
Chapter

LAGRANGIAN METHODS FOR O(1/t)

CONVERGENCE IN CONSTRAINED CONVEX
PROGRAMS

Michael J. Neely , Hao Yu

Reference info: M. J. Neely and H. Yu, “Lagrangian Methods for O(1/t)
Convergence in Constrained Convex Programs.” Convex Optimization: Theory,
Methods, and Applications, edited by Arto Ruud, Nova Publishers, Jan. 2019.

Abstract

This chapter considers Lagrangian methods for numerical solutions to
constrained convex programs. The dual subgradient algorithm is shown
to achieve an ε-approximate solution with convergence timeO(1/ε2). An
enhanced algorithm is shown to provide an improvedO(1/ε) convergence
time. Both algorithms turn the constrained minimization problem into a
sequence of unconstrained minimizations. For the dual subgradient algo-
rithm, it is shown that a Lagrange multiplier update resembles a queueing
equation. Max-Weight and Lyapunov drift methods for queues are used to
provide a simple performance analysis. For the enhanced algorithm, the
traditional Lagrange multiplier update is modified to take a soft reflection
across the zero boundary. This, together with a modified drift expres-
sion, is shown to yield improved performance with error that decays like
O(1/t), where t is the number of iterations.
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1. Introduction

This chapter considers Lagrangian or dual based methods for computing an
approximate solution to a general convex program. Fix n and k as positive
integers. The problem of interest is to find a vector x = (x1, . . . , xn) ∈ Rn that
solves:

Minimize: f(x) (1)

Subject to: gi(x) ≤ 0 ∀i ∈ {1, . . . , k} (2)

x ∈ X (3)

where X ⊆ Rn is a given convex set; f : X → R is a given continuous and
convex function (called the objective function); gi : X → R for i ∈ {1, . . . , k}
are given continuous and convex functions (called constraint functions). In this
chapter, the functions f , g1, . . . , gk are not required to be smooth or differen-
tiable.

The main idea is reduce the constrained problem (1)-(3) to a sequence of un-
constrained problems. The complexity of the algorithm depends on the number
of iterations in the sequence that are needed to produce an approximate solu-
tion within desired error bounds. The complexity also depends on the amount
of computation required to solve the unconstrained problem on each iteration.
Lagrangian algorithms are of interest because the computational complexity of
each unconstrained problem is typically low. Two Lagrangian algorithms are
considered in this chapter. The first is the well known dual subgradient algo-
rithm. The second algorithm is an enhancement developed in [14] that has a
similar per-iteration complexity as the dual subgradient algorithm, but uses a
smaller number of iterations.

1.1 Definition of ε-optimal solution

It is assumed throughout this chapter that the problem (1)-(3) is feasible, mean-
ing that there is at least one vector x ∈ Rn that satisfies the constraints (2)-(3).
A vector x∗ ∈ Rn is called an optimal solution to problem (1)-(3) if it satisfies
the constraints (2)-(3) (so that x∗ ∈ X and gi(x∗) ≤ 0 for all i ∈ {1, . . . , k}),
and if the inequality f(x∗) ≤ f(x) holds for all other vectors x ∈ Rn that sat-
isfy the constraints (2)-(3). It is assumed that problem (1)-(3) has at least one
optimal solution x∗.
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Fix ε > 0. A vector x ∈ X is called an ε-optimal solution to problem (1)-(3)
if it satisfies

f(x) ≤ f(x∗) + ε (4)

gi(x) ≤ ε ∀i ∈ {1, . . . , k} (5)

where x∗ is an optimal solution to (1)-(3). Hence, an ε-optimal solution is a
vector x in the set X that violates the inequality constraints by at most ε and that
has an objective value f(x) that is at most ε larger than the optimal objective
value f(x∗). A vector x ∈ X is said to be anO(ε)-optimal solution if it satisfies
(4)-(5) with the exception that the “ε” on each right-hand-side is replaced by
some constant multiple of ε.

Section 2.4 describes the dual subgradient algorithm and shows that it finds
an O(ε)-optimal solution after O(1/ε2) iterations. Hence, the convergence time
is O(1/ε2). Section 3.2 describes an enhanced algorithm with an improved
convergence time of O(1/ε).

1.2 Introductory exercises

Jensen’s inequality for a convex function f : X → R implies that

1

T

T−1∑
t=0

f(x(t)) ≥ f
(

1
T

∑T−1
t=0 x(t)

)
for all integers T > 0 and all vector sequences {x(0), x(1), . . . x(T − 1)} that
satisfy x(t) ∈ X for all t. The following exercises require only Jensen’s in-
equality with the definition of ε-optimal solution.

Exercise 1. (Convergence time of dual subgradient) Fix ε > 0. Suppose we
have an algorithm that produces a sequence of vectors {x(0), x(1), x(2), . . .},
with x(t) ∈ X for all t ∈ {0, 1, 2, . . .}, that satisfies the following for all posi-
tive integers T :

T−1∑
t=0

f(x(t)) ≤ Tf(x∗) + Tε

T−1∑
t=0

gi(x(t)) ≤ 1

ε
+
√
T ∀i ∈ {1, . . . , k}
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Define x(T ) = 1
T

∑T−1
t=0 x(t). Choose a positive integer T for which x(T ) is

an ε-optimal solution. Hint: Consider T of the form a/ε2 for some constant a.
This value T is the convergence time. Theorem 2 in Section 2.6 shows the dual
subgradient algorithm yields inequalities that are structurally similar to these.

Exercise 2. (Convergence time of enhanced algorithm) Suppose we have an
algorithm that produces a sequence of vectors {x(0), x(1), x(2), . . .}, with
x(t) ∈ X for all t ∈ {0, 1, 2, . . .}, that satisfies the following for all positive
integers T :

T−1∑
t=0

f(x(t)) ≤ Tf(x∗) + c

T−1∑
t=0

gi(x(t)) ≤ c ∀i ∈ {1, . . . , k}

for some constant c > 0. Fix ε > 0. Define x(T ) = 1
T

∑T−1
t=0 x(t). Choose a

positive integer T for which x(T ) is an ε-optimal solution. Your answer should
have an asymptotically better convergence time compared with that of Exercise
1. Section 3.2 presents an algorithm that yields inequalities similar to these.

2. Dual subgradient algorithm

This section develops and analyzes the dual subgradient algorithm as a numer-
ical solution to problem (1)-(3). The dual subgradient algorithm received its
name because it was originally developed using duality concepts. The tradi-
tional duality analysis requires additional assumptions such as strict convexity
(see, for example, [1] [2]). Later, the dual subgradient algorithm was shown
to be a special case of a more general drift-plus-penalty algorithm for stochas-
tic problems [9] [8]. Rather than motivated by duality concepts, the drift-plus-
penalty analysis is motivated by queueing theory concepts and introduces a sim-
ple averaging step that removes the need for strict convexity. This section shall
use the queueing theory development. This is arguably simpler and provides
physical intuition that shall be useful in the enhanced algorithm of Section 3.2.
For completeness, a brief discussion of the traditional duality motivations are
given in Section 2.8.
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2.1 Compact set assumption

It is convenient to impose the additional assumption that the convex setX is also
a compact set. That is, the set X is assumed to be convex, closed, and bounded.
Since the functions f, g1, . . . , gk are continuous over the domainX , the assump-
tion that X is a compact set ensures that these functions are bounded over X .
This compactness assumption is used for the dual subgradient algorithm, but is
not required for the enhanced algorithm of Section 3.2.

2.2 Time averages and virtual queues

Consider the convex program (1)-(3). The problem shall be solved over a se-
quence of time slots t ∈ {0, 1, 2, . . .}, where x(t) ∈ X is a decision vector
that is computed on slot t. The particular decision vectors shall be determined
later. This subsection demonstrates a time average property that holds for every
sequence of vectors x(t) ∈ X . Fix T as a positive integer and define x(T ) as
the time average of the x(t) vectors over the first T slots:

x(T ) =
1

T

T−1∑
t=0

x(t)

Notice that x(T ) is a convex combination of points in the convex set X , and so
x(T ) ∈ X . By Jensen’s inequality for the convex functions f, g1, . . . , gk we
have

f(x(T )) ≤ 1

T

T−1∑
t=0

f(x(t))

gi(x(T )) ≤ 1

T

T−1∑
t=0

gi(x(t)) ∀i ∈ {1, . . . , k}

These inequalities suggest that the convex program (1)-(3) can be solved
by choosing decisions x(t) ∈ X over time that minimize the time average
of f(x(t)) subject to time averages of gi(x(t)) being less than or equal to
zero. To enforce the desired inequality constraints gi(x) ≤ 0 in (2), for
each i ∈ {1, . . . , k}, define a sequence Qi(t) that evolves in discrete time
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t ∈ {0, 1, 2, . . .} according to the update equation:

Qi(t+ 1) = max {Qi(t) + gi(x(t)), 0} (6)

with initial condition Qi(0) = 0. The sequence Qi(t) shall be called a virtual
queue process for reasons explained after the following lemma.

Lemma 1. (Virtual queues) Consider the update rule (6) under any sequence
of vectors x(t) ∈ X for t ∈ {0, 1, 2, . . .}. Assume the functions gi : X → R
are convex for each i ∈ {1, . . . , k}. Then for all positive integers T and all
i ∈ {1, . . . , k} we have

T−1∑
t=0

gi(x(t)) ≤ Qi(T ) (7)

and so by Jensen’s inequality

gi(x(T )) ≤ Qi(T )

T
(8)

Proof. Fix i ∈ {1, . . . , k} and t ∈ {0, 1, 2, . . .}. We have from (6)

Qi(t+ 1) = max {Qi(t) + gi(x(t)), 0}
≥ Qi(t) + gi(x(t))

and so
Qi(t+ 1)−Qi(t) ≥ gi(x(t))

Let T be a positive integer. Summing the above over t ∈ {0, 1, . . . , T−1} gives

T−1∑
t=0

[Qi(t+ 1)−Qi(t)]︸ ︷︷ ︸
Qi(T )−Qi(0)

≥
T−1∑
t=0

gi(x(t))

The summation
∑T−1

t=0 [Qi(t + 1) −Qi(t)] is called a telescoping sum because
of its simple cancellations. Substituting Qi(0) = 0 proves (7). Dividing by T
and using Jensen’s inequality proves (8).
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The above lemma shows that if Qi(T )/T is small, then the vector x(T ) is
close to satisfying the desired inequality constraint gi(x) ≤ 0. The lemma is
motivated by the following physical intuition about queueing systems. Notice
that we can write

gi(x(t)) = gi(x(t))+ − gi(x(t))−

where gi(x(t))+ = max{gi(x(t)), 0} and gi(x(t))− = −min{gi(x(t)), 0} are
defined as the positive and negative parts of the value gi(x(t)). Thus, the update
equation (6) is equivalent to:

Qi(t+ 1) = max

Qi(t) + gi(x(t))+︸ ︷︷ ︸
arrivals

− gi(x(t))−︸ ︷︷ ︸
service

, 0


This is a standard discrete time queueing equation, where Qi(t) can be viewed
as the queue backlog on slot t, gi(x(t))+ can be viewed as the new arrivals on
slot t, and gi(x(t))− can be viewed as the offered service on slot t. It says that
the queue backlog on slot t + 1 is equal to the queue backlog on slot t, plus
the new arrivals, minus the offered service. The equation takes a max with zero
since queue backlog cannot be negative. The sequence Qi(t) is called a virtual
queue process because the arrivals, service, and backlog are not objects in a
physical system. Rather, they exist only as variables in a virtual system that is
implemented in software. Lemma 1 transforms the problem of finding a vector
x ∈ X to (approximately) satisfy gi(x) ≤ 0 into a queue control problem that
seeks a sequence of vectors x(t) ∈ X that maintain small values of Qi(T )/T .

2.3 Lyapunov drift

Motivated by the physical intuition of queueing systems described in the previ-
ous subsection, we employ a drift-based algorithm that stabilizes the queues
while optimizing a performance objective. To this end, for each slot t ∈
{0, 1, 2, . . .} define the virtual queue vector Q(t) = (Q1(t), . . . , Qk(t)) and
define L(t) by

L(t) =
1

2
||Q(t)||2 =

1

2

k∑
i=1

Qi(t)
2
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where, throughout this chapter, the norm ||·|| denotes the standard Euclidean
norm (the square root of the sum of squares of the vector components). The
value L(t) is a scalar measure of the size of the queue vector on slot t and shall
be called a Lyapunov function. Define ∆(t) as the change in L(t) from slot t to
slot t+ 1, which shall be called the Lyapunov drift:1

∆(t) = L(t+ 1)− L(t)

Lemma 2. (Lyapunov drift) Consider the update rule (6) under any sequence
of decision vectors x(t) ∈ X for t ∈ {0, 1, 2, . . .}. Suppose that X ⊆ Rn is a
compact set. Then

∆(t) ≤ B +
k∑
i=1

Qi(t)gi(x(t)) ∀t ∈ {0, 1, 2, . . .}

where B is defined

B = sup
x∈X

1

2

k∑
i=1

gi(x)2

The constant B is finite since the functions gi are continuous over the compact
domain X .

Proof. Fix i ∈ {1, . . . , k} and t ∈ {0, 1, 2, . . .}. By (6),

Qi(t+ 1)2 = max{Qi(t) + gi(x(t)), 0}2

(a)

≤ [Qi(t) + gi(x(t))]2

= Qi(t)
2 + gi(x(t))2 + 2Qi(t)gi(t)

1Traditionally, a Lyapunov function is defined on the state space of a system. Our func-
tion L(t) = 1

2
||Q(t)||2 can indeed be viewed as a function of the current queue state vector

Q(t) = (Q1(t), . . . , Qk(t)). The Lyapunov drift is traditionally defined for stochastic prob-
lems as a conditional expected change in the Lyapunov function given the current state, namely,
E [L(t+ 1)− L(t)|Q(t)]. There is nothing stochastic in this chapter and so the conditional ex-
pectation can be removed. We still call the resulting quantity L(t+ 1)−L(t) the Lyapunov drift.
To emphasize dependence on the queue state vector Q(t), one could use alternative notation
L̃(Q(t)) and ∆̃(Q(t)), where L(t) = L̃(Q(t)) and ∆(t) = ∆̃(Q(t)).
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where (a) holds by the fact (max{r, 0})2 ≤ r2 for all r ∈ R. Summing over
i ∈ {1, . . . , k} and dividing by 2 gives

1

2

k∑
i=1

Qi(t+ 1)2

︸ ︷︷ ︸
L(t+1)

≤ 1

2

k∑
i=1

Qi(t)
2

︸ ︷︷ ︸
L(t)

+
1

2

k∑
i=1

gi(x(t))2 +
k∑
i=1

Qi(t)gi(x(t))

Observing that 1
2

∑k
i=1 gi(x(t))2 ≤ B yields the result.

2.4 The dual subgradient algorithm

Fix ε > 0. The technique is to choose x(t) ∈ X on each slot t to minimize a
bound on the following drift-plus-penalty expression:

ε∆(t)︸︷︷︸
drift

+ f(x(t))︸ ︷︷ ︸
penalty

where ε is a weight that determines the relative importance of minimizing the
drift component ∆(t) versus minimizing the “penalty” component f(x(t)). The
parameter ε > 0 is called the stepsize (for reasons explained in Section 2.8). It
shall be shown that smaller values of ε place less emphasis on drift minimization
and lead to larger virtual queue sizes, with the benefit of yielding solutions that
are closer to minimizing the objective function f . By Lemma 2 we have the
bound

ε∆(t) + f(x(t)) ≤ εB + f(x(t)) + ε

k∑
i=1

Qi(t)gi(x(t))︸ ︷︷ ︸
minimize every slot t

(9)

Every slot t ∈ {0, 1, 2, . . .} the algorithm observes the current queue vector
(Q1(t), . . . , Qk(t)) and chooses x(t) ∈ X to greedily minimize the expression
marked by an underbrace in (9).

Specifically, the dual subgradient algorithm for problem (1)-(3) is as fol-
lows: Fix the stepsize ε > 0, initialize Qi(0) = 0 for all i ∈ {1, . . . , k}, and
formally define x(0) = 0. Every slot t ∈ {0, 1, 2, . . .} do
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• Choose x(t) ∈ X to minimize the expression:2

f(x(t)) + ε

k∑
i=1

Qi(t)gi(x(t))

• Update virtual queues for each i ∈ {1, . . . , k} via:

Qi(t+ 1) = max {Qi(t) + gi(x(t)), 0}

• Update the time average vector x(t) via:

x(t+ 1) =

(
t

t+ 1

)
x(t) +

(
1

t+ 1

)
x(t)

2.5 Basic performance analysis for dual subgradient algorithm

Theorem 1. (Basic performance) Suppose the set X is convex and compact
and the convex program (1)-(3) has an optimal solution x∗ ∈ X . Fix ε > 0 and
implement the above dual subgradient algorithm using stepsize ε. Then for all
T ∈ {1, 2, 3, . . .} we have x(T ) ∈ X and

f (x(T )) ≤ f(x∗) + εB (10)

gi (x(T )) ≤
√

2(f(x∗)− fmin)

εT
+

2B

T
∀i ∈ {1, . . . , k} (11)

where constants fmin and B are defined:3

B = sup
x∈X

1

2

k∑
i=1

gi(x)2

fmin = inf
x∈X

f(x)

In particular, for any desired ε > 0, implementing the dual subgradient algo-
rithm with stepsize ε produces an O(ε)-optimal solution whenever the number
of iterations satisfies T ≥ 1/ε3.

2This seeks to minimize a continuous function over the compact set X , and so at least one
minimizer exists.

3The constantsB, fmin are finite because functions f and gi are continuous over the compact
domain X .
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Proof. Fix t ∈ {0, 1, 2, . . .}. By (9) we have

ε∆(t) + f(x(t)) ≤ εB + f(x(t)) + ε
k∑
i=1

Qi(t)gi(x(t))

(a)

≤ εB + f(x∗) + ε
k∑
i=1

Qi(t)gi(x
∗)

(b)

≤ εB + f(x∗)

where (a) holds because the algorithm chooses x(t) to minimize f(x) +
ε
∑k

i=1Qi(t)gi(x) over all x ∈ X , and x∗ is just another vector in X ; (b) holds
because Qi(t) ≥ 0 and gi(x∗) ≤ 0 for all i ∈ {1, . . . , k} (since x∗ satisfies
the constraints of problem (1)-(3)). Fix T as a positive integer. Substituting
∆(t) = L(t+ 1)− L(t) gives

ε[L(t+ 1)− L(t)] + f(x(t)) ≤ εB + f(x∗)

Summing over t ∈ {0, . . . , T − 1} and observing the telescoping sum gives

ε[L(T )− L(0)] +
T−1∑
t=0

f(x(t)) ≤ εBT + Tf(x∗)

Substituting L(0) = 0, L(T ) = 1
2 ||Q(T )||2, and dividing by T gives

ε

2T
||Q(T )||2 +

1

T

T−1∑
t=0

f(x(t)) ≤ f(x∗) + εB (12)

The inequality (10) follows from the above inequality by noting that ||Q(T )|| ≥
0 and using Jensen’s inequality for the convex function f : X → R.

To prove (11), rearranging (12) gives

||Q(T )||2

T 2
≤ 2

εT 2

T−1∑
t=0

[f(x∗)− f(x(t))] +
2B

T

≤ 2(f(x∗)− fmin)

εT
+

2B

T
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Hence for each i ∈ {1, . . . , k}

Qi(T )

T
≤ ||Q(T )||

T
≤
√

2(f(x∗)− fmin)

εT
+

2B

T

which yields (11) upon application of the virtual queue lemma (Lemma 1).

2.6 Improved convergence with a Lagrange multiplier assumption

Theorem 1 ensures the dual subgradient algorithm produces an O(ε)-optimal
solution with convergence time O(1/ε3). The convergence time bound can be
improved to O(1/ε2) under the following Lagrange multiplier assumption.

Assumption 1. (Lagrange multiplier) Assume the problem (1)-(3) has a La-
grange multiplier vector µ = (µ1, . . . , µk) ∈ Rk, so that µi ≥ 0 for all
i ∈ {1, . . . , k} and

f(x) +

k∑
i=1

µigi(x) ≥ f(x∗) ∀x ∈ X (13)

where x∗ is an optimal solution to (1)-(3).

The Lagrange multiplier assumption (Assumption 1) is mild and holds in
many cases, such as whenever a Slater condition holds (so that there is a vector
z ∈ X and a real number δ > 0 such that gi(z) ≤ −δ for all i ∈ {1, . . . , k})
or when the set X is polyhedral and the constraint functions are affine (see, for
example, [1] [2]).

Theorem 2. (Performance with a Lagrange multiplier) Suppose the set X is
convex and compact, the convex program (1)-(3) has an optimal solution x∗ ∈
X , and there exists a (nonnegative) Lagrange multiplier vector µ that satisfies
(13). Fix ε > 0 and implement the dual subgradient algorithm using stepsize ε.
Then for all T ∈ {1, 2, 3, . . .} we have x(T ) ∈ X and

f (x(T )) ≤ f(x∗) + εB (14)

gi (x(T )) ≤ ||µ||
Tε

+

√
||µ||2
T 2ε2

+
2B

T
∀i ∈ {1, . . . , k} (15)
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where ||µ|| =
√∑k

i=1 µ
2
i , and the constants fmin and B are as defined in

Theorem 1. In particular, for any desired ε > 0, implementing the dual subgra-
dient algorithm with stepsize ε produces anO(ε)-optimal solution whenever the
number of iterations satisfies T ≥ 1/ε2.

Proof. Inequality (14) has already been proven in Theorem 1. It suffices to
prove (15). Rearranging (12) we have for all positive integers T :

||Q(T )||2 ≤ 2BT +
2

ε

T−1∑
t=0

[f(x∗)− f(x(t))]

(a)

≤ 2BT +
2

ε

T−1∑
t=0

k∑
i=1

µigi(x(t))

= 2BT +
2

ε

k∑
i=1

µi

T−1∑
t=0

gi(x(t))

(b)

≤ 2BT +
2

ε

k∑
i=1

µiQi(T )

(c)

≤ 2BT +
2

ε
||µ|| · ||Q(T )||

where (a) holds by the Lagrange multiplier assumption (13) and the fact that
x(t) ∈ X for all t; (b) holds by the virtual queue lemma (Lemma 1); (c) holds by
the Cauchy-Schwarz inequality. Define y = ||Q(T )||, b = −2

ε ||µ||, c = −2BT .
The above inequality reduces to the quadratic inequality y2 + by+ c ≤ 0 and so

y ≤ −b+
√
b2 − 4c

2
=
||µ||
ε

+

√
||µ||2
ε2

+ 2BT

Since y = ||Q(T )||, for each i ∈ {1, . . . , k} we have

Qi(T )

T
≤ ||Q(T )||

T
≤ ||µ||

Tε
+

√
||µ||2
T 2ε2

+
2B

T

The result of (15) follows by application of the virtual queue lemma (Lemma
1).
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2.7 An interpretation of steepest ascent over dual variables

The dual subgradient algorithm specified above can equivalently be described
using scaled values qi(t) = εQi(t). Specifically, initialize qi(0) = 0 for all
i ∈ {1, . . . , k}. Every slot t ∈ {0, 1, 2, . . .} do the following:

• Choose x(t) ∈ X to minimize the expression:

f(x(t)) +

k∑
i=1

qi(t)gi(x(t)) (16)

• Update via
qi(t+ 1) = max {qi(t) + εgi(x(t)), 0} (17)

• Update the average vector x(t) as before.

The traditional motivation for the dual subgradient algorithm comes from
examining the dual function of the convex program (1)-(3). Define D ⊆ Rk as
the set of dual variables:

D = {(q1, . . . , qk) ∈ Rk : qi ≥ 0 ∀i ∈ {1, . . . , k}}

The dual function d : D → R is defined:

d(q) = inf
x∈X

[
f(x) +

k∑
i=1

qigi(x)

]
(18)

where the infimum is achievable and finite because the functions f, g1, . . . , gk
are continuous and X is compact. With this definition, it follows that if problem
(1)-(3) has an optimal solution x∗, and if there exists a Lagrange multiplier
vector µ ∈ D that satisfies (13), then for all q ∈ D and all x ∈ X we have

d(q)
(a)

≤ f(x∗)
(b)

≤ f(x) +

k∑
i=1

µigi(x) (19)

where (a) holds by the infimum definition of d(q) in (18) and the fact x∗ ∈ X
and qigi(x∗) ≤ 0 for all i; (b) holds by the Lagrange multiplier assumption (13).
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Taking an infimum of both sides of this inequality over all x ∈ X and using the
definition of d(µ) in (18) gives

d(q) ≤ f(x∗) ≤ d(µ) ∀q ∈ D (20)

In particular, the Lagrange multiplier vector µ ∈ D maximizes d(q) over all
other vectors q ∈ D. The maximum value is d(µ) = f(x∗). Furthermore, one
can show (see, for example, [1]) that the dual function d(q) is concave and has
the following subgradient at each point q ≥ 0:

d′(q) = (g1(xq), . . . , gk(xq))

with xq ∈ X defined as any vector that satisfies:

xq ∈ arg inf
x∈X

[
f(x) +

k∑
i=1

qigi(x)

]
With this interpretation, we can attempt to find the optimal Lagrange mul-

tiplier µ by attempting to maximizing the (concave) dual function d(q) with a
steepest ascent algorithm that sequentially computes guesses q(t) and updates
these guesses over time. Every step t, the new guess q(t + 1) is computed by
starting with q(t) and moving in the direction of the subgradient d′(q(t)) with a
stepsize ε > 0. Specifically:

• Initialize a Lagrange multiplier guess q(0) = 0 ∈ Rk.

• For each step t ∈ {0, 1, 2, . . .}, observe the current q(t) ∈ Rk and com-
pute the subgradient d′(q(t)) via

x(t) ∈ arg inf
x∈X

[
f(x) +

k∑
i=1

qi(t)gi(x)

]
(21)

d′(q(t)) = [g1(x(t)), g2(x(t)), . . . , gk(x(t))] (22)

The x(t) decision in (21) is identical to the decision of (16).

• Choose q(t+ 1) ∈ Rk by moving from q(t) in the direction d′(q(t)) with
stepsize ε:

q(t+ 1) = ProjD[q(t) + εd′(q(t))] (23)
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where ProjD[·] denotes a projection onto the set D ⊆ Rk of nonnegative
vectors. The projection takes the componentwise maximum with zero.
Substituting (22) into (23) reveals that the update (23) is identical to the
update (17).

The steps (21)-(23) of this steepest ascent procedure are identical to the
steps (16)-(17) of the dual subgradient algorithm. It is remarkable that pro-
jecting onto the set of nonnegative dual variables is the same as the max{·, 0}
operation of a queueing equation. However, this steepest ascent procedure fo-
cuses on the dual variables q(t) and does not compute a time average of the
primal variables x(t). Steepest ascent does not always produce q(t) sequences
that converge to the optimal value µ (see [12] [1] [2] for analysis of steepest
descent for convex functions). Further, even if the optimal µ were known ex-
actly, it is not always clear how to use µ to find the solution x∗ to the desired
convex program (1)-(3). It cannot always be done by solving the minimization
problem infx∈X [f(x) +

∑k
i=1 µigi(x)] because, while every optimal solution

x∗ to the convex program is also a solution to this minimization problem, there
may be infinitely many more solutions to this minimization problem, including
ones that do not satisfy the inequality constraints (2).4 This is where the time
averaging step and the virtual queue analysis come to the rescue: The sequential
procedure for computing the primal variables x(t) leads to a time averaged vec-
tor x(t) that gets closer and closer to satisfying the desired inequality constraints
(Theorems 1 and 2).

2.8 Dual subgradient algorithm exercises

Exercise 3. (Approximate implementation) Suppose that an approximate ver-
sion of the dual subgradient algorithm is implemented (with stepsize ε > 0),

4If the function f : X → R is strictly convex it can be shown that x∗ is the unique solution to
infx∈X [f(x) +

∑k
i=1 µigi(x)]. Strict convexity fails when f is an affine function. For example,

if X is the unit hypercube [0, 1]n and f, g1, . . . , gk are affine functions, then infx∈X [f(x) +∑k
i=1 µigi(x)] reduces to separately choosing each component xi ∈ [0, 1] to minimize an affine

function, and can be solved by choosing binary-valued components xi ∈ {0, 1}. However,
the linear program of finding x ∈ [0, 1]n to minimize f(x) subject to gi(x) ≤ 0 for all i ∈
{1, . . . , k} may not have binary-valued solutions. Nevertheless, the time average of the binary-
valued primal variables x(t) chosen at each step of the dual subgradient algorithm can approach
a non-binary solution to the linear program (as shown in Theorems 1 and 2).
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with the only difference that every slot t ∈ {0, 1, 2, . . .} a vector x(t) ∈ X is
chosen to satisfy

f(x(t)) + ε

k∑
i=1

Qi(t)gi(x(t)) ≤ εC + f(x) + ε

k∑
i=1

Qi(t)gi(x) ∀x ∈ X

for some constant C > 0. Thus, x(t) does not necessarily minimize the de-
sired expression, but comes within εC of minimizing it (exact minimization holds
when C = 0). Use (9) to show that for all slots t we have:

ε∆(t) + f(x(t)) ≤ ε(B + C) + f(x(t)) + ε
k∑
i=1

Qi(t)gi(x(t))

Follow the proofs of Theorems 1 and 2 to verify that, under the same assump-
tions as the theorems, the inequalities (10)-(11) and (14)-(15) still hold when
all instances of “B” are replaced by “B + C.”

Exercise 4. (Separable problems) Consider (1)-(3) with X = [0, 1]n and f ,
g1, . . . , gk defined as separable sums of single variable convex functions:

f(x) =
∑n

j=1 fj(xj)

gi(x) =
∑n

j=1 gij(xj) ∀i ∈ {1, . . . , k}

Show that the choice of x(t) ∈ X at every step of the dual subgradient algorithm
(with stepsize ε > 0) reduces to separately choosing each component xj(t) to
minimize a single-variable convex function over the interval [0, 1].

Exercise 5. (Network flow control) Consider the 2-link network with 4 traffic
flows shown in Fig. 1. The link capacities C1, C2 are given positive numbers.
Let x = (x1, x2, x3, x4) be the vector of flow rates. The problem is to maximize
a concave network utility function subject to the link capacity constraints:

Maximize:
4∑
i=1

wi log(1 + xi)

Subject to: x1 + x2 + x3 ≤ C1

x2 + x3 + x4 ≤ C2

(x1, x2, x3, x4) ∈ X
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C1# C2#

x1#
x2#

x3# x4#

Figure 1. The 2-link network with 4 traffic flows for the network utility maxi-
mization problem of Exercise 5.

where X = [0, 1]4 and w1, . . . , w4 are given positive constants.5

a) Write the corresponding convex program in the form (1)-(3). Hint: use
f(x) = −

∑4
i=1wi log(1 + xi).

b) Suppose we implement the dual subgradient algorithm with stepsize ε >
0. Specify the update equations for the two virtual queues Q1(t) and Q2(t).

c) Continuing part (b), specify the (separable) decisions xi(t) ∈ [0, 1] for
each t ∈ {0, 1, 2, . . .} and each i ∈ {1, . . . , 4}. Be careful to distinguish cases
when one or more queues are empty, and to ensure all decisions satisfy 0 ≤
xi(t) ≤ 1.

2.9 Notes on the dual subgradient algorithm

• The O(1/ε2) convergence time result for the dual subgradient algorithm
(with use of the averaged vector x(T )) was proven under a more stringent
Slater condition in [11], and independently in [6]. The O(1/ε2) conver-
gence time result under the weaker Lagrange multiplier assumption was
proven in [10].

• The work [13] shows that, under certain piecewise linear assumptions,
taking a time average over the second half interval {T/2, . . . , T} gives

5It can be shown that the convex program for the network flow problem of Exercise 5 is
strongly convex and hence the dual subgradient algorithm enjoys a faster O(1/ε) convergence
[5] [15]. This problem would not be strongly convex if it involved routing over multiple paths,
since the constraints would then contain additional variables that do not appear in the objective
function. In that case the convergence of dual subgradient reverts to the slowerO(1/ε2) time, and
the enhanced algorithm of Section 3.2 would be needed to achieve the fasterO(1/ε) convergence.
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the dual subgradient algorithm an O(1/ε) convergence time.

• The dual subgradient algorithm is known to achieve an improved O(1/ε)
convergence time if the objective function f is strongly convex [5] [15].
The convergence time is O(log(1/ε)) if f is strongly convex and the dual
function has a locally quadratic property (such as being strongly concave)
[15].

• Primal-dual algorithms that offer O(1/ε2) convergence time while re-
placing the minimization step with a projection onto the set X are given
in [7] [17].

• Stochastic generalizations of the dual subgradient algorithm are given in
[9] [4] [8].

3. An enhanced Lagrangian algorithm

This section considers the convex program (1)-(3) and presents a Lagrangian
algorithm from [14] that is faster than the dual subgradient algorithm.

3.1 Assumptions

Consider the convex program (1)-(3). Assume X ⊆ Rn is a closed convex
set (not necessarily compact). Assume f : X → R and gi : X → R for
i ∈ {1, . . . , k} are continuous and convex functions. Define g : X → Rk by
g(x) = (g1(x), . . . , gk(x)).

Assumption 2. (Lipschitz continuous constraint functions) Assume the function
g : X → Rk is Lipschitz continuous with parameter β > 0, so that

||g(x)− g(y)|| ≤ β||x− y|| ∀x, y ∈ X

where the norm ||·|| represents the standard Euclidean norm (square root of sum
of squares).

Assume the convex program (1)-(3) has at least one optimal solution. Let x∗

be a particular optimal solution. The Lagrange multiplier assumption (Assump-
tion 1) is assumed to hold, so that there is a nonnegative vector µ = (µ1, . . . , µk)
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such that
f(x) + µT g(x) ≥ f(x∗) ∀x ∈ X

3.2 The enhanced algorithm

The enhanced algorithm for problem (1)-(3) is as follows: Fix an algorithm
parameter α > 0, initialize an arbitrary x(−1) ∈ X , initialize Qi(0) =
max{0,−gi(x(−1))} for all i ∈ {1, 2, . . . , k}, and formally define x(0) =
0 ∈ Rn. Every slot t ∈ {0, 1, 2, . . .} do

• Choose x(t) ∈ X to minimize the expression:6

f(x(t)) +

k∑
i=1

(Qi(t) + gi(x(t− 1)) gi(x(t)) + α||x(t)− x(t− 1)||2

(24)

• Update virtual queues for each i ∈ {1, 2, . . . , k} via:

Qi(t+ 1) = max{Qi(t) + gi(x(t)),−gi(x(t))} (25)

• Update the time average vector x(t) ∈ Rn via:

x(t+ 1) =

(
t

t+ 1

)
x(t) +

(
1

t+ 1

)
x(t)

Compared with the dual subgradient algorithm described in Section 2.4,
the enhanced algorithm updates x(t) by minimizing a modified expression that
introduces an additional quadratic term α||x(t)− x(t− 1)||2 and that changes
the coefficient of each gi(x(t)) from Qi(t) to Qi(t) + gi(x(t− 1)). In addition,
the enhanced algorithm modifies the virtual queue update equation by taking a
max with −gi(x(t)) instead of 0.7

6This seeks to minimize a continuous strongly convex function over the closed convex set X ,
and so a unique minimizer exists.

7One immediate reason for this modification is to ensure the coefficient of each gi(x(t)) in
(24) is non-negative so that the algorithm chooses x(t) ∈ X to minimize a convex expression.
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3.3 Virtual queue properties

The following lemmas specify basic properties of the modified virtual queue up-
date equation (25). For simplicity, only the first lemma is proven (the remaining
proofs are found in [14]).

Lemma 3. (Modified virtual queue) Consider any sequence of decisions x(t) ∈
X for t ∈ {0, 1, 2, . . .}. Under the modified virtual queue (25) we have for all
positive integers T :

T−1∑
t=0

gi(x(t)) ≤ Qi(T )−Qi(0) ∀i ∈ {1, . . . , k}

and so by Jensen’s inequality

gi(x(T )) ≤ Qi(T )−Qi(0)

T
(26)

Proof. Fix i ∈ {1, . . . , k} and fix t ∈ {0, 1, 2, . . .}. Then

Qi(t+ 1) = max{Qi(t) + gi(x(t)),−gi(x(t− 1))}
≥ Qi(t) + gi(x(t))

and so
Qi(t+ 1)−Qi(t) ≥ gi(x(t))

Summing over t ∈ {0, 1, . . . , T − 1} gives the result.

Lemma 4. The enhanced algorithm ensures

1. Qi(t) ≥ 0 for all i ∈ {1, 2, . . . , k} and all t ∈ {0, 1, 2, . . .}.

2. Qi(t)+gi(x(t−1)) ≥ 0 for all i ∈ {1, 2 . . . , k} and all t ∈ {0, 1, 2, . . .}.

3. ||Q(0)|| ≤ ||g(x(−1))|| and ||Q(t)|| ≥ ||g(x(t− 1))|| for all t ∈
{1, 2, . . .}.

Proof. This lemma follows immediately from the virtual queue update equa-
tion. See [14].
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Using the same Lyapunov drift ∆(t) = L(t + 1) − L(t) with L(t) =
1
2 ||Q(t)||2 as before, we have the following new drift inequality under update
rule (25):

Lemma 5. (Drift inequality) Consider the update rule (25) under any sequence
of decision vectors x(t) ∈ X for t ∈ {0, 1, 2, . . .}. Then,

∆(t) ≤ ||g(x(t))||2 +
k∑
i=1

Qi(t)gi(x(t)),∀t ∈ {0, 1, 2, . . .} (27)

Proof. See [14].

At first sight, the above drift inequality under update equation (25) may look
even looser when compared with the drift inequality under (6) shown in Lemma
2. Recall that the B constant in Lemma 2 is an upper bound of 1

2 ||g(x(t))||2
under the compactness assumption of set X . However, the dual subgradient al-
gorithm updates its primal variables x(t) without taking theB term into consid-
eration and hence suffers from a slowO(1/ε2) convergence time. The enhanced
algorithm modifies the x(t) update and the Q(t) update together such that they
jointly cancel the effect of ||g(x(t))||2 to achieve a faster O(1/ε) convergence
time. As a by-product, the enhanced algorithm does require boundedness of the
set X .

3.4 Quadratic pushback

The prox term of our enhanced algorithm turns our ordinary convex objective
function f(x) into a modified function f(x) + α||x− x(t− 1)||2 that has a
special property called strong convexity.

Definition 1. Let X ⊆ Rn be a convex set. Fix c > 0. A function h : X → R is
a c-strongly convex function if the function h(x)− c

2 ||x||
2 is a convex function

overX . A function h is strongly convex if it is c-strongly convex for some c > 0.

It can be shown that every strongly convex function is also a convex func-
tion. The functions f, g1, . . . , gk in our convex program (1)-(3) are convex but
not necessarily strongly convex. However, it is easy to show that if f : X → R is



Lagrangian Methods for O(1/t) Convergence in ... 23

f(xmin)(
xmin(

f(x)(

y(
f(xmin)(

xmin(

f(x)(

y((a)( (b)(

Figure 2. (a) A function with non-unique minima; (b) A strongly convex func-
tion with unique minimizer xmin. The value of f(y) grows quadratically in the
distance between y and xmin, which gives rise to the quadratic pushback lemma
(Lemma 6).

any convex function and if c > 0, then for any z ∈ Rn the function h : X → R
defined by

h(x) = f(x) +
c

2
||x− z||2

is a c-strongly convex function. Indeed,

h(x)− c

2
||x||2 = f(x) +

c

2
||x− z||2 − c

2
||x||2

= f(x) + cxT z +
c

2
||z||2︸ ︷︷ ︸

affine in x

and the sum of a convex function with an affine function is convex.
Strongly convex functions are important because of their quadratic push-

back property. Specifically, suppose xmin is a minimizer of a function h : X →
R. By definition of “minimizer” we have

h(xmin) ≤ h(y) ∀y ∈ X

The next lemma shows that this inequality can be significantly improved when
h is a strongly convex function (see Fig. 2).

Lemma 6. (Quadratic pushback) Let X ⊆ Rn be a convex set, let h : X → R
be a c-strongly convex function for some c > 0, and let xmin be a minimizer of
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h over the set X . Then

h(xmin) ≤ h(y)− c

2
||xmin − y||2︸ ︷︷ ︸
pushback

∀y ∈ X

Proof. Fix y ∈ X . The function h(x) − c
2 ||x||

2 is convex over x ∈ X , and so
the function r(x) = h(x) − c

2 ||x− x
min||2 is also convex over x ∈ X . Thus,

for any p ∈ (0, 1) we have

pr(y) + (1− p)r(xmin) ≥ r(py + (1− p)xmin)

Substituting the definition of r(x) into this inequality gives

p[h(y)− c

2
||y − xmin||2] + (1− p)h(xmin)

≥ h(py + (1− p)xmin)− c

2
||py + (1− p)xmin − xmin||2

= h(py + (1− p)xmin)− cp2

2
||y − xmin||2

(a)

≥ h(xmin)− cp2

2
||y − xmin||2

where (a) holds because py + (1 − p)xmin ∈ X and xmin minimizes h over
the set X . Removing the common term h(xmin) from both sides of the above
inequality and diving both sides by p gives

h(y)− c

2
||y − xmin||2 − h(xmin) ≥ −cp

2
||y − xmin||2

The above inequality holds for all p ∈ (0, 1). Taking a limit as p → 0 proves
the result.

3.5 DPP bound for the enhanced algorithm

Although the enhanced algorithm does not directly minimize an upper bound
on the drift-plus-penalty expression as the dual subgradient algorithm does, the
next lemma shows that the enhanced algorithm still provides an upper bound on
the drift-plus-penalty expression.
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Lemma 7. Suppose convex program (1)-(3) satisfies Assumption 2 and has an
optimal solution x∗ ∈ X . If α ≥ 1

2β
2 in the enhanced algorithm, then for all

t ≥ 0, we have

∆(t) + f(x(t))

≤f(x∗) + α||x∗ − x(t− 1)||2 − α||x∗ − x(t)||2

+
1

2
||g(x(t))||2 − 1

2
||g(x(t− 1))||2,

where β is defined in Assumption 2.

Proof. Fix t ≥ 0. Note that Lemma 4 implies that Qi(t) + gi(x(t − 1)) is
nonnegative for all i ∈ {1, 2, . . . , k}. Hence, the expression

f(x(t)) +
k∑
i=1

(Qi(t) + gi(x(t− 1)) gi(x(t)) + α||x(t)− x(t− 1)||2

is (2α)-strongly convex with respect to x(t). Since the enhanced algorithm
chooses x(t) ∈ X to minimize the above strongly convex expression, by the
quadratic pushback lemma (Lemma 6), we have

f(x(t)) +

k∑
i=1

(Qi(t) + gi(x(t− 1))) gi(x(t)) + α||x(t)− x(t− 1)||2

≤f(x∗) +

k∑
i=1

(Qi(t) + gi(x(t− 1))) gi(x
∗)︸ ︷︷ ︸

≤0

+α||x∗ − x(t− 1)||2 − α||x∗ − x(t)||2

(a)

≤ f(x∗) + α||x∗ − x(t− 1)||2 − α||x∗ − x(t)||2, (28)

where (a) follows by using the fact that gi(x∗) ≤ 0 for all i ∈ {1, 2, . . . , k} and
Qi(t) + gi(x(t− 1)) ≥ 0 (i.e., part 2 in Lemma 4) to eliminate the term marked
by an underbrace.

Recall that
∑k

i=1 uivi = 1
2 ||u||

2 + 1
2 ||v||

2− 1
2 ||u− v||

2 for any two vectors
u, v of the same length. We have

k∑
i=1

gi(x(t− 1))gi(x(t)) =
1

2
||g(x(t− 1))||2 +

1

2
||g(x(t))||2 −

1

2
||g(x(t))− g(x(t− 1))||2. (29)
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Substituting (29) into (28) and rearranging terms yields

f(x(t)) +

k∑
i=1

Qi(t)gi(x(t))

≤f(x∗) + α||x∗ − x(t− 1)||2 − α||x∗ − x(t)||2 − α||x(t)− x(t− 1)||2

+
1

2
||g(x(t− 1))− g(x(t))||2 −

1

2
||g(x(t− 1))||2 −

1

2
||g(x(t))||2

(a)

≤ f(x∗) + α||x∗ − x(t− 1)||2 − α||x∗ − x(t)||2 + (
1

2
β2 − α)||x(t)− x(t− 1)||2

−
1

2
||g(x(t− 1))||2 −

1

2
||g(x(t))||2

(b)

≤ f(x∗) + α||x∗ − x(t− 1)||2 − α||x∗ − x(t)||2 −
1

2
||g(x(t− 1))||2 −

1

2
||g(x(t))||2,

where (a) follows from the fact that ||g(x(t− 1))− g(x(t))|| ≤
β||x(t)− x(t− 1)||, which further follows from the assumption that g(x) is
Lipschitz continuous with parameter β; and (b) follows from the fact α ≥ 1

2β
2.

Summing (27) with the above inequality yields

∆(t) + f(x(t))

≤f(x∗) + α||x∗ − x(t− 1)||2 − α||x∗ − x(t)||2 +
1

2
||g(x(t))||2 −

1

2
||g(x(t− 1))||2.

3.6 Performance theorem
Theorem 3. Suppose convex program (1)-(3) satisfies Assumptions 1-2 and has
an optimal solution x∗ ∈ X . If the enhanced algorithm uses α > 1

2β
2, then for

all T ∈ {1, 2, 3, . . .} we have x(T ) ∈ X and

f (x(T )) ≤ f(x∗) +
α

T
||x∗ − x(−1)||2 (30)

gi (x(T )) ≤
1

T
||µ||+

1

T

√
||µ||2 + 2α||x∗ − x(−1)||2 +

2α

2α− β2
||g(x∗)||2 , ∀i ∈ {1, . . . , k}

(31)

where µ is defined in Assumption 1, ||µ|| =
√∑k

i=1 µ
2
i , and β is defined in

Assumption 2. In particular, deviation from optimality decays like O(1/T ). For
any desired ε > 0, the enhanced algorithm produces an O(ε)-optimal solution
whenever the number of iterations satisfies T ≥ 1/ε.
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Proof. (Theorem 3, inequality (30)) Fix T as a positive integer. By Lemma 7,
for all t ∈ {0, 1, 2, . . .} we have

∆(t) + f(x(t))

≤f(x∗) + α||x∗ − x(t− 1)||2 − α||x∗ − x(t)||2 +
1

2
||g(x(t))||2 −

1

2
||g(x(t− 1))||2.

Substituting ∆(t) = L(t+ 1)− L(t) and summing over t ∈ {0, 1, . . . , T − 1}
yields

L(T )− L(0) +

T−1∑
t=0

f(x(t))

≤Tf(x∗) + α||x∗ − x(−1)||2 − α||x∗ − x(T − 1)||2 +
1

2
||g(x(T − 1))||2 −

1

2
||g(x(−1))||2

Substituting L(T ) = 1
2 ||Q(T )||2, moving L(0) to the right side, and noting that

L(0) = 1
2 ||Q(0)||2 ≤ 1

2 ||g(x(−1))||2 by Lemma 4 gives:

1

2
||Q(T )||2 +

T−1∑
t=0

f(x(t)) ≤ Tf(x∗) + α||x∗ − x(−1)||2 − α||x∗ − x(T − 1)||2 +
1

2
||g(x(T − 1))||2 (32)

To prove (30), rearranging (32) and dividing by T gives

1

T

T−1∑
t=0

f(x(t)) ≤f(x∗) +
1

T

(
α||x∗ − x(−1)||2 − α||x∗ − x(T − 1)||2 +

1

2
||g(x(T − 1))||2 −

1

2
||Q(T )||2

)

≤f(x∗) +
1

T
α||x∗ − x(−1)||2

where the last inequality follows because ||Q(T )|| ≥ ||g(x(T − 1))|| for pos-
itive T by Lemma 4. Then, (30) follows by applying Jensen’s equality for the
convex function f .

Proof. (Theorem 3, inequality (31)) To prove (31), rearranging (32) gives

||Q(T )||2 ≤2

T−1∑
t=0

(
f(x
∗
)− f(x(t))

)
+ 2α||x∗ − x(−1)||2 −2α||x∗ − x(T − 1)||2 + ||g(x(T − 1))||2︸ ︷︷ ︸

≤ 2α
2α−β2

||g(x∗)||2

≤2

T−1∑
t=0

(
f(x
∗
)− f(x(t))

)
+ 2α||x∗ − x(−1)||2 +

2α

2α− β2
||g(x∗)||2 (33)
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To see the term marked by an underbrace in the first step is less than or equal to
2α

2α−β2 ||g(x∗)||2, we note that

− 2α||x∗ − x(T − 1)||2 + ||g(x(T − 1))||2

=− 2α||x∗ − x(T − 1)||2 + ||g(x(T − 1))− g(x∗) + g(x
∗
)||2

≤− 2α||x∗ − x(T − 1)||2 + ||g(x(T − 1))− g(x∗)||2 + 2||g(x∗)|| · ||g(x(T − 1))− g(x∗)|| + ||g(x∗)||2

(a)
≤ − 2α||x∗ − x(T − 1)||2 + β

2||x∗ − x(T − 1)||2 + 2β||g(x∗)|| · ||x∗ − x(T − 1)|| + ||g(x∗)||2

=− (2α− β2
)

(
||x∗ − x(T − 1)|| −

β

2α− β2
||g(x∗)||

)2

+
2α

2α− β2
||g(x∗)||2

(b)
≤

2α

2α− β2
||g(x∗)||2

where (a) follows because g(x) is Lipschitz continuous with parameter β by
Assumption 2; and (b) follows by α > 1

2β
2.

Since x(t) ∈ X for all t, by (13) from Assumption 1, we have

T−1∑
t=0

(f(x∗)− f(x(t))) ≤
T−1∑
t=0

k∑
i=1

µigi(x(t)) (34)

Substituting (34) into (33) gives

||Q(T )||2 ≤2

T−1∑
t=0

k∑
i=1

µigi(x(t)) + 2α||x∗ − x(−1)||2 +
2α

2α− β2
||g(x∗)||2

=2

k∑
i=1

µi

T−1∑
t=0

gi(x(t)) + 2α||x∗ − x(−1)||2 +
2α

2α− β2
||g(x∗)||2

(a)

≤ 2
k∑
i=1

µi(Qi(T )−Qi(0)) + 2α||x∗ − x(−1)||2 +
2α

2α− β2
||g(x∗)||2

(b)

≤2

k∑
i=1

µiQi(T ) + 2α||x∗ − x(−1)||2 +
2α

2α− β2
||g(x∗)||2

(c)

≤2||µ|| · ||Q(T )||+ 2α||x∗ − x(−1)||2 +
2α

2α− β2
||g(x∗)||2

where (a) follows from the modified virtual queue lemma (Lemma 3) and the
fact that µi ≥ 0 for all i; (b) follows from Qi(0) ≥ 0 for all i by Lemma 4 and
the fact that µi ≥ 0 for all i; and (c) follows from Cauchy-Schwarz inequality.

Now we again obtain a quadratic inequality in terms of ||Q(T )|| as we
do in the proof of Theorem 2. Define y = ||Q(T )||, b = −2||µ||, c =
−2α||x∗ − x(−1)||2 − 2α

2α−β2 ||g(x∗)||2. The above inequality reduces to the
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quadratic inequality y2 + by + c ≤ 0 and so

y ≤
−b +

√
b2 − 4c

2
= ||µ|| +

√
||µ||2 + 2α||x∗ − x(−1)||2 +

2α

2α− β2
||g(x∗)||2

Since y = ||Q(T )||, for each i ∈ {1, . . . , k} we have

Qi(T )

T
≤
||Q(T )||

T
≤

1

T
||µ|| +

1

T

√
||µ||2 + 2α||x∗ − x(−1)||2 +

2α

2α− β2
||g(x∗)||2

The result of (31) follows by application of the modified virtual queue lemma
(Lemma 3) and noting that Qi(0) ≥ 0 by Lemma 4.

3.7 Enhanced algorithm exercises

Exercise 6. (Separable problems with the enhanced algorithm) Redo Exercise
4 using the enhanced algorithm.

Exercise 7. (Enhanced flow control) Consider the 2-link network with 4 traffic
flows shown in Fig. 1 and the corresponding convex program given in Exercise
5.8

a) As in Exercise 5, write the corresponding convex program in the form
(1)-(3). Hint: use f(x) = −

∑4
i=1wi log(1 + xi).

b) Suppose we implement the enhanced algorithm with parameter α > 0.
Specify the update equations for the two virtual queues Q1(t) and Q2(t).

c) Continuing part (b), specify the (separable) decisions xi(t) ∈ [0, 1] for
each t ∈ {0, 1, 2, . . .} and each i ∈ {1, . . . , 4}.

Exercise 8. (Multipath network flow control) Consider the 3-link network with
3 traffic flows shown in Fig. 3. Note that there are 2 parallel paths, with capacity
C1 and C2, between the first and the second nodes. Since the second traffic flow
has two parallel paths, its overall traffic flow rate is given by x21 + x22 if x21

and x22 are respective path rates. The network utility maximization in such a

8As discussed in the footnote to Exercise 5, the convex program for this network flow problem
is already strongly convex and so the results of [5] [15] ensure that the basic dual subgradient
algorithm also enjoys a fast O(1/ε) convergence in this case.
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x1	
x21	

x3	

C3	
C1	

x22	
C2	

Figure 3. The 3-link network with 3 traffic flows, one of which has 2 paths, for
the network utility maximization problem of Exercise 8.

multipath scenario is given by

Maximize: w1 log(1 + x1) + w2 log(1 + x21 + x22) + w3 log(1 + x3)

Subject to: x1 + x21 ≤ C1

x22 + x3 ≤ C2

x21 + x22 ≤ C3

(x1, x21, x22, x3) ∈ X

where X = [0, 1]4 and w1, . . . , w3 are given positive constants.9

a) As in Exercise 5, write the corresponding convex program in the form
(1)-(3).

b) Suppose we implement the enhanced algorithm with parameter α > 0.
Specify the update equations for the three virtual queues Q1(t), Q2(t) and
Q2(t).

c) Continuing part (b), specify the (separable) decisions
x1(t), x21(t), x22(t), x3(t) ∈ [0, 1] for each t ∈ {0, 1, 2, . . .}.

3.8 Notes

• The primal update for x(t) ∈ X requires to solve the set constrained
minimization problem (24). If the f, g1, . . . , gk functions are smooth,
the work [16] gives a primal-dual version of the enhanced algorithm by

9Note that log(1 + x21 + x22) is not strongly concave with respect to the vector (x21, x22)
even though log(1 + x) is strongly concave with respect to x. Thus, the basic dual subgradient
algorithm can only have a slow O(1/ε2) convergence in this case.
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replacing the set constrained minimization step with a projection onto X
such that the fastO(1/ε) convergence time is preserved. The per-iteration
complexity of this primal-dual version is similar to that of the classical
primal-dual subgradient method studied in [7] which has slower O(1/ε2)
convergence.

• In the special case when all gi functions in convex program (1)-(3) are lin-
ear (such as for the convex program of Exercises 5 and 7), we can change
the virtual queue update equation (25) to Qi(t + 1) = Qi(t) + gi(x(t))
while keeping the x(t) update unchanged. In [18], this variant is used to
develop a new joint rate control and routing strategy for multi-hop data
networks that yields queues with O(1) size and with a utility optimality
gap that decays like O(1/t) (and so convergence time to an ε-optimal
solution is O(1/ε)), which improves upon the prior state-of-the-art for
data networks. An interesting observation here is that such a variant is
similar to the proximal Jacobian ADMM algorithm, also known as lin-
earized ADMM, studied in [3]. The proximal Jacobian ADMM algorithm
was previously shown to have a weak type of convergence in the sense
that ||x(t+ 1)− x(t)||2 = o(1/t), although this property in general says
nothing about convergence towards a solution of the convex program or
about optimality gaps for the objective and constraint functions (i.e., the
f and gi functions). The analysis of this section (developed in [14] and
considered for the linear case in [18]) can prove the O(1/t) convergence
of the proximal Jacobian ADMM in terms of both objective optimality
and constraint violations.
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