
Noname manuscript No.
(will be inserted by the editor)

Solving convex optimization with side constraints in a
multi-class queue by adaptive cµ rule

Chih-ping Li · Michael J. Neely

Received: date / Accepted: date

Abstract We study convex optimization problems with side constraints in a multi-
class M/G/1 queue with controllable service rates. In the simplest problem of op-
timizing linear costs with fixed service rate, the cµ rule is known to be optimal. A
natural question to ask is whether such simple policies exist for more complex con-
trol objectives. In this paper, combining the achievable region approach in queueing
systems and the Lyapunov drift theory suitable to optimize renewal systems with
time-average constraints, we show that convex optimization problems can be solved
by variants of adaptive cµ rules. These policies greedily re-prioritize job classes at
the end of busy periods in response to past observed delays in each job class. Our
method transforms the original problems into a new set of queue stability problems,
and the adaptive cµ rules are queue stable policies. An attractive feature of the adap-
tive cµ rules is that they use limited statistics of the queue, where no statistics are
required for the problem of satisfying average queueing delay in each job class.

Keywords cµ-rule · Dynamic scheduling · Stochastic optimization · Lyapunov
drift analysis · Strong conservation law · Achievable region method · Multi-class
queueing systems · Polymatroid optimization

1 Introduction

We study the problems of serving jobs categorized into multiple classes in a queue-
ing system, with the goals of optimizing a global objective and providing differenti-

This material is supported in part by: the Network Science Collaborative Technology Alliance sponsored
by the U.S. Army Research Laboratory W911NF-09-2-0053, and the NSF Career grant CCF-0747525.

Chih-ping Li
Laboratory for Information and Decision Systems, MIT, Cambridge, MA 02139, USA,
E-mail: cpli@mit.edu

Michael J. Neely
Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA,
E-mail: mjneely@usc.edu

2 Chih-ping Li, Michael J. Neely

ated services. Such problems have attracted significant attention for decades due to
their wide applications in computers, communication networks, and manufacturing
systems. One useful solution method is the achievable region approach. That is, we
first characterize the achievable region of a performance measure of interest, such as
the set of all feasible delay vectors, then use optimization theory to develop optimal
control policies (see [6, 7, 26, 37] for surveys). Many multi-class queueing systems,
especially single-server queues, have performance regions of a special form: the base
of a polymatroid [36]. This is a special polyhedron with the property that each of
its vertices is the performance vector of a strict priority policy. One celebrated re-
sult is that minimizing linear costs, such as the average occupancy of all jobs in the
queue, over a polymatroidal performance region is solved by the well known cµ

rule [30]. A fundamental question we seek to answer is whether such simple poli-
cies exist for more complex control objectives, such as solving linear optimization
with side constraints or convex optimization problems. In this paper, we show that
constrained convex optimization in a multi-class M/G/1 queue with nonpreemptive
service, whose performance region is the base of a polymatroid [11] (see details in
Section 3), can be solved by adaptive online policies that employ a weighted cµ rule
in every busy period.

We consider an M/G/1 queue serving N independent classes of Poisson arrivals.
The controller serves jobs one at a time in a nonpreemptive fashion. After completing
a job it makes a decision about which job class to serve next. We study four optimiza-
tion problems. In the first two problems, we assume the queue has a fixed service rate,
and consider:

1. Designing a policy that satisfies an average queueing delay constraint W n ≤ dn
for each job class n ∈ {1, . . . ,N}, assuming all constraints are feasible.

2. Developing a policy that minimizes a separable convex function ∑
N
n=1 fn(W n) of

average queueing delays, subject to delay constraints W n ≤ dn for all job classes.

In the third and fourth problem, we assume the queue has an adjustable service rate
µ(P(t)), incurring an instantaneous cost P(t) at time t. We restrict attention to the
simple rate control scheme that the service rate stays fixed in each busy period, but
may be changed at the end of busy periods. Under this assumption, we consider two
scheduling and service rate control problems:

3. Minimizing the average cost of service rate allocations subject to delay con-
straints W n ≤ dn for all job classes.

4. Minimizing a separable convex delay function ∑
N
n=1 fn(W n) subject to a con-

straint on the average cost of service rate allocations.

The above four problems are presented in this paper with increasing complexity
so that the readers can gradually familiarize themselves with the new methodology
we use to solve them. The first problem seeks to provide average delay guarantees
to each job class. A motivation for the second problem is to provide some notion of
delay fairness across job classes; we formulate it as a convex optimization problem.
In particular, in Section 5.1 we introduce the notion of delay proportional fairness,
in the same spirit as the well-known rate proportional fairness [20] or utility pro-
portional fairness [35], and show that the corresponding objective functions fn are

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 3

quadratic (rather than logarithmic functions that correspond to rate proportional fair-
ness in network utility maximization problems). The potential applications of the
third and fourth problem are dynamic power allocations in computer systems. Mod-
ern CPUs have the capability of adjusting operation frequencies to conserve power
when the loading is low [2], resulting in low electricity cost. In this context, the third
problem investigates how to schedule jobs to minimize power cost while providing
delay guarantees to different traffic streams. The fourth problem studies, under a bud-
get on power cost, how to fairly allocate the resources to job classes.

To design simple control policies with near-optimal performance, we look at the
special structure of the performance region of the M/G/1 queue. Since it is the base
of a polymatroid with vertices achieved by strict priority policies, every feasible per-
formance vector, including the solutions to the first two delay optimization problems,
can be achieved by a randomized policy that updates priorities over busy periods ac-
cording to a stationary distribution. We are thus motivated to find an optimal online
policy that updates priorities over busy periods. In the last two problems with service
rate control, we find the optimal online policies that update priorities and service rates
over busy periods.1

The main contribution of this paper is to develop online priority and service rate
control policies that solve the four problems. Our construction of the policies is based
on using virtual queues (or counters) to monitor, in each job class, the amount of
past observed delays violating the delay constraints, stored as virtual queue backlogs.
Then, at decision epochs (i.e., the end of busy periods), job classes with more severe
delay violations are offered higher priorities until the next decision epoch, and so on.
Technically, using Lyapunov drift analysis [15, 25], we show that policies stabiliz-
ing the virtual queues are online policies solving the optimization problems in the
M/G/1 queue. These policies make a “max-weight” decision [32, 33] in every busy
period, where the decisions turn out to be the cµ rule assigning priorities by sorting
weighted virtual queue backlogs. In particular, for the last two problems with service
rate control, we require a generalized “ratio max-weight” principle [22,25] to find the
optimal priority assignment in every busy period, because the size of a busy period is
a function of the service rate. We show that the resulting dynamic cµ rules satisfy the
average delay constraints in the first problem, and yield performance that is O(1/V)
away from optimal in the other three problems, where V > 0 is a control parameter
that can be chosen sufficiently large for optimality, with a tradeoff in convergence
time of the algorithms. Our policies are developed without pre-computing the offline
solutions to the four optimization problems, and require limited statistical knowledge
of the queue. Surprisingly, no queue statistics are required for the first problem of pro-
viding average delay guarantees. The use of Lyapunov drift in this context is novel,
as conventional max-weight techniques cannot optimize network delay [25].

1 In principle, we can solve the first two delay optimization problems offline to obtain the optimal
delay vector, and then develop the corresponding randomized policy. When the number of job classes is
large, however, this offline approach is prohibitive because finding the optimal mixing of strict priority
policies requires solving a linear system of N! variables (there are N! strict priority policies). The last
two problems we study are even more complicated due to adjustable service rates. In addition, finding
the optimal randomized policies offline requires the statistical knowledge of traffic streams such as arrival
rates and the first two moments of job sizes. The adaptive policies we develop in this paper minimize the
use of such statistics, and therefore can tolerate inaccurate estimations of these statistics.

4 Chih-ping Li, Michael J. Neely

In the literature, the cµ rule is known to be an optimal scheduling policy in many
contexts, e.g., [3, 9] and [34, Chapter 8]. Linear optimization with side constraints
over the base of a polymatroid is studied in [27, 28]. Offline numerical methods that
solve the minimization of a separable convex function over the base of a polymatroid
are proposed in [10]. Work [8] studies convex optimization over a multi-class M/G/1
queue with Bernoulli feedback, and develops an adaptive priority policy. This policy,
based on stochastic approximation, has design philosophy similar to ours. A related
problem to those studied in this paper is that of minimizing convex holding costs in
queueing systems (see [1, 16] for a restless bandit formulation and [17, 23, 24] for
showing that a generalized cµ rule is asymptotically optimal under heavy traffic). In
these studies, a convex penalty is taken as a function of instantaneous queue occu-
pancy, where in this paper we consider a convex penalty as a function of average de-
lay. Convex optimization with side constraints over the base of a polymatroid is also
studied in the context of real-time scheduling in wireless networks [18, 19]. State-
dependent allocation of service rates in a single-server queue is addressed in [14, 31]
and references therein. The usual approach uses dynamic programming methods to
show the monotonic structure of optimal policies.

The outline of this paper is as follows. Section 2 describes the detailed queueing
model. Section 3 summarizes useful properties of a multi-class M/G/1 queue that
will be used in this paper. The four optimization problems are solved in Sections 4-7,
followed by simulation results in Section 8. Section 9 provides proofs of main results
in the paper.

2 Queueing model

We only consider queueing delay, not system delay (queueing plus service), in this
paper. System delay can be easily incorporated because, in a nonpreemptive queue,
average queueing and system delay differ by the mean service time. We use delay
and queueing delay interchangeably in the rest of the paper.

Consider an M/G/1 queue serving N classes of jobs. Jobs in a class n∈{1, . . . ,N}
arrive as an independent Poisson process with rate λn > 0. All job sizes are indepen-
dent across classes, and are independent and identically distributed (i.i.d.) within each
class. Let the random variable Sn denote the size of a class n job, with mean job size
E [Sn]. As a technical detail, we assume the first four moments of Sn are finite for
all classes n; the distribution of Sn is otherwise arbitrary. When a job arrives, we
only know its class but not its actual size. The server has instantaneous service rate
µ(P(t)), where P(t) is the service cost at time t. Assume µ(·) is an increasing func-
tion with µ(0) = 0. We regard the queue as a frame-based system, where each frame
consists of an idle period and the following busy period. For k ∈ {0,1,2, . . .}, let tk be
the start of the kth frame, and the kth frame is [tk, tk+1). Define t0 = 0 and the queue
is initially empty. Let Tk , tk+1− tk be the size of frame k. Let An,k be the set of class
n arrivals in frame k. For each job i ∈ An,k, let W (i)

n,k be its queueing delay.
We consider scheduling policies that are work conserving, non-anticipative, non-

preemptive, and independent of actual job sizes (recall that job sizes are unknown
upon arrival). Jobs in each class are served according to first-in-first-out (FIFO).

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 5

Scheduling policies that satisfy these properties are referred to as admissible poli-
cies. When the service rate is controllable, we focus on control decisions that al-
locate a fixed service rate µ(Pk) in the kth busy period, with an instantaneous cost
Pk ∈ [Pmin,Pmax]; the decisions are possibly random. Zero service rates are allocated in
idle periods with zero cost. Suppose the maximum cost Pmax is finite, but sufficiently
large to ensure feasibility of the desired delay constraints. The minimum cost Pmin is
chosen to be large enough so that the queue is stable even if Pmin is used for all time.
That is, for queue stability we need ∑

N
n=1 λn

E[Sn]
µ(Pmin)

< 1, i.e., µ(Pmin)> ∑
N
n=1 λnE [Sn].

The average delay under our policies may not have well-defined limits. For this,
we define the average queueing delay of job class n as

W n , limsup
K→∞

E
[
∑

K−1
k=0 ∑i∈An,k

W (i)
n,k

]
E
[
∑

K−1
k=0

∣∣An,k
∣∣] , (1)

where
∣∣An,k

∣∣ is the number of class n arrivals in frame k. We only consider average
delays sampled at frame boundaries for simplicity. To verify (1), the running average
delay of class n jobs at time tK is equal to

∑
K−1
k=0 ∑i∈An,k

W (i)
n,k

∑
K−1
k=0

∣∣An,k
∣∣ =

1
K ∑

K−1
k=0 ∑i∈An,k

W (i)
n,k

1
K ∑

K−1
k=0

∣∣An,k
∣∣ .

We define two averages

wn , lim
K→∞

1
K

K−1

∑
k=0

∑
i∈An,k

W (i)
n,k , an , lim

K→∞

1
K

K−1

∑
k=0

∣∣An,k
∣∣ .

If both limits wn and an exist with probability 1, then the ratio wn/an is the limiting
average delay for class n. In this case, we get

W n =
limK→∞E

[
1
K ∑

K−1
k=0 ∑i∈An,k

W (i)
n,k

]
limK→∞E

[1
K ∑

K−1
k=0

∣∣An,k
∣∣]

=
E
[
limK→∞

1
K ∑

K−1
k=0 ∑i∈An,k

W (i)
n,k

]
E
[
limK→∞

1
K ∑

K−1
k=0

∣∣An,k
∣∣] =

wn

an
,

(2)

which shows that W n defined by (1) is indeed the limiting average delay.2

2 The second equality in (2), where we pass limits into expectations, can be proved by a generalized
Lebesgue’s dominated convergence theorem [12, Exercise 20 in Sec. 2.3] stated as follows. Let {Xn}∞

n=1
and {Yn}∞

n=1 be two sequences of random variables such that: (1) 0 ≤ |Xn| ≤ Yn with probability 1 for all
n; (2) for some random variables X and Y , Xn → X and Yn → Y with probability 1; (3) limn→∞ E [Yn] =
E [Y]< ∞. Then E [X] is finite and limn→∞ E [Xn] = E [X]. The details are omitted for brevity.

6 Chih-ping Li, Michael J. Neely

3 Preliminaries

We present useful properties of a multi-class M/G/1 queue with nonpreemptive ser-
vice. Here, we assume a constant service rate µ(P) with a fixed cost P (this is ex-
tended in Section 6). Let Xn , Sn/µ(P) be the service time of a class n job. Define
ρn , λnE [Xn]. Fix an arrival rate vector (λn)

N
n=1 satisfying ∑

N
n=1 ρn < 1; the rate vec-

tor (λn)
N
n=1 is supportable in the queue.

Let Ik and Bk, k ∈ {0,1,2, . . .}, be the kth idle and busy period, respectively. The
size of the kth frame is Tk = Ik +Bk. The distributions of Bk and Tk are fixed under
any work-conserving policy when the service rate is fixed. This is because the sample
path of unfinished work in the system always decreases at the processing rate of the
server and has a jump when a job arrives, regardless of the order jobs are served.
Since Poisson arrivals are memoryless, we have E [Ik] = 1/(∑N

n=1 λn) for all k. For
the same reason, the M/G/1 queue renews itself at the start of every frame (i.e., at
the start of every idle period). Consequently, the frame size Tk, busy period Bk, and the
number

∣∣An,k
∣∣ of class n arrivals in a frame are all i.i.d. over k. Using renewal reward

theory [29] with renewal epochs defined at frame boundaries {tk}∞
k=0, we have for all

k ∈ {0,1,2, . . .}:

E [Tk] =
E [Ik]

1−∑
N
n=1 ρn

=
1

(1−∑
N
n=1 ρn)∑

N
n=1 λn

, (3)

E
[∣∣An,k

∣∣]= λnE [Tk] , n ∈ {1, . . . ,N}. (4)

We define the delay performance region W of the M/G/1 queue as the set of
average queueing delay vectors under a collection Π of admissible scheduling poli-
cies whose decisions are based on the history of the system since the last time the
queue is empty (in other words, scheduling decisions are stationary and independent
across busy periods). The delay region W is studied in [13, Theorems 8.3 and 8.5]
and [11, Theorem 2] and presented next.

Lemma 1 (Theorem 2 in [11]) Let W π

n be the average queueing delay of class n jobs
under a policy π ∈ Π . Define the delay performance region W = {(W π

1 , . . . ,W
π

N) |
π ∈Π}. Let xn , ρnW n be the average unfinished work in the queue for class n, and
define Ω = {(xn)

N
n=1 | (W n)

N
n=1 ∈W }. Then

Ω =

{
(xn)

N
n=1

∣∣∣∣∣ N

∑
n=1

xn =
Rρ

1−ρ
, ∑

n∈A
xn ≥

RρA

1−ρA
∀A⊂ {1, . . . ,N}

}
, (5)

where R = 1
2 ∑

N
n=1 λnE

[
X2

n
]
, ρ = ∑

N
n=1 ρn, and ρA = ∑n∈A ρA. The set Ω is the base

of a polymatroid, which has the properties: (1) every vertex of Ω is the performance
vector of a strict priority policy; (2) the performance vector of each strict priority
policy is a vertex of Ω .

Note that there is a one-to-one mapping between the set Ω and the delay region W via
a simple scaling. Lemma 1 says that there is a one-to-one correspondence between
the vertices of Ω and the set of strict priority policies. Thus, every feasible vector

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 7

(xn)
N
n=1 ∈ Ω (i.e., every feasible delay vector (W n)

N
n=1 ∈ W) is attained by a ran-

domization of strict priority policies. Such randomization can be implemented across
busy periods because the M/G/1 queue renews itself at the end of busy periods.

Optimizing a linear cost function over the base of a polymatroid is useful in later
analysis; the solution is the well known cµ rule [37, Theorem 3].

Lemma 2 (The cµ rule, Corollary 1 in [11]) In a multi-class M/G/1 queue with
nonpreemptive service, consider the linear program

minimize
N

∑
n=1

cn xn (6)

subject to (xn)
N
n=1 ∈Ω (7)

where Ω is defined in (5) and cn ≥ 0 are constants. Assume ∑
N
n=1 ρn < 1 for stability

and that the service time of a class n job has a finite second moment E
[
X2

n
]
< ∞

for all n. The optimal solution to (6)-(7) is achieved by a strict priority policy that
prioritizes job classes in the decreasing order of cn. That is, if c1≥ c2≥ . . .≥ cN , then
class 1 gets the highest priority, class 2 gets the second highest priority, and so on. In
this case, the optimal average queueing delay W ∗n of job class n is [5, Section 3.5.3]

W ∗n =
R

(1−∑
n−1
k=0 ρk)(1−∑

n
k=0 ρk)

, (8)

where ρ0 , 0 and R , 1
2 ∑

N
n=1 λnE

[
X2

n
]
.

Lemma 2 shows that minimizing the weighted sum of average queue occupancy of all
job classes, i.e., minimizing ∑

N
n=1 cnλnW n = ∑

N
n=1(cnµn)xn where µn = 1/E [Xn] and

xn = ρnW n, is achieved by prioritizing job classes in the decreasing order of cn µn.
Hence Lemma 2 is called the cµ rule.

4 First problem: Achieving per-class average delay

We design a dynamic scheduling policy that yields average queueing delays satisfying
W n ≤ dn for all classes n. In this problem, we assume the queue has a fixed service
rate and that all delay constraints are feasible.

Our main idea is to track the running delay performance in each job class, and
use this information to re-prioritize job classes at the end of busy periods. For this,
we define a discrete-time virtual delay queue {Zn,k}∞

k=0 for each class n ∈ {1, . . . ,N},
where Zn,k is the virtual backlog at time tk (i.e., at the start of the kth frame). Assume
initially Zn,0 = 0 for all classes n. Each queue Zn,k is updated at time instants {tk,k ∈
Z+} according to

Zn,k+1 = max
[
Zn,k + ∑

i∈An,k

(
W (i)

n,k −dn

)
, 0
]
, (9)

where W (i)
n,k is the queueing delay of the ith class n job served in the kth frame [tk, tk+1).

The value of Zn,k tracks the amount of observed queueing delays of class n jobs

8 Chih-ping Li, Michael J. Neely

exceeding the desired delay bound dn. Thus, Zn,k can be viewed as the debt the queue
controller owes to job class n to satisfy its delay requirement.

In (9), we can view W (i)
n,k and dn as arrivals and service opportunities of the virtual

queue Zn,k, respectively. The next lemma shows that the stability of the queue Zn,k is
a sufficient condition to satisfy the constraint W n ≤ dn.

Definition 1 Queue Zn,k is called mean rate stable if limK→∞E [Zn,K]/K = 0.

Lemma 3 If queue Zn,k is mean rate stable, then W n ≤ dn.

Proof (Lemma 3) From (9), we get

Zn,k+1 ≥ Zn,k−dn
∣∣An,k

∣∣+ ∑
i∈An,k

W (i)
n,k .

Summing the above over k ∈ {0, . . . ,K−1} for some integer K, using Zn,0 = 0, and
taking expectation, we have

E [Zn,K]≥−dnE

[
K−1

∑
k=0

∣∣An,k
∣∣]+E

[
K−1

∑
k=0

∑
i∈An,k

W (i)
n,k

]
.

Dividing the above by E
[
∑

K−1
k=0

∣∣An,k
∣∣] yields

E [Zn,K]

E
[
∑

K−1
k=0

∣∣An,k
∣∣] ≥ E

[
∑

K−1
k=0 ∑i∈An,k

W (i)
n,k

]
E
[
∑

K−1
k=0

∣∣An,k
∣∣] −dn.

Taking a limsup as K→ ∞ and using the delay definition (1), we have

W n ≤ dn + limsup
K→∞

E [Zn,K]

K
K

E
[
∑

K−1
k=0

∣∣An,k
∣∣] .

Using the inequality E
[∣∣An,k

∣∣]= λnE [Tk]≥ λnE [Ik] = λnE [I0] and mean rate stability
of queue Zn,k, we obtain

W n ≤ dn +
1

λnE [I0]
lim

K→∞

E [Zn,K]

K
= dn. ut

By Lemma 3, we transform the first delay optimization problem into a queue stability
problem over virtual queues (Z1,k, . . . ,ZN,k).

4.1 The control policy

The following policy stabilizes all virtual queues (Z1,k, . . . ,ZN,k) and satisfies all de-
lay constraints W n ≤ dn by Lemma 3.

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 9

Delay Feasible Policy (DelayFeas):

– In the kth busy period, serve jobs by prioritizing job classes in the de-
creasing order of Zn,k (i.e., the job class with the larger Zn,k has the higher
priority); ties are broken arbitrarily.

– Update Zn,k according to (9) at the end of busy periods.

As explained earlier, Zn,k represents the delay debt owed to class n jobs. The DelayFeas
policy gives higher priority to job classes with larger debts in every busy period. No-
tice that this policy requires no statistical knowledge of the queue.

Theorem 1 (Proof in Section 9.2) If the delay requirements {d1, . . . ,dN} are feasi-
ble, then the DelayFeas policy yields average delays satisfying W n ≤ dn for all job
classes n ∈ {1, . . . ,N}.

The convergence time of the DelayFeas policy reflects how soon the running av-
erage delay in each job class n is below the desired value dn. By Lemma 3, the speed
of the ratio E [Zn,K]/K approaching zero gives us a good intuition. According to (74)
in the proof of Theorem 1, we expect the DelayFeas policy to converge with speed
O(1/

√
K), where K is the number of passed busy periods. The control policies de-

veloped for the next three problems have similar convergence time.

4.2 Construction of the DelayFeas policy

The construction of the DelayFeas policy follows a Lyapunov drift argument on the
virtual queues (Z1,k, . . . ,ZN,k). Define the weighted quadratic Lyapunov function

L(Zk),
1
2

N

∑
n=1

E [Xn] (Zn,k)
2

as a scalar measure of the virtual backlog vector Zk , (Zn,k)
N
n=1, where E [Xn] is the

mean service time of class n jobs. Define the one-frame Lyapunov drift

∆(Zk), E [L(Zk+1)−L(Zk) |Zk]

as the conditional expected growth of the measure L(Zk) over the kth frame. We
show that the DelayFeas policy minimizes the Lyapunov drift ∆(Zk) in every frame.
This will be useful for proving the DelayFeas policy stabilizes all virtual queues
(Z1,k, . . . ,ZN,k). We square (9) and use (max[a,0])2 ≤ a2 to yield

(Zn,k+1)
2 ≤

[
Zn,k + ∑

i∈An,k

(
W (i)

n,k −dn
)]2

. (10)

10 Chih-ping Li, Michael J. Neely

Multiplying (10) by E [Xn]/2, summing over n ∈ {1, . . . ,N}, and taking conditional
expectation on Zk, we get

∆(Zk)≤
1
2

N

∑
n=1

E [Xn] E
[(

∑
i∈An,k

(
W (i)

n,k −dn
))2
|Zk

]

+
N

∑
n=1

E [Xn] Zn,k E
[

∑
i∈An,k

(
W (i)

n,k −dn
)
|Zk

]
.

(11)

Lemma 7 in Section 9.1 shows that the second term in (11) is bounded by a finite
constant C > 0. As a result, we have

∆(Zk)≤C+
N

∑
n=1

E [Xn] Zn,k E
[

∑
i∈An,k

(
W (i)

n,k −dn
)
|Zk

]
= (C−E [Tk]

N

∑
n=1

Zn,k ρn dn)+
N

∑
n=1

E [Xn] Zn,k E
[

∑
i∈An,k

W (i)
n,k |Zk

]
, (12)

where the equality uses (4). We are interested in the admissible scheduling policy
that observes the value of Zk at the beginning of the kth frame, and minimizes the
right-hand side of (12) over that frame, for all k ∈ Z+. Since the service rate is fixed,
E [Tk] is fixed and our desired policy minimizes the last sum of (12). (We remark that,
given the value of Zk, minimizing the last sum of (12) does not depend on the system
history prior to the kth frame.)

We show that the DelayFeas policy minimizes the last sum of (12). Let Qn(t) be
the number of class n jobs in the queue (not including that in the server) at time t.
Using a sample-path argument (e.g., [5, Figure 3.1]), it is easy to see

∑
i∈An,k

W (i)
n,k =

∫ tk+1

tk
Qn(t)dt, (13)

where we recall that W (i)
n,k is only the queueing delay (not including service time). We

define Qn,k as the average occupancy of class n jobs in the queue if the scheduling
decisions made in the kth frame are used independently in all frames. Let W n,k be the
associated average queueing delay for class n, satisfying Qn,k = λnW n,k by Little’s
Theorem. We have

E
[
∑i∈An,k

W (i)
n,k |Zk

]
E [Tk]

=
E
[∫ tk+1

tk Qn(t)dt |Zk

]
E [Tk]

= Qn,k = λn W n,k, n ∈ {1, . . . ,N},
(14)

where the first equality uses (13), and the second equality uses renewal reward the-
ory [29, Theorem 3.6.1]. From (14), the last sum of (12) is

N

∑
n=1

E [Xn] Zn,k E
[

∑
i∈An,k

W (i)
n,k |Zk

]
= E [Tk]

N

∑
n=1

Zn,k ρn W n,k. (15)

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 11

Now, minimizing the left-hand side of (15) over all feasible scheduling decisions in
the kth frame is equivalent to minimizing the right-hand side of (15) over the set Π

of admissible scheduling policies that make independent scheduling decisions over
frames, i.e., over the delay performance region W defined in Lemma 1. Since E [Tk]
is fixed, this is equivalent to solving

minimize
N

∑
n=1

Zn,k xn, subject to (x1, . . . ,xN) ∈Ω , (16)

where xn , ρnW n,k and Ω is given in (5). By Lemma 2, (16) is solved by the cµ rule
that assigns strict priorities to job classes in the decreasing order of Zn,k in the kth
frame. This is the DelayFeas policy.

We remark that the value of mean service time E [Xn] is only used in the analysis
constructing the DelayFeas policy, and the policy itself does not need it. Using (15),
we can re-write (12) as

∆(Zk)≤
(

C−E [Tk]
N

∑
n=1

Zn,k ρn dn

)
+E [Tk]

N

∑
n=1

Zn,k ρn W n,k, (17)

which is useful in later performance analysis. For readers who are familiar with the
use of Lyapunov drift analysis to design queue-stable policies in stochastic networks,
the DelayFeas policy is the max-weight scheduling policy in this context, and our
analysis in this section is in the similar spirit to those in [32, 33].

5 Second problem: Optimizing convex functions with side constraints

Consider the convex optimization problem with side constraints:

minimize
N

∑
n=1

fn(W n) (18)

subject to W n ≤ dn, n ∈ {1, . . . ,N}, (19)

(W 1, . . . ,W N) ∈W , (20)

where W is the delay performance region defined in Lemma 1. The penalty functions
fn are assumed to be continuous, convex, nondecreasing, and nonnegative for all job
classes n. In this problem, we assume the queue has a fixed service rate and that the
delay constraints (19) are feasible. We aim to design a control policy that solves (18)-
(20).

5.1 Delay proportional fairness

One delay penalty function fn of interest is the one that attains proportional fairness.
A delay vector (W ∗n)

N
n=1 is called delay proportional fair over the delay performance

12 Chih-ping Li, Michael J. Neely

region W if it is the optimal solution under quadratic penalty functions fn(W n) =
1
2 cn(W n)

2 for all job classes n, where cn > 0 are coefficients. In other words,

(W ∗n)
N
n=1 ∈ argmin(W n)

N
n=1∈W

1
2

N

∑
n=1

cn (W n)
2.

In this case, any feasible delay vector (W n)
N
n=1 ∈W satisfies the first-order optimality

condition [4, Proposition 2.1.2]

N

∑
n=1

f ′n(W
∗
n)(W n−W ∗n) =

N

∑
n=1

cn(W n−W ∗n)W
∗
n ≥ 0, (21)

which is in the same spirit as the rate (throughput) proportional fair [20] criterion

N

∑
n=1

cn
xn− x∗n

x∗n
≤ 0 (22)

in network utility maximization problems, where (xn)
N
n=1 is any feasible throughput

vector of the network users, and (x∗n)
N
n=1 is the optimal throughput vector.

Intuitively, delay proportional fairness is associated with the product form crite-
rion (21) instead of the ratio form (22) because we desire large throughput but favor
small delay. To further clarify, we give a two-user example showing the two crite-
ria (21) and (22) provide the same proportional tradeoff. Let c1 = c2 = 1. In a net-
work utility maximization problem with the goal of providing fair throughput to the
users, we suppose (x∗1,x

∗
2) = (20,2) is the rate-proportional-fair throughput vector.

The performance of user 1 is 20/2 = 10 times better than that of user 2. Consider any
feasible deviation from the fair point (x∗1,x

∗
2), say we increase ∆y units of throughput

for user 1. The criterion (22) shows that such deviation would incur more than ∆y/10
units of throughput loss for user 2—this is considered unfair because the proportional
performance loss of user 2 is larger than the proportional gain of user 1. In delay min-
imization problems, let (W ∗1,W

∗
2) = (3,30) be the optimal delay vector that achieves

delay proportional fairness. Again the performance of user 1 is 10 times better than
that of user 2. According to (21), improving user 1 delay by ∆y units would incur
more than ∆y/10 units of delay increase for user 2, which is proportionally unfair in
the same spirit.

5.2 The control policy

Directly optimizing the penalty function ∑
N
n=1 fn(W n) is difficult. We bypass this dif-

ficulty by formulating an equivalent optimization problem that uses auxiliary control
variables (r1, . . . ,rN):

minimize
N

∑
n=1

fn(rn) (23)

subject to W n ≤ dn, n ∈ {1, . . . ,N} (24)

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 13

W n ≤ rn, rn ∈ [0,dn], n ∈ {1, . . . ,N} (25)

(W 1, . . . ,W N) ∈W . (26)

The next lemma shows (23)-(26) is equivalent to (18)-(20).

Lemma 4 Let f ∗W and f ∗r be the optimal objective value of the two problems (18)-(20)
and (23)-(26), respectively. Then f ∗W = f ∗r .

Proof (Lemma 4) Let (rn,W n)
N
n=1 be a feasible solution of (23)-(26). Then (W n)

N
n=1

is a feasible solution of (18)-(20) satisfying W n ≤ rn for all classes n. Since fn are
nondecreasing, we have f ∗W ≤ ∑

N
n=1 fn(W n)≤ ∑

N
n=1 fn(rn), which holds for all feasi-

ble choices of (rn)
N
n=1 in (23)-(26). As a result, f ∗W ≤ f ∗r .

Conversely, let (W n)
N
n=1 be a feasible solution of (18)-(20). Then the vector (rn,W n)

N
n=1

with rn = W n for all classes n is a feasible solution of (23)-(26). It follows that
f ∗r ≤ ∑

N
n=1 fn(rn) = ∑

N
n=1 fn(W n), which holds for all feasible solutions (W n)

N
n=1

of (18)-(20). Thus f ∗r ≤ f ∗W . We conclude f ∗W = f ∗r . ut
Our control policy, to be given shortly, solves (23)-(26) using the following ideas.

1. We use the same virtual queues (Z1,k, . . . ,ZN,k) as in the first problem. The stabil-
ity of the queues Zn,k attains the delay requirements (24).

2. We construct a new virtual queue {Yn,k}∞
k=0 for each job class n, where Yn,k+1 is

computed at time tk+1 by

Yn,k+1 = max
[
Yn,k + ∑

i∈An,k

(
W (i)

n,k − rn,k
)
,0
]
. (27)

The only difference between the virtual queues Zn,k and Yn,k is the new variable
rn,k ∈ [0,dn] chosen at time tk. Assume initially Yn,0 = 0 for all n. We will use the
stability of the virtual queues (Y1,k, . . . ,YN,k) to enforce the constraints (25).

3. We can regard the auxiliary variable rn as the average service rate of the virtual
queue Yn,k. Then, optimizing the objective function (23) is equivalent to minimiz-
ing a separable convex function of the average service rates of the virtual queues
(Y1,k, . . . ,YN,k).

The following policy solves (23)-(26).

Delay Fairness Policy (DelayFair):

– In the kth busy period, serve jobs by prioritizing job classes in the de-
creasing order of the ratio (Zn,k +Yn,k)/E [Sn], where E [Sn] is the mean
job size of class n; ties are broken arbitrarily.

– At the end of the kth busy period, compute Zn,k+1 and Yn,k+1 for each job
class n according to (9) and (27), respectively, where rn,k is the solution
to the one-variable convex program:

minimize V fn(rn,k)−Yn,k λn rn,k (28)
subject to 0≤ rn,k ≤ dn (29)

where V > 0 is a predefined control parameter.

14 Chih-ping Li, Michael J. Neely

The DelayFair policy computes rn,k at the beginning of the kth frame, independent of
the frame size Tk and the set of class n arrivals An,k in that frame. This policy uses the
knowledge of arrival rates λn and mean job sizes E [Sn], but not higher-order statistics.
If fn are differentiable, then the solution to (28)-(29) is easily computed.

We give two examples of the DelayFair policy. First, consider the minimization
of the weighted sum of average queueing delays of all job classes subject to delay
constraints, i.e.,

minimize
N

∑
n=1

cn W n, subject to W n ≤ dn n ∈ {1, . . . ,N}, (30)

where cn > 0 for all n. The DelayFair policy chooses rn,k as the solution to

minimize (V cn−Yn,k λn)rn,k, subject to rn,k ∈ [0,dn].

That is, we choose rn,k = 0 if V cn >Yn,k λn and rn,k = dn otherwise. When cn = λn for
all n, i.e., we minimize the average queue occupancy ∑

N
n=1 λnW n, the policy chooses

rn,k = 0 if V > Yn,k and rn,k = dn otherwise—the knowledge of arrival rates is not
needed here. Second, consider the problem of achieving delay proportional fairness
with the penalty functions fn(W n)=

1
2 cn(W n)

2. The DelayFair policy solves, for each
class n,

minimize
V cn

2
(rn,k)

2−Yn,k λn rn,k, subject to rn,k ∈ [0,dn].

The solution is r∗n,k = min
{

dn,
Yn,k λn
V cn

}
.

Theorem 2 (Proof in Section 9.3) If the delay requirements {d1, . . . ,dN} are feasi-
ble, then the DelayFair policy satisfies the constraints W n ≤ dn for all classes n and
yields convex delay cost satisfying

limsup
K→∞

N

∑
n=1

fn

E
[
∑

K−1
k=0 ∑i∈An,k

W (i)
n,k

]
E
[
∑

K−1
k=0

∣∣An,k
∣∣]

≤ C ∑
N
n=1 λn

V
+

N

∑
n=1

fn(W
∗
n),

where V > 0 is a predefined control parameter and C > 0 a finite constant. The
convex delay cost can be made arbitrarily close to the optimal value ∑

N
n=1 fn(W

∗
n)

by choosing V sufficiently large.

We remark that the DelayFair policy can be viewed as a learning algorithm. It
updates controls by observing past queueing delays in each job class, and requires
limited queue statistics. The effectiveness of the learning algorithm is controlled by
the V parameter: Theorem 2 shows that a large V yields performance (average de-
lay penalty) closer to optimal, at the expense of increasing the time to meet the
time average constraints. Specifically, (77) suggests that the convergence speed of
the DelayFair policy is related to

√
2(C+V D)/K, where C and D are positive con-

stants, and K is the number of passed busy periods. Our control policies for the two
service rate control problems presented later are also learning algorithms that have a
similar tradeoff between performance and learning time.

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 15

5.3 Construction of the DelayFair policy

We derive a Lyapunov drift inequality that leads to the DelayFair policy. Define the
Lyapunov function L(Zk,Yk) ,

1
2 ∑

N
n=1
[
(Zn,k)

2 + (Yn,k)
2
]

and the one-frame Lya-
punov drift ∆(Zk,Yk),E [L(Zk+1,Yk+1)−L(Zk,Yk) |Zk,Yk]. Squaring (27) yields

(Yn,k+1)
2 ≤

[
Yn,k + ∑

i∈An,k

(
W (i)

n,k − rn,k
)]2

. (31)

Summing (10) and (31) over n ∈ {1, . . . ,N}, dividing the sum by two, and taking
conditional expectation on the virtual queue vectors Zk and Yk, we get

∆(Zk,Yk)≤C−
N

∑
n=1

Zn,k dnE
[∣∣An,k

∣∣ |Zk,Yk
]
−

N

∑
n=1

Yn,k E
[
rn,k
∣∣An,k

∣∣ |Zk,Yk
]

+
N

∑
n=1

(Zn,k +Yn,k)E
[

∑
i∈An,k

W (i)
n,k |Zk,Yk

]
, (32)

where C > 0 is a finite constant, different from that used in the first problem, that
upper-bounds the sum of all (Zk,Yk)-independent terms in (32) (the existence of C
can be proved similarly using Lemma 7 in Section 9.1).

Add to both sides of (32) the term V ∑
N
n=1E

[
fn(rn,k)Tk |Zk,Yk

]
, where V > 0

is a control parameter. Evaluating the resulting inequality using the analysis in Sec-
tion 4.1, we have the Lyapunov drift inequality:

∆(Zk,Yk)+V
N

∑
n=1

E
[

fn(rn,k)Tk |Zk,Yk
]
≤
(

C−E [Tk]
N

∑
n=1

Zn,k λn dn

)
+E [Tk]

N

∑
n=1

E
[
V fn(rn,k)−Yn,k λn rn,k |Zk,Yk

]
+E [Tk]

N

∑
n=1

(Zn,k +Yn,k)λn W n,k,

(33)

where W n,k denotes the average queueing delay of class n if the control actions taken
in the kth frame is independently repeated in all frames.

Over all admissible scheduling policies and all (possibly random) choices of rn,k,
we are interested in the one that minimizes the right-hand side of (33) in every frame.
This is the DelayFair policy. In particular, the first and second step of the DelayFair
policy minimizes the last sum (by the cµ rule in Lemma 2) and the second-to-last
sum of (33), respectively. Note that we assume a constant service rate so that E [Tk] is
fixed.

5.4 Intuition on minimizing the drift inequality

Following the ideas preceding the description of the DelayFair policy, we provide
intuition on minimizing an upper bound on the left-hand side of (33). The Lyapunov

16 Chih-ping Li, Michael J. Neely

drift ∆(Zk,Yk) in (33) is the expected growth of the queue backlogs Zn,k and Yn,k
over a frame. Similar to the first problem, minimizing ∆(Zk,Yk) in every frame sta-
bilizes all Zn,k and Yn,k queues and satisfies the delay constraints in (24) and (25).
Minimizing a separable convex function of the average service rates of the virtual
queues (Y1,k, . . . ,YN,k) is closely related to minimizing ∑

N
n=1E

[
fn(rn,k)Tk |Zk,Yk

]
in

the kth frame for all k ∈ Z+ (see the proof of Theorem 2 for details).
Minimizing both terms ∆(Zk,Yk) and ∑

N
n=1E

[
fn(rn,k)Tk |Zk,Yk

]
in each frame

induces a tradeoff. Minimizing the former needs large rn,k values because they rep-
resent service opportunities of the virtual queues Yn,k (see (27)). Yet, minimizing the
latter requires small rn,k values because fn are nondecreasing functions. It is therefore
natural to minimize a weighted sum of them, which is the left-hand side of (33). The
performance tradeoff is controlled by the V parameter. As we will see shortly, a large
V value puts more emphasis on minimizing ∑

N
n=1E

[
fn(rn,k)Tk |Zk,Yk

]
, resulting in

a convex delay penalty closer to optimal. The resulting tradeoff is that the Zn,k queues
take longer to approach mean rate stability (see (77)), requiring a longer time to meet
the time average requirements W n ≤ dn.

6 Third problem: Delay-constrained service rate control

We incorporate dynamic service rate allocations into the queue control problem. As
mentioned in Section 2, we focus on policies that allocate a fixed service rate µ(Pk)
in the kth busy period with an instantaneous cost Pk ∈ [Pmin,Pmax]. Zero service rates
are allocated when the system is idle. Here, the frame size Tk, busy period Bk, class
n arrivals An,k in a frame, and queueing delays W (i)

n,k are all functions of Pk. Similar to
the definition of average delay in (1), we define the average service cost as

P , limsup
K→∞

E
[
∑

K−1
k=0 Pk Bk(Pk)

]
E
[
∑

K−1
k=0 Tk(Pk)

] , (34)

where Bk(Pk) and Tk(Pk) emphasize the dependence of Bk and Tk on Pk. It is easy to
show that Bk(Pk) and Tk(Pk) are decreasing in Pk (i.e., in the service rate µ(Pk)).

6.1 The cost-delay performance region

Before designing optimal queue control policies, we define the performance region
of average delay and average service cost. We consider the set of control policies,
denoted by Π̂ , with the properties: (i) for each feasible service rate µ(P), the limiting
proportion of busy periods in which µ(P) is allocated exists; (ii) scheduling decisions
in one busy period may depend on the service rate in that period, but are independent
of scheduling decisions in other busy periods; (iii) scheduling decisions are stationary
(but possibly random) over busy periods that have the same service rates.3 We define
the performance region Λ = {(P,W 1, . . . ,W N)} as the set of average cost-delay vec-
tors achieved by control policies in Π̂ .

3 These properties are used to guarantee that the limits of long-term average delay and average service
cost exist, so that we have a well-defined performance region.

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 17

6.2 The queue control problem and the control policy

We consider the delay-constrained service rate control problem:

minimize P (35)

subject to W n ≤ dn, n ∈ {1, . . . ,N} (36)

(P,W 1, . . . ,W N) ∈Λ . (37)

The following policy solves (35)-(37). We set up the same virtual queues (Z1,k, . . . ,ZN,k)
as in (9) to satisfy the delay requirements (36). Initially, let Zn,0 = 0 for all n.

Dynamic Rate Control Policy (DynRate):

– In the kth busy period, use a strict priority policy π∗k that prioritizes job
classes in the decreasing order of Zn,k/E [Sn], where E [Sn] is the mean
job size of class n; ties are broken arbitrarily. Define n∗j as the job class
that has the jth highest priority under π∗k .

– In the kth busy period, allocate the service rate µ(Pk) where Pk solves:

minimize
(

V
N

∑
n=1

λnE [Sn]
) Pk

µ(Pk)
+

N

∑
n=1

Zn,k λn W n(π
∗
k ,Pk) (38)

subject to Pk ∈ [Pmin,Pmax], (39)

where W n(π
∗
k ,Pk) is the average delay of class n if the service rate µ(Pk)

and the policy π∗k are used in all busy periods—if class m has the jth
highest priority, i.e., m = n∗j , then from (8) we have

W m(π
∗
k ,Pk) =

(1/2)∑
N
i=1 λiE

[
S2

i
]
/
(
µ(Pk)

)2

(1−∑
j−1
i=0 ρn∗i)(1−∑

j
i=0 ρn∗i)

, (40)

where ρi = λiE [Si]/µ(Pk), n∗0 , 0, and ρ0 = 0.
– Update Zn,k according to (9) at the end of busy periods.

The DynRate policy requires the knowledge of arrival rates and the first two moments
of job sizes. We can remove its dependence on the second moments of job sizes so
that the policy depends only on first-order statistics; see Section 9.4 for details.

Theorem 3 (Proof in Section 9.5) Let P∗ be the optimal average service cost in the
problem (35)-(37). The DynRate policy satisfies all delay constraints W n ≤ dn and
attains average service cost P satisfying

P≤ C ∑
N
n=1 λn

V
+P∗,

where C > 0 is a finite constant and V > 0 a predefined control parameter. The gap
between P and the optimal P∗ can be made arbitrarily small by a sufficiently large V .

18 Chih-ping Li, Michael J. Neely

6.3 Construction of the DynRate policy

We provide a useful Lyapunov drift inequality and provide intuitions later. Define the
Lyapunov function L(Zk)=

1
2 ∑

N
n=1(Zn,k)

2 and the Lyapunov drift ∆(Zk)=E [L(Zk+1)−L(Zk) |Zk].
Following the analysis in Section 4.1, we have

∆(Zk)≤C+
N

∑
n=1

Zn,k E
[

∑
i∈An,k

(
W (i)

n,k −dn

)
|Zk

]
. (41)

Adding VE [Pk Bk(Pk) |Zk] to both sides of (41), where V > 0 is a control parameter,
we get

∆(Zk)+VE [Pk Bk(Pk) |Zk]≤C+Φ(Zk), (42)

where

Φ(Zk), E
[
V Pk Bk(Pk)+

N

∑
n=1

Zn,k ∑
i∈An,k

(W (i)
n,k −dn) |Zk

]
.

We want the control policy that, in each frame k, makes admissible scheduling deci-
sions and assigns a fixed service rate to minimizes the ratio

Φ(Zk)

E [Tk(Pk) |Zk]
. (43)

The decisions are possibly random. The frame size Tk(Pk) depends on Zk because the
choice of Pk may be Zk-dependent. (For a given Pk, Tk(Pk) is independent of Zk.)

The intuition on minimizing (43) is as follows. Similar to previous problems,
minimizing the Lyapunov drift ∆(Zk) in every frame helps to achieve the delay con-
straints W n ≤ dn for all classes n. We may increase the service rate with higher cost
to improve queueing delay, which reduces ∆(Zk) because the delays of the jobs are
“arrivals” to the virtual queues Zn,k. Thus, a tradeoff is induced between service cost
and the stability of the Zn,k queues, captured by the left-hand side of (42). If we were
to follow what we do in previous problems, we would minimize the right-hand side
of (42), i.e., Φ(Zk), in every frame. This is insufficient here because the frame size
depends on the allocated service rate. The proper step is to minimize the ratio of
Φ(Zk) over the average frame size, namely (43).

We simplify (43) to show the DynRate policy minimizes (43). Lemma 5 below
shows that the minimizer of (43) is a deterministic service rate allocation and strict
priority policy. We may consider every x ∈X in Lemma 5 as one such determin-
istic policy, and (43) evaluated under policy x is equal to E [G(x)]/E [H(x)]. The
random variable X denotes a randomized policy, and (43) evaluated under policy X
is E [G]/E [H].

Lemma 5 Let X be a continuous random variable with state space X . Let G and
H be two random variables that depend on the realization of X such that, for each
x ∈X , G(x) and H(x) are well-defined positive random variables. Define

x∗ , argminx∈X
E [G(x)]
E [H(x)]

, U∗ ,
E [G(x∗)]
E [H(x∗)]

.

Then E[G]
E[H] ≥U∗ regardless of the distribution of X.

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 19

Proof (Lemma 5) For each x ∈X , we have E[G(x)]
E[H(x)] ≥U∗. Then

E [G]

E [H]
=

EX [E [G(x)]]
EX [E [H(x)]]

≥ EX [U∗E [H(x)]]
EX [E [H(x)]]

=U∗,

which is independent of the distribution of X . ut

Next, we evaluate the ratio of expectation (43) under a fixed service rate µ(Pk)
and a strict priority policy πk in the kth frame. The value of Zk affects only how we
choose the service rate and the control policy in the kth frame. After µ(Pk) and πk are
chosen, the vector Zk does not affect the value of (43). Therefore, (43) becomes

Φ(Zk)

E [Tk(Pk) |Zk]
=

E
[
V Pk Bk(Pk)

]
E [Tk(Pk)]

+
N

∑
n=1

Zn,k

{
E
[

∑i∈An,k
W (i)

n,k

]
E [Tk(Pk)]

−
E
[

∑i∈An,k
dn

]
E [Tk(Pk)]

}
.

(44)
Under the fixed service rate µ(Pk), the first term on the right side of (44) is

V Pk
E
[
Bk(Pk)

]
E
[
Tk(Pk)

] . (45)

To compute (45), let us create a new multi-class M/G/1 queue with the same arrival
processes with rates (λ1, . . . ,λN) and job size distributions (S1, . . . ,SN) as those given
in Section 2; assume the queue is initially empty. We suppose that this new M/G/1
queue uses the service rate µ(Pk) and the strict priority policy πk in all frames. Let B̂1
and T̂1 be the first busy and renewal period of the new M/G/1 queue, respectively.
From renewal theory, we have

E
[
B̂1
]

E
[
T̂1
] =

N

∑
n=1

ρn =
N

∑
n=1

λn
E [Sn]

µ(Pk)
.

We observe that the busy period Bk(Pk) in the kth frame of the M/G/1 queue with
dynamic service rates is statistically identical to the first busy period B̂1 of the new
M/G/1 queue. Likewise, the renewal period Tk(Pk) is statistically identical to T̂1.
Therefore, (45) satisfies

V Pk
E
[
Bk(Pk)

]
E
[
Tk(Pk)

] =V Pk
E
[
B̂1
]

E
[
T̂1
] =V Pk

N

∑
n=1

λn
E [Sn]

µ(Pk)
.

Next, we compute the second term on the right side of (44):

E
[

∑i∈A1,k
W (i)

1,k

]
E [Tk(Pk)]

for class 1 jobs under the strict priority policy πk and service rate µ(Pk). From (13),
we have

E
[

∑i∈A1,k
W (i)

1,k

]
E [Tk(Pk)]

=
E
[∫ tk+1

tk Q1(t)dt
]

E [Tk(Pk)]
. (46)

20 Chih-ping Li, Michael J. Neely

To evaluate (46), let us look at the first renewal period of the new M/G/1 queue
created above. From renewal reward theory, the long-term average number of waiting
class 1 jobs in this new queue, denoted by Q1, is

Q1 =
E
[∫ T̂1

0 Q̂1(t)dt
]

E
[
T̂1
] = λ1W ∗1, (47)

where [0, T̂1] is the first renewal period, Q̂1(t) is the number of class 1 jobs waiting
in the queue at time t, λ1 is the class 1 arrival rate, and W ∗1 is the average queueing
delay of class 1 jobs. The equality in (47) uses Little’s Theorem. The value of W ∗1 is
given in (8), depending on the priority of class 1 jobs. We observe that the kth frame
of the M/G/1 queue in this paper, under the fixed service rate µ(Pk) and the strict
priority policy πk, behaves statistically the same as the first renewal period of the new
M/G/1 queue. Therefore, from (46)-(47) we have

E
[

∑i∈A1,k
W (i)

1,k

]
E [Tk(Pk)]

=
E
[∫ tk+1

tk Q1(t)dt
]

E [Tk(Pk)]
=

E
[∫ T̂1

0 Q̂1(t)dt
]

E
[
T̂1
] = λ1W ∗1.

We can evaluate the rest of the terms in (44) using the same argument, and obtain

Φ(Zk)

E [Tk(Pk) |Zk]
=V Pk

∑
N
n=1 λnE [Sn]

µ(Pk)
+

N

∑
n=1

Zn,k λn(W n(πk,Pk)−dn), (48)

where W n(πk,Pk) is the average queueing delay of class n jobs in the new M/G/1
queue created above under the constant service rate µ(Pk) and the strict priority policy
πk, and W n(πk,Pk) is given in (40). It follows that our desired policy minimizes

(
V

N

∑
n=1

λnE [Sn]
) Pk

µ(Pk)
+

N

∑
n=1

Zn,k λn W n(πk,Pk) (49)

in each frame k over Pk ∈ [Pmin,Pmax] and over the set of strict priority policies.
To further simplify, under a given fixed service rate µ(Pk), the second term of (49)

can be re-written as

µ(Pk)
N

∑
n=1

Zn,k

E [Sn]

λnE [Sn]

µ(Pk)
W n(πk,Pk),

which is minimized by the cµ rule that assigns strict priorities in the decreasing order
of Zn,k/E [Sn]. This strict priority policy, denoted by π∗k , is optimal regardless of the
value of Pk, and thus is overall optimal. Interestingly, priority assignment is decoupled
from optimal service rate allocation. Under policy π∗k , choosing Pk to solve (38)-(39)
reveals the optimal service rate allocation in the kth frame. These discussions lead to
the DynRate policy.

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 21

7 Fourth problem: Cost-constrained convex delay optimization

In the fourth problem, we design a policy to minimize a separable convex function of
the average queueing delay vector subject to an average service cost constraint:

minimize
N

∑
n=1

fn(W n) (50)

subject to P≤ Pconst (51)

(P,W 1, . . . ,W N) ∈Λ , (52)

where Pconst > 0 is a given feasible bound. The functions fn are nondecreasing, non-
negative, continuous, and convex. We use the same virtual queues (Y1,k, . . . ,YN,k) as
in (27), except that the auxiliary variable rn,k takes values in a new interval [0,Rmax,n].
We need Rmax,n to be greater than the optimal delay W ∗n that solves (50)-(52); one
feasible choice of Rmax,n is the maximum per-class average delay over all job classes
under the minimum service rate µ(Pmin). To satisfy (51), we define a virtual cost
queue {Xk}∞

k=0, where X0 = 0, that is updated at the end of busy periods {tk}∞
k=0 by

Xk+1 = max [Xk +PkBk(Pk)−PconstTk(Pk), 0] . (53)

That is, Xk+1 is computed at the end of the kth frame after observing the busy period
Bk(Pk) and the frame size Tk(Pk) of the kth frame.

Lemma 6 (Proof in Section 9.6) If the virtual queue Xk is mean rate stable, then
P≤ Pconst.

7.1 The control policy

The following policy, similar to the DelayFair and DynRate policy, solves (50)-(52).

22 Chih-ping Li, Michael J. Neely

Cost-Constrained Delay Fairness Policy (CostDelayFair):

– In the kth busy period, observe Xk and Yn,k and use the strict priority
policy π∗k that prioritizes job classes in the decreasing order of Yn,k/E [Sn];
ties are broken arbitrarily. Allocate the service rate µ(Pk) that solves:

minimize
Pk

µ(Pk)

[
Xk

N

∑
n=1

λnE [Sn]
]
+

N

∑
n=1

Yn,k λnW n(π
∗
k ,Pk)

subject to Pk ∈ [Pmin,Pmax],

where W n(π
∗
k ,Pk), given in (40), represents the average delay of class n

if the policy π∗k and the service rate µ(Pk) are used in all busy periods.
– At the end of busy periods, update Yn,k for all classes n and Xk by (27)

and (53), respectively. In (27), the auxiliary variable rn,k is the solution
to the one-variable convex program

minimize V fn(rn,k)−Yn,k λn rn,k

subject to 0≤ rn,k ≤ Rmax,n

which is easily solved if fn is differentiable.

Theorem 4 (Proof in Section 9.7) The CostDelayFair policy satisfies the average
service cost constraint P≤ Pconst and yields average delay penalty satisfying

limsup
K→∞

N

∑
n=1

fn

E
[
∑

K−1
k=0 ∑i∈An,k

W (i)
n,k

]
E
[
∑

K−1
k=0

∣∣An,k
∣∣]

≤ C ∑
N
n=1 λn

V
+

N

∑
n=1

fn(W
∗
n), (54)

where V > 0 is a control parameter and (W ∗n)
N
n=1 the optimal average delay vector.

7.2 Construction of the CostDelayFair policy

The design of the CostDelayFair policy follows closely with those in previous prob-
lems, and the details are omitted for brevity. Define the vector χk = [Xk;Y1,k, . . . ,YN,k],
the Lyapunov function L(χk) ,

1
2 (X

2
k +∑

N
n=1 Y 2

n,k), and the Lyapunov drift ∆(χk) ,
E [L(χk+1)−L(χk) | χk]. There exists a finite constant C > 0 such that

∆(χk)≤C+Xk E [PkBk(Pk)−Pconst Tk(Pk) | χk]+
N

∑
n=1

Yn,k E
[

∑
i∈An,k

(W (i)
n,k − rn,k) | χk

]
.

(55)
Adding V ∑

N
n=1E

[
fn(rn,k)Tk(Pk) | χk

]
to both sides of (55), and evaluating the result-

ing inequality under a control policy that makes admissible scheduling decisions and
allocates a fixed service rate in the kth frame, we obtain

∆(χk)+V
N

∑
n=1

E
[

fn(rn,k)Tk(Pk) | χk
]
≤C+Ψ(χk), (56)

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 23

where

Ψ(χk), E [Tk(Pk) | χk]
N

∑
n=1

Yn,k λnW n,k +Xk

(
E [PkBk(Pk) | χk]−PconstE [Tk(Pk) | χk]

)
+E [Tk(Pk) | χk]

N

∑
n=1

E
[
V fn(rn,k)−Yn,k λn rn,k | χk

]
and W n,k denotes the average delay of class n if the control in the kth frame is inde-
pendently repeated in all frames. Consider the policy that minimizes the ratio

Ψ(χk)

E [Tk(Pk) | χk]
(57)

in each frame k. Lemma 5 shows that the minimizer is a strict priority policy πk with
a fixed service rate, under which (57) is equal to

N

∑
n=1

Yn,k λnW n(πk,Pk)+Xk (Pk ρsum(Pk)−Pconst)+
N

∑
n=1

(
V fn(rn,k)−Yn,k λn rn,k

)
,

where W n(πk,Pk) is given in (40) and ρsum(Pk),∑
N
n=1 λnE [Sn]/µ(Pk). Under similar

simplifications as those for the DynRate policy in Section 6, the CostDelayFair policy
is the desired policy.

8 Simulations

We simulate all four control policies in a two-class nonpreemptive M/G/1 queue.
Let W (P) be the delay performance region when the queue has a fixed service rate
µ(P). Define ρn , λnE [Xn] and R , 1

2 ∑
2
n=1 λnE

[
X2

n
]
, where Xn = Sn/µ(P). We

have, from (5),

W (P) =

 (W 1,W 2)

∣∣∣∣∣∣∣∣
W 1 ≥

R
1−ρ1

, W 2 ≥
R

1−ρ2
,

ρ1W 1 +ρ2W 2 =
(ρ1 +ρ2)R
1−ρ1−ρ2

 . (58)

In (58), the two inequalities say that the average queueing delay in one class is min-
imized when it has strict priority over the other class. The equality is the M/G/1
conservation law [21].

Each simulation below is a sample average over 10 runs, each of which lasts for
106 frames.

24 Chih-ping Li, Michael J. Neely

8.1 The DelayFeas and DelayFair policy

To simulate the DelayFeas and DelayFair policy, we consider a two-class nonpre-
emptive M/M/1 queue with arrival rates (λ1,λ2) = (1,2) and mean service times
(E [X1] ,E [X2]) = (0.4,0.2); we consider service time directly instead of job sizes
because there is no service rate control. The delay performance region, from (58), is

W =
{
(W 1,W 2)

∣∣W 1 +W 2 = 2.4, W 1 ≥ 0.4, W 2 ≥ 0.4
}
, (59)

which is presented in Fig. 1.
For the DelayFeas policy, we consider five sets of delay constraints (d1,d2) =

(0.45,2.05), (0.85,1.65), (1.25,1.25), (1.65,0.85), and (2.05,0.45); they are all (0.05,0.05)
entrywise larger than a feasible point in the delay region W . The simulation results
in Fig. 1 show that the DelayFeas policy adaptively yields feasible average delays in
response to different constraints. Over the 10 simulation runs in each of the five cases,
the sample standard deviation of the average delay in each job class is at most 0.017.
Therefore, different simulation runs produce consistent results. Fig. 2 shows the con-
vergence of the running delay performance of the DelayFeas policy to a feasible delay
vector under different delay requirements (d1,d2).4

0.4 0.8 1.2 1.6 2
Class 1 average delay

0.4

0.8

1.2

1.6

2

C
la

ss
 2

 a
ve

ra
ge

 d
el

ay

Delay region W
Delay bounds (d1, d2)
Simulation results

Fig. 1 The DelayFeas policy under different delay constraints (d1,d2).

For the DelayFair policy, we consider the delay proportional fairness problem:

minimize 0.5(W 1)
2 +2(W 2)

2 (60)

subject to (W 1,W 2) ∈W (61)

W 1 ≤ 1.95,W 2 ≤ 1 (62)

where W is given in (59). The optimal solution to (60)-(62) is (W ∗1,W
∗
2)= (1.92,0.48),

and the optimal objective is 2.304. We simulate the DelayFair policy for different val-
ues of the control parameter V , and the results are presented in Table 1. The values

4 In the fifth case of Fig. 2 with delay requirements (d1,d2) = (0.45,2.05), the class 1 delay of the
DelayFeas policy is slightly larger than 0.45 because the initial learning phase of the policy is taken into
account; the class 1 delay is strictly less than 0.45 if the initial phase is excluded.

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 25

0 2x105 4x105 6x105 8x105 1x106

of frames

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

av
er

ag
e

de
la

y

class 1
class 2

1.95

0.45

(a) (d1,d2) = (2.05,0.45)

0 2x105 4x105 6x105 8x105 1x106

of frames

0.8

1

1.2

1.4

1.6

1.8

av
er

ag
e

de
la

y

class 1
class 2

1.567

0.831

(b) (d1,d2) = (1.65,0.85)

0 2x105 4x105 6x105 8x105 1x106

of frames

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

av
er

ag
e

de
la

y

class 1
class 2

1.199

1.194

(c) (d1,d2) = (1.25,1.25)

0 2x105 4x105 6x105 8x105 1x106

of frames

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
av

er
ag

e
de

la
y

class 1
class 2

0.842

1.577

(d) (d1,d2) = (0.85,1.65)

0 2x105 4x105 6x105 8x105 1x106

of frames

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

av
er

ag
e

de
la

y

class 1
class 2

0.452

1.954

(e) (d1,d2) = (0.45,2.05)

Fig. 2 Running average delay performance of the DelayFeas policy under different delay bounds (d1,d2).

in parentheses in Table 1 are sample standard deviations over the 10 simulation runs.
As V increases, the DelayFair policy yields average delay penalty approaching the
optimal value. Fig. 3 shows the convergence of the running delay performance of the
DelayFair policy.

26 Chih-ping Li, Michael J. Neely

Table 1 Simulations for the DelayFair policy under different values of V

V W 1 W 2 0.5(W 1)
2 +2(W 2)

2

100 1.661 (.006) 0.742 (.005) 2.481 (.024)
1000 1.798 (.006) 0.598 (.004) 2.332 (.020)
2000 1.834 (.006) 0.564 (.005) 2.318 (.022)
5000 1.868 (.007) 0.528 (.005) 2.301 (.022)

optimal 1.92 0.48 2.304

0 2x105 4x105 6x105 8x105 1x106

of frames

1.2

1.4

1.6

1.8

2

2.2

2.4

cl
as

s
1

av
er

ag
e

de
la

y

V=100
V=1000
V=2000
V=5000
optimal value

(a) class 1 delay

0 2x105 4x105 6x105 8x105 1x106

of frames

0.4

0.6

0.8

1

1.2

1.4

cl
as

s
2

av
er

ag
e

de
la

y

V=100
V=1000
V=2000
V=5000
optimal value

(b) class 2 delay

Fig. 3 Running average delay performance of the DelayFair policy under different values of V .

8.2 The DynRate and CostDelayFair Policy

In the two service rate control problems, we consider a two-class M/G/1 queue with
arrival rates (λ1,λ2) = (1,2). The size of a class 1 job is 0.5 with probability 0.8 and
3 otherwise. The size of a class 2 job is always one. The feasible choice of service
cost in a busy period is in the discrete set P ∈ {16,25}. We consider the service rate
µ(P) =

√
P. The full delay performance region, denoted by W , is the convex hull of

the two individual regions (see Fig. 4):

W (16) =
{
(W 1,W 2)

∣∣W 1 +2W 2 = 3/2, W 1 ≥ 1/6, W 2 ≥ 1/4
}
,

W (25) =
{
(W 1,W 2)

∣∣W 1 +2W 2 = 3/5, W 1 ≥ 1/10, W 2 ≥ 2/15
}
,

where W (16) and W (25) are the delay performance regions, given by (58), under a
constant service cost of P = 16 and P = 25, respectively.

For the DynRate policy, we solve

minimize P (63)

subject to (W 1,W 2) ∈W (64)

W 1 ≤ 0.4, W 2 ≤ 0.325 (65)

where W is the full delay region in Fig. 4. The minimum average service cost is
achieved by satisfying the constraints (65) with equality. By finding the stationary

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 27

P = 13.5

W 2

W 1

(0.4, 0.325)

W(16)

W(25)

(0.525, 0.2625)

A

B

Fig. 4 The full delay performance region W , as a convex hull of the two regions W (16) and W (25), in
the simulations for the DynRate and the CostDelayFair policy.

Table 2 Simulations for the DynRate policy under different values of V

V W 1 W 2 P

1 0.356 (.00078) 0.301 (.00032) 13.802 (.018)
10 0.398 (.00022) 0.325 (.00005) 13.510 (.026)

100 0.400 (.00013) 0.325 (.00010) 13.504 (.022)

optimal 0.4 0.325 13.5

randomized policy that yields (W 1,W 2) = (0.4,0.325), we know the optimal average
service cost is 13.5. Table 2 presents simulation results for the DynRate policy for
different values of parameter V ; sample standard deviations over simulation runs are
in parentheses. We observe that average service cost as well as average delay in each
job class approaches optimal with the increase of V . Fig. 5 shows the convergence of
the running delay and service cost performance of the DynRate policy.

For the CostDelayFair policy, we solve

minimize 0.5(W 1)
2 +2(W 2)

2 (66)

subject to P≤ 13.5. (67)

The optimal policy must satisfy (67) with equality. In Fig. 4, the set of feasible av-
erage delay vectors inducing average cost P = 13.5 forms a line segment AB that is
parallel to both delay regions W (16) and W (25) and passes (0.4,0.325). This can be
shown geometrically in Fig. 6 by observing that any randomized policy that achieves
some point on AB must use the same coefficients to form a convex combination of
one point on W (25) and one on W (16), and thus this policy incurs the same average
cost P = 13.5. Consequently, (66)-(67) is equivalent to

minimize 0.5(W 1)
2 +2(W 2)

2 (68)

subject to W 1 +W 2 = 1.05 (69)

W 1 ≥ 2/15, W 2 ≥ 23/120, (70)

28 Chih-ping Li, Michael J. Neely

0 2x105 4x105 6x105 8x105 1x106

of frames

0.2

0.3

0.4

0.5

0.6

cl
as

s
1

av
er

ag
e

de
la

y

optimal value
V=1
V=10
V=100

(a) class 1 delay

0 2x105 4x105 6x105 8x105 1x106

of frames

0.15

0.2

0.25

0.3

0.35

0.4

0.45

cl
as

s
2

av
er

ag
e

de
la

y

optimal value
V=1
V=10
V=100

(b) class 2 delay

0 2x105 4x105 6x105 8x105 1x106

of frames

12

12.5

13

13.5

14

14.5

av
er

ag
e

se
rv

ic
e

co
st

optimal value
V=1
V=10
V=100

(c) service cost

Fig. 5 Running average delay and average service cost performance of the DynRate policy under different
values of V .

where the constraints (69)-(70) represent the line segment AB in Fig. 4. The optimal
average delay vector is (W ∗1,W

∗
2) = (0.525,0.2625). Table 3 presents the simulation

results of the CostDelayFair policy. Again, the performance approaches optimal as V
increases. Fig. 7 shows the convergence of the running delay and service cost perfor-
mance of the CostDelayFair policy.

Table 3 Simulations for the CostDelayFair policy under different values of V

V W 1 W 2 0.5(W 1)
2 +2(W 2)

2 P

100 0.566 (.0031) 0.304 (.0013) 0.345 (.0032) 13.082 (.0030)
200 0.542 (.0017) 0.286 (.0009) 0.310 (.0017) 13.274 (.0029)
500 0.525 (.0023) 0.271 (.0011) 0.284 (.0022) 13.454 (.0014)

1000 0.520 (.0022) 0.265 (.0010) 0.276 (.0022) 13.496 (.0006)

optimal 0.525 0.2625 0.2756 13.5

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 29

P = 13.5

W 2

W 1

W(16)

W(25)

A

B
C

Fig. 6 The two dotted lines passing a point C on the line segment AB represent two randomized policies
that achieve C. Geometrically, they have the same proportional mixture of one point on W (25) and one on
W (16). Therefore, they incur the same average service cost.

9 Proofs and additional results

9.1 Lemma 7

Lemma 7 In a nonpreemptive N-class M/G/1 queue with a constant service rate,
if the first four moments of service times Xn are finite for all classes n ∈ {1, . . . ,N},
and the system is stable with ∑

N
n=1 λnE [Xn]< 1, then, in every frame k ∈Z+, the term

E
[(

∑i∈An,k
(W (i)

n,k −dn)
)2
]

is finite for all classes n under any work-conserving policy.

Proof (Lemma 7) For brevity, we only give a sketch of proof. Using E
[
(a−b)2

]
≤

2E
[
a2 +b2

]
, it suffices to show that E

[
(∑i∈An,k

W (i)
n,k)

2
]

and E
[∣∣An,k

∣∣2] are both finite.
We only show the first expectation is finite; the finiteness of the second expectation
then follows. Define Nk , ∑

N
n=1

∣∣An,k
∣∣ as the number of jobs (over all classes) served

in frame k; we have
∣∣An,k

∣∣ ≤ Nk for all n and k. In frame k, the queueing delay W (i)
n,k

of a class n job i ∈ An,k is less than or equal to the busy period size Bk. Then we get
E
[
(∑i∈An,k

W (i)
n,k)

2
]
≤ E

[
B2

kN2
k

]
. By Cauchy-Schwarz inequality, we have E

[
B2

kN2
k

]
≤√

E
[
B4

k

]
E
[
N4

k

]
. It suffices to show that both E

[
B4

k

]
and E

[
N4

k

]
are finite.

First we argue E
[
B4

k

]
< ∞. In the following we drop the index k for notational

convenience. Since the busy period size B is the same under any work-conserving
policy, it is convenient to consider LIFO scheduling with preemptive priority, and that
jobs of all classes are treated equally likely. In this scheme, let a0 denote the arrival
that starts the current busy period. Arrival a0 can be of any class, and the duration
it stays in the system is equal to the busy period B. Next, let {a1, . . . ,aM} denote
the M jobs that arrive during the service of job a0. Let B(1), . . . ,B(M) denote the
durations they stay in the system. Under LIFO with preemptive priority, we observe
that B(1), . . . ,B(M) are independent and identically distributed as the starting busy
period B, since any new arrival never sees any previous arrivals and starts a new busy

30 Chih-ping Li, Michael J. Neely

0 2x105 4x105 6x105 8x105 1x106

of frames

0.4

0.5

0.6

0.7

0.8

cl
as

s
1

av
er

ag
e

de
la

y

optimal value
V=100
V=200
V=500
V=1000

(a) class 1 delay

0 2x105 4x105 6x105 8x105 1x106

of frames

0.2

0.25

0.3

0.35

0.4

cl
as

s
2

av
er

ag
e

de
la

y

optimal value
V=100
V=200
V=500
V=1000

(b) class 2 delay

0 2x105 4x105 6x105 8x105 1x106

of frames

12.4

12.6

12.8

13

13.2

13.4

13.6

av
er

ag
e

se
rv

ic
e

co
st

optimal value
V=100
V=200
V=500
V=1000

(c) service cost

Fig. 7 Running average delay and average service cost performance of the CostDelayFair policy under
different values of V .

period (by the memoryless property of Poisson arrivals). Consequently, we have

B = X +
M

∑
m=1

B(m), (71)

where X denote the service time of a0. Notice also that each duration B(m) for all
m∈ {1, . . . ,M} is independent of M. By taking the square and expectation of (71), we
can compute E

[
B2
]

in closed form and show that it is finite if the first two moments
of service times Xn are finite for all n. Likewise, by raising (71) to the third and
fourth power and taking expectation, we can compute E

[
B3
]

and E
[
B4
]

and show
they are finite if the first four moments of Xn are finite (showing E

[
B4
]
< ∞ requires

the finiteness of the first three moments of B).
Likewise, to show E

[
N4
]
< ∞, under LIFO with preemptive priority we observe

N = 1+
M

∑
m=1

N(m), (72)

where N(m) denotes the number of arrivals, including am, served during the stay of
arrival am in the system; N(m) are i.i.d. and independent of M. By raising (72) to the

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 31

second, third, and fourth power and taking expectation, we can compute E
[
N4
]

in
closed form and show it is finite. ut

9.2 Proof of Theorem 1

By Lemma 3, it suffices to show that the DelayFeas policy stabilizes all Zn,k queues in
the sense of mean rate stability. Let (W ∗1, . . . ,W

∗
N) be a feasible average delay vector

satisfying W ∗n ≤ dn for all n. From Lemma 1, there exists a stationary randomized
priority policy π∗rand that (i) randomly and independently uses a strict priority rule in
each busy period according to a probability distribution, and (ii) achieves the aver-
age delay vector (W ∗1, . . . ,W

∗
N). Since the DelayFeas policy minimizes (15) over all

feasible scheduling decisions in a frame, comparing the DelayFeas policy with the
randomized policy π∗rand yields, in every frame k,

N

∑
n=1

Zn,k ρn WDelayFeas
n,k ≤

N

∑
n=1

Zn,k ρn W ∗n. (73)

From (73), the inequality (17) evaluated under the DelayFeas policy is further upper
bounded by

∆(Zk)≤C+E [Tk]
N

∑
n=1

Zn,k ρn(W
DelayFeas
n,k −dn)

≤C+E [Tk]
N

∑
n=1

Zn,k ρn(W
∗
n−dn)≤C.

Taking expectation, summing over k ∈ {0, . . . ,K−1}, and noting L(Z0) = 0, we get

E [L(ZK)] =
1
2

N

∑
n=1

E [Xn] E
[
(Zn,K)

2]≤ KC.

It follows that E
[
(Zn,K)

2
]
≤ 2KC/E [Xn] for all job classes n, and

0≤ E [Zn,K]≤
√

E [(Zn,K)2]≤
√

2KC
E [Xn]

, n ∈ {1, . . . ,N}.

Dividing the above by K yields

0≤ E [Zn,K]

K
≤
√

2C
KE [Xn]

, n ∈ {1, . . . ,N}. (74)

Passing K→ ∞ proves mean rate stability for all virtual queues (Z1,k, . . . ,ZN,k). ut

32 Chih-ping Li, Michael J. Neely

9.3 Proof of Theorem 2

Consider the optimal stationary randomized priority policy π∗rand that yields optimal
average delays W ∗n ≤ dn for all classes n. Since the DelayFair policy minimizes the
right side of (33) in every frame, if we compare the DelayFair policy with policy π∗rand
and the genie decisions r∗n,k = W ∗n for all n and k, (33) under the DelayFair policy is
further upper bounded by

∆(Zk,Yk)+V
N

∑
n=1

E
[

fn(rn,k)Tk |Zk,Yk
]

≤C−E [Tk]
N

∑
n=1

Zn,k λn dn +E [Tk]
N

∑
n=1

(Zn,k +Yn,k)λnW ∗n

+E [Tk]
N

∑
n=1

(
V fn(W

∗
n)−Yn,k λnW ∗n

)
≤C+VE [Tk]

N

∑
n=1

fn(W
∗
n). (75)

Removing the second nonnegative term of (75) yields

∆(Zk,Yk)≤C+VE [Tk]
N

∑
n=1

fn(W
∗
n)≤C+V D, (76)

where D , E [Tk]∑
N
n=1 fn(W

∗
n) is a finite constant. Taking expectation of (76), sum-

ming over k ∈ {0, . . . ,K − 1}, and noting L(Z0,Y0) = 0, we get E [L(ZK ,YK)] ≤
K(C+V D). It follows that, for each queue Zn,k, we have

0≤ E [Zn,K]

K
≤
√

E [(Zn,K)2]

K2 ≤
√

2E [L(Zk,YK)]

K2 ≤
√

2(C+V D)

K
. (77)

Passing K→∞ proves mean rate stability of all virtual queues (Z1,k, . . . ,ZN,k). Conse-
quently, the delay constraints W n ≤ dn are satisfied by Lemma 3. Likewise, all virtual
queues (Y1,k, . . . ,YN,k) are mean rate stable.

Next, taking expectation of (75), summing over k ∈ {0, . . . ,K− 1}, dividing by
V , and noting L(Z0,Y0) = 0, we get

E [L(ZK ,YK)]

V
+

N

∑
n=1

E

[
K−1

∑
k=0

fn(rn,k)Tk

]
≤ KC

V
+E

[
K−1

∑
k=0

Tk

]
N

∑
n=1

fn(W
∗
n).

Removing the first nonnegative term and dividing the rest by E
[
∑

K−1
k=0 Tk

]
yield

N

∑
n=1

E
[
∑

K−1
k=0 fn(rn,k)Tk

]
E
[
∑

K−1
k=0 Tk

] ≤ KC
VE
[
∑

K−1
k=0 Tk

] + N

∑
n=1

fn(W
∗
n)

(a)
≤ C ∑

N
n=1 λn

V
+

N

∑
n=1

fn(W
∗
n), (78)

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 33

where (a) uses E [Tk] ≥ E [Ik] = 1/(∑N
n=1 λn) for all k. By a generalized Jensen’s in-

equality [25, Lemma 7.6] and convexity of fn(·), we get

N

∑
n=1

E
[
∑

K−1
k=0 fn(rn,k)Tk

]
E
[
∑

K−1
k=0 Tk

] ≥
N

∑
n=1

fn

(
E
[
∑

K−1
k=0 rn,k Tk

]
E
[
∑

K−1
k=0 Tk

])
. (79)

Combining (78) and (79), and taking a limsup as K→ ∞, we get

limsup
K→∞

N

∑
n=1

fn

(
E
[
∑

K−1
k=0 rn,k Tk

]
E
[
∑

K−1
k=0 Tk

])
≤ C ∑

N
n=1 λn

V
+

N

∑
n=1

fn(W
∗
n).

The next lemma completes the proof. ut

Lemma 8 If all Yn,k queues are mean rate stable, then

limsup
K→∞

N

∑
n=1

fn

(
E
[
∑

K−1
k=0 ∑i∈An,k

W (i)
n,k

]
E
[
∑

K−1
k=0

∣∣An,k
∣∣]

)
≤ limsup

K→∞

N

∑
n=1

fn

(
E
[
∑

K−1
k=0 rn,k Tk

]
E
[
∑

K−1
k=0 Tk

])
.

Proof (Lemma 8) From (27), we get

Yn,k+1 ≥ Yn,k− rn,k
∣∣An,k

∣∣+ ∑
i∈An,k

W (i)
n,k .

Summing over k ∈ {0, . . . ,K−1} and using Yn,0 = 0 yield

K−1

∑
k=0

∑
i∈An,k

W (i)
n,k −Yn,K ≤

K−1

∑
k=0

rn,k
∣∣An,k

∣∣ .
Taking expectation and dividing by λnE

[
∑

K−1
k=0 Tk

]
yield

E
[
∑

K−1
k=0 ∑i∈An,k

W (i)
n,k

]
λnE

[
∑

K−1
k=0 Tk

] − E [Yn,K]

λnKE [T0]
≤ E

[
∑

K−1
k=0 rn,k

∣∣An,k
∣∣]

λnE
[
∑

K−1
k=0 Tk

] , (80)

where in the second term we use E [Tk] =E [T0] for all k. In the last term of (80), since
the value rn,k is chosen independent of

∣∣An,k
∣∣ and Tk, we use E

[∣∣An,k
∣∣]= λnE [Tk] and

get
E
[
∑

K−1
k=0 rn,k

∣∣An,k
∣∣]

λnE
[
∑

K−1
k=0 Tk

] =
E
[
∑

K−1
k=0 rn,k Tk

]
E
[
∑

K−1
k=0 Tk

] .

Define θ
(n)
K as the left side of (80). Then we have

θ
(n)
K ≤ E

[
∑

K−1
k=0 rn,k Tk

]
E
[
∑

K−1
k=0 Tk

] .

Since fn(·) is nondecreasing for all classes n, we get

limsup
K→∞

N

∑
n=1

fn

(
θ
(n)
K

)
≤ limsup

K→∞

N

∑
n=1

fn

(
E
[
∑

K−1
k=0 rn,k Tk

]
E
[
∑

K−1
k=0 Tk

])
. (81)

34 Chih-ping Li, Michael J. Neely

Using (80), define the value

η
(n)
K ,

E
[
∑

K−1
k=0 ∑i∈An,k

W (i)
n,k

]
E
[
∑

K−1
k=0

∣∣An,k
∣∣] = θ

(n)
K +

E [Yn,K]

λnKE [T0]
. (82)

To complete the proof, from (81), it suffices to show

limsup
K→∞

N

∑
n=1

fn(η
(n)
K) = limsup

K→∞

N

∑
n=1

fn(θ
(n)
K). (83)

We show that inequality ≤ holds in (83); the other direction is proved similarly. Let
the left side of (83) attain its limsup in the subsequence {Km}∞

m=1. It follows

limsup
K→∞

N

∑
n=1

fn(η
(n)
K) = lim

m→∞

N

∑
n=1

fn(η
(n)
Km

)
(a)
=

N

∑
n=1

fn

(
lim

m→∞
η
(n)
Km

)
(b)
=

N

∑
n=1

fn

(
lim

m→∞
θ
(n)
Km

)
≤ limsup

K→∞

N

∑
n=1

fn(θ
(n)
K),

where (a) follows the continuity of fn(·) for all classes n, and (b) follows (82) and
mean rate stability of the Yn,k queues. ut

9.4 Independence of second-order statistics in the DynRate policy

We show how to remove the dependence on the second moments of job sizes Sn in
the DynRate policy in Section 6.2. For simplicity, we assume that job classes are
properly re-ordered so that class n has the nth highest priority for n ∈ {1, . . . ,N}. We
rewrite (38) using (8) as

R̂

[(
V

R̂

N

∑
n=1

λnE [Sn]

)
Pk

µ(Pk)
+

N

∑
n=1

Zn,k λn

(µ(Pk)−∑
n−1
m=0 ρ̂m)(µ(Pk)−∑

n
m=0 ρ̂m)

]
(84)

where

R̂ ,
1
2

N

∑
n=1

λnE
[
S2

n
]
, ρ̂m ,

{
λmE [Sm] , 1≤ m≤ N
0, m = 0

By ignoring the constant R̂ and redefining Ṽ , V/R̂ in (84), running the DynRate
policy in the kth frame is equivalent to allocating service rate µ(Pk) that minimizes(

Ṽ
N

∑
n=1

λnE [Sn]
) Pk

µ(Pk)
+

N

∑
n=1

Zn,k λn

(µ(Pk)−∑
n−1
m=0 ρ̂m)(µ(Pk)−∑

n
m=0 ρ̂m)

,

which is independent of second moments of job sizes. The control parameter Ṽ can
be chosen to be a large value without the knowledge of second moments of job sizes.
From Theorem 3 and using V = Ṽ R̂, this alternative policy yields average service cost
P satisfying

P≤ C ∑
N
n=1 λn

Ṽ R̂
+P∗,

and the property that the performance gap, which is O(1/Ṽ), can be made arbitrarily
small by a sufficiently large Ṽ is preserved.

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 35

9.5 Proof of Theorem 3

The cost-delay performance region Λ is defined by the set Π̂ of control policies de-
scribed in Section 6.1. It is useful to consider a stationary randomized control policy
πrand that: (i) randomly allocates a fixed service rate in a busy period according to a
stationary distribution, and (ii) randomly uses a strict priority rule in each busy pe-
riod according to a probability distribution that may depend on the service rate in
that period. Then, for each control policy π ∈ Π̂ , there exists a randomized policy
πrand inducing the same performance. To see this, let W (P) be the delay performance
region when the service rate µ(P) is used in all busy periods. Under a policy π ∈ Π̂ ,
let wP be the average delay vector of the multi-class jobs served in the subset of busy
periods with service rate µ(P). From Lemma 1, we have wP ∈ W (P) and the delay
vector wP is achieved by a randomized priority policy. Since the service rate alloca-
tions of policy π are ergodic decisions, the overall average delay vector w of policy π

is a convex combination of the delay vectors {wP}P∈[Pmin,Pmax]. The randomized pol-
icy πrand that induces the same performance as the policy π ∈ Π̂ works as follows: (i)
randomly allocating a service rate in each busy period according to a stationary dis-
tribution defined by the limiting frequencies of service rate allocations in π; (ii) in a
busy period with service rate µ(P), using the randomized priority policy that induces
wP. Also, since every randomized policy πrand described above belongs to the policy
space Π̂ , optimizing the queue performance over the cost-delay performance region
Λ is equivalent to optimizing it over the set of stationary randomized polices πrand.

Consider the optimal stationary randomized policy π∗rand that yields optimal av-
erage cost P∗ and feasible average queueing delay W ∗n ≤ dn for all job classes n. Let
P∗k denote its service cost allocation in the kth frame. Since policy π∗rand makes i.i.d.
decisions over frames, by renewal reward theory we have

P∗ =
E
[
P∗k B(P∗k)

]
E
[
T (P∗k)

] .

The ratio (43) under policy π∗rand is equal to (see (48))

V
E
[
P∗k B(P∗k)

]
E
[
T (P∗k)

] +
N

∑
n=1

Zn,k λn
(
W ∗n−dn

)
≤V P∗. (85)

Since the DynRate policy minimizes (43) over frame-based policies that update con-
trols over busy periods, which include the optimal policy π∗rand, (43) under the DynRate
policy satisfies, from (85),

Φ(Zk)

E [Tk(Pk) |Zk]
≤V P∗, k ∈ Z+.

Using this bound, (42) under the DynRate policy satisfies

∆(Zk)+VE [Pk Bk(Pk) |Zk]≤C+V P∗E [Tk(Pk) |Zk] .

36 Chih-ping Li, Michael J. Neely

Taking expectation, summing over k ∈ {0, . . . ,K−1}, and noting L(Z0) = 0 yield

E [L(ZK)]+V
K−1

∑
k=0

E [Pk Bk(Pk)]≤ KC+V P∗E
[K−1

∑
k=0

Tk(Pk)
]
. (86)

Since E [Tk(Pk)] is decreasing in Pk and is independent of scheduling policies under a
fixed service rate, we get E [Tk(Pk)]≤ E [T0(Pmin)] for all k. It follows that

E [L(ZK)]+V
K−1

∑
k=0

E [Pk Bk(Pk)]≤ K(C+V P∗E [T0(Pmin)]).

Removing the second term and dividing by K2 yield

E [L(ZK)]

K2 ≤ C+V P∗E [T0(Pmin)]

K
.

By combining it with

0≤ E [Zn,K]

K
≤
√

E [(Zn,K)2]

K2 ≤
√

2E [L(ZK)]

K2 , ∀n ∈ {1, . . . ,N}

and passing K → ∞, we prove that all Zn,k queues are mean rate stable. All delay
requirements W n ≤ dn are therefore satisfied by Lemma 3.

Next, removing the first nonnegative term in (86) and dividing the result by
VE
[
∑

K−1
k=0 Tk(Pk)

]
yield

E
[
∑

K−1
k=0 Pk Bk(Pk)

]
E
[
∑

K−1
k=0 Tk(Pk)

] ≤ C
V

K
E
[
∑

K−1
k=0 Tk(Pk)

] +P∗
(a)
≤ C ∑

N
n=1 λn

V
+P∗,

where (a) uses E [Tk(Pk)]≥ E [Ik] = 1/(∑N
n=1 λn). Passing K→ ∞ finishes the proof.

ut

9.6 Proof of Lemma 6

From (53), we have Xk+1≥Xk+PkBk(Pk)−Pconst Tk(Pk). Summing over k∈{0, . . . ,K−
1}, taking expectation, and using X0 = 0, we get

E [XK]≥ E
[K−1

∑
k=0

PkBk(Pk)

]
−PconstE

[K−1

∑
k=0

Tk(Pk)

]
.

Dividing by E
[
∑

K−1
k=0 Tk(Pk)

]
and passing K→ ∞, we obtain

P≤ Pconst + limsup
K→∞

E [XK]

K
K

E
[
∑

K−1
k=0 Tk(Pk)

] (a)
≤ Pconst + limsup

K→∞

E [XK]

K

N

∑
n=1

λn
(b)
= Pconst

where (a) uses E [Tk(Pk)] ≥ E [Ik] = 1/(∑N
n=1 λn), and (b) follows mean rate stability

of the virtual cost queue Xk. ut

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 37

9.7 Proof of Theorem 4

Let π∗rand be the stationary randomized policy of service rate control and priority
assignment that solves (50)-(52). Let (W ∗n)

N
n=1 be the optimal mean delay vector, and

P∗ the associated average service cost satisfying P∗ ≤ Pconst. In the kth frame, the
ratio Ψ(χk)

E[Tk(Pk)|χk]
under the policy π∗rand and the genie decision r∗n,k =W ∗n for all n and

k satisfies

Ψ(χk)

E [Tk(Pk) | χk]
=

N

∑
n=1

Yn,k λnW ∗n +Xk P∗−Xk Pconst

+
N

∑
n=1

(
V fn(W

∗
n)−Yn,k λnW ∗n

)
≤V

N

∑
n=1

fn(W
∗
n). (87)

Since the CostDelayFair policy minimizes Ψ(χk)
E[Tk(Pk)|χk]

in every frame, this ratio under
the CostDelayFair policy satisfies, by (87),

Ψ(χk)

E [Tk(Pk) | χk]
≤V

N

∑
n=1

fn(W
∗
n).

Then (56) under the CostDelayFair policy satisfies

∆(χk)+VE
[N

∑
n=1

fn(rn,k)Tk(Pk) | χk

]
≤C+VE [Tk(Pk) | χk]

N

∑
n=1

fn(W
∗
n). (88)

Removing the second term in (88) and taking expectation, we get

E [L(χk+1)]−E [L(χk)]≤C+VE [Tk(Pk)]
N

∑
n=1

fn(W
∗
n).

Summing over k ∈ {0, . . . ,K−1}, and using L(χ0) = 0 yields

E [L(χK)]≤ KC+VE
[K−1

∑
k=0

Tk(Pk)

] N

∑
n=1

fn(W
∗
n)≤ KC1 (89)

where C1 ,C+VE [T0(Pmin)]∑
N
n=1 fn(W

∗
n) and we have used E [Tk(Pk)]≤E [T0(Pmin)]

for all k. Inequality (89) suffices to conclude that the virtual cost queue Xk and all Yn,k
queues are mean rate stable. From Lemma 6 we have P ≤ Pconst. The proof of (54)
follows that of Theorem 2. ut

10 Concluding remarks

We revisit the classical problem of optimal stochastic scheduling in a multi-class
M/G/1 queue with nonpreemptive service. We study four delay-optimal priority
scheduling and dynamic service rate control problems, and cast them as convex op-
timization problems with side constraints. We solve these problems by developing
simple adaptive cµ rules that use per-class running delay performance to greedily

38 Chih-ping Li, Michael J. Neely

re-prioritize job classes over busy periods. The near-optimal performance of these
online policies is proved, and further validated through simulations. Technically, we
showcase that the Lyapunov drift analysis, typically used to establish system stability
and to design throughput-optimal policies in queueing systems, can be utilized as a
new methodology to solve stochastic convex optimization problems with respect to
other performance metrics such as delay in dynamic systems.

There are some interesting future research directions. There are many other multi-
class queueing systems that have polymatroidal performance regions, such as those
discussed in [7, 37]. Our method may be applicable to solving interesting convex op-
timization problems and developing online policies there. Next, frame-based policies
that update controls over busy periods are sometimes considered impractical due to
large variance incurred in performance, especially when the system is heavily loaded.
Using our methodology to develop job-level adaptive control policies with small vari-
ance is another interesting future work.

References

1. Ansell, P.S., Glazebrook, K.D., Niño-Mora, J., O’Keeffe, M.: Whittle’s index policy for a multi-class
queueing system with convex holding costs. Math. Methods of Oper. Res. 57, 21–39 (2003)

2. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. Journal of the
ACM 54(1) (2007)

3. Baras, J.S., Dorsey, A.J., Makowski, A.M.: Two competing queues with linear costs and geometric
service requirements: The µ c-rule is often optimal. Adv. Appl. Probab. 17(1), 186–209 (1985)

4. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific (1999)
5. Bertsekas, D.P., Gallager, R.G.: Data Networks, 2nd edn. Prentice Hall (1992)
6. Bertsimas, D.: The achievable region method in the optimal control of queueing systems; formula-

tions, bounds, and policies. Queueing Syst. 21(3-4), 337–389 (1995)
7. Bertsimas, D., Niño-Mora, J.: Conservation laws, extended polymatroids, and multiarmed bandit

problems; a polyhedral approach to indexable systems. Math. of Oper. Res. 21(2), 257–306 (1996)
8. Bhattacharya, P.P., Georgiadis, L., Tsoucas, P.: Problems of adaptive optimization in multiclass

M/GI/1 queues with bernoulli feedback. Math. of Oper. Res. 20(2), 355–380 (1995)
9. Buyukkoc, C., Varaiya, P., Walrand, J.: The cµ rule revisited. Adv. Appl. Probab. 17, 237–238 (1985)

10. Federgruen, A., Groenevelt, H.: Characterization and optimization of achievable performance in gen-
eral queueing systems. Oper. Res. 36(5), 733–741 (1988)

11. Federgruen, A., Groenevelt, H.: M/G/c queueing systems with multiple customer classes: Characteri-
zation and control of achievable performance under nonpreemptive priority rules. Manage. Sci. 34(9),
1121–1138 (1988)

12. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley (1997)
13. Gelenbe, E., Mitrani, I.: Analysis and Synthesis of Computer Systems, 2nd edn. Imperial College

Press (2010)
14. George, J.M., Harrison, J.M.: Dynamic control of a queue with adjustable service rate. Oper. Res.

49(5), 720–731 (2001)
15. Georgiadis, L., Neely, M.J., Tassiulas, L.: Resource allocation and cross-layer control in wireless

networks. Foundations and Trends in Networking 1(1) (2006)
16. Glazebrook, K.D., Lumley, R.R., Ansell, P.S.: Index heuristics for multiclass M/G/1 systems with

nonpreemptive service and convex holding costs. Queueing Syst. 45(2), 81–111 (2003)
17. Gurvich, I., Whitt, W.: Scheduling flexible servers with convex delay costs in many-server service

systems. Manufacturing Service Operations Management 11(2), 237–253 (2009)
18. Hou, I.H., Kumar, P.R.: Queueing systems with hard delay constraints: a framework for real-time

communication over unreliable wireless channels. Queueing Syst. 71, 151–177 (2012)
19. Hou, I.H., Truong, A., Chakraborty, S., Kumar, P.R.: Optimality of periodwise static priority policies

in real-time communications. In: IEEE Conf. Decision and Control (CDC) (2011)

Solving convex optimization with side constraints in a multi-class queue by adaptive cµ rule 39

20. Kelly, F.P.: Charging and rate control for elastic traffic. European Trans. Telecommunications 8, 33–37
(1997)

21. Kleinrock, L.: Queueing Systems, vol. II: Computer Applications. Wiley Interscience (1976)
22. Li, C.P., Neely, M.J.: Network utility maximization over partially observable Markovian channels.

Performance Evaluation (2012). Accepted for publication
23. Mandelbaum, A., Stolyar, A.L.: Scheduling flexible servers with convex delay costs: Heavy-traffic

optimality of the generalized cµ-rule. Oper. Res. 52(6), 836–855 (2004)
24. van Mieghem, J.A.: Dynamic scheduling with convex delay costs: The generalized cmu rule. Ann.

Appl. Probab. 5(3), 809–833 (1995)
25. Neely, M.J.: Stochastic Network Optimization with Application to Communication and Queueing

Systems. Morgan & Claypool (2010)
26. Niño-Mora, J.: Stochastic scheduling. In: C.A. Floudas, P.M. Pardalos (eds.) Encyclopedia of Opti-

mization, 2nd edn., pp. 3818–3824. Springer (2009)
27. Ross, K.W., Chen, B.: Optimal scheduling of interactive and noninteractive traffic in telecommunica-

tion systems. IEEE Trans. Autom. Control 33(3), 261–267 (1988)
28. Ross, K.W., Yao, D.D.: Optimal dynamic scheduling in Jackson networks. IEEE Trans. Autom.

Control 34(1), 47–53 (1989). DOI 10.1109/9.8648
29. Ross, S.M.: Stochastic Processes, 2 edn. Wiley (1996)
30. Shanthikumar, J.G., Yao, D.D.: Multiclass queueing systems: Polymatroidal structure and optimal

scheduling control. Oper. Res. 40(2), S293–S299 (1992)
31. Stidham, S., Weber, R.: Monotonic and insensitive optimal policies for control of queues with undis-

counted costs. Oper. Res. 37(4), 611–625 (1989)
32. L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and scheduling

policies for maximum throughput in multihop radio networks,” IEEE Trans. Autom. Control, vol. 37,
no. 12, pp. 1936–1948, Dec. 1992.

33. ——, “Dynamic server allocation to parallel queues with randomly varying connectivity,” IEEE Trans.
Inf. Theory, vol. 39, no. 2, pp. 466–478, Mar. 1993.

34. Walrand, J.: An Introduction to Queueing Networks. Prentice Hall (1988)
35. Wang, W.H., Palaniswami, M., Low, S.H.: Application-oriented flow control: Fundamentals, algo-

rithms, and fairness. IEEE/ACM Trans. Netw. 14(6), 1282–1291 (2006)
36. Welsh, D.J.A.: Matroid Theory. Academic Press, London, UK (1976)
37. Yao, D.D.: Dynamic scheduling via polymatroid optimization. In: Performance Evaluation of Com-

plex Systems: Techniques and Tools, Performance 2002, Tutorial Lectures, pp. 89–113. Springer-
Verlag, London, UK (2002)

