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Abstract—We study the fundamental network capacity of a
multi-user wireless downlink under two assumptions: (1) Chan-
nels are not explicitly measured and thus instantaneous states are
unknown, (2) Channels are modeled as ON/OFF Markov chains.
This is an important network model to explore because channel
probing may be costly or infeasible in some contexts. In this
case, we can use channel memory with ACK/NACK feedback
from previous transmissions to improve network throughput.
Computing in closed form the capacity region of this network
is difficult because it involves solving a high dimension partially
observed Markov decision problem. Instead, in this paper we
construct an inner and outer bound on the capacity region,
showing that the bound is tight when the number of users is large
and the traffic is symmetric. For the case of heterogeneous traffic
and any number of users, we propose a simple queue-dependent
policy that can stabilize the network with any data rates strictly
within the inner capacity bound. The stability analysis uses a
novel frame-based Lyapunov drift argument. The outer-bound
analysis uses stochastic coupling and state aggregation to bound
the performance of a restless bandit problem using a related
multi-armed bandit system. Our results are useful in cognitive
radio networks, opportunistic scheduling with delayed/uncertain
channel state information, and restless bandit problems.

Index Terms—stochastic network optimization, Markovian
channels, delayed channel state information (CSI), partially
observable Markov decision process (POMDP), cognitive radio,
restless bandit, opportunistic spectrum access, queueing theory,
Lyapunov analysis.

I. INTRODUCTION

DUE to the increasing demand of cellular network ser-
vices, in the past fifteen years efficient communication

over a single-hop wireless downlink has been extensively stud-
ied. In this paper we study the fundamental network capacity
of a time-slotted wireless downlink under the following as-
sumptions: (1) Channels are never explicitly probed, and thus
their instantaneous states are never known, (2) Channels are
modeled as two-state ON/OFF Markov chains. This network
model is important because, due to the energy and timing
overhead, learning instantaneous channel states by probing
may be costly or infeasible. Even if this is feasible (when
channel coherence time is relatively large), the time consumed
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by channel probing cannot be re-used for data transmission,
and transmitting data without probing may achieve higher
throughput [2].1 In addition, it has been shown that wireless
channels can be adequately modeled as Markov chains [3], [4],
especially in high-speed transmission regimes. Since each time
slot comprises a short period of time, channel states are likely
correlated across slots. In this case we shall exploit channel
memory to improve network throughput.

Specifically, we consider a time-slotted wireless downlink
where a base station serves N users through N (possibly
different) positively correlated Markov ON/OFF channels.
Channels are never probed so that their instantaneous states
are unknown. In every slot, the base station selects at most one
user to which it transmits a packet. We assume every packet
transmission takes exactly one slot. Whether the transmission
succeeds depends on the unknown state of the channel. At
the end of a slot, an ACK/NACK is fed back from the served
user to the base station. Since channels are either ON or OFF,
this feedback reveals the channel state of the served user in
the last slot and provides partial information of future states.
Our goal is to characterize all achievable throughput vectors
in this network, and to design simple throughput-achieving
algorithms.

We define the network capacity region Λ as the closure of
the set of all achievable throughput vectors. Computing the
capacity region Λ in closed form is complicated. The Markov
ON/OFF channels do not seem to have enough structure to
characterize the capacity region Λ exactly. Using a brute-
force approach, we may in principle compute Λ by locating
all boundary points. Each boundary point can be solved
by formulating an N -dimensional Markov decision process
(MDP) [5] with system states defined as the probabilities,
conditioning on the channel observation history, that channels
are ON in a slot. These MDPs, however, are very complex
to solve. One reason is the curse of dimensionality; the
state space of the MDPs is countably infinite (shown later
in Section II) and grows exponentially with N . This also

1One quick example is to consider a time-slotted channel with state
space {B,G}. Suppose channel states are i.i.d. over slots with stationary
probabilities Pr [B] = 0.2 and Pr [G] = 0.8. At state B and G, at most
1 and 2 packets can be successfully delivered in a slot, respectively. Packet
transmissions beyond the capacity will all fail and need retransmissions.
Channel probing can be done on each slot, which consumes 0.2 fraction
of a slot. Then the policy that always probes the channel yields throughput
0.8(2 · 0.8 + 1 · 0.2) = 1.44, while the policy that never probes the
channel and always sends packets at rate 2 packets/slot yields throughput
2 · 0.8 = 1.6 > 1.44.
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hinders the use of linear programming to solve the optimal
steady states for the MDPs (assuming they exist). To further
illustrate the computational difficulty, let us consider a very
simple case where all channels are independent and have the
same transition probability matrix, and we seek to locate the
boundary point in the direction (1, 1, . . . , 1). Equivalently, the
goal is to maximize the sum throughput over i.i.d. channels. It
is shown in [7] that the optimal policy is to serve all channels
in a round robin fashion 1 → 2 → · · ·N → 1 → · · · where,
on each channel, packets are continuously transmitted until a
NACK is received. The resulting sum throughput µsum is easily
written as

µsum , lim
K→∞

∑K
k=1

∑N
n=1(Lkn − 1)

∑K
k=1

∑N
n=1 Lkn

,

where Lkn denotes the time interval the base station stays
with channel n in the kth round (c.f. Section III-B and [6]).
In this simple case, the value of µsum is still complex to
compute when N > 2. The reason is that the interval process
{L11, L12, . . . , L1N , L21, L22, . . .} forms a high-order Markov
chain, since the distribution of each Lkn depends on the previ-
ous (N − 1) intervals {L(k−1)(n+1), . . . , Lk(n−1)}. Following
the above discussions, it seems infeasible to characterize Λ in
closed form.

The first contribution of this paper is that, instead of
computing Λ exactly, we construct an outer and an inner
bound on Λ. The outer bound comes from analyzing a fictitious
channel model in which every scheduling policy yields higher
throughput than it does in the real network. The inner bound
is the achievable rate region of a special class of randomized
round robin policies (introduced in Section IV-A). These
policies are simple and take advantage of channel memory.
In the case of symmetric channels (that is, channels are i.i.d.)
and when the network serves a large number of users, we show
that as data rates are more balanced, or in a geometric sense
as the direction of the data rate vector in the Euclidean space
is closer to the 45-degree angle, the inner bound converges
geometrically fast to the outer bound, and the bounds are tight.
Round robin policies are first shown in [6], [7] to achieve op-
timal sum throughput over Markov ON/OFF channels in some
special cases. Here we capitalize these results to construct our
inner capacity bound.

The inner capacity bound is indeed useful. First, the struc-
ture of the bound itself shows how channel memory improves
throughput when there are multiple users in the network.2 An
intuition is that, as compared to treating channels as i.i.d. over
slots, incorporating channel memory enlarges the control space
of the network and thus the optimal performance can only
be improved. The throughput gain due to channel memory
will be made precise later in Lemma 4 (Section III-B); an
example given in Section IV-D. Second, we show analytically
that a large class of intuitively good heuristic policies achieve
throughput that is at least as good as this bound, and hence the
bound acts as a (non-trivial) performance guarantee. Finally,

2When there is one user, channel memory does not improve throughput.
Serving the user every slot is throughput-optimal, and there is no need to
consider channel memory.

supporting throughput outside this bound may inevitably in-
volve solving a much more complicated POMDP. Thus, for
simplicity and practicality, we may regard the inner bound as
an operational network capacity region.

In this paper we also derive a simple queue-dependent
dynamic round robin policy that stabilizes the network when-
ever the arrival rate vector is interior to our inner bound.
This policy has polynomial time complexity and is derived
by a novel variable-length frame-based Lyapunov analysis,
first used in [10] in a different context. This analysis is
important because the inner bound is based on a mixture
of many round robin policies acting on different subsets
of channels, and an offline computation of the proper time
average mixtures needed to achieve a given point in this
complex inner bound would require solving Θ(2N ) unknowns
in a linear system, which is impractical when N is large. The
Lyapunov analysis overcomes this complexity difficulty with
online queue-dependent decisions.

This paper applies to the emerging area of opportunistic
spectrum access in cognitive radio networks (see [11] and
references therein), where the channel occupancy of a primary
user acts as a Markov ON/OFF channel to the secondary users.
In previous work, [6]–[8] optimize the sum throughput of the
network using dynamic programming and coupling methods,
and show greedy round robin policies are optimal in some
special cases; both positively and negatively correlated chan-
nels are studied. A Whittle’s index [17] policy is constructed
in [9] and shown to achieve near-optimal sum throughput by
simulations. In this paper, we focus on analytically charac-
terizing the set of all achievable throughput vectors in the
network. One of the motivations is to study this partially
observable wireless network using a mathematical program-
ming approach, of which the first step is to characterize the
performance region. An easy-to-use characterization of the
performance region prepares us for studying more complex
control problems using stochastic optimization theory. For
example, in recent work [21] we have considered maximizing a
concave utility function of throughput vectors (as limiting time
averages) over the inner bound of the network capacity region
we build in this paper. Equivalently, [21] considers optimizing
a general functional objective over a restless bandit problem,
which seems difficult using dynamic programming or Whittle’s
index theory that are used to optimize the often considered
linear objectives.

This paper is also a study on efficient scheduling over wire-
less networks with delayed/uncertain channel state information
(CSI) (see [12]–[14] and references therein). The work on
delayed CSI that is most closely related to ours is [13], [14],
where the authors study the capacity region and throughput-
optimal policies of different wireless networks, assuming that
channel states are persistently probed but fed back with delay.
We note that our paper is significantly different. Here channels
are never probed, and new (delayed) CSI of a channel is only
acquired when the channel is served. Implicitly, acquiring the
delayed CSI of any channel is part of the control decisions in
this paper. This paper also applies to an important scenario in
partial channel probing (see [2], [15] and references therein)
where at most one channel is probed in every slot, and
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data can only be served over the probed channel but not on
unknown ones (as far as throughput is concerned and that we
neglect probing overhead, this scenario is equivalent to blindly
transmitting over a channel in every slot). Different from
previous works which usually assume channels are i.i.d. over
slots, here we show how channel memory improves throughput
under a limited probing regime.

This paper is organized as follows. The network model is
given in Section II, inner and outer bounds are constructed in
Sections III and IV, and compared in Section V in the case
of symmetric channels. Section VI gives the queue-dependent
policy to achieve the inner bound.

II. NETWORK MODEL

Consider a base station transmitting data to N users through
N Markov ON/OFF channels. Suppose time is slotted with
normalized slots t ∈ Z+. Each channel n ∈ {1, . . . , N} is
modeled as a two-state ON/OFF Markov chain (see Fig. 1).
Let sn(t) ∈ {OFF,ON} denote the state of channel n in slot t.

2

in Section IV-A). These policies are simple and take advantage
of channel memory. In the case of symmetric channels (that
is, channels are i.i.d.) and when the network serves a large
number of users, we show that as data rates are more balanced,
or in a geometric sense as the direction of the data rate vector
in the Euclidean space is closer to the 45-degree angle, the
inner bound converges geometrically fast to the outer bound,
and the bounds are tight. This analysis uses results in [6], [7]
that derive an outer bound on the maximum sum throughput
for a symmetric system.

The inner capacity bound is indeed useful. First, the struc-
ture of the bound itself shows how channel memory improves
throughput. Second, we show analytically that a large class
of intuitively good heuristic policies achieve throughput that
is at least as good as this bound, and hence the bound acts
as a (non-trivial) performance guarantee. Finally, supporting
throughput outside this bound may inevitably involve solving
a much more complicated POMDP. Thus, for simplicity and
practicality, we may regard the inner bound as an operational
network capacity region.

In this paper we also derive a simple queue-dependent dy-
namic round robin policy that stabilizes the network whenever
the arrival rate vector is interior to our inner bound. This policy
has polynomial time complexity and is derived by a novel
variable-length frame-based Lyapunov analysis, first used
in [8] in a different context. This analysis is important because
the inner bound is based on a mixture of many different types
of round robin policies, and an offline computation of the
proper time average mixtures needed to achieve a given point
in this complex inner bound would require solving Θ(2N )
unknowns in a linear system, which is impractical when N
is large. The Lyapunov analysis overcomes this complexity
difficulty with online queue-dependent decisions.

The results of this paper apply to the emerging area of
opportunistic spectrum access in cognitive radio networks
(see [9] and references therein), where the channel occupancy
of a primary user acts as a Markov ON/OFF channel to the
secondary users. Specifically, our results apply to the important
case where each of the secondary users has a designated
channel and they cooperate via a centralized controller. This
paper is also a study on efficient scheduling over wireless
networks with delayed/uncertain channel state information
(CSI) (see [10]–[12] and references therein). The work on
delayed CSI that is most closely related to ours is [11], [12],
where the authors study the capacity region and throughput-
optimal policies of different wireless networks, assuming that
channel states are persistently probed but fed back with delay.
We note that our paper is significantly different. Here channels
are never probed, and new (delayed) CSI of a channel is only
acquired when the channel is served. Implicitly, acquiring the
delayed CSI of any channel is part of the control decisions in
this paper.

This paper is organized as follows. The network model is
given in Section II, inner and outer bounds are constructed in
Sections III and IV, and compared in Section V in the case
of symmetric channels. Section VI gives the queue-dependent
policy to achieve the inner bound.

II. NETWORK MODEL

Consider a base station transmitting data to N users through
N Markov ON/OFF channels. Suppose time is slotted with
normalized slots t in {0, 1, 2, . . .}. Each channel is modeled
as a two-state ON/OFF Markov chain (see Fig. 1). The state

ON(1) OFF(0)

Pn,10

Pn,11 Pn,00

Pn,01

Fig. 1. A two-state Markov ON/OFF chain for channel n ∈ {1, 2, . . . , N}.

evolution of channel n ∈ {1, 2, . . . , N} follows the transition
probability matrix

Pn =

�
Pn,00 Pn,01

Pn,10 Pn,11

�
,

where state ON is represented by 1 and OFF by 0, and Pn,ij

denotes the transition probability from state i to j. We assume
Pn,11 < 1 for all n so that no channel is constantly ON.
Incorporating constantly ON channels like wired links is easy
and thus omitted in this paper. We suppose channel states are
fixed in every slot and may only change at slot boundaries. We
assume all channels are positively correlated, which, in terms
of transition probabilities, is equivalent to assuming Pn,11 >
Pn,01 or Pn,01 + Pn,10 < 1 for all n.2 We suppose the base
station keeps N queues of infinite capacity to store exogenous
packet arrivals destined for the N users. At the beginning of
every slot, the base station attempts to transmit a packet (if
there is any) to a selected user. We suppose the base station has
no channel probing capability and must select users oblivious
of the current channel states. If a user is selected and its current
channel state is ON, one packet is successfully delivered to
that user. Otherwise, the transmission fails and zero packets
are served. At the end of a slot in which the base station
serves a user, an ACK/NACK message is fed back from the
selected user to the base station through an independent error-
free control channel, according to whether the transmission
succeeds. Failing to receive an ACK is regarded as a NACK.
Since channel states are either ON or OFF, such feedback
reveals the channel state of the selected user in the last slot.

Conditioning on all past channel observations, define the N -
dimensional information state vector ω(t) = (ωn(t) : 1 ≤ n ≤
N) where ωn(t) is the conditional probability that channel n
is ON in slot t. We assume initially ωn(0) = πn,ON for all
n, where πn,ON denotes the stationary probability that channel
n is ON. As discussed in [5, Chapter 5.4], vector ω(t) is a
sufficient statistic. That is, instead of tracking the whole system

2Assumption Pn,11 > Pn,01 yields that the state sn(t) of channel n
has auto-covariance E [(sn(t) − Esn(t))(sn(t + 1) − Esn(t + 1))] > 0.
In addition, we note that the case Pn,11 = Pn,01 corresponds to a channel
having i.i.d. states over slots. Although we can naturally incorporate i.i.d.
channels into our model and all our results still hold, we exclude them in this
paper because we shall show how throughput can be improved by channel
memory, which i.i.d. channels do not have. The degenerate case where all
channels are i.i.d. over slots is fully solved in [2].

Fig. 1. A two-state Markov ON/OFF chain for channel n ∈ {1, 2, . . . , N}.

The state sn(t) of channel n evolves according to the transition
probability matrix

Pn =

[
Pn,00 Pn,01

Pn,10 Pn,11

]
,

where state ON is represented by 1 and OFF by 0, and Pn,ij
denotes the transition probability from state i to j. We assume
Pn,11 < 1 for all n so that no channel is constantly ON.
Incorporating constantly ON channels like wired links is easy
and thus omitted in this paper. We suppose channel states are
fixed in every slot and may only change at slot boundaries. We
assume all channels are positively correlated, which, in terms
of transition probabilities, is equivalent to assuming Pn,11 >
Pn,01 or Pn,01 + Pn,10 < 1 for all n.3 We suppose the base
station keeps N queues of infinite capacity to store exogenous
packet arrivals destined for the N users. At the beginning of
every slot, the base station attempts to transmit a packet (if
there is any) to a selected user. We suppose the base station has
no channel probing capability and must select users oblivious
of the current channel states. If a user is selected and its current
channel state is ON, one packet is successfully delivered to
that user. Otherwise, the transmission fails and zero packets
are served. At the end of a slot in which the base station

3Assumption Pn,11 > Pn,01 yields that the state sn(t) of channel n
has auto-covariance E [(sn(t)− Esn(t))(sn(t+ 1)− Esn(t+ 1))] > 0.
In addition, we note that the case Pn,11 = Pn,01 corresponds to a channel
having i.i.d. states over slots. Although we can naturally incorporate i.i.d.
channels into our model and all our results still hold, we exclude them in this
paper because we shall show how throughput can be improved by channel
memory, which i.i.d. channels do not have. The degenerate case where all
channels are i.i.d. over slots is fully solved in [2].

serves a user, an ACK/NACK message is fed back from the
selected user to the base station through an independent error-
free control channel, according to whether the transmission
succeeds. Failing to receive an ACK is regarded as a NACK.
Since channel states are either ON or OFF, such feedback
reveals the channel state of the selected user in the last slot.

We define the N -dimensional information state vector
ω(t) = (ωn(t))Nn=1 where ωn(t) is the probability that channel
n is ON in slot t conditioning on the past observation history.
In other words,

ωn(t) , Pr [sn(t) = ON | all past observations of channel n] .

We assume initially ωn(0) = πn,ON for all n, where πn,ON

denotes the stationary probability that channel n is ON. As
discussed in [5, Chapter 5.4], vector ω(t) is a sufficient
statistic. That is, instead of tracking the whole system history,
the base station can act optimally only based on ω(t). The
base station shall keep track of the {ω(t)} process.

Throughout the paper, we assume the transition probability
matrices Pn of all channels are known to the base station.
In practice, the matrix Pn for channel n may be learned
in an initial training period, in which the base station con-
tinuously transmits packets over channel n in every slot. In
this period we compute a sample average Yn of the durations
(Yn,1, Yn,2, Yn,3, . . .) that channel n is continuously ON. It is
easy to see that Yn,k are i.i.d. over k with E [Yn.k] = 1/Pn,10.
As a result, we may use 1/Yn as an estimate of Pn,10. The
transition probability Pn,01 can be estimated similarly. This
estimation method works when channels are stationary.

Next, let n(t) ∈ {1, 2, . . . , N} denote the user served in slot
t. Based on the ACK/NACK feedback, the information state
vector ω(t) is updated as follows. For 1 ≤ n ≤ N ,

ωn(t+1) =





Pn,01, if n = n(t), sn(t) = OFF

Pn,11, if n = n(t), sn(t) = ON

ωn(t)Pn,11 + (1− ωn(t))Pn,01, if n 6= n(t).
(1)

If in the most recent use of channel n, we observed (through
feedback) its state was i ∈ {0, 1} in slot (t−k) for some k ≤ t,
then ωn(t) is equal to the k-step transition probability P

(k)
n,i1. In

general, for any fixed n, probabilities ωn(t) take values in the
countably infinite setWn = {P(k)

n,01,P
(k)
n,11 : k ∈ N}∪{πn,ON}.

By eigenvalue decomposition on Pn [16, Chapter 4], we can
show the k-step transition probability matrix P(k)

n is

P(k)
n ,

[
P

(k)
n,00 P

(k)
n,01

P
(k)
n,10 P

(k)
n,11

]
= (Pn)

k

=
1

xn

[
Pn,10 + Pn,01(1− xn)k Pn,01 (1− (1− xn)k)
Pn,10(1− (1− xn)k) Pn,01 + Pn,10(1− xn)k

]
,

(2)

where we have defined xn , Pn,01 + Pn,10. Assuming that
channels are positively correlated, i.e., xn < 1, by (2) we have
the following lemma.

Lemma 1. For a positively correlated (Pn,11 > Pn,01)
Markov ON/OFF channel with transition probability matrix
Pn, we have
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1) The stationary probability πn,ON = Pn,01/xn.
2) The k-step transition probability P

(k)
n,01 is nondecreasing

in k and P
(k)
n,11 nonincreasing in k. Both P

(k)
n,01 and P

(k)
n,11

converge to πn,ON as k →∞.

As a corollary of Lemma 1, it follows that

Pn,11 ≥ P
(k1)
n,11 ≥ P

(k2)
n,11 ≥ πn,ON ≥ P

(k3)
n,01 ≥ P

(k4)
n,01 ≥ Pn,01

(3)
for any integers k1 ≤ k2 and k3 ≥ k4 (see Fig. 2). To
maximize network throughput, (3) has some fundamental
implications. We note that ωn(t) represents the transmission
success probability over channel n in slot t. Thus we shall keep
serving a channel whenever its information state is Pn,11, for
it is the best state possible. Second, given that a channel was
OFF in its last use, its information state improves as long as the
channel remains idle. Thus we shall wait as long as possible
before reusing such a channel. Actually, when channels are
symmetric (Pn = P for all n), it is shown that a myopic
policy with this structure maximizes the sum throughput of
the network [7].

3

history, the base station can act optimally only based on ω(t).
The base station shall keep track of the {ω(t)} process.

We assume transition probability matrices Pn for all n are
known to the base station. We denote by sn(t) ∈ {OFF, ON}
the state of channel n in slot t. Let n(t) ∈ {1, 2, . . . , N}
denote the user served in slot t. Based on the ACK/NACK
feedback, vector ω(t) is updated as follows. For 1 ≤ n ≤ N ,

ωn(t+1) =





Pn,01, if n = n(t), sn(t) = OFF

Pn,11, if n = n(t), sn(t) = ON

ωn(t)Pn,11 + (1 − ωn(t))Pn,01, if n �= n(t).
(1)

If in the most recent use of channel n, we observed (through
feedback) its state was i ∈ {0, 1} in slot (t−k) for some k ≤ t,
then ωn(t) is equal to the k-step transition probability P

(k)
n,i1. In

general, for any fixed n, probabilities ωn(t) take values in the
countably infinite set Wn = {P

(k)
n,01, P

(k)
n,11 : k ∈ N}∪{πn,ON}.

By eigenvalue decomposition on Pn [13, Chapter 4], we can
show the k-step transition probability matrix P(k)

n is

P(k)
n �

�
P

(k)
n,00 P

(k)
n,01

P
(k)
n,10 P

(k)
n,11

�
= (Pn)

k

=
1

xn

�
Pn,10 + Pn,01(1 − xn)k Pn,01 (1 − (1 − xn)k)
Pn,10(1 − (1 − xn)k) Pn,01 + Pn,10(1 − xn)k

�
,

(2)

where we have defined xn � Pn,01 + Pn,10. Assuming that
channels are positively correlated, i.e., xn < 1, by (2) we have
the following lemma.

Lemma 1. For a positively correlated (Pn,11 > Pn,01)
Markov ON/OFF channel with transition probability matrix
Pn, we have

1) The stationary probability πn,ON = Pn,01/xn.
2) The k-step transition probability P

(k)
n,01 is nondecreasing

in k and P
(k)
n,11 nonincreasing in k. Both P

(k)
n,01 and P

(k)
n,11

converge to πn,ON as k → ∞.

As a corollary of Lemma 1, it follows that

Pn,11 ≥ P
(k1)
n,11 ≥ P

(k2)
n,11 ≥ πn,ON ≥ P

(k3)
n,01 ≥ P

(k4)
n,01 ≥ Pn,01

(3)
for any integers k1 ≤ k2 and k3 ≥ k4 (see Fig. 2). To
maximize network throughput, (3) has some fundamental
implications. We note that ωn(t) represents the transmission
success probability over channel n in slot t. Thus we shall keep
serving a channel whenever its information state is Pn,11, for
it is the best state possible. Second, given that a channel was
OFF in its last use, its information state improves as long as the
channel remains idle. Thus we shall wait as long as possible
before reusing such a channel. Actually, when channels are
symmetric (Pn = P for all n), it is shown that a myopic
policy with this structure maximizes the sum throughput of
the network [7].

III. A ROUND ROBIN POLICY

For any integer M ∈ {1, 2, . . . , N}, we present a spe-
cial round robin policy RR(M) serving the first M users

k

ωn(t)

πn,ON

Pn,01

Pn,11 P
(k)
n,11

P
(k)
n,01

Fig. 2. Diagram of the k-step transition probabilities P
(k)
n,01 and P

(k)
n,11 of a

positively correlated Markov ON/OFF channel.

{1, 2, . . . , M} in the network. The M users are served in the
circular order 1→2→ · · ·→M →1→ · · · . In general, we can
use this policy to serve any subset of users. This policy is the
fundamental building block of all the results in this paper.

A. The Policy

Round Robin Policy RR(M) :

1) At time 0, the base station starts with channel 1. Suppose
initially ωn(0) = πn,ON for all n.

2) Suppose at time t, the base station switches to channel
n. Transmit a data packet to user n with probability
P

(M)
n,01/ωn(t) and a dummy packet otherwise. In both

cases, we receive ACK/NACK information at the end
of the slot.

3) At time (t + 1), if a dummy packet is sent at time t,
switch to channel (n mod M) + 1 and go to Step 2.
Otherwise, keep transmitting data packets over channel
n until we receive a NACK. Then switch to channel (n
mod M) + 1 and go to Step 2. We note that dummy
packets are only sent on the first slot every time the
base station switches to a new channel.

4) Update ω(t) according to (1) in every slot.

Step 2 of RR(M) only makes sense if ωn(t) ≥ P
(M)
n,01, which

we prove in the next lemma.

Lemma 2. Under RR(M), whenever the base station switches
to channel n ∈ {1, 2, . . . , M} for another round of transmis-
sion, its current information state satisfies ωn(t) ≥ P

(M)
n,01.

Proof of Lemma 2: See Appendix A.
We note that policy RR(M) is very conservative and not

throughput-optimal. For example, we can improve the through-
put by always sending data packets but no dummy ones. Also,
it does not follow the guidelines we provide at the end of
Section II for maximum throughput. Yet, we will see that, in
the case of symmetric channels, throughput under RR(M) is
close to optimal when M is large. Moreover, the underlying
analysis of RR(M) is tractable so that we can mix such
round robin policies over different subsets of users to form
a non-trivial inner capacity bound. The tractability of RR(M)
is because it is equivalent to the following fictitious round
robin policy (which can be proved as a corollary of Lemma 3
provided later).

Equivalent Fictitious Round Robin:

1) At time 0, start with channel 1.

Fig. 2. Diagram of the k-step transition probabilities P
(k)
n,01 and P

(k)
n,11 of a

positively correlated Markov ON/OFF channel.

III. A ROUND ROBIN POLICY

For any integer M ∈ {1, 2, . . . , N}, we present a spe-
cial round robin policy RR(M) serving the first M users
{1, 2, . . . ,M} in the network. The M users are served in the
circular order 1→2→· · ·→M→1→· · · . In general, we can
use this policy to serve any subset of users.

A. The Policy

Round Robin Policy RR(M) :
1) At time 0, the base station starts with channel 1. Suppose

initially ωn(0) = πn,ON for all n.
2) Suppose at time t, the base station switches to channel

n. Transmit a data packet to user n with probability
P

(M)
n,01/ωn(t) and a dummy packet otherwise. In both

cases, we receive ACK/NACK information at the end
of the slot.

3) At time (t + 1), if a dummy packet is sent at time t,
switch to channel (n mod M) + 1 and go to Step 2.
Otherwise, keep transmitting data packets over channel
n until we receive a NACK. Then switch to channel (n
mod M) + 1 and go to Step 2. We note that dummy
packets are only sent on the first slot every time the
base station switches to a new channel.

4) Update ω(t) according to (1) in every slot.

Step 2 of RR(M) only makes sense if ωn(t) ≥ P
(M)
n,01, which

we prove in the next lemma.

Lemma 2. Under RR(M), whenever the base station switches
to channel n ∈ {1, 2, . . . ,M} for another round of transmis-
sion, its current information state satisfies ωn(t) ≥ P

(M)
n,01.

Proof of Lemma 2: See Appendix A.
We note that policy RR(M) is very conservative and not

throughput-optimal. For example, we can improve the through-
put by always sending data packets but no dummy ones. Also,
it does not follow the guidelines we provide at the end of
Section II for maximum throughput. Yet, we will see that, in
the case of symmetric channels, throughput under RR(M) is
close to optimal when M is large. Moreover, the underlying
analysis of RR(M) is tractable so that we can mix such
round robin policies over different subsets of users to form
a non-trivial inner capacity bound. The tractability of RR(M)
is because it is equivalent to the following fictitious round
robin policy (which can be proved as a corollary of Lemma 3
provided later).

Equivalent Fictitious Round Robin:

1) At time 0, start with channel 1.
2) When the base station switches to channel n, set its

current information state to P
(M)
n,01.4 Keep transmitting

data packets over channel n until we receive a NACK.
Then switch to channel (n mod M) + 1 and repeat
Step 2.

For any round robin policy that serves channels in the
circular order 1→ 2→ · · · →M → 1→ · · · , the technique
of resetting the information state to P

(M)
n,01 creates a system

with an information state that is worse than the information
state under the actual system. To see this, since in the actual
system channels are served in the circular order, after we
switch away from serving a particular channel n, we serve
the other (M − 1) channels for at least one slot each, and
so we return to channel n after at least M slots. Thus, its
starting information state is always at least P

(M)
n,01 (the proof

is similar to that of Lemma 2). Intuitively, since information
states represent the packet transmission success probabilities,
resetting them to lower values degrades throughput. This is the
reason why our inner capacity bound constructed later using
RR(M) provides a throughput lower bound for a large class
of policies.

B. Network Throughput under RR(M)

Next we analyze the throughput vector achieved by RR(M).
1) General Case: Under RR(M), let Lkn denote the dura-

tion of the kth time the base station stays with channel n. A
sample path of the {Lkn} process is

(L11, L12, . . . , L1M︸ ︷︷ ︸
round k = 1

, L21, L22, . . . , L2M︸ ︷︷ ︸
round k = 2

, L31, . . .). (4)

4In reality we cannot set the information state of a channel, and therefore
the policy is fictitious.
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The next lemma presents useful properties of Lkn, which serve
as the foundation of the throughput analysis in the rest of the
paper.

Lemma 3. For any integer k and n ∈ {1, 2, . . . ,M},

1) The probability mass function of Lkn is independent of
k, and is

Lkn =

{
1 with prob. 1− P

(M)
n,01

j ≥ 2 with prob. P(M)
n,01 (Pn,11)(j−2) Pn,10.

As a result, for all k ∈ N we have

E [Lkn] = 1 +
P

(M)
n,01

Pn,10
= 1 +

Pn,01(1− (1− xn)M )

xnPn,10
.

2) The number of data packets served in Lkn is (Lkn−1).
3) For every fixed channel n, time durations Lkn are i.i.d.

random variables over all k.

Proof of Lemma 3:

1) Note that Lkn = 1 if, on the first slot of serving channel
n, either a dummy packet is transmitted or a data packet
is transmitted but the channel is OFF. This event occurs
with probability
(

1−
P

(M)
n,01

ωn(t)

)
+

P
(M)
n,01

ωn(t)
(1− ωn(t)) = 1− P

(M)
n,01.

Next, Lkn = j ≥ 2 if in the first slot a data packet is
successfully served, and this is followed by (j−2) con-
secutive ON slots and one OFF slot. This happens with
probability P

(M)
n,01 (Pn,11)(j−2) Pn,10. The expectation of

Lkn can be directly computed from the probability mass
function.

2) We can observe that one data packet is served in every
slot of Lkn except for the last one (when a dummy
packet is sent over channel n, we have Lkn = 1 and
zero data packets are served).

3) At the beginning of every Lkn, we observe from the
equivalent fictitious round robin policy that RR(M)

effectively fixes P
(M)
n,01 as the current information state,

regardless of the true current state ωn(t). Neglecting
ωn(t) is to discard all system history, including all past
Lk′n for all k′ < k. Thus Lkn are i.i.d.. Specifically, for
any k′ < k and integers lk′ and lk we have

Pr [Lkn = lk | Lk′n = lk′ ] = Pr [Lkn = lk] .

Now we can derive the throughput vector supported by
RR(M). Fix an integer K > 0. By Lemma 3, the time average
throughput over channel n after all channels finish their Kth
rounds, which we denote by µn(K), is

µn(K) ,
∑K
k=1(Lkn − 1)

∑K
k=1

∑M
n=1 Lkn

.

Passing K →∞, we get

lim
K→∞

µn(K)

= lim
K→∞

∑K
k=1(Lkn − 1)

∑K
k=1

∑M
n=1 Lkn

= lim
K→∞

(1/K)
∑K
k=1 (Lkn − 1)

∑M
n=1(1/K)

∑K
k=1 Lkn

(a)
=

E [L1n]− 1
∑M
n=1 E [L1n]

(b)
=

Pn,01(1− (1− xn)M )/(xnPn,10)

M +
∑M
n=1 Pn,01(1− (1− xn)M )/(xnPn,10)

,

(5)

where (a) is by the Law of Large Numbers (noting by
Lemma 3 that Lkn are i.i.d. over k), and (b) is by Lemma 3.

2) Symmetric Case: We are particularly interested in the
sum throughput under RR(M) when channels are symmetric,
that is, all channels have the same statistics Pn = P for all n.
In this case, by channel symmetry every channel has the same
throughput. From (5), we can show the sum throughput is

M∑

n=1

lim
K→∞

µn(K) =
P01(1− (1− x)M )

xP10 + P01(1− (1− x)M )
,

where in the last term the subscript n is dropped due to channel
symmetry. It is handy to define a function c(·) : N→ R as

cM , P01(1− (1− x)M )

xP10 + P01(1− (1− x)M )
, x , P01 + P10, (6)

and define c∞ , limM→∞ cM = P01/(xP10 +P01) (note that
x < 1 because every channel is positively correlated over time
slots). The function c(·) will be used extensively in this paper.
We summarize the above derivation in the next lemma.

Lemma 4. Policy RR(M) serves channel n ∈ {1, 2, . . . ,M}
with throughput

Pn,01(1− (1− xn)M )/(xnPn,10)

M +
∑M
n=1 Pn,01(1− (1− xn)M )/(xnPn,10)

.

In particular, in symmetric channels the sum throughput under
RR(M) is cM defined as

cM =
P01(1− (1− x)M )

xP10 + P01(1− (1− x)M )
, x = P01 + P10,

and every channel has throughput cM/M .

We remark that the sum throughput cM of RR(M) in the
symmetric case is nondecreasing in M , and thus can be im-
proved by serving more channels. Also, we have shown in [2]
that the maximum sum throughput when channel memory is
neglected is equal to πON = c1, which is strictly less than
the memory-assisted throughput cM whenever M ≥ 2 and
x < 1. Interestingly, here we see that the sum throughput is
improved by having multiuser diversity and channel memory
in the network, even though instantaneous channel states are
never known.
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C. How Good is RR(M)?

Next, in symmetric channels, we quantify how close the sum
throughput cM is to optimal. The following lemma presents a
useful upper bound on the maximum sum throughput.

Lemma 5 ([6], [7]). In symmetric channels, any scheduling
policy that confines to our model has sum throughput less than
or equal to c∞.5

By Lemma 4 and 5, the loss of the sum throughput of
RR(M) is no larger than c∞ − cM . Define c̃M as

c̃M , P01(1− (1− x)M )

xP10 + P01
= c∞(1− (1− x)M )

and note that c̃M ≤ cM ≤ c∞. It follows

c∞ − cM ≤ c∞ − c̃M = c∞(1− x)M . (7)

The last term of (7) decreases to zero geometrically fast as
M increases. This indicates that RR(M) yields near-optimal
sum throughput even when it only serves a moderately large
number of channels.

IV. RANDOMIZED ROUND ROBIN POLICY, INNER AND
OUTER CAPACITY BOUND

A. Randomized Round Robin Policy

Lemma 4 specifies the throughput vector achieved by imple-
menting RR(M) over a particular collection of M channels.
Here we are interested in the set of throughput vectors
achievable by randomly mixing RR(M)-like policies over
different channel subsets and allowing a different round-robin
ordering on each subset. To generalize the RR(M) policy,
first let Φ denote the set of all N -dimensional binary vectors
excluding the all-zero vector (0, 0, . . . , 0). For any binary
vector φ = (φ1, φ2, . . . , φN ) in Φ, we say channel n is active
in φ if φn = 1. Each vector φ ∈ Φ represents a different
subset of active channels. We denote by M(φ) the number of
active channels in φ.

For each φ ∈ Φ, consider the following round robin policy
RR(φ) that serves active channels in φ in every round.

Dynamic Round Robin Policy RR(φ):
1) Deciding the service order in each round:

At the beginning of each round, we denote by τn the
time duration between the last use of channel n and the
beginning of the current round. Active channels in φ
are served in the decreasing order of τn in this round
(in other words, the active channel that is least recently
used is served first).

2) On each active channel in a round:
a) Suppose at time t the base station switches to

channel n. Transmit a data packet to user n with
probability P

(M(φ))
n,01 /ωn(t) and a dummy packet

5We note that the throughput analysis in [6] makes a minor assumption
on the existence of some limiting time average. Using similar ideas of [6], in
Theorem 2 of Section IV-C we will construct an upper bound on the maximum
sum throughput for general positively correlated Markov ON/OFF channels.
When restricted to the symmetric case, we get the same upper bound without
any assumption.

otherwise. In both cases, we receive ACK/NACK
information at the end of the slot.

b) At time (t+ 1), if a dummy packet is sent at time
t, switch to the next active channel following the
order given in Step 1. Otherwise, keep transmitting
data packets over channel n until we receive a
NACK. Then switch to the next active channel and
go to Step 2a. We note that dummy packets are
only sent on the first slot every time the base station
switches to a new channel.

3) Update ω(t) according to (1) in every slot.
Using RR(φ) as building blocks, we consider the following

class of randomized round robin policies.
Randomized Round Robin Policy RandRR:
1) Pick φ ∈ Φ with probability αφ, where

∑
φ∈Φ αφ = 1.

2) Run policy RR(φ) for one round. Then go to Step 1.
Note that active channels may be served in different order in

different rounds, according to the least-recently-used service
order. This allows more time for OFF channels to return to
better information states (note that P(k)

n,01 is nondecreasing in k)
and thus improves throughput. The next lemma guarantees the
feasibility of executing any RR(φ) policy in RandRR (similar
to Lemma 2, whenever the base station switches to a new
channel n, we need ωn(t) ≥ P

(M(φ))
n,01 in Step 2a of RR(φ)).

Lemma 6. When RR(φ) is chosen by RandRR for a new
round of transmission, every active channel n in φ starts with
information state no worse than P

(M(φ))
n,01 .

Proof of Lemma 6: See Appendix B.
Although RandRR randomly selects subsets of users and

serves them in an order that depends on previous choices, we
can surprisingly analyze its throughput. This is done by using
the throughput analysis of RR(M), as shown in the following
corollary to Lemma 3:

Corollary 1. For each policy RR(φ), φ ∈ Φ, within time
periods in which RR(φ) is executed by RandRR, denote by
Lφkn the duration of the kth time the base station stays with
active channel n. Then:

1) The probability mass function of Lφkn is independent of
k, and is

Lφkn =

{
1 with prob. 1− P

(M(φ))
n,01

j ≥ 2 with prob. P(M(φ))
n,01 (Pn,11)(j−2) Pn,10.

As a result, for all k ∈ N we have

E
[
Lφkn

]
= 1 +

P
(M(φ))
n,01

Pn,10
. (8)

2) The number of data packets served in Lφkn is (Lφkn−1).
3) For every fixed φ and every fixed active channel n in φ,

the time durations Lφkn are i.i.d. random variables over
all k.

B. Achievable Network Capacity — An Inner Capacity Bound
Using Corollary 1, next we present the achievable rate

region of the class of RandRR policies. For each RR(φ) policy,
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define an N -dimensional vector ηφ = (ηφ1 , η
φ
2 , . . . , η

φ
N ) where

ηφn ,





E[Lφ
1n]−1

∑
n:φn=1 E[Lφ

1n]
if channel n is active in φ,

0 otherwise,
(9)

where E
[
Lφ1n

]
is given in (8). Intuitively, by the analysis prior

to Lemma 4, round robin policy RR(φ) yields throughput ηφn
over channel n for each n ∈ {1, 2, . . . , N}. Incorporating all
possible random mixtures of RR(φ) policies for different φ,
RandRR can support any data rate vector that is entrywise
dominated by a convex combination of vectors {ηφ}φ∈Φ as
shown by the next theorem.

Theorem 1 (Generalized Inner Capacity Bound). The class of
RandRR policies supports all data rate vectors λ in the set
Λint defined as

Λint ,
{
λ | 0 ≤ λ ≤ µ, µ ∈ conv

({
ηφ
}
φ∈Φ

)}
,

where ηφ is defined in (9), conv (A) denotes the convex hull
of set A, and ≤ is taken entrywise.

Proof of Theorem 1: See Appendix C.
Applying Theorem 1 to symmetric channels yields the

following corollary.

Corollary 2 (Inner Capacity Bound for Symmetric Channels).
In symmetric channels, the class of RandRR policies supports
all rate vectors λ ∈ Λint where

Λint =

{
λ | 0 ≤ λ ≤ µ, µ ∈ conv

({
cM(φ)

M(φ)
φ

}

φ∈Φ

)}
,

where cM(φ) is defined in (6).

The inner capacity bound Λint in Theorem 1 comprises
all rate vectors that can be written as a convex combination
of the zero vector and the throughput vectors ηφ (see (9))
yielded by the round robin policies RR(φ) serving all subsets
φ of channels. This convex hull characterization shows that
the inner bound Λint contains a very large class of policies
and is intuitively near optimal because it is constructed by
randomizing the efficient round robin policies on all subsets
of channels. A simple example of the inner bound Λint will be
provided later in Section IV-D.

We also remark that, although Λint is conceptually simple,
supporting any given rate vector λ within Λint could be difficult
because finding the right convex combination that supports
λ is of exponential complexity. In Section VI, we provide
a simple queue-dependent dynamic policy that supports all
data rate vectors within the inner bound Λint with polynomial
complexity.

C. Outer Capacity Bound

We construct an outer bound on Λ using several novel ideas.
First, by state aggregation, we transform the information state
process {ωn(t)} for each channel n into non-stationary two-
state Markov chains (in Fig. 4 provided later). Second, we
create a set of bounding stationary Markov chains (in Fig. 5
provided later), which has the structure of a multi-armed bandit

system. Finally, we create an outer capacity bound by relating
the bounding model to the original non-stationary Markov
chains using stochastic coupling. We note that since the control
of the set of information state processes {ωn(t)} for all n can
be viewed as a restless bandit problem [17], it is interesting
to see how we bound the optimal performance of a restless
bandit problem by a related multi-armed bandit system.

We first map channel information states ωn(t) into modes
for each n ∈ {1, 2, . . . , N}. Inspired by (3), we observe that
each channel n must be in one of the following two modes:
M1 The last observed state is ON, and the channel has not

been seen (through feedback) to turn OFF. In this mode
the information state ωn(t) ∈ [πn,ON,Pn,11].

M2 The last observed state is OFF, and the channel has not
been seen to turned ON. Here ωn(t) ∈ [Pn,01, πn,ON].

On channel n, recall that Wn is the state space of ωn(t), and
define a map fn :Wn → {M1,M2} where

fn(ωn(t)) =

{
M1 if ωn(t) ∈ (πn,ON,Pn,11],
M2 if ωn(t) ∈ [Pn,01, πn,ON].

This mapping is illustrated in Fig. 3.

6

Corollary 1. For each policy RR(φ), φ ∈ Φ, within time
periods in which RR(φ) is executed by RandRR, denote by
Lφ

kn the duration of the kth time the base station stays with
active channel n. Then:

1) The probability mass function of Lφ
kn is independent of

k, and is

Lφ
kn =

�
1 with prob. 1 − P

(M(φ))
n,01

j ≥ 2 with prob. P
(M(φ))
n,01 (Pn,11)

(j−2) Pn,10.

As a result, for all k ∈ N we have

E
�
Lφ

kn

�
= 1 +

P
(M(φ))
n,01

Pn,10
. (8)

2) The number of data packets served in Lφ
kn is (Lφ

kn −1).
3) For every fixed φ and every fixed active channel n in φ,

the time durations Lφ
kn are i.i.d. random variables over

all k.

B. Achievable Network Capacity — An Inner Capacity Bound

Using Corollary 1, next we present the achievable rate
region of the class of RandRR policies. For each RR(φ) policy,
define an N -dimensional vector ηφ = (ηφ1 , ηφ2 , . . . , ηφN ) where

ηφn �





E[Lφ
1n]−1

�
n:φn=1 E[Lφ

1n]
if channel n is active in φ,

0 otherwise,
(9)

where E
�
Lφ

1n

�
is given in (8). Intuitively, by the analysis prior

to Lemma 4, round robin policy RR(φ) yields throughput ηφn
over channel n for each n ∈ {1, 2, . . . , N}. Incorporating all
possible random mixtures of RR(φ) policies for different φ,
RandRR can support any data rate vector that is entrywise
dominated by a convex combination of vectors {ηφ}φ∈Φ as
shown by the next theorem.

Theorem 1 (Generalized Inner Capacity Bound). The class of
RandRR policies supports all data rate vectors λ in the set
Λint defined as

Λint �
�
λ | 0 ≤ λ ≤ µ, µ ∈ conv

��
ηφ
�
φ∈Φ

��
,

where ηφ is defined in (9), conv (A) denotes the convex hull
of set A, and ≤ is taken entrywise.

Proof of Theorem 1: See Appendix C.
Applying Theorem 1 to symmetric channels yields the

following corollary.

Corollary 2 (Inner Capacity Bound for Symmetric Channels).
In symmetric channels, the class of RandRR policies supports
all rate vectors λ ∈ Λint where

Λint =

�
λ | 0 ≤ λ ≤ µ, µ ∈ conv

��
cM(φ)

M(φ)
φ

�

φ∈Φ

��
,

where cM(φ) is defined in (6).

An example of the inner capacity bound and a simple queue-
dependent dynamic policy that supports all data rates within
this nontrivial inner bound will be provided later.

C. Outer Capacity Bound

We construct an outer bound on Λ using several novel ideas.
First, by state aggregation, we transform the information state
process {ωn(t)} for each channel n into non-stationary two-
state Markov chains (in Fig. 4 provided later). Second, we
create a set of bounding stationary Markov chains (in Fig. 5
provided later), which has the structure of a multi-armed bandit
system. Finally, we create an outer capacity bound by relating
the bounding model to the original non-stationary Markov
chains using stochastic coupling. We note that since the control
of the set of information state processes {ωn(t)} for all n can
be viewed as a restless bandit problem [14], it is interesting
to see how we bound the optimal performance of a restless
bandit problem by a related multi-armed bandit system.

We first map channel information states ωn(t) into modes
for each n ∈ {1, 2, . . . , N}. Inspired by (3), we observe that
each channel n must be in one of the following two modes:
M1 The last observed state is ON, and the channel has not

been seen (through feedback) to turn OFF. In this mode
the information state ωn(t) ∈ [πn,ON, Pn,11].

M2 The last observed state is OFF, and the channel has not
been seen to turned ON. Here ωn(t) ∈ [Pn,01,πn,ON].

On channel n, recall that Wn is the state space of ωn(t), and
define a map fn : Wn → {M1, M2} where

fn(ωn(t)) =

�
M1 if ωn(t) ∈ (πn,ON, Pn,11],
M2 if ωn(t) ∈ [Pn,01,πn,ON].

This mapping is illustrated in Fig. 3.

k

ωn(t)

πn,ON

Pn,01

Pn,11 P
(k)
n,11

P
(k)
n,01

M1

M2

Fig. 3. The mapping fn from information states ωn(t) to modes {M1, M2}.

For any information state process {ωn(t)} (controlled by
some scheduling policy), the corresponding mode transition
process under fn can be represented by the Markov chains
shown in Fig. 4. Specifically, when channel n is served in
a slot, the associated mode transition follows the upper non-
stationary chain of Fig. 4. When channel n is idled in a slot, the
mode transition follows the lower stationary chain of Fig. 4. In
the upper chain of Fig. 4, regardless what the current mode is,
mode M1 is visited in the next slot if and only if channel n is
ON in the current slot, which occurs with probability ωn(t).
In the lower chain of Fig. 4, when channel n is idled, its
information state changes from a k-step transition probability
to the (k + 1)-step transition probability with the same most
recent observed channel state. Therefore, the next mode stays
the same as the current mode. We emphasize that, in the upper
chain of Fig. 4, at mode M1 we always have ωn(t) ≤ Pn,11,
and at mode M2 it is ωn(t) ≤ πn,ON. A packet is served if
and only if M1 is visited in the upper chain of Fig. 4.

Fig. 3. The mapping fn from information states ωn(t) to modes {M1,M2}.

For any information state process {ωn(t)} (controlled by
some scheduling policy), the corresponding mode transition
process under fn can be represented by the Markov chains
shown in Fig. 4. Specifically, when channel n is served in
a slot, the associated mode transition follows the upper non-
stationary chain of Fig. 4. When channel n is idled in a slot, the
mode transition follows the lower stationary chain of Fig. 4. In
the upper chain of Fig. 4, regardless what the current mode is,
mode M1 is visited in the next slot if and only if channel n is
ON in the current slot, which occurs with probability ωn(t).
In the lower chain of Fig. 4, when channel n is idled, its
information state changes from a k-step transition probability
to the (k + 1)-step transition probability with the same most
recent observed channel state. Therefore, the next mode stays
the same as the current mode. We emphasize that, in the upper
chain of Fig. 4, at mode M1 we always have ωn(t) ≤ Pn,11,
and at mode M2 it is ωn(t) ≤ πn,ON. A packet is served if
and only if M1 is visited in the upper chain of Fig. 4.

To upper bound throughput, we compare Fig. 4 to the mode
transition diagrams in Fig. 5 that corresponds to a fictitious
model for channel n. This fictitious channel has constant
information state ωn(t) = Pn,11 whenever it is in mode M1,
and ωn(t) = πn,ON whenever it is in M2. In other words,
when the fictitious channel n is in mode M1 (or M2), it sets its
current information state to be the best state possible when the
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To upper bound throughput, we compare Fig. 4 to the mode
transition diagrams in Fig. 5 that corresponds to a fictitious
model for channel n. This fictitious channel has constant
information state ωn(t) = Pn,11 whenever it is in mode M1,
and ωn(t) = πn,ON whenever it is in M2. In other words,
when the fictitious channel n is in mode M1 (or M2), it sets its
current information state to be the best state possible when the
corresponding real channel n is in the same mode. It follows
that, when both the real and the fictitious channel n are served,
the probabilities of transitions M1 → M1 and M2 → M1 in
the upper chain of Fig. 5 are greater than or equal to those in
Fig. 4, respectively. In other words, the upper chain of Fig. 5
is more likely to go to mode M1 and serve packets than that
of Fig. 4. Therefore, intuitively, if we serve both the real and
the fictitious channel n in the same infinite sequence of time
slots, the fictitious channel n will yield higher throughput for
all n. This observation is made precise by the next lemma.

Lemma 7. Consider two discrete-time Markov chains {X(t)}
and {Y (t)} both with state space {0, 1}. Suppose {X(t)} is
stationary and ergodic with transition probability matrix

P =

�
P00 P01

P10 P11

�
,

and {Y (t)} is non-stationary with

Q(t) =

�
Q00(t) Q01(t)
Q10(t) Q11(t)

�
.

Assume P01 ≥ Q01(t) and P11 ≥ Q11(t) for all t. In {X(t)},
let πX(1) denote the stationary probability of state 1; πX(1) =

P01/(P01 + P10). In {Y (t)}, define

πY (1) � lim sup
T→∞

1

T

T−1�

t=0

Y (t)

as the limiting fraction of time {Y (t)} stays at state 1. Then
we have πX(1) ≥ πY (1).

Proof of Lemma 7: Given in Appendix E.

We note that executing a scheduling policy in the network
is to generate a sequence of channel selection decisions.
By Lemma 7, if we apply the same sequence of channel
selection decisions of some scheduling policy to the set of
fictitious channels, we will get higher throughput on every
channel. A direct consequence of this is that the maximum
sum throughput over the fictitious channels is greater than or
equal to that over the real channels.

Lemma 8. The maximum sum throughput over the set of
fictitious channels is no more than

max
n∈{1,2,...,N}

{cn,∞}, cn,∞ � Pn,01

xnPn,10 + Pn,01
.

Proof of Lemma 8: We note that finding the maximum
sum throughput over fictitious channels in Fig. 5 is equivalent
to solving a multi-armed bandit problem [15] with each
channel acting as an arm (see Fig. 5 and note that a channel can
change mode only when it is served), and one unit of reward
is earned if a packet is delivered (recall that a packet is served
if and only if mode M1 is visited in the upper chain of Fig. 5).
The optimal solution to the multi-armed bandit system is to
always play the arm (channel) with the largest average reward
(throughput). The average reward over channel n is equal to
the stationary probability of mode M1 in the upper chain of
Fig. 5, which is

πn,ON

Pn,10 + πn,ON
=

Pn,01

xnPn,10 + Pn,01
.

This finishes the proof.

Together with the fact that throughput over any real channel
n cannot exceed its stationary ON probability πn,ON, we have
constructed an outer bound on the network capacity region Λ
(the proof follows the above discussions and thus is omitted).

Theorem 2. (Generalized Outer Capacity Bound): Any sup-
portable throughput vector λ = (λ1,λ2, . . . ,λN ) necessarily
satisfies

λn ≤ πn,ON, for all n ∈ {1, 2, . . . , N},
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n=1
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.

These (N + 1) hyperplanes create an outer capacity bound
Λout on Λ.

Corollary 3 (Outer Capacity Bound for Symmetric Channels).
In symmetric channels with Pn = P, cn,∞ = c∞, and
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and ωn(t) = πn,ON whenever it is in M2. In other words,
when the fictitious channel n is in mode M1 (or M2), it sets its
current information state to be the best state possible when the
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that, when both the real and the fictitious channel n are served,
the probabilities of transitions M1 → M1 and M2 → M1 in
the upper chain of Fig. 5 are greater than or equal to those in
Fig. 4, respectively. In other words, the upper chain of Fig. 5
is more likely to go to mode M1 and serve packets than that
of Fig. 4. Therefore, intuitively, if we serve both the real and
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corresponding real channel n is in the same mode. It follows
that, when both the real and the fictitious channel n are served,
the probabilities of transitions M1 → M1 and M2 → M1 in
the upper chain of Fig. 5 are greater than or equal to those in
Fig. 4, respectively. In other words, the upper chain of Fig. 5
is more likely to go to mode M1 and serve packets than that
of Fig. 4. Therefore, intuitively, if we serve both the real and
the fictitious channel n in the same infinite sequence of time
slots, the fictitious channel n will yield higher throughput for
all n. This observation is made precise by the next lemma.

Lemma 7. Consider two discrete-time Markov chains {X(t)}
and {Y (t)} both with state space {0, 1}. Suppose {X(t)} is
stationary and ergodic with transition probability matrix

P =

[
P00 P01

P10 P11

]
,

and {Y (t)} is non-stationary with

Q(t) =
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Q00(t) Q01(t)
Q10(t) Q11(t)

]
.

Assume P01 ≥ Q01(t) and P11 ≥ Q11(t) for all t. In {X(t)},
let πX(1) denote the stationary probability of state 1; πX(1) =
P01/(P01 + P10). In {Y (t)}, define

πY (1) , lim sup
T→∞

1
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Y (t)

as the limiting fraction of time {Y (t)} stays at state 1. Then
we have πX(1) ≥ πY (1).

Proof of Lemma 7: Given in Appendix E.
We note that executing a scheduling policy in the network

is to generate a sequence of channel selection decisions.
By Lemma 7, if we apply the same sequence of channel
selection decisions of some scheduling policy to the set of
fictitious channels, we will get higher throughput on every
channel. A direct consequence of this is that the maximum
sum throughput over the fictitious channels is greater than or
equal to that over the real channels.

Lemma 8. The maximum sum throughput over the set of
fictitious channels is no more than

max
n∈{1,2,...,N}

{cn,∞}, cn,∞ , Pn,01

xnPn,10 + Pn,01
.

Proof of Lemma 8: We note that finding the maximum
sum throughput over fictitious channels in Fig. 5 is equivalent
to solving a multi-armed bandit problem [18] with each
channel acting as an arm (see Fig. 5 and note that a channel can
change mode only when it is served), and one unit of reward
is earned if a packet is delivered (recall that a packet is served
if and only if mode M1 is visited in the upper chain of Fig. 5).
The optimal solution to the multi-armed bandit system is to
always play the arm (channel) with the largest average reward
(throughput). The average reward over channel n is equal to
the stationary probability of mode M1 in the upper chain of
Fig. 5, which is

πn,ON

Pn,10 + πn,ON
=

Pn,01

xnPn,10 + Pn,01
.

This finishes the proof.

Together with the fact that throughput over any real channel
n cannot exceed its stationary ON probability πn,ON, we have
constructed an outer bound on the network capacity region Λ
(the proof follows the above discussions and thus is omitted).

Theorem 2. (Generalized Outer Capacity Bound): Any sup-
portable throughput vector λ = (λ1, λ2, . . . , λN ) necessarily
satisfies

λn ≤ πn,ON, for all n ∈ {1, 2, . . . , N},
N∑

n=1

λn ≤ max
n∈{1,2,...,N}

{cn,∞}

= max
n∈{1,2,...,N}

{
Pn,01

xnPn,10 + Pn,01

}
.

These (N + 1) hyperplanes create an outer capacity bound
Λout on Λ.

Corollary 3 (Outer Capacity Bound for Symmetric Channels).
In symmetric channels with Pn = P, cn,∞ = c∞, and
πn,ON = πON for all n, we have

Λout =

{
λ ≥ 0 |

N∑

n=1

λn ≤ c∞, λn ≤ πON for 1 ≤ n ≤ N
}
,

(10)
where ≥ is taken entrywise.

We note that Lemma 5 in Section III-C directly follows
Corollary 3.
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D. A Two-User Example on Symmetric Channels
Here we consider a two-user example on symmetric chan-

nels. For simplicity we will drop the subscript n in notations.
From Corollary 3, we have the outer bound

Λout =





[
λ1

λ2

]
∣∣∣∣∣∣∣

0 ≤ λn ≤ P01/x, for 1 ≤ n ≤ 2,

λ1 + λ2 ≤ P01/(xP10 + P01),

x = P01 + P10




.

For the inner bound Λint, we note that policy RandRR can
execute three round robin policies RR(φ) for φ ∈ Φ =
{(1, 1), (0, 1), (1, 0)}. From Corollary 2, we have

Λint =





[
λ1

λ2

] ∣∣∣∣∣∣

0 ≤ λn ≤ µn, for 1 ≤ n ≤ 2,[
µ1

µ2

]
∈ conv

({[
c2/2
c2/2

]
,

[
c1
0

]
,

[
0
c1

]})


 .

Under the special case P01 = P10 = 0.2, the two bounds λint
and Λout are shown in Fig. 6.
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In Fig. 6, we also compare Λint and Λout with other
rate regions. Set Λideal is the ideal capacity region when
instantaneous channel states are known without causing any
(timing) overhead [16]. Next, it is shown in [6] that the
maximum sum throughput in this network is achieved at point
A = (0.325, 0.325). The (unknown) network capacity region
Λ is bounded between Λint and Λout, and has boundary points
B, A, and C. Since the boundary of Λ is a concave curve
connecting B, A, and C, we envision that Λ shall contain but
be very close to Λint.

Finally, the rate region Λblind is rendered by completely
neglecting channel memory and treating the channels as i.i.d.

over slots [2]. We observe the throughput gain Λint \Λblind, as
much as 23% in this example, is achieved by incorporating
channel memory. In general, if channels are symmetric and
treated as i.i.d. over slots, the maximum sum throughput in the
network is πON = c1. Then the maximum throughput gain of
RandRR using channel memory is cN −c1, which as N → ∞
converges to

c∞ − c1 =
P01

xP10 + P01
− P01

P01 + P10
,

which is controlled by the factor x = P01 + P10.

E. A Heuristically Tighter Inner Bound
It is shown in [7] that the following policy maximizes the

sum throughput in a symmetric network:
Serve channels in a circular order, where on each
channel keep transmitting data packets until a NACK
is received.

In the above two-user example, this policy achieves throughput
vector A in Fig. 7. If we replace our round robin policy
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Fig. 7. Comparison of our inner bound Λint, the unknown network capacity
region Λ, and a heuristically better inner bound Λheuristic.

RR(φ) by this one, heuristically we are able to construct a
tighter inner capacity bound. For example, we can support
the tighter inner bound Λheuristic in Fig. 7 by appropriate time
sharing among the above policy that serves different subsets
of channels. However, we note that this approach is difficult
to analyze because the {Lkn} process (see (4)) forms a high-
order Markov chain. Yet, our inner bound Λint provides a good
throughput guarantee for this class of heuristic policies.

V. PROXIMITY OF THE INNER BOUND TO THE TRUE
CAPACITY REGION — SYMMETRIC CASE

Next we bound the closeness of the boundaries of Λint
and Λ in the case of symmetric channels. In Section III-C,
by choosing M = N , we have provided such analysis for
the boundary point in the direction (1, 1, . . . , 1). Here we
generalize to all boundary points. Define

V �
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�����
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(timing) overhead [16]. Next, it is shown in [6] that the
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RR(φ) by this one, heuristically we are able to construct a
tighter inner capacity bound. For example, we can support
the tighter inner bound Λheuristic in Fig. 7 by appropriate time
sharing among the above policy that serves different subsets
of channels. However, we note that this approach is difficult
to analyze because the {Lkn} process (see (4)) forms a high-
order Markov chain. Yet, our inner bound Λint provides a good
throughput guarantee for this class of heuristic policies.

V. PROXIMITY OF THE INNER BOUND TO THE TRUE
CAPACITY REGION — SYMMETRIC CASE

Next we bound the closeness of the boundaries of Λint
and Λ in the case of symmetric channels. In Section III-C,
by choosing M = N , we have provided such analysis for
the boundary point in the direction (1, 1, . . . , 1). Here we
generalize to all boundary points. Define

V ,
{

(v1, v2, . . . , vN )

∣∣∣∣∣
vn ≥ 0 for 1 ≤ n ≤ N ,
vn > 0 for at least one n

}

as a set of directional vectors. For any v ∈ V , let λint =
(λint

1 , λ
int
2 , . . . , λ

int
N ) and λout = (λout

1 , λout
2 , . . . , λout

N ) be the
boundary point of Λint and Λout in the direction of v, respec-
tively. It is useful to compute

∑N
n=1(λout

n − λint
n ), because it

upper bounds the loss of the sum throughput of Λint from Λ in
the direction of v.6 We note that computing λint in an arbitrary

6Note that
∑N

n=1(λout
n −λint

n ) also bounds the closeness between Λout and
Λ.
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direction is difficult. Thus we will find an upper bound on∑N
n=1(λout

n − λint
n ).

A. Preliminary

To have more intuitions on Λint, we start with a toy example
of N = 3 users. We are interested in the boundary point of Λint
in the direction of v = (1, 2, 1). Consider two RandRR-type
policies ψ1 and ψ2 defined as follows.

For ψ1, choose





φ1 = (1, 0, 0) with prob. 1/4

φ2 = (0, 1, 0) with prob. 1/2

φ3 = (0, 0, 1) with prob. 1/4

For ψ2, choose

{
φ4 = (1, 1, 0) with prob. 1/2

φ5 = (0, 1, 1) with prob. 1/2

Both ψ1 and ψ2 support data rates in the direction of (1, 2, 1).
However, using the analysis of Lemma 4 and Theorem 1, we
know ψ1 supports throughput vector

1

4



c1
0
0


+

1

2




0
c1
0


+

1

4




0
0
c1


 =

c1
4




1
2
1


 ,

while ψ2 supports

1

2



c2/2
c2/2

0


+

1

2




0
c2/2
c2/2


 =

c2
4




1
2
1


 ≥ c1

4




1
2
1


 ,

where c1 and c2 are defined in (6). We see that ψ2 achieves
data rates closer than ψ1 does to the boundary of Λint. It is
because every sub-policy of ψ2, namely RR(φ4) and RR(φ5),
supports sum throughput c2 (by Lemma 4), where those of ψ1

only support c1. In other words, policy ψ2 has better multiuser
diversity gain than ψ1 does. This example suggests that we
can find a good lower bound on λint by exploring to what
extent the multiuser diversity can be exploited. We start with
the following definition.

Definition 1. For any v ∈ V , we say v is d-user diverse if
v can be written as a positive combination of vectors in Φd,
where Φd denotes the set of N -dimensional binary vectors
having d entries be 1. Define

d(v) , max
1≤d≤N

{d | v is d-user diverse},

and we shall say v is maximally d(v)-user diverse.

The notion of d(v) is well-defined because every v must be
1-user diverse.7 Definition 1 is the most useful to us through
the next lemma.

Lemma 9. The boundary point of Λint in the direction of v ∈
V has sum throughput at least cd(v), where

cd(v) ,
P01(1− (1− x)d(v))

xP10 + P01(1− (1− x)d(v))
, x , P01 + P10.

7The set Φ1 = {e1, e2, . . . , eN} is the collection of unit coordinate
vectors where en has its nth entry be 1 and 0 otherwise. Any vector v ∈ V ,
v = (v1, v2, . . . , vN ), can be written as v =

∑
vn>0 vnen.

Proof of Lemma 9: If direction v can be written as a
positive weighted sum of vectors in Φd(v), we can normalize
the weights, and use the new weights as probabilities to
randomly mix RR(φ) policies for all φ ∈ Φd(v). This way
we achieve sum throughput cd(v) in every transmission round,
and overall the throughput vector will be in the direction of
v. Therefore the result follows. For details, see Appendix G.

Fig. 8 provides an example of Lemma 9 in the two-
user symmetric system in Section IV-D. We observe that

9

as a set of directional vectors. For any v ∈ V , let λint =
(λint

1 ,λint
2 , . . . ,λint

N ) and λout = (λout
1 ,λout

2 , . . . ,λout
N ) be the

boundary point of Λint and Λout in the direction of v, respec-
tively. It is useful to compute

�N
n=1(λ

out
n − λint

n ), because it
upper bounds the loss of the sum throughput of Λint from Λ in
the direction of v.5 We note that computing λint in an arbitrary
direction is difficult. Thus we will find an upper bound on�N

n=1(λ
out
n − λint

n ).

A. Preliminary

To have more intuitions on Λint, we start with a toy example
of N = 3 users. We are interested in the boundary point of Λint
in the direction of v = (1, 2, 1). Consider two RandRR-type
policies ψ1 and ψ2 defined as follows.

For ψ1, choose





φ1 = (1, 0, 0) with prob. 1/4

φ2 = (0, 1, 0) with prob. 1/2

φ3 = (0, 0, 1) with prob. 1/4

For ψ2, choose

�
φ4 = (1, 1, 0) with prob. 1/2

φ5 = (0, 1, 1) with prob. 1/2

Both ψ1 and ψ2 support data rates in the direction of (1, 2, 1).
However, using the analysis of Lemma 4 and Theorem 1, we
know ψ1 supports throughput vector
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while ψ2 supports
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 ≥ c1
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where c1 and c2 are defined in (6). We see that ψ2 achieves
data rates closer than ψ1 does to the boundary of Λint. It is
because every sub-policy of ψ2, namely RR(φ4) and RR(φ5),
supports sum throughput c2 (by Lemma 4), where those of ψ1

only support c1. In other words, policy ψ2 has better multiuser
diversity gain than ψ1 does. This example suggests that we
can find a good lower bound on λint by exploring to what
extent the multiuser diversity can be exploited. We start with
the following definition.

Definition 1. For any v ∈ V , we say v is d-user diverse if
v can be written as a positive combination of vectors in Φd,
where Φd denotes the set of N -dimensional binary vectors
having d entries be 1. Define

d(v) � max
1≤d≤N

{d | v is d-user diverse},

and we shall say v is maximally d(v)-user diverse.

The notion of d(v) is well-defined because every v must be
1-user diverse.6 Definition 1 is the most useful to us through

5Note that
�N

n=1(λout
n −λint

n ) also bounds the closeness between Λout and
Λ.

6The set Φ1 = {e1, e2, . . . , eN} is the collection of unit coordinate
vectors where en has its nth entry be 1 and 0 otherwise. Any vector v ∈ V ,
v = (v1, v2, . . . , vN ), can be written as v =

�
vn>0 vnen.

the next lemma.

Lemma 9. The boundary point of Λint in the direction of v ∈
V has sum throughput at least cd(v), where

cd(v) �
P01(1 − (1 − x)d(v))

x P10 + P01(1 − (1 − x)d(v))
, x � P01 + P10.

Proof of Lemma 9: If direction v can be written as a
positive weighted sum of vectors in Φd(v), we can normalize
the weights, and use the new weights as probabilities to
randomly mix RR(φ) policies for all φ ∈ Φd(v). This way
we achieve sum throughput cd(v) in every transmission round,
and overall the throughput vector will be in the direction of
v. Therefore the result follows. For details, see Appendix G.

Fig. 8 provides an example of Lemma 9 in the two-
user symmetric system in Section IV-D. We observe that

B

C

D

λ1

λ2

0.25 0.5

0.25

0.5

λ1 + λ2 = c2

λ1 + λ2 = c1

Λint

Fig. 8. An example for Lemma 9 in the two-user symmetric network. Point
B and C achieve sum throughput c1 = πON = 0.5, and the sum throughput
at D is c2 ≈ 0.615. Any other boundary point of Λint has sum throughput
between c1 and c2.

direction (1, 1), the one that passes point D in Fig. 8, is
the only direction that is maximally 2-user diverse. The sum
throughput c2 is achieved at D. For all the other directions,
they are maximally 1-user diverse and, from Fig. 8, only
sum throughput c1 is guaranteed along those directions. In
general, geometrically we can show that a maximally d-user
diverse vector, say vd, forms a smaller angle with the all-1
vector (1, 1, . . . , 1) than a maximally d�-user diverse vector,
say vd� , does if d� < d. In other words, data rates along vd

are more balanced than those along vd� . Lemma 9 states that
we guarantee to support higher sum throughput if the user
traffic is more balanced.

B. Proximity Analysis

We use the notion of d(v) to upper bound
�N

n=1(λ
out
n −λint

n )
in any direction v ∈ V . Let λout = θλint (i.e., λout

n = θλint
n

for all n) for some θ ≥ 1. By (10), the boundary of Λout is
characterized by the interaction of the (N + 1) hyperplanes�N

n=1 λn = c∞ and λn = πON for each n ∈ {1, 2, . . . , N}.
Specifically, in any given direction, if we consider the cross
points on all the hyperplanes in that direction, the boundary

Fig. 8. An example for Lemma 9 in the two-user symmetric network. Point
B and C achieve sum throughput c1 = πON = 0.5, and the sum throughput
at D is c2 ≈ 0.615. Any other boundary point of Λint has sum throughput
between c1 and c2.

direction (1, 1), the one that passes point D in Fig. 8, is
the only direction that is maximally 2-user diverse. The sum
throughput c2 is achieved at D. For all the other directions,
they are maximally 1-user diverse and, from Fig. 8, only
sum throughput c1 is guaranteed along those directions. In
general, geometrically we can show that a maximally d-user
diverse vector, say vd, forms a smaller angle with the all-1
vector (1, 1, . . . , 1) than a maximally d′-user diverse vector,
say vd′ , does if d′ < d. In other words, data rates along vd
are more balanced than those along vd′ . Lemma 9 states that
we guarantee to support higher sum throughput if the user
traffic is more balanced.

B. Proximity Analysis
We use the notion of d(v) to upper bound

∑N
n=1(λout

n −λint
n )

in any direction v ∈ V . Let λout = θλint (i.e., λout
n = θλint

n

for all n) for some θ ≥ 1. By (10), the boundary of Λout is
characterized by the interaction of the (N + 1) hyperplanes∑N
n=1 λn = c∞ and λn = πON for each n ∈ {1, 2, . . . , N}.

Specifically, in any given direction, if we consider the cross
points on all the hyperplanes in that direction, the boundary
point λout is the one closest to the origin. We do not know
which hyperplane λout is on, and thus need to consider all
(N + 1) cases. If λout is on the plane

∑N
n=1 λn = c∞, i.e.,∑N

n=1 λ
out
n = c∞, we get

N∑

n=1

(λout
n − λint

n )
(a)

≤ c∞ − cd(v)

(b)

≤ c∞(1− x)d(v),
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where (a) is by Lemma 9 and (b) is by (7). If λout is on the
plane λn = πON for some n, then θ = πON/λ

int
n . It follows

N∑

n=1

(λout
n − λint

n ) = (θ − 1)

N∑

n=1

λint
n ≤

(
πON

λint
n

− 1

)
c∞.

The above discussions lead to the next lemma.

Lemma 10. The loss of the sum throughput of Λint from Λ in
the direction of v is upper bounded by

min

[
c∞(1− x)d(v), min

1≤n≤N

{(
πON

λint
n

− 1

)
c∞

}]

= c∞min

[
(1− x)d(v),

πON

max1≤n≤N{λint
n }
− 1

]
. (11)

Lemma 10 shows that, if data rates are more balanced,
namely, have a larger d(v), the sum throughput loss is domi-
nated by the first term in the minimum of (11) and decreases to
0 geometrically fast with d(v). If data rates are biased toward
a particular user, the second term in the minimum of (11)
captures the throughput loss, which goes to 0 as the rate of
the favored user goes to the single-user capacity πON.

VI. THROUGHPUT-ACHIEVING QUEUE-DEPENDENT
ROUND ROBIN POLICY

Let an(t), for 1 ≤ n ≤ N , be the number of exogenous
packet arrivals destined for user n in slot t. Suppose an(t) are
independent across users, i.i.d. over slots with rate E [an(t)] =
λn, and an(t) is bounded with 0 ≤ an(t) ≤ Amax, where
Amax is a finite integer. Let Qn(t) be the backlog of user-n
packets queued at the base station at time t. Define Q(t) ,
(Q1(t), Q2(t), . . . , QN (t)) and suppose Qn(0) = 0 for all n.
The queue process {Qn(t)} evolves as

Qn(t+ 1) = max [Qn(t)− µn(sn(t), t), 0] + an(t), (12)

where µn(sn(t), t) ∈ {0, 1} is the service rate allocated to
user n in slot t. We have µn(sn(t), t) = 1 if user n is served
and sn(t) = ON, and 0 otherwise. In the rest of the paper
we drop sn(t) in µn(sn(t), t) and use µn(t) for notational
simplicity. We say the network is (strongly) stable if

lim sup
t→∞

1

t

t−1∑

τ=0

N∑

n=1

E [Qn(τ)] <∞.

Consider a rate vector λ interior to the inner capacity region
bound Λint given in Theorem 1. Namely, there exists an ε > 0
and a probability distribution {βφ}φ∈Φ such that

λn + ε <
∑

φ∈Φ

βφη
φ
n , for all 1 ≤ n ≤ N, (13)

where ηφn is defined in (9). By Theorem 1, there exists a
RandRR policy that yields service rates equal to the right-
side of (13) and thus stabilizes the network with arrival rate
vector λ [20, Lemma 3.6]. The existence of this policy is
useful and we shall denote it by RandRR∗. Recall that on
each new scheduling round, the policy RandRR∗ randomly
picks a binary vector φ using probabilities αφ (defined over
all of the (2N − 1) subsets of users). The M(φ) active users
in φ are served for one round by the round robin policy

RR(φ), serving the least recently used users first. However,
solving for the probabilities needed to implement the RandRR∗

policy that yields (13) is intractable when N is large, because
we need to find (2N − 1) unknown probabilities {αφ}φ∈Φ,
compute {βφ}φ∈Φ from (19), and make (13) hold. Instead
of probabilistically finding the vector φ for the current round
of scheduling, we use the following simple queue-dependent
policy.

Queue-dependent Round Robin Policy (QRR):
1) Start with t = 0.
2) At time t, observe the current queue backlog vectorQ(t)

and find the binary vector φ(t) ∈ Φ defined as8

φ(t) , arg max
φ∈Φ

f(Q(t),RR(φ)), (14)

where

f(Q(t),RR(φ))

,
∑

n:φn=1

[
Qn(t)E

[
Lφ1n − 1

]
− E

[
Lφ1n

] N∑

n=1

Qn(t)λn

]

and E
[
Lφ1n

]
= 1 + P

(M(φ))
n,01 /Pn,10 from (8). Ties are

broken arbitrarily.9

3) Run RR(φ(t)) for one round of transmission. We em-
phasize that active channels in φ are served in the least-
recently-used order. After the round ends, go to Step 2.

The QRR policy is a frame-based algorithm similar to
RandRR, except that at the beginning of every transmission
round the policy selection is no longer random but based on a
queue-dependent rule. We note that QRR is a polynomial time
algorithm because we can compute φ(t) in (14) in polynomial
time with the following divide and conquer approach:

1) Partition the set Φ into subsets {Φ1, . . . ,ΦN}, where
ΦM , M ∈ {1, . . . , N}, is the set of N -dimensional
binary vectors having exactly M entries be 1.

2) For each M ∈ {1, . . . , N}, find the maximizer of
f(Q(t),RR(φ)) among vectors in ΦM . For each φ ∈
ΦM , we have

f(Q(t),RR(φ)) =

∑

n:φn=1

[
Qn(t)

P
(M)
n,01

Pn,10
−
(

1 +
P

(M)
n,01

Pn,10

)
N∑

n=1

Qn(t)λn

]
,

and the maximizer of f(Q(t),RR(φ)) is to activate the
M channels that yield the M largest summands of the
above equation.

3) Obtain φ(t) by comparing the maximizers from the
above step for different values of M .

The detailed implementation is as follows.
Polynomial time implementation of Step 2 of QRR:

1) For each fixed M ∈ {1, . . . , N}, we do the following:

8The vector φ(t) is a queue-dependent decision and thus we should write
φ(Q(t), t) as a function of Q(t). For simplicity we use φ(t) instead.

9In (50) we show that as long as the queue backlog vector Q(t) is not
identically zero and the arrival rate vector λ is interior to the inner capacity
bound Λint, we always have maxφ∈Φ f(Q(t),RR(φ)) > 0.
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Compute

Qn(t)
P

(M)
n,01

Pn,10
−
(

1 +
P

(M)
n,01

Pn,10

)
N∑

n=1

Qn(t)λn (15)

for all n ∈ {1, . . . , N}. Sort these N numbers and
define the binary vector φM = (φM1 , . . . , φMN ) such that
φMn = 1 if the value (15) of channel n is among the M
largest, otherwise φMn = 0. Ties are broken arbitrarily.
Let f̂(Q(t),M) denote the sum of the M largest values
of (15).

2) Define M(t) , arg max1≤M≤N f̂(Q(t),M). Then we
assign φ(t) = φM(t).

Using a novel variable-length frame-based Lyapunov anal-
ysis, we show in the next theorem that QRR stabilizes the
network with any arrival rate vector λ strictly within the inner
capacity bound Λint. The idea is that we compare QRR with the
(unknown) policy RandRR∗ that stabilizes λ. We show that,
in every transmission round, QRR finds and executes a round
robin policy RR(φ(t)) that yields a larger negative drift on
the queue backlogs than RandRR∗ does in the current round.
Therefore, QRR is stable.

Theorem 3. For any data rate vector λ interior to Λint, policy
QRR strongly stabilizes the network.

Proof of Theorem 3: See Appendix H.

VII. CONCLUSION

The network capacity of a wireless network is practically
degraded by communication overhead. In this paper, we take
a step forward by studying the fundamental achievable rate
region when communication overhead is kept minimum, that
is, when channel probing is not permitted. While solving the
original problem is difficult, we construct an inner and an
outer bound on the network capacity region, with the aid
of channel memory. When channels are symmetric and the
network serves a large number of users, we show the inner
and outer bound are progressively tight when the data rates
of different users are more balanced. We also derive a simple
queue-dependent frame-based policy, as a function of packet
arrival rates and channel statistics, and show that this policy
stabilizes the network for any data rates strictly within the
inner capacity bound.

Transmitting data without channel probing is one of the
many options for communication over a wireless network.
Practically each option may have pros and cons on criteria like
the achievable throughput, power efficiency, implementation
complexity, etc. In the future it is important to explore how to
combine all possible options to push the practically achievable
network capacity to the limit. It is part of our future work
to generalize the methodology and framework developed in
this paper to more general cases, such as when limited
probing is allowed and/or other QoS metrics such as energy
consumption are considered. It will also be interesting to see
how this framework can be applied to solve new problems in
opportunistic spectrum access in cognitive radio networks, in
opportunistic scheduling with delayed/uncertain channel state
information, and in restless bandit problems.

APPENDIX A
Proof of Lemma 2: Initially, by (3) we have ωn(0) =

πn,ON ≥ P
(M)
n,01 for all n. Suppose the base station switches to

channel n at time t, and the last use of channel n ends at slot
(t− k) for some k < t. In slot (t− k), there are two possible
cases:

1) Channel n turns OFF, and as a result the information
state on slot t is ωn(t) = P

(k)
n,01. Due to round robin, the

other (M−1) channels must have been used for at least
one slot before t after slot (t − k), and thus k ≥ M .
By (3) we have ωn(t) = P

(k)
n,01 ≥ P

(M)
n,01.

2) Channel n is ON and transmits a dummy packet. Thus
ωn(t) = P

(k)
n,11. By (3) we have ωn(t) = P

(k)
n,11 ≥ P

(M)
n,01.

APPENDIX B
Proof of Lemma 6: At the beginning of a new round,

suppose round robin policy RR(φ) is selected. We index the
M(φ) active channels in φ as (n1, n2, . . . , nM(φ)), which is
in the decreasing order of the time duration between their last
use and the beginning of the current round. In other words,
the last use of nk is earlier than that of nk′ only if k < k′. Fix
an active channel nk. Then it suffices to show that when this
channel is served in the current round, the time duration back
to the end of its last service is at least (M(φ)− 1) slots (that
this channel has information state no worse than P

(M(φ))
nk,01 then

follows the same arguments in the proof of Lemma 2).
We partition the active channels in φ other than nk

into two sets A = {n1, n2, . . . , nk−1} and B =
{nk+1, nk+2, . . . , nM(φ)}. Then the last use of every channel
in B occurs after the last use of nk, and so channel nk has
been idled for at least |B| slots at the start of the current round.
However, the policy in this round will serve all channels in
A before serving nk, taking at least one slot per channel, and
so we wait at least additional |A| slots before serving channel
nk. The total time that this channel has been idled is thus at
least |A|+ |B| = M(φ)− 1.

APPENDIX C
Proof of Theorem 1: Let Z(t) denote the number of times

Step 1 of RandRR is executed in [0, t), in which we suppose
vector φ is selected Zφ(t) times. Define ti, where i ∈ Z+, as
the (i+ 1)th time instant a new vector φ is selected. Assume
t0 = 0, and thus the first selection occurs at time 0. It follows
that Z(t−i ) = i, Z(ti) = i + 1, and the ith round of packet
transmissions ends at time t−i .

Fix a vector φ. Within the time periods in which policy
RR(φ) is executed, denote by Lφkn the duration of the kth time
the base station stays with channel n. Then the time average
throughput that policy RR(φ) yields on its active channel n
over [0, ti) is

∑Zφ(ti)
k=1

(
Lφkn − 1

)

∑
φ∈Φ

∑Zφ(ti)
k=1

∑
n:φn=1 L

φ
kn

. (16)

For simplicity, here we focus on discrete time instants {ti}
large enough so that Zφ(ti) > 0 for all φ ∈ Φ (so that the
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sums in (16) make sense). The generalization to arbitrary time
t can be done by incorporating fractional transmission rounds,
which are amortized over time. Next, rewrite (16) as

∑Zφ(ti)
k=1

∑
n:φn=1 L

φ
kn∑

φ∈Φ

∑Zφ(ti)
k=1

∑
n:φn=1 L

φ
kn

∑Zφ(ti)
k=1

(
Lφkn − 1

)

∑Zφ(ti)
k=1

∑
n:φn=1 L

φ
kn︸ ︷︷ ︸

(∗)

. (17)

As t→∞, the second term (∗) of (17) satisfies

(∗) =

1
Zφ(ti)

∑Zφ(ti)
k=1

(
Lφkn − 1

)

∑
n:φn=1

1
Zφ(ti)

∑Zφ(ti)
k=1 Lφkn

(a)→
E
[
Lφ1n − 1

]

∑
n:φn=1 E

[
Lφ1n

] (b)
= ηφn ,

where (a) is by the Law of Large Numbers (we have shown in
Corollary 1 that Lφkn are i.i.d. for different k) and (b) by (9).

Denote the first term of (17) by βφ(ti), where we note that
βφ(ti) ∈ [0, 1] for all φ ∈ Φ and

∑
φ∈Φ βφ(ti) = 1. We can

rewrite βφ(ti) as

βφ(ti) =

[
Zφ(ti)
Z(ti)

]∑
n:φn=1

[
1

Zφ(ti)

∑Zφ(ti)
k=1 Lφkn

]

∑
φ∈Φ

[
Zφ(ti)
Z(ti)

]∑
n:φn=1

[
1

Zφ(ti)

∑Zφ(ti)
k=1 Lφkn

] .

As t→∞, we have

βφ , lim
i→∞

βφ(ti) =
αφ
∑
n:φn=1 E

[
Lφ1n

]

∑
φ∈Φ αφ

∑
n:φn=1 E

[
Lφ1n

] , (18)

where by the Law of Large Numbers we have

Zφ(ti)

Z(ti)
→ αφ,

1

Zφ(ti)

Zφ(ti)∑

k=1

Lφkn → E
[
Lφ1n

]
.

From (16)(17)(18), we have shown that the throughput con-
tributed by policy RR(φ) on its active channel n is βφηφn .
Consequently, RandRR parameterized by {αφ}φ∈Φ supports
any data rate vector λ that is entrywise dominated by λ ≤∑
φ∈Φ βφη

φ, where {βφ}φ∈Φ is defined in (18) and ηφ in (9).
The above analysis shows that every RandRR policy

achieves a boundary point of Λint defined in Theorem 1.
Conversely, the next lemma, proved in Appendix D, shows that
every boundary point of Λint is achievable by some RandRR
policy, and the proof is complete.

Lemma 11. For any probability distribution {βφ}φ∈Φ, there
exists another probability distribution {αφ}φ∈Φ that solves
the linear system

βφ =
αφ
∑
n:φn=1 E

[
Lφ1n

]

∑
φ∈Φ αφ

∑
n:φn=1 E

[
Lφ1n

] , for all φ ∈ Φ. (19)

APPENDIX D
Proof of Lemma 11: For any probability distribution

{βφ}φ∈Φ, we prove the lemma by inductively constructing the

solution {αφ}φ∈Φ to (19). The induction is on the cardinality
of Φ. Without loss of generality, we index elements in Φ
by Φ = {φ1,φ2, . . .}, where φk = (φk1 , . . . , φ

k
N ). We

define χk ,
∑
n:φkn=1 E

[
Lφ

k

1n

]
and redefine βφk , βk and

αφk , αk. Then we can rewrite (19) as

βk =
αkχk∑

1≤k≤|Φ| αkχk,
, for all k ∈ {1, 2, . . . , |Φ|}. (20)

We first note that Φ = {φ1} is a degenerate case where
β1 and α1 must both be 1. When Φ = {φ1,φ2}, for any
probability distribution {β1, β2} with positive elements,10 it is
easy to show

α1 =
χ2β1

χ1β2 + χ2β1
, α2 = 1− α1.

Let Φ = {φk : 1 ≤ k ≤ K} for some K ≥ 2. Assume that
for any probability distribution {βk > 0 : 1 ≤ k ≤ K} we
can find {αk : 1 ≤ k ≤ K} that solves (20).

For the case Φ = {φk : 1 ≤ k ≤ K + 1} and any {βk >
0 : 1 ≤ k ≤ K + 1}, we construct the solution {αk : 1 ≤
k ≤ K+1} to (18) as follows. Let {γ2, γ3, . . . , γK+1} be the
solution to the linear system

γkχk∑K+1
k=2 γkχk

=
βk∑K+1
k=2 βk

, 2 ≤ k ≤ K + 1. (21)

By the induction assumption, the set {γ2, γ3, . . . , γK+1} exists
and satisfies γk ∈ [0, 1] for 2 ≤ k ≤ K+1 and

∑K+1
k=2 γk = 1.

Define

α1 , β1

∑K+1
k=2 γkχk

χ1(1− β1) + β1

∑K+1
k=2 γkχk

(22)

αk , (1− α1)γk, 2 ≤ k ≤ K + 1. (23)

It remains to show (22) and (23) are the desired solution. It
is easy to observe that αk ∈ [0, 1] for 1 ≤ k ≤ K + 1, and

K+1∑

k=1

αk = α1 + (1− α1)

K+1∑

k=2

γk = α1 + (1− α1) = 1.

By rearranging terms in (22) and using (23), we have

β1 =
α1χ1

α1χ1 +
∑K+1
k=2 (1− α1)γkχk

=
α1χ1∑K+1
k=1 αkχk

. (24)

For 2 ≤ k ≤ K + 1,

αkχk∑K+1
k=1 αkχk

=

[
αkχk∑K+1
k=2 αkχk

][∑K+1
k=2 αkχk∑K+1
k=1 αkχk

]

(a)
=

[
(1− α1)γkχk∑K+1
k=2 (1− α1)γkχk

][
1− α1χ1∑K+1

k=1 αkχk

]

(b)
=

[
γkχk∑K+1
k=2 γkχk

]
(1− β1)

10If one element of {β1, β2} is zero, say β2 = 0, we can show necessarily
α2 = 0 and it degenerates to the one-policy case Φ = {φ1}. Such
degeneration happens in general cases. Thus in the rest of the proof we will
only consider probability distributions that only have positive elements.
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(c)
=

(
βk∑K+1
k=2 βk

)
(1− β1)

(d)
= βk,

where (a) is by plugging in (23), (b) uses (24), (c) uses (21),
and (d) is by

∑K+1
k=1 βk = 1. The proof is complete.

APPENDIX E
Proof of Lemma 7: Let N1(T ) ⊆ {0, 1, . . . , T − 1} be

the subset of time instants in which Y (t) = 1. Note that∑T−1
t=0 Y (t) = |N1(T )| . For each t ∈ N1(T ), let 1[1→0](t)

be an indicator function which is 1 if Y (t) transits from 1 to
0 at time t, and 0 otherwise. We define N0(T ) and 1[0→1](t)
similarly.

In {0, 1, . . . , T − 1}, since state transitions of {Y (t)} from
1 to 0 and from 0 to 1 differ by at most 1, we have

∣∣∣∣∣∣
∑

t∈N1(T )

1[1→0](t)−
∑

t∈N0(T )

1[0→1](t)

∣∣∣∣∣∣
≤ 1, (25)

which is true for all T . Dividing (25) by T , we get
∣∣∣∣∣∣

1

T

∑

t∈N1(T )

1[1→0](t)−
1

T

∑

t∈N0(T )

1[0→1](t)

∣∣∣∣∣∣
≤ 1

T
. (26)

Consider the subsequence {Tk} such that

lim
k→∞

1

Tk

Tk−1∑

t=0

Y (t) = πY (1) = lim
k→∞

|N1(Tk)|
Tk

. (27)

Note that {Tk} exists because (1/T )
∑T−1
t=0 Y (t) is a bounded

sequence indexed by integers T . Moreover, there exists a
subsequence {Tn} of {Tk} so that each of the two averages
in (26) has a limit point with respect to {Tn}, because they are
bounded sequences, too. In the rest of the proof we will work
on {Tn}, but we drop subscript n for notational simplicity.
Passing T →∞, we get from (26) that

(
lim
T→∞

|N1(T )|
T

)

︸ ︷︷ ︸
(a)
= πY (1)


 lim
T→∞

1

|N1(T )|
∑

t∈N1(T )

1[1→0](t)




︸ ︷︷ ︸
,β

=

(
lim
T→∞

|N0(T )|
T

)

︸ ︷︷ ︸
(b)
= 1−πY (1)


 lim
T→∞

1

|N0(T )|
∑

t∈N0(T )

1[0→1](t)




︸ ︷︷ ︸
,γ

,

(28)

where (a) is by (27) and (b) is by |N1(T )| + |N0(T )| = T .
From (28) we get

πY (1) =
γ

β + γ
.

The next lemma, proved in Appendix F, helps to show γ ≤
P01.

Lemma 12 (Stochastic coupling of random binary sequences).
Let {In}∞n=1 be an infinite sequence of binary random vari-
ables. Suppose for all n ∈ {1, 2, . . .} we have

Pr [In = 1 | I1 = i1, . . . , In−1 = in−1] ≤ P01 (29)

for all possible values of i1, . . . , in−1. Then we can construct
a new sequence {În}∞n=1 of binary random variables that are
i.i.d. with Pr

[
În = 1

]
= P01 for all n and satisfy În ≥ In

for all n. Consequently, we have

lim sup
N→∞

1

N

N∑

n=1

In ≤ lim sup
N→∞

1

N

N∑

n=1

În = P01.

To use Lemma 12 to prove γ ≤ P01, let tn denote the nth
time Y (t) = 0 and let In = 1[0→1](tn). For simplicity assume
{tn} is an infinite sequence so that state 0 is visited infinitely
often in {Y (t)}. By the assumption that Q01(t) ≤ P01 for all
t, we know (29) holds. Therefore by Lemma 12 we have

γ ≤ lim sup
N→∞

1

N

N∑

n=1

1[0→1](tn) ≤ P01.

Similarly as Lemma 12, we can show β ≥ P10 by stochastic
coupling. Therefore

πY (1) =
γ

β + γ
≤ γ

P10 + γ
≤ P01

P01 + P10
= πX(1).

APPENDIX F

Proof of Lemma 12: For simplicity, we assume

Pr [In = 0 | I1 = i1, . . . , In−1 = in−1] > 0

for all n and all possible values of i1, . . . , in−1. For each
n ∈ {1, 2, . . .}, define În as follows: If In = 1, define În = 1.
If In = 0, observe the history In−1

1 , (I1, . . . , In−1) and
independently choose În as follows:

În =





1 with prob.
P01−Pr[In=1|In−1

1 ]
Pr[In=0|In−1

1 ]

0 with prob. 1− P01−Pr[In=1|In−1
1 ]

Pr[In=0|In−1
1 ]

.
(30)

The probabilities in (30) are well-defined because P01 ≥
Pr
[
In = 1 | In−1

1

]
by (29), and

P01 ≤ 1 = Pr
[
In = 1 | In−1

1

]
+ Pr

[
In = 0 | In−1

1

]

and therefore

P01 − Pr
[
In = 1 | In−1

1

]
≤ Pr

[
In = 0 | In−1

1

]
.

With the above definition of În, we have În = 1 whenever
In = 1. Therefore În ≥ In for all n. Further, for any n and
any binary vector in−1

1 , (i1, . . . , in−1), we have

Pr
[
În = 1 | In−1

1 = in−1
1

]

= Pr
[
In = 1 | In−1

1 = in−1
1

]
+ Pr

[
In = 0 | In−1

1 = in−1
1

]

× P01 − Pr
[
In = 1 | In−1

1 = in−1
1

]

Pr
[
In = 0 | In−1

1 = in−1
1

] = P01.

(31)

Therefore, for all n we have

Pr
[
În = 1

]
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=
∑

in−1
1

Pr
[
În = 1 | In−1

1 = in−1
1

]
Pr
[
In−1
1 = in−1

1

]
= P01,

and thus the În variables are identically distributed. It remains
to prove that they are independent.

Suppose components in În1 , (Î1, . . . , În) are independent.
We prove that components in În+1

1 = (Î1, . . . , În+1) are also
independent. For any binary vector în+1

1 , (̂i1, . . . , în+1),
since

Pr
[
În+1
1 = în+1

1

]

= Pr
[
În+1 = în+1 | În1 = în1

]
Pr
[
În1 = în1

]

= Pr
[
În+1 = în+1 | În1 = în1

] n∏

k=1

Pr
[
Îk = îk

]
,

it suffices to show

Pr
[
În+1 = 1 | În1 = în1

]
= Pr

[
În+1 = 1

]
= P01.

Indeed,

Pr
[
În+1 = 1 | În1 = în1

]

=
∑

in1

Pr
[
În+1 = 1 | In1 = in1 , Î

n
1 = în1

]

× Pr
[
In1 = in1 | În1 = în1

]

=
∑

in1

Pr
[
În+1 = 1 | In1 = in1

]
Pr
[
In1 = in1 | În1 = în1

]

(a)
=
∑

in1

P01 Pr
[
In1 = in1 | În1 = în1

]
= P01,

where (a) is by (31), and the proof is complete.

APPENDIX G

Proof of Lemma 9: By definition of d(v), there exists a
nonempty subset A ⊆ Φd(v), and for every φ ∈ A a positive
real number β̂φ > 0, such that v =

∑
φ∈A β̂φφ. For each

φ ∈ A, we have M(φ) = d(v) and thus cM(φ) = cd(v).
Define

βφ , β̂φ∑
φ∈A β̂φ

for each φ ∈ A and {βφ}φ∈A is a probability distribution.
Consider a RandRR policy that in every round selects φ ∈
A with probability βφ. By Lemma 4, this RandRR policy
achieves throughput vector λ = (λ1, . . . , λN ) that satisfies

λ =
∑

φ∈A
βφ

cM(φ)

M(φ)
φ =

cd(v)

d(v)

∑

φ∈A

β̂φ∑
φ∈A β̂φ

φ

=
cd(v)

d(v)
∑
φ∈A β̂φ

∑

φ∈A
β̂φφ

=

(
cd(v)

d(v)
∑
φ∈A β̂φ

)
v,

which is in the direction of v. In addition, the sum throughput
N∑

n=1

λn =
∑

φ∈A
βφ

cM(φ)

M(φ)

(
N∑

n=1

φn

)
=
∑

φ∈A
βφcM(φ) = cd(v)

is achieved.

APPENDIX H

Proof of Theorem 3: (A Related RandRR Policy) For
each randomized round robin policy RandRR, it is useful to
consider a renewal reward process where renewal epochs are
defined as time instants at which RandRR starts a new round
of transmission.11 Let T denote the renewal period. We say
one unit of reward is earned by a user if RandRR serves a
packet to that user. Let Rn denote the sum reward earned
by user n in one renewal period T , representing the number
of successful transmissions user n receives in one round of
scheduling. Conditioning on the round robin policy RR(φ)
chosen by RandRR for the current round of transmission, we
have from Corollary 1:

E [T ] =
∑

φ∈Φ

αφE [T | RR(φ)] (32)

E [T | RR(φ)] =
∑

n:φn=1

E
[
Lφ1n

]
, (33)

and for all n ∈ {1, 2, . . . , N},

E [Rn] =
∑

φ∈Φ

αφE [Rn | RR(φ)] (34)

E [Rn | RR(φ)] =

{
E
[
Lφ1n − 1

]
if φn = 1

0 if φn = 0.
(35)

Consider the round robin policy RR((1, 1, . . . , 1)) that
serves all N channels in one round. We define Tmax as its
renewal period. From Corollary 1, we know E [Tmax] < ∞
and E

[
(Tmax)2

]
< ∞. Further, for any RandRR, including

using a RR(φ) policy in every round as special cases, we can
show that Tmax is stochastically larger than the renewal period
T , and (Tmax)2 is stochastically larger than T 2. It follows that

E [T ] ≤ E [Tmax] , E
[
T 2
]
≤ E

[
(Tmax)2

]
. (36)

We have denoted by RandRR∗ (in the discussion after (13))
the randomized round robin policy that achieves a service
rate vector strictly larger than the target arrival rate vector λ
entrywise. Let T ∗ denote the renewal period of RandRR∗, and
R∗n the sum reward (the number of successful transmissions)
received by user n over the renewal period T ∗. Then we have

E [R∗n]

E [T ∗]
(a)
=

∑
φ∈Φ αφ E [R∗n | RR(φ)]∑
φ∈Φ αφ E [T ∗ | RR(φ)]

(b)
=
∑

φ∈Φ

(
αφ∑

φ∈Φ αφ E [T ∗ | RR(φ)]

)
E [R∗n | RR(φ)]

11We note that the renewal reward process is defined solely with respect to
RandRR, and is only used to facilitate our analysis. At these renewal epochs,
the state of the network, including the current queue state Q(t), does not
necessarily renew itself.
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=
∑

φ∈Φ

αφ E [T ∗ | RR(φ)]∑
φ∈Φ αφ E [T ∗ | RR(φ)]

︸ ︷︷ ︸
(c)=βn

E [R∗n | RR(φ)]

E [T ∗ | RR(φ)]︸ ︷︷ ︸
(d)=ηφn

=
∑

φ∈Φ

βφη
φ
n

(e)
> λn + ε, (37)

where (a) is by (32)(34), (b) is by rearranging terms, (c) is
by plugging (33) into (19), (d) is by plugging (33) and (35)
into (9) in Section IV-B, and (e) is by (13). From (37) we get

E [R∗n] > (λn + ε)E [T ∗] , for all n ∈ {1, . . . , N}. (38)

(Lyapunov Drift) From (12), in a frame of size T (which
is possibly random), we can show that for all n

Qn(t+T ) ≤ max

[
Qn(t)−

T−1∑

τ=0

µn(t+ τ), 0

]
+

T−1∑

τ=0

an(t+τ).

(39)
We define a Lyapunov function L(Q(t)) , (1/2)

∑N
n=1Q

2
n(t)

and the T -slot Lyapunov drift

∆T (Q(t)) , E [L(Q(t+ T )− L(Q(t)) | Q(t)] ,

where in the last term the expectation is with respect to
the randomness of the whole network in frame T , including
the randomness of T . By taking square of (39) and then
conditional expectation on Q(t), we can show

∆T (Q(t)) ≤ 1

2
N(1 +A2

max)E
[
T 2 | Q(t)

]

− E

[
N∑

n=1

Qn(t)

[
T−1∑

τ=0

(µn(t+ τ)− an(t+ τ))

]
| Q(t)

]
.

(40)

Define f(Q(t), θ) as the last term of (40), where θ represents a
scheduling policy that controls the service rates µn(t+τ) and
the frame size T . In the following analysis, we only consider
θ in the class of RandRR policies, and the frame size T is the
renewal period of a RandRR policy. By (36), the second term
of (40) is less than or equal to the constant B1 , (1/2)N(1+
A2

max)E
[
(Tmax)2

]
<∞. It follows that

∆T (Q(t)) ≤ B1 − f(Q(t), θ). (41)

In f(Q(t), θ), it is useful to consider θ = RandRR∗ and
T is the renewal period T ∗ of RandRR∗. Assume t is the
beginning of a renewal period. For each n ∈ {1, 2, . . . , N},
because R∗n is the number of successful transmissions user n
receives in the renewal period T ∗, we have

E

[
T∗−1∑

τ=0

µn(t+ τ) | Q(t)

]
= E [R∗n] .

Combining with (38), we get

E

[
T∗−1∑

τ=0

µn(t+ τ) | Q(t)

]
> (λn + ε)E [T ∗] . (42)

By the assumption that packet arrivals are i.i.d. over slots and

independent of the current queue backlogs, we have for all n

E

[
T∗−1∑

τ=0

an(t+ τ) | Q(t)

]
= λnE [T ∗] . (43)

Plugging (42) and (43) into f(Q(t),RandRR∗), we get

f(Q(t),RandRR∗) ≥ εE [T ∗]
N∑

n=1

Qn(t). (44)

It is also useful to consider θ as a round robin policy RR(φ)
for some φ ∈ Φ. In this case frame size T is the renewal period
Tφ of RR(φ) (note that RR(φ) is a special case of RandRR).
From Corollary 1, we have

E
[
Tφ | Q(t)

]
= E

[
Tφ
]

=
∑

n:φn=1

E
[
Lφ1n

]
, (45)

where E
[
Lφ1n

]
can be expanded by (8). Let t be the beginning

of a transmission round. If channel n is active, we have

E



Tφ−1∑

τ=0

µn(t+ τ) | Q(t)


 = E

[
Lφ1n

]
− 1,

and 0 otherwise. It follows that

f(Q(t),RR(φ))

=


 ∑

n:φn=1

Qn(t)E
[
Lφ1n − 1

]

− E

[
Tφ
] N∑

n=1

Qn(t)λn

(a)
=

∑

n:φn=1

[
Qn(t)E

[
Lφ1n − 1

]
− E

[
Lφ1n

] N∑

n=1

Qn(t)λn

]
,

(46)

where (a) is by (45) and rearranging terms.
(Design of QRR) Given the current queue backlogs Q(t),

we are interested in the policy that maximizes f(Q(t), θ) over
all RandRR policies in one round of transmission. Although
the RandRR policy space is uncountably large and thus search-
ing for the optimal solution could be difficult, next we show
that the optimal solution is a round robin policy RR(φ) for
some φ ∈ Φ and can be found by maximizing f(Q(t),RR(φ))
in (46) over φ ∈ Φ. To see this, we denote by φ(t) the
binary vector associated with the RR(φ) policy that maximizes
f(Q(t),RR(φ)) over φ ∈ Φ, and we have

f(Q(t),RR(φ(t))) ≥ f(Q(t),RR(φ)), for all φ ∈ Φ. (47)

For any RandRR policy, conditioning on the policy RR(φ)
chosen for the current round of scheduling, we have

f(Q(t),RandRR) =
∑

φ∈Φ

αφf(Q(t),RR(φ)), (48)

where {αφ}φ∈Φ is the probability distribution associated with
RandRR. By (47)(48), for any RandRR we get

f(Q(t),RR(φ(t))) ≥
∑

φ∈Φ

αφf(Q(t),RR(φ))

= f(Q(t),RandRR).

(49)

We note that as long as the queue backlog vector Q(t) is not
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identically zero and the arrival rate vector λ is strictly within
the inner capacity bound Λint, we get

max
φ∈Φ

f(Q(t),RR(φ))
(a)
= f(Q(t),RR(φ(t)))

(b)

≥ f(Q(t),RandRR∗)
(c)
> 0,

(50)

where (a) is from the definition of φ(t), (b) from (49), and
(c) from (44).

The policy QRR is designed to be a frame-based algo-
rithm where at the beginning of each round we observe the
current queue backlog vector Q(t), find the binary vector
φ(t) whose associated round robin policy RR(φ(t)) maxi-
mizes f(Q(t),RandRR) over RandRR policies, and execute
RR(φ(t)) for one round of transmission. We emphasize that
in every transmission round of QRR, active channels are served
in the order that the least recently used channel is served first,
and the ordering may change from one round to another.

(Stability Analysis) Again, policy QRR comprises of a se-
quence of transmission rounds, where in each round QRR finds
and executes policy RR(φ(t)) for one round, and different
φ(t) may be used in different rounds. In the kth round, let
TQRR
k denote its time duration. Define tk =

∑k
i=1 T

QRR
i for

all k ∈ N and note that tk − tk−1 = TQRR
k . Let t0 = 0. Then

for each k ∈ N, from (41) we have

∆TQRR
k

(Q(tk−1))
(a)

≤ B1 − f(Q(tk−1),QRR)

(b)

≤ B1 − f(Q(tk−1),RandRR∗)

(c)

≤ B1 − εE [T ∗]
N∑

n=1

Qn(tk−1),

(51)

where (a) is by (41), (b) is because QRR is the maximizer
of f(Q(tk−1),RandRR) over all RandRR policies, and (c)
is by (44). By taking expectation over Q(tk−1) in (51) and
noting that E [T ∗] ≥ 1, for all k ∈ N we get

E [L(Q(tk))]− E [L(Q(tk−1))]

≤ B1 − εE [T ∗]
N∑

n=1

E [Qn(tk−1)]

≤ B1 − ε
N∑

n=1

E [Qn(tk−1)] .

(52)

Summing (52) over k ∈ {1, 2, . . . ,K}, we have

E [L(Q(tK))]− E [L(Q(t0))]

≤ KB1 − ε
K∑

k=1

N∑

n=1

E [Qn(tk−1)] .

Since Q(tK) ≥ 0 entrywise and by assumption Q(t0) =
Q(0) = 0, we have

ε

K∑

k=1

N∑

n=1

E [Qn(tk−1)] ≤ KB1. (53)

Dividing (53) by εK and passing K →∞, we get

lim sup
K→∞

1

K

K∑

k=1

N∑

n=1

E [Qn(tk−1)] ≤ B1

ε
<∞. (54)

Equation (54) shows that the network is stable when sampled
at renewal time instants {tk}. Then that it is also stable when
sampled over all time follows because TQRR

k , the renewal
period of the RR(φ) policy chosen in the kth round of QRR,
has finite first and second moments for all k (see (36)), and in
every slot the number of packet arrivals to a user is bounded.
These details are provided in Lemma 13, which is proved in
Appendix I.

Lemma 13. Given that

E
[
TQRR
k

]
≤ E [Tmax] , E

[
(TQRR
k )2

]
≤ E

[
(Tmax)

2
]

(55)

for all k ∈ {1, 2, . . .}, packets arrivals to a user is bounded
by Amax in every slot, and the network sampled at renewal
epochs {tk} is stable from (54), we have

lim sup
K→∞

1

tK

tK−1∑

τ=0

N∑

n=1

E [Qn(τ)] <∞.

APPENDIX I
Proof of Lemma 13: In [tk−1, tk), it is easy to see for

all n ∈ {1, . . . , N}
Qn(tk−1 + τ) ≤ Qn(tk−1) + τAmax, 0 ≤ τ < TQRR

k . (56)

Summing (56) over τ ∈ {0, 1, . . . , TQRR
k − 1}, we get

TQRR
k −1∑

τ=0

Qn(tk−1 + τ) ≤ TQRR
k Qn(tk−1) + (TQRR

k )2Amax/2.

(57)
Summing (57) over k ∈ {1, 2, . . . ,K} and noting that tK =∑K
k=1 T

QRR
k , we have

tK−1∑

τ=0

Qn(τ) =

K∑

k=1

TQRR
k −1∑

τ=0

Qn(tk−1 + τ)

(a)

≤
K∑

k=1

[
TQRR
k Qn(tk−1) + (TQRR

k )2Amax/2
]
,

(58)

where (a) is by (57). Taking expectation of (58) and dividing
it by tK , we have

1

tK

tK−1∑

τ=0

E [Qn(τ)]
(a)

≤ 1

K

tK−1∑

τ=0

E [Qn(τ)]

(b)

≤ 1

K

K∑

k=1

E

[
TQRR
k Qn(tk−1) +

(TQRR
k )2Amax

2

]
,

(59)

where (a) follows tK ≥ K and (b) is by (58). Next, we have

E
[
TQRR
k Qn(tk−1)

]
= E

[
E
[
TQRR
k Qn(tk−1) | Qn(tk−1)

]]

(a)

≤ E [E [TmaxQn(tk−1) | Qn(tk−1)]]
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= E [E [Tmax]Qn(tk−1)]

= E [Tmax]E [Qn(tk−1)] , (60)

where (a) is because E
[
TQRR
k

]
≤ E [Tmax]. Using (55)(60) to

upper bound the last term of (59), we have

1

tK

tK−1∑

τ=0

E [Qn(τ)] ≤ B2 + E [Tmax]
1

K

K∑

k=1

E [Qn(tk−1)] ,

(61)
where B2 , 1

2 E
[
(Tmax)2

]
Amax < ∞. Summing (61) over

n ∈ {1, . . . , N} and passing K →∞, we get

lim sup
K→∞

1

tK

tK−1∑

τ=0

N∑

n=1

E [Qn(τ)]

≤ NB2 + E [Tmax]

(
lim sup
K→∞

1

K

K∑

k=1

N∑

n=1

E [Qn(tk−1)]

)

(a)

≤ NB2 + E [Tmax]B1/ε <∞,
where (a) is by (54). The proof is complete.
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