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We consider online convex optimizationwith stochastic constraints where the objective functions are arbitrarily

time-varying and the constraint functions are independent and identically distributed (i.i.d.) over time. Both

the objective and constraint functions are revealed after the decision is made at each time slot. The best known

expected regret for solving such a problem is O(
√
𝑇 ), with a coefficient that is polynomial in the dimension

of the decision variable and relies on the Slater condition (i.e. the existence of interior point assumption),

which is restrictive and in particular precludes treating equality constraints. In this paper, we show that such

Slater condition is in fact not needed. We propose a new primal-dual mirror descent algorithm and show that

one can attain O(
√
𝑇 ) regret and constraint violation under a much weaker Lagrange multiplier assumption,

allowing general equality constraints and significantly relaxing the previous Slater conditions. Along the way,

for the case where decisions are contained in a probability simplex, we reduce the coefficient to have only

a logarithmic dependence on the decision variable dimension. Such a dependence has long been known in

the literature on mirror descent but seems new in this new constrained online learning scenario. Simulation

experiments on a data center server provision problem with real electricity price traces further demonstrate

the performance of our proposed algorithm.
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1 INTRODUCTION
We consider an online convex optimization (OCO) problem with a sequence of arbitrarily varying

convex objective functions 𝑓 𝑡 (𝜇), 𝑡 = 0, 1, 2, · · · , 𝜇 ∈ Δ ⊆ R𝑑 which are revealed per slot after the

decision is made, and Δ is a closed bounded convex set. For a fixed time horizon𝑇 , define the regret

of a sequence of decisions

{
𝜇0, 𝜇1, · · · , 𝜇𝑇−1

}
⊆ Δ as

𝑇−1∑
𝑡=0

𝑓 𝑡 (𝜇𝑡 ) − min

𝜇∈Δ

𝑇−1∑
𝑡=0

𝑓 𝑡 (𝜇).
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The goal of OCO is to choose the decision sequence so that the regret grows sublinearly with

respect to 𝑇 . OCO is a classical problem and has been considered in a number of previous works

such as [4, 9, 10, 31]. In particular, it is known that for differentiable functions 𝑓 𝑡 (·), the projected
gradient descent algorithm achieves an O(

√
𝑇 ) regret which is also worst case optimal. When the

set Δ is a probability simplex, the mirror descent algorithm further achieves an “almost dimension

free” logarithmic dependency on the dimension 𝑑 .

The framework considered in this paper builds upon the previous OCO model by incorporating

a sequence of time varying constraint functions 𝑔𝑡𝑖 (𝜇), 𝑖 = 1, 2, · · · , 𝐿, which are also revealed

at each time slot 𝑡 after the decision is made. The goal of this constrained OCO is to choose the

decision sequence

{
𝜇0, 𝜇1, · · · , 𝜇𝑇−1

}
⊆ Δ so that both the regret and constraint violations grow

sublinearly in𝑇 (i.e.

∑𝑇−1

𝑡=0
𝑔𝑡𝑖 (𝜇𝑡 ) ≤ 𝑜 (𝑇 )) with respect to the best fixed decision in hindsight solving

the following convex program:

min

𝜇∈Δ

𝑇−1∑
𝑡=0

𝑓 𝑡 (𝜇), 𝑠 .𝑡 .
𝑇−1∑
𝑡=0

𝑔𝑡𝑖 (𝜇) ≤ 0, 𝑖 = 1, 2, · · · , 𝐿. (1)

The constrained OCO was first considered in the work [14] where the authors (somewhat surpris-

ingly) show via a counterexample that even with only one constraint, it is not always possible

to achieve the aforementioned goal if we allow both objective and constraint functions to vary

arbitrarily. Such an impossibility result implies that if one wants to obtain meaningful results on

constrained OCO, then more assumptions have to be posed.

The works [11, 13, 19] consider the scenario where the constraint functions are fixed (i.e. do

not depend on the time index 𝑡 ) and propose primal-dual type methods whose analyses give

O(𝑇max{𝛽,1−𝛽 }) regret and O(𝑇 1−𝛽/2) constraint violation, where 𝛽 ∈ [0, 1] is an algorithm parame-

ter. This bound is improved in the work [27] where the authors show an O(
√
𝑇 ) regret bound and

finite constraint violations (i.e. O(1) constraint violation) via Slater condition (i.e. There exists a

𝜇 ∈ Δ such that 𝑔𝑖 (𝜇) < 0, ∀𝑖). A more recent work [29] shows that one can get logarithm regret

and O(
√
𝑇 ) constraint violations if one assumes instead that all objective functions are strongly

convex.

Constrained OCO with stochastic constraints, where 𝑔𝑡𝑖 (𝜇) = 𝑔𝑖 (𝜇,𝛾𝑡 ) and {𝛾𝑡 }𝑇−1

𝑡=0
are i.i.d.,

is considered in the works such as [5, 12, 26], where a primal-dual proximal gradient algorithm

is proposed and O(
√
𝑇 ) expected regret and constraint violations are shown under the Slater

condition (i.e. there exists a 𝜇 ∈ Δ such that E
(
𝑔𝑖 (𝜇, 𝜔𝑡 )

)
< 0, ∀𝑖). Without Slater condition, the best

known result is again O(𝑇max{𝛽,1−𝛽 }) regret and O(𝑇 1−𝛽/2) constraint violation as is shown in [25].

Also, to the best of our knowledge, previous bounds in constrained online learning fail to recover

the “almost dimension free” phenomenon for the probability simplex decision set ubiquitous in

unconstrained scenarios. In this paper, we make steps towards removing the Slater condition while
maintaining the worst case optimal O(

√
𝑇 ) regret, constraint violations, and sharpening the dimension

dependency on decision variables.
Slater condition is assumed in the classical analysis of optimization algorithms for constrained

convex programs such as the dual subgradient algorithm [15] and the interior point method [3]. A

key implication of Slater condition, which is adopted in the O(1/
√
𝑇 ) convergence rate analysis

in [15], is that it implies the existence and boundedness of Lagrange multipliers. However, the

reverse implication is in general untrue, as one can show that for many equality constrained convex

programs, Lagrange multipliers do exist and are bounded [2]. This makes “Slater condition free”

analysis an important topic in optimization theory and motivates series of improved primal-dual

type algorithms and analysis for constrained convex programs with competitive convergence rate

under the existence of Lagrange multipliers assumption [6, 16, 28, 30].
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Replacing the Slater condition with Lagrangian type assumptions in online problems is highly

non-trivial and does not follow from that of constrained convex programs. A key issue is that the

objective function varies arbitrarily per slot, and so the definition of Lagrange multiplier is not

clear. A simple attempt is to look at in-hindsight problems such as (1) and see if the Lagrange

multiplier of this problem helps with the regret analysis. However, since problem (1) sums the

objectives across the horizon, it hardly gives any insight on the per slot dynamics for any practical

algorithm considered. If we instead look at the per slot constrained problem, then, one might be

able to conduct analysis and obtain per-slot multipliers, but it is not clear how to piece together

the analysis for different slots.

1.1 Contributions
In this paper, we consider the stochastic constrained online learning problem and propose a new

primal-dual online mirror descent framework, which simultaneously weakens the assumptions

and improves the dimension factors in the previously known online proximal gradient type al-

gorithms. We introduce a new sequential existence of Lagrange multipliers condition, which is

shown to be strictly weaker than the Slater condition, allows for equality constraints and bridges

the aforementioned dilemma between on-hindsight problem and per slot problem. We then show

via a new analysis that under such an assumption, the proposed algorithm enjoys a matching

O(
√
𝑇 ) expected regret and constraint violations. For the case when decisions are contained

in a probability simplex, we reduce the dimension dependency to have only a logarithmic fac-

tor. Conceptually, our analysis seems to be distinctive from the previous known methods in

the sense that we look at the cumulative objectives over a specifically chosen time period (of

length

√
𝑇 ), and consider the following static constrained program starting from any time slot 𝑡 :

min𝜇∈Δ
∑𝑡+

√
𝑇

𝜏=𝑡 E(𝑓 𝜏 (𝜇)), 𝑠 .𝑡 . E
(
𝑔𝑖 (𝜇, 𝜔𝑡 )

)
≤ 0, 𝑖 = 1, 2, · · · , 𝐿.We demonstrate that the existence

and boundedness of Lagrange multipliers for this problem provides certain weak error bound

conditions for the dual function sufficient to bound the size of the dual variable process, leading to

the desired results.

1.2 Notation
For any vector v ∈ R𝑑 , v ≥ 0, v = 0, v ≤ 0 means v is entrywise nonnegative, zero and nonpositive,

respectively. The notation [v]+ denotes entrywise application of the function max(𝑥, 0). The
notation R𝑑+ stands for the positive orthant of R𝑑 . For any set S ⊆ R𝑑 , let int(S) be its interior.
The norms ∥v∥1 :=

∑𝑑
𝑖=1

|𝑣 (𝑖) |, ∥v∥2 := (∑𝑑
𝑖=1

|𝑣 (𝑖) |2)1/2
and ∥v∥∞ := max𝑖 |𝑣 (𝑖) |. For any convex

function 𝑓 : R𝑑 → R, we use ∇𝑓 (v) to denote any one of the subgradients at v and use 𝜕𝑓 (v)
to denote the set of all subgradients at v. For any function 𝑔(v, 𝜉) which is convex on the first

argument v, ∇𝑔(v, 𝜉) denotes the subgradient of 𝑔 on v while fixing 𝜉 . For any closed set 𝐾 ⊆ R𝑑
and any point x ∈ R𝑑 , the distance of x to 𝐾 is defined as dist(x, 𝐾) := miny∈𝐾 ∥x − y∥2.

2 PROBLEM FORMULATION AND ALGORITHMS
2.1 Basic definitions
Let ∥ · ∥ be a general norm in R𝑑 . Define the dual norm on any 𝑥 ∈ R𝑑 as ∥𝑥 ∥∗ := sup∥𝑦 ∥≤1

⟨𝑥,𝑦⟩,
where ⟨𝑥,𝑦⟩ = ∑

𝑖=1
𝑑 𝑥 (𝑖)𝑦 (𝑖). Consider a convex set C ⊆ R𝑑 (potentially being R𝑑 itself) with a

non-empty interior, i.e. int(C) ≠ ∅. Let 𝜔 : C → R be a function that is continuously differentiable

in the interior of C. Let Δ ⊆ C be a compact convex subset containing the origin and Δ𝑜 := Δ∩int(C),
which is non-empty. Define the Bregman divergence function 𝐷 : Δ × Δ𝑜 → R generated from 𝜔 (·)
as follows:

𝐷 (𝑥,𝑦) := 𝜔 (𝑥) − 𝜔 (𝑦) − ⟨∇𝜔 (𝑦), 𝑥 − 𝑦⟩ .
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The following is a key property of the Bregman divergence:

Lemma 2.1 (Pushback). Let 𝑓 : C → R be a continuous convex function. Fix 𝛼 > 0, 𝑦 ∈ Δ𝑜 .
Suppose 𝑥∗ ∈ argmin𝑥 ∈Δ 𝑓 (𝑥) + 𝛼𝐷 (𝑥,𝑦) and 𝑥∗ ∈ Δ𝑜 , then, for any 𝑧 ∈ Δ,

𝑓 (𝑥∗) + 𝛼𝐷 (𝑥∗, 𝑦) ≤ 𝑓 (𝑧) + 𝛼𝐷 (𝑧,𝑦) − 𝛼𝐷 (𝑧, 𝑥∗).

Remark 2.1. For the case where 𝑓 is a linear function and 𝜔 is convex, such a pushback result can
be found, for example, in [17]. For results with 𝑓 being on domain R𝑑 , the proof can be found in [20].
Our result generalizes previous results to arbitrary set Δ. It is proved in the Supplement (Section A.1)

We say 𝜔 (·) is a distance generating function if for any 𝑥 ∈ int(C), 𝜔 (·) is a continuously

differentiable and strongly convex with modulus 𝛽 with respect to the primal norm ∥ · ∥, i.e.
⟨𝑥 − 𝑦,∇𝜔 (𝑥) − ∇𝜔 (𝑦)⟩ ≥ 𝛽 ∥𝑥 − 𝑦∥2, ∀𝑥,𝑦 ∈ int(C). It is easy to see if 𝜔 is a distance generating

function, then, the corresponding 𝐷 (·, ·) satisfies

𝐷 (𝑥,𝑦) ≥ 𝛽

2

∥𝑥 − 𝑦∥2, ∀𝑥,𝑦 ∈ int(C). (2)

Note that 𝐷 (𝑥,𝑦) behaves asymmetrically on 𝑥 and 𝑦 over potentially different domains, which

results from the (possible) non-differentiability of the distance generating function 𝜔 (·) on the

boundary of Δ. We provide two examples below:

(1) The set Δ = {𝜇 ∈ R𝑑 : ∥𝜇∥1 = 1, 𝜇 ≥ 0} is a probability simplex, C = R𝑑+ with ℓ1-norm ∥ · ∥1,

the function𝜔 (𝜇) = −∑𝑑
𝑖=1

𝜇 (𝑖) log 𝜇 (𝑖) is the entropy function, and for any two distributions
𝜇𝑎 ∈ Δ, 𝜇𝑏 ∈ Δ𝑜 ,

𝐷 (𝜇𝑎, 𝜇𝑏) =
𝑑∑
𝑖=1

𝜇𝑎 (𝑖) log

𝜇𝑎 (𝑖)
𝜇𝑏 (𝑖)

is the well-known Kullback-Leibler (KL) divergence. Furthermore, by Pinsker’s inequality, it

is strongly convex with respect to ∥ · ∥1 with the strongly convex modulus 𝛽 = 1. The dual

norm in this space is ∥ · ∥∞.
(2) The set Δ is in the Euclidean spaceR𝑑 , C = R𝑑 with the usual ℓ2-norm ∥ · ∥2 and𝜔 (𝑥) = 1

2
∥𝑥 ∥2

2
,

which is strongly convex with respect to ∥ · ∥2, 𝐷 (𝑥,𝑦) = ∥𝑥 − 𝑦∥2

2
, and the dual norm is also

∥ · ∥2.

2.2 Problem formulation
In this section, we set up the basic formulation of stochastic constrained online optimization.

Let {𝜉𝑡 }∞𝑡=0
and {𝛾𝑡 }∞𝑡=0

be two processes, where {𝜉𝑡 }∞𝑡=0
can be arbitrarily time varying (might

be chosen based on the system history) and {𝛾𝑡 }∞𝑡=0
are i.i.d. realizations of a random variable

𝛾 with a possibly unknown distribution. Let 𝑓 (𝜇, 𝜉𝑡 ), 𝑔𝑖 (𝜇,𝛾𝑡 ), 𝑖 ∈ {1, 2, . . . , 𝐿} be deterministic

functions which are continuous convex in the first component given the second component.

Furthermore, let {ℎ𝑡𝑗 }∞𝑡=0
, 𝑗 ∈ {1, 2, · · · , 𝑀} be sequences of i.i.d. random vectors in R𝑑 . Throughout

the paper, we assume 𝜉𝑡 , 𝛾𝑡 , ℎ𝑡𝑗 are mutually independent for all 𝑡 with system history up to time

𝑡 as F𝑡 := {𝜉𝜏 , 𝛾𝜏 , ℎ𝜏
𝑗
}𝑡−1

𝜏=0
. For any fixed 𝜇 ∈ Δ, we write 𝑓 𝑡 (𝜇) := 𝑓 (𝜇, 𝜉𝑡 ), 𝑔𝑡𝑖 (𝜇) := 𝑔𝑖 (𝜇,𝛾𝑡 ), and

𝑓
𝑡 (𝜇) = E

(
𝑓 𝑡 (𝜇) |F𝑡

)
, 𝑔𝑖 (𝜇) = E

(
𝑔𝑡𝑖 (𝜇)

)
. We further define the vectorized notations

g𝑡 (𝜇) = [𝑔1 (𝜇,𝛾𝑡 ), . . . , 𝑔𝐿 (𝜇,𝛾𝑡 )]𝑇

g(𝜇) = [E(𝑔1 (𝜇,𝛾𝑡 )), . . . ,E(𝑔𝐿 (𝜇,𝛾𝑡 ))]𝑇

h𝑡 (𝜇) = [
〈
ℎ𝑡

1
, 𝜇

〉
, . . . ,

〈
ℎ𝑡𝑀 , 𝜇

〉
]𝑇

h(𝜇) = [
〈
E
(
ℎ𝑡

1

)
, 𝜇

〉
, . . . ,

〈
E
(
ℎ𝑡𝑀

)
, 𝜇

〉
]𝑇 .
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It is also worth noting that our algorithms and analysis also apply to the special case where {𝜉𝑡 }∞𝑡=0

are also i.i.d. for which we have 𝑓
𝑡 (𝜇) = E(𝑓 (𝜇, 𝜉𝑡 )) := 𝑓 (𝜇), ∀𝑡 .

Define the benchmarking decision in-hindsight 𝜇∗ as a solution to the following static convex

program:

min

𝜇∈Δ

𝑇−1∑
𝑡=0

𝑓
𝑡 (𝜇) 𝑠 .𝑡 . g(𝜇) ≤ 0, h(𝜇) = b, (3)

where b = [𝑏1, 𝑏2, · · · , 𝑏𝑀 ]𝑇 is a vector of constants. At the beginning of each time slot 𝑡 , none

of the objective function 𝑓 𝑡 (𝜇), constraint function 𝑔𝑡𝑖 (𝜇) or random vector ℎ𝑡𝑗 is known. The

decision maker is supposed to choose a vector 𝜇𝑡 ∈ Δ first before observing these quantities.

The goal is to make sequential (possibly randomized) decisions so that both the expected regret,

defined as

∑𝑇−1

𝑡=0
E
(
𝑓 𝑡 (𝜇𝑡 ) − 𝑓 𝑡 (𝜇∗)

)
, and expected constraint violations, define as

∑𝑇−1

𝑡=0
E(𝑔𝑡𝑖 (𝜇𝑡 ))

and E|∑𝑇−1

𝑡=0
ℎ𝑡𝑗 (𝜇𝑡 ) |, grow sublinearly with respect to the time horzon 𝑇 . Throughout this paper,

we make the following boundedness assumption:

Assumption 2.1 (Boundedness of objectives and constraint functions).

(1) Objective functions 𝑓 𝑡 (𝜇) and constraint functions 𝑔𝑡𝑖 (𝜇) have bounded subgradients on Δ, i.e.
there exist constants 𝐷1 > 0 and 𝐷2 > 0 such that ∥∇𝑓 𝑡 (𝜇)∥∗ ≤ 𝐷1,

∑𝐿
𝑖=1

∥∇𝑔𝑡𝑖 (𝜇)∥2

∗ ≤ 𝐷2

2
, for

all 𝜇 ∈ Δ, all 𝑡 ∈ {0, 1, . . .}, and all 𝑖 ∈ {1, 2, . . . , 𝐿}.
(2) There exist constants 𝐹,𝐺, 𝐻 > 0 such that |𝑓 𝑡 (𝜇) | ≤ 𝐹, ∀𝑡 ∈ {0, 1, 2, · · · }, ∑𝐿

𝑖=1
|𝑔𝑡𝑖 (𝜇) |2 ≤ 𝐺2

for all 𝜇 ∈ Δ, 𝑡 ∈ {0, 1, 2, · · · }, and ∑𝑀
𝑗=1

∥ℎ𝑡𝑗 ∥2

∗ ≤ 𝐻 2, for all 𝑗 ∈ {1, 2, · · · , 𝑀}, 𝑡 ∈ {0, 1, . . .}.
(3) The Bregman divergence 𝐷 (·, ·) is generated from a distance generating 𝜔 (·) and bounded on

the set Δ, i.e. there exists a constant 𝑅 such that sup𝑥 ∈Δ,𝑦∈Δ𝑜 𝐷 (𝑥,𝑦) ≤ 𝑅.

By strong convexity of the Bregman divergence (2), we have

sup

𝑥 ∈Δ,𝑦∈Δ𝑜

∥𝑥 − 𝑦∥2 ≤ 2𝑅

𝛽
.

Note further that KL divergence does not satisfy Assumption 2.1(3), for which we will develop a

separate new algorithm in Section 3.2.

2.3 Primal-dual online mirror descent
We are now in a position to introduce our new online mirror descent (Algorithm 1) for the stochastic

constrained online learning. The algorithm computes the next decision 𝜇𝑡+1
by a proximal mirror

map using 𝜇𝑡 , 𝑓 𝑡 and 𝑔𝑡𝑖 , and control the constraint violations via dual multipliers Q(𝑡) and H(𝑡).

2.4 Sequential Existence of Lagrange Multipliers (SELM)
In this section, we introduce our Lagrange multiplier condition. A detailed comparison between

such a condition and other constraint qualification conditions is delayed to the Supplementary

(Section A.2). We start by defining a partial average function starting from any time slot 𝑡 as:

𝑓
𝑡,𝑘

:=
1

𝑘

𝑘−1∑
𝑖=0

𝑓
𝑡+𝑖
.

Consider the following optimization problem:

min

𝜇∈Δ
𝑓
𝑡,𝑘 (𝜇) 𝑠 .𝑡 . g(𝜇) ≤ 0, h(𝜇) = b, (7)
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ALGORITHM 1: : Let 𝜇0 = 𝜇−1 ∈ Δ. Let 𝑉 , 𝛼 > 0 be some trade-off parameters. Let 𝑄𝑖 (𝑡), 𝐻 𝑗 (𝑡) be
sequences of dual multipliers such that 𝑄𝑖 (0) = 0, 𝐻 𝑗 (0) = 0, ∀𝑖, 𝑗 . For each slot 𝑡 ∈ {0, 1, · · · ,𝑇 − 1}:

• Choose 𝜇𝑡 as a solution to the following problem:

min

𝜇∈Δ

〈
𝑉∇𝑓 𝑡−1 (𝜇𝑡−1) +

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)∇𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
𝑀∑
𝑗=1

𝐻𝑖 (𝑡)ℎ𝑡−1

𝑖 , 𝜇

〉
+ 𝛼𝐷 (𝜇, 𝜇𝑡−1) (4)

• Update dual multiplier 𝑄𝑖 (𝑡), 𝐻 𝑗 (𝑡), 𝑖 ∈ {1, 2, · · · , 𝐿}, 𝑗 ∈ {1, 2, · · · , 𝑀} via
𝑄𝑖 (𝑡 + 1) = max

{
𝑄𝑖 (𝑡) + 𝑔𝑡−1

𝑖 (𝜇𝑡 ), 0
}

(5)

𝐻 𝑗 (𝑡 + 1) = 𝐻 𝑗 (𝑡) +
〈
ℎ𝑡−1

𝑗 , 𝜇𝑡
〉
− 𝑏 𝑗 , (6)

where 𝑔𝑡
𝑖
(𝜇𝑡 ) := 𝑔𝑡−1

𝑖
(𝜇𝑡−1) +

〈
∇𝑔𝑡−1

𝑖
(𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1

〉
.

• Observe the objective function 𝑓 𝑡 and constraint functions {𝑔𝑡
𝑖
}𝐿
𝑖=1
, {ℎ𝑡

𝑗
}𝑀
𝑗=1

.

where g(𝜇), h(𝜇) are defined in Section 2.2. Denote the solution to this program as 𝑓
𝑡,𝑘

∗ . Define the

Lagrangian dual function of (7) as

𝑞 (𝑡,𝑘) (𝜆, 𝜂) := min

𝜇∈Δ
𝑓
𝑡,𝑘 (𝜇) +

𝐿∑
𝑖=1

𝜆𝑖𝑔𝑖 (𝜇) +
𝑀∑
𝑗=1

𝜂 𝑗 (ℎ 𝑗 (𝜇) − 𝑏 𝑗 ), (8)

where 𝜆 ∈ R𝐿+ and 𝜂 ∈ R𝑀 are dual variables. For simplicity of notation, we always enforce them to

be row vectors. Now, we are ready to state our condition:

Assumption 2.2 (Seqential existence of Lagrange multipliers (SELM)). For any time
slot 𝑡 and any time period 𝑘 ≥

√
𝑇 , the set of primal optimal solution to (7) is non-empty. Also,

the set of dual optimal solution, which is the set of Lagrange multipliers of (7) denoted as V∗
𝑡,𝑘

:=

argmax𝜆∈R𝐿+ , 𝜂∈R𝑀𝑞
(𝑡,𝑘) (𝜆, 𝜂), is non-empty and bounded. Furthermore, let 𝐵 > 0 be a constant such

that for any 𝑡 ∈ {0, 1, · · · ,𝑇 − 1} and 𝑘 =
√
𝑇 , the dual optimal set V∗

𝑡,𝑘
defined above satisfies

max[𝜆,𝜇 ] ∈V∗
𝑡,𝑘

∥ [𝜆, 𝜇] ∥2 ≤ 𝐵.

Remark 2.2. SELM asserts the existence and boundedness of Lagrange multipliers on the set of
subproblems (7) for any time epoch 𝑡 ∈ {0, 1, 2, · · · ,𝑇 − 1} and any time duration 𝑘 ≥

√
𝑇 . In the

special case where the objectives are also i.i.d. functions, we have

𝑓
𝑡,𝑘 (𝜇) = 1

𝑘

𝑘−1∑
𝑖=0

𝑓
𝑡+𝑖 (𝜇) = 1

𝑘

𝑘−1∑
𝑖=0

E
(
𝑓 (𝜇, 𝜉𝑡+𝑖 )

)
:= 𝑓 (𝜇), ∀ 𝑡, 𝑘

and SELM reduces to an existence and boundedness of Lagrange multipliers condition for a single
constrained convex program:

min

𝜇∈Δ
𝑓 (𝜇) 𝑠 .𝑡 . g(𝜇) ≤ 0, h(𝜇) = b.

Remark 2.3. In Section A.2 of the Supplement, we show that SELM is implies by certain constraint
qualification conditions and strictly weaker than the Slater conditions. In particular, we obtain the
following simplifications in special cases:
(1) Lemma A.2 shows that Slater condition implies SELM.
(2) Corollary A.10 shows that when the interior of Δ is non-empty and there are only equality

constraints, the linear independence of {E(ℎ𝑡
1
), E(ℎ𝑡

2
), · · · , E(ℎ𝑡

𝑀
)} implies SELM.
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(3) Lemma A.5 shows that when Δ is the probability simplex and there are only equality constraints,
the linear independence of {1, E(ℎ𝑡

1
), E(ℎ𝑡

2
), · · · , E(ℎ𝑡

𝑀
)} implies SELM.

Detailed arguments are deferred to Section A.2 of the Supplement.

The motivation for SELM is as follows: whenever Lagrange multipliers exist and are bounded,

we have the dual function deviates according to a certain curve related to the distance from the set

of Lagrange multipliers, namely, the weak error bound condition (EBC).

Definition 2.2 (Weak error bound condition (EBC)). Let 𝐹 (x) be a concave function over x ∈ X,

where X is closed and convex. Suppose Λ∗
:= argmaxx∈X 𝐹 (x) is non-empty. The function 𝐹 (x)

satisfies the weak EBC if there exists constants ℓ0, 𝑐0 > 0 such that for any x ∈ X satisfying

dist(x,Λ∗) ≥ ℓ0,

𝐹 (x∗) − 𝐹 (x) ≥ 𝑐0 · dist(x,Λ∗),
where dist(x,Λ∗) is defined as:

dist(x,Λ∗) = inf

y∈Λ∗
∥x − y∥2

Note that in Definition 2.2, Λ∗
is a closed convex set. This follows from the fact that 𝐹 (x) is a

convex function and thus all sub level sets are closed and convex. The following lemma shows

SELM implies weak EBC on the dual function:

Lemma 2.3. Fix𝑇 ≥ 1. Suppose Assumption 2.2 holds, then for any 𝑡 ∈ {0, 1, · · · ,𝑇 −1} and 𝑘 =
√
𝑇 ,

there exists constants 𝑐0, ℓ0 > 0, such that the dual function −𝑞 (𝑡,𝑘) (𝜆, 𝜂) defined in (8) satisfies the
weak EBC with parameter 𝑐0, ℓ0.

This lemma is restated as Lemma A.13 with more explicit expressions on 𝑐0, ℓ0 and the proof is

in Supplement A.5. In the Supplement (Section A.2.3), we also compare this weak EBC with the

classical EBC in optimization theory and show that classical EBC implies weak EBC with explicit

constants.

3 MAIN RESULTS
3.1 Sets with bounded Bregman divergence
In this section, we present our main performance guarantee on Algorithm 1, when Assumption 2.1

and 2.2 hold under the general norm ∥ · ∥ setup in R𝑑 as we described in Section 2.1. In particular,

we assume that Assumption 2.1(3), i.e. the Bregman divergence is bounded, holds, which will be

relaxed in Section 3.2.

Theorem 3.1. Let 𝜇∗ be a solution to the in-hindsight optimization problem (3). Suppose Assumption
2.1 and 2.2 hold. Let 𝑐, ℓ > 0 be absolute constants such that 𝑐0 ≥ 𝑐 and ℓ0 ≤ ℓ for all 𝑐0, ℓ0 obtained
in Lemma 2.3 over 𝑡 = 0, 1, 2, · · · ,𝑇 − 1 and 𝑘 =

√
𝑇 . If we choose 𝛼 = 𝑇,𝑉 =

√
𝑇 in Algorithm 1, then

the expected regret and constraint violations satisfy:

1

𝑇

𝑇−1∑
𝑡=0

E
(
𝑓 𝑡 (𝜇𝑡 ) − 𝑓 𝑡 (𝜇∗)

)
≤
𝐶 ′

0√
𝑇
,

E
[ 1

𝑇

𝑇−1∑
𝑡=0

g(𝜇𝑡 )
]
+


2

≤
𝐶 ′

1√
𝑇
,

E
 1

𝑇

𝑇−1∑
𝑡=0

h(𝜇𝑡 ) − b


2

≤
𝐶 ′

2√
𝑇
,
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where𝐶 ′
0
,𝐶 ′

1
,𝐶 ′

2
are constants depending linearly on𝐷2

1
+𝐷1+𝐷2

2
+𝐺2+𝐻 2+𝐺 +𝐻 +𝐹 and independent

of 𝑇 .

Note that throughout the paper, we always use Euclidean ℓ2-norm ∥ · ∥2 to measure the constraint

violation, and it is irrelevant to what norm we choose on the primal space 𝐶 ⊆ R𝑑 .

3.2 The probability simplex case
In this section, we deal with the probability simplex case where the decision set Δ is a 𝑑-dimensional

probability simplex with huge 𝑑 . While Algorithm 1 can be applied to solve such problems by

choosing 𝐷 (𝜇, 𝜇𝑡−1) to be ∥𝜇 − 𝜇𝑡−1∥2

2
, due to the dependencies on the 𝐷1, 𝐷2,𝐺, 𝐻, 𝐹 , the constant

factors in Theorem 3.1 linearly depend on 𝑑 . For mirror descent over a probability simplex, to

improve the dimension dependence, people usually choose the Bregman divergence distance 𝐷 (·, ·)
to be the KL divergence. However, KL divergence fundamentally violates the third assumption in

Assumption 2.1. We now present an alternative algorithm in Algorithm 2 and shows that it can

achieve sublinear regret and constraint violations that logarithmically depends on 𝑑 .

ALGORITHM 2: : Let 𝑉 , 𝛼 > 0, 𝜃 ∈ [0, 1) be some trade-off parameters. Let 𝐷 (𝜇1, 𝜇2) =∑𝑑
𝑖=1

𝜇1 (𝑖) log
𝜇1 (𝑖)
𝜇2 (𝑖) . Let𝑄𝑖 (𝑡), 𝐻 𝑗 (𝑡) be sequences of dual multipliers such that𝑄𝑖 (0) = 0, 𝐻 𝑗 (0) = 0, ∀𝑖, 𝑗 .

Let 𝜇0 = 𝜇−1 = 1

𝑑
1. For any slot 𝑡 ∈ {0, 1, · · · ,𝑇 − 1}:

• Let �̃�𝑡−1 = (1 − 𝜃 )𝜇𝑡−1 + 𝜃
𝑑
1.

• Choose 𝜇𝑡 as a solution to the following problem:

min

𝜇∈Δ

〈
𝑉∇𝑓 𝑡−1 (𝜇𝑡−1) +

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)∇𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
𝑀∑
𝑗=1

𝐻𝑖 (𝑡)ℎ𝑡−1

𝑖 , 𝜇

〉
+ 𝛼𝐷 (𝜇, �̃�𝑡−1) (9)

• Update each dual multiplier 𝑄𝑖 (𝑡), 𝐻 𝑗 (𝑡) via (5) and (6).

• Observe the objective function 𝑓 𝑡 and constraint functions {𝑔𝑡
𝑖
}𝐿
𝑖=1
, {ℎ𝑡

𝑗
}𝑀
𝑗=1

.

Compared to Algorithm 1, Algorithm 2 uses the K-L divergence as the particular Bregman

divergence and introduces a probability mixing step �̃�𝑡−1 = (1 − 𝜃 )𝜇𝑡−1 + 𝜃
𝑑
1, which pushes the

update away from the boundary, at each round. Furthermore, it is known that the problem (9)

admits a closed form solution known as the exponential gradient update [10]. More specifically,

define

p𝑡−1
:= 𝛼−1

(
𝑉∇𝑓 𝑡−1 (𝜇𝑡−1) +

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)∇𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
𝑀∑
𝑗=1

𝐻𝑖 (𝑡)ℎ𝑡−1

𝑖

)
.

Then, the update 𝜇𝑡 can simply be written as

𝜇𝑡 (𝑖) = �̃�𝑡−1 (𝑖) exp(−𝑝𝑡−1 (𝑖))∑𝑑
𝑘=1

�̃�𝑡−1 (𝑘) exp(−𝑝𝑡−1 (𝑘))
, 𝑖 ∈ {1, 2, · · · , 𝑑}. (10)

We have the following performance bound on this algorithm whose proof is similar to Theorem

3.1 and delayed to the Supplement (Section A.4):

Theorem 3.2. Suppose the first two in Assumption 2.1 (using ∥ · ∥ = ∥ · ∥1 and ∥ · ∥∗ = ∥ · ∥∞)
and Assumption 2.2 hold. Let 𝑐, ℓ > 0 be absolute constants such that 𝑐0 ≥ 𝑐 and ℓ0 ≤ ℓ for all 𝑐0, ℓ0

obtained in Lemma 2.3 over 𝑡 = 0, 1, 2, · · · ,𝑇 − 1 and 𝑘 =
√
𝑇 . Choose 𝛼 = 𝑇, 𝑉 =

√
𝑇 , 𝜃 = 1/𝑇 in
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Algorithm 2. The expected regret and constraint violations satisfy:

1

𝑇

𝑇−1∑
𝑡=0

E
(
𝑓
𝑡 (𝜇𝑡 ) − 𝑓𝑡 (𝜇∗)

)
≤
𝐶 ′

0√
𝑇

+
𝐶 ′

0
log(𝑑)
√
𝑇

E


[

1

𝑇

𝑇−1∑
𝑡=0

g(𝜇𝑡 )
]
+


2

≤
𝐶 ′

1√
𝑇

+
𝐶 ′′

1
log(𝑇𝑑)
√
𝑇

,

E

 1

𝑇

𝑇−1∑
𝑡=0

h(𝜇𝑡 ) − b


2

≤
𝐶 ′

2√
𝑇

+
𝐶 ′′

2
log(𝑇𝑑)
√
𝑇

.

where𝐶 ′
0
,𝐶 ′

1
,𝐶 ′′

1
,𝐶 ′

2
,𝐶 ′′

2
are absolute constants depending linearly on𝐷2

1
+𝐷1+𝐷2

2
+𝐺2+𝐻 2+𝐺 +𝐻 +𝐹

and independent of 𝑑 or 𝑇 . (Note that 𝐷1, 𝐷2,𝐺, 𝐻, 𝐹 in Assumption 2.1 are independent of 𝑑 when
∥ · ∥∗ = ∥ · ∥∞.)
Remark 3.1. As a comparison, previously known algorithms and performance bounds, when ap-

plying to this problem, yield worse dependencies on dimension 𝑑 or time period 𝑇 . For example, when
assuming Slater condition, Theorem 1 of [26] gives 𝐶poly(𝑑)/

√
𝑇 regret bound and constraint viola-

tions. Without Slater condition, [12] shows𝐶1poly(𝑑)/
√
𝑇 regret bound and𝐶2poly(𝑑)/𝑇 1/4 constraint

violation. Here poly(𝑑) stands for polynomial dependency on 𝑑 and𝐶, 𝐶1, 𝐶2 are all absolute constants
independent of 𝑑 or 𝑇 .

4 SIMULATION EXPERIMENTS
We consider the problem of cost minimization under budget pacing constraints in data center

service scheduling. More specifically, consider a geographically distributed data center consists of

5 server clusters serving one stream of incoming jobs arriving at a central controller. Each cluster

contains 10 servers. The jobs are directed to different clusters for processing by controller with

different per unit electricity costs. In the simulation, we use electricity market price (EMP) data

traces from 5 zones of New York ISO open access pricing data (http://www.nyiso.com/). For example,

Fig 1(a) depicts the per 5 min EMP data of zone DUNWOD between 05/01/2017 and 05/10/2017.

The number of incoming jobs per 5 min is 𝜆(𝑡), which is assumed to be poisson distributed with

mean equals 1000. each server 𝑘 can choose a power allocation option 𝜇𝑡
𝑘
∈ [0, 30]. This option

determines the following over the 5 min slot:

(1) The electricity money spend of server 𝑘 : 𝑓 𝑡
𝑘
(𝜇𝑡
𝑘
) = 𝑐𝑡

𝑘
· 𝜇𝑡
𝑘
, where 𝑐𝑡

𝑘
is the per unit EMP of

zone server 𝑘 belongs to.

(2) The number of jobs served 𝑔𝑡
𝑘
(𝜇𝑡
𝑘
) which follows a Pareto distribution (a.k.a. power law, see

[7]) of mean 8 log(1 + 4𝜇𝑡
𝑘
).

(3) Internal budget consumptions ℎ𝑡
𝑘
· 𝜇𝑡
𝑘
, where ℎ𝑡

𝑘
follows a Pareto distribution of mean 5 units.

In a typical online service system such as ads service, budget is a measure of internal resources

[1]. The goal is to minimize total average electricity cost over 𝑇 = 10000 slots, i.e.

∑𝑇
𝑡=1

∑
50

𝑘=1
E(𝑐𝑡

𝑘
·

𝜇𝑡
𝑘
)/𝑇 , subject to the following two requirements: (1) The service rate supports the arrival rate:∑𝑇
𝑡=1

∑
50

𝑘=1
E(𝑔𝑡

𝑘
(𝜇𝑡
𝑘
)) ≥ ∑𝑇

𝑡=1
E(𝜆(𝑡)). Note that since 𝑔𝑡

𝑘
(𝜇𝑡
𝑘
) is concave function for 𝜇𝑡

𝑘
≥ 0, this

is a convex inequality constraint. (2) The internal budget consumption is well-paced, i.e. each

cluster consumes a fixed ratio of the total consumed budget in expectation. More specifically, in the

simulation, let I1, · · · ,I5 be index sets of 5 clusters, then, it is required that

∑𝑇
𝑡=1

∑
𝑘∈I𝑗 E(ℎ𝑡𝑘 · 𝜇

𝑡
𝑘
) =

𝛽 𝑗 ·
∑𝑇
𝑡=1

∑
50

𝑘=1
E(ℎ𝑡

𝑘
· 𝜇𝑡
𝑘
), 𝑗 = 1, 2, 3 and

∑𝑇
𝑡=1

∑
𝑘∈I4∪I5

E(ℎ𝑡
𝑘
· 𝜇𝑡
𝑘
) = 𝛽4 ·

∑𝑇
𝑡=1

∑
50

𝑘=1
E(ℎ𝑡

𝑘
· 𝜇𝑡
𝑘
), where

[𝛽1, 𝛽2, 𝛽3, 𝛽4] = [0.05, 0.10, 0.25, 0.60]. In Fig 1, we compare our proposed algorithm with the

best fixed solution in hindsight choosing the best fixed power allocation knowing all the data, and a

benchmark Reac algorithm [7]. The Reac algorithm is adapted to our pacing scenario by estimating
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the number of jobs in the next slot via the average of past 10 slots and assign the load according to

the pacing ratio. For cluster 4 and cluster 5 (which take up a total ratio of 0.60), the Reac algorithm

evenly distribute the workload between the two. Our algorithm achieves a similar electricity money

spend with the best fixed solution which is better than Reac, while keeping the average number of

unserved job low and achieving a fast budget pacing.
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Fig. 1. (a) Electricity market prices at zone DUNWOD New York; (b) Average money spent buying electricity;
(c) Average unserved jobs. (d) Average violation of pacing constraints.

5 PROOF OF MAIN RESULTS
In this section, we present the proof Theorem 3.1. The main lemmas as well as how they lead to

the regret and constraint violation bounds will be presented in Section 5.1 and 5.2, respectively.

The detailed proofs of those lemmas will be presented in Section 5.3. The idea of proving Theorem

3.2 is similar and the details will be delayed to the Supplement A.4.

5.1 Proof of regret bound
We start with the following key bound of a “drift-plus-penalty (DPP)” expression:

Lemma 5.1. Define the drift Δ(𝑡) := (∥Q(𝑡 + 1)∥2

2
− ∥Q(𝑡)∥2

2
)/2 + (∥H(𝑡 + 1)∥2

2
− ∥H(𝑡)∥2

2
)/2.

Consider the following “drift-plus-penalty” (DPP) expression at time 𝑡 : 𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1

〉
+
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Δ(𝑡) + 𝛼𝐷 (𝜇𝑡 , 𝜇𝑡−1). Let𝑀 = 4𝑅𝐻 2/𝛽 +𝐺2 + 2𝑅𝐷2

2
/𝛽 where 𝛽 is in (2), then, for any 𝜇 ∈ Δ,

𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1

〉
+ Δ(𝑡) + 𝛼𝐷 (𝜇𝑡 , 𝜇𝑡−1)

≤ 𝑉 (𝑓 𝑡−1 (𝜇) − 𝑓 𝑡−1 (𝜇𝑡−1)) +
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
(〈
ℎ𝑡−1

𝑗 , 𝜇
〉
− 𝑏 𝑗

)
+

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)𝑔𝑡−1

𝑖 (𝜇) + 𝛼𝐷 (𝜇, 𝜇𝑡−1) − 𝛼𝐷 (𝜇, 𝜇𝑡 ) +𝑀. (11)

This lemma is proved via the property of Bregman divergence (Lemma 2.1). The details are

deferred to Section 5.3.1. Now, for the DPP expression on the left hand side, we also have the

following lower bound:

Lemma 5.2. Our Algorithm 1 ensures

𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1

〉
+ 𝛼𝐷 (𝜇𝑡 , 𝜇𝑡−1) ≥ −𝑉 2𝐷2

1
/2𝛼𝛽. (12)

This lemma is also proved in Section 5.3.1. Substituting this bound in to (11), taking 𝜇 = 𝜇∗ which
is the solution to the in-hindsight problem (3), and taking conditional expectations from both sides,

we readily get:

− 𝑉 2

2𝛼𝛽
𝐷2

1
+ E(Δ(𝑡) |F𝑡−1) ≤ 𝑉E

(
𝑓 𝑡−1 (𝜇∗) − 𝑓 𝑡−1 (𝜇𝑡−1) |F𝑡−1

)
+ E

[ 𝐿∑
𝑖=1

𝑄𝑖 (𝑡)𝑔𝑡−1

𝑖 (𝜇∗)
���F𝑡−1

]
+ E

[ 𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
(〈
ℎ𝑡−1

𝑗 , 𝜇∗
〉
− 𝑏 𝑗

) ���F𝑡−1

]
+ 𝛼E

(
𝐷 (𝜇∗, 𝜇𝑡−1) − 𝐷 (𝜇∗, 𝜇𝑡 ) |F𝑡−1

)
+𝑀. (13)

Note that

E
( 𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
(〈
ℎ𝑡−1

𝑗 , 𝜇∗
〉
− 𝑏 𝑗

) ���F𝑡−1

)
=

𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)E
(〈
ℎ𝑡−1

𝑗 , 𝜇∗
〉
− 𝑏 𝑗

)
= 0,

E
( 𝐿∑
𝑖=1

𝑄𝑖 (𝑡)𝑔𝑡−1

𝑖 (𝜇∗)
���F𝑡−1

)
=

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)E
(
𝑔𝑡−1

𝑖 (𝜇∗)
)
≤ 0,

where, in both inequalities, the first step follows from the fact that ℎ𝑡𝑗 , 𝑔
𝑡
𝑖 are i.i.d. and 𝐻 𝑗 (𝑡), 𝑄𝑖 (𝑡)

depend onF𝑡−1, and the second step follows from 𝜇∗ being a solution to the in-hindsight optimization

(3), thus, must be feasible, i.e. E(𝑔𝑡−1

𝑖 (𝜇∗)) ≤ 0, E(⟨ℎ𝑡−1

𝑗 , 𝜇∗⟩) = 0. Thus, taking full expectation from

both sides of (13) gives

E(Δ(𝑡)) +𝑉E
(
𝑓 𝑡−1 (𝜇𝑡−1) − 𝑓 𝑡−1 (𝜇∗)

)
≤ 𝑀 +

𝑉 2𝐷2

1

2𝛼𝛽
+ 𝛼E

(
𝐷 (𝜇∗, 𝜇𝑡−1) − 𝐷 (𝜇∗, 𝜇𝑡 )

)
.

Taking a telescoping sum on both sides from 0 to 𝑇 − 1 and dividing both sides by 𝑇𝑉 ,

1

𝑇

𝑇−1∑
𝑡=0

E
(
𝑓 𝑡−1 (𝜇𝑡−1) − 𝑓 𝑡−1 (𝜇∗)

)
≤ 𝑀

𝑉
+
𝑉𝐷2

1

2𝛼𝛽
+ 𝛼

𝑉𝑇
𝐷 (𝜇∗, 𝜇0),

where we use the fact that since𝑄𝑖 (0) = 0,𝐻 𝑗 (0) = 0, and

∑𝑇−1

𝑡=0
Δ(𝑡) = (∥Q(𝑇 )∥2

2
+∥H(𝑇 )∥2

2
)/2 ≥ 0.

Substituting 𝛼 = 𝑇,𝑉 =
√
𝑇 , and 𝐷 (𝜇∗, 𝜇0) ≤ 𝑅 yields the desired result with 𝐶 ′

0
= 𝑅𝐻 2/𝛽 +𝐺2 +

2𝑅𝐷2

2
/𝛽 + 𝐷2

1
/2𝛽 + 𝑅.
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5.2 Proof of constraint violations
In this section, we present the proof of constraint violations in Theorem 3.1. First, it is enough to

bound dual multipliers via the following lemma:

Lemma 5.3. The updating rule (5) and (6) delivers the following constraint violation bounds:

E
[ 1

𝑇

𝑇−1∑
𝑡=0

g(𝜇𝑡 )
]
+


2

≤ E(∥Q(𝑡)∥2)
𝑇

+ 𝑉𝐷1𝐷2

𝛼𝛽
+ 1

𝑇

𝑇∑
𝑡=1

𝐷2

𝛼𝛽
(𝐷2E(∥Q(𝑡)∥2) + 𝐻E(∥H(𝑡)∥2)) ,

E
 1

𝑇

𝑇−1∑
𝑡=0

h(𝜇𝑡 ) − b


2

≤ E(∥H(𝑡)∥2)
𝑇

+ 𝑉𝐷1𝐻

𝛼𝛽
+ 1

𝑇

𝑇∑
𝑡=1

𝐻

𝛼𝛽
(𝐷2E(∥Q(𝑡)∥2) + 𝐻E(∥H(𝑡)∥2)) .

This lemma is proved in Section 5.3.2. To bound E(∥Q(𝑡)∥2) and E(∥H(𝑡)∥2), we have the

following lemma whose proof can be found in Section 5.3.3:

Lemma 5.4. Define constant𝐶𝑉 ,𝛼,𝑡0 := 2

(
4𝑅𝐻 2/𝛽 +𝐺2+2𝑅𝐷2

2
/𝛽 +𝑉 2𝐷2

1
/(2𝛼𝛽) +𝑉𝐹

)
𝑡0+2

(
3𝐺2/2+

2𝑅𝐷2

2
/𝛽 + 8𝑅𝐻 2/𝛽

)
𝑡2

0
+ 2𝛼𝑅. Then, for any integer 𝑡0 ≥ 1, we have the 𝑡0 step drift satisfies

E
(
∥Q(𝑡 + 𝑡0)∥2

2
+ ∥H(𝑡 + 𝑡0)∥2

2
|F 𝑡−1

)
− ∥Q(𝑡)∥2

2
− ∥H(𝑡)∥2

2

≤2𝑉𝑡0E

(
𝑞 (𝑡−1,𝑡0) (Q(𝑡)

𝑉
,
H(𝑡)
𝑉

) ����F 𝑡−1

)
+𝐶𝑉 ,𝛼,𝑡0 . (14)

where the dual function 𝑞 (𝑡−1,𝑡0) is defined in (8).

This bound establishes the relation between dual multipliers and the dual function. Next, in view

of (14), we would like to show that E
(
𝑞 (𝑡−1,𝑡0) (Q(𝑡 )

𝑉
,

H(𝑡 )
𝑉

) ���F 𝑡−1

)
is small. This is done via Lemma

2.3 that whenever

(Q(𝑡 )
𝑉
,

H(𝑡 )
𝑉

)
is far away from the optimal set V∗

𝑡−1,𝑡0
:= argmax𝜆,𝜂𝑞

(𝑡−1,𝑡0) (𝜆, 𝜂) ,
which is nonempty and bounded by Assumption 2.2, E

(
𝑞 (𝑡−1,𝑡0) (Q(𝑡 )

𝑉
,

H(𝑡 )
𝑉

) ���F 𝑡−1

)
becomes nega-

tive. In fact one can prove the following lemma:

Lemma 5.5. The dual function has the following bound:

E

(
𝑞 (𝑡−1,𝑡0) (Q(𝑡)

𝑉
,
H(𝑡)
𝑉

)
|F 𝑡−1

)
≤ 𝐹 + ℓ (𝐺 +

√
2𝑅𝐻 2/𝛽 + 𝑐) + 𝑐𝐵 − 𝑐

(Q(𝑡)
𝑉

,
H(𝑡)
𝑉

)
2

,

where 𝐵 is defined in Assumption 2.2.

The detailed proof can be found in Section 5.3.4. Substituting the above lemma into (14) and

using a known stochastic drift lemma, one can prove the following bound by setting 𝑡0 =
√
𝑇 ,

𝑉 =
√
𝑇, 𝛼 = 𝑇 . The details are in Section 5.3.5:

Lemma 5.6. The quantity ∥
(
Q(𝑡), H(𝑡)

)
∥2 satisfies the following conditions:

E
((Q(𝑡), H(𝑡)

)
2

)
≤ 𝐶 ′ +𝐶 ′′√𝑇 (15)

where𝐶 ′
:= 2

𝑐

(
4𝑅𝐻 2/𝛽 +𝐺2 +2𝑅𝐷2

2
/𝛽 +𝐷2

1
/(2𝛽)

)
and𝐶 ′′

:= 2

𝑐

(
2𝐹 +3𝐺2/2+2𝑅𝐷2

2
/𝛽 +8𝑅𝐻 2/𝛽 +𝑅 +

ℓ (𝐺+
√

8𝑅𝐻 2/𝛽+𝑐)+𝑐𝐵+4

(
2(𝐺+

√
2𝑅𝐷2

2
/𝛽)+

√
8𝑅𝐻 2/𝛽

)
2

log

(
32

𝑐2

(
2(𝐺+

√
2𝑅𝐷2

2
/𝛽)+

√
8𝑅𝐻 2/𝛽

)
2
))

are absolute constants.

Substituting the bound (15) into Lemma 5.3 with 𝛼 = 𝑇 and 𝑉 =
√
𝑇 gives the final constraint

violation bounds.
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5.3 Proof of Technical Lemmas
Throughout the section, we letF𝑡 be the system history up to time 𝑡 , which includes {𝑔𝜏

𝑖
}𝑡−1

𝜏=0
, {ℎ𝜏

𝑖
}𝑡−1

𝜏=0
, and

{𝑓 𝜏 }𝑡−1

𝜏=0
.

5.3.1 Proof of Lemma 5.1 and 5.2.

Proof of Lemma 5.1. Applying Lemma 2.1 by setting 𝑦 = 𝜇𝑡−1
, 𝑥∗ = 𝜇𝑡 , 𝑓 (𝑥) = ⟨𝑥, 𝑝⟩ and

𝑝 = 𝑉∇𝑓 𝑡−1 (𝜇𝑡−1) +
𝐿∑
𝑖=1

𝑄𝑖 (𝑡)∇𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
𝑀∑
𝑖=1

𝐻𝑖 (𝑡)ℎ𝑡−1

𝑖 ,

we have〈
𝑉∇𝑓 𝑡−1 (𝜇𝑡−1) +

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)∇𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
𝑀∑
𝑖=1

𝐻𝑖 (𝑡)ℎ𝑡−1

𝑖 , 𝜇𝑡

〉
+ 𝛼𝐷 (𝜇𝑡 , 𝜇𝑡−1)

≤
〈
𝑉∇𝑓 𝑡−1 (𝜇𝑡−1) +

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)∇𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
𝑀∑
𝑖=1

𝐻𝑖 (𝑡)ℎ𝑡−1

𝑖 , 𝜇

〉
+ 𝛼

(
𝐷 (𝜇, 𝜇𝑡−1) − 𝐷 (𝜇, 𝜇𝑡 )

)
(16)

On the other hand, recall that we define

𝑔𝑡𝑖 (𝜇𝑡 ) := 𝑔𝑡𝑖 (𝜇𝑡−1) +
〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1
〉
.

Using the updating rule (5), (6) and Holder’s inequality that ⟨𝑥,𝑦⟩ ≤ ∥𝑥 ∥∥𝑦∥∗, we have

𝐻𝑖 (𝑡 + 1)2 − 𝐻𝑖 (𝑡)2 =2𝐻𝑖 (𝑡) (
〈
ℎ𝑡−1

𝑖 , 𝜇𝑡
〉
− 𝑏𝑖 ) + |

〈
ℎ𝑡−1

𝑖 , 𝜇𝑡
〉
− 𝑏𝑖 |2

≤2𝐻𝑖 (𝑡) (
〈
ℎ𝑡−1

𝑖 , 𝜇𝑡
〉
− 𝑏𝑖 ) +

8𝑅

𝛽
∥ℎ𝑡−1

𝑖 ∥2

∗,

where the inequality for 𝐻𝑖 (𝑡 + 1)2 − 𝐻𝑖 (𝑡)2
follows from

|
〈
ℎ𝑡−1

𝑖 , 𝜇𝑡
〉
− 𝑏𝑖 |2 ≤ 2|

〈
ℎ𝑡−1

𝑖 , 𝜇𝑡
〉
|2 + 2|𝑏𝑖 |2 = 2|

〈
ℎ𝑡−1

𝑖 , 𝜇𝑡
〉
|2 + 2

��E(〈ℎ𝑡−1

𝑖 , 𝜇∗
〉)��2 ≤ 8𝑅/𝛽,

via Assumption 2.1(3) that sup𝜇𝑎,𝜇𝑏 ∈Δ ∥𝜇𝑎 − 𝜇𝑏 ∥2 ≤ 2𝑅/𝛽 and 𝑏𝑖 = E
(〈
ℎ𝑡−1

𝑖 , 𝜇∗
〉)
. Also, we have

𝑄𝑖 (𝑡 + 1)2 −𝑄𝑖 (𝑡)2 =max{𝑄𝑖 (𝑡) + 𝑔𝑡𝑖 (𝜇𝑡 ), 0}2 −𝑄𝑖 (𝑡)2

≤2𝑄𝑖 (𝑡)𝑔𝑡𝑖 (𝜇𝑡 ) + 𝑔𝑡𝑖 (𝜇𝑡 )2

≤2𝑄𝑖 (𝑡)𝑔𝑡𝑖 + 2(𝑔𝑡−1

𝑖 (𝜇𝑡−1))2 + 4𝑅

𝛽
∥∇𝑔𝑡−1

𝑖 (𝜇𝑡−1)∥2

∗,

where the first inequality follows from the following fact: If 𝑄𝑖 (𝑡) + 𝑔𝑡𝑖 (𝜇𝑡 ) ≥ 0, then, the equality

is attained and if 𝑄𝑖 (𝑡) + 𝑔𝑡𝑖 (𝜇𝑡 ) ≤ 0, then, max{𝑄𝑖 (𝑡) + 𝑔𝑡𝑖 (𝜇𝑡 ), 0}2 = 0 and the inequality follows

from 𝑄𝑖 (𝑡)2 + 2𝑄𝑖 (𝑡)𝑔𝑡𝑖 (𝜇𝑡 ) + 𝑔𝑡𝑖 (𝜇𝑡 ) ≥ 0. The second inequality follows from the assumption

sup𝜇𝑎,𝜇𝑏 ∈Δ ∥𝜇𝑎 − 𝜇𝑏 ∥2 ≤ 2𝑅/𝛽 and the definition of 𝑔𝑡𝑖 (𝜇𝑡 ) in Algorithm 1 that

𝑔𝑡𝑖 (𝜇𝑡 )2 =
(
𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1
〉)

2

≤2(𝑔𝑡−1

𝑖 (𝜇𝑡−1))2 + 2

(〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1
〉)

2

≤2(𝑔𝑡−1

𝑖 (𝜇𝑡−1))2 + 2∥∇𝑔𝑡−1

𝑖 (𝜇𝑡−1)∥2

∗ ∥𝜇𝑡 − 𝜇𝑡−1∥2

≤2(𝑔𝑡−1

𝑖 (𝜇𝑡−1))2 + 4𝑅

𝛽
∥∇𝑔𝑡−1

𝑖 (𝜇𝑡−1)∥2

∗,
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where the last inequality follows from Assumption 2.1 and (2). Thus, we have

Δ(𝑡) ≤
𝐿∑
𝑖=1

𝑄𝑖 (𝑡)𝑔𝑡𝑖 (𝜇𝑡 ) +
𝑀∑
𝑖=1

𝐻𝑖 (𝑡)
(〈
ℎ𝑡𝑖 , 𝜇

𝑡
〉
− 𝑏𝑖

)
+ 4𝑅

𝛽

𝑀∑
𝑖=1

∥ℎ𝑡𝑖 ∥2

∗

+
𝐿∑
𝑖=1

𝑔𝑡−1

𝑖 (𝜇𝑡−1)2 + 2𝑅

𝛽

𝐿∑
𝑖=1

∥∇𝑔𝑡−1

𝑖 (𝜇𝑡−1)∥2

∗

≤
𝐿∑
𝑖=1

𝑄𝑖 (𝑡)𝑔𝑡𝑖 (𝜇𝑡 ) +
𝑀∑
𝑖=1

𝐻𝑖 (𝑡) (
〈
ℎ𝑡𝑖 , 𝜇

𝑡
〉
− 𝑏𝑖 ) +

4𝑅𝐻 2

𝛽
+𝐺2 +

2𝑅𝐷2

2

𝛽
, (17)

where the last inequality follows from Assumption 2.1(1). To this point, we consider the following

drift-plus-penalty term, by (17),

Δ(𝑡) +𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1

〉
+ 𝛼𝐷 (𝜇𝑡 , 𝜇𝑡−1)

≤
𝐿∑
𝑖=1

𝑄𝑖 (𝑡)
(
𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1
〉)

+
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
(〈
ℎ𝑡−1

𝑗 , 𝜇𝑡
〉
− 𝑏𝑖

)
+ 4𝑅𝐻 2

𝛽
+𝐺2 +

2𝑅𝐷2

2

𝛽
+𝑉

〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1

〉
+ 𝛼𝐷 (𝜇𝑡 , 𝜇𝑡−1).

Now, by (16), we have for any 𝜇 ∈ Δ,

Δ(𝑡) +𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1

〉
+ 𝛼𝐷 (𝜇𝑡 , 𝜇𝑡−1)

≤
𝐿∑
𝑖=1

𝑄𝑖 (𝑡)
(
𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), 𝜇 − 𝜇𝑡−1
〉)

+
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
(〈
ℎ𝑡−1

𝑗 , 𝜇
〉
− 𝑏𝑖

)
+ 4𝑅𝐻 2

𝛽
+𝐺2 +

2𝑅𝐷2

2

𝛽
+ 𝛼𝐷 (𝜇, 𝜇𝑡−1) − 𝛼𝐷 (𝜇, 𝜇𝑡 ) +𝑉

〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇 − 𝜇𝑡−1

〉
Note that by convexity, we have for any 𝜇,

𝑓 𝑡−1 (𝜇) ≥ 𝑓 𝑡−1 (𝜇𝑡−1) +
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇 − 𝜇𝑡−1

〉
,

𝑔𝑡−1

𝑖 (𝜇) ≥ 𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), 𝜇 − 𝜇𝑡−1
〉
.

Thus, it follows (11) holds. □

Proof of Lemma 5.2. We have

𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1

〉
+ 𝛼𝐷 (𝜇𝑡 , 𝜇𝑡−1)

≥𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1

〉
+ 𝛼𝛽

2

∥𝜇𝑡 − 𝜇𝑡−1∥2

≥ −𝑉 ∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥∗∥𝜇𝑡 − 𝜇𝑡−1∥ + 𝛼𝛽
2

∥𝜇𝑡 − 𝜇𝑡−1∥2

≥ −𝑉
(
𝛼𝛽

2𝑉
∥𝜇𝑡 − 𝜇𝑡−1∥2 + 𝑉

2𝛼𝛽
∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥2

∗

)
+ 𝛼𝛽

2

∥𝜇𝑡 − 𝜇𝑡−1∥2

= − 𝑉 2

2𝛼𝛽
∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥2

∗ ≥ − 𝑉 2

2𝛼𝛽
𝐷2

1
.

where the first inequality follows from the strong convexity (2), the second inequality follows from

Holder’s inequality, the third inequality follows from the fact that 𝑎𝑏 ≤ 𝑎2+𝑏2

2
, ∀𝑎, 𝑏, and the last

inequality follows from the bound ∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥∗ ≤ 𝐷1. □
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5.3.2 Proof of Lemma 5.3. We start with a supporting lemma:

Lemma 5.7. The updating rule (5) and (6) delivers the following constraint violation bounds:

E


[

1

𝑇

𝑇−1∑
𝑡=0

g(𝜇𝑡 )
]
+


2

≤ E(∥Q(𝑡)∥2)
𝑇

+ 𝐷2

𝑇

𝑇−1∑
𝑡=0

E
(
∥𝜇𝑡+1 − 𝜇𝑡 ∥

)
E

 1

𝑇

𝑇−1∑
𝑡=0

h(𝜇𝑡 ) − b


2

≤ E(∥H(𝑡)∥2)
𝑇

+ 𝐻
𝑇

𝑇−1∑
𝑡=0

E
(
∥𝜇𝑡+1 − 𝜇𝑡 ∥

)
Proof of Lemma 5.7. We prove the first inequality and the second inequality is proved in the

same way. Note by (5), we have

𝑄𝑖 (𝑡 + 1) =max{𝑄𝑖 (𝑡) + 𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1
〉
, 0}

≥ max{𝑄𝑖 (𝑡) + 𝑔𝑡−1

𝑖 (𝜇𝑡−1) − ∥∇𝑔𝑡−1

𝑖 (𝜇𝑡−1)∥∗∥𝜇𝑡 − 𝜇𝑡−1∥, 0}
≥𝑄𝑖 (𝑡) + 𝑔𝑡−1

𝑖 (𝜇𝑡−1) − ∥∇𝑔𝑡−1

𝑖 (𝜇𝑡−1)∥∗∥𝜇𝑡 − 𝜇𝑡−1∥.

Taking a telescoping sum from both sides from 0 to 𝑇 − 1,

𝑄𝑖 (𝑇 ) ≥
𝑇−1∑
𝑡=0

𝑔𝑡𝑖 (𝜇𝑡 ) −
𝑇−1∑
𝑡=0

∥∇𝑔𝑡𝑖 (𝜇𝑡 )∥∗∥𝜇𝑡+1 − 𝜇𝑡 ∥ .

Rearranging the terms and dividing both sides by 𝑇 give

1

𝑇

𝑇−1∑
𝑡=0

𝑔𝑡𝑖 (𝜇𝑡 ) ≤
𝑄𝑖 (𝑇 )
𝑇

+ 1

𝑇

𝑇−1∑
𝑡=0

∥∇𝑔𝑡𝑖 (𝜇𝑡−1)∥∗∥𝜇𝑡+1 − 𝜇𝑡 ∥.

Note that the right hand side is nonnegative due to 𝑄𝑖 (𝑇 ) ≥ 0, the inequality still holds if take the

max with 0 from the left hand side, i.e. denote [𝑥]+ := max{𝑥, 0}, then,[
1

𝑇

𝑇−1∑
𝑡=0

𝑔𝑡𝑖 (𝜇𝑡 )
]
+
≤ 𝑄𝑖 (𝑇 )

𝑇
+ 1

𝑇

𝑇−1∑
𝑡=0

∥∇𝑔𝑡𝑖 (𝜇𝑡−1)∥∗∥𝜇𝑡+1 − 𝜇𝑡 ∥ .

Thus, we have 
[

1

𝑇

𝑇−1∑
𝑡=0

g(𝜇𝑡 )
]
+


2

≤ ∥Q(𝑇 )∥2

𝑇
+ 1

𝑇

𝑇−1∑
𝑡=0

√√√
𝐿∑
𝑖=1

∥∇𝑔𝑡
𝑖
(𝜇𝑡 )∥2

∗ ∥𝜇𝑡+1 − 𝜇𝑡 ∥

≤ ∥Q(𝑇 )∥2

𝑇
+ 𝐷2

𝑇

𝑇−1∑
𝑡=0

∥𝜇𝑡+1 − 𝜇𝑡 ∥,

where the second inequality follows from Assumption 2.1. □
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Proof of Lemma 5.3. It is enough to bound the difference term E
(
∥𝜇𝑡+1 − 𝜇𝑡 ∥

)
. We start from

the relation (16) by taking 𝜇 = 𝜇𝑡−1
,

𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡

〉
+

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)
〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), 𝜇𝑡
〉
+

𝑀∑
𝑗=1

𝐻𝑖 (𝑡)
〈
ℎ𝑡−1

𝑖 , 𝜇𝑡
〉
+ 𝛼𝐷 (𝜇𝑡 , 𝜇𝑡−1)

≤ 𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡−1

〉
+

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)
〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), 𝜇𝑡−1
〉

+
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
〈
ℎ𝑡−1

𝑖 , 𝜇𝑡−1
〉
− 𝛼𝐷 (𝜇𝑡−1, 𝜇𝑡 ). (18)

Note that we have〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡−1 − 𝜇𝑡

〉
≤ ∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥∗∥𝜇𝑡−1 − 𝜇𝑡 ∥ ≤ 𝐷1∥𝜇𝑡 − 𝜇𝑡−1∥.

On the other hand, we also have

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)
〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), 𝜇𝑡−1 − 𝜇𝑡
〉
≤∥Q(𝑡)∥2

√√√
𝐿∑
𝑖=1

(∥∇𝑔𝑖 (𝜇𝑡−1)∥∗∥𝜇𝑡 − 𝜇𝑡−1∥)2

≤𝐷2∥Q(𝑡)∥2∥𝜇𝑡 − 𝜇𝑡−1∥,

and

𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
〈
ℎ𝑡−1

𝑖 , 𝜇𝑡−1 − 𝜇𝑡
〉
≤ ∥H(𝑡)∥2

√√√
𝑀∑
𝑖=1

(∥ℎ𝑡−1

𝑖
∥∗∥𝜇𝑡 − 𝜇𝑡−1∥)2 ≤ 𝐻 ∥H(𝑡)∥2∥𝜇𝑡 − 𝜇𝑡−1∥ .

Substituting the above three bounds into (18) gives

𝐷 (𝜇𝑡 , 𝜇𝑡−1) + 𝐷 (𝜇𝑡−1, 𝜇𝑡 ) ≤ 1

𝛼
(𝑉𝐷1 + 𝐷2∥Q(𝑡)∥2 + 𝐻 ∥H(𝑡)∥2) ∥𝜇𝑡 − 𝜇𝑡−1∥

By strong convexity (2), we have

𝐷 (𝜇𝑡 , 𝜇𝑡−1) + 𝐷 (𝜇𝑡−1, 𝜇𝑡 ) ≥ 𝛽 ∥𝜇𝑡 − 𝜇𝑡−1∥2

Thus, it follows,

𝛽 ∥𝜇𝑡 − 𝜇𝑡−1∥2 ≤ 1

𝛼
(𝑉𝐷1 + 𝐷2∥Q(𝑡)∥2 + 𝐻 ∥H(𝑡)∥2) ∥𝜇𝑡 − 𝜇𝑡−1∥ .

Solving the above quadratic inequality yields

∥𝜇𝑡 − 𝜇𝑡−1∥ ≤ 1

𝛼𝛽
(𝑉𝐷1 + 𝐷2∥Q(𝑡)∥2 + 𝐻 ∥H(𝑡)∥2) .

Taking the expectation from both sides and subtracting this bound into Lemma 5.7 result in

E


[

1

𝑇

𝑇−1∑
𝑡=0

g(𝜇𝑡 )
]
+


2

≤ E(∥Q(𝑡)∥2)
𝑇

+ 𝑉𝐷1𝐷2

𝛼𝛽
+ 1

𝑇

𝐷2

𝛼𝛽

𝑇∑
𝑡=1

(
𝐷2E(∥Q(𝑡)∥2) + 𝐻E(∥H(𝑡)∥2)

)
One can prove the bound on E

 1

𝑇

∑𝑇−1

𝑡=0
h(𝜇𝑡 )


2

with exactly the same computation and we omit

the details. □
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5.3.3 Proof of Lemma 5.4. For simplicity of notations, let constant 𝑐 be the minimum over all

𝑐0’s and let ℓ be the maximum over all ℓ0’s in Lemma 2.3 with 𝑡 = 0, 1, 2, · · · ,𝑇 − 1 and 𝑘 =
√
𝑇 . We

start with the following supporting lemma:

Lemma 5.8. Consider the 𝑡0 slots drift for some positive integer 𝑡0, then we have

∥Q(𝑡 + 𝑡0)∥2

2
+ ∥H(𝑡 + 𝑡0)∥2

2
− ∥Q(𝑡)∥2

2
− ∥H(𝑡)∥2

2

2

≤ 𝑉
𝑡+𝑡0−1∑
𝜏=𝑡

𝑓 𝜏−1 (𝜇) +
𝐿∑
𝑖=1

𝑄𝑖 (𝑡)
𝑡+𝑡0−1∑
𝜏=𝑡

𝑔𝜏−1

𝑖 (𝜇) +
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
𝑡+𝑡0−1∑
𝜏=𝑡

(〈
ℎ𝜏−1

𝑗 , 𝜇
〉
− 𝑏 𝑗

)
+ 1

2

𝐶𝑉 ,𝛼,𝑡0 . (19)

Proof of Lemma 5.8. We start from equation (11). Substituting (12), we have

Δ(𝑡) +𝑉 (𝑓 𝑡−1 (𝜇𝑡−1) − 𝑓 𝑡−1 (𝜇)) ≤
𝐿∑
𝑖=1

𝑄𝑖 (𝑡)𝑔𝑡−1

𝑖 (𝜇) +
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
(〈
ℎ𝑡−1

𝑗 , 𝜇
〉
− 𝑏 𝑗

)
+ 4𝑅𝐻 2

𝛽
+𝐺2 +

2𝑅𝐷2

2

𝛽
+
𝑉 2𝐷2

1

2𝛼𝛽
+ 𝛼𝐷 (𝜇, 𝜇𝑡−1) − 𝛼𝐷 (𝜇, 𝜇𝑡 ).

Take the summation from both sides between 𝑡 to 𝑡 + 𝑡0 − 1 for some 𝑡0 to be determined later, we

obtain

∥Q(𝑡 + 𝑡0)∥2

2
+ ∥H(𝑡 + 𝑡0)∥2

2
− ∥Q(𝑡)∥2

2
− ∥H(𝑡)∥2

2

2

≤
𝑡+𝑡0−1∑
𝜏=𝑡

𝐿∑
𝑖=1

𝑄𝑖 (𝜏)𝑔𝜏−1

𝑖 (𝜇) +
𝑡+𝑡0−1∑
𝜏=𝑡

𝑀∑
𝑗=1

𝐻 𝑗 (𝜏)
(〈
ℎ𝜏−1

𝑗 , 𝜇
〉
− 𝑏 𝑗

)
+

(
4𝑅𝐻 2

𝛽
+𝐺2 +

2𝑅𝐷2

2

𝛽
+
𝑉 2𝐷2

1

2𝛼𝛽

)
𝑡0 + 𝛼𝐷 (𝜇, 𝜇𝑡−1) − 𝛼𝐷 (𝜇, 𝜇𝑡+𝑡0−1)

+𝑉
𝑡+𝑡0−1∑
𝜏=𝑡

(𝑓 𝜏−1 (𝜇𝜏−1) − 𝑓 𝜏−1 (𝜇)) (20)

Using Assumption 2.1, we have 𝑉
∑𝑡+𝑡0−1

𝜏=𝑡 𝑓 𝜏−1 (𝜇𝜏−1) ≤ 𝑉𝐹𝑡0. Recall that 𝑄𝑖 (𝑡 + 1) = max{𝑄𝑖 (𝑡) +
𝑔𝑡𝑖 (𝜇𝑡 ), 0}, where

𝑔𝑡𝑖 (𝜇𝑡 ) := 𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1
〉
,

and 𝐻 𝑗 (𝑡 + 1) = 𝐻 𝑗 (𝑡) +
〈
ℎ𝑡−1

𝑗 , 𝜇𝑡
〉
− 𝑏 𝑗 , we have
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𝑡+𝑡0−1∑
𝜏=𝑡

𝐿∑
𝑖=1

(𝑄𝑖 (𝜏) −𝑄𝑖 (𝑡)) 𝑔𝜏−1

𝑖 (𝜇)

≤
𝑡+𝑡0−1∑
𝜏=𝑡+1

𝐿∑
𝑖=1

(
𝜏−1∑
𝜏′=𝑡

|𝑔𝜏′𝑖 (𝜇𝜏
′) |) · |𝑔𝜏−1

𝑖 (𝜇) |

≤
𝑡+𝑡0−1∑
𝜏=𝑡+1

𝜏−1∑
𝜏′=𝑡

𝐿∑
𝑖=1

( |𝑔𝜏′𝑖 (𝜇𝜏
′) |2 + |𝑔𝜏−1

𝑖 (𝜇) |2)/2

≤
𝑡+𝑡0−1∑
𝜏=𝑡+1

𝜏−1∑
𝜏′=𝑡

𝐿∑
𝑖=1

|𝑔𝜏 ′−1

𝑖 (𝜇𝜏′−1) |2 + ∥∇𝑔𝜏 ′−1

𝑖 ∥2

∗
2𝑅

𝛽
+ |𝑔𝜏−1

𝑖 (𝜇) |2/2

≤𝑡2

0

(
3

2

𝐺2 +
2𝑅𝐷2

2

𝛽

)
, (21)

where the second from the last inequality follows from ∥𝜇𝑡 − 𝜇𝑡−1∥2 ≤ 2𝑅/𝛽 , and the last inequality
follows from Assumption 2.1. Similarly, we can show that

𝑡+𝑡0−1∑
𝜏=𝑡

𝑀∑
𝑗=1

(
𝐻 𝑗 (𝜏) − 𝐻 𝑗 (𝑡)

) (〈
ℎ𝜏−1

𝑗 , 𝜇𝜏
〉
− 𝑏 𝑗

)
≤ 𝑡2

0

8𝑅𝐻 2

𝛽
. (22)

Substituting the above two bounds into (20), using the fact that 𝛼𝐷 (𝜇, 𝜇𝑡+𝑡0−1) ≥ 0 and𝐷 (𝜇, 𝜇𝑡 ) ≤
𝑅 and that 𝐶𝑉 ,𝛼,𝑡0 := 2

(
4𝑅𝐻 2

𝛽
+𝐺2 + 2𝑅𝐷2

2

𝛽
+ 𝑉 2𝐷2

1

2𝛼𝛽
+𝑉𝐹

)
𝑡0 + 2

(
3

2
𝐺2 + 2𝑅𝐷2

2

𝛽
+ 8𝑅𝐻 2

𝛽

)
𝑡2

0
+ 2𝛼𝑅 yields

the desired result. □

Proof of Lemma 5.4. Taking a conditional expectation from both sides of (5.8) conditioned on

F 𝑡−1
, we get

E
(
∥Q(𝑡 + 𝑡0)∥2

2
+ ∥H(𝑡 + 𝑡0)∥2

2
|F 𝑡−1

)
− ∥Q(𝑡)∥2

2
− ∥H(𝑡)∥2

2

≤ 2E

(
𝑉

𝑡+𝑡0−1∑
𝜏=𝑡

𝑓 𝜏−1 (𝜇) |F 𝑡−1

)
+ 2

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)E
(
𝑡+𝑡0−1∑
𝜏=𝑡

𝑔𝜏−1

𝑖 (𝜇)
)

+ 2

𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)E
(
𝑡+𝑡0−1∑
𝜏=𝑡

(
〈
ℎ𝜏−1

𝑗 , 𝜇
〉
− 𝑏 𝑗 )

)
+𝐶𝑉 ,𝛼,𝑡0 , (23)

where we use the following two facts: (1) The multipliers Q(𝑡), H(𝑡) ∈ F 𝑡−1
. (2) The functions 𝑔𝜏

𝑖

and ℎ𝜏
𝑖
are independent of system history F 𝑡−1

and thus the conditional expectation equals the

expectation.

Note that by definition, 𝑓 𝑡 (𝜇) = 𝑓 (𝜇, 𝜉𝑡 ), and according to the notation in (7),

E

(
𝑉

𝑡+𝑡0−1∑
𝜏=𝑡

𝑓 𝜏−1 (𝜇) |F 𝑡−1

)
= E

(
𝑉E𝜉

[
𝑡+𝑡0−1∑
𝜏=𝑡

𝑓 𝜏−1 (𝜇)
] �����F 𝑡−1

)
= 𝑉𝑡0E

(
𝑓
(𝑡,𝑡0) (𝜇) |F 𝑡−1

)
.

Furthermore,

E

(
𝑡+𝑡0−1∑
𝜏=𝑡

𝑔𝜏−1

𝑖 (𝜇)
)
= 𝑡0𝑔𝑖 (𝜇), E

(
𝑡+𝑡0−1∑
𝜏=𝑡

〈
ℎ𝜏−1

𝑗 , 𝜇
〉)

= 𝑡0ℎ 𝑗 (𝜇).
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Substituting these two relations into (23), we get

E
(
∥Q(𝑡 + 𝑡0)∥2

2
+ ∥H(𝑡 + 𝑡0)∥2

2
|F 𝑡−1

)
− ∥Q(𝑡)∥2

2
− ∥H(𝑡)∥2

2

≤ 2𝑉𝑡0E

(
𝑓
(𝑡,𝑡0) (𝜇) +

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)
𝑉

𝑔𝑖 (𝜇) +
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
𝑉

(ℎ 𝑗 (𝜇) − 𝑏 𝑗 )
���F 𝑡−1

)
+𝐶𝑉 ,𝛼,𝑡0 . (24)

The key, as is mentioned in the proof outline, is to realize that

𝑞 (𝑡,𝑡0)
(Q(𝑡)
𝑉

,
H(𝑡)
𝑉

)
= min

𝜇∈Δ
𝑓
(𝑡,𝑡0) (𝜇) +

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)
𝑉

𝑔𝑖 (𝜇) +
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
𝑉

(ℎ 𝑗 (𝜇) − 𝑏 𝑗 ),

where 𝑞 (𝑡,𝑡0) is the Lagrangian dual function defined in (8) with dual variables

(Q(𝑡 )
𝑉
,

H(𝑡 )
𝑉

)
. This

implies if we choose 𝜇 = 𝜇0 in (24) as one of the solutions to the above problem, then, we can

transform the bound (24) to (14) and finish the proof. □

5.3.4 Proof of Lemma 5.5. We take 𝑡0 =
√
𝑇 and by SELM (Assumption 2.2), there exists a solution

to the maximization problem

Λ∗
:= argmax𝜆,𝜂 𝑞

(𝑡,𝑡0) (𝜆, 𝜂).

Let (𝜆∗, 𝜂∗) be one of the solutions to this problem. Recall that we define 𝑐 to be the minimum over

all 𝑐0’s and define ℓ to be the maximum over all ℓ0’s in Lemma 2.3 with 𝑡 = 0, 1, 2, · · · ,𝑇 − 1 and

𝑘 =
√
𝑇 . If dist

( (Q(𝑡 )
𝑉
,

H(𝑡 )
𝑉

)
, Λ∗

)
≥ ℓ , then, by Lemma 2.3 we have

𝑞 (𝑡,𝑡0)
(Q(𝑡)
𝑉

,
H(𝑡)
𝑉

)
=𝑞 (𝑡,𝑡0)

(Q(𝑡)
𝑉

,
H(𝑡)
𝑉

)
− 𝑞 (𝑡,𝑡0) (𝜆∗, 𝜂∗) + 𝑞 (𝑡,𝑡0) (𝜆∗, 𝜂∗)

≤ − 𝑐 · dist
( (Q(𝑡)

𝑉
,
H(𝑡)
𝑉

)
, Λ∗

)
+ 𝑞 (𝑡,𝑡0) (𝜆∗, 𝜂∗)

≤ − 𝑐 · dist
( (Q(𝑡)

𝑉
,
H(𝑡)
𝑉

)
, Λ∗

)
+ 𝑓 (𝑡,𝑡0) (𝜇0)

≤ − 𝑐
(Q(𝑡)

𝑉
,
H(𝑡)
𝑉

)
2

+ 𝑐𝐵 + 𝐹,

where the first inequality follows from Lemma 2.3, the second inequality follows from choosing 𝜇0

as the solution to the following problem

min

𝜇∈Δ
𝑓
𝑡,𝑡0 (𝜇) 𝑠 .𝑡 . g(𝜇) ≤ 0, h(𝜇) = b,

and using weak duality. The third inequality follows from triangle inequality and the boundedness

of Lagrange multipliers max[𝜆,𝜇 ] ∈V∗ ∥ [𝜆, 𝜇] ∥2 ≤ 𝐵.
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On the other hand, if dist

( (Q(𝑡 )
𝑉
,

H(𝑡 )
𝑉

)
, Λ∗

)
< ℓ , then, one has

𝑞 (𝑡,𝑡0)
(Q(𝑡)
𝑉

,
H(𝑡)
𝑉

)
=min

𝜇∈Δ
𝑓
(𝑡,𝑡0) (𝜇) +

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)
𝑉

𝑔𝑖 (𝜇) +
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
𝑉

(ℎ 𝑗 (𝜇) − 𝑏 𝑗 )

=min

𝜇∈Δ
𝑓
(𝑡,𝑡0) (𝜇) +

𝐿∑
𝑖=1

(
𝜆∗𝑖 𝑔𝑖 (𝜇) +

〈
𝑄𝑖 (𝑡)
𝑉

− 𝜆∗𝑖 , 𝑔𝑖 (𝜇)
〉 )

+
𝑀∑
𝑗=1

(
𝜇∗𝑗ℎ 𝑗 (𝜇) − 𝑏 𝑗 +

〈
𝐻 𝑗 (𝑡)
𝑉

− 𝜇∗𝑗 , ℎ 𝑗 (𝜇)
〉 )

≤𝑞 (𝑡,𝑡0) (𝜆∗, 𝜂∗) + ℓ
(
𝐺 +

√
2𝑅𝐻 2

𝛽

)
≤ 𝐹 + ℓ

(
𝐺 +

√
2𝑅𝐻 2

𝛽

)
,

where we choose (𝜆∗, 𝜇∗) to be a point in Λ∗
closest to

(Q(𝑡 )
𝑉
,

H(𝑡 )
𝑉

)
, the first inequality follows from

𝐿∑
𝑖=1

〈
𝑄𝑖 (𝑡)
𝑉

− 𝜆∗𝑖 , 𝑔𝑖 (𝜇)
〉
≤ ∥Q(𝑡)/𝑉 − 𝜆∗∥2∥g(𝜇)∥2 ≤ 𝐺ℓ

𝑀∑
𝑗=1

〈
𝐻 𝑗 (𝑡)
𝑉

− 𝜇∗𝑗 , ℎ 𝑗 (𝜇)
〉
≤ ∥H(𝑡)/𝑉 − 𝜇∗∥2∥h(𝜇)∥2 ≤

√
2𝑅𝐻 2

𝛽
ℓ,

and the second inequality follows from weak duality. Overall, we finish the proof.

5.3.5 Proof of Lemma 5.6. The proof Lemma 5.6 is based on Lemma 5.5 and a general drift bound.

First, substituting Lemma 5.5 into (14) in Lemma 5.4, we have

E
(
∥Q(𝑡 + 𝑡0)∥2

2
+ ∥H(𝑡 + 𝑡0)∥2

2
|F 𝑡−1

)
− ∥Q(𝑡)∥2

2
− ∥H(𝑡)∥2

2

≤ 𝐶𝑉 ,𝛼,𝑡0 + 2

(
𝐹 + ℓ (𝐺 +

√
2𝑅𝐻 2/𝛽 + 𝑐) + 𝑐𝐵

)
𝑉𝑡0 − 2𝑐𝑡0

(Q(𝑡), H(𝑡)
)

2

. (25)

This bound is the key to our analysis. Intuitively, if ∥
(
Q(𝑡), H(𝑡)

)
∥2 is very large at certain time slot

𝑡 , then, ∥
(
Q(𝑡 + 𝑡0), H(𝑡 + 𝑡0)

)
∥2 becomes very small. Since ∥

(
Q(𝑡 + 𝑡0), H(𝑡 + 𝑡0)

)
∥2 is nonnegative,

this means ∥
(
Q(𝑡), H(𝑡)

)
∥2 cannot be too large to start with. To transform this intuition into a

uniform bound on

(
Q(𝑡), H(𝑡)

)
over all time slots, we invoke the following drift lemma:

Lemma 5.9 (Lemma 5 of [26]). Let {𝑍 (𝑡), 𝑡 ≥ 1} be a discrete time stochastic process adapted to
a filtration {F (𝑡), 𝑡 ≥ 1} with 𝑍 (0) = 0 and F (0) = {∅,Ω}. Suppose there exist integer 𝑡0 > 0, real
constants 𝜃 ∈ R, 𝛿max > 0 and 0 < 𝜁 ≤ 𝛿max such that

|𝑍 (𝑡 + 1) − 𝑍 (𝑡) | ≤𝛿max, (26)

E[𝑍 (𝑡 + 𝑡0) − 𝑍 (𝑡) |F (𝑡)] ≤
{
𝑡0𝛿max, if 𝑍 (𝑡) < 𝜃
−𝑡0𝜁 , if 𝑍 (𝑡) ≥ 𝜃 . (27)

hold for all 𝑡 ∈ {0, 1, 2, . . .}. Then, E[𝑍 (𝑡)] ≤ 𝜃 + 𝑡0 4𝛿2

max

𝜁
log

[
8𝛿2

max

𝜁 2

]
, ∀𝑡 ∈ {0, 1, 2, . . .}.

To apply this lemma, we set 𝑍 (𝑡) = ∥
(
Q(𝑡), H(𝑡)

)
∥2 and check conditions (26) and (27), for

which we detail below:
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Proof of Lemma 5.6. For condition (26), we have��∥ (Q(𝑡 + 1), H(𝑡 + 1)
)
∥2 − ∥

(
Q(𝑡), H(𝑡)

)
∥2

��
≤∥

(
Q(𝑡 + 1) − Q(𝑡), H(𝑡 + 1) − H(𝑡)

)
∥2

≤

√√√
𝐿∑
𝑖=1

(𝑔𝑡
𝑖
)2 +

√√√ 𝑀∑
𝑗=1

(
〈
ℎ𝑡
𝑗
, 𝜇𝑡

〉
− 𝑏 𝑗 )2

≤2

(
𝐺 +

√
2𝑅𝐷2

2

𝛽

)
+

√
8𝑅𝐻 2

𝛽
.

On the other hand, for condition (27) we start from (25). Suppose(Q(𝑡), H(𝑡)
)

2

≥
𝐶𝑉 ,𝛼,𝑡0 + 2

(
𝐹 + ℓ (𝐺 +

√
2𝑅𝐻 2/𝛽 + 𝑐) + 𝑐𝐵

)
𝑉𝑡0

𝑐𝑡0
,

then, we can derive from (25) that

E
(
∥Q(𝑡 + 𝑡0)∥2

2
+ ∥H(𝑡 + 𝑡0)∥2

2
|F 𝑡−1

)
− ∥Q(𝑡)∥2

2
− ∥H(𝑡)∥2

2

≤ − 𝑐𝑡0∥
(
Q(𝑡), H(𝑡)

)
∥2 ≤ −𝑐𝑡0∥

(
Q(𝑡), H(𝑡)

)
∥2 +

𝑐2𝑡2

0

4

,

which implies

E
(
∥Q(𝑡 + 𝑡0)∥2

2
+ ∥H(𝑡 + 𝑡0)∥2

2

���F 𝑡−1

)
≤

(
∥
(
Q(𝑡), H(𝑡)

)
2

− 𝑐𝑡0

2

)
2

.

Taking a square root from both sides and by Jensen’s inequality,

E
((Q(𝑡 + 𝑡0), H(𝑡 + 𝑡0)

)
2

���F 𝑡−1

)
≤

(Q(𝑡), H(𝑡)
)

2

− 𝑐𝑡0

2

.

Overall, by Lemma 5.9, we obtain

E
((Q(𝑡), H(𝑡)

)
2

)
≤
𝐶𝑉 ,𝛼,𝑡0 + 2

(
𝐹 + ℓ (𝐺 +

√
8𝑅𝐻 2/𝛽 + 𝑐) + 𝑐𝐵

)
𝑉𝑡0

𝑐𝑡0

+
8𝑡0

(
2(𝐺 +

√
2𝑅𝐷2

2
/𝛽) +

√
8𝑅𝐻 2/𝛽

)
2

𝑐
· log

©«
32

(
2(𝐺 +

√
2𝑅𝐷2

2

𝛽
) +

√
8𝑅𝐻 2

𝛽

)
2

𝑐2

ª®®®®®®¬
.

Taking 𝑉 =
√
𝑇, 𝛼 = 𝑇 and 𝑡0 =

√
𝑇 and recalling the definition of 𝐶𝑉 ,𝛼,𝑡0 yields:

E
((Q(𝑡), H(𝑡)

)
2

)
≤ 𝐶 ′ +𝐶 ′′√𝑇

where𝐶 ′
:= 2

𝑐

(
4𝑅𝐻 2

𝛽
+𝐺2 + 2𝑅𝐷2

2

𝛽
+ 𝐷2

1

2𝛽

)
and𝐶 ′′

:= 2

𝑐

(
2𝐹 + 3

2
𝐺2 + 2𝑅𝐷2

2

𝛽
+ 8𝑅𝐻 2

𝛽
+𝑅 + ℓ (𝐺 +

√
8𝑅𝐻 2/𝛽 +

𝑐) + 𝑐𝐵 + 4

(
2(𝐺 +

√
2𝑅𝐷2

2
/𝛽) +

√
8𝑅𝐻 2/𝛽

)
2

log

( 32(2(𝐺+
√

2𝑅𝐷2

2

𝛽
)+

√
8𝑅𝐻2

𝛽
)2

𝑐2

) )
are constants. □
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6 CONCLUSIONS
This paper proposes a new primal-dual online mirror descent framework for stochastic constrained

online learning problem.We introduce a new sequential existence of Lagrange multipliers condition,

which is shown to be strictly weaker than the Slater condition, and prove that the proposed algorithm

enjoys a O(
√
𝑇 ) expected regret and constraint violations. We also obtain an almost dimension free

result in the special case when the decision set is a probability simplex. Simulation experiments

demonstrate the performance of the proposed algorithm.
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A SUPPLEMENT
A.1 The pushback property of Bregman divergences
In this section, we prove the following key property of the Bregman divergence:

Lemma A.1. Let 𝑓 : C → R be a convex function. Fix 𝛼 > 0,𝑦 ∈ Δ𝑜 . Suppose 𝑥∗ ∈ argmin𝑥 ∈Δ 𝑓 (𝑥)+
𝛼𝐷 (𝑥,𝑦) and 𝑥∗ ∈ Δ𝑜 , then, for any 𝑧 ∈ Δ,

𝑓 (𝑥∗) + 𝛼𝐷 (𝑥∗, 𝑦) ≤ 𝑓 (𝑧) + 𝛼𝐷 (𝑧,𝑦) − 𝛼𝐷 (𝑧, 𝑥∗).

Proof of Lemma A.1. First of all, we recall the following known facts about convex functions

and their subgradients whose proofs can be found, for example, in [2]:

• The set 𝜕𝑓 (𝑥) is non-empty for any 𝑥 ∈ int(C).
• For any bounded subset X ⊆ int(C), the union ∪𝑥 ∈X𝜕𝑓 (𝑥) is bounded.

By definition of Bregman divergence, we have for any 𝑥, 𝑦 ∈ Δ𝑜 ,

𝐷 (𝑥,𝑦) = 𝜔 (𝑥) − 𝜔 (𝑦) − ⟨∇𝜔 (𝑦), 𝑥 − 𝑦⟩ ,

and

∇𝑥𝐷 (𝑥,𝑦) = ∇𝜔 (𝑥) − ∇𝜔 (𝑦).
Now, we claim the following optimality condition:

Claim 1: For any 𝑧 ∈ Δ, there exists a ∇𝑓 (𝑥∗) ∈ 𝜕𝑓 (𝑥∗) such that following holds:

⟨∇𝑓 (𝑥∗) + 𝛼∇𝜔 (𝑥∗) − 𝛼∇𝜔 (𝑦), 𝑧 − 𝑥∗⟩ ≥ 0.

Proof of Claim 1. Fix a constant ℎ ∈ (0, 1). Since Δ is a convex set, it follows (1−ℎ)𝑥∗ +ℎ𝑧 ∈ Δ.
Thus, by the fact that 𝑥∗ is a minimizer:

𝑓 (𝑥∗) + 𝛼𝐷 (𝑥∗, 𝑦)
≤𝑓 ((1 − ℎ)𝑥∗ + ℎ𝑧) + 𝛼𝐷 ((1 − ℎ)𝑥∗ + ℎ𝑧,𝑦)
=𝑓 ((1 − ℎ)𝑥∗ + ℎ𝑧) + 𝛼 (𝐷 (𝑥∗, 𝑦) + ⟨∇𝐷 (𝑥∗, 𝑦), ℎ(𝑧 − 𝑥∗)⟩ + 𝑜 (ℎ))
=𝑓 ((1 − ℎ)𝑥∗ + ℎ𝑧) + 𝛼𝐷 (𝑥∗, 𝑦)
+ 𝛼 (⟨∇𝜔 (𝑥∗) − ∇𝜔 (𝑦), ℎ(𝑧 − 𝑥∗)⟩ + 𝑜 (ℎ)) ,

where the first equality follows from the fact that 𝐷 (𝑥, 𝑧) is continuously differentially on the first

argument at 𝑥 = 𝑥∗ with 𝑜 (ℎ) representing a high order term such that limℎ→0 𝑜 (ℎ)/ℎ = 0, and the

second equality follows from the definition of Bregman divergence. Canceling the common term

𝛼𝐷 (𝑥∗, 𝑦) and rearranging the terms give

𝑓 ((1 − ℎ)𝑥∗ + ℎ𝑧) − 𝑓 (𝑥∗)
ℎ

≥ −𝛼 ⟨∇𝜔 (𝑥∗) − ∇𝜔 (𝑦), 𝑧 − 𝑥∗⟩ − 𝑜 (𝛼ℎ)/ℎ. (28)

Since 𝑓 is convex and (1 − ℎ)𝑥∗ + ℎ𝑧 ∈ int(C), ∀ℎ < 1, we have for any ∇𝑓 ((1 − ℎ)𝑥∗ + ℎ𝑧) ∈
𝜕𝑓 ((1 − ℎ)𝑥∗ + ℎ𝑧).

𝑓 (𝑥∗) ≥ 𝑓 ((1 − ℎ)𝑥∗ + ℎ𝑧) + ⟨∇𝑓 ((1 − ℎ)𝑥∗ + ℎ𝑧), ℎ(𝑥∗ − 𝑧)⟩ .

Substituting this bound into (28) gives

⟨∇𝑓 ((1 − ℎ)𝑥∗ + ℎ𝑧), 𝑧 − 𝑥∗⟩ ≥ −𝛼 ⟨∇𝜔 (𝑥∗) − ∇𝜔 (𝑦), 𝑧 − 𝑥∗⟩ − 𝑜 (𝛼ℎ)/ℎ. (29)

To this point, consider any sequence {ℎ𝑘 }𝑘≥0 ⊆ (0, 1) such that lim𝑘→∞ ℎ𝑘 = 0. By the aforemen-

tioned property of subgradient, we have the union ∪𝑘≥0𝜕𝑓 ((1 −ℎ𝑘 )𝑥∗ +ℎ𝑘𝑧) is bounded. Thus, the
sequence {∇𝑓 ((1−ℎ𝑘 )𝑥∗ +ℎ𝑘𝑧)}𝑘≥0 is bounded, and there exists a subsequence {∇𝑓 ((1−ℎ𝑘ℓ )𝑥∗ +
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ℎ𝑘ℓ𝑧)}ℓ≥0 such that ∇𝑓 ((1 − ℎ𝑘ℓ )𝑥∗ + ℎ𝑘ℓ𝑧) → 𝑑 . On the other hand, by definition of subgradient,

we have for any 𝑢 ∈ C,
𝑓 (𝑢) ≥ 𝑓 ((1 − ℎ𝑘ℓ )𝑥∗ + ℎ𝑘ℓ𝑧) +

〈
∇𝑓 ((1 − ℎ𝑘ℓ )𝑥∗ + ℎ𝑘ℓ𝑧), 𝑢 − ((1 − ℎ𝑘ℓ )𝑥∗ + ℎ𝑘ℓ𝑧)

〉
.

Taking the limit ℓ → ∞ gives

𝑓 (𝑢) ≥ 𝑓 (𝑥∗) + ⟨𝑑,𝑢 − 𝑥∗⟩ ,
where we use the fact that a convex function must be continuous on the interior point 𝑥∗ of C. This
implies that 𝑑 ∈ 𝜕𝑓 (𝑥∗). Substituting {ℎ𝑘ℓ }ℓ≥0 into (29) and taking the limit finish the proof. □

Thus, by Claim 1, we have there exists a ∇𝑓 (𝑥∗),
𝛼 (𝐷 (𝑧,𝑦) − 𝐷 (𝑧, 𝑥∗))

=𝛼 (𝜔 (𝑧) − 𝜔 (𝑦) − ⟨∇𝜔 (𝑦), 𝑧 − 𝑦⟩) − 𝛼 (𝜔 (𝑧) − 𝜔 (𝑥∗) − ⟨∇𝜔 (𝑥∗), 𝑧 − 𝑥∗⟩)
=𝛼 (𝜔 (𝑥∗) − 𝜔 (𝑦) + ⟨∇𝜔 (𝑥∗), 𝑧 − 𝑥∗⟩ − ⟨∇𝜔 (𝑦), 𝑧 − 𝑦⟩)
=𝛼 (𝜔 (𝑥∗) − 𝜔 (𝑦) + ⟨∇𝑓 (𝑥∗)/𝛼 + ∇𝜔 (𝑥∗) − ∇𝜔 (𝑦), 𝑧 − 𝑥∗⟩ − ⟨∇𝜔 (𝑦), 𝑧 − 𝑦⟩)
− ⟨∇𝑓 (𝑥∗), 𝑧 − 𝑥∗⟩ + 𝛼 ⟨∇𝜔 (𝑦), 𝑧 − 𝑥∗⟩

≥𝛼 (𝜔 (𝑥∗) − 𝜔 (𝑦) − ⟨∇𝜔 (𝑦), 𝑥∗ − 𝑦⟩) − ⟨∇𝑓 (𝑥∗), 𝑧 − 𝑥∗⟩
=𝛼𝐷 (𝑥∗, 𝑦) − ⟨∇𝑓 (𝑥∗), 𝑧 − 𝑥∗⟩
≥𝛼𝐷 (𝑥∗, 𝑦) + 𝑓 (𝑥∗) − 𝑓 (𝑧),

where third equality follows from adding and subtracting the term ⟨∇𝑓 (𝑥∗), 𝑧 − 𝑥∗⟩−𝛼 ⟨∇𝜔 (𝑦), 𝑧 − 𝑥∗⟩,
the first inequality follows from the aforementioned optimality condition and the last inequality

follows from convexity that 𝑓 (𝑧) ≥ 𝑓 (𝑥∗) + ⟨∇𝑓 (𝑥∗), 𝑧 − 𝑥∗⟩. Rearranging the terms yields the

desired result. □

A.2 SELM and constraint qualifications
A.2.1 Slater condition implies SELM. The SELM assumption is actually implied by the Slater

condition. More specifically, Slater condition considers the scenario where there is no equality

constraint and there exists a 𝜇 ∈ Δ such that 𝑔𝑖 (𝜇) < 0, ∀𝑖 ∈ {1, 2, · · · , 𝐿}. First of all, it is well-
known that the Slater condition is sufficient for the existence of a dual optimal solution (see, for

example, [2]). Furthermore, the following lemma, which is essentially the same as Lemma 1 of [15],

implies that the set of dual optimal solutions is also bounded:

Lemma A.2. Consider the convex program (7) without equality constraints h(𝜇) = 0, and define

the Lagrange dual function 𝑞 (𝑡,𝑘) (𝜆) = inf𝜇∈Δ
{
𝑓
(𝑡,𝑘) (𝜇) + ∑𝑚

𝑖=1
𝜆𝑖𝑔𝑖 (𝜇)

}
. Suppose there exists �̃� ∈ Δ

such that 𝑔𝑖 (�̃�) ≤ −𝜀, ∀𝑖 ∈ {1, 2, · · · , 𝐿} for some positive constant 𝜀 > 0. Then, the level set
V¯𝜆 =

{
𝜆1, 𝜆2, · · · , 𝜆𝐿 ≥ 0, 𝑞 (𝑡,𝑘) (𝜆) ≥ 𝑞 (𝑡,𝑘) ( ¯𝜆)

}
is bounded for any nonnegative ¯𝜆. Furthermore, we

have
max

𝜆∈V¯𝜆

∥𝜆∥2 ≤ 𝜀−1

(
𝑓
(𝑡,𝑘) (�̃�) − 𝑞 (𝑡,𝑘) ( ¯𝜆)

)
.

Note that since |𝑓 𝑡 (𝜇) | is bounded by some constant 𝐹 > 0 as stated in Assumption 2.1. Taking

¯𝜆 = 𝜆∗ for any optimal dual solution 𝜆∗, and notice that 𝑓
(𝑡,𝑘) (�̃�) ≤ 𝐹 , and

𝑞 (𝑡,𝑘) (𝜆∗) ≥ min

𝜇∈Δ
𝑓
(𝑡,𝑘) (𝜇) ≥ −𝐹,

the above lemma readily implies max𝜆∈V∗ ∥𝜆∥2 ≤ 2𝐹/𝜀. Thus, Slater condition implies the existence

and boundedness of Lagrange multipliers.
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A.2.2 SELM is implied by Mangasarian-Fromovitz constraint qualification (MFCQ). In this section,
we show SELM is able to handle general equality constraints and thus strictly weaker than the Slater

condition. In 1977, J. Gauvin [8] observed that for any constrained convex program, where both

the objective and constraint functions are continuously differentiable, the Mangasarian-Fromovitz

constraint qualification (MFCQ) condition is in fact equivalent to the boundedness of the KKT set.
1

More specifically, MFCQ is defined as follows:

Definition A.3 (Mangasarian-Fromovitz constraint qualification (MFCQ)). Consider a convex

program:

minimize𝑥 ∈R𝑑 𝑓 (𝑥),
subject to 𝑔𝑖 (𝑥) ≤ 0, 𝑖 ∈ {1, 2, · · · , 𝐿}, (30)〈

ℎ 𝑗 , 𝑥
〉
= 𝑏 𝑗 , 𝑗 ∈ {1, 2, · · · , 𝑀}.

It satisfies MFCQ if (a) The solution to (30) exists. (b) The vectors {ℎ 𝑗 }𝑀𝑗=1
are linearly independent.

(c) For a solution 𝑥∗ to the program, there exists some 𝑦 ∈ R𝑑 such that ⟨∇𝑔𝑖 (𝑥∗), 𝑦⟩ < 0, ∀𝑖 ∈ 𝐼 (𝑥∗),
where 𝐼 (𝑥∗) = {𝑖 | 𝑔𝑖 (𝑥∗) = 0}.

Theorem A.4 ([8]). Let 𝑥∗ be a solution to (30). Consider the Karush-Kuhn-Tucker(KKT) set for
the program (30), which is the set 𝐾 (𝑥∗) of vectors (𝜆, 𝜂) ∈ R𝐿+ × R𝑀 such that the following set of
equations holds:

−∇𝑓 (𝑥∗) =
𝐿∑
𝑖=1

𝜆𝑖∇𝑔𝑖 (𝑥∗) +
𝑀∑
𝑗=1

𝜂 𝑗h𝑗 ,

𝜆 ≥ 0, 𝜆𝑖𝑔𝑖 (𝑥∗) = 0, ∀𝑖 ∈ {1, 2, · · · , 𝑀}.
Then, the set 𝐾 (𝑥∗) is non-empty and bounded if and only if MFCQ is satisfied for (30).

Note that compared to (30) our program (7) has an extra set constraint 𝜇 ∈ Δ. The good news is

that for the case where Δ is a probability simplex, i.e. it can be written explicitly as {𝜇 ∈ R𝑑 : 𝜇𝑖 ≥
0, ∀𝑖, ∑𝑑

𝑖=1
𝜇𝑖 = 1}, applying Theorem A.4, we have the following lemma whose proof is delayed to

Section A.5:

Lemma A.5. Consider the optimization problem (7) for any soecific time slot 𝑡 and any time period
𝑘 where Δ is the probability simplex. Suppose (a) The vectors

{
1, E

(
ℎ𝑡

1

)
, E

(
ℎ𝑡

2

)
, · · · , E

(
ℎ𝑡
𝑀

)}
are

linearly independent. (b) There exists a solution to (7), denoted as 𝜇∗, and a vector 𝑦 ∈ R𝑑 such that〈
∇𝑔𝑖 (𝜇∗), 𝑦

〉
< 0, ∀𝑖 ∈ 𝐼 (𝜇∗), where 𝐼 (𝜇∗) = {𝑖 | 𝑔𝑖 (𝜇∗) = 0}. Then, the set of Lagrange multipliers

V∗
:= argmax𝜆∈R𝐿+ , 𝜂∈R𝑀𝑞

(𝑡,𝑘) (𝜆, 𝜂), where 𝑞 (𝑡,𝑘) is defined in (8), is non-empty and bounded.

Remark A.1. In the case where there is no inequality constraints in (7), lemma A.5 gives a simple
objective-irrelevant equivalence condition of SELM that

{
1, E

(
ℎ𝑡

1

)
, E

(
ℎ𝑡

2

)
, · · · , E

(
ℎ𝑡
𝑀

)}
are linearly

independent, which could be useful for online linear program.

For general scenarios where Δ is just an arbitrary abstract convex set, we have the following

definition of generalized MFCQ following [18]. First, we have the definitions of normal cones and

tangent cones:

Definition A.6 (Normal cone). Consider any set 𝑆 ⊆ R𝑑 , the normal cone of 𝑆 at any 𝑥 ∈ 𝑆 is

𝑁 (𝑆, 𝑥) := {𝑔 ∈ R𝑑 : ⟨𝑔, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑦 ∈ R𝑑 }.
1
In fact, MFCQ does not require convexity of the constrained programs. Thus, the result in [8] even applies to non-convex

programs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 50. Publication date: June 2020.



Online Primal-Dual Mirror Descent under Stochastic Constraints 50:27

Note that normal cone at 𝑥 ∈ 𝑆 is the subgradient of the indicator function of 𝑆 , namely 𝐼𝑆 (𝑥).
To see this, consider any 𝑦 ∈ R𝑑 , then, we have 𝑔 is a subgradient of 𝐼𝑆 (𝑥) at 𝑥 if

𝐼𝑆 (𝑦) ≥ 𝐼𝑆 (𝑥) + ⟨𝑔,𝑦 − 𝑥⟩ , ∀𝑦 ∈ R𝑑 .
Note that if 𝑦 ∉ 𝑆 , then 𝐼𝑆 (𝑦) = +∞, otherwise, 𝐼𝑆 (𝑦) = 𝐼𝑆 (𝑥) = 0. Thus, ⟨𝑔, 𝑥 − 𝑦⟩ ≥ 0.

Definition A.7 (Tangent cone). Consider any set 𝑆 ⊆ R𝑑 , the tangent cone of 𝑆 at any 𝑥 ∈ 𝑆 is

𝑇 (𝑆, 𝑥) := cone(𝑆 − 𝑥) = {𝜆𝑑 : 𝜆 ≥ 0, 𝑑 ∈ 𝑆 − 𝑥},
and 𝑆 − 𝑥 = {𝑦 ∈ R𝑑 , 𝑦 = 𝑧 − 𝑥, ∃𝑧 ∈ 𝑆}.

Definition A.8 (Generalized MFCQ). Consider a convex program:

minimize𝑥 ∈𝑆 𝑓 (𝑥),
subject to 𝑔𝑖 (𝑥) ≤ 0, 𝑖 ∈ {1, 2, · · · , 𝐿}, (31)〈

ℎ 𝑗 , 𝑥
〉
= 𝑏 𝑗 , 𝑗 ∈ {1, 2, · · · , 𝑀}.

It satisfies the generalizedMFCQ if (a) The vectors {ℎ 𝑗 }𝑀𝑗=1
are linearly independent. (b) For a solution

x∗ to the above program, there exists some 𝑦 ∈ int(𝑇 (𝑆, 𝑥∗)) such that ⟨∇𝑔𝑖 (𝑥∗), 𝑦⟩ < 0, ∀𝑖 ∈ 𝐼 (𝑥∗)
and any subgradient ∇𝑔𝑖 (𝑥∗), where 𝐼 (𝑥∗) = {𝑖 | 𝑔𝑖 (x∗) = 0} and int(𝑇 (𝑆, 𝑥∗)) denotes the interior
of 𝑇 (𝑆, 𝑥∗).

Note that this definition requires the interior of 𝑇 (𝑆, 𝑥∗) to be non-empty, which does not work
for the case where 𝑆 is a probability simplex. This is why we have a separate lemma (Lemma A.5).

When assuming the interior of 𝑇 (𝑆, 𝑥∗) is non-empty, we have the following theorem:

Theorem A.9 ([18]). Let 𝑥∗ be a solution to (31). Consider the Karush-Kuhn-Tucker(KKT) set of
the program (31), which is the set 𝐾 (𝑥∗) of vectors (𝜆, 𝜂) ∈ R𝐿+ × R𝑀 such that the following set of
equations holds:

0 ∈ 𝜕𝑓 (𝑥∗) +
𝐿∑
𝑖=1

𝜆𝑖∇𝑔𝑖 (𝑥∗) +
𝑀∑
𝑗=1

𝜂 𝑗h𝑗 + 𝑁 (𝑆, 𝑥∗),

𝜆 ≥ 0, 𝜆𝑖𝑔𝑖 (𝑥∗) = 0, ∀𝑖 ∈ {1, 2, · · · , 𝑀}.
Then, the set 𝐾 (𝑥∗) is non-empty and bounded if and only if (30) satisfies the generalized MFCQ.

Applying the above theorem to (7) with 𝑆 = Δ, we readily get the equivalence condition for the

existence and boundedness of Lagrange multipliers for (7) as follows

Corollary A.10. Consider the optimization problem (7) for any time slot 𝑡 and any time period 𝑘
where Δ has an nonempty interior. Suppose (a) The vectors

{
E
(
ℎ𝑡

1

)
, E

(
ℎ𝑡

2

)
, · · · , E

(
ℎ𝑡
𝑀

)}
are linearly

independent. (b) There exists a solution to (7), denoted as 𝜇∗, and a vector 𝑦 ∈ int(𝑇 (Δ, 𝜇∗)) such that〈
∇𝑔𝑖 (𝜇∗), 𝑦

〉
< 0, ∀𝑖 ∈ 𝐼 (𝜇∗), where 𝐼 (𝜇∗) = {𝑖 | 𝑔𝑖 (𝜇∗) = 0}. Then, the set of Lagrange multipliers

V∗
:= argmax𝜆∈R𝐿+ , 𝜂∈R𝑀𝑞

(𝑡,𝑘) (𝜆, 𝜂), where 𝑞 (𝑡,𝑘) is defined in (8), is non-empty and bounded.

A.2.3 SELM implies weak EBC. In this section, we prove a key property of SELM, namely Lemma

2.3, which says SELM implies a weak EBC condition. We restate the lemma as follows, and for

simplicity, we omit the subscript 𝑡, 𝑘 on the setV∗
for simplicity:

Lemma A.11. Suppose Assumption 2.2 holds, then, there exists constants 𝑐0, ℓ0 > 0 such that the dual
function𝑞 (𝑡,𝑘) (𝜆, 𝜂) defined in (8) satisfies a weak error bound condition, namely, for any (𝜆∗, 𝜂∗) ∈ V∗,
𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) − 𝑞 (𝑡,𝑘) (𝜆, 𝜂) ≥ 𝑐0 · dist((𝜆, 𝜂),V∗) for any (𝜆, 𝜂) such that dist((𝜆, 𝜂),V∗) ≥ ℓ0.
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Proof of Lemma A.11. Since V∗
is bounded, there must exist ℓ0 > 0 such that S1 := {(𝜆, 𝜂) :

𝑑𝑖𝑠𝑡 ((𝜆, 𝜂),V∗) = 𝑙0} ≠ ∅. Define 𝑞 := sup(𝜆,𝜂) ∈S1

𝑞 (𝑡,𝑘) (𝜆, 𝜂). Then, since the set S1 is closed, there

exists some constant 𝑐0 > 0 such that 𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) − 𝑞 ≥ 𝑐0𝑙0. Now, consider any (𝜆, 𝜂) such that

dist((𝜆, 𝜂),V∗) ≥ 𝑙0, and choose (𝜆∗, 𝜂∗) ∈ V∗
such that

(𝜆∗, 𝜂∗) = argmin(𝜆0,𝜂0) ∈V∗ ∥(𝜆0, 𝜂0) − (𝜆, 𝜂)∥2

2
, (32)

i.e. ∥(𝜆∗, 𝜂∗) − (𝜆, 𝜂)∥2 = dist((𝜆, 𝜂),V∗) ≥ 𝑙0.
Choose 𝜃 :=

𝑙0
∥ (𝜆∗,𝜂∗)−(𝜆,𝜂) ∥2

. Note that 0 < 𝜃 ≤ 1. Let ( ˜𝜆, 𝜂) := ((1 − 𝜃 )𝜆∗ + 𝜃𝜆, (1 − 𝜃 )𝜂∗ + 𝜃𝜂).
The next claim shows that ( ˜𝜆, 𝜂) ∈ S1.

Claim 1: ( ˜𝜆, 𝜂) ∈ S1.

Proof. It is easy to verify that ∥( ˜𝜆, 𝜂) − (𝜆∗, 𝜂∗)∥2 = 𝑙0. To prove this claim, it suffices to show

that

(𝜆∗, 𝜂∗) = argmin(𝜆0,𝜂0) ∈V∗ ∥( ˜𝜆, 𝜂) − (𝜆0, 𝜂0)∥2

2
.

To see this, suppose on the contrary, there exists (𝜆, 𝜂) ≠ (𝜆∗, 𝜂∗) such that (𝜆, 𝜂) attains the above
minimum, then, by the strong convexity of the square norm function and convexity of the set V∗

,

the solution is unique, and it follows

∥(𝜆, 𝜂) − (𝜆, 𝜂)∥2 ≤ ∥(𝜆, 𝜂) − (𝜆′, 𝜂 ′)∥2 + ∥(𝜆′, 𝜂 ′) − (𝜆, 𝜂)∥2

< ∥(𝜆∗, 𝜂∗) − (𝜆′, 𝜂 ′)∥2 + ∥(𝜆′, 𝜂 ′) − (𝜆, 𝜂)∥2 = ∥(𝜆∗, 𝜂∗) − (𝜆, 𝜂)∥2,

where the strict inequality follows from the aforementioned strong convexity and the last equality

follows from the fact that (𝜆′, 𝜂 ′) ∈ L. However, this implies 𝜆, 𝜂 is of smaller distance to (𝜆, 𝜂)
contradicting (32). □

By the concavity of 𝑞 (𝑡,𝑘) (𝜆, 𝜂), we have,

𝑞 (𝑡,𝑘) ((1 − 𝜃 )𝜆∗ + 𝜃𝜆, (1 − 𝜃 )𝜂∗ + 𝜃𝜂) ≥ (1 − 𝜃 )𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) + 𝜃𝑞 (𝑡,𝑘) (𝜆, 𝜂). (33)

This further implies that

𝑞 (𝑡,𝑘) ( ˜𝜆, 𝜂) ≥ (1 − 𝜃 )𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) + 𝜃𝑞 (𝑡,𝑘) (𝜆, 𝜂)
⇒ 𝑞 (𝑡,𝑘) ( ˜𝜆, 𝜂) − 𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) ≥ 𝜃 (𝑞 (𝑡,𝑘) (𝜆, 𝜂) − 𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗)).

Recalling the definition of 𝑞 = sup(𝜆,𝜂) ∈S1

𝑞 (𝑡,𝑘) (𝜆, 𝜂) and that ( ˜𝜆, 𝜂) ∈ S1 by Claim 1, we have

𝑞 − 𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) ≥ 𝜃 (𝑞 (𝑡,𝑘) (𝜆, 𝜂) − 𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗))

⇒ 𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) − 𝑞 (𝑡,𝑘) (𝜆, 𝜂) ≥ 1

𝜃
(𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) − 𝑞).

Recalling that 𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) − 𝑞 ≥ 𝑐0𝑙0 and 𝜃 =
𝑙0

∥ (𝜆∗,𝜂∗)−(𝜆,𝜂) ∥2

, we have

𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) − 𝑞 (𝑡,𝑘) (𝜆, 𝜂) ≥ 𝑐0dist((𝜆, 𝜂),V∗),

and we finish the proof. □
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A.3 On the relation between weak EBC and classical EBC
Recall that the classical EBC, which has been shown to accelerate the convergence rate solving

unconstrained and constrained programs [21–24], is stated as follows:

Definition A.12. Let 𝐹 (x) be a convex function over x ∈ X. Suppose Λ∗
:= argminx∈X 𝐹 (x) is

non-empty. The function 𝐹 (x) is said to satisfy the error bound condition (EBC) with parameters

𝛽 ∈ (0, 1], 𝛿 > 0 and𝐶𝛿 > 0 if for any x ∈ S𝛿 , the 𝛿-sublevel set defined as {x ∈ X | 𝐹 (x) − 𝐹 (x∗) ≤
𝛿, x∗ ∈ Λ∗},

dist(x,Λ∗) ≤ 𝐶𝛿 (𝐹 (x) − 𝐹 (x∗))𝛽 , (34)

where 𝐶𝛿 is a positive constant possibly depending on 𝛿 . In particular, when 𝛽 = 1/2, 𝐹 (x) is said
to be locally quadratic and when 𝛽 = 1, it is said to be locally linear.

The following lemma shows that if the dual function further satisfies classical EBC, then, we can

show that weak EBC holds with computable constants ℓ0, 𝑐0 > 0.

Lemma A.13. Suppose Assumption 2.2 holds, the dual function 𝑞 (𝑡,𝑘) (𝜆, 𝜂) is continuous and sat-
isfies an EBC as is defined in Definition A.12, then, one has for any (𝜆, 𝜂) ∈ R𝐿+ × R𝑀 such that
dist((𝜆, 𝜂),V∗) ≥ 𝐶𝛿𝛿𝛽 ,

dist((𝜆, 𝜂),V∗) ≤ 𝐶𝛿𝛿𝛽−1 (𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) − 𝑞 (𝑡,𝑘) (𝜆, 𝜂)),

for any 𝜆 ∈ R𝐿+, 𝜂 ∈ R𝑀 .

The proof of this lemma is delayed to Section A.5.

A.4 Proof of Theorem 3.2
In this section, we present the proof for Theorem 3.2. The proof takes into account the fact that Δ
is the probability simplex and the effect of pull-away operation �̃�𝑡−1 = (1 − 𝜃 )𝜇𝑡−1 + 𝜃

𝑑
1. Note that

in this probability simplex case, we have sup𝜇1,𝜇2∈Δ ∥𝜇1 − 𝜇2∥1 ≤ 1, which will be used to replace

the frequently used relation sup𝜇1,𝜇2∈Δ ∥𝜇1 − 𝜇2∥ ≤
√

2𝑅
𝛽
in the proof for general cases. Note further

that when Δ is the probability simplex and 𝐷 (𝜇1, 𝜇2) is chosen to be K-L divergence, we do not

have a uniform bound 𝑅 such that sup𝜇1,𝜇2∈Δ 𝐷 (𝜇1, 𝜇2) ≤ 𝑅. Fortunately, our analysis does not need

such a uniform bound but instead uses a bound on 𝐷 (𝜇1, �̃�2) where �̃�2 is in the form of �̃�𝑡 specified

in Algorithm 2.

The following lemma bounds the difference between 𝐷 (𝜇, �̃�𝑡−1) and 𝐷 (𝜇, 𝜇𝑡−1):

Lemma A.14. Consider any 𝜇1, 𝜇2 ∈ Δ ⊆ R𝑑 such that 𝜇2 (𝑖) > 0, ∀𝑖 ∈ {1, 2, · · · , 𝑑}, and let
�̃�2 = (1 − 𝜃 )𝜇2 + 𝜃 1

𝑑
1, for some 𝜃 ∈ (0, 1], then, it follows

𝐷 (𝜇1, �̃�2) − 𝐷 (𝜇1, 𝜇2) ≤ 𝜃 log𝑑.

Furthermore, 𝐷 (𝜇1, �̃�2) ≤ log(𝑑/𝜃 ).
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Proof of Lemma A.14. We have

𝐷 (𝜇1, �̃�2) − 𝐷 (𝜇1, 𝜇2)

=

𝑑∑
𝑖=1

𝜇1 (𝑖)
(
log

𝜇1 (𝑖)
�̃�2 (𝑖)

− log

𝜇1 (𝑖)
𝜇2 (𝑖)

)
=

𝑑∑
𝑖=1

𝜇1 (𝑖) log

𝜇2 (𝑖)
�̃�2 (𝑖)

=

𝑑∑
𝑖=1

𝜇1 (𝑖)
(
log 𝜇2 (𝑖) − log

(
(1 − 𝜃 )𝜇2 (𝑖) + 𝜃

1

𝑑
1
))

≤
𝑑∑
𝑖=1

𝜇1 (𝑖)
(
log 𝜇2 (𝑖) − (1 − 𝜃 ) log 𝜇2 (𝑖) − 𝜃 log

1

𝑑

)
=𝜃

𝑑∑
𝑖=1

𝜇1 (𝑖) (log 𝜇2 (𝑖) + log𝑑)

≤𝜃 log𝑑,

where the first inequality follows from the concavity of log function. Furthermore, the second

inequality follows from

𝐷 (𝜇1, �̃�2) =
𝑑∑
𝑖=1

𝜇 (𝑖) log

𝜇1 (𝑖)
�̃�2 (𝑖)

=

𝑑∑
𝑖=1

𝜇 (𝑖) log

𝜇1 (𝑖)
(1 − 𝜃 )𝜇𝑡−1

2
(𝑖) + 𝜃/𝑑

≤ −
𝑑∑
𝑖=1

𝜇1 (𝑖) log((1 − 𝜃 )𝜇𝑡−1

2
(𝑖) + 𝜃/𝑑)

≤ log(𝑑/𝜃 ).

finishing the proof. □

A.4.1 Regret bound. First of all, by the same proof as that of Lemma 5.1 one can show the

following:

𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1

〉
+ Δ(𝑡) + 𝛼𝐷 (𝜇𝑡 , �̃�𝑡−1)

≤ 𝑉 (𝑓 𝑡−1 (𝜇) − 𝑓 𝑡−1 (𝜇𝑡−1)) +
𝐿∑
𝑖=1

𝑄𝑖 (𝑡)𝑔𝑡−1

𝑖 (𝜇) +
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
(〈
ℎ𝑡−1

𝑗 , 𝜇
〉
− 𝑏 𝑗

)
+ 𝐻 2 +𝐺2 + 𝐷2

2

+ 𝛼𝐷 (𝜇, �̃�𝑡−1) − 𝛼𝐷 (𝜇, 𝜇𝑡 ). (35)
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Furthermore, similar to that of Lemma 5.2, we have

𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡 − 𝜇𝑡−1

〉
+ 𝛼𝐷 (𝜇𝑡 , �̃�𝑡−1)

≥𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡 − �̃�𝑡−1

〉
+ 𝛼𝐷 (𝜇𝑡 , �̃�𝑡−1) −𝑉𝜃 ∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥∞

≥𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡 − �̃�𝑡−1

〉
+ 𝛼

2

∥𝜇𝑡 − �̃�𝑡−1∥2

1
−𝑉𝜃 ∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥∞

≥ −𝑉 ∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥∞∥𝜇𝑡 − �̃�𝑡−1∥1 +
𝛼

2

∥𝜇𝑡 − �̃�𝑡−1∥2

1
−𝑉𝜃 ∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥∞

≥ −𝑉
(
𝛼

2𝑉
∥𝜇𝑡 − �̃�𝑡−1∥2

1
+ 𝑉

2𝛼
∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥2

∞

)
+ 𝛼

2

∥𝜇𝑡 − �̃�𝑡−1∥2

1
−𝑉𝜃 ∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥∞

= − (𝑉
2

2𝛼
∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥2

∞ +𝑉𝜃 ∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥∞)

≥ −
𝑉𝐷2

1

2𝛼
−𝑉𝜃𝐷1. (36)

Substituting (36) into (35) gives

Δ(𝑡) +𝑉 (𝑓 𝑡−1 (𝜇𝑡−1) − 𝑓 𝑡−1 (𝜇))

≤
𝐿∑
𝑖=1

𝑄𝑖 (𝑡)𝑔𝑡−1

𝑖 (𝜇) +
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
(〈
ℎ𝑡−1

𝑗 , 𝜇
〉
− 𝑏 𝑗

)
+ 𝐻 2 +𝐺2 + 𝐷2

2
+ 𝑉

2

2𝛼
𝐷2

1
+𝑉𝜃𝐷1

+ 𝛼𝐷 (𝜇, �̃�𝑡−1) − 𝛼𝐷 (𝜇, 𝜇𝑡 ). (37)

Using Lemma A.14, we get

Δ(𝑡) +𝑉 (𝑓 𝑡−1 (𝜇𝑡−1) − 𝑓 𝑡−1 (𝜇))

≤
𝐿∑
𝑖=1

𝑄𝑖 (𝑡)𝑔𝑡−1

𝑖 (𝜇) +
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡) (
〈
ℎ𝑡−1

𝑗 , 𝜇
〉
− 𝑏 𝑗 ) + 𝐻 2 +𝐺2 + 𝐷2

2
+ 𝑉

2

2𝛼
𝐷2

1
+𝑉𝜃𝐷1

+ 𝛼𝜃 log𝑑 + 𝛼𝐷 (𝜇, 𝜇𝑡−1) − 𝛼𝐷 (𝜇, 𝜇𝑡 ).

The rest follows from the same argument as that of Section 5.1 after (13) and we omit the details

for brevity.

A.4.2 Constraint violations. Similar as before, we start with the following lemma:

Lemma A.15. The updating rule (5) and (6) delivers the following constraint violation bounds:

E


[

1

𝑇

𝑇−1∑
𝑡=0

g(𝜇𝑡 )
]
+


2

≤ E(∥Q(𝑡)∥2)
𝑇

+ 2𝐷2

𝛼
(𝑉𝐷1 + 𝐷2E(∥Q(𝑡)∥2) + 𝐻E(∥H(𝑡)∥2)) + 𝐷2𝜃,

E

 1

𝑇

𝑇−1∑
𝑡=0

h(𝜇𝑡 ) − b


2

≤ E(∥H(𝑡)∥2)
𝑇

+ 2𝐻

𝛼
(𝑉𝐷1 + 𝐷2E(∥Q(𝑡)∥2) + 𝐻E(∥H(𝑡)∥2)) + 𝐻𝜃 .

Proof of Lemma A.15. Using Lemma 5.7, it is enough to bound the difference E
(
∥𝜇𝑡+1 − 𝜇𝑡 ∥1

)
.

For this, applying Lemma 2.1 by setting 𝑦 = 𝜇𝑡−1
, 𝑥∗ = 𝜇𝑡 , and 𝑓 (𝑥) = ⟨𝑥, 𝑝⟩ with

𝑝 = 𝑉∇𝑓 𝑡−1 (𝜇𝑡−1) +
𝐿∑
𝑖=1

𝑄𝑖 (𝑡)∇𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)ℎ𝑡−1

𝑗 ,
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we have〈
𝑉∇𝑓 𝑡−1 (𝜇𝑡−1) +

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)∇𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
𝑀∑
𝑗=1

𝐻𝑖 (𝑡)ℎ𝑡−1

𝑗 , 𝜇𝑡

〉
+ 𝛼𝐷 (𝜇𝑡 , �̃�𝑡−1)

≤
〈
𝑉∇𝑓 𝑡−1 (𝜇𝑡−1) +

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)∇𝑔𝑡−1

𝑖 (𝜇𝑡−1) +
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)ℎ𝑡−1

𝑗 , 𝜇

〉
+ 𝛼 (𝐷 (𝜇, �̃�𝑡−1) − 𝐷 (𝜇, 𝜇𝑡 )) . (38)

Taking 𝜇 = �̃�𝑡−1
in (38) gives,

𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), 𝜇𝑡

〉
+

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)
〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), 𝜇𝑡
〉
+

𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
〈
ℎ𝑡−1

𝑗 , 𝜇𝑡
〉
+ 𝛼𝐷 (𝜇𝑡 , �̃�𝑡−1)

≤ 𝑉
〈
∇𝑓 𝑡−1 (𝜇𝑡−1), �̃�𝑡−1

〉
+

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)
〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), �̃�𝑡−1
〉
+

𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
〈
ℎ𝑡−1

𝑗 , �̃�𝑡−1
〉
− 𝛼𝐷 (�̃�𝑡−1, 𝜇𝑡 ).

Note that we have〈
∇𝑓 𝑡−1 (𝜇𝑡−1), �̃�𝑡−1 − 𝜇𝑡

〉
≤ ∥∇𝑓 𝑡−1 (𝜇𝑡−1)∥∞∥𝜇𝑡 − �̃�𝑡−1∥1 ≤ 𝐷1∥𝜇𝑡 − �̃�𝑡−1∥1.

Also, we have

𝐿∑
𝑖=1

𝑄𝑖 (𝑡)
〈
∇𝑔𝑡−1

𝑖 (𝜇𝑡−1), �̃�𝑡−1 − 𝜇𝑡
〉
≤∥Q(𝑡)∥2

√√√
𝐿∑
𝑖=1

(∥∇𝑔𝑖 (𝜇𝑡−1)∥∞∥𝜇𝑡 − �̃�𝑡−1∥1)2

≤𝐷2∥Q(𝑡)∥2 + ∥𝜇𝑡 − �̃�𝑡−1∥1,

and

𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
〈
ℎ𝑡−1

𝑗 , �̃�𝑡−1 − 𝜇𝑡
〉
≤∥H(𝑡)∥2

√√√ 𝑀∑
𝑗=1

(∥ℎ𝑡−1

𝑗
∥∞∥𝜇𝑡 − �̃�𝑡−1∥1)2

≤𝐻 ∥H(𝑡)∥2∥𝜇𝑡 − �̃�𝑡−1∥1 .

Thus, it follows from the above three bounds,

𝐷 (𝜇𝑡 , �̃�𝑡−1) + 𝐷 (�̃�𝑡−1, 𝜇𝑡 ) ≤ 1

𝛼
(𝑉𝐷1 + 𝐷2∥Q(𝑡)∥2 + 𝐻 ∥H(𝑡)∥2) ∥𝜇𝑡 − �̃�𝑡−1∥1 .

By Pinsker’s inequality, we have

𝐷 (𝜇𝑡 , �̃�𝑡−1) + 𝐷 (�̃�𝑡−1, 𝜇𝑡 ) ≥ ∥𝜇𝑡 − 𝜇𝑡−1∥2

1

Thus, it follows,

∥𝜇𝑡 − �̃�𝑡−1∥2

1
≤ 2𝜃 2 + 1

𝛼
(𝑉𝐷1 + 𝐷2∥Q(𝑡)∥2 + 𝐻 ∥H(𝑡)∥2) ∥𝜇𝑡 − �̃�𝑡−1∥1.

Solving the above quadratic inequality

∥𝜇𝑡 − �̃�𝑡−1∥1 ≤ 2

𝛼
(𝑉𝐷1 + 𝐷2∥Q(𝑡)∥2 + 𝐻 ∥H(𝑡)∥2) + 2𝜃,

which implies

∥𝜇𝑡 − 𝜇𝑡−1∥1 ≤ 2

𝛼
(𝑉𝐷1 + 𝐷2∥Q(𝑡)∥2 + 𝐻 ∥H(𝑡)∥2) + 3𝜃,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 50. Publication date: June 2020.



Online Primal-Dual Mirror Descent under Stochastic Constraints 50:33

Taking the expectation from both sides and subtracting this bound into Lemma 5.7 results in

E


[

1

𝑇

𝑇−1∑
𝑡=0

g(𝜇𝑡 )
]
+


2

≤ E(∥Q(𝑡)∥2)
𝑇

+ 3𝜃𝐷2 +
2𝑉𝐷1𝐷2

𝛼

+ 1

𝑇

𝑇−1∑
𝑡=0

2𝐷2

𝛼
(𝐷2E(∥Q(𝑡)∥2) + 𝐻E(∥H(𝑡)∥2))

One can prove the bound on E
 1

𝑇

∑𝑇−1

𝑡=0
h(𝜇𝑡 ) − b


2

with exactly the same computation and we

omit the proof. □

Now, by Lemma A.15 it is enough to bound Q(𝑡) and H(𝑡), for which we have the following

lemma:

Lemma A.16. Consider the 𝑡0 slots drift for some positive integer 𝑡0, then we have

∥Q(𝑡 + 𝑡0)∥2

2
+ ∥H(𝑡 + 𝑡0)∥2

2
− ∥Q(𝑡)∥2

2
− ∥H(𝑡)∥2

2

2

≤ 𝑉
𝑡+𝑡0−1∑
𝜏=𝑡

𝑓 𝜏−1 (𝜇) +
𝐿∑
𝑖=1

𝑄𝑖 (𝑡)
𝑡+𝑡0−1∑
𝜏=𝑡

𝑔𝜏−1

𝑖 (𝜇) +
𝑀∑
𝑗=1

𝐻 𝑗 (𝑡)
𝑡+𝑡0−1∑
𝜏=𝑡

(
〈
ℎ𝜏−1

𝑗 , 𝜇
〉
− 𝑏 𝑗 ) +

1

2

𝐶𝑉 ,𝛼,𝑡0 , (39)

where

𝐶𝑉 ,𝛼,𝑡0 := 2

(
𝐻 2 + 3

2

𝐺2 + 𝐷2

2

)
𝑡2

0
+ 2

(
𝐻 2 +𝐺2 + 𝐷2

2
+ 𝑉

2

2𝛼
𝐷2

1
+𝑉𝜃𝐷1 + 𝛼𝜃 log𝑑

)
𝑡0 + 2𝛼 log(𝑑/𝜃 )

Proof of Lemma A.16. First of all, summing both sides of (37) from 𝜏 = 𝑡 to 𝜏 = 𝑡 + 𝑡0 − 1 gives

∥Q(𝑡 + 𝑡0)∥2

2
+ ∥H(𝑡 + 𝑡0)∥2

2
− ∥Q(𝑡)∥2

2
− ∥H(𝑡)∥2

2

2

≤
𝑡+𝑡0−1∑
𝜏=𝑡

𝐿∑
𝑖=1

𝑄𝑖 (𝜏)𝑔𝜏−1

𝑖 (𝜇) +
𝑡+𝑡0−1∑
𝜏=𝑡

𝑀∑
𝑗=1

𝐻 𝑗 (𝜏) (
〈
ℎ𝜏−1

𝑗 , 𝜇
〉
− 𝑏 𝑗 ) +

(
𝐻 2 +𝐺2 + 2𝐷2

2
+ 𝑉

2

2𝛼
𝐷2

1
+𝑉𝜃𝐷1

)
𝑡0

+𝑉
𝑡+𝑡0−1∑
𝜏=𝑡

(𝑓 𝜏−1 (𝜇𝜏−1) − 𝑓 𝜏−1 (𝜇)) + 𝛼𝐷 (𝜇, �̃�𝑡−1) − 𝛼𝐷 (𝜇, 𝜇𝑡+𝑡0−1) + 𝛼
𝑡+𝑡0−1∑
𝜏=𝑡+1

(𝐷 (𝜇, �̃�𝜏−1) − 𝐷 (𝜇, 𝜇𝜏−1)) .

(40)

By Lemma A.14, one has

𝛼

𝑡+𝑡0−1∑
𝜏=𝑡+1

(𝐷 (𝜇, �̃�𝜏−1) − 𝐷 (𝜇, 𝜇𝜏−1)) ≤ 𝑡0𝛼𝜃 log𝑑.

and

𝛼𝐷 (𝜇, �̃�𝑡−1) ≤ 𝛼 log(𝑑/𝜃 ),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 50. Publication date: June 2020.



50:34 X. Wei et al.

Thus, substituting these two bounds into (40) gives

∥Q(𝑡 + 𝑡0)∥2

2
+ ∥H(𝑡 + 𝑡0)∥2

2
− ∥Q(𝑡)∥2

2
− ∥H(𝑡)∥2

2

2

≤
𝑡+𝑡0−1∑
𝜏=𝑡

𝐿∑
𝑖=1

𝑄𝑖 (𝜏)𝑔𝜏−1

𝑖 (𝜇) +
𝑡+𝑡0−1∑
𝜏=𝑡

𝑀∑
𝑗=1

𝐻 𝑗 (𝜏) (
〈
ℎ𝜏−1

𝑗 , 𝜇
〉
− 𝑏 𝑗 ) +𝑉

𝑡+𝑡0−1∑
𝜏=𝑡

(𝑓 𝜏−1 (𝜇𝜏−1) − 𝑓 𝜏−1 (𝜇))

+
(
𝐻 2 +𝐺2 + 2𝐷2

2
+ 𝑉

2

2𝛼
𝐷2

1
+𝑉𝜃𝐷1 + 𝛼𝜃 log𝑑

)
𝑡0 + 𝛼 log(𝑑/𝜃 ). (41)

Furthermore, following the steps to obtain (21) and (22) by invoking ∥𝜇𝑡 − 𝜇𝑡−1∥1 ≤ 1, we have

𝑡+𝑡0−1∑
𝜏=𝑡

𝑀∑
𝑗=1

(
𝐻𝑖 (𝜏) − 𝐻 𝑗 (𝑡)

) 〈
ℎ𝜏−1

𝑖 , 𝜇𝜏
〉
≤ 𝑡2

0
𝐻 2.

𝑡+𝑡0−1∑
𝜏=𝑡

𝐿∑
𝑖=1

(𝑄𝑖 (𝜏) −𝑄𝑖 (𝑡)) 𝑔𝜏−1

𝑖 (𝜇) ≤ 𝑡0
(

3

2𝐺2
+ 𝐷2

2

)
,

and𝑉
∑𝑡+𝑡0−1

𝜏=𝑡 𝑓 𝜏−1 (𝜇𝜏−1) ≤ 𝑡0𝑉𝐹 . Substituting these three bounds into (41) and recall the definition
of 𝐶𝑉 ,𝛼,𝑡0 in the statement of the lemma give the final bound. □

Using the previous bound, one can prove the following lemma:

Lemma A.17. If we take 𝑉 =
√
𝑇, 𝛼 = 𝑇, 𝑡0 = 𝑇, 𝜃 = 1/𝑇 in Algorithm 2, then the quantity

∥
(
Q(𝑡), H(𝑡)

)
∥2 satisfies the following conditions:

E
((Q(𝑡), H(𝑡)

)
2

)
≤ 𝐶 ′ +𝐶 ′′√𝑇 + 2 log(𝑑)

𝑐
+ 2

𝑐

√
𝑇 log𝑇𝑑, (42)

where 𝐶 ′ = 2

𝑐

(
𝐻 2 + 𝐺2 + 𝐷2

2
+ 𝐷2

1
/2 + 𝐷1

)
and 𝐶 ′′ = 2

𝑐

(
𝐻 2 + 3

2
𝐺2 + 𝐷2

2
+ 𝐹 + 𝑙 (𝐺 + 𝐻 + 𝑐) + 𝑐𝐵 +

2(2(𝐺 + 𝐷2) + 𝐻 )2
log( 8(2(𝐺+𝐷2)+𝐻 )2

𝑐2
)
)
are absolute constants independent of 𝑑 or 𝑡 .

Proof of Lemma A.17. Following the same arguments as those in Lemma 5.4, 5.5 and 5.6, we

can show

E
((Q(𝑡), H(𝑡)

)
2

)
≤
𝐶𝑉 ,𝛼,𝑡0 + 2

(
𝐹 + ℓ (𝐺 + 𝐻 + 𝑐) + 𝑐𝐵

)
𝑉𝑡0

𝑐𝑡0

+
4𝑡0

(
2(𝐺 + 𝐷2) + 𝐻

)
2

𝑐
log

(
8 (2(𝐺 + 𝐷2) + 𝐻 )2

𝑐2

)
.

Taking 𝑉 =
√
𝑇, 𝛼 = 𝑇, 𝑡0 = 𝑇, 𝜃 = 1/𝑇 and recalling the definition of 𝐶𝑉 ,𝛼,𝑡0 yields

E
((Q(𝑡), H(𝑡)

)
2

)
≤ 𝐶 ′ +𝐶 ′′√𝑇 + 2 log(𝑑)

𝑐
+ 2

𝑐

√
𝑇 log𝑇𝑑,

where 𝐶 ′ = 2

𝑐

(
𝐻 2 +𝐺2 + 𝐷2

2
+ 𝐷2

1
/2 + 𝐷1

)
and 𝐶 ′′ = 2

𝑐

(
𝐻 2 + 3

2
𝐺2 + 𝐷2

2
+ 𝐹 + 𝑙 (𝐺 + 𝐻 + 𝑐) + 𝑐𝐵 +

2(2(𝐺 + 𝐷2) + 𝐻 )2
log( 8(2(𝐺+𝐷2)+𝐻 )2

𝑐2
)
)
. □

The constraint violations in Theorem 3.2 then follows by combining Lemma A.15 and Lemma

A.17.
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A.5 Proof of other supporting lemmas
Proof of Lemma A.5. We expand the simplex constraints in (7) explicitly and the full dual

function writes

𝑞
(𝑡,𝑘)
0

(𝜆, 𝜂, u, 𝑣) := min

𝜇∈R𝑑
𝑓
𝑡,𝑘 (𝜇) +

𝐿∑
𝑖=1

𝜆𝑖∇𝑔𝑖 (𝜇) +
𝑀∑
𝑗=1

𝜂 𝑗

〈
E
(
ℎ𝑡𝑗

)
, 𝜇

〉
−

𝑑∑
𝑖=1

𝑢𝑖𝜇𝑖 + 𝑣 (
𝑑∑
𝑖=1

𝜇𝑖 − 1).

Let 𝑞∗
0
= max𝜆≥0, 𝜂∈R𝑀 , u≥0,𝑣∈R 𝑞

(𝑡,𝑘)
0

(𝜆, 𝜂, u, 𝑣). By the assumption of lemma A.5 and Theorem A.4

we have the solution set 𝐾 (𝜇∗) of vectors (𝜆, 𝜂, u, 𝑣) of the following equations (KKT conditions)

is non-empty and bounded:

∇𝑓 𝑡,𝑘 (𝜇∗) +
𝐿∑
𝑖=1

𝜆𝑖∇𝑔𝑖 (𝜇∗) +
𝑀∑
𝑗=1

𝜂 𝑗E
(
ℎ𝑡𝑗

)
−

𝑑∑
𝑖=1

𝑢𝑖e𝑖 + 𝑣1 = 0,

𝜆 ≥ 0, u ≥ 0, (43)

𝜆𝑖𝑔𝑖 (𝜇∗) = 0, ∀𝑖 ∈ {1, 2, · · · , 𝑀},
𝑢𝑖𝜇

∗
𝑖 = 0, ∀𝑖 ∈ {1, 2, · · · , 𝑑}.

It can be verified that

𝐾 (𝜇∗) = argmax𝜆≥0, 𝜂∈R𝑀 , u≥0,𝑣∈R 𝑞
(𝑡,𝑘)
0

(𝜆, 𝜂, u, 𝑣)

and we have zero duality gap, i.e. 𝑞∗
0
= 𝑓

(𝑡,𝑘) (𝜇∗). Our goal is to show that the setV∗
, defined in

the statement of the lemma, is equal to the set {(𝜆∗, 𝜂∗) | (𝜆∗, 𝜂∗, u∗, 𝑣∗) ∈ 𝐾 (𝜇∗), ∃ u∗, 𝑣∗}.
First of all, for any (𝜆∗, 𝜂∗, u∗, 𝑣∗) ∈ 𝐾 (𝜇∗), we have 𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) ≥ 𝑞

(𝑡,𝑘)
0

(𝜆∗, 𝜂∗, u∗, 𝑣∗) = 𝑞∗
0
.

Since we have zero duality gap 𝑞∗
0
= 𝑓

(𝑡,𝑘) (𝜇∗) and one always has 𝑞 (𝑡,𝑘) (𝜆, 𝜂) ≤ 𝑓
(𝑡,𝑘) (𝜇∗), ∀𝜆 ∈

R𝐿+, 𝜂 ∈ R𝑀 , it follows 𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) = 𝑓
(𝑡,𝑘) (𝜇∗). Thus, not only do we have a zero duality

gap of 𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗), we also have 𝜆∗, 𝜂∗ being the solution to the dual maximization problem

max𝜆∈R𝐿+ , 𝜂∈R𝑀𝑞
(𝑡,𝑘) (𝜆, 𝜂), showing thatV∗

is non-empty and {(𝜆∗, 𝜂∗) | (𝜆∗, 𝜂∗, u∗, 𝑣∗) ∈ 𝐾 (𝜇∗), ∃ u∗, 𝑣∗} ⊆
V∗

.

For the other direction, we pick any (𝜆∗, 𝜂∗) ∈ V∗
and consider the following optimization

problem:

𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) = min

𝜇∈Δ
𝑓
𝑡,𝑘 (𝜇) +

𝐿∑
𝑖=1

𝜆∗𝑖 𝑔𝑖 (𝜇) +
𝑀∑
𝑗=1

𝜂∗𝑗ℎ 𝑗 (𝜇). (44)

By zero duality gap, the solution to this optimization problem is equal to 𝑓
(𝑡,𝑘) (𝜇∗). Thus 𝜇∗ must

be one of the solution points of (44) such that the complementary slackness 𝜆∗𝑖 𝑔𝑖 (𝜇∗) = 0, ∀𝑖 ∈
{1, 2, · · · , 𝐿} is satisfied.2 Furthermore, it is obvious that MFCQ is also satisfied for (44) (we only

need to check the simplex constraints satisfy MFCQ, which is obvious). Thus, by Theorem A.4,

we have there exists u∗ ≥ 0, 𝑣∗ ∈ R such that the stationary condition (43) is satisfied, and 𝑢𝑖𝜇
∗
𝑖 =

0, ∀𝑖 ∈ {1, 2, · · · , 𝑑}. Combining with the previous complementary slackness 𝜆∗𝑖 𝑔𝑖 (𝜇∗) = 0, we

arrive at the conclusion that (𝜆∗, 𝜂∗, u∗, 𝑣∗) ∈ 𝐾 (𝜇∗). This implies V∗ ⊆ {(𝜆∗, 𝜂∗) | (𝜆∗, 𝜂∗, u∗, 𝑣∗) ∈
𝐾 (𝜇∗), ∃ u∗, 𝑣∗}. Overall, we have the set V∗

is also bounded and we finish the proof. □

2
Suppose on the contrary 𝜆∗

𝑖
𝑔𝑖 (𝜇∗) < 0 for some index 𝑖 , then, this means taking 𝜇∗ gives smaller value of the objective

than 𝑓
(𝑡,𝑘 ) (𝜇∗) , contradicting the fact that the minimum is 𝑓

(𝑡,𝑘 ) (𝜇∗) .
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Proof of Lemma A.13. First of all, note that by the EBC, for any (𝜆, 𝜂) ∈ S𝛿 , one has dist((𝜆, 𝜂),V∗) ≤
𝐶𝛿𝛿

𝛽
, thus, for those (𝜆, 𝜂) such that dist((𝜆, 𝜂),V∗) ≥ 𝐶𝛿𝛿

𝛽
, (𝜆, 𝜂) ∉ S𝛿 . We then recall the fol-

lowing result:

Lemma A.18 ([24]). Consider any convex function 𝐹 : X → R such that the minimal set Λ∗ is
non-empty. Then, for any x ∈ X and any 𝜀 > 0,

∥x − x†𝜀 ∥ ≤ dist(x†𝜀 ,Λ∗)
𝜀

(
𝐹 (x) − 𝐹 (x†𝜀 )

)
,

where x†𝜀 := argminx𝜀 ∈S𝜀
∥x − x𝜀 ∥, and S𝜀 is the 𝜀-sublevel set defined in Lemma A.13.

Applying this lemma to our scenario, we define

(𝜆†
𝛿
, 𝜂

†
𝛿
) = argmin

(𝜆𝛿 ,𝜂𝛿 ) ∈S𝛿

∥(𝜆𝛿 , 𝜂𝛿 ) − (𝜆, 𝜂)∥2

and take function to be 𝑞 (𝑡,𝑘) (𝜆, 𝜂) and consider the 𝛿-superlevel set 𝑆𝛿 . By lemma (A.18), we readily

have

∥(𝜆, 𝜂) − (𝜆†
𝛿
, 𝜂

†
𝛿
)∥2

≤
dist((𝜆†

𝛿
, 𝜂

†
𝛿
),V∗)

𝛿

(
𝑞 (𝑡,𝑘) (𝜆†

𝛿
, 𝜂

†
𝛿
) − 𝑞 (𝑡,𝑘) (𝜆, 𝜂)

)
≤𝐶𝛿𝛿

𝛽

𝛿

(
𝑞 (𝑡,𝑘) (𝜆†

𝛿
, 𝜂

†
𝛿
) − 𝑞 (𝑡,𝑘) (𝜆, 𝜂)

)
=𝐶𝛿𝛿

𝛽−1

(
𝑞 (𝑡,𝑘) (𝜆†

𝛿
, 𝜂

†
𝛿
) − 𝑞 (𝑡,𝑘) (𝜆, 𝜂)

)
.

On the other hand,

dist((𝜆†
𝛿
, 𝜂

†
𝛿
),V∗) ≤ 𝐶𝛿

(
𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) − 𝑞 (𝑡,𝑘) (𝜆†

𝛿
, 𝜂

†
𝛿
)
)𝛽

Now, we claim that 𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗)−𝑞 (𝑡,𝑘) (𝜆†
𝛿
, 𝜂

†
𝛿
) = 𝛿 . Indeed, suppose on the contrary, 𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗)−

𝑞 (𝑡,𝑘) (𝜆†
𝛿
, 𝜂

†
𝛿
) < 𝛿 , then, by the continuity of the function 𝑞 (𝑡,𝑘) , there exists 𝛼 ∈ (0, 1) and (𝜆′, 𝜂 ′) =

𝛼 (𝜆†
𝛿
, 𝜂

†
𝛿
) + (1 − 𝛼) (𝜆, 𝜂) such that 𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) − 𝑞 (𝑡,𝑘) (𝜆′, 𝜂 ′) = 𝛿 , i.e. (𝜆′, 𝜂 ′) ∈ S𝛿 , and ∥(𝜆, 𝜂) −

(𝜆′, 𝜂 ′)∥2 = 𝛼 ∥(𝜆, 𝜂) − (𝜆†
𝛿
, 𝜂

†
𝛿
)∥2 < ∥(𝜆, 𝜂) − (𝜆†

𝛿
, 𝜂

†
𝛿
)∥2, contradicting the definition that (𝜆†

𝛿
, 𝜂

†
𝛿
) =

argmin(𝜆𝛿 ,𝜂𝛿 ) ∈S𝛿
∥(𝜆𝛿 , 𝜂𝛿 ) − (𝜆, 𝜂)∥2.

Thus, we have

dist((𝜆†
𝛿
, 𝜂

†
𝛿
),V∗) ≤ 𝐶𝛿𝛿𝛽−1

(
𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) − 𝑞 (𝑡,𝑘) (𝜆†

𝛿
, 𝜂

†
𝛿
)
)
.

Overall, we have

dist((𝜆, 𝜂),V∗) ≤dist((𝜆†
𝛿
, 𝜂

†
𝛿
),V∗) + ∥(𝜆, 𝜂) − (𝜆†

𝛿
, 𝜂

†
𝛿
)∥2

≤𝐶𝛿𝛿𝛽−1

(
𝑞 (𝑡,𝑘) (𝜆∗, 𝜂∗) − 𝑞 (𝑡,𝑘) (𝜆, 𝜂)

)
,

and we finish the proof. □
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