workloads to minimize
the time average cost. We show that our algorithm can get
within O(1/V) of the optimal solution where the maximum
value of V is limited by battery capacity. We note that, for
the same parameters, a dynamic programming based ap-
proach (if it can be solved) will yield a better result than
our algorithm. However, this gap reduces as the battery ca-
pacity is increased. Our algorithm is thus most useful when
such scaling is practical.

2. RELATED WORK
One recent body of work proposes online algorithms for

using UPS units for cost reduction via shaving workload
“peaks” that correspond to higher energy prices [3, 4]. This
work is highly complementary to ours in that it offers a
worst-case competitive ratio analysis while our approach
looks at the average case performance. Whereas a variety
of work has looked at workload shifting for power cost re-
duction [20] or other reasons such as performance and avail-
ability [6], our work differs both due to its usage of energy
storage as well as the cost optimality guarantees offered by
our technique. Some research has considered consumers with
access to multiple utility providers, each with a different car-
bon profile, power price and availability and looked at opti-
mizing cost subject to performance and/or carbon emissions

Battery

Data

Center

-

+Grid

P(t) R(t) D(t)

P(t) - R(t)

W(t)

Figure 2: Block diagram for the basic model.

constraints [11]. Another line of work has looked at cost
reduction opportunities offered by geographical variations
within utility prices for data centers where portions of work-
loads could be serviced from one of several locations [11,18].
Finally, [7] considers the use of rechargeable batteries for
maximizing system utility in a wireless network. While all
of this research is highly complementary to our work, there
are three key differences: (i) our investigation of energy stor-
age as an enabler of cost reduction, (ii) our use of the tech-
nique of Lyapunov optimization which allows us to offer a
provably cost optimal solution, and (iii) combining energy
storage with delay-tolerance within workloads.

3. BASIC MODEL
We consider a time-slotted model. In the basic model, we

assume that in every slot, the total power demand generated
by the data center in that slot must be met in the current
slot itself (using a combination of power drawn from the util-
ity and the battery). Thus, any buffering of the workload
generated by the data center is not allowed. We will relax
this constraint later in Sec. 6 when we allow buffering of
some of the workload while providing worst case delay guar-
antees. In the following, we use the terms UPS and battery
interchangeably.

3.1 Workload Model
Let W (t) be total workload (in units of power) generated

in slot t. Let P (t) be the total power drawn from the grid in
slot t out of which R(t) is used to recharge the battery. Also,
let D(t) be the total power discharged from the battery in
slot t. Then in the basic model, the following constraint
must be satisfied in every slot (Fig. 2):

W (t) = P (t) − R(t) + D(t) (1)

Every slot, a control algorithm observes W (t) and makes
decisions about how much power to draw from the grid in
that slot, i.e., P (t), and how much to recharge and discharge
the battery, i.e., R(t) and D(t). Note that by (1), having
chosen P (t) and R(t) completely determines D(t).

Assumptions on the statistics of W (t): The workload pro-
cess W (t) is assumed to vary randomly taking values from a
set W of non-negative values and is not influenced by past
control decisions. The set W is assumed to be finite, with
potentially arbitrarily large size. The underlying probabil-
ity distribution or statistical characterization of W (t) is not
necessarily known. We only assume that its maximum value
is finite, i.e., W (t) ≤ Wmax for all t.

For simplicity, in the basic model we assume that W (t)
evolves according to an i.i.d. process noting that the algo-
rithm developed for this case can be applied without any
modifications to non-i.i.d. scenarios as well. The analysis
and performance guarantees for the non-i.i.d. case can be

obtained using the delayed Lyapunov drift and T slot drift
techniques developed in [8] [15].

3.2 Battery Model
Ideally, we would like to incorporate the following id-

iosyncrasies of battery operation into our model. First,
batteries become unreliable as they are charged/discharged,
with higher depth-of-discharge (DoD) - percentage of max-
imum charge removed during a discharge cycle - causing
faster degradation in their reliability. This dependence be-
tween the useful lifetime of a battery and how it is dis-
charged/charged is expressed via battery lifetime charts [13].
For example, with lead-acid batteries that are commonly
used in UPS units, 20% DoD yields 1400 cycles [2]. Sec-
ond, batteries have conversion loss whereby a portion of the
energy stored in them is lost when discharging them (e.g.,
about 10-15% for lead-acid batteries). Furthermore, cer-
tain regions of battery operation (high rate of discharge)
are more inefficient than others. Finally, the storage itself
maybe“leaky”, so that the stored energy decreases over time,
even in the absence of any discharging.

For simplicity, in the basic model we will assume that
there is no power loss either in recharging or discharging
the batteries, noting that this can be easily generalized to
the case where a fraction of R(t),D(t) is lost. We will also
assume that the batteries are not leaky, so that the stored
energy level decreases only when they are discharged. This
is a reasonable assumption when the time scale over which
the loss takes place is much larger than that of interest to us.
To model the effect of repeated recharging and discharging
on the battery’s lifetime, we assume that with each recharge
and discharge operation, a fixed cost (in dollars) of Crc and
Cdc respectively is incurred. The choice of these parameters
would affect the trade-off between the cost of the battery
itself and the cost reduction benefits it offers. For example,
suppose a new battery costs B dollars and it can sustain
N discharge/charge cycles (ignoring DoD for now). Then
setting Crc = Cdc = B/N would amount to expecting the
battery to “pay for itself” by augmenting the utility N times
over its lifetime.

In any slot, we assume that one can either recharge or
discharge the battery or do neither, but not both. This
means that for all t, we have:

R(t) > 0 =⇒ D(t) = 0, D(t) > 0 =⇒ R(t) = 0 (2)

Let Y (t) denote the battery energy level in slot t. Then, the
dynamics of Y (t) can be expressed as:

Y (t + 1) = Y (t) − D(t) + R(t) (3)

The battery is assumed to have a finite capacity Ymax so
that Y (t) ≤ Ymax for all t. Further, for the purpose of relia-
bility, it may be required to ensure that a minimum energy
level Ymin ≥ 0 is maintained at all times. For example, this
could represent the amount of energy required to support
the data center operations until a secondary power source
(such as DG) is activated in the event of a grid outage.
Recall that the UPS unit is integral to the availability of
power supply to the data center upon utility outage. Indis-
criminate discharging of UPS can leave the data center in
situations where it is unable to safely fail-over to DG upon
a utility outage. Therefore, discharging the UPS must be
done carefully so that it still possesses enough charge so re-
liably carry out its role as a transition device between utility

and DG. Thus, the following condition must be met in every
slot under any feasible control algorithm:

Ymin ≤ Y (t) ≤ Ymax (4)

The effectiveness of the online control algorithm we present
in Sec. 5 will depend on the magnitude of the difference
Ymax − Ymin. In most practical scenarios of interest, this
value is expected to be at least moderately large: recent
work suggests that storing energy Ymin to last about a minute
is sufficient to offer reliable data center operation [14], while
Ymax can vary between 5-20 minutes (or even higher) due
to reasons such as UPS units being available only in certain
sizes and the need to keep room for future IT growth. Fur-
thermore, the UPS units are sized based on the maximum
provisioned capacity of the data center, which is itself often
substantially (up to twice [10]) higher than the maximum
actual power demand.

The initial charge level in the battery is given by Yinit and
satisfies Ymin ≤ Yinit ≤ Ymax. Finally, we assume that the
maximum amounts by which we can recharge or discharge
the battery in any slot are bounded. Thus, we have ∀t:

0 ≤ R(t) ≤ Rmax, 0 ≤ D(t) ≤ Dmax (5)

We will assume that Ymax − Ymin > Rmax + Dmax while
noting that in practice, Ymax − Ymin is much larger than
Rmax + Dmax. Note that any feasible control decision on
R(t),D(t) must ensure that both of the constraints (4) and
(5) are satisfied. This is equivalent to the following:

0 ≤ R(t) ≤ min[Rmax, Ymax − Y (t)] (6)

0 ≤ D(t) ≤ min[Dmax, Y (t) − Ymin] (7)

3.3 Cost Model
The cost per unit of power drawn from the grid in slot t

is denoted by C(t). In general, it can depend on both P (t),
the total amount of power drawn in slot t, and an auxiliary
state variable S(t), that captures parameters such as time
of day, identity of the utility provider, etc. For example,
the per unit cost may be higher during business hours, etc.
Similarly, for any fixed S(t), it may be the case that C(t)
increases with P (t) so that per unit cost of electricity in-
creases as more power is drawn. This may be because the
utility provider wants to discourage heavier loading on the
grid. Thus, we assume that C(t) is a function of both S(t)
and P (t) and we denote this as:

C(t) = Ĉ(S(t), P (t)) (8)

For notational convenience, we will use C(t) to denote the
per unit cost in the rest of the paper noting that the depen-
dence of C(t) on S(t) and P (t) is implicit.

The auxiliary state process S(t) is assumed to evolve inde-
pendently of the decisions taken by any control policy. For
simplicity, we assume that every slot it takes values from a
finite but arbitrarily large set S in an i.i.d. fashion accord-
ing to a potentially unknown distribution. This can again
be generalized to non i.i.d. Markov modulated scenarios us-
ing the techniques developed in [8] [15]. For each S(t), the
unit cost is assumed to be a non-decreasing function of P (t).
Note that it is not necessarily convex or strictly monotonic
or continuous. This is quite general and can be used to
model a variety of scenarios. A special case is when C(t) is
only a function of S(t). The optimal control action for this

case has a particularly simple form and we will highlight this
in Sec. 5.1.1. The unit cost is assumed to be non-negative
and finite for all S(t), P (t).

We assume that the maximum amount of power that can
be drawn from the grid in any slot is upper bounded by
Ppeak. Thus, we have for all t:

0 ≤ P (t) ≤ Ppeak (9)

Note that if we consider the original scenario where batteries
are not used, then Ppeak must be such that all workload can
be satisfied. Therefore, Ppeak ≥ Wmax.

Finally, let Cmax and Cmin denote the maximum and min-
imum per unit cost respectively over all S(t), P (t). Also let
χmin > 0 be a constant such that for any P1, P2 ∈ [0, Ppeak]
where P1 ≤ P2, the following holds for all χ ≥ χmin:

P1(−χ + C(P1, S)) ≥ P2(−χ + C(P2, S)) ∀S ∈ S (10)

For example, when C(t) does not depend on P (t), then
χmin = Cmax satisfies (10). This follows by noting that
(−Cmax + C(t)) ≤ 0 for all t. Similarly, suppose C(t)
does not depend on S(t), but is continuous, convex, and
increasing in P (t). Then, it can be shown that χmin =
C(Ppeak) + PpeakC′(Ppeak) satisfies (10) where C′(Ppeak)
denotes the derivative of C(t) evaluated at Ppeak. In the
following, we assume that such a finite χmin exists for the
given cost model. We further assume that χmin > Cmin.
The case of χmin = Cmin corresponds to the degenerate
case where the unit cost is fixed for all times and we do not
consider it in this paper.

What is known in each slot? : We assume that the value
of S(t) and the form of the function C(P (t), S(t)) for that
slot is known. For example, this may be obtained before-
hand using pre-advertised prices by the utility provider. We
assume that given an S(t) = s, C(t) is a deterministic func-
tion of P (t) and this holds for all s. Similarly, the amount of
incoming workload W (t) is known at the beginning of each
slot.

Given this model, our goal is to design a control algorithm
that minimizes the time average cost while meeting all the
constraints. This is formalized in the next section.

4. CONTROL OBJECTIVE
Let P (t),R(t) and D(t) denote the control decisions made

in slot t by any feasible policy under the basic model as
discussed in Sec. 3. These must satisfy the constraints (1),
(2), (6), (7), and (9) every slot. We define the following
indicator variables that are functions of the control decisions
regarding a recharge or discharge operation in slot t:

1R(t) =

1 if R(t) > 0
0 else

1D(t) =

1 if D(t) > 0
0 else

Note that by (2), at most one of 1R(t) and 1C(t) can take
the value 1. Then the total cost incurred in slot t is given
by P (t)C(t) + 1R(t)Crc + 1D(t)Cdc. The time-average cost
under this policy is given by:

lim
t→∞

1

t

t−1
X

τ=0

E {P (τ)C(τ) + 1R(τ)Crc + 1D(τ)Cdc} (11)

where the expectation above is with respect to the potential
randomness of the control policy. Assuming for the time be-
ing that this limit exists, our goal is to design a control algo-

rithm that minimizes this time average cost subject to the
constraints described in the basic model. Mathematically,
this can be stated as the following stochastic optimization
problem:

P1 :

Minimize: lim
t→∞

1

t

t−1
X

τ=0

E {P (τ)C(τ) + 1R(τ)Crc + 1D(τ)Cdc}

Subject to: Constraints (1), (2), (6), (7), (9)

The finite capacity and underflow constraints (6), (7) make
this a particularly challenging problem to solve even if the
statistical descriptions of the workload and unit cost process
are known. For example, the traditional approach based
on Dynamic Programming [5] would have to compute the
optimal control action for all possible combinations of the
battery charge level and the system state (S(t), W (t)). In-
stead, we take an alternate approach based on the technique
of Lyapunov optimization, taking the finite size queues con-
straint explicitly into account.

Note that a solution to the problem P1 is a control policy
that determines the sequence of feasible control decisions
P (t), R(t), D(t), to be used. Let φopt denote the value of
the objective in problem P1 under an optimal control policy.
Define the time-average rate of recharge and discharge under
any policy as follows:

R = lim
t→∞

1

t

t−1
X

τ=0

E {R(τ)} , D = lim
t→∞

1

t

t−1
X

τ=0

E {D(τ)} (12)

Now consider the following problem:

P2 :

Minimize: lim
t→∞

1

t

t−1
X

τ=0

E {P (τ)C(τ) + 1R(τ)Crc + 1D(τ)Cdc}

Subject to: Constraints (1), (2), (5), (9)

R = D (13)

Let φ̂ denote the value of the objective in problem P2 under
an optimal control policy. By comparing P1 and P2, it can
be shown that P2 is less constrained than P1. Specifically,
any feasible solution to P1 would also satisfy P2. To see
this, consider any policy that satisfies (6) and (7) for all t.
This ensures that constraints (4) and (5) are always met
by this policy. Then summing equation (3) over all τ ∈
{0, 1, 2, . . . , t − 1} under this policy and taking expectation
of both sides yields:

E {Y (t)} − Yinit =
t−1
X

τ=0

E {R(τ) − D(τ)}

Since Ymin ≤ Y (t) ≤ Ymax for all t, dividing both sides
by t and taking limits as t → ∞ yields R = D. Thus,
this policy satisfies constraint (13) of P2. Therefore, any
feasible solution to P1 also satisfies P2. This implies that
the optimal value of P2 cannot exceed that of P1, so that
φ̂ ≤ φopt.

Our approach to solving P1 will be based on this obser-
vation. We first note that it is easier to characterize the
optimal solution to P2. This is because the dependence on
Y (t) has been removed. Specifically, it can be shown that
the optimal solution to P2 can be achieved by a station-

ary, randomized control policy that chooses control actions
P (t), D(t), R(t) every slot purely as a function (possibly ran-
domized) of the current state (W (t), S(t)) and independent
of the battery charge level Y (t). This fact is presented in
the following lemma:

Lemma 1. (Optimal Stationary, Randomized Policy): If
the workload process W (t) and auxiliary process S(t) are
i.i.d. over slots, then there exists a stationary, randomized
policy that takes control decisions P stat(t), Rstat(t), Dstat(t)
every slot purely as a function (possibly randomized) of the
current state (W (t), S(t)) while satisfying the constraints
(1), (2), (5), (9) and providing the following guarantees:

E
˘

Rstat(t)
¯

= E
˘

Dstat(t)
¯

(14)

E
˘

P stat(t)C(t) + 1stat
R (t)Crc + 1stat

D (t)Cdc

¯

= φ̂ (15)

where the expectations above are with respect to the station-
ary distribution of (W (t), S(t)) and the randomized control
decisions.

Proof. This result follows from the framework in [8,15]
and is omitted for brevity.

It should be noted that while it is possible to characterize
and potentially compute such a policy, it may not be feasi-
ble for the original problem P1 as it could violate the con-
straints (6) and (7). However, the existence of such a policy
can be used to construct an approximately optimal policy
that meets all the constraints of P1 using the technique of
Lyapunov optimization [8] [15]. This policy is dynamic and
does not require knowledge of the statistical description of
the workload and cost processes. We present this policy and
derive its performance guarantees in the next section. This
dynamic policy is approximately optimal where the approx-
imation factor improves as the battery capacity increases.
Also note that the distance from optimality for our policy is
measured in terms of φ̂. However, since φ̂ ≤ φopt, in prac-
tice, the approximation factor is better than the analytical
bounds.

5. OPTIMAL CONTROL ALGORITHM
We now present an online control algorithm that approx-

imately solves P1. This algorithm uses a control parameter
V > 0 that affects the distance from optimality as shown
later. This algorithm also makes use of a “queueing” state
variable X(t) to track the battery charge level and is defined
as follows:

X(t) = Y (t) − V χmin − Dmax − Ymin (16)

Recall that Y (t) denotes the actual battery charge level in
slot t and evolves according to (3). It can be seen that X(t)
is simply a shifted version of Y (t) and its dynamics is given
by:

X(t + 1) = X(t) − D(t) + R(t) (17)

Note that X(t) can be negative. We will show that this def-
inition enables our algorithm to ensure that the constraint
(4) is met.

We are now ready to state the dynamic control algorithm.
Let (W (t), S(t)) and X(t) denote the system state in slot t.
Then the dynamic algorithm chooses control action P (t) as

Wmid

Wlow

Whigh

t

Figure 3: Periodic W (t) process in the example.

the solution to the following optimization problem:

P3 :

Minimize: X(t)P (t) + V
h

P (t)C(t) + 1R(t)Crc + 1D(t)Cdc

i

Subject to: Constraints (1), (2), (5), (9)

The constraints above result in the following constraint on
P (t):

Plow ≤ P (t) ≤ Phigh (18)

where
Plow = max[0, W (t)−Dmax] and Phigh = min[Ppeak, W (t)+
Rmax]. Let P ∗(t), R∗(t), and D∗(t) denote the optimal so-
lution to P3. Then, the dynamic algorithm chooses the
recharge and discharge values as follows.

R∗(t) =

P ∗(t) − W (t) if P ∗(t) > W (t)
0 else

D∗(t) =

W (t) − P ∗(t) if P ∗(t) < W (t)
0 else

Note that if P ∗(t) = W (t), then both R∗(t) = 0 and D∗(t) =
0 and all demand is met using power drawn from the grid. It
can be seen from the above that the control decisions satisfy
the constraints 0 ≤ R∗(t) ≤ Rmax and 0 ≤ D∗(t) ≤ Dmax.
That the finite battery constraints and the constraints (6),
(7) are also met will be shown in Sec. 5.3.

After computing these quantities, the algorithm imple-
ments them and updates the queueing variable X(t) accord-
ing to (17). This process is repeated every slot. Note that
in solving P3, the control algorithm only makes use of the
current system state values and does not require knowledge
of the statistics of the workload or unit cost processes. Thus,
it is myopic and greedy in nature. From P3, it is seen that
the algorithm tries to recharge the battery when X(t) is
negative and per unit cost is low. And it tries to discharge
the battery when X(t) is positive. That this is sufficient to
achieve optimality will be shown in Theorem 1. The queue-
ing variable X(t) plays a crucial role as making decisions
purely based on prices is not necessarily optimal.

To get some intuition behind the working of this algo-
rithm, consider the following simple example. Suppose W (t)
can take three possible values from the set {Wlow, Wmid, Whigh}
where Wlow < Wmid < Whigh. Similarly, C(t) can take three
possible values in {Clow, Cmid, Chigh} where Clow < Cmid <
Chigh and does not depend on P (t). We assume that the
workload process evolves in a frame-based periodic fashion.
Specifically, in every odd numbered frame, W (t) = Wmid

for all except the last slot of the frame when W (t) = Wlow.
In every even numbered frame, W (t) = Wmid for all except
the last slot of the frame when W (t) = Whigh. This is il-

Ymax 20 30 40 50 75 100
V 0 1.25 2.5 3.75 6.875 10.0

Avg. Cost 94.0 92.5 91.1 88.5 88.0 87.0

Table 1: Average Cost vs. Ymax

lustrated in Fig. 3. The C(t) process evolves similarly, such
that C(t) = Clow when W (t) = Wlow, C(t) = Cmid when
W (t) = Wmid, and C(t) = Chigh when W (t) = Whigh.

In the following, we assume a frame size of 5 slots with
Wlow = 10, Wmid = 15, and Whigh = 20 units. Also, Clow =
2, Cmid = 6, and Chigh = 10 dollars. Finally, Rmax =
Dmax = 10, Ppeak = 20, Crc = Cdc = 5, Yinit = Ymin =
0 and we vary Ymax > Rmax + Dmax. In this example,
intuitively, an optimal algorithm that knows the workload
and unit cost process beforehand would recharge the battery
as much as possible when C(t) = Clow and discharge it as
much as possible when C(t) = Chigh. In fact, it can be
shown that the following strategy is feasible and achieves
minimum average cost:

• If C(t) = Clow, W (t) = Wlow, then P (t) = Wlow +
Rmax, R(t) = Rmax, D(t) = 0.

• If C(t) = Cmid, W (t) = Wmid, then P (t) = Wmid,
R(t) = 0, D(t) = 0.

• If C(t) = Chigh, W (t) = Whigh, then P (t) = Whigh −
Dmax, R(t) = 0, D(t) = Dmax.

The time average cost resulting from this strategy can be
easily calculated and is given by 87.0 dollars/slot for all
Ymax > 10. Also, we note that the cost resulting from an
algorithm that does not use the battery in this example is
given by 94.0 dollars/slot.

Now we simulate the dynamic algorithm for this exam-
ple for different values of Ymax for 1000 slots (200 frames).
The value of V is chosen to be Ymax−Ymin−Rmax−Dmax

Chigh−Clow
=

Ymax−20
8

(this choice will become clear in Sec. 5.2 when we
relate V to the battery capacity). Note that the number of
slots for which a fully charged battery can sustain the data
center at maximum load is Ymax/Whigh.

In Table 1, we show the time average cost achieved for dif-
ferent values of Ymax. It can be seen that as Ymax increases,
the time average cost approaches the optimal value (this
behavior will be formalized in Theorem 1). This is remark-
able given that the dynamic algorithm operates without any
knowledge of the future workload and cost processes. To ex-
amine the behavior of the dynamic algorithm in more detail,
we fix Ymax = 100 and look at the sample paths of the con-
trol decisions taken by the optimal offline algorithm and the
dynamic algorithm during the first 200 slots. This is shown
in Figs. 4 and 5. It can be seen that initially, the dynamic
tends to perform suboptimally. But eventually it learns to
make close to optimal decisions.

It might be tempting to conclude from this example that
an algorithm based on a price threshold is optimal. Specif-
ically, such an algorithm makes a recharge vs. discharge
decision depending on whether the current price C(t) is
smaller or larger than a threshold. However, it is easy
to construct examples where the dynamic algorithm out-
performs such a threshold based algorithm. Specifically,
suppose that the W (t) process takes values from the inter-
val [10, 90] uniformly at random every slot. Also, suppose

0 20 40 60 80 100 120 140 160 180 200
10

15

20

time

P
(t

)

Figure 4: P (t) under the offline optimal solution with
Ymax = 100.

0 20 40 60 80 100 120 140 160 180 200
10

15

20

time

P
(t

)

Figure 5: P (t) under the Dynamic Algorithm with
Ymax = 100.

C(t) takes values from the set {2, 6, 10} dollars uniformly
at random every slot. We fix the other parameters as fol-
lows: Rmax = Dmax = 10, Ppeak = 90, Crc = Cdc = 1,
Yinit = Ymin = 0 and Ymax = 100. We then simulate a
threshold based algorithm for different values of the thresh-
old in the set {2, 6, 10} and select the one that yields the
smallest cost. This was found to be 280.7 dollars/slot. We
then simulate the dynamic algorithm for 10000 slots with
V = Ymax−20

10−2
= 10.0 and it yields an average cost of 275.5

dollars/slot. We also note that the cost resulting from an
algorithm that does not use the battery in this example is
given by 300.73 dollars/slot.

We now establish two properties of the structure of the
optimal solution to P3 that will be useful in analyzing its
performance later.

Lemma 2. The optimal solution to P3 has the following
properties:

1. If X(t) > −V Cmin, then the optimal solution always
chooses R∗(t) = 0.

2. If X(t) < −V χmin, then the optimal solution always
chooses D∗(t) = 0.

Proof. See [19].

5.1 Solving P3

In general, the complexity of solving P3 depends on the
structure of the unit cost function C(t). For many cases
of practical interest, P3 is easy to solve and admits closed
form solutions that can be implemented in real time. We
consider two such cases here. Let θ(t) denote the value of
the objective in P3 when there is no recharge or discharge.
Thus θ(t) = W (t)(X(t) + V C(t)).

5.1.1 C(t) does not depend on P (t)

Suppose that C(t) depends only on S(t) and not on P (t).
We can rewrite the expression in the objective of P3 as

P (t)(X(t) + V C(t)) + 1R(t)V Crc + 1D(t)V Cdc. Then, the
optimal solution has the following simple threshold struc-
ture.

1. If X(t) + V C(t) > 0, then R∗(t) = 0 so that there is
no recharge and we have the following two cases:

(a) If Plow(X(t) + V C(t)) + V Cdc < θ(t), then dis-
charge as much as possible, so that we get D∗(t) =
min[W (t), Dmax], P ∗(t) = max[0, W (t) − Dmax].

(b) Else, draw all power from the grid. This yields
D∗(t) = 0 and P ∗(t) = W (t).

2. Else if X(t)+V C(t) ≤ 0, then D∗(t) = 0 so that there
is no discharge and we have the following two cases:

(a) If Phigh(X(t)+V C(t))+V Crc < θ(t), then recharge
as much as possible. This yields R∗(t) = min[Ppeak−
W (t),Rmax] and P ∗(t) = min[Ppeak, W (t)+Rmax].

(b) Else, draw all power from the grid. This yields
R∗(t) = 0 and P ∗(t) = W (t).

We will show that this solution is feasible and does not
violate the finite battery constraint in Sec. 5.3.

5.1.2 C(t) convex, increasing in P (t)

Next suppose for each S(t), C(t) is convex and increas-

ing in P (t). For example, Ĉ(S(t), P (t)) may have the form
α(S(t))P 2(t) where α(S(t)) > 0 for all S(t). In this case,
P3 becomes a standard convex optimization problem in a
single variable P (t) and can be solved efficiently. The full
solution is provided in [19].

5.2 Performance Theorem
We first define an upper bound Vmax on the maximum

value that V can take in our algorithm.

Vmax
△

=
Ymax − Ymin − Rmax − Dmax

χmin − Cmin

(19)

Then we have the following result.

Theorem 1. (Algorithm Performance) Suppose the ini-
tial battery charge level Yinit satisfies Ymin ≤ Yinit ≤ Ymax.
Then implementing the algorithm above with any fixed pa-
rameter V such that 0 < V ≤ Vmax for all t ∈ {0, 1, 2, . . .}
results in the following performance guarantees:

1. The queue X(t) is deterministically upper and lower
bounded for all t as follows:

−V χmin − Dmax ≤ X(t) ≤ Ymax − Ymin

− Dmax − V χmin (20)

2. The actual battery level Y (t) satisfies Ymin ≤ Y (t) ≤
Ymax for all t.

3. All control decisions are feasible.

4. If W (t) and S(t) are i.i.d. over slots, then the time-
average cost under the dynamic algorithm is within
B/V of the optimal value:

lim
t→∞

1

t

t−1
X

τ=0

E {P (τ)C(τ) + 1R(τ)Crc + 1D(τ)Cdc}

≤ φopt + B/V (21)

where B is a constant given by B =
max[R2

max,D2

max]

2
and φopt is the optimal solution to P1 under any feasi-
ble control algorithm (possibly with knowledge of future
events).

Theorem 1 part 4 shows that by choosing larger V , the time-
average cost under the dynamic algorithm can be pushed
closer to the minimum possible value φopt. However, Vmax

limits how large V can be chosen. We prove Theorem 1 in
the next section.

5.3 Proof of Theorem 1
Proof. (Theorem 1 part 1) We first show that (20) holds

for t = 0. We have that

Ymin ≤ Y (0) = Yinit ≤ Ymax (22)

Using the definition (16), we have that Y (0) = X(0) +
V χmin + Dmax + Ymin. Using this in (22), we get:

Ymin ≤ X(0) + V χmin + Dmax + Ymin ≤ Ymax

This yields

−V χmin − Dmax ≤ X(0) ≤ Ymax − Ymin − Dmax − V χmin

Now suppose (20) holds for slot t. We will show that it
also holds for slot t + 1. First, suppose −V Cmin < X(t) ≤
Ymax − Ymin − Dmax − V χmin. Then, from Lemma 2, we
have that R∗(t) = 0. Thus, using (17), we have that X(t +
1) ≤ X(t) ≤ Ymax − Ymin − Dmax − V χmin. Next, suppose
X(t) ≤ −V Cmin. Then, the maximum possible increase
is Rmax so that X(t + 1) ≤ −V Cmin + Rmax. Now for
all V such that 0 < V ≤ Vmax, we have that −V Cmin +
Rmax ≤ Ymax − Ymin − Dmax − V χmin. This follows from
the definition (19) and the fact that χmin > Cmin. Thus,
we have X(t + 1) ≤ Ymax − Ymin − Dmax − V χmin.

Next, suppose −V χmin−Dmax ≤ X(t) < −V χmin. Then,
from Lemma 2, we have that D∗(t) = 0. Thus, using (17)
we have that X(t + 1) ≥ X(t) ≥ −V χmin − Dmax. Next,
suppose −V χmin ≤ X(t). Then the maximum possible de-
crease is Dmax so that X(t + 1) ≥ −V χmin −Dmax for this
case as well. This shows that X(t + 1) ≥ −V χmin − Dmax.
Combining these two bounds proves (20).

Proof. (Theorem 1 parts 2 and 3) Part 2 directly follows
from (20) and (16). Using Y (t) = X(t) + V χmin + Dmax +
Ymin in the lower bound in (20), we have: −V χmin−Dmax ≤
Y (t) − V χmin − Dmax − Ymin, i.e., Ymin ≤ Y (t). Similarly,
using Y (t) = X(t) + V χmin + Dmax + Ymin in the upper
bound in (20), we have: Y (t) − V χmin − Dmax − Ymin ≤
Ymax − Ymin − Dmax − V χmin, i.e., Y (t) ≤ Ymax.

Part 3 now follows from part 2 and the constraint on P (t)
in P3.

Proof. (Theorem 1 part 4) We make use of the technique
of Lyapunov optimization to show (21). We start by defining
a Lyapunov function as a scalar measure of congestion in
the system. Specifically, we define the following Lyapunov
function: L(X(t))△

=
1
2
X2(t). Define the conditional 1-slot

Lyapunov drift as follows:

∆(X(t))△

=E {L(X(t + 1)) − L(X(t))|X(t)} (23)

Using (17), ∆(X(t)) can be bounded as follows (see [19] for
details):

∆(X(t)) ≤ B − X(t)E {D(t) − R(t)|X(t)} (24)

where B =
max[R2

max,D2

max]

2
. Following the Lyapunov opti-

mization framework of [8], we add to both sides of (24) the
penalty term V E {P (t)C(t) + 1R(t)Crc + 1D(t)Cdc|X(t)} to
get the following:

∆(X(t)) + V E {P (t)C(t) + 1R(t)Crc + 1D(t)Cdc|X(t)}

≤ B − X(t)E {D(t) − R(t)|X(t)}

+ V E {P (t)C(t) + 1R(t)Crc + 1D(t)Cdc|X(t)} (25)

Using (1), we can rewrite the above as:

∆(X(t)) + V E {P (t)C(t) + 1R(t)Crc + 1D(t)Cdc|X(t)} ≤

B − X(t)E {W (t)|X(t)}+ X(t)E {P (t)|X(t)}

+ V E {P (t)C(t) + 1R(t)Crc + 1D(t)Cdc|X(t)} (26)

Comparing this with P3, it can be seen that given any queue
value X(t), our control algorithm is designed to minimize
the right hand side of (26) over all possible feasible control
policies. This includes the optimal, stationary, randomized
policy given in Lemma 1. Then, plugging the control de-
cisions corresponding to the stationary, randomized policy,
the following holds for the dynamic algorithm:

∆(X(t)) + V E {P (t)C(t) + 1R(t)Crc + 1D(t)Cdc|X(t)} ≤

B + V E
˘

P stat(t)Cstat(t) + 1stat
R (t)Crc + 1stat

D (t)Cdc|X(t)
¯

= B + V φ̂ ≤ B + V φopt

Taking the expectation of both sides and using the law of
iterated expectations and summing over t ∈ {0, 1, 2, . . . , T −
1}, we get:

T−1
X

t=0

V E {P (t)C(t) + 1R(t)Crc + 1D(t)Cdc} ≤

BT + V Tφopt − E {L(X(T))}+ E {L(X(0))}

Dividing both sides by V T and taking limit as T → ∞
yields:

lim
T→∞

1

T

T−1
X

t=0

E {P (t)C(t) + 1R(t)Crc + 1D(t)Cdc} ≤ φopt + B/V

where we have used the fact that E {L(X(0))} is finite and
that E {L(X(T))} is non-negative.

6. EXTENSIONS TO BASIC MODEL
In this section, we extend the basic model of Sec. 3 to the

case where portions of the workload are delay-tolerant in
the sense they can be postponed by a certain amount with-
out affecting the utility the data center derives from execut-
ing them. We refer to such postponement as buffering the
workload. Specifically, we assume that the total workload
consists of both delay tolerant and delay intolerant compo-
nents. Similar to the workload in the basic model, the delay
intolerant workload cannot be buffered and must be served
immediately. However, the delay tolerant component may
be buffered and served later. As an example, data centers
run virus scanning programs on most of their servers rou-
tinely (say once per day). As long as a virus scan is executed
once a day, their purpose is served - it does not matter what
time of the day is chosen for this. The ability to delay some
of the workload gives more opportunities to reduce the aver-
age power cost in addition to using the battery. We assume

that our data center has system mechanisms to implement
such buffering of specified workloads.

In the following, we will denote the total workload gener-
ated in slot t by W (t). This consists of the delay tolerant
and intolerant components denoted by W1(t) and W2(t) re-
spectively, so that W (t) = W1(t)+W2(t) for all t. Similar to
the basic model, we use P (t),R(t),D(t) to denote the total
power drawn from the grid, the total power used to recharge
the battery and the total power discharged from the battery
in slot t, respectively. Thus, the total amount available to
serve the workload is given by P (t) − R(t) + D(t). Let γ(t)
denote the fraction of this that is used to serve the delay tol-
erant workload in slot t. Then the amount used to serve the
delay intolerant workload is (1 − γ(t))(P (t)− R(t) + D(t)).
Note that the following constraint must be satisfied every
slot:

0 ≤ γ(t) ≤ 1 (27)

We next define U(t) as the unfinished work for the delay
tolerant workload in slot t. The dynamics for U(t) can be
expressed as:

U(t + 1) = max[U(t) − γ(t)(P (t) − R(t) + D(t)), 0] + W1(t)
(28)

We assume that U(t) is served in FIFO order. For the de-
lay intolerant workload, there are no such queues since all
incoming workload must be served in the same slot. This
means:

W2(t) = (1 − γ(t))(P (t) − R(t) + D(t)) (29)

The block diagram for this extended model is shown in Fig.
6. Similar to the basic model, we assume that for i = 1, 2,
Wi(t) varies randomly in an i.i.d. fashion, taking values from
a set Wi of non-negative values. We assume that W1(t) +
W2(t) ≤ Wmax for all t. We also assume that W1(t) ≤
W1,max < Wmax and W2(t) ≤ W2,max < Wmax for all t. We
further assume that Ppeak ≥ Wmax +max[Rmax, Dmax]. We
use the same model for battery and unit cost as in Sec. 3.

Our objective is to minimize the time-average cost subject
to meeting all the constraints (such as finite battery size and
(29)) and ensuring finite average delay for the delay tolerant
workload. This can be stated as:

P4 :

Minimize: lim
t→∞

1

t

t−1
X

τ=0

E {P (τ)C(τ) + 1R(τ)Crc + 1D(τ)Cdc}

Subject to: Constraints (2), (5), (6), (7), (9), (27), (29)

Finite average delay for W1(t)

Similar to the basic model, we consider the following relaxed
problem:

P5 :

Minimize: lim
t→∞

1

t

t−1
X

τ=0

E {P (τ)C(τ) + 1R(τ)Crc + 1D(τ)Cdc}

Subject to: Constraints (2), (5), (9), (27), (29)

R = D (30)

U < ∞ (31)

where U is the time average expected queue backlog for the

Battery-

+
Grid

P(t) R(t) D(t)

P(t) - R(t) U(t)

W1(t)

γ(t) 1-γ(t)

W2(t)

Data Center

Figure 6: Block diagram for the extended model
with delay tolerant and delay intolerant workloads.

delay tolerant workload and is defined as:

U △

= lim sup
t→∞

1

t

t−1
X

τ=0

E {U(τ)} (32)

Let φext and φ̂ext denote the optimal value for problems P4
and P5 respectively. Since P5 is less constrained than P4,
we have that φ̂ext ≤ φext. Similar to Lemma 1, the following
holds:

Lemma 3. (Optimal Stationary, Randomized Policy): If
the workload process W1(t), W2(t) and auxiliary process S(t)
are i.i.d. over slots, then there exists a stationary, random-
ized policy that takes control decisions P̂ (t), R̂(t), D̂(t), γ̂(t)
every slot purely as a function (possibly randomized) of the
current state (W1(t), W2(t), S(t)) while satisfying the con-
straints (29), (2), (5), (9), (27) and providing the following
guarantees:

E

n

R̂(t)
o

= E

n

D̂(t)
o

(33)

E

n

γ̂(t)(P̂ (t) − R̂(t) + D̂(t))
o

≥ E {W1(t)} (34)

E

n

P̂ (t)Ĉ(t) + 1̂R(t)Crc + 1̂D(t)Cdc

o

= φ̂ext (35)

where the expectations above are with respect to the station-
ary distribution of (W1(t),W2(t), S(t)) and the randomized
control decisions.

Proof. This result follows from the framework in [8,15]
and is omitted for brevity.

The condition (34) only guarantees queueing stability, not
bounded worst case delay. We will now design a dynamic
control algorithm that will yield bounded worst case delay
while guaranteeing an average cost that is within O(1/V) of

φ̂ext (and therefore φext).

6.1 Delay-Aware Queue
In order to provide worst case delay guarantees to the

delay tolerant workload, we will make use of the technique
of ǫ-persistent queue [16]. Specifically, we define a virtual
queue Z(t) as follows:

Z(t + 1) = [Z(t) − γ(t)(P (t)− R(t) + D(t)) + ǫ1U(t)]
+

(36)

where ǫ > 0 is a parameter to be specified later, 1U(t) is
an indicator variable that is 1 if U(t) > 0 and 0 otherwise,
and [x]+ = max[x, 0]. The objective of this virtual queue

is to enable the provision of worst-case delay guarantee on
any buffered workload W1(t). Specifically, if any control
algorithm ensures that U(t) ≤ Umax and Z(t) ≤ Zmax for
all t, then the worst case delay can be bounded. This is
shown in the following:

Lemma 4. (Worst Case Delay) Suppose a control algo-
rithm ensures that U(t) ≤ Umax and Z(t) ≤ Zmax for all
t, where Umax and Zmax are some positive constants. Then
the worst case delay for any delay tolerant workload is at
most δmax slots where:

δmax
△

=⌈(Umax + Zmax)/ǫ⌉ (37)

Proof. Consider a new arrival W1(t) in any slot t. We
will show that this is served on or before time t + δmax. We
argue by contradiction. Suppose this workload is not served
by t+δmax. Then for all slots τ ∈ {t+1, t+2, . . . , t+δmax},
it must be the case that U(τ) > 0 (else W1(t) would have
been served before τ). This implies that 1U(τ) = 1 and using
(36), we have:

Z(τ + 1) ≥ Z(τ) − γ(τ)(P (τ)− R(τ) + D(τ)) + ǫ

Summing for all τ ∈ {t + 1, t + 2, . . . , t + δmax}, we get:

Z(t + δmax + 1) − Z(t + 1) ≥ δmaxǫ

−

t+δmax
X

τ=t+1

[γ(τ)(P (τ)− R(τ) + D(τ))]

Using the fact that Z(t+δmax+1) ≤ Zmax and Z(t+1) ≥ 0,
we get:

t+δmax
X

τ=t+1

[γ(τ)(P (τ)− R(τ) + D(τ))] ≥ δmaxǫ − Zmax (38)

Note that by (28), W1(t) is part of the backlog U(t + 1).
Since U(t + 1) ≤ Umax and since the service is FIFO, it
will be served on or before time t + δmax whenever at least
Umax units of power is used to serve the delay tolerant work-
load during the interval (t + 1, . . . , t + δmax). Since we have
assumed that W1(t) is not served by t + δmax, it must be

the case that
Pt+δmax

τ=t+1 [γ(τ)(P (τ)− R(τ) + D(τ))] < Umax.
Using this in (38), we have:

Umax > δmaxǫ − Zmax

This implies that δmax < (Umax +Zmax)/ǫ, that contradicts
the definition of δmax in (37).

In Sec. 6.4, we will show that under the dynamic control
algorithm (to be presented next), there are indeed constants
Umax, Zmax such that U(t) ≤ Umax, Z(t) ≤ Zmax for all t.

6.2 Optimal Control Algorithm
We now present an online control algorithm that approx-

imately solves P4. Similar to the algorithm for the basic
model, this algorithm also makes use of the following queue-
ing state variable X(t) to track the battery charge level and
is defined as follows:

X(t) = Y (t) − Qmax − Dmax − Ymin (39)

where Qmax is a constant to be specified in (44). Recall
that Y (t) denotes the actual battery charge level in slot t

and evolves according to (3). It can be seen that X(t) is
simply a shifted version of Y (t) and its dynamics is given
by:

X(t + 1) = X(t) − D(t) + R(t) (40)

We will show that this definition enables our algorithm to
ensure that the constraint (4) is met.

We are now ready to state the dynamic control algorithm.
Let (W1(t), W2(t), S(t)) be the system state in slot t. De-
fine Q(t)△

=(U(t), Z(t), X(t)) as the queue state that includes
the workload queue as well as auxiliary queues. Then the
dynamic algorithm chooses control decisions P (t), R(t),D(t)
and γ(t) as the solution to the following problem:

P6 :

Max:[U(t) + Z(t)]P (t) − V
h

P (t)C(t) + 1R(t)Crc + 1D(t)Cdc

i

+ [X(t) + U(t) + Z(t)](D(t) − R(t))

Subject to: Constraints (27), (29), (2), (5), (9)

where V > 0 is a control parameter that affects the distance
from optimality. Let P ∗(t), R∗(t),D∗(t) and γ∗(t) denote
the optimal solution to P6. Then, the dynamic algorithm
allocates (1−γ∗(t))(P ∗(t)−R∗(t)+D∗(t)) power to service
the delay intolerant workload and the remaining is used for
the delay tolerant workload.

After computing these quantities, the algorithm imple-
ments them and updates the queueing variable X(t) accord-
ing to (40). This process is repeated every slot. Note that
in solving P6, the control algorithm only makes use of the
current system state values and does not require knowledge
of the statistics of the workload or unit cost processes.

We now establish two properties of the structure of the
optimal solution to P6 that will be useful in analyzing its
performance later.

Lemma 5. The optimal solution to P6 has the following
properties:

1. If X(t) > −V Cmin, then the optimal solution always
chooses R∗(t) = 0.

2. If X(t) < −Qmax (where Qmax is specified in (44)),
then the optimal solution always chooses D∗(t) = 0.

Proof. See [19].

6.3 Solving P6

Similar to P3, the complexity of solving P6 depends on
the structure of the unit cost function C(t). For many cases
of practical interest, P6 is easy to solve and admits closed
form solutions that can be implemented in real time. We
consider one such case here.

6.3.1 C(t) does not depend on P (t)

For notational convenience, let Q1(t) = [U(t) + Z(t) −
V C(t)] and Q2(t) = [X(t) + U(t) + Z(t)].

Let θ1(t) denote the optimal value of the objective in P6
when there is no recharge or discharge. When C(t) does
not depend on P (t), this can be calculated as follows: If
U(t)+Z(t) ≥ V C(t), then θ1(t) = Q1(t)Ppeak. Else, θ1(t) =
Q1(t)W2(t).

Next, let θ2(t) denote the optimal value of the objective
in P6 when the option of recharge is chosen, so that R(t) >
0, D(t) = 0. This can be calculated as follows:

1. If Q1(t) ≥ 0, Q2(t) ≥ 0, then θ2(t) = Q1(t)Ppeak −
V Crc.

2. If Q1(t) ≥ 0, Q2(t) < 0, then θ2(t) = Q1(t)Ppeak −
Q2(t)Rmax − V Crc.

3. If Q1(t) < 0, Q2(t) ≥ 0, then θ2(t) = Q1(t)W2(t) −
V Crc.

4. If Q1(t) < 0, Q2(t) < 0, then we have two cases:

(a) If Q1(t) ≥ Q2(t), then θ2(t) = Q1(t)(Rmax +
W2(t)) − Q2(t)Rmax − V Crc.

(b) If Q1(t) < Q2(t), then θ2(t) = Q1(t)W2(t)−V Crc.

Finally, let θ3(t) denote the optimal value of the objective
in P6 when when the option of discharge is chosen, so that
D(t) > 0, R(t) = 0. This can be calculated as follows:

1. If Q1(t) ≥ 0, Q2(t) ≥ 0, then θ3(t) = Q1(t)Ppeak +
Q2(t)Dmax − V Cdc.

2. If Q1(t) ≥ 0, Q2(t) < 0, then θ3(t) = Q1(t)Ppeak −
V Cdc.

3. If Q1(t) < 0, Q2(t) ≥ 0, then θ3(t) = Q1(t)max[0, W2(t)−
Dmax] + Q2(t)Dmax − V Cdc.

4. If Q1(t) < 0, Q2(t) < 0, then we have two cases:

(a) If Q1(t) ≤ Q2(t), then θ3(t) = Q1(t)max[0, W2(t)−
Dmax] + Q2(t)min[W2(t),Dmax] − V Cdc.

(b) If Q1(t) > Q2(t), then θ3(t) = Q1(t)W2(t)−V Cdc.

After computing θ1(t), θ2(t), θ3(t), we pick the mode that
yields the highest value of the objective and implement the
corresponding solution.

6.4 Performance Theorem
We define an upper bound V max

ext on the maximum value
that V can take in our algorithm for the extended model.

V max
ext

△

=
Ymax − Ymin − (Rmax + Dmax + W1,max + ǫ)

χmin − Cmin

(41)

Then we have the following result.

Theorem 2. (Algorithm Performance) Suppose U(0) =
0, Z(0) = 0 and the initial battery charge level Yinit sat-
isfies Ymin ≤ Yinit ≤ Ymax. Then implementing the algo-
rithm above with any fixed parameter ǫ ≥ 0 such that ǫ ≤
Wmax−W2,max and a parameter V such that 0 < V ≤ V max

ext

for all t ∈ {0, 1, 2, . . .} results in the following performance
guarantees:

1. The queues U(t) and Z(t) are deterministically upper
bounded by Umax and Zmax respectively for all t where:

Umax
△

=V χmin + W1,max (42)

Zmax
△

=V χmin + ǫ (43)

Further, the sum U(t) + Z(t) is also deterministically
upper bounded by Qmax where

Qmax
△

=V χmin + W1,max + ǫ (44)

0 5 10 15 20
40

60

80

100

Hour

P
ric

e
($

/M
W

−H
ou

r)

Figure 7: One period of the unit cost process.

0 5 10 15 20
0.4

0.6

0.8

1

Hour

W
or

kl
oa

d
(M

W
)

Figure 8: One period of the workload process.

2. The queue X(t) is deterministically upper and lower
bounded for all t as follows:

−Qmax − Dmax ≤ X(t) ≤ Ymax − Ymin − Qmax

− Dmax (45)

3. The actual battery level Y (t) satisfies Ymin ≤ Y (t) ≤
Ymax for all t.

4. All control decisions are feasible.

5. The worst case delay experienced by any delay tolerant
request is given by:

l2V χmin + W1,max + ǫ

ǫ

m

(46)

6. If W1(t), W2(t) and S(t) are i.i.d. over slots, then
the time-average cost under the dynamic algorithm is
within Bext/V of the optimal value:

lim
t→∞

1

t

t−1
X

τ=0

E {P (τ)C(τ) + 1R(τ)Crc + 1D(τ)Cdc}

≤ φ̂ext + Bext/V (47)

where Bext is a constant given by Bext = (Ppeak +

Dmax)2 +
(W1,max)2+ǫ2

2
+B and φ̂ext is the optimal so-

lution to P4 under any feasible control algorithm (pos-
sibly with knowledge of future events).

Thus, by choosing larger V , the time-average cost under
the dynamic algorithm can be pushed closer to the mini-
mum possible value φopt. However, this increases the worst
case delay bound yielding a O(1/V, V) utility-delay tradeoff.
Also note that V max

ext limits how large V can be chosen.

Proof. See [19].

7. SIMULATION-BASED EVALUATION
We evaluate the performance of our control algorithm us-

ing both synthetic and real pricing data. To gain insights
into the behavior of the algorithm and to compare with the
optimal offline solution, we first consider the basic model

50 100 150 200 250 300
32

33

34

35

36

37

38

39

40

41

Y
max

 (MW−minute)

A
ve

ra
g

e
 C

o
st

 (
$

/H
o

u
r)

Dynamic Control Algorithm
Optimal Offline Cost
Minimum Cost
Cost with No Battery

Figure 9: Average Cost per Hour vs. Ymax.

and use a simple periodic unit cost and workload process as
shown in Figs. 7 and 8. These values repeat every 24 hours
and the unit cost does not depend on P (t). From Fig. 7, it
can be seen that Cmax = $100 and Cmin = $50. Further, we
have that χmin = Cmax = 100. We assume a slot size of 1
minute so that the control decisions on P (t), R(t),D(t) are
taken once every minute. We fix the parameters Rmax = 0.2
MW-slot, Dmax = 1.0 MW-slot, Crc = Cdc = 0, Ymin = 0.
We now simulate the basic control algorithm of Sec. 5.1.1
for different values of Ymax and with V = Vmax. For each
Ymax, the simulation is performed for a duration of 4 weeks.

In Fig. 9, we plot the average cost per hour under the
dynamic algorithm for different values of battery size Ymax.
It can be seen that the average cost reduces as Ymax is in-
creased and converges to a fixed value for large Ymax, as
suggested by Theorem 1. For this simple example, we can
compute the minimum possible average cost per hour over
all battery sizes (this corresponds to φ̂ of Sec. 4), and this
is given by $33.23 which is also the value to which the dy-
namic algorithm converges as Ymax is increased. Moreover,
in this example, we can also compute the optimal offline cost
for each value of Ymax (corresponding to φopt). These are
also plotted in Fig. 9. It can be seen that, for each Ymax,
the dynamic algorithm performs quite close to the corre-
sponding optimal value, even for smaller values of Ymax.
Note that Theorem 1 provides such guarantees only for suf-
ficiently large values of Ymax. Finally, the average cost per
hour when no battery is used is given by $39.90.

We next consider a six-month data set of average hourly
spot market prices for the Los Angeles Zone LA1 obtained
from CAISO [1]. These prices correspond to the period
01/01/2005−06/30/2005 and each value denotes the aver-
age price of 1 MW-Hour of electricity. A portion of this
data corresponding to the first week of January is plotted in
Fig. 1. We fix the slot size to 5 minutes. The unit cost C(t)
obtained from the data set for each hour is assumed to be
fixed for that hour. Furthermore, we assume that the unit
cost does not depend on the total power drawn P (t).

In our experiments, we assume that the data center re-
ceives workload in an i.i.d fashion. Specifically, every slot,
W (t) takes values from the set [0.1,1.5] MW uniformly at
random. We fix the parameters Dmax and Rmax to 0.5
MW-slot, Cdc = Crc = $0.1, and Ymin = 0. Also, Ppeak =
Wmax + Rmax = 2.0 MW. We now simulate four algorithms
on this setup for different values of Ymax. The length of
time the battery can power the data center if the draw were

Ymax 15 30 50
Battery, No WP 95% 92% 89%
WP, No Battery 96% 92% 88%

WP, Battery 92% 85% 79%

Table 2: Ratio of total cost under schemes (B), (C),
(D) to the total cost under (A) for different values
of Ymax with i.i.d. W (t) over the 6 month period.

Wmax starting from fully charged battery is given by Ymax

Wmax

slots, each of length 5 minutes. We consider the following
four schemes: (A) “No battery, No WP,” which meets the
demand in every slot using power from the grid and with-
out postponing any workload, (B) “Battery, No WP,” which
employs the algorithm in the basic model without postpon-
ing any workload, (C) “No Battery, WP,”which employs the
extended model for WP but without any battery, and (D)
“Complete,” the complete algorithm of the extended model
with both battery and WP. For (C) and (D), we assume that
during every slot, half of the total workload is delay-tolerant.

We simulate these algorithms to obtain the total cost over
the 6 month period for Ymax ∈ {15, 30, 50} MW-slot. For
(B), we use V = Vmax while for (C) and (D), we use V =
V max

ext with ǫ = Wmax/2. Note that an increased battery
capacity does not have any effect on the performance under
(C). In order to get a fair comparison with the other schemes,
we assume that the worst case delay guarantee that case (C)
must provide for the delay tolerant traffic is the same as that
under (D).

In Table 2, we show the ratio of the total cost under
schemes (B), (C), (D) to the total cost under (A) for these
values of Ymax over the 6 month period. The total cost over
the 6 month period under (A) was found to be $143, 141.11.
It can be seen that (D) combines the benefits of both (B)
and (C) and provides the most cost savings over the base-
line case. For example, with Ymax = 50 MW-slot, the total
savings provided by (B), (C), and (D) are $15, 745, $17, 176
and $30, 000, respectively.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the problem of opportunistically

using energy storage devices to reduce the time average elec-
tricity bill of a data center. Using the technique of Lyapunov
optimization, we designed an online control algorithm that
achieves close to optimal cost as the battery size is increased.

We would like to extend our current framework along sev-
eral important directions including: (i) multiple utilities (or
captive sources such as DG) with different price variations
and availability properties (e.g., certain renewable sources
of energy are not available at all times), (ii) tariffs where
the utility bill depends on peak power draw in addition to
the energy consumption, and (iii) devising online algorithms
that offer solutions whose proximity to the optimal has a
smaller dependence on battery capacity than currently. We
also plan to explore implementation and feasibility related
concerns such as: (i) what are appropriate trade-offs be-
tween investments in additional battery capacity and cost
reductions that this offers? (ii) what is the extent of cost re-
duction benefits for realistic data center workloads? and (iii)
does stored energy make sense as a cost optimization knob in
other domains besides data centers? Our technique could be
viewed as a design tool which, when parameterized well, can

assist in determining suitable configuration parameters such
as battery size, usage rules-of-thumb, time-scale at which
decisions should be made, etc. Finally, we believe that our
work opens up a whole set of interesting issues worth ex-
ploring in the area of consumer-end (not just data centers)
demand response mechanisms for power cost optimization.

Acknowledgments
This work was supported, in part, by the NSF grants CCF-
0811670, CNS-0720456, CNS-0615097, CAREER awards CCF-
0747525 and CNS-0953541, and a research award from HP.
This work was performed while Rahul Urgaonkar was a stu-
dent at the University of Southern California.

9. REFERENCES
[1] California ISO Open Access Same-time Information System

(OASIS) Hourly Average Energy Prices.
http://oasisis.caiso.com.

[2] Lead-acid batteries: Lifetime vs. Depth of discharge.
http://www.windsun.com/Batteries/Battery_FAQ.htm.

[3] A. Bar-Noy, Y. Feng, M. P. Johnson, and O. Liu. When to
reap and when to sow: Lowering peak usage with realistic
batteries. In Proc. 7th International Conference on

Experimental Algorithms, 2008.

[4] A. Bar-Noy, M. P. Johnson, and O. Liu. Peak shaving through
resource buffering. In Proc. WAOA, 2008.

[5] D. P. Bertsekas. Dynamic Programming and Optimal Control,
vols. 1 and 2. Athena Scientific, 2007.

[6] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and
R. P. Doyle. Managing energy and server resources in hosting
centers. SIGOPS Oper. Syst. Rev., 35:103–116, Oct. 2001.

[7] M. Gatzianas, L. Georgiadis, and L. Tassiulas. Control of
wireless networks with rechargeable batteries. IEEE Trans.
Wireless. Comm., 9:581–593, Feb. 2010.

[8] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource
allocation and cross-layer control in wireless networks. Found.

and Trends in Networking, 1:1–144, 2006.

[9] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. Drpm: Dynamic speed control for power
management in server class disks. In Proc. ISCA ’03, 2003.

[10] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer:

An Introduction to the Design of Warehouse-Scale Machines.
Morgan & Claypool, 2009.

[11] K. Le, R. Bianchini, M. Martonosi, and T. Nguyen. Cost- and
energy-aware load distribution across data centers. In Proc.
HOTPOWER, 2009.

[12] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power aware page
allocation. SIGOPS Oper. Syst. Rev., 34:105–116, Nov. 2000.

[13] D. Linden and T. B. Reddy. Handbook of Batteries. McGraw
Hill Handbooks, 2002.

[14] M. Marwah, P. Maciel, A. Shah, R. Sharma, T. Christian,
V. Almeida, C. Araújo, E. Souza, G. Callou, B. Silva,
S. Galdino, and J. Pires. Quantifying the sustainability impact
of data center availability. SIGMETRICS Perform. Eval.
Rev., 37:64–68, March 2010.

[15] M. J. Neely. Stochastic Network Optimization with
Application to Communication and Queueing Systems.
Morgan & Claypool, 2010.

[16] M. J. Neely, A. S. Tehrani, and A. G. Dimakis. Efficient
algorithms for renewable energy allocation to delay tolerant
consumers. In Proc. IEEE SmartGridComm, 2010.

[17] S. Park, W. Jiang, Y. Zhou, and S. Adve. Managing
energy-performance tradeoffs for multithreaded applications on
multiprocessor architectures. In Proc. ACM SIGMETRICS,
2007.

[18] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and
B. Maggs. Cutting the electric bill for internet-scale systems.
In Proc. SIGCOMM, 2009.

[19] R. Urgaonkar, B. Urgaonkar, M. J. Neely, and
A. Sivasubramaniam. Optimal power cost management using
stored energy in data centers. arXiv Technical Report:

arXiv:1103.3099v2, March 2011.

[20] Q. Zhu, F. David, C. Devaraj, Z. Li, Y. Zhou, and P. Cao.
Reducing energy consumption of disk storage using
power-aware cache management. In Proc. HPCA, 2004.

