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Abstract— This paper considers optimal control for a collection
of separate Markov decision systems that operate asynchronously
over their own state spaces. Decisions at each system affect: (i) the
time spent in the current state, (ii) a vector of penalties incurred,
and (iii) the next-state transition probabilities. An example is a
network of smart devices that perform separate tasks but share
a common wireless channel. The model can also be applied to
data center scheduling and to various types of cyber-physical
networks. The combined state space grows exponentially with
the number of systems. However, a simple strategy is developed
where each system makes separate decisions. Total complexity
grows only linearly in the number of systems, and the resulting
performance can be pushed arbitrarily close to optimal.

I. INTRODUCTION

This paper considers control for a collection of coupled
systems. Each system is a semi-Markov decision process that
operates in continuous time over its own state space. Decisions
at each system affect the time spent in each state, the transition
probabilities to the next state, and a vector of penalties or
rewards. The systems are coupled through constraints on the
sum of time averages of their penalties and rewards.

An example is a collection of smart devices that repeatedly
perform complex tasks such as image or video processing,
compression, or other types of computation. These tasks may
also generate or request data for wireless transmission. Each
device has a state space that corresponds to different task
functions and/or different energy saving modes of operation.
Decisions in each state affect energy expenditure, computation
time, and the amount of data generated or requested for
wireless communication. The state transition times are not
synchronized across devices. Further, the devices are coupled
through the multi-access constraints of the wireless network.
This presents a challenging and important problem of asyn-
chronous control of coupled Markov decision systems. Such
problems also arise in data center scheduling and in control
of cyber-physical networks.

This paper demonstrates that optimality can be achieved by
separate controllers at each system. While the size of the com-
bined state space vector grows exponentially in the number of
systems, the solution complexity grows only linearly. Indeed,
the complexity of the controller at each system depends on
the size of its own state space. Thus, the solution can be used
even when the number of systems is large, say, 100 or 1000,
provided that the state space of each system is small.

In Section IV a nonlinear program for the optimal control
policy is derived. The problem is non-convex and has frac-
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tional terms with different denominators. This is more complex
than a linear program or a linear fractional program. General
problems of this type are intractable. However, the problem un-
der study has special structure that allows an optimal solution.
It is shown to be equivalent to a linear program via a nonlinear
change of variables. This change of variables is inspired by
techniques used in [1][2] to solve linear fractional programs
associated with (single) unconstrained semi-Markov decision
systems. The current work can be viewed as a generalization
of [1][2] to the case of multiple asynchronous systems with
multiple coupled constraints.

The linear programming formulation assumes all underlying
probabilities of the system are known. Section V treats a
more complex scenario where each system can observe a
vector of random events with possibly unknown probability
distribution (such as a vector of wireless channel states used
for opportunistic transmission). Learning-based approaches to
discrete time Markov decision problems are considered in [3]
using a 2-timescale analysis and in [4] using policy gradients.
The current paper takes a different approach that utilizes
Lyapunov optimization theory. It builds on the Lyapunov
method for optimizing renewal systems in [5] and semi-
Markov decision systems in [6]. The result in [6] treats a
single Markov system and uses a more complex bisection
routine to evaluate a drift-plus-penalty ratio expression. The
current paper uses a change of variables that results in a drift-
plus-penalty expression without a ratio, and hence does not
require a bisection step. The current paper is also related to
recent work in [7] that treats asynchronous scheduling at a
data center. The work in [7] develops an online policy for
asynchronous control, but treats a simpler class of systems
that do not have an embedded Markov structure.

II. SYSTEM MODEL

Consider a collection of S separate Markovian systems,
where S is a positive integer. Define S M

={1, . . . , S}. Each
system s ∈ S has a finite state space K(s) and operates in
continuous time. The timeline for each system is segmented
into back-to-back intervals called frames. Each frame repre-
sents the time spent in one state. The size of each frame
can vary depending on random events and control actions.
Let {T (s)[r]}∞r=0 be the sequence of frame sizes for system
s, where r is a frame index in the set {0, 1, 2, . . .}. Frame
boundaries are not necessarily synchronized across systems.

Let k(s)[r] be the state of system s during frame r. At the
beginning of each frame r, the system observes a random event
ω(s)[r] that takes values in some abstract event space Ω(s). It
then chooses a control action α(s)[r] ∈ A(s), where A(s) is
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an abstract set of possible actions for system s. The 3-tuple
(k(s)[r], ω(s)[r], α(s)[r]) determines:
• The frame size T (s)[r].
• A vector of L + 1 penalties for frame r, for some non-

negative integer L. This penalty vector has the form:

y(s)[r] = (y
(s)
0 [r], y

(s)
1 [r], . . . , y

(s)
L [r])

• The next-state transition probabilities P (s)
ij [r] (assuming

that i = k(s)[r] is the current state for system s).
These are given by functions T̂ (s)(·), ŷ(s)l (·), P̂ (s)

ij (·):

T (s)[r] = T̂ (s)(k(s)[r], ω(s)[r], α(s)[r])

y
(s)
l [r] = ŷ

(s)
l (k(s)[r], ω(s)[r], α(s)[r]) ∀l ∈ {0, 1, . . . , L}

P
(s)
i,j [r] = P̂

(s)
i,j (ω(s)[r], α(s)[r]) ∀i, j ∈ K(s)

A. Assumptions

For simplicity of exposition, assume that for each s ∈ S, the
sets A(s) and Ω(s) are finite. Assume that the ω(s)[r] processes
are independent across systems. Further, for each system s ∈
S , the processes {ω(s)[r]}∞r=0 are independent and identically
distributed (i.i.d.) across frames r ∈ {0, 1, 2, . . .}. For each
ω ∈ Ω(s), define π(s)(ω)M

=Pr[ω(s)[r] = ω].
The transition probabilities are non-negative and satisfy the

following for all (k(s)[r], ω(s)[r], α(s)[r]):∑
j∈K(s) P̂

(s)
ij (·) = 1 ∀s ∈ S,∀i ∈ K(s)

The frame sizes are assumed to be bounded by some posi-
tive minimum and maximum values T (s)

min and T
(s)
max for all

(k(s)[r], ω(s)[r], α(s)[r]):

T
(s)
min ≤ T̂

(s)(·) ≤ T (s)
max

The penalties can be positive, negative, or zero (negative
penalties can be used to represent rewards), and are bounded
by some finite minimum and maximum values y(s)l,min, y

(s)
l,max

for all (k(s)[r], ω(s)[r], α(s)[r]):

y
(s)
l,min ≤ ŷ

(s)
l (·) ≤ y(s)l,max

B. Optimization Objective

The time average penalty of type l ∈ {0, 1, . . . , L} incurred
by system s up to frame R is given by:∑R−1

r=0 y
(s)
l [r]∑R−1

r=0 T
(s)[r]

Multiplying the numerator and denominator of the above
expression by 1/R and taking a limit as R → ∞ gives an
expression for the time average penalty of type l in system s:

y
(s)
l

T
(s)

= lim
R→∞

1
R

∑R−1
r=0 y

(s)
l [r]

1
R

∑R−1
r=0 T

(s)[r]

where y(s)l is a frame average that is defined:

y
(s)
l

M
= limR→∞

1
R

∑R−1
r=0 y

(s)
l [r]

and T
(s)

l is defined similarly.

At the beginning of the rth frame for system s, the controller
observes the random event ω(s)[r] and chooses an action
α(s)[r] ∈ A(s). The goal is to design decision-making policies
for each system so that the resulting time averages solve the
following optimization problem:

Minimize:
∑
s∈S

y
(s)
0

T
(s) (1)

Subject to:
∑
s∈S c

(s)
l

y
(s)
l

T
(s) ≤ dl ∀l ∈ {1, . . . , L} (2)

α(s)[r] ∈ A(s) ∀s ∈ S,∀r ∈ {0, 1, 2, . . .} (3)

where c(s)l , dl are given real numbers for l ∈ {1, . . . , L} and
s ∈ S. It is assumed throughout that the constraints of problem
(1)-(3) are feasible.

For simplicity, it is assumed that each system s ∈ S has a
state 0 ∈ K(s) that is positive recurrent under any stationary
policy for choosing α(s)[r]. This occurs, for example, when
each state has a positive probability of returning to state 0
under any (ω(s)[r], α(s)[r]). This assumption is not crucial,
but simplifies some technical details. In particular, it can be
shown that it ensures the initial states of the system do not
affect optimality. Such a state 0 often naturally exists when
systems have an idle state that is returned to infinitely often.

III. AN EXAMPLE NETWORK OF SMART DEVICES

Consider a network of M wireless smart devices. Each
device contains two embedded chips: a processing chip and
a communication chip. The processing chip operates over
variable length frames and is used for computation and task
processing. The communication chip operates over fixed frame
sizes and is used for wireless transmission and reception over
one of L possible transmission links.

The processing chip at each device m ∈ {1, . . . ,M} is
assumed to have three states:

K(m) = {idle, processing mode 1, processing mode 2}

The different states can represent different functionalities or
tasks that the chip performs, and/or different energy-saving
modes that affect computation time and energy expenditure.

Let A(m) be an abstract space of processing actions for
each device m ∈ {1, . . . ,M}. For simplicity, assume there is
no random event process ω(m)[r] for these chips. The action
α(m)[r] at device m affects the energy expenditure e(m)[r],
the frame duration T (m)[r], transition probabilities to the next
state, and generates b(m)

l [r] bits for transmission over link l:

e(m)[r] = ê(m)(k(m)[r], α(m)[r])

T (m)[r] = T̂ (m)(k(m)[r], α(m)[r])

b
(m)
l [r] = b̂

(m)
l (k(m)[r], α(m)[r]) ∀l ∈ {1, . . . , L}

Finally, define an (M + 1)th system that represents all of
the L wireless links. This system operates in discrete time
with fixed frame sizes T (M+1)[r] = 1 for all r ∈ {0, 1, 2, ...},
and has only one Markov state k(M+1)[r] = 0 for all r ∈
{0, 1, 2, . . .} (so that system M+1 has no Markov dynamics).
However, this system has a time-varying channel state process
ω(M+1)[r] = (η1[r], . . . , ηL[r]), where ηl[r] represents the
state of wireless channel l on frame r. Let A(M+1) represent
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the set of transmission/reception control actions on each frame
(for example, this set might restrict the network to transmit
over only one link per frame). Let e(M+1)[r] and µl[r] be the
energy expended and bits transmitted over link l on frame r:

e(M+1)[r] = ê(M+1)(ω(M+1)[r], α(M+1)[r])

µl[r] = µ̂l(ω
(M+1)[r], α(M+1)[r]) ∀l ∈ {1, . . . , L}

The goal is to operate each system to minimize total average
power expenditure subject to transmission rate constraints:

Minimize: e(M+1) +
∑M
m=1

e(m)

T
(m) (4)

Subject to:
∑M
m=1

b
(m)
l

T
(m) ≤ µl ∀l ∈ {1, . . . , L} (5)

α(m)[r] ∈ A(m) (6)

where the final constraint α(m)[r] ∈ A(m) holds for all m ∈
{1, . . . ,M + 1} and all r ∈ {0, 1, 2, . . .}.

IV. THE NONLINEAR PROGRAM TRANSFORMED

To begin, first assume there are no random event processes
ω(s)[r]. It can be shown that the problem (1)-(3) can be solved
by stationary and randomized algorithms (see related results in
[8][9][2]). Specifically, each system s ∈ S observes its current
state k(s)[r] and independently chooses a control action α(s)[r]
according to a probability distribution p(s)(α):

Pr
[
α(s)[r] = α|k(s)[r] = k

]
= p(s)(α|k)

The p(s)(α|k) probabilities are non-negative and sum to 1:∑
α∈A(s) p(s)(α|k) = 1 ∀k ∈ K(s)

The fraction of frames that system s spends in each state under
this policy can be viewed as a “steady state” distribution that
satisfies a global balance equation. A standard trick is to define
variables φ(s)(k, α) that intuitively represent the steady state
probability that system s is in state k and chooses action α.
They should satisfy (see, for example, [10][8][9][2]):∑

α∈A(s) φ(s)(k, α) =
∑
i∈K(s),α∈A(s) φ(s)(i, α)P̂

(s)
ik (α) (7)

φ(s)(k, α) ≥ 0 (8)∑
k∈K(s),α∈A(s) φ(s)(k, α) = 1 (9)

where (7) is for all k ∈ K(s), and (8) is for all k ∈ K(s), α ∈
A(s). Constraint (7) can be interpreted as a balance equation.
Its left-hand-side represents the steady state probability that
system s is in state k. Its right-hand-side represents the
probability of transitioning into state k in the next frame. It
should be noted that this “steady state” is with respect to frame
averages (corresponding to the steady state of the embedded
Markov chain), and is not the same as the time average steady
state (which would also include the time spent in each state).

Given values φ(s)(k, α) that satisfy (7)-(9), one can define
a stationary randomized policy by:

p(s)(α|k) =
φ(s)(k, α)∑

β∈A(s) φ(s)(k, β)

This gives rise to the following nonlinear program for com-
puting the optimal stationary policy for problem (1)-(3):

Minimize:
∑
s∈S

[∑
k,α φ

(s)(k,α)ŷ
(s)
0 (k,α)∑

k,α φ
(s)(k,α)T̂ (s)(k,α)

]
(10)

Subject to:
∑
s∈S c

(s)
l

[∑
k,α φ

(s)(k,α)ŷ
(s)
l (k,α)∑

k,α φ
(s)(k,α)T̂ (s)(k,α)

]
≤ dl

∀l ∈ {1, . . . , L} (11)
φ(s)(k, α) satisfies (7)-(9) (12)

where the summations
∑
k,α above are understood to be

over k ∈ K(s), α ∈ A(s). The above problem has variables
φ(s)(k, α) and constants c(s)l , dl, ŷ

(s)
l (k, α), T̂ (s)(k, α). The

constraints (7)-(9) are linear in the variables φ(s)(k, α). The
problem also involves fractional terms where the numera-
tors and denominators are linear functions of the variables
φ(s)(k, α). Problems with fractional terms with different de-
nominators are non-convex and are generally intractable. How-
ever, all fractional terms in the problem above have the same
denominator for each system s ∈ S. This property is exploited
in the first result below, which transforms the problem via
a nonlinear change of variables. This change of variables is
inspired by similar techniques in [1][2] which treat (single)
unconstrained semi-Markov systems.

Consider the following linear program defined over new
variables γ(s)(k, α) for s ∈ S, k ∈ K(s), α ∈ A(s):

Minimize:
∑
s∈S

∑
k,α γ

(s)(k, α)ŷ
(s)
0 (k, α) (13)

Subject to:
∑
s∈S

∑
k,α γ

(s)(k, α)c
(s)
l ŷ

(s)
l (k, α) ≤ dl

∀l ∈ {1, . . . , L} (14)∑
α γ

(s)(k, α) =
∑
i,α γ

(s)(i, α)P̂
(s)
ik (α) (15)

γ(s)(k, α) ≥ 0 (16)∑
k,α γ

(s)(k, α)T̂ (s)(k, α) = 1 (17)

where summations
∑
α and

∑
k,α are understood to be over

α ∈ A(s) and k ∈ K(s). The constraints (15) are for all s ∈ S,
k ∈ K(s), the constraints (16) are for all s ∈ S, k ∈ K(s),
α ∈ A(s), and the constraints (17) are for all s ∈ S.

Theorem 1: The optimal objective function value is the
same for the original problem (10)-(12) and the new problem
(13)-(17). Further, if γ(s)(k, α) are variables that solve the
new problem, then the following variables φ(s)(k, α) solve
the original problem:

φ(s)(k, α) =
γ(s)(k, α)∑

i∈K(s),β∈K(s) γ(s)(i, β)
(18)

Proof: Let φ(s)(k, α) be values that solve the original
problem (10)-(12), and let Voriginal be the value of the optimal
objective function:

Voriginal =
∑
s∈S

[∑
k,α φ

(s)(k, α)ŷ
(s)
0 (k, α)∑

k,α φ
(s)(k, α)T̂ (s)(k, α)

]
(19)

Define:

γ(s)(k, α) =
φ(s)(k, α)∑

i∈K(s),β∈A(s) φ(s)(i, β)T̂ (s)(i, β)
(20)
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and note that because the T̂ (s)(k, α) values are strictly positive
and the φ(s)(k, α) values are non-negative and sum to 1, the
denominator in (20) must be positive. Because the φ(s)(k, α)
values satisfy the constraints (11)-(12), it can be shown that
the γ(s)(k, α) values defined by (20) satisfy the constraints
(14)-(17). Indeed, the definition of γ(s)(k, α) in (20) imme-
diately implies constraint (17), non-negativity of φ(s)(k, α)
immediately implies (16), and dividing the constraint (7)
by
∑
i∈K(s),β∈A(s) φ(s)(i, β)T̂ (s)(i, β) implies (15). Finally,

substituting (20) into (11) and using (17) implies constraint
(14). Further, by substituting (20) into (19) it is easy to see
that the objective function associated with these γ(s)(k, α)
variables is equal to Voriginal. It follows that the optimal
objective function value of the new problem is less than or
equal to Voriginal, that is, Vnew ≤ Voriginal, where Vnew is
defined as the minimum objective function value (13) for the
new problem.

Now let γ(s)(k, α) represent optimal variables that solve
the new problem (13)-(17), and define φ(s)(k, α) according
to (18). By similar substitutions, it can be seen that these
φ(s)(k, α) values satisfy the constraints (11)-(12) of the orig-
inal problem and produce an objective function value in (10)
that is equal to Vnew. Hence, Vnew = Voriginal, and these
φ(s)(k, α) values are optimal for the original problem.

Theorem 1 transforms the original nonlinear problem into
a linear program with variables γ(s)(k, α). Recall that there
are S systems. Suppose each system has at most Kmax states
and an action space size of at most Amax, for some positive
numbers Kmax and Amax. Thus, the total number of variables
γ(s)(k, α) is at most SKmaxAmax, which grows linearly in
the number of systems. It is easy to see that the number
of constraints of the linear program (13)-(17) also grows
linearly in the number of systems. The total complexity is
essentially the same as the complexity associated with each
system separately solving its own Markov decision problem
on its own state space.

V. LYAPUNOV OPTIMIZATION

The previous section solves for the optimal conditional
probabilities p(s)(α|k), but does not treat cases when there
are observed random events ω(s)[r]. For such cases, one
needs conditional probabilities p(s)(α|ω, k). The number of
ω vectors can be enormous, in which case it is not practical to
consider estimating the probabilities of each and computing
the optimal p(s)(α|ω, k) probabilities. However, Lyapunov
optimization can treat related problems of optimizing time
averages in systems with random events, without knowing the
probabilities of these events and regardless of the cardinality
of the event space [5][11][12][13]. Rather than attempting to
compute the optimal probabilities for every possible event, the
Lyapunov policies make online decisions based on greedily
minimizing a drift-plus-penalty expression. Recent work in
[6] extends this by developing an online policy for a (single)
semi-Markov decision system, provided that certain target
information is given.

Specifically, suppose that for each system s ∈ S, one is
given values P

∗(s)
ij , y∗(s)l,k , T ∗(s)k that respectively represent

desired targets for the fraction of time the embedded Markov
chain transitions from i to j, the average type l penalties
incurred while in state k, and the average time spent in state
k. Then one can use the online policy of Section IV in [6] to
control the system and meet these targets, without requiring
the probability distribution for the random events ω(s)[r]. In
the following, a Lyapunov-based algorithm for computing the
optimal targets corresponding to the asynchronous control
problem (1)-(3) is developed.

A. The Time Average Problem
As in [6], consider a modified collection of systems with no

Markov dynamics, where “state variables” k(s)[r] for system
s can be chosen as decision variables every frame r. Define
the following attributes q(s)ij [r] for all s ∈ S and i, j ∈ K(s):

q
(s)
ij [r] = 1

(s)
i [r]P̂

(s)
ij (ω(s)[r], α(s)[r]) (21)

where 1
(s)
i [r] is an indicator function that is 1 if k(s)[r] = i,

and 0 else. Let 1
(s)
i be its frame average. The problem (1)-(3)

can be transformed as (compare with Section III in [6]):

Minimize:
∑
s∈S

y
(s)
0

T
(s) (22)

Subject to:
∑
s∈S c

(s)
l

y
(s)
l

T
(s) ≤ dl ∀l ∈ {1, . . . , L} (23)

1
(s)
k =

∑
i∈K(s) q

(s)
ik (24)

k(s)[r] ∈ K(s) (25)
α(s)[r] ∈ A(s) (26)

k(s)[r] is chosen before ω(s)[r] is known (27)

where (24) holds for all s ∈ S, k ∈ K(s), and (25)-(27) hold
for all s ∈ S, r ∈ {0, 1, 2, . . .}. The objective function (22)
is identical to (1), and the constraints (23) and (26) are the
same as (2)-(3). Constraint (24) is a balance equation similar
to (7) and, together with (25) and (27), ensures the resulting
time averages can actually be achieved on the Markov decision
system. Constraint (27) is subtle, and ensures the decisions
k(s)[r] are independent of ω(s)[r].

Now consider the following transformed problem, simi-
lar in spirit to the transformation of the previous section:
For each system s ∈ S, define new variables θ(s)[r] that
are chosen every frame r ∈ {0, 1, 2, . . .} over the interval
[1/T

(s)
max, 1/T

(s)
min]. Consider the problem:

Minimize:
∑
s∈S θ

(s)y
(s)
0 (28)

Subject to:
∑
s∈S c

(s)
l θ(s)y

(s)
l ≤ dl ∀l ∈ {1, . . . , L} (29)

θ(s)1
(s)
k =

∑
i∈K(s) θ(s)q

(s)
ik (30)

θ(s)T (s) = 1 (31)
k(s)[r] ∈ K(s) (32)
α(s)[r] ∈ A(s) (33)

1/T
(s)
max ≤ θ(s)[r] ≤ 1/T

(s)
min (34)

k(s)[r] is chosen before ω(s)[r] is known (35)

where frame averages θ(s)y(s)l are defined:

θ(s)y
(s)
l

M
= limR→∞

1
R

∑R−1
r=0 θ

(s)[r]y
(s)
l [r]
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and frame averages θ(s)T (s), θ(s)q(s)ik , θ(s)1(s)k are defined
similarly. It can be shown that the original problem (22)-(27)
and the new problem (28)-(35) have the same optimal objective
function value (proof omitted for brevity). Further, the solution
to the new problem can be used to construct optimal targets
P
∗(s)
ij , y∗(s)l,k , T ∗(s)k for the original problem as follows:

y
∗(s)
l,k =

θ(s)1
(s)
k y

(s)
l

θ(s)1
(s)
k

, T
∗(s)
k =

θ(s)1
(s)
k T (s)

θ(s)1
(s)
k

, P
∗(s)
ij =

θ(s)q
(s)
ij

θ(s)1
(s)
i

B. Virtual Queues

Using the drift-plus-penalty technique of [5], the constraints
(29)-(31) are treated with virtual queues Zl[r], H

(s)
k [r], J (s)[r]

for l ∈ {1, . . . , L}, s ∈ S, k ∈ K(s):

Zl[r + 1] = max

[
Zl[r] +

∑
s∈S

c
(s)
l θ(s)[r]y

(s)
l [r]− dl, 0

]
H

(s)
k [r + 1] = H

(s)
k [r] + θ(s)[r]1

(s)
k [r]−

∑
i∈K(s)

θ(s)[r]q
(s)
ik [r]

J (s)[r + 1] = J (s)[r] + θ(s)[r]T (s)[r]− 1

C. The Drift-Plus-Penalty Algorithm

For a given parameter V ≥ 0, define f (s)(k, ω, α) by:

f (s)(k, ω, α)M
=V ŷ

(s)
0 (k, ω, α) +

∑L
l=1 Zl[r]c

(s)
l ŷ

(s)
l (k, ω, α)

+H
(s)
k [r]−

∑
j∈K(s) H

(s)
j [r]P̂

(s)
kj (ω, α)

+J (s)[r]T̂ (s)(k, ω, α)

Define g(s)(θ, k, ω, α)M
=θf (s)(k, ω, α). Define B(s) as the set

of all (θ, α) values that satisfy 1/T
(s)
max ≤ θ ≤ 1/T

(s)
min, α ∈

A(s). At the beginning of each frame r and for each s ∈ S ,
observe virtual queues and perform the following:

• (k(s)[r] selection) Choose k(s)[r] as the index k ∈ K(s)

that minimizes the following (breaking ties arbitrarily):

E
{

min(θ,α)∈B(s) g(s)(θ, k, ω(s)[r], α)
}

(36)

where the expectation above is with respect to the ran-
domness of ω(s)[r].

• (α(s)[r], θ(s)[r] selection) Once the k(s)[r] decision is
made, observe the actual ω(s)[r] and choose α(s)[r] as the
minimizer of f (s)(k(s)[r], ω(s)[r], α) over all α ∈ A(s),
breaking ties arbitrarily. Then chose θ(s)[r] by:

θ(s)[r] =

{
1

T
(s)
min

if f (s)(k(s)[r], ω(s)[r], α(s)[r]) ≤ 0
1

T
(s)
max

otherwise

• (Virtual Queue Update) Update the virtual queues accord-
ing to the update equations in Section V-B.

The resulting algorithm satisfies all constraints whenever
it is possible to do so, and yields an objective function
that differs by O(1/V ) from optimal, with a corresponding
polynomial convergence time tradeoff with V [5].

D. Discussion

The above algorithm selects α(s)[r] and θ(s)[r] without
knowledge of the distribution of ω(s)[r]. Selection of k(s)[r]
requires evaluation of the expectation in (36). This decision is
trivial in special cases such as that given in Section III, where
the systems s ∈ S that have random event processes ω(s)[r]
are 1-state systems (without Markov dynamics) for which one
always selects k(s)[r] = 0, and the systems that have Markov
dynamics do not have ω(s)[r] processes (so that the expectation
in (36) reduces to the deterministic minimum). In the general
case, the expectation (36) can be efficiently estimated based
on a collection of past samples of ω(s)[r], as justified by the
max-weight learning framework of [14].

The algorithm above can be viewed as an offline algo-
rithm for computing desired targets and finding the optimal
time average quantities given a sample sequence of observed
{ω(s)[r]}∞r=0 values for each system. In an online implemen-
tation where such a sample sequence is gradually observed,
the algorithm acts over virtual frames that run slower than the
actual system. Specifically, the operations required on the rth
virtual frame cannot be performed until the ω(s)[r] value for
each system s is observed. Each observed value is stored in
memory as needed. The resulting weighted averages achieved
in this virtual system act as progressively updated targets that
are passed into an online algorithm such as [6] that runs
separately on each actual system.
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