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This paper considers optimization over multiple renewal systems
coupled by time average constraints. These systems act asynchronously
over variable length frames. When a particular system starts a new
renewal frame, it chooses an action from a set of options for that
frame. The action determines the duration of the frame, the penalty
incurred during the frame (such as energy expenditure), and a vector
of performance metrics (such as instantaneous number of job ser-
vices). The goal is to minimize the time average penalty subject to
time average overall constraints on the corresponding metrics. This
problem has applications to task processing networks and coupled
Markov decision processes (MDPs). We propose a new algorithm so
that each system can make its own decision after observing a global
multiplier that is updated every slot. We show that this algorithm
satisfies the desired constraints and achieves O(ε) near optimality
with O(1/ε2) convergence time.

1. Introduction. Consider N renewal systems that operate over a slotted timeline (t ∈
{0, 1, 2, . . .}). The timeline for each system n ∈ {1, . . . , N} is segmented into back-to-back inter-
vals of time slots called renewal frames. The start of each renewal frame for a particular system
is called a renewal time or simply a renewal for that system. The duration of each renewal
frame is a random positive integer with distribution that depends on a control action chosen
by the system at the start of the frame. The decision at each renewal frame also determines
the penalty and a vector of performance metrics during this frame. The systems are coupled
by time average constraints placed on these metrics over all systems. The goal is to design a
decision strategy for each system so that overall time average penalty is minimized subject to
time average constraints.

We use k = 0, 1, 2, · · · to index the renewals. Let tnk be the time slot corresponding to the k-th
renewal of the n-th system with the convention that tn0 = 0. Let T nk be the set of all slots from
tnk to tnk+1 − 1. At time tnk , the n-th system chooses a possibly random decision αnk in a set An.
This action determines the distributions of the following random variables:

• The duration of the k-th renewal frame Tnk := tnk+1 − tnk , which is a positive integer.
• A vector of performance metrics at each slot of that frame zn[t] := (zn1 [t], zn2 [t], · · · , znL[t]),
t ∈ T nk .
• A penalty incurred at each slot of the frame yn[t], t ∈ T nk .

We assume each system has the renewal property that given αnk = αn ∈ An, the random variables
Tnk , zn[t] and yn[t], t ∈ T nk are independent of the information of all systems from the slots before

tnk with the following known conditional expectations E(Tnk |αnk = αn), E
(∑

t∈T n
k
yn[t]

∣∣∣αnk = αn
)
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2 X. WEI, M. J. NEELY

and E
(∑

t∈T n
k
zn[t]

∣∣∣αnk = αn
)

.

In addition, we have an uncontrollable external i.i.d. random process {d[t]}∞t=0 ⊆ RL which
can be observed during each time slot. Let dl := E(dl[t]). The goal is to minimize the total
time average penalty of these N renewal systems subject to L total time average constraints on
the performance metrics related to the external i.i.d. process, i.e. we aim to solve the following
optimization problem:

min lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(yn[t])(1)

s.t. lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(znl [t]) ≤ dl, l ∈ {1, 2, · · · , L}.(2)

This problem is challenging because these N systems are weakly coupled by the time average
constraints (2), yet each of them operates over its own renewal frames. The renewals of different
systems do not have to be synchronized and they do not have to occur at the same rate.
Fig. 1 plots a sample timeline of three parallel renewal systems. In Section 2, we will develop
an algorithm that does not need the knowledge of dl = E(dl[t]) with a provable performance
guarantee.

Fig 1. The sample timelines of three asynchronous parallel renewal
systems, where the numbers underneath the figure index time slots
and the numbers inside the blocks index the renewals of each system.

1.1. Example Applications.

1.1.1. Multi-server energy-aware scheduling. Consider a slotted time system with L classes
of jobs and N servers. Job arrivals are Poisson distributed with rates λ1, · · · , λL, respectively.
These jobs are stored in separate queues denoted as Q1[t], · · · , QL[t] in a router waiting to be
served. Assume the system is empty at time t = 0 so that Ql[0] = 0, ∀l ∈ {1, 2, · · · , L}. Let
λl[t] be the precise number of class l job arrivals at slot t, then, we have E(λl[t]) = λl, ∀l ∈
{1, 2, · · · , L}. Let µnl [t] and en[t] be the number of class l jobs served and the energy consumption
for server n at time slot t, respectively. Fig. 2 sketches an example architecture of the system
with 3 classes of jobs and 10 servers.

Each server makes decisions over renewal frames and the first frame starts at time slot t = 0.
Successive renewals can happen at different slots for different servers. For the n-th server, at
the beginning of the k-th frame (k ∈ N), it chooses a processing mode mn

k within the set of all
modes Mn. The processing mode mn

k determines distributions on the number of jobs served,
the service time, and the energy expenditure, with conditional expectations:
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ASYNCHRONOUS RENEWAL OPTIMIZATION 3

• T̂n(mn
k) := E(Tnk | mn

k). The expected frame size.

• µ̂nl (mn
k) = E

(∑
t∈T n

k
µnl [t]

∣∣∣ mn
k

)
. The expected number of class l jobs served.

• ên(mn
k) = E

(∑
t∈T n

k
en[t]

∣∣∣ mn
k

)
. The expected energy consumption.

The goal is to minimize the time average energy consumption, subject to the queue stability
constraints, i.e.

min lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(en[t])(3)

s.t. lim inf
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(µnl [t]) ≥ λl, ∀l ∈ {1, 2, · · · , L}.(4)

Thus, we have formulated the problem into the form (1)-(2). Note that the external process in
this example is the arrival process of L classes of jobs with potentially unknown arrival rates λl.

Previously, [12] treats a special case of this problem where all energy and service quantities are
deterministic functions of the processing modes. The newly developed algorithm in the current
paper can be used to solve this problem with considerably more general stochastic assumptions.

Fig 2. Illustration of an energy-aware scheduling system with 3
classes of jobs and 10 parallel servers.

1.1.2. Coupled ergodic MDPs. Consider N discrete time Markov decision processes (MDPs)
over an infinite horizon. Each MDP consists of a finite state space Sn, and an action space Un
at each state s ∈ Sn.1 For each state s ∈ S, we use Pnu (s, s′) to denote the transition probability
from s ∈ Sn to s′ ∈ Sn when taking action u ∈ Un, i.e.

Pnu (s, s′) = Pr(s[t+ 1] = s′ | s[t] = s, u[t] = u),

where s[t] and u[t] are state and action at time slot t.

1To simplify the notation, we assume each state has the same action space An. All our analysis generalizes
trivially to states with different action spaces.
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4 X. WEI, M. J. NEELY

At time slot t, after observing the state s[t] ∈ Sn and choosing the action u[t] ∈ Un, the n-th
MDP receives a penalty yn(u[t], s[t]) and L types of resource costs zn1 (u[t], s[t]), · · · , znL(u[t], s[t]),
where these functions are all bounded mappings from Sn × Un to R. For simplicity we write
yn[t] = yn(u[t], s[t]) and znl [t] = znl (u[t], s[t]). The goal is to minimize the time average overall
penalty with constraints on time average overall costs, where these MDPs are weakly coupled
through the time average constraints. This problem can be written in the form (1)-(2).

In order to define the renewal frame, we need one more assumption on the MDPs. We assume
each of the MDPs is ergodic, i.e. there exists a state which is recurrent and the corresponding
Markov chain is aperiodic under any randomized stationary policy2, with bounded expected
recurrence time. Under this assumption, the renewals for each MDP can be defined as successive
revisitations to the recurrent state, and the action set An in such scenario is defined as the set
of all randomized stationary policies that can be implemented in one renewal frame. Thus, our
formulation includes coupled ergodic MDPs. We refer to [1], [3], and [17] for more details on
MDP theory and related topics.

As a side remark, this multi-MDP problem can be viewed as a single MDP on an enlarged
state space. Constrained MDPs are discussed previously in [1]. One can show that under the
previous ergodic assumption, the minimum of (1)-(2) is achieved by a randomized stationary
policy, and furthermore, such a policy can be obtained via solving a linear program reformulated
from (1)-(2) offline. However, formulating such LP requires the knowledge of all the parameters
in the problem, including the statistics of the external process {d[t]}∞t=0, and the resulting LP
is often computationally intractable when the number of MDPs is very large. On the contrary,
our newly developed algorithm is carried out in an online manner, does’t require the statistics
of the external process and enjoys a natural “decoupled” structure, effectively reducing the
computational load.

1.2. Challenges and previous approaches. As mentioned above, for the special case of cou-
pled ergodic MDPs, this problem can be solved via a linear program (see [1] and also [8] for
detailed discussions on formulating MDPs as linear programs). However, this approach becomes
intractable as the number of MDPs gets very large. On the other hand, existing asynchronous
algorithms and analysis (e.g. [4][6][15][19]) treat only the case where system delays (frames)
are of fixed distribution independent of the actions or even deterministic, which are not readily
extendable to our problem.

The main technical challenge is the dilemma on how to pick a correct time scale to carry out
an algorithm and corresponding analysis. On one hand, since time is slotted, one would natu-
rally think of synchronizing all systems on the slot scale and designing a slot-based algorithm.
However, since each renewal spans multiple slots, any such algorithm would essentially cut some
renewals in the middle and it would be difficult to analyze any particular system. On the other
hand, if we analyze each system over its own renewal frames, it is not clear how to piece together
these individual analyses.

Prior approaches treat this challenge only in special cases. The works [12] and [13] consider a
special case where all quantities introduced above are deterministic functions of the actions. The
work [20] considers another special case of the current formulation in server scheduling, where
there is only one queue stability constraint and it can be easily met via controlling the arrival
rate to the system. These two methods circumvent the aforementioned dilemma by making extra
assumptions on the system and thus can not be generalized to the current setting.

2A randomized stationary policy π is an algorithm which chooses actions at state s ∈ Sn according to a
fixed conditional distribution π(u|s), u ∈ Un and is independent of all other past information, i.e. Pr(u[t]|Ft) =
π(u[t]|s[t]), u[t] ∈ Un, s[t] ∈ Sn and Ft is the past information up to time t.
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ASYNCHRONOUS RENEWAL OPTIMIZATION 5

1.3. Our contributions. The current paper develops a new algorithm where each system
operates on its own renewal frame. It is fully analyzed with convergence as well as convergence
time results. As a first technical contribution, we fully characterize the fundamental performance
region of the problem (1)-(2) (Lemma 3.2). We then resolve the aforementioned dilemma by
constructing a supermartingale along with a stopping-time to “synchronize” all systems on a
slot basis, by which we could piece together analysis of each individual system to prove the
convergence of the proposed algorithm. Furthermore, encapsulating this new idea into convex
analysis tools, we prove the O(1/ε2) convergence time of the proposed algorithm to reach O(ε)
near optimality under a mild assumption on the existence of a Lagrange multiplier (Section 4).
Specifically, we show that for any accuracy ε > 0 and any time T ≥ 1/ε2, the sequence {yn[t]}
and {zn[t]} produced by our algorithm satisfies,

1

T

T−1∑
t=0

N∑
n=1

E(yn[t]) ≤ f∗ +O(ε),

1

T

T−1∑
t=0

N∑
n=1

E(znl [t]) ≤ dl +O(ε), l ∈ {1, 2, · · · , L},

where f∗ denotes the optimal objective value of (1)-(2). Simulation experiments on the afore-
mentioned multi-server energy-aware scheduling problem also demonstrate the effectiveness of
the proposed algorithm.

1.4. Other related works. The problem considered in the current paper is a generalization of
optimization over a single renewal system. It is shown in [14] that for the single renewal system
with finite action set, the problem can be solved (offline) via a linear fractional program. Methods
for solving linear fractional programs can be found in [5] and [18]. The drift-plus-penalty ratio
approach is also developed in [11] and [14] for the single renewal system.

On the other hand, our problem is also related to the multi-server scheduling as is shown
in one of the example applications. When assuming proper statistics of the arrivals and/or
services, energy optimization problems in multi-server systems can also be treated via queueing
theory. Specifically, by assuming both arrivals and services are Poisson distributed, [9] treats
the multi-server system as an M/M/k/setup queue and explicitly computes several performance
metrics via the renewal reward theorem. By assuming arrivals are Poisson and only one server,
[10] and [21] treat the system as a multi-class M/G/1 queue and optimize the average energy
consumption via polymatroid optimization.

1.5. Notation and organization of the paper. Throughout the paper, we use superscript n ∈
{1, 2, · · · , N} to index different systems, use the subscript l ∈ {1, 2, · · · , L} to index different
constraints and use the subscript k ∈ N to index the frames. For any vector x ∈ Rd, the

considered norms are ‖x‖ :=
√∑d

i=1 x
2
i , ‖x‖1 :=

∑d
i=1 |xi| and ‖x‖∞ := maxi |xi|.

The rest of the paper is organized as follows: Section 2 introduces the proposed algorithm
along with technical assumptions. Section 3 introduces our main technical argument proving the
convergence of the proposed algorithm via supermartingale and stopping time constructions.
Building upon these technical tools, Section 4 takes one step further and proves the convergence
time of the proposed algorithm. Finally, a simulation study regarding multi-server energy-aware
scheduling is given in Section 5.

2. Algorithm.
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6 X. WEI, M. J. NEELY

2.1. Technical preliminaries. Throughout the paper, we make the following assumptions.

Assumption 2.1. The problem (1)-(2) is feasible, i.e. there are action sequences {αnk}∞k=0

for all n ∈ {1, 2, · · · , N} so that the corresponding process {zn[t]}∞t=0 satisfies the constraints
(2).

Following this assumption, we define f∗ as the infimum objective value for (1)-(2) over all
decision sequences that satisfy the constraints.

Assumption 2.2 (Boundedness). For any k ∈ N and any n ∈ {1, 2, · · · , N}, there exist
absolute constants ymax, zmax and dmax such that

|yn[t]| ≤ ymax, |znl [t]| ≤ zmax, |dl[t]| ≤ dmax, ∀t ∈ T nk , ∀l ∈ {1, 2, · · · , L}.

Furthermore, there exists an absolute constant B ≥ 1 such that for every fixed αn ∈ An and
every s ∈ N for which Pr(Tnk ≥ s|αnk = αn) > 0,

(5) E
(

(Tnk − s)2
∣∣ αnk = αn, Tnk ≥ s

)
≤ B.

Remark 2.1. The quantity Tnk −s is usually referred to as the residual lifetime. In the special
case where s = 0, (5) gives the uniform second moment bound of the renewal frames as

E
(

(Tnk )2
∣∣ αnk = αn

)
≤ B.

Note that (5) is satisfied for a large class of problems. In particular, it can be shown to hold in
the following three cases:

1. If the inter-renewal Tnk is deterministically bounded.
2. If the inter-renewal Tnk is geometrically distributed.
3. If each system is a finite state ergodic MDP with a finite action set.

Definition 2.1. For any αn ∈ An, let

ŷn(αn) := E

∑
t∈T n

k

yn[t]

∣∣∣∣∣∣αnk = αn

, ẑnl (αn) := E

∑
t∈T n

k

znl [t]

∣∣∣∣∣∣αnk = αn

,
and T̂n(αn) := E(Tnk |αnk = αn). Define

f̂n(αn) := ŷn(αn)/T̂n(αn),

ĝnl (αn) := ẑnl (αn)/T̂n(αn), ∀l ∈ {1, 2, · · · , L},

and let
(
f̂n(αn), ĝn(αn)

)
be a performance vector under the action αn.

Note that by Assumption 2.2, ŷn(αn) and ẑn(αn) in Definition 2.1 are both bounded, and

Tnk ≥ 1, ∀k ∈ N, thus, the set
{(
f̂n(αn), ĝn(αn)

)
, αn ∈ An

}
is also bounded. The following

mild assumption states that this set is also closed.

Assumption 2.3. The set
{(
f̂n(αn), ĝn(αn)

)
, αn ∈ An

}
is compact.

Finally, we define the performance region of each individual system as follows.
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ASYNCHRONOUS RENEWAL OPTIMIZATION 7

Definition 2.2. Let Sn be the convex hull of
{(
ŷn(αn), ẑn(αn), T̂n(αn)

)
: αn ∈ An

}
⊆

RL+2. Define
Pn := {(y/T, z/T ) : (y, z, T ) ∈ Sn} ⊆ RL+1

as the performance region of system n.

2.2. Proposed algorithm. In this section, we propose an algorithm where each system can
make its own decision after observing a global vector of multipliers which is updated using the
global information from all systems. We start by defining a vector of virtual queues Q[t] :=
(Q1[t], Q2[t], · · · , QL[t]), which are 0 at t = 0 and updated as follows,

Ql[t+ 1] = max

{
Ql[t] +

N∑
n=1

znl [t]− dl[t], 0

}
, l ∈ {1, 2, · · · , L}.(6)

These virtual queues will serve as global multipliers to control the growth of corresponding
resource consumptions.

Then, the proposed algorithm runs as follows via a fixed trade-off parameter V > 0:

• At the beginning of k-th frame of system n, the system observes the vector of virtual
queues Q[tnk ] and makes a decision αnk ∈ An so as to solve the following subproblem:

Dn
k := min

αn∈An

E
(∑

t∈T n
k

(V yn[t] + 〈Q[tnk ], zn[t]〉)
∣∣∣αnk = αn,Q[tnk ]

)
E
(
Tnk
∣∣αnk = αn,Q[tnk ]

) .(7)

• Update the virtual queue after each slot:

Ql[t+ 1] = max

{
Ql[t] +

N∑
n=1

znl [t]− dl[t], 0

}
, l ∈ {1, 2, · · · , L}.

Note that using the notation specified in Definition 2.1, we can rewrite (7) in a more concise
way as follows:

min
αn∈An

{
V f̂n(αn) + 〈Q[tnk ], ĝn(αn)〉

}
,(8)

which is a deterministic optimization problem. Then, by the compactness assumption (Assump-
tion 2.3), there always exists a solution to this subproblem.

This algorithm requires knowledge of the conditional expectations associated with the per-

formance vectors
(
f̂n(αn), ĝn(αn)

)
, αn ∈ An, but only requires individual systems n to know

their own
(
f̂n(αn), ĝn(αn)

)
, αn ∈ An, and therefore decouples these systems. Furthermore,

the virtual queue update uses observed dl[t] and does not require knowledge of distribution or
mean of dl[t].

In addition, we introduce Q[t] as “virtual queues” for the following two reasons: First, it can
be mapped to real queues in applications (such as the server scheduling problem mentioned in
Section 1.1.1), where d[t] stands for the arrival process and z[t] is the service process. Second,
stabilizing these virtual queues implies the constraints (2) are satisfied, as is illustrated in the
following lemma, whose proof is given in the appendix.

Lemma 2.1. If Ql[0] = 0 and limT→∞
1
T E(Ql[T ]) = 0, then, lim supT→∞

1
T

∑T−1
t=0

∑N
n=1 E(znl [t]) ≤

dl.
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8 X. WEI, M. J. NEELY

2.3. Computing subproblems. Since a key step in the algorithm is to solve the optimization
problem (8), we make several comments on the computation of the ratio minimization (8). In
general, one can solve the ratio optimization problem (7) (therefore (8)) via a bisection search
algorithm. For more details, see section 7 of [11]. However, more often than not, bisection search
is not the most efficient one. We will discuss two special cases arising from applications where
we can find a simpler way of solving the subproblem.

First of all, when there are only a finite number of actions in the set An, one can solve (8)
simply via enumerating. This is a typical scenario in energy-aware scheduling where a finite
action set consists of different processing modes that can be chosen by servers.

Second, when the set
{(
ŷn(αn), ẑn(αn), T̂n(αn)

)
: αn ∈ An

}
specified in Definition 2.2 is

itself a convex hull of a finite sequence {(yj , zj , Tj)}mj=1, then, (8) can be rewritten as a simple
enumeration:

min
i∈{1,2,··· ,m}

{
V
yi
Ti

+

〈
Q[tnk ],

zi
Ti

〉}
.

To see this, note that by definition of convex hull, for any αn ∈ An,
(
ŷn(αn), ẑn(αn), T̂n(αn)

)
=∑m

j=1 pj · (yj , zj , Tj) for some {pj}mj=1, pj ≥ 0 and
∑m

j=1 pj = 1. Thus,

V f̂n(αn) + 〈Q[tnk ], ĝn(αn)〉 =V

∑m
j=1 pjyj∑m
j=1 pjTj

+

〈
Q[tnk ],

∑m
j=1 pjzj∑m
j=1 pjTj

〉

=
m∑
i=1

piTi∑m
j=1 pjTj

(
V
yi
Ti

+

〈
Q[tnk ],

zi
Ti

〉)

=:
m∑
i=1

qi

(
V
yi
Ti

+

〈
Q[tnk ],

zi
Ti

〉)
,

where we let qi = piTi∑m
j=1 pjTj

. Note that qi ≥ 0 and
∑m

i=1 qi = 1 because Ti ≥ 1. Hence, solving (8)

is equivalent to choosing {qi}mi=1 to minimize the above expression, which boils down to choosing
a single (yi, zi, Ti) among {(yj , zj , Tj)}mj=1 which achieves the minimum.

Note that such a convex hull case stands out not only because it yields a simple solution,
but also because of the fact that ergodic coupled MDPs discussed in Section 1.1.2 have the

region
{(
ŷn(αn), ẑn(αn), T̂n(αn)

)
: αn ∈ An

}
being the convex hull of a finite sequence of

points {(yj , zj , Tj)}mj=1, where each point (yj , zj , Tj) results from a pure stationary policy ([1]).
3 Thus, solving (8) for the ergodic coupled MDPs reduces to choosing a pure policy among a
finite number of pure policies.

3. Limiting Performance. For the rest of the paper, the underlying probability space is
denoted as the tuple (Ω, F , P ). Let F [t] be the system history up until time slot t. Formally,
{F [t]}∞t=0 is a filtration with F [0] = {∅,Ω} and each F [t], t ≥ 1 is the σ-algebra generated by
all random variables from slot 0 to t− 1.

For the rest of the paper, we always assume Assumptions 2.1-2.3 hold without explicitly
mentioning them.

3.1. Convexity. The following lemma demonstrates the convexity of Pn in Definition 2.2.

3A pure stationary policy is an algorithm where the decision to be taken at any time t is a deterministic
function of the state at time t, and independent of all other past information.
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ASYNCHRONOUS RENEWAL OPTIMIZATION 9

Lemma 3.1. The performance region Pn specified in Definition 2.2 is convex for any n ∈
{1, 2, · · · , N}. Furthermore, it is the convex hull of the set

{(
f̂n(αn), ĝn(αn)

)
: αn ∈ An

}
and

thus compact, where
(
f̂n(αn), ĝn(αn)

)
is specified Definition 2.1.

Proof. We first prove the convexity of Pn. Consider any two points (f1,g1), (f2,g2) ∈ Pn.
We aim to show that for any q ∈ (0, 1), (qf1 + (1− q)f2, qg1 + (1− q)g2) ∈ Pn. Notice that by
definition of Pn, there exists (y1, z1, T1), (y2, z2, T2) ∈ Sn such that f1 = y1/T1, g1 = z1/T1,
f2 = y2/T2, and g2 = z2/T2. Thus, it is enough to show

(9)

(
q
y1
T1

+ (1− q) y2
T2
, q

z1
T1

+ (1− q)z2
T2

)
∈ Pn.

To show this, we make a change of variable by letting p = qT2
(1−q)T1+qT2 . It is obvious that p ∈ (0, 1).

Furthermore, q = pT1
pT1+(1−p)T2 and

q
y1
T1

+ (1− q) y2
T2

=
py1 + (1− p)y2
pT1 + (1− p)T2

,

q
z1
T1

+ (1− q)z2
T2

=
pz1 + (1− p)z2
pT1 + (1− p)T2

.

Since Sn is convex,

(py1 + (1− p)y2, pz1 + (1− p)z2, pT1 + (1− p)T2) ∈ Sn.

Thus, by definition of Pn again, (9) holds and the first part of the proof is finished.
To show the second part of the claim, let

Qn :=
{(
f̂n(αn), ĝn(αn)

)
: αn ∈ An

}
=
{(
ŷn(αn)

/
T̂n(αn) , ẑn(αn)

/
T̂n(αn)

)
: αn ∈ An

}
and let conv(Qn) be the convex hull of Qn. First of all, By Definition 2.2,

Pn = {(y/T, z/T ) : (y, z, T ) ∈ Sn} ⊆ RL+1,

for Sn being the convex hull of
{(
ŷn(αn), ẑn(αn), T̂n(αn)

)
: αn ∈ An

}
, thus, in view of the

definition of Qn, we have Qn ⊆ Pn. Since both Pn and conv(Qn) are convex, by definition of
convex hull ([16]) that conv(Qn) is the smallest convex set containing Qn, we have conv(Qn) ⊆
Pn.

To show the reverse inclusion Pn ⊆ conv(Qn), note that any point in Pn can be written in
the form

( y
T ,

z
T

)
, where (y, z, T ) ∈ Sn. Since Sn by definition is the convex hull of{(

ŷn(αn), ẑn(αn), T̂n(αn)
)

: αn ∈ An
}
⊆ RL+2,

by the definition of convex hull, (y, z, T ) can be written as a convex combination of m points in

the above set. Let
{(
ŷn(αni ), ẑn(αni ), T̂n(αni )

)}m
i=1

be these points, so that

(y, z, T ) =
m∑
i=1

pi ·
(
ŷn(αni ), ẑn(αni ), T̂n(αni )

)
,

pi ≥ 0,
m∑
i=1

pi = 1.
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10 X. WEI, M. J. NEELY

As a result, we have ( y
T
,
z

T

)
=

(∑m
i=1 piy

n(αni )∑m
i=1 piT

n(αni )
,

∑m
i=1 piz

n(αni )∑m
i=1 piT

n(αni )

)
.

We make a change of variable by letting qj =
pjT

n(αn
j )∑m

i=1 piT
n(αn

i )
, ∀j = 1, 2, · · · ,m, then,

pj =
qj

Tn(αnj )
·
m∑
i=1

piT
n(αni ),

it follows, ( y
T
,
z

T

)
=

m∑
i=1

qi ·
(
yn(αni )

Tn(αni )
,
zn(αni )

Tn(αni )

)
=

m∑
i=1

qi ·
(
f̂n(αni ), ĝn(αni )

)
.

Since
∑m

i=1 qi = 1 and qi ≥ 0, it follows any point in Pn can be written as a convex combination
of finite number of points inQn, which implies Pn ⊆ conv(Qn). Overall, we have Pn = conv(Qn).

Finally, by Assumption 2.3, we have Qn =
{(
f̂n(αn), ĝn(αn)

)
: αn ∈ An

}
is compact. Thus,

Pn, being a convex hull of a compact set, is also compact.

3.2. Key-feature inequality and supermartingale construction. First of all, we have the fol-
lowing fundamental performance lemma which states that the optimality of (1)-(2) is achievable
within Pn specified in Definition 2.2.

Lemma 3.2. For each n ∈ {1, 2, · · · , N}, there exists a pair
(
f
n
∗ , gn∗

)
∈ Pn such that the

following hold:

N∑
n=1

f
n
∗ = f∗

N∑
n=1

gnl,∗ ≤ dl, l ∈ {1, 2, · · · , L},

where f∗ is the optimal objective value for problem (1)-(2), i.e. the optimality is achievable within
⊗Nn=1Pn, the Cartesian product of Pn.

Furthermore, for any
(
f
n
, gn

)
∈ Pn, n ∈ {1, 2, · · · , N}, satisfying

∑N
n=1 g

n
l ≤ dl, l ∈

{1, 2, · · · , L}, we have
∑N

n=1 f
n ≥ f∗, i.e. one cannot achieve better performance than (1)-(2)

in ⊗Nn=1Pn.

The proof of this Lemma is delayed to Appendix A. In particular, the proof uses the following
lemma, which also plays an important role in several lemmas later.

Lemma 3.3. Suppose {yn[t]}∞t=0, {zn[t]}∞t=0 and {Tnk }∞k=0 are processes resulting from any
algorithm,4 then, ∀T ∈ N,

1

T

T−1∑
t=0

E(fn[t]− yn[t]) ≤ B1

T
,(10)

1

T

T−1∑
t=0

E(gnl [t]− znl [t]) ≤ B2

T
, l ∈ {1, 2, · · · , L},(11)

4Note that this algorithm might make decisions using the past information.
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ASYNCHRONOUS RENEWAL OPTIMIZATION 11

where B1 = 2ymax

√
B, B2 = 2zmax

√
B and fn[t], gn[t] are constant over each renewal frame for

system n defined by

fn[t] = f̂n(αn), if t ∈ T nk , αnk = αn

gn[t] = ĝn(αn), if t ∈ T nk , αnk = αn,

and
(
f̂n(αn), ĝn(αn)

)
are defined in Definition 2.1.

The proof of this lemma is delayed to Appendix A.

Remark 3.1. Note that directly computing f
n
∗ and gnl,∗ indicated by Lemma 3.2 would be

difficult because of the fractional nature of Pn, the coupling between different systems through
time average constraints and the fact that dl = E(dl[t]) might be unknown. However, Lemma
3.2 can be used to prove important performance theorems regarding our proposed algorithm as is
indicated by the following lemma.

The following key-feature inequality connects our proposed algorithm with the performance
vectors inside Pn.

Lemma 3.4. Consider the stochastic processes {yn[t]}∞t=0, {zn[t]}∞t=0, and {Tnk }∞k=0 resulting
from the proposed algorithm. For any system n, the following holds for any k ∈ N and any
(f
n
,gn) ∈ Pn,

E
(∑

t∈T n
k

(V yn[t] + 〈Q[tnk ], zn[t]〉)
∣∣∣Q[tnk ]

)
E
(
Tnk |Q[tnk ]

) ≤ V fn + 〈Q[tnk ],gn〉 ,(12)

Proof. First of all, since the proposed algorithm solves (7) over all possible decisions in An,
it must achieve value less than or equal to that of any action αn ∈ An at the same frame. This
gives,

Dn
k ≤

E
(∑

t∈T n
k

(V yn[t] + 〈Q[tnk ], zn[t]〉)
∣∣∣Q[tnk ], αnk = αn

)
E
(
Tnk
∣∣Q[tnk ], αnk = αn

) =
V ŷn(αn) + 〈Q[tnk ], ẑn(αn)〉

T̂n(αn)
,

where Dn
k is defined in (7) and the equality follows from the renewal property of the system that

Tnk ,
∑

t∈T n
k
yn[t] and

∑
t∈T n

k
zn[t] are conditionally independent of Q[tnk ] given αnk = αn.

Since Tnk ≥ 1, this implies

T̂n(αn) ·Dn
k ≤ V ŷn(αn) + 〈Q[tnk ], ẑn(αn)〉 ,

thus, for any αn ∈ An,

V ŷn(αn) + 〈Q[tnk ], ẑn(αn)〉 −Dn
k · T̂n(αn) ≥ 0.

Since Sn specified in Definition 2.2 is the convex hull of
{

(ŷn(αn), ẑn(αn), T̂n(αn)), αn ∈ An
}

,

it follows for any vector (y, z, T ) ∈ Sn, we have

V y + 〈Q[tnk ], z〉 −Dn
k · T ≥ 0.

Dividing both sides by T and using the definition of Pn in Definition 2.2 give

Dn
k ≤ V f

n
+ 〈Q[tnk ],gn〉 , ∀(fn,gn) ∈ Pn.
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12 X. WEI, M. J. NEELY

Finally, since {yn[t]}∞t=0, {zn[t]}∞t=0, and {Tnk }∞k=0 result from the proposed algorithm and the
action chosen is determined by Q[tnk ] as in (7),

Dn
k =

E
(∑

t∈T n
k

(V yn[t] + 〈Q[tnk ], zn[t]〉)
∣∣∣Q[tnk ]

)
E
(
Tnk |Q[tnk ]

) .

This finishes the proof.

Our next step is to give a frame-based analysis for each system by constructing a supermartin-
gale on the per-frame timescale. Recall that {F [t]}∞t=0 is a filtration (with F [t] representing sys-
tem history during slots {0, · · · , t− 1}). Fix a system n and recall that tnk is the time slot where
the k-th renewal occurs for system n. We would like to define a filtration corresponding to the
random times tnk . To this end, define the collection of sets {Fnk }∞k=0 such that for each k,

Fnk := {A ∈ F : A ∩ {tnk ≤ t} ∈ F [t],∀t ∈ {0, 1, 2, · · · }}

For example, the following set A is an element of Fn3 :

A = {tn3 = 5} ∩ {y[0] = y0, y[1] = y1, y[2] = y2, y[3] = y3, y[4] = y4}

where y0, · · · , y4 are specific values. Then A ∈ Fn3 because for i ∈ {0, 1, 2, 3, 4} we have A∩{tn3 ≤
i} = ∅ ∈ F [i], and for i ∈ {5, 6, 7, · · · } we have A ∩ {t ≤ i} = A ∈ F [i]. The following technical
lemma is proved in the appendix.

Lemma 3.5. The sequence {Fnk }∞k=0 is a valid filtration, i.e. Fnk ⊆ Fnk+1, ∀k ≥ 0. Further-
more, for any real-valued adapted process {Zn[t− 1]}∞t=1 with respect to {F [t]}∞t=1, 5{

Gtnk (Zn[0], Zn[1], · · · , Zn[tnk − 1])
}∞
k=1

is also adapted to {Fnk }∞k=1, where for any t ∈ N, Gt(·) is a fixed real-valued measurable mappings.
That is, for any k, it holds that any measurable function of (Zn[0], · · · , Z[tnk − 1]) is determined
by events in Fnk .

With Lemma 3.4 and Lemma 3.5, we can construct a supermartingale as follows,

Lemma 3.6. Consider the stochastic processes {yn[t]}∞t=0, {zn[t]}∞t=0, and {Tnk }∞k=0 resulting
from the proposed algorithm. For any (f

n
,gn) ∈ Pn, let

(13) Xn[t] := V
(
yn[t]− fn

)
+ 〈Q[t], zn[t]− gn〉 ,

then,

E

∑
t∈T n

k

Xn[t]

∣∣∣∣∣∣Fnk
 ≤ Lzmax(Nzmax + dmax)B := C0,

where B, zmax and dmax are as defined in Assumption 2.2. Furthermore, define a real-valued
process {Y n

K}∞K=0 on the frame such that Y n
0 = 0 and

Y n
K =

K−1∑
k=0

∑
t∈T n

k

Xn[t]− C0

 , K ≥ 1.

Then, {Y n
K}∞K=0 is a supermartingale adapted to the aforementioned filtration {Fnk }∞K=0.

5Meaning that for each t in {1, 2, 3, · · · }, the random variable Zn[t− 1] is determined by events in F [t].

imsart-ssy ver. 2014/02/20 file: asyn-theory.tex date: March 14, 2018



ASYNCHRONOUS RENEWAL OPTIMIZATION 13

Proof. Consider any t ∈ T nk , then, we can decompose Xn[t] as follows

Xn[t] =V (yn[t]− fn) + 〈Q[tnk ], zn[t]− gn〉+ 〈Q[t]−Q[tnk ], zn[t]− gn〉 .(14)

By the queue updating rule (6), we have for any l ∈ {1, 2, · · · , L} and any t > tnk ,

(15) |Ql[t]−Ql[tnk ]| ≤
t−1∑
s=tnk

∣∣∣∣∣
N∑
m=1

zml [s]− dl[t]

∣∣∣∣∣ ≤ (t− tnk)(Nzmax + dmax)

Thus, for the last term in (14), by Hölder’s inequality,

〈Q[t]−Q[tnk ], zn[t]− gn〉 ≤‖Q[t]−Q[tnk ]‖1 · ‖zn[t]− gn‖∞

≤
t−1∑
s=tnk

∥∥∥∥∥
N∑
m=1

zn[s]− d[t]

∥∥∥∥∥
1

· ‖zn[t]− gn‖∞

≤(t− tnk)L(Nzmax + dmax) · 2zmax,

where the second inequality follows from (15) and the last inequality follows from the bound-
edness assumption (Assumption 2.2) of corresponding quantities. Substituting the above bound

into (14) gives a bound on E
(∑

t∈T n
k
Xn[t]

∣∣∣Fnk ) as

E

∑
t∈T n

k

Xn[t]

∣∣∣∣∣∣Fnk
 ≤E

∑
t∈T n

k

(
V
(
yn[t]− fn

)
+ 〈Q[tnk ], zn[t]− gn〉

)∣∣∣∣∣∣Fnk


+ E

∑
t∈T n

k

(t− tnk)

∣∣∣∣∣∣Fnk
 · 2L(Nzmax + dmax)zmax

≤E

∑
t∈T n

k

(
V
(
yn[t]− fn

)
+ 〈Q[tnk ], zn[t]− gn〉

)∣∣∣∣∣∣Fnk


+ E
(

(Tnk )2
∣∣Fnk ) · L(Nzmax + dmax)zmax,(16)

where we use the fact that 0 + 1 + · · ·+ Tnk − 1 = (Tnk − 1)Tnk /2 ≤ (Tnk )2 in the last inequality.
Next, by the queue updating rule (6), Ql[t

n
k ] is determined by znl [0], · · · , znl [tnk − 1] (n =

1, 2, · · · , N) and dl[0], · · · , dl[tnk − 1] for any l ∈ {1, 2, · · · , L}. Thus, by Lemma 3.5, Q[tnk ] is
determined by Fnk . For the proposed algorithm, each system makes decisions purely based on
the virtual queue state Q[tnk ], and by the renewal property of each system, given the decision
at the k-th renewal, the random quantities Tnk , zn[t] and yn[t], t ∈ T nk are independent of the
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14 X. WEI, M. J. NEELY

outcomes from the slots before tnk . This implies the following display,

E

∑
t∈T n

k

(
V
(
yn[t]− fn

)
+ 〈Q[tnk ], zn[t]− gn〉

)∣∣∣∣∣∣Fnk


= E

∑
t∈T n

k

V
(
yn[t]− fn

)∣∣∣∣∣∣Fnk
+

〈
Q[tnk ],E

∑
t∈T n

k

(zn[t]− gn)

∣∣∣∣∣∣ Fnk
〉

= E

∑
t∈T n

k

V
(
yn[t]− fn

)∣∣∣∣∣∣Q[tnk ]

+

〈
Q[tnk ],E

∑
t∈T n

k

(zn[t]− gn)

∣∣∣∣∣∣ Q[tnk ]

〉

= E

∑
t∈T n

k

(
V
(
yn[t]− fn

)
+ 〈Q[tnk ], zn[t]− gn〉

)∣∣∣∣∣∣Q[tnk ]

,(17)

By Lemma 3.4, we have the following:

E

∑
t∈T n

k

(V yn[t] + 〈Q[tnk ], zn[t]〉)

∣∣∣∣∣∣Q[tnk ]

 ≤ (V fn + 〈Q[tnk ],gn〉
)
· E(Tnk |Q[tnk ]).

Thus, rearranging terms in above inequality gives the expectation on the right hand side of
(17) is no greater than 0 and hence the first expectation on the right hand side of (16) is
also no greater than 0. For the second expectation in (16), using (5) in Assumption 2.2 gives
E
(

(Tnk )2
∣∣Fnk ) ≤ B and the first part of the lemma is proved.

For the second part of the lemma, by Lemma 3.5 and the definition of Y n
K , the process

{Y n
K}∞K=0 is adapted to {Fnk }∞K=0. Moreover, by Assumption 2.2,

E

∣∣∣∣∣∣
∑
t∈T n

k

Xn[t]

∣∣∣∣∣∣
 ≤ E

∑
t∈T n

k

|Xn[t]|

 <∞, ∀k.

Thus, E(|Y n
K |) < ∞, ∀K ∈ N, i.e. it is absolutely integrable. Furthermore, by the first part of

the lemma,

E
(
Y n
K+1 | Fnk

)
= Y n

K + E

∑
t∈T n

K

Xn[t]− C0

 ∣∣∣∣∣∣ Fnk
 ≤ Y n

K ,

finishing the proof.

3.3. Synchronization lemma. So far, we have analyzed the processes related to each individ-
ual system over its renewal frames. However, due the asynchronous behavior of different systems,
the supermartingales of each system cannot be immediately summed.

In order to get a global performance bound, we have to get rid of any index related to
individual renewal frames only. In other words, we need to look at the system property at any
time slot T as opposed to any renewal tnk . We start with the following standard definition of
stopping time:

Definition 3.1. Given a probability space (Ω,F , P ) and a filtration {∅,Ω} = F0 ⊆ F1 ⊆
F2 · · · in F . A stopping time τ with respect to the filtration {Fi}∞i=0 is a random variable such
that for any i ∈ N,

{τ = i} ∈ Fi,
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ASYNCHRONOUS RENEWAL OPTIMIZATION 15

i.e. the stopping time occurring at time i is contained in the information during slots 0, 1, 2, · · · , i−
1.

Next, for any fixed slot T > 0, let Sn[T ] be the number of renewals up to (and including)
time slot T , with with the convention that the first renewal occurs at time t = 0, so tn0 = 0 and
Sn[0] = 1, i.e. tn0 = 0. The next lemma shows Sn[T ] is a valid stopping time, whose proof is in
the appendix.

Lemma 3.7. For each n ∈ {1, 2, · · · , N}, the random variable Sn[T ] is a stopping time with
respect to the filtration {Fnk }∞k=0, i.e. {Sn[T ] = k} ∈ Fnk , ∀k ∈ N.

The following theorem tells us a stopping-time truncated supermartingale is still a super-
martingale.

Theorem 3.1 (Theorem 5.2.6 in [7]). If τ is a stopping time and Z[i] is a supermartingale
with respect to {Fi}∞i=0, then Z[i ∧ τ ] is also a supermartingale, where a ∧ b , min{a, b}.

With this theorem and the above stopping time construction, we have the following lemma:

Lemma 3.8. For each n ∈ {1, 2, · · · , N} and any fixed T ∈ N, we have

1

T

T−1∑
t=0

E(Xn[t]) ≤ C1 +
C2V

T
,

where
C1 := 6Lzmax(Nzmax + dmax)B, C2 := 2ymax

√
B.

Proof. First, note that the renewal index k starts from 0. Thus, for any fixed T ∈ N,
tnSn[T ]−1 ≤ T < tnSn[T ], and

E

(
T−1∑
t=0

Xn[t]

)
=E

tn
Sn[T ]

−1∑
t=0

Xn[t]−
tn
Sn[T ]

−1∑
t=T

Xn[t]


=E

tn
Sn[T ]

−1∑
t=1

Xn[t]

− E

tn
Sn[T ]

−1∑
t=T

Xn[t]


=E
(
Y n
Sn[T ]

)
+ C0E(Sn[T ])− E

tn
Sn[T ]

−1∑
t=T

Xn[t]


≤E
(
Y n
Sn[T ]

)
+ C0(T + 1)− E

tn
Sn[T ]

−1∑
t=T

Xn[t]

,(18)

where the third equality follows from the definition of Y n
K in Lemma 3.6 and the last inequality

follows from the fact that the number of renewals up to time slot T is no more than the total

number of slots, i.e. Sn[T ] ≤ T + 1. For the term E
(
Y n
Sn[T ]

)
, we apply Theorem 3.1 with

τ = Sn[T ] and index K to obtain {Y n
K∧Sn[T ]}

∞
K=0 is a supermartingale. This implies

E
(
Y n
K∧Sn[T ]

)
≤ E

(
Y n
0∧Sn[T ]

)
= E(Y n

0 ) = 0, ∀K ∈ N.
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16 X. WEI, M. J. NEELY

Since Sn[T ] ≤ T + 1, it follows by substituting K = T + 1,

E
(
Y n
Sn[T ]

)
= E

(
Y n
(T+1)∧Sn[T ]

)
≤ 0.

For the last term in (18), by queue updating rule (6), for any l ∈ {1, 2, · · · , L},

|Ql[t]| ≤
t−1∑
s=0

∣∣∣∣∣
N∑
m=1

zml [s]− dl[t]

∣∣∣∣∣ ≤ t(Nzmax + dmax),

it then follows from Hölder’s inequality again that

E

∣∣∣∣∣∣
tn
Sn[T ]

−1∑
t=T

Xn[t]

∣∣∣∣∣∣
 =E

∣∣∣∣∣∣
tn
Sn[T ]

−1∑
t=T

(
V (yn[t]− fn) + 〈Q[t], zn[t]− gn〉

)∣∣∣∣∣∣


≤E

tn
Sn[T ]

−1∑
t=T

(
V
∣∣∣yn[t]− fn

∣∣∣+ ‖Q[t]‖1 · ‖zn[t]− gn‖∞
)

≤E

tn
Sn[T ]

−1∑
t=T

(2V ymax + L(Nzmax + dmax)t · 2zmax)


=2V ymax · E

(
tnSn[T ] − T

)
+ Lzmax(Nzmax + dmax)

·
(

(2T − 1) · E
(
tnSn[T ] − T

)
+ E

(
tnSn[T ] − T

)2)
≤2V ymax

√
B + 2Lzmax(Nzmax + dmax)

√
BT + Lzmax(Nzmax + dmax)B

≤2V ymax

√
B + 2Lzmax(Nzmax + dmax)B(T + 1),

where in the second from last inequality we use (5) of Assumption 2.2 that the residual life
tnSn[T ] − T satisfies

E
(

(tnSn[T ] − T )2
)

= E
(
E
(

(tnSn[T ] − T )2
∣∣∣ tnSn[T ] − t

n
Sn[T ]−1 ≥ T − t

n
Sn[T ]−1

))
≤ B

and E
(
tnSn[T ] − T

)
≤
√
B, and in the last inequality we use the fact that B ≥ 1, thus,

√
B ≤ B.

Substitute the above bound into (18) gives

E

(
T−1∑
t=0

Xn[t]

)
≤C0(T + 1) + 2V ymaxB + 2Lzmax(Nzmax + dmax)B(T + 1)

=2V ymax

√
B + 3Lzmax(Nzmax + dmax)B(T + 1)

≤2V ymax

√
B + 6Lzmax(zmax + dmax)BT

where we use the definition C0 = Lzmax(zmax + dmax)B from Lemma 3.6 in the equality and use
T + 1 ≤ 2T in the final equality. Dividing both sides by T finishes the proof.

3.4. Achieving near optimality. The following theorem gives the performance bound of our
proposed algorithm.
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ASYNCHRONOUS RENEWAL OPTIMIZATION 17

Theorem 3.2. The sequences {yn[t]}∞t=0 and {zn[t]}∞t=0 produced by the proposed algorithm
satisfy all the constraints in (2) and achieves O(1/V ) near optimality, i.e.

lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(yn[t]) ≤ f∗ +
NC1 + C3

V
,

where f∗ is the optimal objective of (1)-(2), C1 is defined in Lemma 3.8 and C3 := (Nzmax +
dmax)2L/2.

Proof. Define the drift-plus-penalty expression at time t as

(19) P [t] := E

(
N∑
n=1

V yn[t] +
1

2

(
‖Q[t+ 1]‖2 − ‖Q[t]‖2

))
.

By the queue updating rule (6), we have

P [t] ≤E

 N∑
n=1

V yn[t] +
1

2

L∑
l=1

(
N∑
n=1

znl [t]− dl[t]

)2

+

L∑
l=1

Ql[t]

(
N∑
n=1

znl [t]− dl[t]

)
≤1

2
(Nzmax + dmax)2L+ E

(
N∑
n=1

V yn[t] +
L∑
l=1

Ql[t]

(
N∑
n=1

znl [t]− dl[t]

))

=
1

2
(Nzmax + dmax)2L+ E

(
N∑
n=1

V yn[t] +
L∑
l=1

Ql[t]

(
N∑
n=1

znl [t]− dl

))

where the second inequality follows from the boundedness assumption (Assumption 2.2) that∑L
l=1

(∑N
n=1 z

n
l [t]− dl[t]

)2
≤ (Nzmax+dmax)2L, and the equality follows from the fact that dl[t]

is i.i.d. and independent of Ql[t], thus,

E(Ql[t]dl[t]) = E(Ql[t] · E(dl[t]|Ql[t])) = E(Ql[t]dl).

For simplicity, define C3 = 1
2(Nzmax + dmax)2L. Now, by the achievability of optimality in

⊗Nn=1Pn (Lemma 3.2), we have
∑N

n=1 g
n
l,∗ ≤ dl, thus, substituting this inequality into the above

bound for P [t] gives

P [t] ≤C3 + E

(
N∑
n=1

V yn[t] +

N∑
n=1

L∑
l=1

Ql[t]
(
znl [t]− gnl,∗

))

=C3 +

N∑
n=1

E(V yn[t] + 〈Q[t], zn[t]− gn∗ 〉)

=C3 +

N∑
n=1

E(Xn[t]) + V

N∑
n=1

f
n
∗

=C3 +

N∑
n=1

E(Xn[t]) + V f∗,

where we use the definition of Xn[t] in (13) by substituting (f
n
,gn) with (f

n
∗ ,g

n
∗ ), i.e. Xn[t] =

V (yn[t]−fn∗ )+〈Q[t], zn[t]− gn∗ 〉, in the second from last equality and use the optimality condition
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18 X. WEI, M. J. NEELY

(Lemma 3.2) in the final equality. Now, by Lemma 3.8, we have for any T ∈ N,

1

T

T−1∑
t=0

P [t] ≤C3 + V f∗ +
1

T

T−1∑
t=0

N∑
n=1

E(Xn[t])

=C3 + V f∗ +
N∑
n=1

1

T

T−1∑
t=0

E(Xn[t])

≤NC1 + C3 + V f∗ +
NC2V

T
.(20)

On the other hand, by the definition of P [t] in (19) and then telescoping sums with Q[0] = 0,
we have

1

T

T−1∑
t=0

P [t] =
1

T

T−1∑
t=0

E

(
N∑
n=1

V yn[t] +
1

2

(
‖Q[t+ 1]‖2 − ‖Q[t]‖2

))

=
1

T

T−1∑
t=0

N∑
n=1

V E(yn[t]) +
1

2T
E
(
‖Q[T ]‖2

)
.

Combining this with inequality (20) gives

(21)
1

T

T−1∑
t=0

N∑
n=1

V E(yn[t]) +
1

2T
E
(
‖Q[T ]‖2

)
≤ NC1 + C3 + V f∗ +

NC2V

T
.

Since 1
2T E

(
‖Q[T ]‖22

)
≥ 0, we can throw away the term and the inequality still holds, i.e.

(22)
1

T

T−1∑
t=0

N∑
n=1

E(yn[t]) ≤ f∗ +
NC1 + C3

V
+
NC2

T
.

Taking lim supT→∞ from both sides gives the near optimality in the theorem.
To get the constraint violation bound, we use Assumption 2.2 that |yn[t]| ≤ ymax, then, by

(21) again, we have

1

T
E
(
‖Q[T ]‖2

)
≤ 2(NC1 + C3) + 4V ymax +

2NC2V

T
.

By Jensen’s inequality E
(
‖Q[T ]‖2

)
≥ E(‖Q[T ]‖)2. This implies that

E(‖Q[T ]‖) ≤
√

(2(NC1 + C3) + 4V ymax)T + 2NC2V ,

which implies

(23)
1

T
E(‖Q[T ]‖) ≤

√
2(NC1 + C3) + 4V ymax

T
+

2NC2V

T 2
.

Sending T →∞ gives

lim
T→∞

1

T
E(Ql[T ]) = 0, ∀l ∈ {1, 2, · · · , L}.

Finally, by Lemma 2.1, all constraints are satisfied.
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ASYNCHRONOUS RENEWAL OPTIMIZATION 19

Note that the above proof implies a more refined result that illustrates the convergence time.
Fix an ε > 0, let V = 1/ε, then, for all T ≥ 1/ε, (22) implies that

1

T

T−1∑
t=0

N∑
n=1

E(yn[t]) ≤ f∗ +O(ε).

However, (23) suggests a larger convergence time is required for constraint satisfaction! For
V = 1/ε, it can be shown that (23) implies that

1

T

T−1∑
t=0

N∑
n=1

E(znl [t]) ≤ dl +O(ε),

whenever T ≥ 1/ε3. The next section shows a tighter 1/ε2 convergence time with a mild Lagrange
multiplier assumption.

4. Convergence Time Analysis.

4.1. Lagrange Multipliers. Consider the following optimization problem:

min
N∑
n=1

f
n

(24)

s.t.
N∑
n=1

gnl ≤ dl, ∀l ∈ {1, 2, · · · , L},(25)

(f
n
,gn) ∈ Pn, ∀n ∈ {1, 2, · · · , N}.(26)

Since Pn is convex, it follows Pn is convex and ⊗Nn=1Pn is also convex. Thus, (24)-(26) is a
convex program. Furthermore, by Lemma 3.2, we have (24)-(26) is feasible if and only if (1)-(2)
is feasible, and when assuming feasibility, they have the same optimality f∗ as is specified in
Lemma 3.2.

Since Pn is convex, one can show (see Proposition 5.1.1 of [2]) that there always exists a
sequence (γ0, γ1, · · · , γL) so that γi ≥ 0, i = 0, 1, · · · , L and

N∑
n=1

γ0f
n

+

L∑
l=1

γl

N∑
n=1

gnl ≥ γ0f∗ +

L∑
l=1

γldl, ∀(f
n
,gn) ∈ Pn,

i.e. there always exists a hyperplane parametrized by (γ0, γ1, · · · , γL), supported at (f∗, d1, · · · , dL)

and containing the set
{(∑N

n=1 f
n
,
∑N

n=1 g
n
)

: (f
n
,gn) ∈ Pn, ∀n ∈ {1, 2, · · · , N}

}
on one

side. This hyperplane is called “separating hyperplane”. The following assumption stems from
this property and simply assumes this separating hyperplane to be non-vertical (i.e. γ0 > 0):

Assumption 4.1. There exists non-negative finite constants γ1, γ2, · · · , γL such that the
following holds,

N∑
n=1

f
n

+

L∑
l=1

γl

N∑
n=1

gnl ≥ f∗ +

L∑
l=1

γldl, ∀(f
n
,gn) ∈ Pn,

i.e. there exists a separating hyperplane parametrized by (1, γ1, · · · , γL).
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20 X. WEI, M. J. NEELY

Remark 4.1. The parameters γ1, · · · , γL are called Lagrange multipliers and this assump-
tion is equivalent to the existence of Lagrange multipliers for constrained convex program (24)-
(26). It is known that Lagrange multipliers exist if the Slater’s condition holds ([2]), which states
that there exists a nonempty interior of the feasible region for the convex program. Slater’s con-
dition is very common in convex optimization theory and plays an important role in convergence
rate analysis, such as the analysis of the interior point algorithm ([5]). In the current context,
this condition is satisfied, for example, in energy aware server scheduling problems, if the highest
possible sum of service rates from all servers is strictly higher than the arrival rate.

Lemma 4.1. Suppose {yn[t]}∞t=0, {zn[t]}∞t=0 and {Tnk }∞k=0 are processes resulting from the
proposed algorithm. Under the Assumption 4.1,

1

T

T−1∑
t=0

(
f∗ −

N∑
n=1

E(yn[t])

)
≤ 1

T

T−1∑
t=0

L∑
l=1

γl

(
N∑
n=1

E(znl [t])− dl

)
+
C4

T
,

where C4 = B1N +B2N
∑L

l=1 γl, and B1, B2 are defined in Lemma 3.3.

Proof. First of all, from the statement of Lemma 3.3, for the proposed algorithm, we can
define the corresponding processes (fn[t],gn[t]) for all n as

fn[t] =f̂n(αn) = ŷn(αn)/T̂n(αn), if t ∈ T nk , αnk = αn

gn[t] =ĝn(αn) = ẑn(αn)/T̂n(αn), if t ∈ T nk , αnk = αn,

where the last equality follows from the definition of f̂n(αn) and ĝn(αn) in Definition 2.1. Since(
ŷn(αn), ẑn(αn), T̂n(αn)

)
∈ Sn, by definition of Pn in Definition 2.2, (fn[t],gn[t]) ∈ Pn ⊆

Pn, ∀n, ∀t. Since Pn is a convex set by Lemma 3.1, it follows

(E(fn[t]), E(gn[t])) ∈ Pn, ∀t, ∀n.

By Assumption 4.1, we have

N∑
n=1

E(fn[t]) +
L∑
l=1

γl

N∑
n=1

E(gnl [t]) ≥ f∗ +
L∑
l=1

γldl, ∀t.

Rearranging terms gives

f∗ −
N∑
n=1

E(fn[t]) ≤
L∑
l=1

γl

(
N∑
n=1

E(gnl [t])− dl

)
, ∀t.

Taking the time average from 0 to T − 1 gives

1

T

T−1∑
t=0

(
f∗ −

N∑
n=1

E(fn[t])

)
≤ 1

T

T−1∑
t=0

L∑
l=1

γl

(
N∑
n=1

E(gnl [t])− dl

)
.(27)

For the left hand side of (27), we have

l.h.s. =
1

T

T−1∑
t=0

(
f∗ −

N∑
n=1

E(yn[t])

)
+

1

T

T−1∑
t=0

N∑
n=1

E(yn[t]− fn[t])

≥ 1

T

T−1∑
t=0

(
f∗ −

N∑
n=1

E(yn[t])

)
− B1N

T
.(28)
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where the inequality follows from (10) in Lemma 3.3. For the right hand side of (27), we have

r.h.s. =
1

T

T−1∑
t=0

L∑
l=1

γl

(
N∑
n=1

E(znl [t])− dl

)
+

1

T

T−1∑
t=0

L∑
l=1

γl

N∑
n=1

E(gnl [t]− znl [t])

≤ 1

T

T−1∑
t=0

L∑
l=1

γl

(
N∑
n=1

E(znl [t])− dl

)
+
B2N

∑L
l=1 γl

T
,(29)

where the inequality follows from the fact that γl ≥ 0, ∀l and (11) in Lemma 3.3. Substituting
(28) and (29) into (27) finishes the proof.

4.2. Convergence time theorem.

Theorem 4.1. Fix ε ∈ (0, 1) and define V = 1/ε. If the problem (1)-(2) is feasible and the
Assumption 4.1 holds, then, for all T ≥ 1/ε2,

1

T

T−1∑
t=0

N∑
n=1

E(yn[t]) ≤ f∗ +O(ε),(30)

1

T

T−1∑
t=0

N∑
n=1

E(znl [t]) ≤ dl +O(ε), l ∈ {1, 2, · · · , L}.(31)

Thus, the algorithm provides O(ε) approximation with the convergence time O(1/ε2).

Proof. First of all, by queue updating rule (6),

(32)
T−1∑
t=0

(
N∑
n=1

E(znl [t])− dl

)
≤ E(Ql[T ]).

By Lemma 4.1, we have

1

T

T−1∑
t=0

(
f∗ −

N∑
n=1

E(yn[t])

)
≤ 1

T

T−1∑
t=0

L∑
l=1

γl

(
N∑
n=1

E(znl [t])− dl

)
+
C4

T
,

≤
L∑
l=1

γl
T
E(Ql[T ]) +

C4

T
.(33)

Combining this with (21) gives

1

2T
E
(
‖Q[T ]‖2

)
≤ NC1 + C3 +

V

T

T−1∑
t=0

(
f∗ −

N∑
n=1

E(yn[t])

)
+
NC2V

T

≤ NC1 + C3 +
(NC2 + C4)V

T
+ V

L∑
l=1

γl
T
E(Ql[T ])

≤ NC1 + C3 +
(NC2 + C4)V

T
+
V

T
‖γ‖ · ‖E(Q[T ])‖,(34)

where γ := (γ1, · · · , γL), the second inequality follows from (33) and the final inequality follows
from Cauchy-Schwarz. Then, by Jensen’s inequality, we have

‖E(Q[T ])‖2 ≤ E
(
‖Q[T ]‖2

)
.
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Thus, it follows by (34) that

‖E(Q[T ])‖2 − 2V ‖γ‖ · ‖E(Q[T ])‖ − 2(NC1 + C3)T − 2(NC2 + C4)V ≤ 0.

The left hand side is a quadratic form on ‖E(Q[T ])‖, and the inequality implies that ‖E(Q[T ])‖
is deterministically upper bounded by the largest root of the equation x2 − bx − c = 0 with
b = 2V ‖γ‖ and c = 2(NC1 + C3)T + 2(NC2 + C4)V . Thus,

‖E(Q[T ])‖ ≤b+
√
b2 + 4c

2

=V ‖γ‖+
√
V 2‖γ‖2 + 2(NC1 + C3)T + 2(NC2 + C4)V

≤2V ‖γ‖+
√

2(NC1 + C3)T +
√

2(NC2 + C4)V .

Thus, for any l ∈ {1, 2, · · · , L},

1

T
E(Ql[T ]) ≤ 2V ‖γ‖

T
+

√
2(NC1 + C3)

T
+

√
2(NC2 + C4)V

T
.

By (32) again,

1

T

T−1∑
t=0

N∑
n=1

E(znl [t]) ≤ dl +
2V ‖γ‖
T

+

√
2(NC1 + C3)

T
+

√
2(NC2 + C4)V

T
.

Substituting V = 1/ε and T ≥ 1/ε2 into the above inequality gives ∀l ∈ {1, 2, · · · , L},

1

T

T−1∑
t=0

N∑
n=1

E(znl [t]) ≤dl +
(

2‖γ‖+
√

2(NC1 + C3)
)
ε+

√
2(NC2 + C4)ε3/2

=dl +O(ε).

Finally, substituting V = 1/ε and T ≥ 1/ε2 into (22) gives

1

T

T−1∑
t=0

N∑
n=1

E(yn[t]) ≤ f∗ +O(ε),

finishing the proof.

5. Simulation Study in Energy-aware Scheduling. Here, we apply the algorithm in-
troduced in Section 2 to deal with the energy-aware scheduling problem described in Section
1.1. To be specific, we consider a scenario with 5 homogeneous servers and 3 different classes of
jobs, i.e. N = 5 and L = 3. We assume that each server can only choose one class of jobs to
serve during each frame. So the mode set Mn contains three actions {1, 2, 3} and the action i
stands for serving the i-th class of jobs and we count the number of serviced jobs at the end of
each service duration. The action mn

k determines the following quantities:

• The uniformly distributed total number of class l jobs that can be served with expectation

E
(∑

t∈T n
k
µnl [t]

∣∣∣ mn
k

)
:= µ̂nl (mn

k).

• The geometrically distributed service duration Hn
k slots with expectation E(Hn

k | mn
k) :=

Ĥn(mn
k).

• The energy consumption ên(mn
k) for serving all these jobs.
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Table 1
Problem parameters

λi Ĥn(i) µ̂n(i) ên(i) În(i)

Class 1 2 5.5 15 (Uniform [9, 21] ∩ N) 16 2.5

Class 2 3 4.6 21 (Uniform [15, 27] ∩ N) 20 4.3

Class 3 4 3.8 17 (Uniform [11, 23] ∩ N) 13 3.7

• The geometrically distributed idle/setup time Ink slots with constant energy consumption

pn per slot and zero job service. The expectation E(Ink | mn
k) := În(mn

k).

The idle/setup cost is pn = 3 units per slot and the rest of the parameters are listed in Table 1.
Following the algorithm description in Section 2, the proposed algorithm has the queue up-

dating rule

Ql[t+ 1] = max

{
Ql[t] + λl[t]−

N∑
n=1

µnl [t], 0

}
,

and each system minimizes (7) each frame, which can be written as

min
mn

k∈Mn

V
(
ênl (mn

k) + pnÎn(mn
k)
)
− 〈Q[tnk ], µ̂n(mn

k)〉

Ĥn(mn
k) + În(mn

k)
.

Each plot for the proposed algorithm is the result of running 1 million slots and taking the time
average as the performance of the proposed algorithm. The benchmark is the optimal stationary
performance obtained by performing a change of variable and solving a linear program, knowing
the arrival rates (see also [12] for details).

Fig. 3 shows as the trade-off parameter V gets larger, the time average energy consumptions
under the proposed algorithm approaches the optimal energy consumption. Fig. 4 shows as V
gets large, the time average number of services also approaches the optimal service rate for each
class of jobs. In Fig. 5, we plot the time average queue backlog for each class of jobs verses V
parameter. We see that the queue backlog for the first class is always low whereas the rest queue
backlogs scale up linearly with V . This is because the service rate for the first class is always
strictly larger than the arrival rate whereas for the rest classes, as V gets larger, the service rates
approach the arrival rates. This plot, together with Fig. 3, also demonstrate that V is indeed a
trade-off parameter which trades queue backlog for near optimality.

APPENDIX A: ADDITIONAL LEMMAS AND PROOFS.

Proof of Lemma 2.1. Fix l ∈ {1, 2, · · · , L}. For any fixed T , Ql[T ] =
∑T−1

t=0 (Ql[t + 1] −
Ql[t]). For each summand, by queue updating rule (6),

Ql[t+ 1]−Ql[t] = max

{
Ql[t] +

N∑
n=1

znl [t]− dl[t], 0

}
−Ql[t]

≥Ql[t] +

N∑
n=1

znl [t]− dl[t]−Ql[t] =
N∑
n=1

znl [t]− dl[t].

Thus, by the assumption Ql[0] = 0,

Ql[T ] ≥
T−1∑
t=0

(
N∑
n=1

znl [t]− dl[t]

)
.
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Fig 3. Time average energy consumption verses V parameter over 1 millon slots.

Fig 4. Time average services verses V parameter over 1 millon slots.
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Fig 5. Time average queue size verses V parameter over 1 million slots.

Taking expectations of both sides with E(dl[t]) = dl, ∀l, gives

E(Ql[T ]) ≥
T−1∑
t=0

(
N∑
n=1

E(znl [t])− dl

)
.

Dividing both sides by T and passing to the limit gives

lim sup
T→∞

1

T

T−1∑
t=0

(
N∑
n=1

E(znl [t])− dl

)
≤ lim

T→∞

1

T
E(Ql[T ]) = 0,

finishing the proof.

Proof of Lemma 3.3. We prove bound (10) ((11) is proved similarly). By definition of
f̂n(αn) in Definition 2.1, we have for any αn ∈ An,

f̂n(αn) =
E
(∑

t∈T n
k
yn[t]

∣∣∣ αnk = αn
)

E
(
Tnk | αnk = αn

) ,

thus,

E

∑
t∈T n

k

(
f̂n(αnk)− yn[t]

)∣∣∣∣∣∣ αnk = αn

 = 0.

By the renewal property of the system, given αnk = αn, Tnk and
∑

t∈T n
k
yn[t] are independent of

the past information before tnk . Thus, the same equality holds if conditioning also on Fnk , i.e.

E

∑
t∈T n

k

(
f̂n(αnk)− yn[t]

)∣∣∣∣∣∣ αnk = αn, Fnk

 = 0.
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Hence,

E

∑
t∈T n

k

(
f̂n(αnk)− yn[t]

)∣∣∣∣∣∣ Fnk
 = 0.

By the definition of fn[t], this further implies that

E

∑
t∈T n

k

(fn[t]− yn[t])

∣∣∣∣∣∣ Fnk
 = 0.

Since |yn[t]| ≤ ymax and E(Tnk ) ≤
√
B, it follows E

(∣∣∣∑t∈T n
k

(fn[t]− yn[t])
∣∣∣) <∞ and the process

{FnK}∞K=0 defined as

FnK =
K−1∑
k=0

∑
t∈T n

k

(fn[t]− yn[t]) , K ≥ 1,

Fn0 = 0 is a martingale.
Consider any fixed T ∈ N and define Sn[T ] as the number of renewals up to T . Lemma

3.7 shows Sn[T ] is a valid stopping time with respect to the filtration {Fnk }∞k=0. Furthermore,
{FnK∧Sn[T ]}

∞
K=0 is a supermartingale by Theorem 3.1, where a ∧ b := min{a, b}.

For this fixed T , we have

E

(
T−1∑
t=0

(fn[t]− yn[t])

)
=E

tn
Sn[T ]

−1∑
t=0

(fn[t]− yn[t])

− E

tn
Sn[T ]

−1∑
t=T

(fn[t]− yn[t])


=E
(
FnSn[T ]

)
− E

tn
Sn[T ]

−1∑
t=T

(fn[t]− yn[t])

.
Since the number of renewals is always bounded by the number of slots at any time, i.e. Sn[T ] ≤
T + 1, it follows

E
(
FnSn[T ]

)
= E

(
Fn(T+1)∧Sn[T ]

)
≤ 0.

On the other hand,∣∣∣∣∣∣E
tn

Sn[T ]
−1∑

t=T

(fn[t]− yn[t])

∣∣∣∣∣∣ ≤ E
(
tnSn[T ] − T

)
· 2ymax ≤ 2ymax

√
B.

where the last inequality follows from Assumption 2.2 for the residual life time. Thus,

E

(
T−1∑
t=0

(fn[t]− yn[t])

)
≤ 2ymax

√
B.

Dividing both sides by T finishes the proof.

Proof of Lemma 3.5. Recall that tnk is the time slot where the k-th renewal occurs (k =
0, 1, 2, · · · ), then, it follows from the definition of stopping time ([7]) that {tnk}∞k=0 is a sequence
of stopping times with respect to {F [t]}∞t=0 satisfying tnk < tnk+1, ∀k. Thus, by definition of Fnk ,
for any set A ∈ Fnk ,

A ∩ {tnk+1 ≤ t} = A ∩ {tnk ≤ t} ∩ {tnk+1 ≤ t} ∈ F [t].
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Thus, A ∈ Fnk+1, which implies Fnk ⊆ Fnk+1, ∀k, and {Fnk }∞k=0 is indeed a filtration. This finishes
the first part of the proof.

Next, we would like to show that Gtnk (Zn0 , · · · , Zn[tnk − 1]) is measurable with respect to

Fnk , ∀k ≥ 1, i.e.
{
Gtnk (Zn0 , · · · , Zn[tnk − 1]) ∈ B

}
∈ Fnk , for any Borel set B ⊆ R. By definition

of Fnk , this is equivalent to showing {Gtnk (Zn0 , · · · , Zn[tnk − 1]) ∈ B} ∩ {tnk ≤ s} ∈ F [s] for any
slot s ≥ 0. For s = 0, this is obvious because {tnk ≤ 0} = ∅, ∀k ≥ 1. Consider any s ≥ 1,{

Gtnk (Zn0 , · · · , Zn[tnk − 1]) ∈ B
}
∩ {tnk ≤ s}

=
s⋃
i=1

(
{Gi(Zn0 , · · · , Zn[i− 1]) ∈ B}

⋂
{tnk = i}

)
=

s⋃
i=1

({
(Zn0 , · · · , Zn[i− 1]) ∈ G−1i (B)

}⋂
{tnk = i}

)
∈ F [s], ∀k ≥ 1,

where the last step follows from the assumption that the random variable Zn[t−1] is measurable
with respect to F [t] for any t > 0 and tnk is a stopping time with respect to {F [t]}∞t=0 for all
k ≥ 1. This gives the second part of the claim.

Proof of Lemma 3.7. We aim to prove {Sn[T ] = k} ∈ Fnk , ∀k ∈ N. First of all, recall that
the index of the renewal starts from k = 0 and tn0 = 0, thus, for any k ∈ N, {Sn[T ] = k} = {tnk >
T} ∩ {tnk−1 ≤ T}, and any t ∈ N,

{Sn[T ] = k} ∩ {tnk ≤ t} ={tnk > T} ∩ {tnk−1 ≤ T} ∩ {tnk ≤ t}.(35)

Consider two cases as follows:

1. t ≤ T . In this case, the set (35) is empty and obviously belongs to F [t].
2. t > T . In this case, we have {tnk > T} ∩ {tnk ≤ t} = {T < tnk ≤ t} ∈ F [t] as well as
{tnk−1 ≤ T} ∈ F [T ] ⊆ F [t]. Thus, the set (35) belongs to F [t].

Overall, we have {Sn[T ] = k} ∩ {tnk ≤ t} ∈ F [t], ∀t ∈ N. Thus, {Sn[T ] = k} ∈ Fnk and Sn[T ] is
indeed a valid stopping time with respect to the filtration {Fnk }∞k=0.

The rest of the section is devoted to the proof of Lemma 3.2.

Proof of Lemma 3.2. To prove the first part of the claim, we define the following notation:

N⊕
n=1

Pn :=

{
N∑
n=1

pn, pn ∈ Pn, ∀n

}

is the Minkowski sum of sets Pn, n ∈ {1, 2, · · · , N}, and for any sequence {x[t]}∞t=0 taking values
in Rd, define

lim sup
T→∞

x[T ] :=

(
lim sup
T→∞

x1[T ], · · · , lim sup
T→∞

xd[T ]

)
is a vector of lim sups. By definition, any vector in ⊕Nn=1Pn can be constructed from ⊗Nn=1Pn,
thus, it is enough to show that there exists a vector r∗ ∈ ⊕Nn=1Pn such that r∗0 = f∗ and the
rest of the entries r∗l ≤ dl, l = 1, 2, · · · , L.

By the feasibility assumption for (1)-(2), we can consider any algorithm that achieves the
optimality of (1)-(2) and the corresponding process {(fn[t],gn[t])}∞t=0 defined in Lemma 3.3 for
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any system n. Notice that (fn[t],gn[t]) ∈ Pn, ∀n, ∀t. This follows from the definition of f̂n(αn)
and ĝn(αn) in Definition 2.1 that

fn[t] =f̂n(αn) = ŷn(αn)/T̂n(αn), if t ∈ T nk , αnk = αn

gn[t] =ĝn(αn) = ẑn(αn)/T̂n(αn), if t ∈ T nk , αnk = αn,

and
(
ŷn(αn), ẑn(αn), T̂n(αn)

)
∈ Sn. By definition of Pn in Definition 2.2, (fn[t],gn[t]) ∈

Pn, ∀n, ∀t.
Since Pn is convex by Lemma 3.1, it follows that (E(fn[t]),E(gn[t])) ∈ Pn, ∀n, ∀t. Hence,(

1

T

T−1∑
t=1

E(fn[t]),
1

T

T−1∑
t=1

E(gn[t])

)
∈ Pn, ∀T, ∀n.

This further implies that

r(T ) :=

(
1

T

T−1∑
t=1

N∑
n=1

E(fn[t]),
1

T

T−1∑
t=1

N∑
n=1

E(gn[t])

)
∈

N⊕
n=1

Pn.

By Lemma 3.1, Pn is compact in RL+1. Thus, ⊕Nn=1Pn is also compact. This implies that the
sequence {r(T )}∞T=1 has at least one limit point, and any such limit point is contained in ⊕Nn=1Pn.

We consider a specific limit point of {r(T )}∞T=1 denoted as r∗ ∈ ⊕Nn=1Pn, with the first entry
denoted as r∗0 satisfying

r∗0 = lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(fn[t]).

Then, we have the rest of the entries of r∗ must satisfy

r∗l ≤ lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(gn[t]), ∀l ∈ {1, 2, · · · , L}.

Now, by Lemma 3.3, we can connect the lim sup with respect to fn[t] and gn[t] to that of yn[t]
and zn[t] as follows:

lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(yn[t])

= lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

(E(yn[t]− fn[t]) + E(fn[t]))

= lim
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(yn[t]− fn[t]) + lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(fn[t])

= lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(fn[t]).

Similarly, we can show that

lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(zn[t]) = lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(gn[t]).
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Thus, by our preceeding assumption that the algorithm under consideration achieves the opti-
mality of (1)-(2), we have

r∗0 = lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(yn[t]) = f∗

r∗l ≤ lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E(znl [t]) ≤ dl, ∀i ∈ {1, 2, · · · , L}.

Overall, we have shown that r∗ ∈ ⊕Nn=1Pn achieves the optimality of (1)-(2), and the first part
of the lemma is proved.

To prove the second part of the lemma, we show that any point in ⊗Nn=1Pn is achievable by the
corresponding time averages of some algorithm. Specifically, consider the following class of ran-
domized stationary algorithms: For each system n, at the beginning of k-th frame, the controller
independently chooses an action αnk from the set An with a fixed probability distribution.

Thus, the actions {αnk}∞k=0 result from any randomized stationary algorithm is i.i.d.. By the
renewal property of each system, we have

∑
t∈T n

k

yn[t],
∑
t∈T n

k

zn[t], Tnk


∞

k=0

,

is also an i.i.d. process for each system n.
Next, we would like to show that any point in Sn can be achieved by the corresponding

expectations of some randomized stationary algorithm. Recall that Sn defined in Definition 2.2
is the convex hull of

Gn :=
{(
ŷn(αn), ẑn(αn), T̂n(αn)

)
, αn ∈ An

}
⊆ RL+2,

By definition of convex hull, any point (y, z, T ) ∈ Sn, can be written as a convex combination of

a finite number of points from the set Gn. Let
{(
ŷn(αni ), ẑn(αni ), T̂n(αni )

)}m
i=1

be these points,

then, we have there exists a finite sequence {pi}mi=1, such that

(y, z, T ) =

m∑
i=1

pi ·
(
ŷn(αni ), ẑn(αni ), T̂n(αni )

)
,

pi ≥ 0,

m∑
i=1

pi = 1.

We can then use {pi}mi=1 to construct the following randomized stationary algorithm: At the
start of each frame k, the controller independently chooses action αi ∈ An with probability pi
defined above for i = 1, 2, · · · ,m. Then, the one-shot expectation of this particular randomized
stationary algorithm on system n satisfiesE

∑
t∈T n

k

yn[t]

, E
∑
t∈T n

k

zn[t]

, E(Tnk )

 =
m∑
i=1

pi ·
(
ŷn(αni ), ẑn(αni ), T̂n(αni )

)
= (y, z, T ),

which implies any point in Sn can be achieved by the corresponding expectations of a randomized
stationary algorithm.
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Next, by definition of Pn in Definition 2.2, any (f
n
,gn) ∈ Pn can be written as (f

n
,gn) =

(y/T, z/T ), where (y, z, T ) ∈ Sn. Thus, it is achievable by the ratio of one-shot expectations
from a randomized stationary algorithm, i.e.

E
(∑

t∈T n
k
yn[t]

)
E
(
Tnk
) =

y

T
= f

n
,

E
(∑

t∈T n
k
zn[t]

)
E
(
Tnk
) =

z

T
= gn.

Now we claim that for yn[t], zn[t] and Tnk result from the randomized stationary algorithm,

lim
T→∞

1

T

T−1∑
t=0

E(yn[t]) =
E
(∑

t∈T n
k
yn[t]

)
E
(
Tnk
) ,(36)

lim
T→∞

1

T

T−1∑
t=0

E(zn[t]) =
E
(∑

t∈T n
k
zn[t]

)
E
(
Tnk
) .(37)

We prove (36) and (37) is shown in a similar way. Consider any fixed T , and let Sn[T ] be the
number of renewals up to (and including) time T . Then, from Lemma 3.7 in Section 3, Sn[T ] is
a valid stopping time with respect to the filtration {Fnk }∞k=0. We write

(38)
1

T

T−1∑
t=0

E(yn[t]) =
1

T
E

Sn[T ]∑
k=0

∑
t∈T n

k

yn[t]

− 1

T
E

tn
Sn[T ]

−1∑
t=T

yn[t]

.
For the first part on the right hand side of (38), since

{∑
t∈T n

k
yn[t]

}∞
k=0

is an i.i.d. process, by

Wald’s equality (Theorem 4.1.5 of [7]),

1

T
E

Sn[T ]∑
k=0

∑
t∈T n

k

yn[t]

 = E

∑
t∈T n

k

yn[t]

 · E(Sn[T ])

T
.

By renewal reward theorem (Theorem 4.4.2 of [7]),

lim
T→∞

E(Sn[T ])

T
=

1

E
(
Tnk
) .

Thus,

lim
T→∞

1

T
E

Sn[T ]∑
k=0

∑
t∈T n

k

yn[t]

 =
E
(∑

t∈T n
k
yn[t]

)
E
(
Tnk
) .

For the second part on the right hand side of (38), by Assumption 2.2,∣∣∣∣∣∣E
tn

Sn[T ]
−1∑

t=T

yn[t]

∣∣∣∣∣∣ ≤ ymax · E
(
tnSn[T ] − T

)
≤
√
Bymax,

which implies limT→∞
1
T E
(∑tn

Sn[T ]
−1

t=T yn[t]

)
= 0. Overall, we have (36) holds.
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To this point, we have shown that for any (f
n
,gn) ∈ Pn, n ∈ {1, 2, · · · , N}, there exists a

randomized stationary algorithm so that

lim
T→∞

1

T

T−1∑
t=0

E(yn[t]) = f
n
, lim

T→∞

1

T

T−1∑
t=0

E(zn[t]) = gn,

for any n ∈ {1, 2, · · · , N}. Since f∗ is the optimal solution to (1)-(2) over all algorithms, it
follows for any (f

n
,gn) ∈ Pn, n ∈ {1, 2, · · · , N} satisfying

∑N
n=1 g

n
l ≤ dl, ∀l ∈ {1, 2, · · · , L}, we

have
∑N

n=1 f
n ≥ f∗, and the second part of the lemma is proved.
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