
PROC. IEEE/IFIP NOMS, APRIL 2010 1

Dynamic Resource Allocation and Power
Management in Virtualized Data Centers

Rahul Urgaonkar, Ulas C. Kozat, Ken Igarashi, Michael J. Neely
urgaonka@usc.edu,{kozat, igarashi}@docomolabs-usa.com, mjneely@usc.edu

Abstract—We investigate optimal resource allocation and
power management in virtualized data centers with time-varying
workloads and heterogeneous applications. Prior work in this
area uses prediction based approaches for resource provisioning.
In this work, we take an alternate approach that makes use
of the queueing information available in the system to make
online control decisions. Specifically, we use the recentlydevel-
oped technique of Lyapunov Optimization to design an online
admission control, routing, and resource allocation algorithm for
a virtualized data center. This algorithm maximizes a jointutility
of the average application throughput and energy costs of the
data center. Our approach is adaptive to unpredictable changes
in the workload and does not require estimation and prediction
of its statistics.

Index Terms—Data Center Automation, Cloud Computing,
Virtualization, Resource Allocation, Lyapunov Optimization

I. I NTRODUCTION AND RELATED WORK

There is growing interest in improving the energy efficiency
of large-scale enterprise data centers and cloud computing
environments. Recent studies [1] [2] indicate that the costs
associated with the power consumption, cooling requirements,
etc., of servers over their lifetime are significant. As a result,
there have been numerous works in the area of power man-
agement for such data centers (see [3] and references therein).

At the data center level, application consolidation has been
studied for reducing the total power consumption. Virtualiza-
tion is a promising technique that enables consolidation of
heterogeneous applications onto a fewer number of servers,
while ensuring secure co-location between competing applica-
tions. This results in higher resource utilization and reduction
in energy costs (by turning off extra servers). However, since
multiple applications now contend for the same resource pool,
it is important to develop scheduling algorithms that allocate
resources in a fair and efficient manner. At the individual
server level, techniques such as Dynamic Voltage and Fre-
quency Scaling, low power P-states, etc. are available that
allow a tradeoff between performance and power consumption.
Several recent works (e.g., [4] [5]) have studied the problem of
dynamically scaling the CPU speed for energy savings. In this
work, we consider the problem of maximizing a joint utility
of the long-term throughput of the hosted applications and the
average total power expenditure in a virtualized data center.
Our formulation unifies these two techniques for power control
under a common analytical framework.

This work was performed when Rahul Urgaonkar worked as a summer
intern at DOCOMO USA Labs.

This material is supported in part by the NSF Career grant CCF-0747525.

Dynamic resource allocation in virtualized data centers has
been studied extensively in recent years. The work in [6]–
[8] formulates this as a feedback control problem and uses
tools from adaptive control theory to design online control
algorithms. Such techniques use a closed-loop control model
where the objective is to converge to a target performance
level by taking control actions that try to minimize the error
between the measured output and the reference input. While
this technique is useful as a tracking problem, it cannot be used
for utility maximization problems where the target optimal
value is unknown. Work in [9] considers the problem of maxi-
mizing a joint utility of the profit generated by satisfying given
SLA and the power consumption costs. This is formulated as
a sequential optimization problem and solved using limited
lookahead control. This approach requires building estimates
of the future workloads. Much prior work on resource allo-
cation is based on prediction-based provisioning and steady
state queueing models [10]–[12]. Here, statistical modelsfor
the workloads are first developed using historical traces offline
or via online learning. Resource allocation decisions are then
made to satisfy such predicted demand. This approach is
limited by its ability to accurately predict future arrivals.

In this work, we do not take this approach. Instead, we
make use of the recently developed technique of Lyapunov
Optimization [15] to design an online admission control,
routing, and resource allocation algorithm for a virtualized
data center. This algorithm makes use of the queueing infor-
mation available in the system to implicitly learn and adaptto
unpredictable changes in the workload and does not require
estimation and prediction of its statistics. The techniqueof
Lyapunov Optimization has been used to develop throughput
and energy optimal cross-layer control algorithms in time-
varying wireless networks (see [15] and references). This
technique has certain similarities with the feedback control
based approach as it also uses a Lyapunov function based
analysis to design online control algorithms. In addition,this
technique also allows stability and utility optimization to be
treated in the same framework. Unlike works that use steady
state queueing models, this approach takes into account the
full effects of the queueing dynamics by making use of the
queue backlog information to make online control decisions.

II. BASIC V IRTUALIZED DATA CENTER MODEL

We consider a virtualized data center withM servers that
host a set ofN applications. The set of servers is denoted byS
and the set of applications is denoted byA. Each serverj ∈ S



PROC. IEEE/IFIP NOMS, APRIL 2010 2

R

A/C 1

U11(t) VM

VM

U21(t)

UN1(t)

U12(t)

UN2(t)

WN(t)

W1(t)

W2(t)

Server 2

VM

R/C 1

VM

VM

VM

R/C 2

U22(t)

U1M(t)

UNM(t)

VM

VM

VM

R/C M

U2M(t)

A/C i: Admission Controller for Application i

R: Router

R/C j: Resource Controller for Server j

Wi(t): Router buffer for Application i

Uij(t): Buffer for Application i on Server j

Ai(t): Request arrivals for Application i

A/C 2

A/C M

A1(t)

A2(t)

AN(t)

Server 1

Server M

Fig. 1. Illustration of the Virtualized Data Center Architecture.

hosts a subset of the applications. It does so by providing
a virtual machine (VM) for every application hosted on it.
An application may have multiple instances running across
different VMs in the data center. We define the following
indicator variables fori ∈ {1, 2, ..., N}, j ∈ {1, 2, ..., M}:

aij =

{

1 if application i is hosted on serverj
0 else

For simplicity, in the basic model, we assume thataij = 1∀i, j,
i.e., each server can host all applications. In general, applica-
tions may be multi-tiered and the different tiers corresponding
to an instance of an application may be located on different
servers and VMs. For simplicity, in the basic model we
assume that each application consists of a single tier. These
assumptions are relaxed in Sec. V where we discuss extensions
to the multi-tier as well as inhomogeneous hosting scenario.

We assume a time-slotted system. Every slot, new requests
arrive for each applicationi according to a random arrival
processAi(t) that has a time average rateλi requests/slot.
This process is assumed to be independent of the current
amount of unfinished work in the system and has finite
second moment. However, we do not assume any knowledge
of the statistics ofAi(t). For example,Ai(t) could be a
Markov-modulated process with time-varying instantaneous
rates where the transition probabilities between different states
are not known. This models a scenario withunpredictable and
time-varying workloads.

A. Control Architecture

Our control architecture for the virtualized data center
consists of three components as shown in Fig. 1. Every
slot, for each applicationi ∈ A, an Admission Controller
determines whether to admit or decline the new requests. The
requests that are admitted are stored in the Router buffer before
being routed to one of the servers hosting that application by
the Router. Each serverj ∈ S has a set of resourcesWj

(such as CPU, disk, memory, network resources, etc.) that are

allocated to the VMs hosted on it by itsResource Controller. In
practice, this Resource Controller resides on the host Operating
System (Dom0) of each virtualized server. The control options
available to the Resource Controller are discussed in detail
in Sec. II-C. For simplicity, in the basic model, we assume
that the setsWj contain only one resource. Specifically, we
focus on case where the CPU is the bottleneck resource. This
can happen, for example, when all applications running on
the servers are computationally intensive. Examples of such
applications include Hadoop, MapReduce and video transcod-
ing. Our formulation can be extended to treat the multiple-
resource case by representing them as a vector of resources
and appropriately redefining the control options and expected
service rates. All servers in the data center are assumed to be
resource constrained. Specifically, in the basic model, we focus
on CPU frequency and power constraints. This is discussed in
detail in Sec. II-B.

B. CPU Power-Frequency Relationship

Modern CPUs can be operated at different speeds at runtime
by using techniques such as Dynamic Frequency Scaling
(DFS), Dynamic Voltage Scaling (DVS), or a combination
Dynamic Voltage and Frequency Scaling (DVFS). These tech-
niques result in anon-linear power-frequency relationship.
For example, Fig. 2 shows the power consumed by a Dell
PowerEdge R610 server for different operating frequencies
and utilization levels. This curve was obtained by running a
CPU intensive application at different CPU frequencies and
utilization levels and measuring the power consumption. We
observe that at each utilization level, the power-frequency
relationship is well-approximated by a quadratic model, i.e.,
P (f) = Pmin + α(f − fmin)2. Similar results have been
observed in recent works [4] . In our model, we assume that
CPUs follow a similar non-linear power-frequency relation-
ship that is known to the Resource Controllers. The CPUs
can run at a finite number of operating frequencies in an
interval [fmin, fmax] with an associated power consumption
[Pmin, Pmax]. This allows a tradeoff between performance and
power costs. All servers in our model are assumed to have
identical CPU resources.

Additionally, the servers may be operated in an inactive
mode (such as P-states, CPU hibernation, or turning OFF) in
order to further save on energy costs. This can be advantageous
if the workload is low. Indeed, we note from Fig. 2 that the
minimum powerPmin required to maintain the server in the
active state is typically substantial. It can be as high as65% of
Pmax as reported in other works [1]. Therefore, turning idle
servers to OFF mode, or to some low power hibernation state,
can yield significant savings in power consumption. While an
inactive server does not consume any power, it also cannot
provide any service to the applications hosted on it. We thus
assume that, in any slot, new requests can only be routed to
active servers. Inactive servers can be turned active to handle
increases in workload.

Since turning servers ON/OFF frequently may be undesir-
able (for example, due to hardware reliability issues), we will
focus on frame-based control policies in which time is divided



PROC. IEEE/IFIP NOMS, APRIL 2010 3

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
140

160

180

200

220

240

260

CPU Frequency (GHz)

P
ow

er
 C

on
su

m
pt

io
n 

(W
)

 

 

utilization 100%
quadratic model
utilization 50%
quadratic model
utilization 38%
quadratic model

Fig. 2. Power vs CPU frequency for a Dell PowerEdge R610 server. The
utilization value is the measured CPU utilization at a givenCPU frequency
and loading level during the experiment. Also note the significant idle power.

into frames of lengthT slots. The set of active servers is
chosen at the beginning of each frame and is held fixed for
the duration of that frame. This set can potentially change in
the next frame as workloads change. We note that while this
control decision is taken at a slower time-scale, other resource
allocations decisions (such as admission control, routing, CPU
frequency scaling and resource allocation at each active server)
are made every slot. The choice of an appropriate value forT
is an implementation issue. We do not focus on optimizing this
parameter in this work. The choice ofT affects a complexity-
utility tradeoff as discussed in Sec. IV-B.

C. Queueing Dynamics and Control Decisions

Let Ai(t) denote the number of new request arrivals for
applicationi in slot t. Let Ri(t) be the number of requests out
of Ai(t) that are admitted into the Router buffer for application
i by the Admission Controller. We denote this buffer by
Wi(t). We assume that any new request that is not admitted
by the Admission Controller is declined. This can easily be
generalized to the case where arrivals that are not immediately
accepted are stored in a buffer for future admission decision.
Thus, for alli, t, we have:

0 ≤ Ri(t) ≤ Ai(t) (1)

Let Rij(t) be the number of requests for applicationi that are
routed from its Router buffer to serverj in slot t. Then the
queueing dynamics forWi(t) is given by:

Wi(t + 1) = Wi(t) −
∑

j

Rij(t) + Ri(t) (2)

Let S(t) denote the set of active servers in slott. For each
applicationi, the admitted requests can only be routed to those
servers that host applicationi and are active in slott. Thus, the
routing decisionsRij(t) must satisfy the following constraints
every slot:

Rij(t) = 0 if j /∈ S(t) or aij = 0 (3)

0 ≤
∑

j∈S(t)

aijRij(t) ≤ Wi(t) (4)

Every slot, the Resource Controller allocates the resources
of each server among the VMs that host the applications run-
ning on that server. This allocation is subject to the available
control options. For example, the Resource Controller may
allocate different fractions of the CPU (or different number of
cores in case of multi-core processors) to the VMs in that slot.1

The Resource Controller may also use available techniques
such as DFS, DVS, DVFS, etc. to modulate the current CPU
speed which affects the CPU power consumption. We useIj to
denote the set of all such control options available at server j.
This includes the option of making serverj inactive (so that no
power is consumed) if the current slot is the beginning of a new
frame. LetIj(t) ∈ Ij denote the particular control decision
taken at serverj in slot t under any policy and letPj(t)
be the corresponding power consumption. Then, the queueing
dynamics for the requests of applicationi at serverj follows:

Uij(t + 1) = max[Uij(t) − µij(Ij(t)), 0] + Rij(t) (5)

where µij(Ij(t)) denotes the service rate (in units of re-
quests/slot) provided to applicationi on serverj in slot t
by taking control actionIj(t). We assume that, for each
application, the expected value of this service rate as a function
of the control actionIj(t) is known for allIj(t) ∈ Ij . This can
be obtained by application profiling and application modeling
techniques (e.g., [13] [14]). It is important to note that wedo
not need to implement the dynamic (5). We will only require a
measure of the current backlog and knowledge of the expected
service rate as a function of control decisions to implement
our control algorithm.

Thus, in every slott, a control policy needs to make the
following decisions:

1) If t = nT (i.e., beginning of a new frame), determine the
new set of active serversS(t). Else, continue using the
active set already computed for the current frame.

2) Admission control decisionsRi(t) for all applicationsi.
3) Routing decisionsRij(t) for the admitted requests.
4) Resource allocation decisionIj(t) at each active server

(this includes selecting the CPU frequency that affects
the power consumptionPj(t) as well as CPU resource
distribution among different VMs).

Our goal is to design an online control policy that maxi-
mizes a joint utility of the sum throughput of the applications
and the energy costs of the servers subject to the available
control options and the structural constraints imposed by this
model. It is desirable to develop a flexible and robust resource
allocation algorithm thatautomatically adapts to time-varying
workloads. In this work, we will use the technique of Lya-
punov Optimization [15] to design such an algorithm.

III. C ONTROL OBJECTIVE

Consider any policyη for this model that takes control
decisionsSη(t), Rη

i (t), Rη
ij(t), I

η
j (t) ∈ Ij , P

η
j (t) for all i, j

in slot t. Note that under any feasible policyη, these control
decisions must satisfy the admission control constraint (1),

1Additional constraints such as allocating a minimum amountof CPU share
to all active VMs can be included in this model.



PROC. IEEE/IFIP NOMS, APRIL 2010 4

routing constraints (3), (4), and the resource allocation con-
straintIj(t) ∈ Ij every slot for alli, j.

Let rη
i denote the time average expected rate of admitted

requests for applicationi under policyη, i.e.,

rη
i = lim

t→∞

1

t

t−1
∑

τ=0

E {Rη
i (τ)} (6)

Let r = (r1, . . . , rN ) denote the vector of these time average
rates. Similarly, leteη

j denote the time average expected power
consumption of serverj under policyη:

eη
j

△

= lim
t→∞

1

t

t−1
∑

τ=0

E
{

P η
j (τ)

}

(7)

The expectations above are with respect to the possibly ran-
domized control actions that policyη might take.

Let αi and β be a collection of non-negative weights that
act as normalizing parameters. Then our objective is to design
a policy η that solves the followingstochastic optimization
problem:

Maximize:
∑

i∈A

αir
η
i − β

∑

j∈S

eη
j

Subject to: 0 ≤ rη
i ≤ λi ∀ i ∈ A

Iη
j (t) ∈ Ij ∀ j ∈ S, ∀t

r ∈ Λ (8)

Here,Λ represents thecapacity region of the data center model
as described above. It is defined as the set of all possible long-
term throughput values that can be achieved underany feasible
resource allocation strategy.

The objective in problem (8) is a general weighted linear
combination of the sum throughput of the applications and
the average power usage in the data center. This formula-
tion allows us to consider several scenarios. Specifically,it
allows the design of policies that areadaptive to time-varying
workloads. For example, if the current workload is inside the
instantaneous capacity region, then this objective encourages
scaling down the instantaneous capacity (by running CPUs
at slower speeds and/or turning OFF some active servers) to
achieve energy savings. Similarly, if the current workloadis
outside the instantaneous capacity region, then this objective
encourages scaling up the instantaneous capacity (by running
CPUs at faster speeds and/or turning ON some inactive
servers). Finally, if the workload is so high that it cannot be
supported by using all available resources, this objectiveallows
prioritization among different applications. Furthermore, it
allows us to assign priorities between throughput and energy
by choosing appropriate values ofαi, β.

A. Optimal Stationary, Randomized Policy

Problem (8) is similar to the general stochastic network
utility maximization problem presented in [15] in the context
of wireless networks with time-varying channels. Suppose (8)
is feasible and letr∗i ande∗j ∀i, j denote the optimal value of
the objective function, potentially achieved by some arbitrary
policy. Using the techniques developed in [15], it can be shown
that to solve (8) and achieve the optimal value of the objective

function, it is sufficient to consider only the class of stationary,
randomized policies that take control decisions independent
of the current queue backlog every slot. Specifically, at the
beginning of each frame, this policy chooses an active set
of servers according to a stationary distribution in an i.i.d.
fashion. Once chosen, other control decisions are likewise
taken in an i.i.d. fashion according to stationary distributions.
For the basic model of Sec. II with homogeneous application
hosting and identical CPU resources, in choosing an active
server set, we do not need to consider all possible subsets of
S. Specifically, we define the following collectionO of subsets
of S:

O△

=
{

∅, {1}, {1, 2}, {1, 2, 3}, ..., {1, 2, 3, ..., M}
}

(9)

Then we have the following. For brevity, we state this fact
here without proof:

Fact 1: (Optimal Stationary, Randomized Policy) For any
arrival rate vector(λ1, . . . , λN ) (inside or outside of the
data center capacity regionΛ), there exists a frame-based
stationary randomized control policy that chooses active sets
from O every frame, makes admission control, routing and
resource allocation decisions every slot independent of the
queue backlog and yields the following steady state values:

lim
t→∞

1

t

t−1
∑

τ=0

[

∑

i∈A

αiE {Ri(τ)} − β
∑

j∈S

E {Pj(τ)}
]

=
∑

i∈A

αir
∗
i − β

∑

j∈S

e∗j (10)

However, computing the optimal stationary, randomized policy
explicitly can be challenging and its implementation imprac-
tical as it requires knowledge of all system parameters (like
workload statistics) as well as the capacity region in advance.
Even if this policy can be computed for a given workload,
it would not be adaptive to unpredictable changes in the
workload and must be recomputed. In the next section, we
will present anonline control algorithm that overcomes these
challenges.

IV. OPTIMAL CONTROL ALGORITHM

In this section, we use the framework of Lyapunov Op-
timization to develop an optimal control algorithm for our
model. Specifically, we present a dynamic control algorithm
that can be shown to achieve the optimal solutionr∗i and
e∗j ∀i, j to the stochastic optimization problem (8). This
algorithm is similar in spirit to the backpressure algorithms
proposed in [15] for problems of throughput and energy
optimal networking in time varying wireless networks.

A. Data Center Control Algorithm (DCA)

Let V ≥ 0 be a control parameter that is input to the
algorithm. This parameter serves as a control probe that allows
the system administrator to tradeoff average delay for total
average utility as discussed later in Sec. IV-B. Appropriate
choice of this parameter depends on the particular system as
well as the desired tradeoff between performance and power



PROC. IEEE/IFIP NOMS, APRIL 2010 5

cost. This parameter may also be varied over time to affect
this tradeoff.

Let Wi(t), Uij(t)∀i, j be the queue backlog values in slot
t. These are initialized to0. Every slot, the DCA algorithm
uses the backlog values in that slot to make joint Admission
Control, Routing and Resource Allocation decisions. As the
backlog values evolve over time according to the dynamics
(2) and (5), the control decisions made by DCA adapt to
these changes. However, we note that this is implemented
using knowledge of current backlog values only and does
not rely on knowledge of statistics governing future arrivals.
Thus, DCA solves for the objective in (8) by implementing
a sequence of optimization problems over time. The queue
backlogs themselves can be viewed as dynamic Lagrange
multipliers that enable stochastic optimization [15].

The DCA algorithm operates as follows.
Admission Control: For each applicationi, choose the num-

ber of new requests to admitRi(t) as the solution to the
following problem:

Maximize: Ri(t)[V αi − Wi(t)]

Subject to: 0 ≤ Ri(t) ≤ Ai(t) (11)

This problem has a simple threshold-based solution. In par-
ticular, if the current Router buffer backlog for application
i, Wi(t) > V αi, then Ri(t) = 0 and no new requests are
admitted. Else, ifWi(t) ≤ V αi, thenRi(t) = Ai(t) and all
new requests are admitted. Note that this admission control
decision can be performed separately for each application.

Routing and Resource Allocation: Let S(t) be the active
server set for the current frame. Ift 6= nT , then we continue to
use the same active set. The Routing and Resource Allocation
decisions are given as follows:

Routing: Given an active server set, routing follows a
simple Join the Shortest Queue policy. Specifically, for any
application i, let j′ ∈ S(t) be the active server with the
smallest queue backlogUij′(t). If Wi(t) > Uij′(t), then
Rij′ (t) = Wi(t), i.e., all requests in the Router buffer for
applicationi are routed to serverj′. Else,Rij(t) = 0∀j and
no requests are routed to any server for applicationi. In order
to make these decisions, the Router requires the queue backlog
informationUij(t)∀i, j. Given this information, we note that
this routing decision can be performed separately for each
application.

Resource Allocation: At each active serverj ∈ S(t), choose
a resource allocationIj(t) that solves the following problem:

Maximize:
∑

i

Uij(t)E {µij(Ij(t))} − V βPj(t)

Subject to:Ij(t) ∈ Ij , Pj(t) ≥ Pmin (12)

The above problem is a generalized max-weight problem
where the service rate provided to any application is weighted
by its current queue backlog. Thus, the optimal solution would
allocate resources so as to maximize the service rate of the
most backlogged application.

The complexity of this problem depends on the size of
the control optionsIj available at serverj. In practice, the
number of control options such as available DVFS states,

CPU shares, etc. is small and thus, the above optimization
can be implemented in real time. It is important to note
that each server solves its own resource allocation problem
independently using the queue backlog values of applications
hosted on it and this can be implemented in afully distributed
fashion.

If t = nT , then a new active setS∗(t) for the current frame
is determined by solving the following:

S∗(t) =argmax
S(t)∈O

[

∑

ij

Uij(t)E {µij(Ij(t))} − V β
∑

j

Pj(t)

+
∑

ij

Rij(t)(Wi(t) − Uij(t))
]

subject to:j ∈ S(t), Ij(t) ∈ Ij , Pj(t) ≥ Pmin

constraints(1), (3), (4) (13)

The above optimization can be understood as follows. To
determine the optimal active setS∗(t), the algorithm computes
the optimal cost for the expression within the brackets for
every possible active server set in the collectionO. Given
an active set, the above maximization is separable into Rout-
ing decisions for each application and Resource Allocation
decisions at each active server. This computation is easily
performed using the procedure described earlier for Routing
and Resource Allocation whent 6= nT .

Since O has sizeM , the worst-case complexity of this
step is polynomial inM . However, the computation can be
significantly simplified as follows. It can be shown that if the
maximum queue backlog over all applications on any serverj
exceeds a finite constantUthresh, then that server must be part
of the active set. Thus, only those subsets ofO that contain
these servers need to be considered when searching for the
optimal active set.

We note that it is possible for this algorithm to inactivate
certain servers even if they have non-zero queue backlog (and
process it later when the server is activated again). This can
happen, for example, if the backlog on the server is small
and the optimization (13) determines that the energy cost of
keeping the server ON (the second term) exceeds the weighted
service rate achieved (the first term). While we can show op-
timality of this algorithm in terms of solving the objective(8),
we also consider a more practical (and potentially suboptimal)
strategy DCA-M that migrates or reroutes such unfinished
requests from inactive servers to other active servers in the
next frame. Our simulation results in Sec. VI suggest that the
performance of this strategy is very close to that under DCA.

Finally, the computation in (13) requires knowledge of the
values of queue backlogs at all servers as well as the router
buffers. This can be implemented by a centralized controller
(that also implements Routing) that periodically gathers the
backlog information and determines the active set for each
frame. See further discussion in Sec. IV-C.

B. Performance Analysis

Theorem 1: (Algorithm Performance) Assume that all
queues are initialized to0. Suppose all arrivals in a slot
Ai(t) i.i.d. and are upper bounded by finite constants so that



PROC. IEEE/IFIP NOMS, APRIL 2010 6

Ai(t) ≤ Amax
i for all i, t. Also let µmax be the maximum

service rate (in requests/slot) over all applications in any slot.
Then, implementing the DCA algorithm every slot for any
fixed control parameterV ≥ 0 and frame sizeT yields the
following performance bounds:

1) The worst case queue backlog for each application Router
buffer Wi(t) is upper bounded by a finite constantWmax

i for
all t:

Wi(t) ≤ Wmax
i

△

=V αi + Amax
i (14)

Similarly, the worst case queue backlog for applicationi on
any serverj is upper bounded by2Wmax

i for all i, t:

Uij(t) ≤ 2Wmax
i = 2(V αi + Amax

i ) (15)

2) The time average utility achieved by the DCA algorithm
is within BT/V of the optimal value:

lim inf
t→∞

1

t

t−1
∑

τ=0

[

∑

i∈A

αiE {Ri(τ)} − β
∑

j∈S

E {Pj(τ)}
]

≥

∑

i∈A

αir
∗
i − β

∑

j∈S

e∗j −
BT

V
(16)

where B is a finite constant (defined precisely in the Ap-
pendix) that depends on the second moments of the arrival and
service processes. We note that the performance bounds above
are quite strong. In particular, part(1) establishesdeterministic
worst case bounds on the maximum backlogs in the system at
all times. Therefore, by part(2) of the theorem, the achieved
average utility is withinO(1/V ) of the optimal value. This can
be pushed arbitrarily close to the optimal value by increasing
the control parameterV . However, this increases the maximum
queue backlog bound(14), (15) linearly inV . Thus, by Little’s
Theorem, this directly leads to anO(1/V, V ) utility-delay
tradeoff.

We next prove the first part of Theorem1. Proof of part
(2) uses the technique of Lyapunov Optimization [15] and is
provided in the Appendix.

Proof of part (1): Suppose thatWi(t) ≤ Wmax
i for all i for

some timet. This is true fort = 0 as all queues are initialized
to 0. We show that the same holds for timet + 1. We have
2 cases. IfWi(t) ≤ Wmax

i − Amax
i , then from (2), we have

Wi(t+1) ≤ Wmax
i (becauseRi(t) ≤ Amax

i for all t). Else, if
Wi(t) > Wmax

i −Amax
i , thenWi(t) > V αi+Amax

i −Amax
i =

V αi. Then, the flow control part of the algorithm chooses
Ri(t) = 0, so that by (2):

Wi(t + 1) ≤ Wi(t) ≤ Wmax
i

This proves (14). To prove (15), note that new requests are
routed from a Routing bufferWi(t) to an application queue
Uij(t) only whenWi(t) > Uij(t). SinceWi(t) ≤ Wmax

i and
since the maximum number of arrivals in a slot toUij(t) is
Wmax

i , Uij(t) cannot exceed2Wmax
i . �

C. Instrumentation Requirements

The proposed framework does not require explicit modeling
of the arrival and service processes. However, we require a
measure of job backlogs at each VM and we require a control

signaling to exchange the backlog information from physical
servers to controller nodes. The measure of backlog can be
direct or indirect depending on the application environment.
In one extreme, as a direct approach, the datacenter provides
an application platform such as MapReduce or Hadoop over
which all the applications are written. In such a set up,
there are explicit job monitoring, assignment, and collection
facilities in place that can support backlog measurements.
Another direct approach is to require applications (VMs)
to log job states and make them accessible to the control
framework. Various indirect approaches mainly depend on
monitoring the explicit signals that indicate the job arrivals and
departures such as client request and server response messages
(e.g., web services), session initiation and termination (e.g.,
video session), thread creation and termination, etc. The accu-
racy and feasibility of indirect approaches highly depend on
the particular application and hence different instrumentation
methods must be used to obtain a measure of backlog. The
optimality properties of our algorithm hold even when the
backlog values used are different from the actual values (as
long as they are off by a bounded value that does not depend
on V ) making it robust to such noisy backlog estimates.

V. EXTENSIONS

Here, we briefly discuss two extensions to the basic model.

A. Inhomogeneous Placement and CPU Resources

In this case, theaij variables need not be equal to1∀i, j
so that requests for an applicationi can only be routed to
one of those servers that hosts this application. The routing
constraints in (3), (4) are already general enough to capture
this. In the case of inhomogeneous CPU resources, the DCA
algorithm needs the following modification. In the active
server determination step, instead of only searching over the
collectionO of subsets in (9), now it may have to search over
all possible subsets ofS. This can be computationally intensive
whenS is large. It is possible to tradeoff complexity for utility
optimality by resorting to sub-optimum heuristic approaches,
investigation of which is left out for brevity in this paper.

B. Multi-tier Applications

Modern enterprise applications typically have multiple com-
ponents working in a tiered structure [12] [14]. An incoming
request for such a multi-tier application is serviced by each tier
in a certain order before departing the system. Our framework
can be extended to treat this scenario by modeling the multi-
tier application as anetwork of queues. Specifically, we define
Uk

ij(t) as the queue backlog for thekth tier of applicationi
on serverj (wherek ≥ 1). Then, the queueing dynamics for
Uk

ij(t) are given by:

Uk
ij(t + 1) = max[Uk

ij(t) − µk
ij(Ij(t)), 0] +

∑

l∈S(t)

Rk−1
il (t)

whereRk−1
il (t) denotes the arrivals toUk

ij(t) from the(k−1)th

tier of applicationi on serverl. For k = 1, this corresponds
to (5) where accepted requests are routed to the first tier of



PROC. IEEE/IFIP NOMS, APRIL 2010 7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

V

 A
ve

ra
ge

 T
ot

al
 U

til
ity

 

 

DCA gamma 0.75
DCA−M gamma 0.75
DCA gamma 1.0
DCA−M gamma 1.0
DCA gamma 2.0
DCA−M gamma 2.0

Fig. 3. Average total utility vs V for different values ofγ.

application i on serverj after admission control decisions.
Using the Lyapunov Optimization framework presented in the
previous sections together with the technique of backpressure
routing [15], DCA can be extended to treat such multi-tier
scenarios.

VI. SIMULATIONS

We simulate the DCA and DCA-M algorithms in an ex-
ample virtualized data center consisting of100 servers and
hosting10 applications. Each applicationi is CPU intensive
and receives requests exogenously according to a random
arrival process of rateλi. In the simulation setup, each CPU
is assumed to follow a quadratic power-frequency relation-
ship similar to the experimentally obtained quadratic power-
frequency curve in Fig. 2. Specifically, each CPU is assumed
to have a discrete set of frequency options in the interval
[1.6GHz, ..., 2.6GHz] at increments of0.2 GHz and the
corresponding power consumption (in Watts) at frequencyf
is given byPmin + θ(f − 1.6GHz)2 wherePmin = 120W
andθ = 120W/(GHz)2. Thus, the CPU power consumption
at the highest frequency is240W . We assume that half of the
servers in the data center are always ON and that decisions to
dynamically turn servers ON/OFF are applied to the remaining
servers. Note that the dynamic operating frequency decisions
are still applied to all servers. The frame sizeT = 1000 slots
and the simulations were run for one million slots.

The number of new requests generated for an applicationi
in a slot is assumed to be uniformly and randomly distributed
in [0, 2λi]. On average, a server running at the minimum
(maximum) speed can process200 (400) requests/slot. In the
simulations, the throughput utility weights are chosen to be
equal for all applications, so thatαi = α∀i.

In the first experiment, we fix the input rateλi = 2000
requests/slot for all applications and simulate the DCA and
DCA-M algorithms for different choices of the ratioγ = α/β.
Figs. 3 shows the total average utility for different valuesof
the input parameterV under the two control algorithms. We
observe that the performance of DCA-M is very close to DCA.
Further, the total average utility achieved increases withV
and converges to a maximum value for larger values ofV
as predicted by (16). Fig. 4 plots the average delay of the
admitted requests vsV . It can be seen that the average delay
increases linearly withV as predicted by the bounds in (14),

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140

160

180

V

A
ve

ra
ge

 D
el

ay
 o

f A
dm

itt
ed

 R
eq

ue
st

s

 

 

DCA gamma 0.75 
DCA−M gamma 0.75
DCA gamma 1.0
DCA−M gamma 1.0
DCA gamma 2.0
DCA−M gamma 2.0

Fig. 4. Average delay of admitted requests vs V for differentvalues ofγ.

(15). Fig. 5 shows the fraction of declined requests vsV under
both algorithms. This, along with Figs. 3 and 4 shows the
O(1/V, V ) utility-delay tradeoff offered by the DCA algorithm
where the average utility achieved can be pushed closer to the
optimal value with a tradeoff in terms of a linear increase in
average delay.

In the second experiment, we fix the parametersV =
5000, γ = 1.0 and consider the scenario where the input
rate changes in an unpredictable manner. Specifically, for
the first 1/3 of the simulation interval, the input rateλi =
1000 requests/slot for all applications. Then the input rate
abruptly increases to3000 requests/slot before dropping to
2000 requests/slot in the last1/3 of the simulation interval.
In Fig. 6, we plot the number of active servers vs. frame
number under the DCA algorithm. It can be seen that the
algorithm quickly adapts to the new workload by increasing
or decreasing the number of active servers (and hence the
instantaneous capacity) even when the workload changes in
an unpredictable manner.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we considered the problem of dynamic
resource allocation and power management in virtualized
data centers. Prior work in this area uses prediction based
approaches for resource provisioning. In this work, we have
used an alternate approach that makes use of the queueing
information available in the system to make online control
decisions. This approach is adaptive to unpredictable changes
in workload and does not require estimation and prediction
of its statistics. Our approach uses the recently developed
technique of Lyapunov Optimization that allows us to derive
analytical performance guarantees of the algorithm.

The main focus of this work was on building an analytical
framework. As part of future work, we plan to have real system
implementation of our algorithm and use standard benchmark
workloads and applications to evaluate its performance.

APPENDIX - PROOF OFTHEOREM 1 PART (2)

Here, we prove part(2) of Theorem1 using the tech-
nique of Lyapunov Optimization [15]. This technique involves
constructing an appropriate Lyapunov function of the queue
backlogs in the system, defining the conditional “Lyapunov



PROC. IEEE/IFIP NOMS, APRIL 2010 8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

V

F
ra

ct
io

n 
of

 R
eq

ue
st

s 
D

ec
lin

ed

 

 

DCA gamma 0.75
DCA−M gamma 0.75
DCA gamma 1.0
DCA−M gamma 1.0
DCA gamma 2.0
DCA−M gamma 2.0

Fig. 5. Fraction of declined requests vs V for different values ofγ.

drift” of this function, and then developing a dynamic al-
gorithm that minimizes this drift over all control policies.
The performance bounds for this algorithm are obtained by
comparing the Lyapunov drift under this algorithm with thatof
the backlog independent optimal stationary, randomized policy
described in Sec. III-A.

Let Q(t) = (U11(t), . . . , UNM (t), W1(t), . . . , WM (t)) rep-
resent the collection of all queue backlogs in the system. We
define a Lyapunov function:L(Q(t))△

=
1
2

[

∑

i∈A,j∈S
U2

ij(t) +
∑

i∈A
W 2

i (t)
]

. Define the conditional Lyapunov drift∆(Q(t))

as follows: ∆(Q(t))△

=E {L(Q(t + 1)) − L(Q(t))|Q(t)}. Us-
ing queueing dynamics (2) and (5), the conditional Lyapunov
drift ∆(t) under any control policy (including DCA) can be
computed as follows:

∆(t) ≤ B −
∑

ij

Uij(t)E {µij(Ij(t)) − Rij(t)|Q(t)}

−
∑

i

Wi(t)E







∑

j

Rij(t) − Ri(t)|Q(t)







(17)

whereB △

=
P

i
(Amax

i
)2+NMµ2

max

2 .
For a given control parameterV ≥ 0, we subtract the reward

metricV E

{

∑

i αiRi(t) − β
∑

j Pj(t)|Q(t)
}

from both sides
of (17) and rearrange the terms to get the following:

∆(t) − V E







∑

i

αiRi(t) − β
∑

j

Pj(t)|Q(t)







≤ B

−
∑

ij

Uij(t)E {µij(Ij(t))|Q(t)} + V β
∑

j

E {Pj(t)|Q(t)}

−
∑

ij

E {Rij(t)(Wi(t) − Uij(t))|Q(t)}

−
∑

i

E {Ri(t)(V αi − Wi(t)|Q(t)} (18)

From the above, it can be seen that the dynamic control
algorithm DCA described in Sec. IV-A is designed to take
Admission Control, Routing and Resource Allocation deci-
sions thatminimize the right hand side of (18) over all possible
options, including the stationary policy of Sec. III-A. Theorem
1 part (2) can now be shown using a direct application of the

0 100 200 300 400 500 600 700 800 900 1000
50

55

60

65

70

75

80

85

90

95

100

Frame Number

N
um

be
r 

of
 A

ct
iv

e 
S

er
ve

rs

Fig. 6. Number of active servers over time.

Lyapunov Optimization Theorem (see Theorem5.4 in [15])
along with aT -slot delayed Lyapunov analysis.

REFERENCES

[1] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud:
research problems in data center networks.ACM SIGCOMM Computer
Communication Review, vol. 39, no. 1, Jan. 2009.

[2] X. Fan, W. Weber, and L. Borroso. Power provisioning for awarehouse-
sized computer. InProceedings of ISCA, June 2007.

[3] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No
“power” struggles: coordinated multi-level power management for the
data center. InProceedings of ASPLOS, March 2008.

[4] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal power
allocation in server farms. InProceedings of SIGMETRICS, June 2009.

[5] A. Weirman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling
in processor sharing systems. InProceedings of INFOCOM, April 2009.

[6] P. Padala, K-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant. Automatic control of multiple virtualizedresources. In
Proceedings of EuroSys, April 2009.

[7] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Mer-
chant, and K. Salem. Adaptive control of virtualized resources in utility
computing environments. InProceedings of EuroSys, March 2007.

[8] X. Liu, X. Zhu, P. Padala, Z. Wang, and S. Singhal. Optimalmultivariate
control for differentiated services on a shared hosting platform. In
Proceedings of CDC, Dec. 2007.

[9] D. Kusic and N. Kandasamy. Power and performance management of vir-
tualized computing environments via lookahead control. InProceedings
of ICAC, June 2009.

[10] Y. Chen, A. Das, W Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam.
Managing server energy and operational costs in hosting centers. In
Proceedings of SIGMETRICS, June 2005.

[11] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A. Bal-
dini. Statistical profiling-based techniques for effective power provision-
ing in data centers. InProceedings of EuroSys, April 2009.

[12] X. Wang, D. Lan, X. Fang, M. Ye, and Y. Chen. A resource manage-
ment framework for multi-tier service delivery in autonomic virtualized
environments. InProceedings of NOMS, April 2008.

[13] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and
application profiling in shared hosting platforms. InProceedings of OSDI,
Dec. 2002.

[14] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An
analytical model for multi-tier internet services and its applications. In
Proceedings of SIGMETRICS, June 2005.

[15] L. Georgiadis, M. J. Neely, L. Tassiulas. Resource allocation and cross-
layer control in wireless networks.Foundations and Trends in Networking,
vol. 1, no. 1, pp. 1-149, 2006.


