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Abstract—We analyze a generalized index coding
problem that allows multiple users to request the
same packet. For this problem we introduce a novel
coding scheme called partition multicast. Our scheme
can be seen as a natural generalization of clique cover
for directed index coding problems. Further, partition
multicast corresponds to an achievable scheme for the
generalized bipartite index coding problem that we
introduce in this paper. Our scheme partitions the
nodes into groups and solves a multicasting problem
within each group. We show that Partition Multicast
is optimal for a few families of graphs and generalizes
previous achievable schemes, namely directed cycle
covers. We also show that finding the best partition
is computationally intractable to compute in general.

I. INTRODUCTION

HE problem of broadcasting information to a set of
T receivers that have some side information is relevant
for many applications. The index coding problem is a
simplified noiseless wireless broadcast problem that was
introduced by Birk and Kol [1], and further developed in
[2], [3]. Despite the simplicity of the model, the problem
is fundamental and interesting: It was recently shown that
any network coding problem can be reduced to an instance
of index coding [4] and [5]. Further, Wang [6] analyzed
broadcast packet erasure problems that use closely related
techniques.

In the original setup, Bar-Yossef et al. in [2] considered
a base station that aims at transmitting a set of n packets
r1,- -, T, € X to n different users uq,--- ,u,, while each
user u; requires a specific packet x; (with the same index )
fori € {1,---,n}. Further, each user may have some other
packets as side information. The work in [2] considered
the restrictive assumption of symmetric demands where if
user u; wants packet z; and knows packet x;, then user u;
who wants packet x; must know packet x;. This system
was modeled by an undirected graph G where each node @
represents both user u; and packet x; where user u; wants
packet x; and an edge between node 7 and j means that
users u; and u; know packets x; and x; respectively.

A solution of the problem G is a finite alphabet Wy
and an encoding function £ : X™ — Wy such that for each
tuple z1,- -+ ,x, € X", if the server transmits the messages
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w=~E&(z1,  ,xn) € Wy, each user u; is able to decode its
designated packet from the broadcast message w and its
side information. Let us call such a message w a mission
completing message. Note that we use the subscript A" for
the set Wy since for a specific index coding instance G,
the size of the set Wax depends on the size of X. Let Sx(G)
be the minimum coding length of the solution per input
symbol when packets belong to set X, i.e., minlogy| [Wx|
over the encoding functions £ : ™ — Wy that are mission
completing. Define the optimal broadcast rate B(G) to be
B(G) = lim Bx(G) =inf Bx(G) (1)
|X]—o00 |x]
where the limit exists due to sub-additivity of S(:) as
explained in [7].

In network coding terms, this is the non-linear vector
capacity. Further, it can be interpreted as the average
asymptotic number of broadcast symbols (bits) needed per
symbols (bits) of input. To see how the above can be a
ratio of two quantities in bits, notice that log|y| Bx(G) =
logy Bx(G)/ log, |X].

By representing an instance of index coding problem
with symmetric demands by an undirected graph G as
in [2], graph-theoretic parameters can be used to derive
bounds on the broadcast rate 5(G), as follows:

a(G) < (@) <X(G) (2)

where, a(G), X(G) denote the independence and clique-
cover numbers of G, respectively. Note that both upper
and lower bounds are NP-hard to compute. Let S¢(G)
denote the linear scalar capacity of the problem, i.e., the
solution under linear encoding function £. Bar-Yossef et al.
in [2] showed that the best possible linear scalar capacity
Be(G) for the server is the graph functional minranks(G).
Lubetzky et al. in [7] showed that in general nonlinear
schemes can outperform linear ones, i.e., 5(G) < B¢(G).
Specifically, they found families of graphs for which the
gap between the nonlinear scheme achieving 5(G) and
linear schemes is polynomial in the number of nodes of
G.

Bar-Yossef et al. extended the model of [3] to allow
asymmetric demands. That is, they changed the undi-
rected graph model to a directed one where a directed edge
from node ¢ to node j denoted by (4, j) indicates that user



u; knows packet x;. The main limitation of this model is
that a packet cannot be requested by more than one user.

Deriving tight bounds for 5(G) is a challenging problem.
Clearly, the number of transmissions required by any
achievable scheme is an upper bound on 3(G). Chaudhry
et al. [8] and, independently, Neely et al. [9] introduced
the directed cycle cover scheme which is optimal for a
few families of graphs, namely, directed cycles and sparse
directed graphs of maximum out-degree one.

For a directed graph G, one can find the maximum
number of disjoint directed cycles and then as shown in
[9] resolve each cycle C' with |C] — 1 transmissions, where
|C| represents the number of packets in the directed cycle.
Let C(G) denote the maximum number of disjoint directed
cycles in graph G. Using the cycle cover scheme, the server
can deliver all the packets to their recipients in m — C(G)
transmissions. Thus 8(G) < m — C(G).

There exist graphs for which the gap between m —C(G)
and B(G) is very large. For example, when each user in
graph G knows all packets except the one it wants, 5(G) =
1 while C(G) = |m/2], which gives a gap linear in m.

Our goal in this paper is to introduce an achievable
index coding scheme that works for more general problems
and is provably matching the optimal 3(G) for a broader
family of graphs.

We introduce such a scheme by partitioning the graph
into subgraphs and resolving each partition through mul-
ticasting all the desired packets of that subgraph. Our
scheme is a generalization of cycle cover and can be
shown to be equal to B(G) for a larger set of graphs.
Further, it can be considered as a generalization of clique
cover number X(G) for directed bipartite index coding
problems.

II. Our RESULTS

We consider a noiseless wireless system where a broad-
cast station wants to transmit the set of packets P =
{z1, 29, , 2z} from a finite alphabet X where |X| > 1,
to a set of users U = {uq,ua, - ,u,} while each user u;
demands exactly one specific packet and may know some
other packets as side information.

We analyze the following generalized problem that we
call bipartite index coding. In this problem some pack-
ets may be demanded by more than one user. This is a very
natural requirement, especially in mobile content delivery
problems where many users demand few popular files. This
generalization of index coding was previously analyzed
in [10] and [9]. This general framework is presented in
the form of directed hypergraphs [10], where each directed
hyperedge from a packet to a set of packets represents a
user demanding the source of the edge and knowing the
tails.

Equivalently, in this paper we represent an instance of
the problem by a directed bipartite graph G = (U, P, E)
with users on one side and packets on the other. A directed
edge (z;,u;) indicates that user u; demands packet z;, and
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Fig. 1: An example of index coding problem with n = 6
users and m = 5 packets. The black edges show the side
information of the users while the blue edges connect them
to their demanded packets.

a directed edge (u;,xr) implies that user w; has packet
xy as side information. We note that our model contains
undirected and directed index coding as special cases and
can further model packet popularities.

We define the incoming and outgoing neighborhood of
a node v (either a user node or a packet node) denoted by
Nin(v) and N,y (v) respectively, as follows

{wl|(w,v) € E}, 3)
{wl(v,w) € E}. (4)

Ni (’U) =
Nout(v) =

For each user u;, Ny, (u;) is the packet this user demands!,
and Ny, (u;) denotes the set of packets user w; knows.
Further, for each packet x;, N;,(z;) is the set of all users
who know z; as side information, and Ny () is the set of
users who want packet ;. Such a graph G is shown in Fig.
1 with n = 6 users and m = 5 packets. For instance, user
uy demands packet x1, i.e., Nj,(u1) = 21, and it knows
packets Noyi(u1) = {xa, z3}.

For the set S C P of packets, we define Gg = (Us, S, Es)
to be the subgraph induced by S, where Us and Eg are
defined as follows

Us = Nour(S) = {wilu; € | Nows(s;)} (5)
s;ES
Es = {e € B|N(¢) C SUlUs)? (6)

A valid packet decomposition of the graph G = (U, P, E)
for some 0 < k < m is a set of k disjoint subgraphs
Gs,, -+ ,Gg, induced by k disjoint packet sets, namely
S1,--+, Sk, such that

IRecall that we assumed, without loss of generality, that each user
wants one packet, i.e., |[Njp(u;)| =1 foralli =1,2,--- ,n.

2For the edge e, we define its neighborhood N(e) to be the two
vertices incident to e, i.e., for e = (v, w) we have N(e) = {v,w}.



« S;NS;=0ifi#jforije{l, - k}.
« S{U---US, =P.

Since each user demands exactly one packet, it is apparent
that for a packet decomposition with k£ subgraphs we have

Us, UUs, U---UUs, =U.

We present an upper bound on §(G). Our bound can be
considered as a generalization of the clique cover number
X(G) used in undirected index coding. Our upper bound
is an achievable scheme that we call partition multicast.
Further, this bound can be considered as a solution for the
complementary index coding problem [8] whose objective
is to maximize the number of saved transmissions.

Let us begin with an observation. Assume the graph G =
(U, P, E), where each user knows at least d packets as side
information, i.e., ming, ey |Nout(ui)| = d. We call d the
minimum out-degree or minimum knowledge of the graph.
Then, the server can transmit m—d independent equations
in the form a1z +a2x9+- - -+, Where a;’s are taken
from some finite field I, for which each user can decode the
packet it demands. We denote the number of transmission
required for this scheme over the graph G by T'(G) = m—d.
Of course, we consider the field F to be large enough so
that we are able to produce m — d independent equations.
As is well known, [11] random linear combinations of all
the packets of each multicast set will suffice to produce
such linear equations with high probability in a large field.
Each user receives m — d linear equations and since the
user knows at least d packets, there are at most m — d
unknowns. Thus, each user can decode all the m packets
by solving a system of linear equations.

We can generalize the above scheme by finding a cover
of the graph where each subgraph has a large minimum
knowledge such that the sum of these minimum knowl-
edges is maximized. We show that the optimal cover,
i.e., overlapping subgraphs, is suboptimal compare to
the optimal packet decomposition which are set of non-
overlapping subgraphs induced by some set of packets. We
do so in Lemma 1.

Lemma 1: Having overlapping packet sets is subopti-
mal.

As mentioned, our scheme is a packet decomposition
of the graph where the sum of the minimum out-degrees
are maximized. For example, assume that we partition
the graph into K disjoint subgraphs induced by packet

sets Sy,---,Sk, each with the minimum knowledge d;
for ¢ = 1,---,K. Then each subgraph Gg, can be re-
solved in T(Gg,) = |S;| — d; transmissions which shows

that all users can obtain their designated packets in
T(G) = YK, T(Gs,) = Y0, |Si| — d; transmissions.
Further, assuming that the packet sets S; are disjoint
Zle |Si| = |P| = m gives T(G) = m — Zle d;. Thus,
the optimal partitioning is the solution to the following

optimization problem

K
D d
i=1

PaMul: maximize
subject to 1< K <m
St , S, CP
Gsl, s ,GSK is a valid

packet decomposition

From here on, by optimal scheme, we mean a solution of
the above optimization (there might be many). Note that
in the context of complementary index coding problem,
our scheme saves Zf{:l d; transmissions. We show that
finding best partition is computationally intractable:

Theorem 1: PaMul is NP hard.

Let us call the problem of finding the optimal packet de-
composition over the undirected graph sum-degree cover.
Then, we prove Theorem 1 by finding a reduction from
clique cover to sum-degree cover and vice versa in Lemma
2.

Lemma 2: Sum-degree cover and clique cover are
equivalent, i.e., the solution of each one can be derived
from the solution of the other by a polynomial reduction.

To prove Lemma 2, we show that partitioning a clique is
strictly suboptimal in lemma 3. Using Lemma 2 it is easy
to prove Theorem 1.

Proof of Theorem 1: We map any undirected graph
G = (V,E) to a bipartite index coding instance, where
each node i € V is mapped to two nodes x;,u; with
a directed edge (z;,u;) and each edge {i,j} € FE is
mapped to two directed edges (u;,x;), (u;,x;). Then we
solve PaMul on the directed bipartite graph and convert
the soution back to the undirected graph. To get the clique
cover®, we run the Welsh-Powell algorithm [12] which
finds a A + 1 coloring on a graph with maximum degree
A, on the complements of the partitions found in the
previous step. Since clique cover for undirected graphs is
NP complete, this completes our proof. ]

Before we conclude this section, let us analyze the
performance of our scheme for some specific families of
graphs, namely, directed cycles, complete side information
graphs, and directed acyclic graphs.

If G is a directed cycle, then the knowledge degree for
all users is d = 1, and as a result our scheme can deliver
all packets in m — 1 transmissions which is equal to 8(G)
of directed cycles. Since our bound performs as the cycle
cover suggested in [8], [9] as the special case, it is tighter
and requires fewer transmissions.

We know that our scheme cannot reduce the number
of transmissions below B(G). Further, it is known that
B(G) = m for a directed acyclic graph. Since all packets
are demanded by at least one user, a leaf node must exist

3See the proof of Lemma 2 for more details.



which is a user with no side information. As a result the
minimum knowledge degree of the graph is d = 0 and the
scheme requires m transmissions which is again equal to
8(G).

When the users have complete side information, i.e.,
know all packets except the one they demand, the min-
imum knowledge degree of the graph is d = m —1 and our
scheme can deliver all packets in a single transmission.
Note that the complete side information can be repre-
sented by an undirected clique.

III. OVERLAPPING SUBGRAPHS ARE SUBOPTIMAL

Here we show that the optimal packet decomposition is
optimal over all covers of the directed bipartite graph G.
proof of Lemma 1: Consider the packet sets to be
overlapping. Let the optimal number of transmissions
achieved through the scheme be T(G) = Zle |Si| — di,
where Zle |Si| > |P] since the packet sets are overlap-
ping. The key observation for showing the suboptimality of
the overlapping subgraphs is that omitting a packet from
a subgraph Gg does not increase number of transmissions
required for transmitting the remaining graph. Specifically,
consider the set of packets S and let Gg be the subgraph
induced by S that has minimum knowledge d. Further, as-
sume z € S. Using the multicast scheme T'(Gg) = |S| —d.
Now, consider omitting = from the set .S and forming the
new set S” = S\ {z} and the induced subgraph Gg-. Since
one packet is removed from Gg, its knowledge degree is at
most reduced by one, i.e., d—1 < d’ < d, where d’ denotes
the knowledge degree of Gg/. In other words, d’ can either
be d or d — 1. As a result, we have

T(Gs)=|S'|—d =8| —1—d,

which implies T(Gg) — 1 < T(Gg) < T(Gg). Thus,
removing a packet from a graph does not increase the num-
ber of transmissions that the multicast scheme requires.
Assume we solve the problem by allowing overlapping
subgraphs. Further, assume we end up with a solution
which contains a subgraph Gg induced by set S which
shares some packets z1, - - - , £y with some other subgraphs.
We can therefore omit all these elements from S and form
S" = S\{z1,- -+ ,z¢}. Since we know T'(Gg) < T(Gg), the
cost function will be either reduced or remain the same.
Furthermore, as packets x1,--- ,z¢ are included in some
other subgraphs, they will be delivered to their designated
users by multicasting over those subgraphs which shows
that no extra transmission is needed to deliver them. As
a result, using overlapping subgraphs is suboptimal. ]

IV. SUM-DEGREE COVER AND CLIQUE COVER ARE
EQUIVALENT

Finding the optimal partitioning in general, however,
is NP-hard as we mentioned earlier. To show this, we
consider an instance of the index coding problem with
symmetric demands as described in [2], which is a special
case of the bipartite index coding. Fig. 2 shows a cycle of

U, T1 U1l 1

Uu2 T2

U2, T2 Us, Ts us T3
Ua T4

us3, r3 U4, T4 us Ts

Fig. 2: A cycle of length five C5 and its representation in
bipartite model.

length five and its corresponding bipartite representation.

Consider an instance of index coding problem with sym-
metric demands and m = n. Finding the optimal partition
which maximizes the sum of minimum out-degrees on the
bipartite graph, is equivalent to finding the partition which
maximizes the minimum degrees on the corresponding
undirected graph. This is true since in the undirected
model, if user u; who demands packet x; knows packet
xj, then user u; (who wants packet x;) must know packet
x;, which in return shows that minimum out-degree of a
partition on the bipartite graph is the minimum degree of
the corresponding partition in the undirected one.

We here show that the problem of maximizing the sum
of minimum degrees on undirected graphs which we refer
to as sum-degree cover, is equivalent to the clique cover
problem. Before proving Lemma 2, to shed some light
on the connection of the two problems, we show that
partitioning a clique is strictly suboptimal.

Lemma 3: Consider the graph Gg = (5, Eg) to be a
clique, then partitioning this graph is strictly suboptimal,
i.e., for any partitioning of S into sets Sy, - , Sy we have

¢
T(Gs) <Y T(Gs,)
i=1
Proof: Note that for any graph Ggs = (S, FEs),
T(Gg) > 1 since dg < |S| — 1 and T(Gs) = |S| — ds.
The equality in above holds if and only if G5 is a clique
for which the minimum degree is dg = |S| — 1. This shows
that for resolving a clique, transmitting a single equation,

namely sum of all packets in the clique, is adequate. So
T(Gg) =1if Gg is a clique. Then

4

which completes the proof. [ ]
We are ready now to give the proof of the Lemma 2.

Proof of Lemma 2: Consider the undirected graph

G = (V,E) where |V| = m. Further, assume that



the maximum sum-degree cover is the set of sub-
graphs Gg,,---,Ggs, which are induced by set of nodes
S1,-++,Sk. Note that Sy,---,Sk is a partition of the
set V. Furthermore, assume that each subgraph has the
minimum degree d;.

The clique cover is also a partitioning of the graph into
some disjoint subgraphs where each subgraph is a clique.
Further, for each clique, the minimum degree is one less
than number of the nodes in the clique, i.e., we need
exactly one transmission to resolve each clique. Thus, we
have

K
m—_ di <X(G), (7)
i=1

where Y (G) is the clique cover number of G. Now consider
one of the subgraphs, namely Gg,. Since Gg, has the
minimum degree d;, its complement graph Gg, has the
maximum degree |S1| — 1 — dy. Further, by Welsh-Powell
algorithm [12], any graph with maximum degree d has a
vertex coloring of size d+1. So we can color Gg, by |S1|—d
colors. Based on definition of coloring, however, we know
that two nodes can have the same color, if they are not
adjacent. As a result, if two nodes have the same color in
G's,, then they are adjacent in Gg, , i.e., all nodes with the
same color in G, form a clique in Gg,. So there exists a
clique cover of size |S1| —d; for Gg,. We, however, do not
know if this is the minimum clique cover of Gg,, so

|S1| — d1 > X(Gs,).

Note that partitioning these cliques further is strictly
suboptimal by Lemma 3, i.e., partitioning these cliques
will decrease the sum of min degrees. We can repeat the
same procedure over all subgraphs and decompose each
one to |S;| — d; cliques for ¢ = 1,---, K. Further, it is
apparent that the minimum clique cover of graph G is less
than or equal to the sum of the minimum clique covers of
all subgraphs Gg,, -+ ,Gg,. As a result

K
m— Z d; > X(G). (8)

The above together with (7) shows that

K
m — Z di = X(G)- 9)

So the costs of both optimizations are the same. Now, we
show that by solving each problem, namely clique cover or
sum-degree cover, we can find the solution for the other
one with number of computations polynomial in m. As-
sume we have the solution for the clique cover, from (9) we
know that the minimum clique cover is also the maximum
sum-degree cover, i.e., the same clique cover can be used
as partitions of sum-degree cover. Further, assume that
we have the solution of the sum-degree cover. By running
the Welsh-Powell algorithm on the complement of each

subgraph, we find a clique cover for the subgraph. From
(9) it follows that the clique cover of all the subgraphs
together is the minimum clique cover of G. ]
This Lemma shows that for any family of undirected
graphs for which S(G) is equal to the minimum clique
cover, our scheme is optimal and can achieve 5(G).
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