
DETERMINISTIC MATHEMATICAL OPTIMIZATION IN STOCHASTIC

NETWORK CONTROL

by

Longbo Huang

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(ELECTRICAL ENGINEERING)

August 2011

Copyright 2011 Longbo Huang

Dedication

To my mom and dad: Ximei Lin and Yingzhong Huang

To uncle Liangjun Hu

ii

Acknowledgments

First, I would like to thank my advisor, Professor Michael Neely. To me, he is an ideal

advisor, and I feel extremely fortunate to be able to work with him. He is passionate,

energetic, rigorous and highly supportive. He gave me the complete freedom in choosing

what I wanted to work on, and always encouraged me to pursue further into the topics.

He also tried his best to help me get around the many difficulties I faced. I still remember

when I wrote my first paper on pricing, he spent so much time helping me that he could

have written the paper from scratch himself. When I started my Ph.D., I wished to learn

as much from him as possible. Now I think I have learned a lot from him already, but I

realize that he still has a lot more that I can learn from.

The second person I want to thank is Professor Bhaskar Krishnamachari, who in many

ways acted as my second advisor. I took Bhaskar’s EE650 course in Spring 2006, and

benefited a lot from his guidance on how to conduct networking research. He has given

me enormous encouragement and help throughout the years. After more than five years,

I still remember a sentence he said to me in one of the EE650 course project meetings:

“A positive mind is the most important thing.” This sentence has helped me go through

many of the down times I had.

iii

I would like to thank Professor David Kempe, who taught me two wonderful algorithm

courses and served as my dissertation committee. In fact, he taught the classes so well that

I was once seriously thinking about becoming a CS student and working on algorithms.

I am also very grateful for his detailed comments on editing my thesis. I also want to

thank Professor Adam Wierman, who has given me a lot of advice on how to improve my

research results and develop my academic skills. I am extremely grateful for his help and

encouragement during my job searching process. I am also very grateful for all the great

guidance from my other committee members: Professor Rahul Jain, Professor Giuseppe

Caire and Professor Sheldon Ross.

I want to say thank you to all my friends, in particular, Anita, Mayumi, Gerrie and

Milly, Rahul, Chih-ping, Scott, Yuan Yao, Abhshek, Xijin, Frank, Dileep, Yuan Lin,

Erica, Carson, Hua and Ying. It is you who made my life at USC much more memorable

and be filled with joy. I remember all the wonderful moments I had with you.

I want to express my special thanks to uncle Liangjun Hu. My life trajectory would

have been much different should I not meet him when I was in college, and was struggling

in finding my own direction for the future.

Finally, the development of this thesis would not have been possible without the

constant love and support from my family – my dad and mom, Yingzhong Huang and

Ximei Lin, my two brothers, Longzhang and Longjin, and Xiaojun. They have been

believing in me and gave me the courage to try out things that I myself was not sure if I

would be able to accomplish. Thank you, and I only wish I had a better way to express

my gratefulness to you.

iv

Table of Contents

Dedication ii

Acknowledgments iii

List of Figures x

Abstract xiii

Chapter 1: Introduction 1

1.1 The general stochastic network optimization problem and the QLA (Max-
Weight) algorithm . 3

1.2 Organization of the thesis . 5

1.3 Notation . 7

I Optimal Dynamic Pricing 8

Chapter 2: Network access point pricing: the optimality of two prices 9

2.1 Network model . 10

2.1.1 Arrival model: the demand function 10

2.1.2 Transmission model: the rate-cost function 12

2.1.3 Queueing dynamics and other notations 13

2.2 Related work . 14

2.3 Characterizing the maximum profit . 15

2.3.1 The maximum profit . 16

2.3.2 The optimality of two prices . 18

2.3.3 Example demonstrating necessity of two prices 23

2.4 Achieving the maximum profit . 25

2.4.1 Performance results . 27

2.4.2 Discussion of worst case delay . 28

2.4.3 Proof of performance . 28

2.4.4 Demand blind pricing . 33

2.5 Simulation . 34

2.6 Discussion . 36

2.7 Chapter summary . 37

v

II Delay-Efficient Scheduling for Communication Networks 38

Chapter 3: The general network model: the stochastic problem 39

3.1 System model . 39

3.1.1 Network state . 39

3.1.2 The cost, traffic and service . 40

3.1.3 Queueing, average cost and the stochastic problem 42

3.1.4 Examples of the model . 43

3.1.4.1 The cccess point pricing problem 43

3.1.4.2 A 2-queue energy minimization example 43

3.2 Discussion of the model . 45

Chapter 4: Achieving the near-optimal [O(1/V), O([log(V)]2)] utility-delay
tradeoff 47

4.1 QLA and the deterministic problem . 49

4.1.1 The pricing example . 49

4.1.2 The QLA algorithm . 52

4.1.3 The deterministic problem . 53

4.2 Backlog vector behavior under QLA . 57

4.2.1 When g0(·) is “locally polyhedral” 57

4.2.2 When g0(·) is “locally smooth” . 66

4.2.3 Discussion of the choices of g0(γ) 68

4.2.4 The importance of the ε-slack condition 69

4.2.5 Implications of Theorem 5 and 8 70

4.2.6 More backlog bounds when there is a single queue 72

4.3 The FQLA algorithm . 72

4.3.1 FQLA: a single queue example . 72

4.3.2 The FQLA-Ideal algorithm . 74

4.3.3 Performance of FQLA-Ideal . 76

4.3.4 The FQLA-General algorithm . 79

4.3.5 Practical issues . 81

4.3.6 Simulation . 81

4.4 The LIFO-Backpressure algorithm . 85

4.4.1 Performance of LIFO-Backpressure 86

4.4.1.1 A simple example on the LIFO delay 86

4.4.1.2 A Modified Little’s Theorem for LIFO systems 88

4.4.1.3 LIFO-Backpressure proof 89

4.4.2 Simulation . 92

4.5 The LIFOp-Backpressure algorithm . 95

4.5.1 The algorithm . 96

4.5.2 Performance analysis . 97

4.6 Discussion of assumption 1: the uniqueness of the optimal Lagrange mul-
tiplier . 99

4.7 Comparing QLA and the greedy primal-dual approach 100

4.8 Lagrange Multiplier: “shadow price” and “network gravity” 101

vi

4.9 Chapter summary . 103
4.10 Proofs of the chapter . 103

4.10.1 Proof of Lemma 3 . 103
4.10.2 Proof of (4.31) . 108
4.10.3 Proof of Lemma 4 . 109
4.10.4 Proof of Theorem 11 . 112
4.10.5 [O(1/V), O(V)] performance of QLA under Markovian dynamics . 114
4.10.6 Proof of Theorem 14 . 123

Chapter 5: On order-optimal scheduling: the redundant constraint ap-
proach 128
5.1 The redundant constraint approach: the intuition 129
5.2 Network model . 131

5.2.1 The flow and routing model . 131
5.2.2 The transmission model . 132
5.2.3 Queueing dynamics and network capacity region 133
5.2.4 The delay efficient scheduling problem 135

5.3 Related work . 135
5.4 Towards better delay performance . 136

5.4.1 Accelerating queues and redundant constraints in optimization . . 136
5.4.2 The DESC algorithm . 137

5.5 DESC: stability and delay performance . 139
5.5.1 Example . 141
5.5.2 Discussion of the choice of θ . 142

5.6 Performance analysis . 143
5.7 DESC under delayed arrival information 147
5.8 M-DESC for multi-path routing . 151
5.9 Simulation . 157

5.9.1 The single-path case . 158
5.9.2 The multi-path case . 159

5.10 Further discussion . 161
5.11 Chapter summary . 162
5.12 Proofs of the chapter . 163

5.12.1 Proof of Lemma 7 . 163

III Utility Optimal Scheduling for Complex Networks 165

Chapter 6: Resolving underflows in complex network scheduling problems166
6.1 A data processing example . 167

6.1.1 Network settings . 167
6.1.2 The perturbed Max-Weight algorithm (PMW) 169
6.1.3 Performance of PMW . 171

6.2 General system model . 175
6.2.1 Network state . 175
6.2.2 The utility, traffic, and service . 176

vii

6.2.3 Queueing, average cost, and the objective 178

6.2.4 Discussion of the model . 179

6.3 Upper bounding the optimal utility . 180

6.4 The general perturbed Max-Weight algorithm and its performance 181

6.5 Discussion of finding the perturbation value 185

6.6 Constructing PMW for stochastic processing networks with output reward 185

6.6.1 Network model . 186

6.6.2 Relation to the general model . 189

6.6.3 The PMW algorithm . 189

6.6.4 Performance . 192

6.7 Simulation . 194

6.8 Perturbation and tracking the Lagrange multiplier 196

6.9 Chapter summary . 197

6.10 Proofs of the chapter . 198

6.10.1 Proof of Theorem 23 . 198

6.10.2 Proof of Lemma 8 . 199

6.10.3 Proof of Lemma 9 . 200

6.10.4 Proof of Theorem 24 . 201

6.10.5 Choosing the {wj}rj=1 values . 203

6.10.6 Proof of Lemma 10 . 205

Chapter 7: Utility optimal scheduling in energy harvesting networks 208

7.1 The network model . 209

7.1.1 The traffic and utility model . 209

7.1.2 The transmission model . 210

7.1.3 The energy queue model . 212

7.1.4 Queueing dynamics . 213

7.1.5 Utility maximization with energy management 214

7.1.6 Discussion of the model . 215

7.2 Related work . 216

7.3 Upper bounding the optimal network utility 216

7.4 Engineering the queues . 218

7.4.1 The ESA Algorithm . 218

7.4.2 Implementation of ESA . 222

7.5 Performance analysis . 223

7.5.1 ESA under I.I.D. randomness . 223

7.5.2 ESA under Markovian randomness 225

7.6 Reducing the buffer size . 226

7.6.1 The Modified-ESA algorithm . 226

7.6.2 Performance of MESA . 229

7.7 Simulation . 231

7.8 Chapter summary . 234

7.9 Proofs of the chapter . 234

7.9.1 Proof of Lemma 13 . 234

7.9.2 Proof of Theorem 26 . 236

viii

7.9.3 Proof of Lemma 14 . 239
7.9.4 Proof of Theorem 28 . 242

IV Conclusion and Future Work 246

Chapter 8: Conclusion and future work 247

Bibliography 251

Appendix
Duality . 259

ix

List of Figures

2.1 An Access Point (AP) that connects mobile users to a larger network. . . 10

2.2 A1 = (2, 1), B1 = (9
2 ,

9
14), A2 = (2, 2) and B2 = (9

2 ,
81
28). 23

2.3 The two-state Markov chain. 35

2.4 Average backlog and average profit v.s. V. 35

2.5 Prices chosen according to demand state DM(t) for V=100 36

2.6 LEFT: prices chosen in the first 5× 104 slots; RIGHT: prices chosen over
an interval of 200 slots (V=1000) . 36

3.1 A 2-queue system . 44

3.2 Network state, traffic and rate functions 45

4.1 Left: A sample backlog process; Right: An example of W (t) and q(t). . . 73

4.2 Demonstration of the FQLA algorithm for r = 1: FQLA is the same as
QLA when W (t) ≥ W; otherwise it only admits the excessive packets. . . 75

4.3 A five queue system . 82

4.4 FQLA-Ideal performance: Up-Left - Average queue size; Up-Right - Per-
centage of packets dropped; Bottom - Sample (W1(t),W2(t)) process for
t ∈ [10000, 110000] and V = 1000 under FQLA-Ideal. 83

4.5 A multihop network. (a, b) represents the HIGH probability a and the rate
b obtained with one unit of power when HIGH. 93

4.6 The two state Markov chain with the transition probabilities. 93

x

4.7 LEFT: average network power consumption. MIDDLE: average network
backlog size. RIGHT: percentage of time when ∃ qj such that |qj − γ∗V j | >
2[log(V)]2. 94

4.8 Delay statistics under Backpressure with LIFO and FIFO for packets that
leave the system before simulation ends (more than 99.9%). %DL < a is
the percentage of packets that enter the network and have delay less than
a. 95

4.9 Packet delay under Backpressure with LIFO and FIFO 95

4.10 The LIFO-FIFO interleaving technique. A packet is either served when the
queue is serving the end of the queue, or it gradually moves to the right
towards the front of the queue and is served when the queue is serving the
packets from the front of the queue. 96

4.11 An illustration of inequality (4.92) for a particular buffer location b. At
time t in the figure, we have D(b)(t) = 3. 112

5.1 An example of flows going through a multihop network, where the arrows
indicate the routes of the flows. 129

5.2 A flow traversing a tandem. 142

5.3 A Network with 4 Flows. η is f1’s path length, h measures the path overlap
length of f1 and f2, and υ is the vertical path length of f2. 158

5.4 Qi and Hi, i = 1, 2, 3, 4, are the average total actual and AQ backlog sizes
of flow i, respectively. 160

5.5 UP: the average rate allocated to Flow 1 (η = 100); DOWN: the average
rate allocated to Flow 2 (η = 100). 161

5.6 Two flows going through a network with two paths. 161

5.7 Here Qi and Hi, i = 1, 2 denote the time average actual and AQ backlog
sizes. Q′i, i = 1, 2 denotes the average total actual backlog without the
source nodes. 162

5.8 UP: the average rate allocated to Flow 1 (η = 100); DOWN: the average
rate allocated to Flow 2 (η = 100). 163

6.1 An example network consisting of three queues q1, q2, q3 and two processors
P1, P2. 167

xi

6.2 A general processing network. A dotted line between two processors means
that the processors share some common resources and thus cannot be ac-
tivated at the same time. 187

6.3 Utility and backlog performance of PMW. 195

6.4 Sample path backlog processes with V = 100. 195

6.5 An explanation on why perturbation is needed and effective. 197

7.1 The intuition behind perturbation . 219

7.2 A data collection network. 231

7.3 Simulation results of ESA. 232

7.4 Sample path queue processes. 233

7.5 Simulation results of MESA. 5M is the total network energy buffer size. 234

xii

Abstract

In this thesis, we extend the recently developed Lyapunov optimization technique (also

known as Max-Weight or Backpressure) for stochastic queueing networks in two important

directions: (1) guaranteeing small network delay; and (2) resolving underflows.

To achieve our objective, we first establish an explicit connection between the Lya-

punov technique and a randomized dual subgradient method. Based on this connection,

we develop a novel exponential attraction result, which states that the network queue

backlog under a Lyapunov algorithm deviates from a certain fixed point with a proba-

bility that decreases exponentially in the deviation distance. Inspired by the exponential

attraction result, we develop three delay-efficient algorithms and show that they achieve

near-optimal utility-delay tradeoffs for a general class of multi-hop communication net-

works. One of the algorithms has also been implemented on a sensor network testbed

and was shown to be able to guarantee very small network delay in practical systems.

We later consider the problem of resolving underflows in general complex network

scheduling problems. In this case, we propose the weight perturbation technique and

develop the Perturbed Max-Weight algorithm (PMW). We show that PMW effectively

resolves underflow constraints without sacrificing utility performance. We then apply

the perturbation technique to construct utility optimal scheduling algorithms for two

xiii

important classes of networks – stochastic processing networks and energy harvesting

networks.

The results developed in this thesis highlight the importance of Lagrange multiplier

engineering in queueing networks. Specifically, our results show that the queues under

the Lyapunov technique indeed correspond to the Lagrange multiplier values under the

randomized dual subgradient method. This not only helps us better understand the

Lyapunov technique, but also gives us general guidelines on how should one design its

algorithm to achieve the desire properties of the queues.

xiv

Chapter 1

Introduction

Controlled stochastic queueing networks have been one of the most common and general

models for studying complex networked systems. For instance, they can be used to model

data networks, transportation networks, manufacturing networks, cellular networks, and

social networks. Therefore, developing an optimal control theory for controlled stochas-

tic queueing networks is one of the most fundamental problems in the network science

research.

Among the many techniques that have been used for algorithm design, the Lyapunov

optimization technique (below we mainly focus on the Quadratic Lyapunov function based

Algorithm (QLA), which is also known as Backpressure or Max-Weight), first proposed in

the seminal work by Tassiulas and Ephremides [TE92], has gradually become the state-of-

the-art tool for solving controlled stochastic queueing network problems. The Lyapunov

technique is currently receiving much attention in both the theoretical and experimental

communities, due to (i) its ability to achieve optimal performance, (ii) its robustness

against time-varying network conditions, and (iii) its mathematical tractability. However,

the Lyapunov technique has the following two main limitations: (i) It has an unsatisfying

1

network delay performance for communication network problems; and (ii) The technique

does not directly apply to complex networks with “no-underflow” constraints, meaning the

network requires some queues to have a sufficiently large size to perform particular actions.

An example of a network with “no-underflow” constraints are energy harvesting networks

that require “energy queues” to have enough energy to make wireless transmissions.

Another example is a product assembly or processing network that combines two or more

types of objects before delivery to the next stage, and hence requires the number of

objects of each type to be sufficiently large.

In this thesis, we extend Lyapunov optimization theory to resolve the above two

limitations. Specifically, we present a systematic way of designing Lyapunov-type (or

Max-Weight type) delay-efficient algorithms for general communication network opti-

mization problems, as well as a novel approach to handle the no-underflow constraints.

These two extensions greatly broaden the range of problems that can be solved by the

Lyapunov technique. Resolving these two problems is highly nontrivial. For the network

delay problem, current Lyapunov algorithms are typically analyzed by Lyapunov drift

arguments, which only provide upper bounds of the network delay and the results de-

pend heavily on the choice of the Lyapunov function; this lacks a systematic approach.

For the underflow problem, the “no-underflow” constraint couples all the actions in time,

i.e., the current action may affect the feasibility of a future action. Thus, previous works

in this area typically use dynamic programming as the main tool and suffer greatly

from the “curse-of-dimensionality.” To accomplish our tasks, we establish a novel math-

ematical programming view of the Lyapunov technique. This connection between the

classic mathematical programming theory and the Lyapunov technique not only provides

2

us with new insights into the Lyapunov method, but also suggests new ways to design

delay-efficient/underflow-capable optimal network control algorithms.

1.1 The general stochastic network optimization problem

and the QLA (Max-Weight) algorithm

In this thesis, we consider the following general stochastic network optimization problem:

We are given a discrete-time stochastic network. The network state, which characterizes

the randomness in the network, such as the network channel condition or the random

number of arrivals, is time varying according to some probability law. At every time slot,

the network controller performs some action chosen from some feasible action set based

on the observed network state. The chosen action incurs a cost, 1 but also serves some

amount of traffic and possibly generates new traffic for the network. This traffic causes

congestion, and thus leads to backlogs at nodes in the network. The goal of the controller

is to minimize its time average cost subject to the constraint that the time average total

backlog in the network is finite.

This setting is very general. Many existing network optimization works fall into this

category, and many techniques have been used to study this problem (see [YC08] for a

survey). Also note that this framework can be used to model many stability problems,

which correspond to the case where the cost incurred by any action is the same. Out of

the many proposed approaches, the class of algorithms built upon quadratic Lyapunov

functions (called Quadratic Lyapunov function based Algorithms (QLA), also known as

1Since cost minimization is mathematically equivalent to utility maximization, in the sense that any
cost minimization problem can be written as a utility maximization problem and vice versa, below we
will use cost and utility interchangeably.

3

Max-Weight or Backpressure) have been receiving much recent attention. These QLA

algorithms were first proposed in the seminal work by Tassiulas et al. [TE92] for network

scheduling, and were later extended into the network utility optimization context by Neely

et al. [NML08]. They have been proven to be capable of solving a wide range of commu-

nication network problems, for instance, throughput optimal routing [NMR05], network

energy minimization [Nee06c], network utility maximization with fairness consideration

[NML08], network pricing [HN10c] and cognitive radio applications [UN08]. These QLA

algorithms are easy to construct and implement, greedy in nature, robust to network

condition changes, and most importantly, they do not require any statistical knowledge of

the complicated underlying stochastic process in the network. In the network utility op-

timization context, QLA offers a scalar control parameter V ≥ 1 to control the distance

to the optimal utility. It has been shown in [GNT06] that when the network state is

i.i.d., QLA algorithms can guarantee a time average utility that is within O(1/V) to the

optimal. Therefore, as V grows large, the time average utility can be pushed arbitrarily

close to the optimal. In the pure routing and scheduling context, QLA (in this context,

we will follow the convention to call it the Max-Weight algorithm and mainly refer to

the Dynamic Routing and Power Control algorithm (DRPC) in [NMR05]) is known to be

throughput-optimal in that it can stabilize the network whenever it is possible to stabilize

it [NMR05].

However, though being a powerful tool, QLA has two main drawbacks: (i) it usually

incurs a large network delay. Specifically, when achieving the O(1/V) close-to-optimal

utility, one can only guarantee that the incurred network delay is O(V); and (ii) it

cannot be directly applied to complex network problems that involve “no-underflow”

4

constraints. In this thesis, we extend Lyapunov network optimization theory to resolve

the two aforementioned limitations in a systematic way. The development of the results

in this thesis also provide us with more insights into designing optimal network control

algorithms.

1.2 Organization of the thesis

This thesis consists of the following components:

• Part I - Optimal Dynamic Pricing [HN10c]: This part consists of Chapter 2, and is

devoted to constructing optimal dynamic pricing algorithms for networks with random

demand and service opportunities. This problem, though being a special case of the

general utility maximization framework defined in Chapter 3, is indeed a problem of

its own interest. We develop an optimal online pricing and service scheduling policy for

network access points under demand and service opportunity uncertainties, and prove the

intriguing “Optimality of Two Prices” theorem, which states that it is always sufficient

and sometimes necessary to use a “regular price” together with a “sale price” for achieving

optimal revenue.

• Part II - Delay-Efficient Scheduling for Communication Networks [HN09] [HN11a]

[HN10d] [HNar] [HN10a] [HMNK11]: This part consists of Chapters 3, 4 and 5, and

presents a systematic solution for developing delay-efficient scheduling algorithms for

general data network problems. In this part, we first describe the general network utility

optimization model in Chapter 3 and discuss the applicability and the limitations of the

model. Then in Chapter 4, we develop delay-efficient algorithms for the general network

5

utility optimization problem defined in Chapter 3. Specifically, we first relate the QLA

algorithm to a corresponding deterministic mathematical program. We then prove that

the backlog vector under QLA is exponentially attracted to some attractor, which is the

dual optimal solution of the deterministic mathematical program. Using this exponential

attraction result, we develop the Fast-QLA algorithm (FQLA) and show that FQLA

guarantees an O([log(V)]2) network delay when the utility is pushed to within O(1/V)

of the optimal value. This contrasts with the O(V) delay incurred by QLA with the

same O(1/V) utility performance. We then develop the LIFO-Backpressure technique

and the LIFOp-Backpressure method, which admit a simpler implementation compared

to FQLA, and achieve the same [O(1/V), O([log(V)]2)] utility-delay tradeoff. Lastly,

we develop the novel “redundant constraint” method for stochastic network stability

problems in Chapter 5, which can be viewed as complementing Chapter 4 by exploring

delay reduction opportunities with respect to the network size.

• Part III - Utility Optimal Scheduling for Complex Networks [HN10b] [HN11b]: This

part contains Chapters 6 and 7. It proposes a general framework for modeling schedul-

ing problems in general complex networks that involve “no-underflow” constraints. Such

networks are very common in practice, and scheduling problems in such networks are

much more complicated than those in traditional communication networks. We pro-

vide a systematic way for designing and analyzing algorithms for scheduling problems in

such networks. In Chapter 6, we extend Lyapunov theory to networks that involve the

“no-underflow” constraints by developing the novel Perturbed Max-Weight (PMW) tech-

nique, which is greedy and has low implementation complexity, and applying it to general

stochastic processing networks. In Chapter 7, we apply the methodology developed in

6

Chapter 6 to energy harvesting networks. In this case, we develop an online algorithm

that requires no knowledge of the random harvestable energy process and show that our

algorithm can achieve a close-to-optimal utility using finite energy storage devices.

• Part IV - Conclusion and Future Work: Finally, we conclude our thesis in Chapter

8, and outline a few future research directions.

1.3 Notation

Here we introduce the notations used in this thesis:

• R: the set of real numbers

• R+ (or R−): the set of nonnegative (or non-positive) real numbers

• Rn (or Rn+): the set of n dimensional column vectors, with each element being in R

(or R+)

• bold symbols a and aT : column vector and its transpose

• a � b: vector a is entrywise no less than vector b

• ||a− b||: the Euclidean distance of a and b

• ||a||∞: the sup norm of a

• 0: column vector with all elements being 0

• log(·): the natural log function

•
[
x
]+

: max[x, 0]

• i.i.d.: independently and identically distributed

7

Part I

Optimal Dynamic Pricing

8

Chapter 2

Network access point pricing: the optimality of two prices

In this chapter, we consider the profit maximization problem of an access point (AP) in

a wireless mesh network. The results in this chapter are based in part on our conference

and journal papers [HN07] and [HN10c].

In this network, mobile users connect to the mesh network via the AP. The AP

receives the user data and transmits it to the larger network via a wireless link. Time is

slotted with integral slot boundaries t ∈ {0, 1, 2, . . .}, and every timeslot the AP chooses

an admission price p(t) (cost per unit packet) and announces this price to all present

mobile users. The users react to the current price by sending data, which is queued at

the AP. While the AP gains revenue by accepting this data, it in turn has to deliver all

the admitted packets by transmitting them over its wireless link. Therefore, it incurs a

transmission cost for providing this service (for example, the cost might be proportional

to the power consumed due to transmission). The mission of the AP is to find strategies

for both packet admission and packet transmission so as to maximize its time average

profit while ensuring queue stability.

9

This problem falls into our general utility optimization framework in Chapter 3, and

hence the general delay improvement results developed in Chapter 4 can also be applied

here. However, we note that this pricing problem also contains many aspects, such as

the two-price result and the demand blind pricing mode, that are interesting in their own

right, and hence can indeed be viewed as a problem of independent interest. It will also

serve as a demonstration of how the Lyapunov technique works.

2.1 Network model

We consider the network as shown in Fig 2.1. The network is assumed to operate in

slotted time, i.e. t ∈ {0, 1, 2, ...}.

AP

F(DM(t),p(t))

φ(cost(t),CH(t))

Network

Figure 2.1: An Access Point (AP) that connects mobile users to a larger network.

2.1.1 Arrival model: the demand function

We first describe the packet arrival model. Let DM(t) be the demand state at time

t. DM(t) might be the number of present mobile users, or could represent the current

demand situation, such as the demand being “High,” “Medium” or “Low.” We assume

that DM(t) evolves according to a finite state ergodic Markov chain with state spaceM.

Let πm represent the steady state probability that DM(t) = m. The value of DM(t) is

10

assumed known at the beginning of each slot t, although the transition and steady state

probabilities are potentially unknown.

Every timeslot, the AP first makes a business decision by deciding whether or not to

allow new data (this decision can be based on knowledge of the current DM(t) state).

Let Z(t) be a 0/1 variable for this decision, defined as:1

Z(t) =

1 if the AP allows new data on slot t,

0 else.

(2.1)

If the AP chooses Z(t) = 1, it then chooses a per-unit price p(t) for incoming data and

advertises this price to the mobile users. We assume that price is restricted to a set

of price options P, so that p(t) ∈ P for all t. We assume that the set P includes the

constraint that prices are non-negative and bounded by some finite maximum price pmax.

Let R(t) be the total number of packets that are sent by the mobile users in reaction to

this price. The income earned by the AP on slot t is thus Z(t)R(t)p(t).

The arrival R(t) is a random variable that depends on the demand state DM(t) and

the current price p(t) via a demand function F (DM(t), p(t)):

F : (DM(t), p(t))→ E
{
R(t)

}
. (2.2)

Specifically, the demand function maps DM(t) and p(t) into the expected value of arrivals

E
{
R(t)

}
. We further assume that there is a maximum value Rmax, so that R(t) ≤ Rmax

for all t, regardless of DM(t) and p(t). The higher order statistics for R(t) (beyond its

expectation and its maximum value) are arbitrary. The random variable R(t) is assumed

to be conditionally independent of past history given the current DM(t) and p(t). The

1The Z(t) decisions are introduced to allow stability even in the possible situation where user demand is
so high that incoming traffic would exceed transmission capabilities, even if price were set to its maximum
value pmax.

11

demand function F (m, p) is only assumed to satisfy 0 ≤ F (m, p) ≤ Rmax for all m ∈ M

and all p ∈ P.

Example: In the case when DM(t) represents the number of mobile users in range of

the AP at time t, a useful example model for F (DM(t), p(t)) is:

F (DM(t), p(t)) = A(DM(t))F̂ (p(t)),

where F̂ (p) is the expected number of packets sent by a single user in reaction to price

p, a curve that is possibly obtained via empirical data; and A(DM(t)) is a non-negative

function of DM(t), e.g. A(DM(t)) = θDM(t), θ ≥ 0, which represents the “effective

number of participating users” generated by the DM(t) present users. In this case, we

assume that the A(DM(t)) is bounded by some value Amax and the maximum number

of packets sent by any single user is bounded by some value Rsinglemax , so that Rmax =

AmaxR
single
max .

In Section 2.4, we show that this type of demand function (i.e, F (m, p) = A(m)F̂ (p))

leads to an interesting situation where the AP can make “demand state blind” pricing

decisions, where prices are chosen without knowledge of DM(t).

2.1.2 Transmission model: the rate-cost function

Let CH(t) represent the channel condition of the wireless link from AP to the mesh

network on slot t. We assume that the channel state process CH(t) is a finite state

ergodic Markov chain with state space CH. Let πch represent the steady state probability

that CH(t) = ch. The transition and steady state probabilities of CH(t) are potentially

unknown to the AP, although we assume that the AP knows the current CH(t) value at

the beginning of each t.

12

Every slot t, the AP decides how much resource to allocate for transmission. We

model this decision completely by its cost to the AP, denoted as cost(t). We assume

that cost(t) is chosen within some set of costs C, and that C includes the constraint

0 ≤ cost ≤ Cmax for some finite maximum cost Cmax. The transmission rate is then

determined by cost(t) and the channel state CH(t) according to the rate-cost2 function

µ(t) = Φ (cost(t), CH(t)). In our problem, we assume that Φ(0, CH(t)) = 0 for all CH(t).

Further, we assume that there is a finite maximum transmission rate, so that:

Φ (cost(t), CH(t)) ≤ µmax for all cost(t), CH(t), t. (2.3)

We assume that packets can be continuously split, so that µ(t) = Φ (cost(t), CH(t))

determines the portion of packets that can be sent over the link from AP to the network

on slot t (for this reason, the rate function can also be viewed as taking units of bits).

Of course, the set C can be restricted to a finite set of costs that correspond to integral

units for Φ(cost(t), CH(t)) in systems where packets cannot be split.

2.1.3 Queueing dynamics and other notations

Let q(t) be the queue backlog of the AP at time t, in units of packets.3 Note that this is

a single commodity problem as we do not distinguish packets from different users.4 We

assume the following queueing dynamics for q(t):

q(t+ 1) = max[q(t)− µ(t), 0] + Z(t)R(t), (2.4)

where µ(t) = Φ(cost(t), CH(t)). And we use the queue stability criterion as follows.

q , lim sup
t→∞

1

t

t−1∑
τ=0

E
{
q(τ)

}
<∞. (2.5)

2This is essentially the same as the rate-power curve in [Nee06c].
3The packet units can be fractional. Alternatively, the backlog could be expressed in units of bits.
4Our analysis can be extended to treat multi-commodity models.

13

2.2 Related work

Many existing works on revenue maximization can be found. Work in [PT00] [LS05]

models the problem of maximizing revenue as a dynamic program. Work in [AOS04]

and [MB02] model revenue maximization as static optimization problems. A game theo-

retic perspective is considered in [BS02], where equilibrium results are obtained. Works

[MW06], [LCL07], and [SS06] also use game theoretic approaches with the goal of ob-

taining efficient strategies for both the AP and the users. The paper [FP03] looks at

the problem from a mechanism design perspective, and [KA03], [ZDT07] consider profit

maximization with Qos guarantees. Early work on network pricing in [MMV95], [Kel97a],

and [LL99] consider throughput-utility maximization rather than revenue maximization.

There, prices play the role of Lagrange multipliers, and are used mainly to facilitate bet-

ter utilization of the shared network resource. This is very different from the revenue

maximization problem that we consider, where the service provider is only interested in

its own profit. Indeed, the revenue maximization problem can be much more complex

due to non-convexity issues.

The above prior work does not directly solve the profit maximization problem for APs

in a wireless network for one or more of the following reasons: (1) Most works consider

time-invariant systems, i.e., the network condition does not change with time. (2) Works

that model the problem as an optimization problem rely heavily on the assumption that

the user utility function or the demand function is concave. (3) Many of the prior works

adopt the flow rate allocation model, where a single fixed operating point is obtained

and used for all time. However, in a wireless network, the network condition can easily

14

change due to channel fading and/or node mobility, so that a fixed resource allocation

decision may not be efficient. Also, although the utility functions can generally be as-

sumed to be concave, it is easy to construct examples where the demand function is not

non-concave/non-convex even if users have concave utility functions. Indeed, profit max-

imization problems are often non-convex in nature. Hence, they are generally hard to

solve, even in the static case where the channel condition, user condition, and demand

function is fixed for all time. It is also common to look for single-price solutions in these

static network problems. Our results show that single-price solutions are not always op-

timal, and that even for static problems the AP can only maximize time average profit

by providing a “regular” price some fraction of the time, and a “reduced price” at other

times. (4) The utility maximization problems use very different models than revenue

maximization problems. Thus, algorithms developed there cannot be directly applied

here. (5) Most network pricing work considers flow allocation that neglects the packet-

based nature of the traffic, and neglects issues of queueing delay. Below, we will use the

Lyapunov optimization technique to develop efficient algorithms for solving this general

pricing problem.

2.3 Characterizing the maximum profit

In this section, we characterize the optimal average profit that is achievable over the class

of all possible control polices that stabilize the queue at the AP. We show that it suffices

for the AP to use only two prices for every demand state DM(t) to maximize its profit.

15

2.3.1 The maximum profit

To describe the maximum average profit, we use an approach that is similar to the analysis

of the capacity region in [NMR05], [Nee03] and the minimum average power for stability

problem in [Nee06c]. Note that in [NMR05], [Nee03] and [Nee06c], the arrival rate is taken

as a given parameter, while in our case, the AP needs to balance between the profit from

data admission and the cost for packet transmission. The following theorem shows that

one can achieve arbitrarily close to the optimality over the class of stationary randomized

pricing and transmission scheduling strategies with the following structure: Every slot

the AP observes DM(t) = m, and makes a business decision Z(t) by independently and

randomly choosing Z(t) = 1 with probability φ(m) (for some φ(m) values defined for each

m ∈M). If Z(t) = 1, then the AP allocates a price randomly from a countable collection

of prices {p(m)
1 , p

(m)
2 , p

(m)
3 , . . .}, with probabilities {α(m)

k }∞k=1. Similarly, the AP observes

CH(t) = ch and makes a transmission decision by choosing cost(t) randomly from a set

of costs {cost(ch)
k }∞k=1 with probabilities {β(ch)

k }∞k=1.

Theorem 1. (Maximum Profit with Stability) The optimal average profit for the AP, with

its queue being stable, is given by Profitoptav , where Profitoptav is defined as the following:

Profitoptav = sup
{

Incomeav − Costav
}

(2.6)

s.t. Incomeav = Em
{
φ(m)

∞∑
k=1

α
(m)
k F (m, p

(m)
k)p

(m)
k

}
(2.7)

Costav = Ech
{ ∞∑
k=1

β
(ch)
k cost

(ch)
k

}
(2.8)

λav = Em
{
φ(m)

∞∑
k=1

α
(m)
k F (m, p

(m)
k)

}
(2.9)

µav = Ech
{ ∞∑
k=1

β
(ch)
k Φ

(
cost

(ch)
k , ch

)}
(2.10)

16

µav ≥ λav (2.11)

0 ≤ φ(m) ≤ 1 ∀m ∈M (2.12)

p
(m)
k ∈ P ∀k, ∀m ∈M (2.13)

cost
(ch)
k ∈ C, ∀k, ∀ch ∈ CH (2.14)

∞∑
k=1

α
(m)
k = 1 ∀m ∈M (2.15)

∞∑
k=1

β
(ch)
k = 1 ∀ch ∈ CH (2.16)

where sup{} denotes the supremum, Ech and Em denote the expectation over the steady

state distribution for CH(t) and DM(t), respectively, and φ(m), α
(m)
k , p

(m)
k , β

(ch)
k , and

cost
(ch)
k are auxiliary variables with the interpretation given in the text preceding Theorem

1.

The proof of Theorem 1 contains two parts. Part I shows that no algorithm that

stabilizes the AP can achieve an average profit that is larger than Profitoptav . Part II

shows that we can achieve a profit of at least ρProfitoptav (for any ρ such that 0 < ρ < 1)

with a particular stationary randomized algorithm that also yields average arrival and

transmission rates λav and µav that satisfy λav < µav. The formal proof is similar to the

proof in [HN07] and is omitted here. The following important corollary to Theorem 1 is

simpler and is useful for analysis of the online algorithm described in Section 2.4.

Corollary 1. For any Profitnoptav = Profitoptav −ε∗ > 0,5 where ε∗ > 0, there exists a control

algorithm STAT ∗ that makes stationary and randomized business and pricing decisions

Z∗(t) and p∗(t) depending only on the current demand state DM(t) (and independent

5The case when Profitnoptav = 0 can trivially be satisfied and thus not considered here.

17

of queue backlog), and makes stationary randomized transmission decisions cost∗(t) de-

pending only on the current channel state CH(t) (and independent of queue backlog) such

that:

E{Z∗(t)R∗(t)} ≤ E{µ∗(t)}, (2.17)

E{Z∗(t)p∗(t)F (DM(t), p∗(t))} − E{cost∗(t)} = Profitnoptav , (2.18)

where µ∗(t) = Φ(cost∗(t), CH(t)). The above expectations are taken with respect to the

steady state distributions for DM(t) and CH(t). Specifically:

E
{
Z∗(t)R∗(t)

}
= Em{Z∗(t)F (m, p∗(t))},

E
{
µ∗(t)

}
= Ech{Φ(cost∗(t), ch)}. 2

2.3.2 The optimality of two prices

The following two theorems show that instead of considering a countably infinite collection

of prices {p(m)
1 , p

(m)
2 , . . .} for the stationary algorithm of Corollary 1, it suffices to consider

only two price options for each distinct demand state DM(t) ∈M.

Theorem 2. Let (λ(m)∗, Income(m)∗) represent any rate-income tuple formed by a sta-

tionary randomized algorithm that chooses Z(t) ∈ {0, 1} and p(t) ∈ P, so that:

E
{
Z(t)F (DM(t), p(t)) | DM(t) = m

}
= λ(m)∗,

E
{
Z(t)p(t)F (DM(t), p(t)) | DM(t) = m

}
= Income(m)∗,

then:

18

a) (λ(m)∗, Income(m)∗) can be expressed as a convex combination of at most three

points in the set Ω(m), defined:

Ω(m) M
= {(ZF (m, p), ZpF (m, p)) | Z ∈ {0, 1}, p ∈ P} .

b) If (λ(m)∗, Income(m)∗) is on the boundary of the convex hull of Ω(m), then it can be

expressed as a convex combination of at most two elements of Ω(m), corresponding to at

most two business-price tuples (Z1, p1), (Z2, p2).

c) If the demand function F (m, p) is continuous in p for each m ∈M, and if the set

of price options P is connected, then any (λ(m)∗, Income(m)∗) point (possibly not on the

boundary of the convex hull of Ω(m)) can be expressed as a convex combination of at most

two elements of Ω(m).

Proof. Part (a): It is known that for any vector random variable ~X that takes values

within a set Ω, the expected value E{ ~X} is in the convex hull of Ω (see, for example,

Appendix 4.B in [Nee03]). Therefore, the 2-dimensional point (λ(m)∗; Income(m)∗) is in

the convex hull of the set Ω(m). By Caratheodory’s theorem (see, for example, [BNO03]),

any point in the convex hull of the 2-dimensional set Ω(m) can be achieved by a convex

combination of at most three elements of Ω(m).

Part (b): We know from part (a) that (λ(m)∗, Income(m)∗) can be expressed as a

convex combination of at most three elements of Ω(m) (say, ω1, ω2, and ω3). Suppose

these elements are distinct. Because (λ(m)∗, Income(m)∗) is on the boundary of the convex

hull of Ω(m), it cannot be in the interior of the triangle formed by ω1, ω2, and ω3. Hence,

it must be on an edge of the triangle, so that it can be reduced to a convex combination

of two or fewer of the ωi points.

19

Part (c): We know from part (a) that (λ(m)∗, Income(m)∗) is in the convex hull of the

2-dimensional set Ω(m). An extension to Caratheodory’s theorem in [HR51] shows that

any such point can be expressed as a convex combination of at most two points in Ω(m)

if Ω(m) is the union of at most two connected components. The set Ω(m) can clearly be

written:

Ω(m) = {(0; 0)} ∪ {(F (m, p); pF (m, p)) | p ∈ P},

which corresponds to the cases Z = 0 and Z = 1. Let Ω̂(m) represent the set on the

right-hand side (RHS) of the above union, so that Ω(m) = {(0; 0)} ∪ Ω̂(m). Because the

F (m, p) function is continuous in p for each m ∈ M, the set Ω̂(m) is the image of the

connected set P through the continuous function (F (m, p), pF (m, p)), and hence is itself

connected [Mun00]. Thus, Ω(m) is the union of at most two connected components. It

follows that (λ(m)∗; Income(m)∗) can be achieved via a convex combination of at most two

elements in Ω(m).

Theorem 3. (Optimality of Two Prices) Let (λ∗, Income∗) represent the rate-income tu-

ple corresponding to any stationary randomized policy Z∗(t), p∗(t), cost∗(t), possibly being

the policies of Corollary 1 that achieve any near optimal profit Profitnoptav . Specifically,

assume that the algorithm yields an average profit Profit∗av (defined by the left hand side

of (2.18)), and that:

λ∗ = Em{Z∗(t)F (m, p∗(t))},

Income∗ = Em{Z∗(t)p∗(t)F (m, p∗(t))}.

20

Then for each m ∈M, there exists two business-price tuples (Z
(m)
1 , p

(m)
1) and (Z

(m)
2 , p

(m)
2)

and two probabilities q
(m)
1 , q

(m)
2 (where q

(m)
1 + q

(m)
2 = 1) such that:

λ∗ =
∑
m∈M

πm

2∑
i=1

[
q

(m)
i Z

(m)
i F (m, p

(m)
i)

]
,

Income∗ ≤
∑
m∈M

πm

2∑
i=1

[
q

(m)
i Z

(m)
i p

(m)
i F (m, p

(m)
i)

]
.

That is, a new stationary randomized pricing policy can be constructed that yields the

same average arrival rate λ∗ and an average income that is greater than or equal to

Income∗, but which uses at most two prices for each state m ∈M.6

Proof. For the stationary randomized policy Z∗(t) and p∗(t), define:

λ(m)∗ M
= E

{
Z∗(t)F (m, p∗(t)) | DM(t) = m

}
,

Income(m)∗ M
= E

{
Z∗(t)p∗(t)F (m, p∗(t)) | DM(t) = m

}
.

Note that the point (λ(m)∗, Income(m)∗) can be expressed as a convex combination of

at most three points ω
(m)
1 , ω

(m)
2 , ω

(m)
3 in Ω(m) (from Theorem 2 part (a)). Then

(λ(m)∗, Income(m)∗) is inside (or on an edge of) the triangle formed by ω
(m)
1 , ω

(m)
2 , ω

(m)
3 .

Thus, for some value δ ≥ 0 the point (λ(m)∗, Income(m)∗+ δ) is on an edge of the triangle.

Hence, the point (λ(m)∗, Income(m)∗ + δ) can be achieved by a convex combination of at

most two of the ω
(m)
i values. Hence, for each m ∈ M, we can find a convex combina-

tion of two elements of Ω(m), defining a stationary randomized pricing policy with two

business-price choices (Z
(m)
1 , p

(m)
1), (Z

(m)
2 , p

(m)
2) and two probabilities q

(m)
1 , q

(m)
2 . This

new policy yields exactly the same average arrival rate λ∗, and has an average income

that is greater than or equal to Income∗.

6Because the new average income is greater than or equal to Income∗, the new average profit is greater
than or equal to Profit∗av when this new pricing policy is used together with the old cost∗(t) scheduling
policy.

21

Most work in network pricing has focused on achieving optimality over the class of

single-price solutions, and indeed in some cases it can be shown that optimality can be

achieved over this class (so that two prices are not needed). However, such optimality

requires special properties of the demand function ([HN10c] provides a sufficient condition

for the existence of a single optimal price). Instead, Theorem 3 shows that for any

demand function F (m, p), the AP can optimize its average profit by using only two prices

for every demand state m ∈ M. We note that there are similar logical arguments about

using finite price options to achieve good performance in the economic literature. For

example, [McA02] shows that under certain conditions, the social value of using two price

classes is at least half of the optimal value. However, we note problems there typically

consider selling a certain amount of goods in a given time interval, e.g., [BC03], or assume

excessive demand will be lost, e.g., [CFK95], thus are different from our problem, which

can be viewed as queueing the excessive demand and serve them later.

Theorem 3 is also related to a classical result of Markov decision theory that bounds

the number of required modes for constrained optimization over the class of stationary

policies [Alt99]. Indeed, using a more detailed argument as in [Alt99] together with

the stationarity and separability of pricing and transmission scheduling that arise from

Theorems 1 and 2, our two-price result can likely be extended to show there exists a

policy that achieves maximum revenue (or arbitrarily close to it) where most demand

states m ∈ M use only one price, while at most one demand state requires two prices.

In fact, the following example shows that the number two is tight, in that a single fixed

price does not always suffice to achieve optimality.

22

0 5 10
0

1

2

3

4

5

6

7

8

9

10

p

0 5 10
0

1

2

3

4

5

6

p

F(p)pF(p)

A
1

B
2

A
2

B
1

Figure 2.2: A1 = (2, 1), B1 = (9
2 ,

9
14), A2 = (2, 2) and B2 = (9

2 ,
81
28).

2.3.3 Example demonstrating necessity of two prices

For simplicity, we consider a static situation where the transmission rate is equal to

µ = 1 with zero cost for all t (so that Φ(cost(t), CH(t)) = 1 for all CH(t) and all cost(t),

including cost(t) = 0). The demand state DM(t) is also assumed to be fixed for all time,

so that F (m, p) can be simply written as F (p). Let P represent the interval 0 ≤ p ≤ pmax,

with pmax = 9. We consider the following F (p) function:

F (p) =

10− 9

2p 0 ≤ p ≤ 2,

9
7 − 1

7p 2 < p ≤ 9.

(2.19)

Note that the demand curve (2.19) is convex and monotone. Indeed, it can represent a

market demand generated by two groups of customers having demands F (p) = 61
7 −

61p
14 ,

0 ≤ p ≤ 2 and F (p) = 9
7 −

p
7 , 0 ≤ p ≤ 9. Such demand functions are common in

the microeconomic literature, e.g., [BZ99], for modeling real world problems. The F (p)

and pF (p) functions corresponding to (2.19) are plotted in Fig. 2.2. Now consider the

situation when the AP only uses one price. First we consider the case when Z(t) = 1

for all time. Since µ = 1, in order to stabilize the queue, the AP has to choose a price

p such that λ = F (p) ≤ 1. Thus we obtain that p has to be greater than 2 (points A1

23

and A2 in Fig. 2.2 show F (p) and F (p)p for p = 2).7 It is easy to show that in this case

the best single-price is p = 9
2 (point B1 and B2 in Fig. 2.2 shows its F (p) and F (p)p),

which yields an average profit of Profitsingle = 81/28 ≈ 2.8929. However, we see that in

this case the average arrival rate F (p) is only 9/14 ≈ 0.6429, which is only about 65% of

µ. Now consider an alternative scheme that uses two prices p1 = 13
9 and p2 = 9

2 , 8 with

probabilities of 1
10 and 9

10 , respectively. Then the resulting profit is

ProfitTwo =
1

10
F (p1)p1 +

9

10
F (p2)p2

=
1

10
· 7

2
· 13

9
+

9

10
· 9

2
· 9

14
≈ 3.1091,

which is strictly larger than Profitsingle. Further, the resulting arrival rate is only

λTwo =
1

10
F (p1) +

9

10
F (p2) =

1

10
· 7

2
+

9

10
· 9

14
≈ 0.9286,

which is strictly less than µ = 1. Therefore the queue is stable under this scheme [GNT06].

Now consider the case when the AP uses a varying Z(t) and a single fixed price.

From Theorem 1 we see that this is equivalent to using a probability 0 < φ < 1 to decide

whether or not to allow new data for all time.9 In order to stabilize the queue, the AP

has to choose a price p such that F (p)φ < µ. Thus the average profit in this case would

be F (p)pφ < pµ. If p ≤ 2, then F (p)pφ < 2 · 1 = 2 (note that this is indeed just an upper

bound); else if 2 < p ≤ 9, F (p)pφ < F (9
2) · 9

2 = 81/28. Both are less than ProfitTwo

obtained above. Therefore, no single price policy is optimal.

It is interesting to note that the demand curve (2.19) actually has two unit-elasticity

points (which are usually profit maximization points in the economic literature) [BZ99]:

7Throughout this chapter, numbers of this type are numerical results and are accurate enough for our
arguments.

8These are the two prices corresponding to the two local optimum points in the F (p)p curve.
9The case when φ=0 is trivial and thus is excluded.

24

p = 10
9 and p = 9

2 . However, none of them alone achieves the optimal profit under

the capacity constraint. Furthermore, the optimal revenue is not achieved by any time

sharing between them. This indeed highlights the importance of Theorem 3 and the need

of an efficient algorithm.

2.4 Achieving the maximum profit

Even though Theorem 2 and 3 show the possibility of achieving the optimum average

profit by using only two prices for each demand state, in practice, we still need to solve

the problem in Theorem 1. This often involves a very large number of variables and

would require the exact demand state and channel state distributions, which are usually

hard to obtain. To overcome these difficulties, here we develop the dynamic Pricing and

Transmission Scheduling Algorithm (PTSA). The algorithm offers a control parameter

V > 0 that determines the tradeoff between the queue backlog and the proximity to

the optimal average profit. For simplicity, we assume that P is compact and F (m, p) is

continuous in p ∈ P. Likewise, we assume that C is compact and Φ(cost, ch) is continuous

in cost ∈ C.10

Admission Control: Every slot t, the AP observes the current backlog q(t) and the

user demand DM(t) and chooses the price p(t) to be the solution of the following problem:

max : V F (DM(t), p)p− 2q(t)F (DM(t), p)

s.t. p ∈ P. (2.20)

10These assumptions are only made to ensure the existence of a well defined max in equations (2.20)
and (2.21). Without these assumptions, the algorithm and the analysis can similarly be described and
obtained, but are more involved.

25

If for all p ∈ P the resulting maximum is less than or equal to zero, the AP sends the

“CLOSED” signal (Z(t) = 0) and does not accept new data. Else, it sets Z(t) = 1 and

announces the chosen p(t).

Cost/Transmission: Every slot t, the AP observes the current channel state CH(t)

and backlog q(t) and chooses cost(t) to be the solution of the following problem:

max : 2q(t)Φ(cost, CH(t))− V cost

s.t. cost ∈ C. (2.21)

The AP then sends out packets according to µ(t) = Φ (cost(t), CH(t)).

The control policy is thus decoupled into separate algorithms for pricing and trans-

mission scheduling. Note from (2.20) that a larger q(t) increases the negative term

−2q(t)F (DM(t), p) in the optimization metric, and hence tends to lead to a higher price

p(t). Intuitively, such a slow down of the packet arrival helps alleviate the congestion in

the AP. Note that the metric in (2.20) can be written as F (DM(t), p)
(
V p− 2q(t)

)
. This

is positive only if p is larger than 2q(t)/V . Thus, we have the following simple fact:

Lemma 1. Under the PTSA algorithm, if 2q(t)/V > pmax, then Z(t) = 0. 2

Notice that PTSA only requires the AP to solve the problems (2.20) and (2.21),

which use current DM(t) and CH(t) states but do not require statistical knowledge of

how these states evolve. While these problems may be non-convex, we note that they

are both optimizing a function of one variable over an interval, and hence can be easily

be solved to obtain highly accurate solutions. For instance, if the pricing set P contains

100 pricing options, the pricing decision is made just by comparing the metric in (2.20)

over each option. Alternatively, for continuous price options, the function typically has

26

a small number of sub-intervals over which it is piecewise linear or convex, so that the

solution can be obtained by comparing the optimums over each sub-interval.

2.4.1 Performance results

In this section we evaluate the performance of PTSA. The following theorem summarizes

the performance results:

Theorem 4. PTSA stabilizes the AP and achieves the following bounds (assuming q(0) =

0):

q(t) ≤ qmax
M
=V pmax/2 +Rmax, ∀ t (2.22)

Profitav ≥ Profitoptav −
B̃

V
, (2.23)

where:

Profitav
M
= lim inf

t→∞

1

t

t−1∑
τ=0

E
{
Z(τ)p(τ)R(τ)− cost(τ)

}
,

and where Profitoptav is the optimal profit characterized by (2.6) in Theorem 1, and B̃ is

defined in equation (2.39) of the proof, and B̃ = O(log(V)).

Because B̃/V = O(log(V)/V), the V parameter can be increased to push the profit

arbitrarily close to the optimum value, while the worst case backlog bound grows linearly

with V . In fact, we can see from (2.20) and (2.21) that these results are quite intuitive:

when using a larger V , the AP is more inclined to admit packets (setting p(t) to a smaller

value and only requiring p(t) ≥ 2q(t)/V). Also, a larger V implies that the AP is more

careful in choosing the transmission opportunities (indeed, Φ (cost(t), CH(t)) must be

more cost effective, i.e. larger than V cost(t)/2q(t)). Therefore a larger V would yield a

better profit, at the cost of larger backlog. The proof of Theorem 4 is given in 2.4.3.

27

2.4.2 Discussion of worst case delay

Note that in the special case of a fixed µ(t) = µ for all t, the worst case delay of any packet

is upper bounded by (1
2V pmax + Rmax)/µ. This is a very useful result. For instance, if

the users also require the worst case delay to be no more than some constant D, the

AP can choose V to be such that D ≥ (1
2V pmax + Rmax)/µ (provided this inequality

is achievable). Then the delay requirement is met and the revenue lost is less than

B̃/V = O(log V/V). This is due to the fact that the delay constrained optimal revenue is

no more than Profit∗, while PTSA gets within B̃/V of Profit∗. This is a unique feature

of our algorithm, previous results on QoS pricing are usually obtained based on queueing

approximations, e.g., [KA03], [ZDT07].

2.4.3 Proof of performance

We first prove (2.22) in Theorem 4:

Proof: ((2.22) in Theorem 4) We prove this by induction. It is easy to see that (2.22)

is satisfied at time 0. Now assume that q(t) ≤ V pmax/2 + Rmax for some integer slot

t ≥ 0. We will prove that q(t+ 1) ≤ V pmax/2 +Rmax. We have the following two cases:

(a) q(t) ≤ V pmax/2: In this case, q(t + 1) ≤ V pmax/2 + Rmax by the definition of

Rmax.

(b) q(t) > V pmax/2: In this case, 2q(t)/V > pmax. By Lemma 1 the AP will decide

not to admit any new data. Therefore q(t+ 1) ≤ q(t) ≤ V pmax/2 +Rmax. 2

In the following we prove (2.23) in Theorem 4 via a Lyapunov analysis, using the

framework of [GNT06]. First define the Lyaponov function L(q(t)) to be: L(q(t)) ,

28

q2(t). Define the one-step unconditional Lyapunov drift as ∆(t)M=E{L(q(t+1))−L(q(t))}.

Squaring both sides of (2.4) and rearranging the terms, we see that the drift satisfies:

∆(t) ≤ 2B2 − E{2q(t)
[
Φ(cost(t), CH(t))− Z(t)R(t)

]
}, (2.24)

where B , max[Rmax, µmax]. For a given number V > 0, we subtract from both sides

the instantaneous profit (scaled by V) and rearrange terms to get:

∆(t)− V E
{
Z(t)p(t)R(t)− cost(t)

}
(2.25)

≤ 2B2 − E
{

2q(t)Φ(cost(t), CH(t))− V cost(t)
}

− E
{
Z(t)

[
V p(t)R(t)− 2q(t)R(t)

]}
.

Now we see that the PTSA algorithm is designed to minimize the RHS of the drift

expression (2.25) over all alternative control decisions that could be chosen on slot t.

Thus, we have that the drift of PTSA satisfies:

∆P (t)− V E
{
ZP (t)pP (t)RP (t)− costP (t)

}
≤ 2B2 − E

{
2qP (t)Φ(cost∗(t), CH(t))− V cost∗(t)

}
−E
{
Z∗(t)

[
V p∗(t)R∗(t)− 2qP (t)R∗(t)

]}
, (2.26)

where the decisions Z∗(t), p∗(t), and cost∗(t) (and the resulting random arrival R∗(t))

correspond to any other feasible control action that can be implemented on slot t (subject

to the same constraints p∗(t) ∈ P and cost∗(t) ∈ C). Note that we have used notation

∆P (t), ZP (t), pP (t), RP (t), and costP (t) on the left hand side of the above inequality to

emphasize that this left hand side corresponds to the variables associated with the PTSA

policy. Note also that, because the PTSA policy has been implemented up to slot t, the

queue backlog on the RHS at time t is the backlog associated with the PTSA algorithm

and hence is also denoted qP (t). We emphasize that the RHS of the drift inequality

29

(2.26) has been modified only in those control variables that can be chosen on slot t.

Note further that R∗(t) is a random variable that is conditionally independent of the

past given the p∗(t) price and the current value of DM(t).

Now consider the alternative control policy STAT ∗ described in Corollary 1, which

chooses decisions Z∗(t), p∗(t) and cost∗(t) on slot t as a pure function of the observed

DM(t) and CH(t) states and yields:

Profitnoptav = Em
{
Z∗(t)R∗(t)p∗(t)} − Ech

{
cost∗(t)

}
, (2.27)

λ∗av , Em
{
Z∗(t)R∗(t)

}
≤ µ∗av , Ech

{
µ∗(t)

}
, (2.28)

where Profitnoptav = Profitoptav − ε∗ and Profitoptav is the optimal average profit defined

in Theorem 1, µ∗(t) = Φ(cost∗(t), CH(t)), and R∗(t) is the random arrival for a given

p∗(t) and DM(t). Recall that Em{} and Ech{} denote expectations over the steady state

distributions for DM(t) and CH(t), respectively. Of course, the expectations in (2.27)

and (2.28) cannot be directly used in the RHS of (2.26) because the DM(t) and CH(t)

distributions at time t may not be the same as their steady state distributions. However,

regardless of the initial condition of DM(0) and CH(0) we have:

lim
t→∞

1

t

t−1∑
τ=0

E
{
Z∗(τ)p∗(τ)R∗(τ)− cost∗(τ)

}
= Profitnoptav . (2.29)

Let fP (t) represent a short-hand notation for the left-hand side of (2.26), and define

g∗(t) as the RHS of (2.26), so that:

g∗(t) M
= 2B2 − E

{
2qP (t)[µ∗(t)− Z∗(t)R∗(t)]

}
(2.30)

−V E
{
Z∗(t)p∗(t)R∗(t)− cost∗(t)

}
,

30

where we have rearranged terms and have used µ∗(t) to represent Φ(cost∗(t), CH(t)).

Thus, the inequality (2.26) is equivalent to fP (t) ≤ g∗(t). To compute a simple upper

bound on g∗(t), note that for any integer d ≥ 0, we have:

qP (t− d)− dµmax ≤ qP (t) ≤ qP (t− d) + dRmax

These inequalities hold since the backlog at time t is no smaller than the backlog at

time t− d minus the maximum departures during the interval from t− d to t, and is no

larger than the backlog at time t−d plus the largest possible arrivals during this interval.

Plugging these two inequalities directly into the definition of g∗(t) in (2.30) yields:

g∗(t) ≤ 2B2 + 2d(µ2
max +R2

max)− E
{

2qP (t− d)[µ∗(t)− Z∗(t)R∗(t)]
}

−V E
{
Z∗(t)p∗(t)R∗(t)− cost∗(t)

}
. (2.31)

Also note that (by the law of iterated expectations):

E
{
qP (t− d)

[
µ∗(t)− Z∗(t)R∗(t)

]}
= E

{
qP (t− d)E

{[
µ∗(t)− Z∗(t)R∗(t)

]
| χ(t− d)

}}
, (2.32)

where χ(t)M=[DM(t), CH(t), q(t)] is the joint demand state, channel state, and queue state

of the system. Since DM(t) and CH(t) are Markovian and both have well defined steady

state distributions, and the STAT ∗ policy makes p∗(t) and cost∗(t) decisions as a station-

ary and random function of the observed DM(t) and CH(t) states (and independent of

queue backlog), we see that the resulting processes µ∗(t) and Z∗(t)R∗(t) are Markovian

and have well defined steady state averages. Further, they converge exponentially fast

to their steady state values [Ros96]. Of course, we know the steady state averages are

31

given by µ∗av and λ∗av, respectively. Therefore there exist positive constants θ1, θ2, and

0 < κ1, κ2 < 1, such that:

E
{
µ∗(t) | χ(t− d)

}
≥ µ∗av − θ1κ

d
1, (2.33)

E
{
Z∗(t)R∗(t) | χ(t− d)

}
≤ λ∗av + θ2κ

d
2. (2.34)

Plugging (2.33) and (2.34) into (2.32) yields:

E
{
qP (t− d)

[
µ∗(t)− Z∗(t)R∗(t)

]}
≥ −E

{
qP (t− d)

[
θ1κ

d
1 + θ2κ

d
2

]}
, (2.35)

where we have used the fact that λ∗av ≤ µ∗av (from (2.28)). Plugging (2.35) directly into

(2.31) yields:

g∗(t) ≤ B1 + 2E
{
qP (t− d)(θ1κ

d
1 + θ2κ

d
2)
}
− V E

{
Z∗(t)p∗(t)R∗(t)− cost∗(t)

}
, (2.36)

where B1
M
=2B2 + 2d(µ2

max + R2
max). However, the queue backlog under PTSA is always

bounded by qmax (by (2.22) in Theorem 4). We now choose d large enough so that

θiκ
d
i ≤ 1/(2qmax) for i ∈ {1, 2}. Specifically, by choosing:

d M
=

⌈
max
i=1,2

{
log
(
2θiqmax

)
log
(
1/κi

) }⌉
, (2.37)

we have 2qmax[θ1κ
d
1 + θ2κ

d
2] ≤ 2. Inequality (2.36) becomes:

g∗(t) ≤ B1 + 2− V E
{
Z∗(t)p∗(t)R∗(t)− cost∗(t)

}
. (2.38)

Now define B̃ as follows:

B̃ M=B1 + 2 = (2d+ 2)(R2
max + µ2

max) + 2, (2.39)

where d is defined in (2.37). Because qmax = V pmax/2 + Rmax (by (2.22) in Theorem

4), the value of d is O(log(V)), and hence B̃ = O(log(V)). Recalling that fP (t) ≤ g∗(t),

where fP (t) is the left hand side of (2.26), we have:

∆P (t)− V E
{
ZP (t)pP (t)RP (t)− costP (t)

}
≤ B̃ − V E

{
Z∗(t)p∗(t)R∗(t)− cost∗(t)

}
.

32

The above inequality holds for all t. Summing both sides over τ ∈ {0, 1, . . . , t − 1} and

using ∆P (t) = E
{
L(qP (t+ 1))− L(qP (t))

}
, we get:

E
{
L(qP (t))

}
− E

{
L(qP (0))

}
− V

t−1∑
τ=0

E
{
ZP (τ)pP (τ)RP (τ)− costP (τ)

}
≤ B̃t− V

t−1∑
τ=0

E
{
Z∗(τ)p∗(τ)R∗(τ)− cost∗(τ)

}
.

Dividing by V t, using the fact that L(qP (t)) ≥ 0, L(q(0)) = 0, and taking limits yields:

lim inf
t→∞

1

t

t−1∑
τ=0

E
{
ZP (τ)pP (τ)RP (τ)− costP (τ)

}
≥

Profitnoptav − B̃/V = Profitoptav − ε∗ − B̃/V, (2.40)

where we have used (2.29). The left hand side of (2.40) is the liminf time average profit

of the PTSA algorithm. Now let ε∗ → 0 completes the proof of Theorem 4.

2.4.4 Demand blind pricing

In the special case when the demand function F (m, p) takes the form of F (m, p) =

A(m)F̂ (p) for A(m) ≥ 0, PTSA can in fact choose the current price without looking at

the current demand state DM(t). To see this, note in this case that (2.20) can be written

as:

max : A(DM(t))
[
V F̂ (p)p− 2q(t)F̂ (p)

]
s.t. p ∈ P. (2.41)

Thus we see that the price set by the AP under PTSA is independent of DM(t). So in

this case, PTSA can make decisions just by looking at the queue backlog value q(t). This

will be very useful if acquiring the demand state incurs some cost to the AP.

33

2.5 Simulation

In this section, we provide simulation results for the PTSA algorithm. We compare two

types of arrival processes. In the first case, the arrival R(t) is deterministic and is exactly

equal to F (m, p(t)). In the other case, we assume that R(t) is a Bernoulli random variable,

i.e., R(t) = 2F (m, p(t)) or R(t) = 0 with equal probability. 11

Now we provide our simulation results. We assume that M = {Low,High}, CH =

{Good,Bad}. The demand curve for DM(t) = Low is given by:

F (Low, p) =

4 0 ≤ p ≤ 1,

−6p+ 10 1 < p ≤ 3
2 ,

− 2
17p+ 20

17
3
2 < p ≤ 10.

(2.42)

The demand curve for DM(t) = High is given by:

F (High, p) =

10− p 0 ≤ p ≤ 2,

−6p+ 20 2 < p ≤ 3,

−1
7p+ 17

7 3 < p ≤ 10.

(2.43)

The rate-cost curve is given by :

Φ(cost(t), CH(t)) = log(1 + γCH(t)cost(t)), (2.44)

where 0 ≤ cost ≤ 10, γCH(t) = 2 if CH(t) = Good and γCH(t) = 1 else. Both the demand

state and the channel are assumed to vary according to the two-state Markov Chain in

Fig. 2.3.

Fig. 2.4 shows the backlog and profit performance of PTSA under this dynamic

setting. We see that the profit converges quickly to the optimum value and the backlog is

no larger than the worst case bound. Let’s now also look at the prices chosen by PTSA.

11For simplicity here, we assume that R(t) can take fractional values. Alternatively, we could restrict
packet sizes to integral units and make the probabilities be such that E

{
R(t) | m, p(t)

}
= F (m, p(t)).

34

Good /
High

Bad /
Low

0.4

0.4

0.60.6

Figure 2.3: The two-state Markov chain.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

V

Ba
ck

log

10
0

10
1

10
2

10
3

−1

0

1

2

3

4

5

6

V

Pr
of

it

Deterministic Arrival
Random Arrival

Deterministic Arrival
Random Arrival
Upper Bound−Deterministic
Upper Bound−Random

Figure 2.4: Average backlog and average profit v.s. V.

We see in Fig. 2.5 that in fact PTSA quickly determines the optimum prices for each

state, and consequently determines the optimum share of the two different demand states.

In this case, we see that for each demand state, only one price is chosen. In [HN07], an

actual two price phenomenon was observed, in which case for every demand state, two

prices are used to achieve the optimal profit. Figure 2.6 also shows the prices sequence

under the case when F (High, p) = 1 − 1
10p

2 and F (Low, p) = 10
1+p2

for 0 ≤ p ≤ 10. In

this case, we see that prices fluctuate within some interval over the whole period of time.

However, within small time intervals, we again observe the similar one-price-per-state

phenomenon as in the previous case.

35

0 10 20 30 40 50 60 70 80 90 100
1

2

t
St

at
e

0 10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

t

Pr
ice

Figure 2.5: Prices chosen according to demand state DM(t) for V=100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

1

2

3

4

5

6

7

8

9

10

t

pr
ic

e

V=1000

1.902 1.904 1.906 1.908 1.91 1.912 1.914 1.916

x 10
4

7.4

7.6

7.8

8

8.2

8.4

8.6

t

pr
ic

e

V=1000

Figure 2.6: LEFT: prices chosen in the first 5× 104 slots; RIGHT: prices chosen over an interval
of 200 slots (V=1000)

2.6 Discussion

In practice, we often see stores going on sale from time to time. It is sometimes believed

that going on sale is a way of performing price discrimination [BZ99] between customers

that are willing to wait and those who are not, so as to reap profit from different groups

of customers. However, Theorem 2 shows that indeed, there is a fundamental reason for

stores to go on sale: for achieving the maximum time average profit. We also observe

36

that the prices generated by the PTSA algorithm, e.g., Fig. 2.6 are quantitatively similar

to the time-varying prices that one can usually observe in practice. These results are

rather interesting and suggest that using dynamic models like the one considered here

may better capture the real world economic behaviors.

In [HN10c], the above model was also extended to treat the case when different cus-

tomers have different service channels, e.g., different unlink channels from mobile users to

the AP. In that case, the Multi-channel PTSA (MPTSA) algorithm has been developed

and was shown to achieve the same [O(log(V)/V), O(V)] profit-delay tradeoff. The game

theoretic issue concerning customers anticipating the prices has also been discussed. Ex-

amples are given to show that the dynamic prices generated by PTSA can in some cases

bypass the effect of user anticipation and help the AP achieve optimal profit in this case.

2.7 Chapter summary

In this chapter, we consider a network access point pricing problem. We prove the

“Optimality of Two Prices” theorem, which states that it suffices to use only two prices

to achieve optimal profit under arbitrary demand functions. We then develop the PTSA

algorithm, which is greedy and easy to implement, and prove that PTSA is able to achieve

within O(log(V)/V) of the optimal profit while ensuring a deterministic Θ(V) congestion

guarantee.

37

Part II

Delay-Efficient Scheduling for Communication Networks

38

Chapter 3

The general network model: the stochastic problem

In this chapter, we present the general network utility optimization problem, called the

stochastic problem, which can be used to model a wide class of network utility optimization

problems, e.g., [NML08], [Nee06c], [UN08], and contains as a special case the network

pricing problem in Chapter 2. This model is used in Chapters 4 and 5 for developing

delay-efficient algorithms.

3.1 System model

In this section, we specify the general network model we use. We consider a network

controller that operates a network with the goal of minimizing the time average cost,

subject to the queue stability constraint. The network is assumed to operate in slotted

time, i.e., t ∈ {0, 1, 2, ...}. We assume that there are r ≥ 1 queues in the network.

3.1.1 Network state

We assume that there are a total of M different random network states, and define

S = {s1, s2, . . . , sM} as the set of possible states. Each particular state si indicates the

39

current network parameters, such as a vector of channel conditions for each link, or a

collection of other relevant information about the current network channels and arrivals.

Let S(t) denote the network state at time t. We assume that S(t) evolves according to

some general probability law, under which there exists a steady state distribution of S(t).

For example, S(t) can be i.i.d. every time slot, or it can be a finite state irreducible and

aperiodic Markov process. We use πsi to denote its steady state probabilities of being

in state si. We assume that the network controller can observe S(t) at the beginning

of every slot t, but the statistics of the S(t) process, including the πsi probabilities and

transition probabilities (if S(t) is a Markov process), are not necessarily known. Note

that if S(t) contains multiple components, e.g., if S(t) is a vector of channel states of

the network, the components can be correlated with each other. See Section 3.1.4 for an

example.

3.1.2 The cost, traffic and service

At each time t, after observing S(t) = si, the controller chooses an action x(t) from a set

X (si), i.e., x(t) = x(si) for some x(si) ∈ X (si). The set X (si) is called the feasible action

set for network state si and is assumed to be time-invariant and compact for all si ∈ S.

The cost, traffic and service generated by the chosen action x(t) = x(si) are as follows:

(a) The chosen action has an associated cost given by the cost function f(t) = f(si, x
(si)) :

X (si) → R+ (or X (si) → R− in the case of reward maximization problems);

(b) The amount of traffic generated to queue j by the action is determined by the traffic

function Aj(t) = Aj(si, x
(si)) : X (si) → R+, in units of packets;

40

(c) The amount of service allocated to queue j is given by the rate function µj(t) =

µj(si, x
(si)) : X (si) → R+, in units of packets;

Note that Aj(t) includes both the exogenous arrivals from outside the network to queue

j, and the endogenous arrivals from other queues, i.e., the transmitted packets from other

queues, to queue j. (See Section 3.1.3 and 3.1.4 for further explanations.) We assume that

the functions f(si, ·), µj(si, ·) and Aj(si, ·) are time-invariant, their magnitudes are uni-

formly upper bounded by some constant δmax ∈ (0,∞) for all si, j, and they are known to

the network operator. We also assume that there exists a set of actions {x(si)
k }

k=1,2,...,r+2
i=1,...,M

with x
(si)
k ∈ X (si), a set of probabilities {ϑ(si)

k }
k=1,2,...,r+2
i=1,...,M and a positive constant ε > 0

such that: ∑
si

πsi
{∑

k

ϑ
(si)
k [µj(si, x

(si)
k)−Aj(si, x(si)

k)]
}
≤ −ε, ∀ j. (3.1)

That is, the constraints are feasible with ε-slack. Thus, there exists a stationary random-

ized policy that stabilizes all queues (where ϑ
(si)
k represents the probability of choosing

action x
(si)
k when S(t) = si). In the following, we use:

A(t) = (A1(t), A2(t), ..., Ar(t))
T , (3.2)

µ(t) = (µ1(t), µ2(t), ..., µr(t))
T , (3.3)

to denote the arrival and service vectors at time t. It is easy to see from above that if we

define:

B =
√
rδmax, (3.4)

then since |Aj(t)|, |µj(t)| ≤ δmax for all j, we have ‖A(t)− µ(t)‖ ≤ B for all t.

41

3.1.3 Queueing, average cost and the stochastic problem

Let q(t) = (q1(t), ..., qr(t))
T ∈ Rr+, t = 0, 1, 2, ... be the queue backlog vector process of

the network, in units of packets. We assume the following queueing dynamics:

qj(t+ 1) = max
[
qj(t)− µj(t), 0

]
+Aj(t) ∀j, (3.5)

and q(0) = 0. By using (3.5), we assume that when a queue does not have enough packets

to send, null packets are transmitted. In this chapter, we adopt the following notion of

queue stability:

E
{ r∑
j=1

qj
}
, lim sup

t→∞

1

t

t−1∑
τ=0

r∑
j=1

E
{
qj(τ)

}
<∞. (3.6)

We use Π to denote the policy that the network controller uses to choose actions, and

use fΠ
av to denote the time average cost induced by Π, defined as:

fΠ
av , lim sup

t→∞

1

t

t−1∑
τ=0

E
{
fΠ(τ)

}
, (3.7)

where fΠ(τ) is the cost incurred at time τ by policy Π. We call an action-seeking policy

feasible if at every time slot t it only chooses actions from the feasible action set X S(t).

We then call a feasible action-seeking policy under which (3.6) holds a stable policy, and

use f∗av to denote the optimal time average cost over all stable policies. In every slot, the

network controller observes the current network state and chooses a control action, with

the goal of minimizing the time average cost subject to network stability. This goal can

be mathematically stated as:

min : fΠ
av, s.t. (3.6).

In the rest of the chapter, we refer to this problem as the stochastic problem. Note that

our model can also be used to model stability problems, where the network is trying to

support certain traffic flows. This special case is further studied in Chapter 5.

42

3.1.4 Examples of the model

3.1.4.1 The cccess point pricing problem

Now we describe how the AP pricing problem in Chapter 2 fits into our general model.

In the pricing problem, there is only a single queue in the network. Hence we have r = 1.

The network state, the action, the cost function, and the arrival and service functions are

as follows: 1

1. The network state is S(t) = (DM(t), CH(t)), i.e., the (Demand, Channel) pair, and

for si = (m, ch), πsi is the steady state probability that (DM(t), CH(t)) = (m, ch).

2. The action x(si) at time t under a state si is a tuple of (Z(si), p(si), cost(si)).

3. For each si = (m, ch),

(a) the cost function is f(si, x
(si)) = cost(si) − Z(si)F (m, p(si))p(si),

(b) the arrival function is A(si, x
(si)) = Z(si)F (m, p(si)),

(c) the service function is µ(si, x
(si)) = Φ(cost(si), ch).

It is also easy to see that in this case, δmax = max[Rmax, µmax].

3.1.4.2 A 2-queue energy minimization example

We provide another example to illustrate our model. Consider the 2-queue network in

Fig. 3.1. In every slot, the network operator decides whether or not to allocate one unit

of power to serve packets at each queue, so as to support all arriving traffic, i.e., maintain

1Note that in the AP pricing problem, the arrival function and cost function indeed represent the
expected value of the actual numbers. This can easily be incorporated into the analysis of our general
model.

43

queue stability, with minimum energy expenditure. The number of arriving packets R(t),

is i.i.d. over slots, being either 2 or 0 with probabilities 5/8 and 3/8, respectively. Each

channel state CH1(t) or CH2(t) can be either “G=good” or “B=bad.” However, the

two channels are correlated, so that (CH1(t), CH2(t)) can only be in the channel set

CH = {(B,B), (B,G), (G,G)}. We assume that (CH1(t), CH2(t)) is i.i.d. over slots and

takes every value in CH with probability 1
3 . When a link’s channel state is good, one unit

of power can serve 2 packets over the link, otherwise it can only serve one. We assume

that power can be allocated to both channels without affecting each other.

!"#$% !&#$%

!"#$%'(')&#$%)"#$%'('*#$% !&#$%'

+,"#$%' +,&#$%'

Figure 3.1: A 2-queue system

In this case, the network state S(t) is a triple (R(t), CH1(t), CH2(t)) and is i.i.d.

There are six possible network states. At each state si, the action x(si) is a pair (x1, x2),

with xj being the amount of energy spent at queue j, and (x1, x2) ∈ X (si) = {0/1, 0/1}.

The cost function is f(si, x
(si)) = x1 + x2, ∀si. The network states, the traffic functions

and service rate functions are summarized in Fig. 3.2. Note here that A1(t) = R(t) is part

of S(t) and is independent of x(si); while A2(t) = µ1(t) and hence depends on x(si). Also

note that A2(t) equals µ1(t) instead of min[µ1(t), q1(t)] due to our idle fill assumption in

Section 3.1.3.

44

S(t) R(t) CH1(t) CH2(t) A1(t) A2(t) µ1(t) µ2(t)
s1 0 B B 0 x1 x1 x2

s2 0 B G 0 x1 x1 2x2

s3 0 G G 0 2x1 2x1 2x2

s4 2 B B 2 x1 x1 x2

s5 2 B G 2 x1 x1 2x2

s6 2 G G 2 2x1 2x1 2x2

Figure 3.2: Network state, traffic and rate functions

3.2 Discussion of the model

We note that our system model does not explicitly take any queueing delay constraints

into account. This is mainly due to the difficulty of charactering the exact queueing delay

under control policies in a large network [YZC09]. While problems with explicit queueing

constraints can in principle be formulated and solved using the dynamic programming

approach [Ber07], algorithms there usually require accurate statistical knowledge of the

complicated underlying random process and easily run into the “curse of dimensionality”

problem, hence are less practical when compared to the QLA algorithms developed under

our system model.

However, though we did not specify the queueing delay constraints, we still get network

congestion bounds as a by-product of the Lyapunov analysis. And these delay bounds

are very useful. For example, suppose that our objective is to maximize a certain utility

subject to some delay constraint. Since it is difficult to capture the exact delay, we can

first solve a “relaxed” problem, i.e., replace the delay constraint with the queue stability

constraint (3.6). Then, if we can achieve a near-optimal utility with the guarantee that

the network delay is no more than the required value, we indeed obtain a control policy

45

that achieves a utility close to the optimal delay-constrained utility, and ensures the delay

requirement. (Section 2.4.2 provides such an example.)

46

Chapter 4

Achieving the near-optimal [O(1/V), O([log(V)]2)]

utility-delay tradeoff

In this chapter, we design delay-efficient algorithms for the general stochastic problem

defined in Chapter 3, under the assumptions that the network state S(t) is i.i.d. and

Markovian, and that the utility function f(·, ·) is not a common constant. The results

in this chapter are based in part on our conference and journal papers [HN09] [HN11a]

[HN10d] [HNar] [HN10a] [HMNK11].

The i.i.d. case has been extensively studied, e.g., in [GNT06], and it has been shown

that QLA achieves an [O(1/V), O(V)] utility-delay tradeoff for the problem. Two re-

cent papers ([Nee07] and [Nee06b]) instead construct algorithms based on exponential

Lyapunov functions and achieve an [O(1/V), O(log(V))] tradeoff for the downlink en-

ergy minimization problem and the network flow utility maximization problem. The

Markovian case, however, has rarely been studied, and results in this case are limited to

achieving the [O(1/V), O(V)] tradeoffs for problems in single-hop networks, e.g. [Nee09a].

Rather than using the exponential Lyapunov function approach, we focus on using

simpler quadratic Lyapunov functions for constructing delay-efficient algorithms under

47

both i.i.d. and Markovian network states. We carry out our task in the following steps.

In step one, we construct a deterministic mathematical program and establish a novel

connection between the QLA algorithm and a randomized dual subgradient method ap-

plied to the dual problem of the deterministic problem. We then show in the second step

that under the QLA algorithm, the network backlog vector is exponentially attracted to

some attractor, which is the dual optimal solution of the deterministic problem. In our

third step, we construct the Fast-QLA (FQLA) algorithm to subtract out a Lagrange

multiplier from the network under QLA and achieve the [O(1/V), O([log(V)]2)] utility-

delay performance. 1 In the fourth step, we further show that the requirement of having

certain knowledge of the optimal Lagrange multiplier in FQLA can be removed when we

apply QLA with a Last-In-First-Out (LIFO) queueing rule (called LIFO-Backpressure).

Finally, we develop the LIFOp-Backpressure rule, which is a generalized version of LIFO-

Backpressure and uses the LIFO discipline with probability p. We show that LIFOp-

Backpressure achieves a similar tradeoff for a p fraction of the traffic.

The techniques developed in this chapter are general, and apply to general multi-

hop network problems with Markovian network states. As we will see, the connection

between the Lyapunov technique and the deterministic mathematical program, and the

constructions of the three delay-efficient algorithms, i.e., FQLA, LIFO-Backpressure and

LIFOp-Backpressure, indeed provide us with new insights into this important Lyapunov

technique and will be helpful for future algorithm design in stochastic networks. In the

1One will see from the analysis in this chapter that, we can indeed prove the [O(1/V), O(log(V))]
utility-delay tradeoffs for the proposed algorithms. However, for the ease of analysis and notation, we
instead choose to prove our results for a slightly sub-optimal tradeoff.

48

following, we first provide some intuition of the deterministic mathematical program us-

ing the access point (AP) pricing problem considered in Chapter 2. We then turn to the

general network setting and develop the general results there.

4.1 QLA and the deterministic problem

In this section, we first provide a simple example explaining the connection between

the Lyapunov technique and the mathematical program. We then review the Quadratic

Lyapunov functions based Algorithms (QLA) [GNT06] for solving the general stochastic

problem defined in Chapter 3. After that, we define the deterministic problem and its

dual problem. We also describe the ordinary subgradient method (OSM) that can be used

to solve the dual. The dual problem and OSM will also be used later for our analysis of

the steady state backlog behavior under QLA.

4.1.1 The pricing example

Here we first take a look at the relationship between QLA and a certain mathematical

program via the AP pricing problem in Chapter 2.

Recall that the network state for the pricing system is S(t) = [DM(t), CH(t)] and πs is

the steady state probability that S(t) = s = [m, ch]. Consider the following deterministic

mathematical program:

max : V
∑
s

πs

[
Z(s)F (s, p(s))p(s) − cost(s)

]
(4.1)

s.t.
∑
s

πsZ
(s)F (s, p(s)) ≤

∑
s

πsΦ(cost(s), s)

p(s) ∈ P, ∀ s,

49

Z(s) ∈ {0, 1}, ∀ s,

cost(s) ∈ C ∀ s.

Note that here we have written F (m, p) and Φ(cost, ch) both as functions of s. The dual

problem of (4.1) can easily be obtained to be: 2

min : g(γ), s.t. γ ≥ 0, (4.2)

where:

g(γ) = sup
p(s),cost(s),Z(s)

∑
s

πs

{
V Z(s)F (s, p(s))p(s) − V cost(s)

−γ
[
Z(s)F (s, p(s))− Φ(cost(s), s)

]}
.

Now consider solving (4.2) using the Randomized Incremental Subgradient Method (RISM)

[BNO03] as follows:

RISM: Initialize γ(0) = 0 and {αt ≥ 0}∞t=0; at iteration t, observe γ(t), choose a

random state S(t) ∈ S according to some probability law.

(1) If S(t) = s, find p(s), cost(s), Z(s) that solves the following:

max : V Z(s)F (s, p(s))p(s) − V cost(s) − γ(t)
[
Z(s)F (s, p(s))− Φ(cost(s), s)

]
(4.3)

s.t. p(s) ∈ P, cost(s) ∈ C, Z(s) ∈ {0, 1}

(2) Using the p(s), cost(s), Z(s) found, update γ(t) according to:

γ(t+ 1) = max

[
γ(t)− αtΦ(cost(s), s), 0

]
+ αtZ(s)F (s, p(s)).

Now it is easy to see that (4.3) is the same as:

max :

[
V Z(s)F (s, p(s))p(s) − Z(s)F (s, p(s))γ(t)

]
+

[
γ(t)Φ(cost(s), s)− V cost(s)

]
(4.4)

s.t. p(s) ∈ P, Z(s) ∈ {0, 1}, cost(s) ∈ C.

2To facilitate reading, we have provided a very brief review on how to obtain the dual problem for a
mathematical program in the Appendix .

50

We also recall that the PTSA algorithm in Chapter 2 works as follows:

Admission Control: Every slot t, the AP observes the current backlog q(t) and the

user demand DM(t) and chooses the price p(t) to be the solution of the following problem:

max : V F (DM(t), p)p− 2q(t)F (DM(t), p)

s.t. p ∈ P. (4.5)

If for all p ∈ P the resulting maximum is less than or equal to zero, the AP sends the

“CLOSED” signal (Z(t) = 0) and does not accept new data. Else, it sets Z(t) = 1 and

announces the chosen p(t).

Cost/Transmission: Every slot t, the AP observes the current channel state CH(t)

and backlog q(t) and chooses cost(t) to be the solution of the following problem:

max : 2q(t)Φ(cost, CH(t))− V · cost

s.t. cost ∈ C. (4.6)

The AP then sends out packets according to µ(t) = Φ (cost(t), CH(t)).

Now let S(t) in RISM be exactly the same as that in the AP pricing system, and

let αt = 1 for all t. By comparing (4.4) to (4.5) and (4.6), we see that PTSA is indeed

equivalent to RISM applied to the dual problem of (4.1) with γ(t) = 2q(t).

In the following, we show that this connection between the deterministic mathematical

program and QLA indeed holds for any network utility optimization problem that falls

into the framework described in Chapter 3. As we will see, this connection not only

enables a detailed analysis of the network backlog behavior under QLA, but also suggests

a very natural way to guarantee an O([log(V)]2) delay bound while achieving the O(1/V)

utility performance.

51

In the rest of this chapter, we study the case when S(t) is i.i.d.. However, the QLA

algorithm and the deterministic problem will remain the same under general ergodic S(t)

processes. The connection between the two also holds for general ergodic S(t) processes.

See Section 4.8 for further discussion.

4.1.2 The QLA algorithm

To solve the general stochastic problem in Chapter 3 with i.i.d. S(t) using QLA, we

first define a quadratic Lyapunov function L(q(t)) = 1
2

∑r
j=1 q

2
j (t). We then define the

one-slot conditional Lyapunov drift: ∆(q(t)) = E
{
L(q(t + 1)) − L(q(t)) | q(t)

}
, where

the expectation is taken over the random network state S(t) and the possible random

actions. From (3.5), we obtain the following:

∆(q(t)) ≤ B2 − E
{ r∑
j=1

qj(t)
[
µj(t)−Aj(t)

]
| q(t)

}
.

Now, adding to both sides the term V E
{
f(t) | q(t)

}
, where V ≥ 1 is a scalar control

variable, we obtain:

∆(q(t)) + V E
{
f(t) | q(t)

}
≤ B2 − E

{
− V f(t) +

r∑
j=1

qj(t)
[
µj(t)−Aj(t)

]
| q(t)

}
. (4.7)

The QLA algorithm is then obtained by choosing an action x at every time slot t to

minimize the RHS of (4.7) given q(t). Specifically, the QLA algorithm works as follows:

QLA: At every time slot t, observe the current network state S(t) and the backlog

q(t). If S(t) = si, choose x(si) ∈ X (si) that solves the following:

max −V f(si, x) +

r∑
j=1

qj(t)
[
µj(si, x)−Aj(si, x)

]
(4.8)

s.t. x ∈ X (si).

52

Depending on the problem structure, (4.8) can usually be decomposed into separate parts

that are easier to solve, e.g., [Nee06c], [HN10c]. Also, it can be shown, as in [GNT06]

that when S(t) is i.i.d.,

fQLAav = f∗av +O(1/V), qQLA = O(V), (4.9)

where fQLAav and qQLA are the expected average cost and the expected time average

network backlog size under QLA, respectively.

It has been shown, e.g., in [Nee06c], [NML08], [GNT06], that an O(V) network delay

is typically incurred when an O(1/V) close-to-optimal utility is achieved for network

utility optimization problems. In this case, two recent papers [Nee07] and [Nee06b] use

a more complicated algorithm design approach based on exponential Lyapunov functions

to achieve within O(1/V) of the optimal utility with only O(log(V)) delay under i.i.d.

network randomness. However, the exponential Lyapunov approach cannot be easily

extended to the case when the network state is not i.i.d., whereas the methods we are

going to present work under more general network state processes.

4.1.3 The deterministic problem

Consider the deterministic problem as follows:

min : F(x) , V
∑
si

πsif(si, x
(si)) (4.10)

s.t. Aj(x) ,
∑
si

πsiAj(si, x
(si)) ≤ Bj(x) ,

∑
si

πsiµj(si, x
(si)) ∀ j

x(si) ∈ X (si) ∀ i = 1, 2, ...,M,

53

where πsi is the probability of S(t) = si and x = (x(s1), ..., x(sM))T . The dual problem of

(4.10) can be obtained as follows:

max g(γ) (4.11)

s.t. γ � 0,

where g(γ) is called the dual function and is defined as:

g(γ) = inf
x(si)∈X (si)

{
V
∑
si

πsif(si, x
(si)) (4.12)

+
∑
j

γj
[∑
si

πsiAj(si, x
(si))−

∑
si

πsiµj(si, x
(si))

]}
.

We note that g(γ) can also be written in the following separable form, which is more

useful for our later analysis.

g(γ) = inf
x(si)∈X (si)

∑
si

πsi

{
V f(si, x

(si)) +
∑
j

γj
[
Aj(si, x

(si))− µj(si, x(si))
]}
. (4.13)

Here γ = (γ1, ..., γr)
T is the Lagrange multiplier of (4.10). It is well known that g(γ)

in (4.12) is concave in the vector γ, and hence the problem (4.11) can usually be solved

efficiently, particularly when cost functions and rate functions are separable over different

network components. It is also well known that in many situations, the optimal value of

(4.11) is the same as the optimal value of (4.10), and in this case we say that there is no

duality gap [BNO03]. (See Appendix A for more discussions.)

We note that the deterministic problem (4.10) is not necessarily convex, as the sets

X (si) are not necessarily convex, and the functions f(si, ·), Aj(si, ·) and µj(si, ·) are not

necessarily convex. Therefore, there may be a duality gap between the deterministic prob-

lem (4.10) and its dual (4.11). Furthermore, solving the deterministic problem (4.10) may

not solve the stochastic problem. This is because at every network state, the stochastic

problem may require time sharing over more than one action, but the solution to the

54

deterministic problem gives only a fixed operating point per network state. However,

we have shown in [HN10a] that the dual problem (4.11) gives the exact value of V f∗av,

where f∗av is the optimal time average cost for the stochastic problem, even if (4.10) is

non-convex.

Among the many algorithms that can be used to solve (4.11), the following is the

most common one (for performance, see [BNO03]). We call it the ordinary subgradient

method (OSM):

OSM: Initialize γ(0); at every iteration t, observe γ(t),

1. Find x
(si)
γ(t) ∈ X (si) for i ∈ {1, ...,M} that achieves the infimum of the right-hand

side of (4.12).

2. Using the xγ(t) = (x
(s1)
γ(t), x

(s2)
γ(t), ..., x

(sM)
γ(t))T found, update:

γj(t+ 1) = max

[
γj(t)− αt

∑
si

πsi
[
µj(si, x

(si)
γ(t))−Aj(si, x

(si)
γ(t))

]
, 0

]
. (4.14)

We use x
(si)
γ(t) to highlight its dependency on γ(t). αt > 0 is called the step size at

iteration t. In the following, we always assume that αt = 1 when referring to OSM.

Note that if there is only one network state, QLA and OSM will choose the same ac-

tion given γ(t) = q(t), and they differ only by (3.5) and (4.14). The term Gγ(t) =

(Gγ(t),1, Gγ(t),2, ..., Gγ(t),r)
T , with:

Gγ(t),j = Aj(xγ(t))− Bj(xγ(t)) (4.15)

=
∑
si

πsi
[
− µj(si, x(si)

γ(t)) +Aj(si, x
(si)
γ(t))

]
,

is called the subgradient of g(γ) at γ(t). It is well-known, e.g., in [BNO03], that for any

other γ̂ ∈ Rr, we have:

(γ̂ − γ(t))TGγ(t) ≥ g(γ̂)− g(γ(t)). (4.16)

55

Using ‖Gγ(t)‖ ≤ B, we note that (4.16) also implies:

g(γ̂)− g(γ) ≤ B‖γ̂ − γ‖ ∀ γ̂,γ ∈ Rr. (4.17)

We are now ready to study the steady state behavior of q(t) under QLA. To simplify

notation and highlight the scaling effect of the scalar V in QLA, we use the following

notation:

1. We use g0(γ) and γ∗0 to denote the dual objective function and an optimal solution

of (4.11) when V = 1; and use g(γ) and γ∗V (also called the optimal Lagrange

multiplier) for their counterparts with general V ≥ 1;

2. We use x
(si)
q(t) to denote an action chosen by QLA for a given q(t) and S(t) = si; and

use xγ(t) = (x
(s1)
γ(t), ..., x

(sM)
γ(t))T to denote a solution chosen by OSM for a given γ(t).

To simplify the analysis, we assume the following throughout: 3

Assumption 1. γ∗V = (γ∗V 1, ..., γ
∗
V r)

T is unique for all V ≥ 1.

Note that Assumption 1 is not very restrictive. In fact, it holds in many network utility

optimization problems, e.g., [ES07]. In many cases, we also have γ∗V 6= 0. Moreover, for

the assumption to hold for all V ≥ 1, it suffices to have just γ∗0 being unique. This is

shown in the following lemma.

Lemma 2. γ∗V = V γ∗0.

Proof. From (4.13) we see that:

g(γ)/V = inf
x(si)∈X (si)

∑
si

πsi

{
f(si, x

(si)) +
∑
j

γ̂j
[
Aj(si, x

(si))− µj(si, x(si))
]}
,

3See Section 4.6 for discussions on the importance of this assumption.

56

where γ̂j =
γj
V . The RHS is exactly g0(γ̂), and so is maximized at γ̂ = γ∗0. Thus g(γ) is

maximized at V γ∗0.

4.2 Backlog vector behavior under QLA

In this section we study the backlog vector behavior under QLA of the stochastic problem.

We first look at the case when g0(γ) is “locally polyhedral.” We show that q(t) is mostly

within O(log(V)) distance from γ∗V in this case, even when S(t) evolves according to a

more general time homogeneous Markovian process. We then consider the case when

g0(γ) is “locally smooth,” and show that q(t) is mostly within O(
√
V log(V)) distance

from γ∗V . As we will see, these two results also explain how QLA functions. The choices

of these two types of g0(γ) functions are made based on their practical generality. See

Section 4.2.3 for further discussion.

4.2.1 When g0(·) is “locally polyhedral”

In this section, we study the backlog vector behavior under QLA for the case where g0(γ)

is locally polyhedral with parameters ε, L, i.e., there exist ε, L > 0, such that for all γ � 0

with ‖γ − γ∗0‖ < ε, the dual function g0(γ) satisfies:

g0(γ∗0) ≥ g0(γ) + L‖γ∗0 − γ‖. (4.18)

We show that in this case, even if S(t) is a general time homogeneous Markovian process,

the backlog vector will mostly be within O(log(V)) distance to γ∗V . Hence the same is

also true when S(t) is i.i.d.

57

To start, we assume for this subsection that S(t) evolves according to a time ho-

mogeneous Markovian process. Now we define the following notation. Given t0, define

Tsi(t0, k) to be the set of slots at which S(τ) = si for τ ∈ [t0, t0 + k − 1]. For a given

ν > 0, define the convergent interval Tν [NMR05] for the S(t) process to be the smallest

number of slots such that for any t0, regardless of past history, 4 we have:

M∑
i=1

∣∣∣∣πsi − E
{
||Tsi(t0, Tν)|| | H(t0)

}
Tν

∣∣∣∣ ≤ ν; (4.19)

here ||Tsi(t0, Tν)|| is the cardinality of Tsi(t0, Tν), and H(t0) = {S(τ)}t0−1
τ=0 denotes the

network state history up to time t0. For any ν > 0, such a Tν must exist for any stationary

ergodic processes with finite state space. Thus, Tν exists for S(t) in particular. When

S(t) is i.i.d. every slot, we have Tν = 1 for all ν ≥ 0, as E
{
||Tsi(t0, 1)|| | H(t0)

}
= πsi .

Intuitively, Tν represents the time needed for the process to reach its “near” steady state.

The following theorem summarizes the main results. Recall that B is defined in (3.4)

as the upper bound of the magnitude change of q(t) in a slot, which is a function of the

network size r and δmax.

Theorem 5. If g0(γ) is locally polyhedral with constants ε, L > 0, independent of V , then

under QLA,

(a) There exist constants ν > 0, D ≥ η > 0, all independent of V , such that D =

D(ν), η = η(ν), and whenever ‖q(t)− γ∗V ‖ ≥ D, we have: 5

E
{
‖q(t+ Tν)− γ∗V ‖ | q(t)

}
≤ ‖q(t)− γ∗V ‖ − η. (4.20)

4In the Markov chain literature, this is called the total variation mixing time [LPW08].
5Note that if ‖q(t)−γ∗V ‖ ≥ D, then ‖q(t)−γ∗V ‖ ≥ η. Thus the right-hand side of (4.20) is nonnegative.

58

In particular, the constants ν, D and η that satisfy (4.20) can be chosen as follows:

Choose ν as any constant such that 0 < ν < L/B. Then choose η as any value such

that 0 < η < Tν(L−Bν). Finally, choose D as: 6

D = max

[
(T 2
ν + Tν)B2 − η2

2Tν(L− η
Tν
−Bν)

, η

]
. (4.21)

(b) For the constants ν,D, η given in (a), there exist some constants c∗, β∗ > 0, inde-

pendent of V , such that:

P(D,m) ≤ c∗e−β∗m, (4.22)

where P(D,m) is defined as:

P(D,m) , lim sup
t→∞

1

t

t−1∑
τ=0

Pr{‖q(τ)− γ∗V ‖ > D +m}. (4.23)

Part (a) shows that when (4.18) is satisfied, if the current backlog vector is far away

from γ∗V , the action of QLA will “push” it towards γ∗V . Specifically, the expected distance

between them will decrease by η every time. Part (b) then shows that under such a

“driving force,” the queue vector will mostly be “attracted” to γ∗V . Indeed, if m =

log(V)
β∗ , by (4.22) we have P(D,m) ≤ c∗

V . Also if a steady state distribution of ‖q(t) −

γ∗V ‖ exists under QLA, e.g., when qj(t) only takes integer values for all j, in which

case q(t) is a discrete time Markov chain with countably infinite states and the limit of

1
t

∑t−1
τ=0 Pr{‖q(τ)− γ∗V ‖ > D +m} exists as t→∞, then one can replace P(D,m) with

the steady state probability that q(t) deviates from γ∗V by an amount of D + m, i.e.,

Pr{‖q(t)− γ∗V ‖ > D +m}.

Therefore, Theorem 5 can be viewed as showing that when (4.18) is satisfied, for a

large V , the backlog q(t) under QLA will mostly be within O(log(V)) distance from γ∗V .

6It can be seen from (4.17) and (4.18) that B ≥ L. Thus TνB > TνL > η.

59

This implies that the average backlog will roughly be
∑

j γ
∗
V j , which is typically Θ(V) by

Lemma 2. It also allows us to build FQLA upon QLA to “subtract out” roughly
∑

j γ
∗
V j

data from the network and reduce network delay. Theorem 5, together with Theorem 8

below, highlight the important fact that the steady state behavior of the network backlog

vector q(t) is closely related to the structure of g0(γ). We note that (4.18) is not very

restrictive. In fact, if g0(γ) is polyhedral (e.g., X (si) is finite for all si), with a unique

optimal solution γ∗0 � 0, then (4.18) can be satisfied (see Section 4.3.6 for an example).

To prove the theorem, we need the following lemma.

Lemma 3. For any ν > 0, under QLA, we have for all t,

E
{
‖q(t+ Tν)− γ∗V ‖2 | q(t)

}
≤ ‖q(t)− γ∗V ‖2 + (T 2

ν + Tν)B2 (4.24)

−2Tν
(
g(γ∗V)− g(q(t))

)
+ 2TννB‖γ∗V − q(t)‖.

Proof. See Section 4.10.1.

We now use Lemma 3 to prove Theorem 5.

Proof. (Theorem 5) Part (a): We first show that if (4.18) holds for g0(γ) with L, then

it also holds for g(γ) with the same L. To this end, suppose (4.18) holds for g0(γ) for

all γ satisfying ‖γ − γ∗0‖ < ε. Then for any γ � 0 such that ‖γ − γ∗V ‖ < εV , we have

‖γ/V − γ∗0‖ < ε, hence:

g0(γ∗0) ≥ g0(γ/V) + L‖γ∗0 − γ/V ‖.

Multiplying both sides by V , we get:

V g0(γ∗0) ≥ V g0(γ/V) + LV ‖γ∗0 − γ/V ‖.

60

Now using γ∗V = V γ∗0 and g(γ) = V g0(γ/V), we have for all ‖γ − γ∗V ‖ < εV :

g(γ∗V) ≥ g(γ) + L‖γ∗V − γ‖. (4.25)

Since g(γ) is concave, we see that (4.25) indeed holds for all γ � 0. Now for a given

η > 0, if:

(T 2
ν + Tν)B2 − 2Tν

(
g(γ∗V)− g(q(t))

)
+ 2TννB‖γ∗V − q(t)‖

≤ η2 − 2η‖γ∗V − q(t)‖, (4.26)

then by (4.24), we have:

E
{
‖q(t+ Tν)− γ∗V ‖2 | q(t)

}
≤ (‖q(t)− γ∗V ‖ − η)2,

which then by Jensen’s inequality implies:

(E
{
‖q(t+ Tν)− γ∗V ‖ | q(t)

}
)2 ≤ (‖q(t)− γ∗V ‖ − η)2.

Thus (4.20) follows whenever (4.26) holds and ‖q(t) − γ∗V ‖ ≥ η. It suffices to choose D

and η such that D ≥ η and that (4.26) holds whenever ‖q(t)− γ∗V ‖ ≥ D. Now note that

(4.26) can be rewritten as the following inequalty:

g(γ∗V) ≥ g(q(t)) + (Bν +
η

Tν
)‖γ∗V − q(t)‖+ Y, (4.27)

where Y = (T 2
ν+Tν)B2−η2

2Tν
. Choose any ν > 0 independent of V such that Bν < L and

choose η ∈ (0, Tν(L−Bν)). By (4.25), if:

L‖q(t)− γ∗V ‖ ≥ (Bν +
η

Tν
)‖γ∗V − q(t)‖+ Y, (4.28)

then (4.27) holds. Now choosing D as defined in (4.21), we see that if ‖q(t)− γ∗V ‖ ≥ D,

then (4.28) holds, which implies (4.27), and equivalently (4.26). We also have D ≥ η,

hence (4.20) holds.

Part (b): Now we show that (4.20) implies (4.22). Choose constants ν, D and η

that are independent of V in (a). Denoting Y (t) = ‖q(t) − γ∗V ‖, we see then whenever

61

Y (t) ≥ D, we have E
{
Y (t + Tν) − Y (t) | q(t)

}
≤ −η. It is also easy to see that |Y (t +

Tν)− Y (t)| ≤ TνB, as B is defined in (3.4) as the upper bound of the magnitude change

of q(t) in a slot. Define Ỹ (t) = max
[
Y (t) −D, 0

]
. We see that whenever Ỹ (t) ≥ TνB,

we have:

E
{
Ỹ (t+ Tν)− Ỹ (t) | q(t)

}
= E

{
Y (t+ Tν)− Y (t) | q(t)

}
≤ −η. (4.29)

Now define a Lyapunov function of Ỹ (t) to be L(Ỹ (t)) = ewỸ (t) with some w > 0, and

define the Tν-slot conditional drift to be:

∆Tν (Ỹ (t)) , E
{
L(Ỹ (t+ Tν))− L(Ỹ (t)) | q(t)

}
= E

{
ewỸ (t+Tν) − ewỸ (t) | q(t)

}
. (4.30)

It is shown in Section 4.10.2 that by choosing w = η
T 2
νB

2+TνBη/3
, we have for all Ỹ (t) ≥ 0:

∆Tν (Ỹ (t)) ≤ e2wTνB − wη

2
ewỸ (t). (4.31)

Taking expectation on both sides over q(t), we have:

E
{
ewỸ (t+Tν) − ewỸ (t)

}
≤ e2wTνB − wη

2
E
{
ewỸ (t)

}
. (4.32)

Summing (4.32) over t ∈ {t0, t0 + Tν , ..., t0 + (N − 1)Tν} for some t0 ∈ {0, 1, ..., Tν − 1},

we have:

E
{
ewỸ (t0+NTν) − ewỸ (t0)

}
≤ Ne2wTνB −

N−1∑
j=0

wη

2
E
{
ewỸ (t0+jTν)

}
.

Rearranging the terms, we have:

N−1∑
j=0

wη

2
E
{
ewỸ (t0+jTν)

}
≤ Ne2wTνB + E

{
ewỸ (t0)

}
.

Summing the above over t0 ∈ {0, 1, ..., Tν − 1}, we obtain:

NTν−1∑
t=0

wη

2
E
{
ewỸ (t)

}
≤ NTνe2wTνB +

Tν−1∑
t0=0

E
{
ewỸ (t0)

}
.

62

Dividing both sides with NTν , we obtain:

1

NTν

NTν−1∑
t=0

wη

2
E
{
ewỸ (t)

}
≤ e2wTνB +

1

NTν

Tν−1∑
t0=0

E
{
ewỸ (t0)

}
. (4.33)

Taking the limsup as N goes to infinity, which is equivalent to letting t = NTν go to

infinity, we obtain:

lim sup
t→∞

1

t

t−1∑
τ=0

wη

2
E
{
ewỸ (τ)

}
≤ e2wTνB. (4.34)

Using the fact that E
{
ewỸ (τ)

}
≥ ewmPr{Ỹ (τ) > m}, we get:

lim sup
t→∞

1

t

t−1∑
τ=0

wη

2
ewmPr{Ỹ (τ) > m} ≤ e2wTνB. (4.35)

Plug in w = η
T 2
νB

2+TνBη/3
and use the definition of Ỹ (t):

P(D,m) ≤ 2e2wTνB

wη
e−wm (4.36)

=
2(T 2

νB
2 + TνBη/3)e

2η
TνB+η/3

η2
e
− ηm

T2
ν B

2+TνBη/3 ,

where P(D,m) is defined in (4.23). Therefore (4.22) holds with:

c∗ =
2(T 2

νB
2 + TνBη/3)e

2η
TνB+η/3

η2
,

β∗ =
η

T 2
νB

2 + TνBη/3
. (4.37)

It is easy to see that c∗ and β∗ are both independent of V .

Our approach in deriving the results in Part (b) of Theorem 5 (and Theorem 8 below)

and the approach in [CL] are both based on Taylor expansion. However, [CL] can be

viewed as deriving the results from the moment generating function of the target variable.

Our approach can be viewed as using the difference of the moment generating functions

of the intermediate variables. Our approach can also be applied to deriving contraction

bounds for martingales [Dur05].

63

Note from (4.33) and (4.34) that Theorem 5 indeed holds for any finite q(0). We later

use this fact to prove the performance of FQLA. The following theorem is a special case

of Theorem 5 and gives a more direct illustration of Theorem 5. Recall that P(D,m) is

defined in (4.23). Define:

P(r)(D,m) , lim sup
t→∞

1

t

t−1∑
τ=0

Pr{||q(τ)− γ∗V ||∞ > D +m} (4.38)

= lim sup
t→∞

1

t

t−1∑
τ=0

Pr{∃ j, |qj(τ)− γ∗V j | > D +m} (4.39)

Theorem 6. If the condition in Theorem 5 holds and S(t) is i.i.d., then under QLA, for

any c > 0:

P(D1, cK1 log(V)) ≤ c∗1
V c
, (4.40)

P(r)(D1, cK1 log(V)) ≤ c∗1
V c
. (4.41)

where D1 = 2B2

L + L
4 , K1 = B2+BL/6

L/2 and c∗1 = 8(B2+BL/6)e
L

B+L/6

L2 .

Proof. First we note that when S(t) is i.i.d., we have Tν = 1 for ν = 0. Now choose

ν = 0, Tν = 1 and η = L/2, then we see from (4.21) that

D = max

[
2B2 − L2/4

L
,
L

2

]
≤ 2B2

L
+
L

4
.

Now by (4.37) we see that (4.22) holds with c∗ = c∗1 and β∗ = L/2
B2+BL/6

. Thus by taking

D1 = 2B2

L + L
4 , we have:

P(D1, cK1 log(V)) ≤ c∗e−cK1β∗ log(V)

= c∗1e
−c log(V),

where the last step follows since β∗K1 = 1. Thus (4.40) follows. Equation (4.41) follows

from (4.40) by using the fact that for any constant ζ, the events E1 = {||q(τ)−γ∗V ||∞ > ζ}

64

and E2 = {‖q(τ)−γ∗V ‖ > ζ} satisfy E1 ⊂ E2. Thus: Pr{||q(τ)−γ∗V ||∞ > ζ} ≤ Pr{‖q(τ)−

γ∗V ‖ > ζ}.

Theorem 6 can be viewed as showing that for a large V , the probability for qj(t) to

deviate from the jth component of γ∗V is exponentially decreasing in the distance. Thus

it rarely deviates from γ∗V j by more than Θ(log(V)) distance. Note that one can similarly

prove the following theorem for OSM:

Theorem 7. If the condition in Theorem 5 holds, then there exist positive constants D =

Θ(1) and η = Θ(1), i.e, independent of V , such that, under OSM, if ‖γ(t)− γ∗V ‖ ≥ D,

‖γ(t+ 1)− γ∗V ‖ ≤ ‖γ(t)− γ∗V ‖ − η. (4.42)

Proof. It is easy to show that under OSM, Lemma 3 holds with ν = 0, Tν = 1 and

without the expectation. Indeed, by (4.14), (4.15) and Lemma 5 in Section 4.10.1, we

have:

‖γ(t+ 1)− γ∗V ‖2 ≤ ‖γ(t)− γ∗V ‖2 + 2B2 − 2(γ∗V − γ(t))TGγ(t).

Now by (4.16) we have: (γ∗V − γ(t))TGγ(t) ≥ g(γ∗V) − g(γ(t)). Plug this into the above

equation, we obtain:

‖γ(t+ 1)− γ∗V ‖2 ≤ ‖γ(t)− γ∗V ‖2 + 2B2 − 2
(
g(γ∗V)− g(γ(t))

)
.

The theorem then follows by using the same argument as in the proof of Theorem 5.

Therefore, when there is a single network state, in which case QLA is equivalent to

OSM, we see that given (4.18), the backlog process converges to a neighborhood of size

Θ(1) around γ∗V .

65

4.2.2 When g0(·) is “locally smooth”

In this section, we consider the backlog behavior under QLA, for the case where the dual

function g0(γ) is “locally smooth” at γ∗0. Specifically, we say that the function g0(γ) is

locally smooth at γ∗0 with parameters ε, L > 0 if for all γ � 0 such that ‖γ −γ∗0‖ < ε, we

have:

g0(γ∗0) ≥ g0(γ) + L‖γ − γ∗0‖2, (4.43)

This condition contains the case when g0(γ) is twice differentiable with ∇g(γ∗0) = 0 and

aT∇2g(γ)a ≤ −2L‖a‖2, ∀a for any γ with ‖γ∗0−γ‖ < ε. Such a case usually occurs when

the sets X (si), i = 1, ...,M are convex, i.e., a “continuous” set of actions are available.

Notice that (4.43) is a looser condition than (4.18) in the neighborhood of γ∗0. As we

will see, such structural difference of g0(γ) in the neighborhood of γ∗0 greatly affects the

behavior of backlogs under QLA.

Theorem 8. If g0(γ) is locally smooth at γ∗0 with parameters ε, L > 0, independent of

V , then under QLA with a sufficiently large V , we have:

(a) There exists D = Θ(
√
V) such that whenever ‖q(t)− γ∗V ‖ ≥ D, we have:

E
{
‖q(t+ 1)− γ∗V ‖ | q(t)

}
≤ ‖q(t)− γ∗V ‖ −

1√
V
. (4.44)

(b) P(D,m) ≤ c∗e−β
∗m, where P(D,m) is defined in (4.23), c∗ = Θ(V) and β∗ =

Θ(1/
√
V).

Theorem 8 can be viewed as showing that, when g0(γ) is locally smooth at γ∗0, the

backlog vector will mostly be within O(
√
V log(V)) distance from γ∗V . This contrasts

with Theorem 5, which shows that the backlog will mostly be within O(log(V)) distance

66

from γ∗V . Intuitively, this is due to the fact that under local smoothness, the drift towards

γ∗V is smaller as q(t) gets closer to γ∗V , hence a Θ(
√
V) distance is needed to guarantee

a drift of size Θ(1/
√
V); whereas under (4.18), any nonzero Θ(1) deviation from γ∗V

roughly generates a drift of size Θ(1) towards γ∗V , ensuring that the backlog stays within

O(log(V)) distance from γ∗V .

To prove Theorem 8, we need the following corollary of Lemma 3.

Corollary 2. If S(t) is i.i.d., then under QLA,

E
{
‖q(t+ 1)− γ∗V ‖2 | q(t)

}
≤ ‖q(t)− γ∗V ‖2 + 2B2 − 2

(
g(γ∗V)− g(q(t))

)
.

Proof. When S(t) is i.i.d., we have Tν = 1 for ν = 0.

Proof. (Theorem 8) Part (a): We first see that for any γ with ‖γ − γ∗V ‖ < εV , we have

‖γ/V − γ∗0‖ < ε. Therefore,

g0(γ∗0) ≥ g0(γ/V) + L‖γ/V − γ∗0‖2. (4.45)

Multiplying both sides with V , we get:

g(γ∗V) ≥ g(γ) +
L

V
‖γ − γ∗V ‖2. (4.46)

Similar to the proof of Theorem 5 and by Corollary 2, we see that for (4.44) to hold, we

only need ‖q(t)− γ∗V ‖ ≥ 1√
V

and:

2B2 − 2
(
g(γ∗V)− g(q(t))

)
≤ 1

V
− 2√

V
‖q(t)− γ∗V ‖,

which can be rewritten as:

g(γ∗V) ≥ g(q(t))
)

+
1√
V
‖q(t)− γ∗V ‖+

2B2 − 1
V

2
. (4.47)

By (4.46), we see that for (4.47) to hold, it suffices to have:

L

V
‖q(t)− γ∗V ‖2 ≥

1√
V
‖q(t)− γ∗V ‖+B2. (4.48)

67

By solving the quadratic inequality (4.48), we see that (4.48) holds whenever:

‖q(t)− γ∗V ‖ ≥
1√
V

+
√

1
V + 4B2L

V

2L/V
=

√
V +

√
V + 4B2LV

2L
.

Denote D =
√
V+
√
V+4B2LV
2L . We see that when V is large, (4.44) holds for any q(t) with

D ≤ ‖q(t) − γ∗V ‖ < εV . Now since g(γ) is concave, one can show that (4.47) holds for

all ‖q(t)− γ∗V ‖ ≥ D. Hence (4.44) holds for all ‖q(t)− γ∗V ‖ ≥ D, proving Part (a).

Part (b): By an argument that is similar to the proof of Theorem 5, we see that Part

(b) follows with: β∗ = 3
3
√
V B2+B

and c∗ = 2(V B2 +B
√
V /3)e

6

3B
√
V+1 .

Notice in this case we can also prove a similar result as Theorem 7 for OSM, with the

only difference that D = Θ(
√
V).

4.2.3 Discussion of the choices of g0(γ)

In our analysis, we have focused only on the dual function g0(γ) being either locally

polyhedral or locally smooth. These choices are made based on their practical generality.

To be more precise, assume that without loss of generality that there is only one network

state and the set of feasible actions is a compact subset of Rn. In practice, this action

set is usually finite due to digitization. Thus we see from the definition of g0(γ) that an

action, if chosen given a Lagrange multiplier γ, remains the chosen action for a range

of Lagrange multipliers around γ. Hence g0(γ) is polyhedral in this case. Now as the

granularity of the action sets becomes finer and finer, we can expect the dual function

g0(γ) to be “smoother and smoother,” in the sense that moving from one action to

another close-by action does not affect the value of g0(γ) by much. Eventually when the

granularity is fine enough, the action set can be viewed as convex. Now if the optimal

68

network performance is achieved at some action not at the boundary of the action set,

then we see that in a small neighborhood around γ∗V , we usually have a locally smooth

g0(γ) function. Further note that in both cases, the structure of g0(γ) is independent of

V . Hence the conditions in Theorem 5 and 8 can typically be satisfied in practice.

Though we have focused on the cases when g(·) is either polyhedral or smooth, our

analysis approach can also be applied to dual functions satisfying other conditions. For

instance,

g0(γ∗0) ≥ g0(γ) + L‖γ − γ∗0‖p, (4.49)

with p ≥ 1. In this case, we get a sufficient condition similar to (4.48):

L

V p
‖q(t)− γ∗V ‖p ≥

1

V p/2
‖q(t)− γ∗V ‖+B2. (4.50)

We can similarly obtain a value D, which is a function of p and V , and prove similar

exponential attraction results. For some values of p, we may not be able to get closed

form solutions. However, (4.50) will still be useful in practice because we can use it to

compute numerical solutions.

4.2.4 The importance of the ε-slack condition

Throughout the above derivation, we have assumed that there exists a randomized policy

that achieves the ε-slackness for our problem. This assumption is crucial to all the results

in this thesis. Indeed, the ε-slack assumption guarantees that the optimal Lagrange

multiplier γ∗0 has bounded magnitude, see, e.g., Page 524 in [BNO03]. In this case,

Lemma 2 ensures that ‖γ∗V ‖ = Θ(V), which subsequently implies that the time average

backlog in the network is Θ(V). Without this slackness condition, the value γ∗V =∞ will

69

also be a maximizer of the dual function g(γ). 7 Thus, it is possible that the network

congestion will go unbounded under QLA.

4.2.5 Implications of Theorem 5 and 8

Consider the following simple problem: an operator operates a single queue and tries to

support a Bernoulli arrival, i.e., either 1 or 0 packet arrives every slot, with rate λ = 0.5

(the rate may be unknown to the operator) with minimum energy expenditure. The

channel is time-invariant. The rate-power curve over the channel is given by: µ(t) =

log(1 + P (t)), where P (t) is the allocated power at time t. Thus to obtain a rate of µ(t),

we need P (t) = eµ(t) − 1. In every time slot, the operator decides how much power to

allocate and serves the queue at the corresponding rate, with the goal of minimizing the

time average power consumption subject to queue stability. Let Φ denote the time average

energy expenditure incurred by the optimal policy. It can be shown that Φ = e0.5−1. To

see this, note that the optimal strategy is to allocate power such that the average service

rate is exactly equal to the arrival rate. Thus, by the convexity of the power-rate curve,

the optimal strategy is to use P (t) = e0.5 − 1 for all time.

Now we look at the deterministic problem:

min : V (eµ − 1), s.t. : 0.5 ≤ µ

In this case, the dual function is given by: g(γ) = infµ
{
V (eµ − 1) + γ(0.5− µ)

}
. Hence

by the KKT conditions [BNO03] one obtains that γ∗V = V e0.5 and the optimal policy is

to serve the queue at the constant rate µ∗ = 0.5. Suppose now that QLA is applied to

7From a queueing network point of view, this corresponds to the case when the arrival vector is on the
boundary of the capacity region of the network.

70

the problem. Then at slot t, if q(t) = q, QLA chooses the power to achieve the rate µ(t)

such that ([a]+ = max[a, 0]):

µ(t) ∈ arg min{V (eµ − 1) + q(0.5− µ)} =
[

log(
q

V
)
]+
. (4.51)

which incurs an instantanous power consumption of P (t) ≈ q(t)
V −1. In this case, it can be

shown that Theorem 8 applies. Thus for most of the time q(t) ∈ [γ∗V −
√
V , γ∗V +

√
V], i.e.,

q(t) ∈ [V e0.5−
√
V , V e0.5+

√
V]. Hence it is almost always the case that: log(e0.5− 1√

V
) ≤

µ(t) ≤ log(e0.5 + 1√
V

), which implies: 0.5 − 1√
V
≤ µ(t) ≤ 0.5 + 1√

V
. Thus by a similar

argument as in [Nee07], one can show that P ≤ Φ + O(1/V), where P is the average

power consumption.

Now consider the case when we can only choose to operate at µ ∈ {0, 1
4 ,

3
4 , 1}, with

the corresponding power consumptions being: P ∈ {0, e 1
4 − 1, e

3
4 − 1, e − 1}. One can

similarly obtain Φ = 1
2(e

3
4 + e

1
4) and γ∗V = 2V (e

3
4 − e 1

4). In this case, Φ is achieved by

time sharing the two rates {1
4 ,

3
4} with equal portion of time. It can also be shown that

Theorem 5 applies in this case. Thus we see that under QLA, q(t) is mostly within log(V)

distance to γ∗V . Hence by (4.51), we see that QLA almost always chooses between the

two rates {1
4 ,

3
4}, and uses them with almost equal frequencies. Hence QLA is also able

to achieve P = Φ +O(1/V) in this case.

The above argument can be generalized to many stochastic network optimization

problems. Thus, we see that Theorem 5 and 8 not only provide us with probabilistic

deviation bounds of q(t) from γ∗V , but also help to explain why QLA is able to achieve

the desired utility performance: under QLA, q(t) always stays close to γ∗V , hence the

chosen action is always close to the set of optimal actions.

71

4.2.6 More backlog bounds when there is a single queue

We note that when there is a single queue, i.e., r = 1, in the network, e.g., [HN10c], one

can obtain deterministic upper and lower bounds of the backlog value under arbitrary

network state distribution and the way S(t) evolves. We also note that in this single

queue case, one can also obtain exponential attraction results similar to Theorem 5 and

8, without assuming the locally polyhedral or locally smooth conditions. For details, see

[HN11a].

4.3 The FQLA algorithm

In this section, we propose a family of Fast Quadratic Lyapunov based Algorithms (FQLA)

for general stochastic network optimization problems. We first provide an example to

illustrate the idea of FQLA. We then describe FQLA with known γ∗V , called FQLA-Ideal,

and study its performance. After that, we describe the more general FQLA without such

knowledge, called FQLA-General. For brevity, we only describe FQLA for the case when

g0(γ) is locally polyhedral. FQLA for the other case is discussed in [HN11a].

4.3.1 FQLA: a single queue example

To illustrate the idea of FQLA, we first look at an example. Figure 4.1 shows a 104-slot

sample backlog process under QLA.8 We see that after roughly 1500 slots, q(t) always

stays very close to γ∗V , which is a Θ(V) scalar in this case. To reduce delay, we can first

findW ∈ (0, γ∗V) such that under QLA, there exists a time t0 so that q(t0) ≥ W and once

8This sample backlog process is one sample backlog process of queue 1 of the system considered in
Section 4.3.6, under QLA with V = 50.

72

q(t) ≥ W, it remains so for all time (the solid line in Fig. 4.1 shows one for these 104

slots). We then place W fake bits (called place-holder bits [NU08]) in the queue at time

0, i.e., initialize q(0) =W, and run QLA. It can be shown, as in [GNT06], that the utility

performance of QLA will remain the same with this change, and the average backlog is

now reduced by W. However, such a W may require W = γ∗V −Θ(V). Thus, the average

backlog may still be Θ(V).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

t

Number of place
holder bits W

Start here

!
*

V

q(t)

!5 0 5 10 15 20 25 30 35 40 45

!4

!2

0

2

4

6

8

10

W(t)!W

q(t)
max[W(t)!W, 0] + !

max

Figure 4.1: Left: A sample backlog process; Right: An example of W (t) and q(t).

FQLA instead finds a W such that in steady state, the backlog process under QLA

rarely goes below it, and places W place-holder bits in the queue at time 0. FQLA then

uses an auxiliary process W (t), called the virtual backlog process, to keep track of the

backlog process that should have been generated if QLA has been used. Specifically,

FQLA initializes W (0) = W. Then at every slot, QLA is run using W (t) as the queue

size, and W (t) is updated according to QLA. With W (t) andW, FQLA works as follows:

At time t, if W (t) ≥ W, FQLA performs QLA’s action (obtained based on S(t) and

W (t)); else if W (t) < W, FQLA carefully modifies QLA’s action so as to maintain

q(t) ≈ max[W (t) −W, 0] for all t (see Fig. 4.1 for an example). Similar as above, this

73

roughly reduces the average backlog by W. The difference is that now we can show

that W = max[γ∗V − [log(V)]2, 0] meets the requirement. Thus, it is possible to bring

the average backlog down to O([log(V)]2). Also, since W (t) can be viewed as a backlog

process generated by QLA, it rarely goes below W in steady state. Hence FQLA is

almost always the same as QLA. Thus, is able to achieve an O(1/V) close-to-optimal

utility performance.

4.3.2 The FQLA-Ideal algorithm

In this section, we present the FQLA-Ideal algorithm. We assume that the value γ∗V =

(γ∗V 1, ..., γ
∗
V r)

T is known a-priori.

FQLA-Ideal:

(I) Determining place-holder bits: For each j, define:

Wj = max
[
γ∗V j − [log(V)]2, 0

]
, (4.52)

as the number of place-holder bits of queue j.

(II) Place-holder-bit based action: Initialize

qj(0) = 0, Wj(0) =Wj , ∀j.

For t ≥ 1, observe the network state S(t), solve (4.8) with W (t) in place of q(t).

Perform the chosen action with the following modification: Let A(t) and µ(t) be

the arrival and service rate vectors generated by the action. For each queue j, do

(If queue j does not have enough packets to send, null packets can be transmitted):

74

(a) If Wj(t) ≥ Wj : admit Aj(t) arrivals, serve µj(t) data, i.e., update the backlog

by:

qj(t+ 1) = max
[
qj(t)− µj(t), 0

]
+Aj(t).

(b) If Wj(t) <Wj : admit Ãj(t) = max
[
Aj(t)−Wj +Wj(t), 0

]
arrivals, serve µj(t)

data, i.e., update the backlog by:

qj(t+ 1) = max
[
qj(t)− µj(t), 0

]
+ Ãj(t).

(c) Update Wj(t) by:

Wj(t+ 1) = max
[
Wj(t)− µj(t), 0

]
+Aj(t).

actual
admitted

arrival gen. by QLA
based on W(t)

W(t)

q(t)

W time

time

actual
admitted

arrival gen. by QLA
based on W(t)

W(t)

q(t)

W time

time

Figure 4.2: Demonstration of the FQLA algorithm for r = 1: FQLA is the same as QLA when
W (t) ≥ W; otherwise it only admits the excessive packets.

Fig. 4.2 shows how FQLA works. From the above, we see that FQLA-Ideal is the same

as QLA based on W (t) when Wj(t) ≥ Wj for all j. When Wj(t) < Wj for some queue

j, FQLA-Ideal admits roughly the excessive packets after Wj(t) is brought back to be

above Wj for the queue. Thus for problems where QLA admits an easy implementation,

e.g., [Nee06c], [HN10c], it is also easy to implement FQLA. However, we also notice two

different features of FQLA: (1) By (4.52), Wj can be 0. However, when V is large, this

75

happens only when γ∗0j = γ∗V j = 0 according to Lemma 2. In this caseWj = γ∗V j = 0, and

queue j indeed needs zero place-holder bits. (2) Packets may be dropped in Step II-(b)

upon their arrival, or after they are admitted into the network in a multihop problem.

Such packet dropping is natural in many flow control problems and does not change the

nature of these problems. In other problems, where such an option is not available, the

packet dropping option is introduced to achieve the desired delay performance, and it

can be shown that the fraction of packets dropped can be made arbitrarily small. Note

that packet dropping here is to compensate for the deviation from the desired Lagrange

multiplier. Thus it is different from that in [Nee06a], where packet dropping is used for

drift steering.

4.3.3 Performance of FQLA-Ideal

We look at the performance of FQLA-Ideal in this section. We first have the following

lemma showing the relationship between q(t) and W (t) under FQLA-Ideal. We use it

later to prove the delay bound of FQLA. Note that the lemma also holds for FQLA-

General described later, as FQLA-Ideal/General differ only in the way of determining

W = (W1, ...,Wr)
T .

Lemma 4. Under FQLA-Ideal/General, we have ∀ j, t:

max
[
Wj(t)−Wj , 0

]
≤ qj(t) ≤ max

[
Wj(t)−Wj , 0

]
+ δmax (4.53)

where δmax is defined in Section 3.1.2 to be the upper bound of the number of arriving or

departing packets of a queue.

Proof. See Section 4.10.3.

76

The following theorem summarizes the main performance results of FQLA-Ideal. Re-

call that for a given policy Π, fΠ
av denotes its average cost defined in (3.7) and fΠ(t)

denotes the cost induced by Π at time t.

Theorem 9. If the condition in Theorem 5 holds and a steady state distribution exists

for the backlog process generated by QLA, then with a sufficiently large V , we have under

FQLA-Ideal that,

q = O([log(V)]2), (4.54)

fFIav = f∗av +O(1/V), (4.55)

Pdrop = O(1/V c0 log(V)), (4.56)

where c0 = Θ(1), q is the time average network backlog, fFIav is the expected time average

cost of FQLA-Ideal, f∗av is the optimal time average cost and Pdrop is the time average

fraction of packets that are dropped in Step-II (b).

Proof. Since a steady state distribution exists for the backlog process generated by QLA,

we see that P(D,m) in (4.23) represents the steady state probability of the event that

the backlog vector deviates from γ∗V by distance D+m. Now since W (t) can be viewed

as a backlog process generated by QLA, with W (0) = W instead of 0, we see from the

proof of Theorem 5 that Theorem 5 and 6 hold for W (t), and by [GNT06], QLA based

on W (t) achieves an average cost of f∗av + O(1/V). Hence by Theorem 6, there exist

constants D1,K1, c
∗
1 = Θ(1) so that: P(r)(D1, cK1 log(V)) ≤ c∗1

V c . By the definition of

P(r)(D1, cK1 log(V)), this implies that in steady state:

Pr{Wj(t) > γ∗V j +D1 +m} ≤ c∗1e
− m
K1 .

77

Now let: Qj(t) = max[Wj(t) − γ∗V j − D1, 0]. We see that Pr{Qj(t) > m} ≤ c∗1e
− m
K1 ,

∀m ≥ 0. We thus have Qj = O(1), where Qj is the time average value of Qj(t). Now it

can be seen from (4.52) and (4.53) that qj(t) ≤ Qj(t) + [log(V)]2 + D1 + δmax for all t.

Thus (4.54) follows since for a large V :

qj ≤ Qj + [log(V)]2 +D1 + δmax = Θ([log(V)]2), ∀ j.

Now consider the average cost. To save space, we use FI for FQLA-Ideal. From above, we

see that QLA based on W (t) achieves an expected average cost of f∗av + O(1/V). Thus

it suffices to show that FQLA-Ideal performs almost the same as QLA based on W (t).

First we have for all t ≥ 1 that:

1

t

t−1∑
τ=0

fFI(τ) =
1

t

t−1∑
τ=0

fFI(τ)1E(τ) +
1

t

t−1∑
τ=0

fFI(τ)1Ec(τ).

Here 1E(τ) is the indicator function of the event E(τ), E(τ) is the event that FQLA-Ideal

performs the same action as QLA at time τ , and 1Ec(τ) = 1− 1E(τ). Taking expectation

on both sides and using the fact that when FQLA-Ideal takes the same action as QLA,

fFI(τ) = fQLA(τ), we have:

1

t

t−1∑
τ=0

E
{
fFI(τ)

}
≤ 1

t

t−1∑
τ=0

E
{
fQLA(τ)1E(τ)

}
+

1

t

t−1∑
τ=0

E
{
δmax1Ec(τ)

}
.

Taking the limit as t goes to infinity on both sides and using fQLA(τ)1E(τ) ≤ fQLA(τ) ,

we get:

fFIav ≤ fQLAav + δmax lim
t→∞

1

t

t−1∑
τ=0

E
{

1Ec(τ)

}
= fQLAav + δmax lim

t→∞

1

t

t−1∑
τ=0

Pr{Ec(τ)}. (4.57)

78

However, Ec(τ) is included in the event that there exists a j such that Wj(τ) < Wj .

Therefore by (4.41) in Theorem 6, for a large V such that 1
2 [log(V)]2 ≥ D1 and log(V) ≥

8K1,

lim
t→∞

1

t

t−1∑
τ=0

Pr{Ec(τ)} ≤ P(r)(D1, [log(V)]2 −D1)

= O(c∗1/V
1

2K1
log(V)

)

= O(1/V 4). (4.58)

Using this fact in (4.57), we obtain:

fFIav = fQLAav +O(δmax/V
4) = f∗av +O(1/V),

where the last equality holds since fQLAav = f∗av + O(1/V). This proves (4.55). (4.56)

follows since packets are dropped at time τ only if Ec(τ) happens, thus by (4.58), the

fraction of time when packet dropping happens is O(1/V c0 log(V)) with c0 = 1
2K1

= Θ(1),

and each time no more than
√
rB packets can be dropped.

4.3.4 The FQLA-General algorithm

Now we describe the FQLA algorithm without any a-priori knowledge of γ∗V , called

FQLA-General. FQLA-General first runs the system for a long enough time T , such that

the system enters its steady state. Then it chooses a sample of the queue vector value to

estimate γ∗V and uses that to decide on W .

FQLA-General:

(I) Determining place-holder bits:

79

(a) Choose a large time T (see Section 4.3.5 for the size of T) and initializeW (0) =

0. Run the QLA algorithm with parameter V , at every time slot t, update

W (t) according to the QLA algorithm and obtain W (T).

(b) For each queue j, define:

Wj = max
[
Wj(T)− [log(V)]2, 0

]
, (4.59)

as the number of place-holder bits.

(II) Place-holder-bit based action: same as FQLA-Ideal.

The performance of FQLA-General is summarized as follows:

Theorem 10. Assume that the conditions in Theorem 9 hold and the system is in steady

state at time T . Then, under FQLA-General with a sufficiently large V , with proba-

bility 1 − O(1
V 4): (a) q = O([log(V)]2), (b) fFGav = f∗av + O(1/V), and (c) Pdrop =

O(1/V c0 log(V)), where c0 = Θ(1) and fFGav is the expected time average cost of FQLA-

General.

Proof. We will show that with probability 1−O(1
V 4),Wj is close to max[γ∗V j−[log(V)]2, 0].

The rest can then be proven similarly as in the proof of Theorem 9.

For each queue j, define:

v+
j = γ∗V j +

1

2
[log(V)]2, v−j = max

[
γ∗V j −

1

2
[log(V)]2, 0

]
.

Note that v−j is defined with a max[·, ·] operator. This is due to the fact that γ∗V j can be

zero. As in (4.58), we see that by Theorem 6, there exists D1 = Θ(1),K1 = Θ(1) such

that if V satisfies 1
4 [log(V)]2 ≥ D1 and log(V) ≥ 16K1, then:

Pr
{
∃ j, Wj(T) /∈ [v−j , v

+
j]
}
≤ P(r)(D1,

1

2
[log(V)]2 −D1)

80

= O(1/V 4).

Thus Pr
{
Wj(T) ∈ [v−j , v

+
j]∀j

}
= 1−O(1/V 4), implying:

Pr
{
Wj ∈ [v̂−j , v̂

+
j] ∀j

}
= 1−O(1/V 4),

where v̂+
j = max

[
γ∗V j − 1

2 [log(V)]2, 0
]

and v̂−j = max
[
γ∗V j − 3

2 [log(V)]2, 0
]
. Hence for

large V , with probability 1 − O(1
V 4), if γ∗V j > 0, we have γ∗V j − 3

2 [log(V)]2 ≤ Wj ≤

γ∗V j − 1
2 [log(V)]2; else if γ∗V j = 0, we have Wj = γ∗V j . The rest of the proof is similar to

the proof of Theorem 9.

4.3.5 Practical issues

From Lemma 2 we see that the magnitude of γ∗V can be Θ(V). This means that T in

FQLA-General may need to be Ω(V), which is not very desirable when V is large. We

can instead use the following heuristic method to accelerate the process of determining

W : For every queue j, guess a very large Wj . Then start with this W and run the QLA

algorithm for some T1, say
√
V slots. Observe the resulting backlog process. Modify the

guess for each queue j using a bisection algorithm until a proper W is found, i.e. when

running QLA from W , we observe fluctuations of Wj(t) around Wj instead of a nearly

constant increase or decrease for all j. Then let Wj = max[Wj − [log(V)]2, 0]. To further

reduce the error probability, one can repeat Step-I (a) multiple times and use the average

value as W (T).

4.3.6 Simulation

In this section we provide simulation results for the FQLA algorithms. For simplicity, we

only consider the case where g0(γ) is locally polyhedral. We consider a five queue system

81

similar to the example in Section 3.1.4. In this case r = 5. The system is shown in Fig.

4.3. The goal is to perform power allocation at each node so as to support the arrivals

with minimum energy expenditure.

!"#$% !&#$% !'#$% !(#$% !)#$%
*#$%

+,"#$% +,&#$% +,'#$% +,(#$% +,)#$%

Figure 4.3: A five queue system

In this example, the random network state S(t) is the vector (R(t), CHi(t), i = 1, .., 5).

Similar to Section 3.1.4, we have: A(t) = (R(t), µ1(t), µ2(t), µ3(t), µ4(t))T and µ(t) =

(µ1(t), µ2(t), µ3(t), µ4(t), µ5(t))T , i.e., A1(t) = R(t), Ai(t) = µi−1(t) for i ≥ 2, where

µi(t) is the service rate obtained by queue i at time t. R(t) is 0 or 2 with probabilities

3
8 and 5

8 , respectively. CHi(t) can be “Good” or “Bad” with equal probabilities for

1 ≤ i ≤ 5. When the channel is good, one unit of power can serve two packets; otherwise

it can serve only one. We assume that the CHi(t) are all independent, and all channels

can be activated at the same time without affecting others. It can be verified that

γ∗V = (5V, 4V, 3V, 2V, V)T is unique. In this example, the backlog vector process evolves

as a Markov chain with countably many states. Thus there exists a stationary distribution

for the backlog vector under QLA.

We simulate FQLA-Ideal and FQLA-General with V = 50, 100, 200, 500, 1000 and

2000. We run each case for 5 · 106 slots. For FQLA-General, we use T = 50V in Step-I

and repeat Step-I 100 times and use their average as W (T). The top-left plot in Fig.

4.4 shows that the average queue sizes under both FQLAs are always close to the value

5[log(V)]2 (r = 5). The top-right plot shows that the percentage of packets dropped

decreases rapidly and gets below 10−4 when V ≥ 500 under both FQLAs. These plots

82

10
1

10
2

10
3

10
4

50

100

150

200

250

300

V

0 500 1000 1500 2000
10

!5

10
!4

10
!3

10
!2

10
!1

V

FQLA!I

FQLA!G

FQLA!I

FQLA!G

rlog
2
(V)

4960 4970 4980 4990 5000 5010 5020 5030
3960

3970

3980

3990

4000

4010

4020

W
1
(t)

W
2(t)

(W
1
(t), W

2
(t))

(5000, 4000)

Figure 4.4: FQLA-Ideal performance: Up-Left - Average queue size; Up-Right - Percentage of
packets dropped; Bottom - Sample (W1(t),W2(t)) process for t ∈ [10000, 110000] and V = 1000
under FQLA-Ideal.

83

show that in practice, V may not have to be very large for Theorem 9 and 10 to hold. The

bottom plot shows a sample (W1(t),W2(t)) process for a 105-slot interval under FQLA-

Ideal with V = 1000, considering only the first two queues of Fig. 4.3. We see that

(W1(t),W2(t)) always remains close to (γ∗V 1, γ
∗
V 2) = (5V, 4V), and W1(t) ≥ W1 = 4952,

W2(t) ≥ W2 = 3952. For all V values, the average power expenditure is very close to

3.75, which is the optimal energy expenditure, and the average of
∑

jWj(t) is very close

to 15V .

Interestingly, the “attraction phenomenon” in the bottom plot of Fig. 4.4 was also

observed in the system implementation paper [MSKG10], which implemented the QLA al-

gorithm in a 40-node wireless sensor network testbed. It has also been shown in [MSKG10]

that by using QLA plus Last-In-First-Out (LIFO), one can reduce the delay experienced

by all but a small fraction of the network traffic by more than 90%. While this fact can

not be explained by any previous results on QLA, it can easily be explained using Theo-

rems 5 and 8 as follows: Consider a node j. First suppose that First-In-First-Out (FIFO)

is used. Then, a packet entering node j is placed at the end of the buffer. By Theorems 5

and 8, the backlog size qj at node j always stays close to γ∗V j = Θ(V). Thus, a new packet

has to wait for roughly γ∗V j packets before getting served, resulting in a delay linear in V .

Now if LIFO is used, then packets entering node j are placed at the front of the buffer.

We know that qj ∈ I = [γ∗V j− [log(V)]2, γ∗V j + [log(V)]2] for most of the time. Thus most

packets enter and leave node j when qj ∈ I. Hence for most packets, node j is a queue

with on average no more than 2[log(V)]2 packets. Therefore, on average, most packets

need to wait for no more than Θ([log(V)]2) packets before getting served. This intuitive

argument is made rigorous in the following section.

84

4.4 The LIFO-Backpressure algorithm

We see from the above discussion that the FQLA algorithms are able to achieve the

near optimal utility-delay tradeoff for general network optimization problems. Below, we

show that such a near optimal performance can also be achieved by only changing the

queueing discipline of the network nodes from First-In-First-Out (FIFO) to Last-In-First-

Out (LIFO). This LIFO version of the QLA algorithm was first proposed in a system

implementation work [MSKG10], and was demonstrated to yield orders of magnitude

delay improvement over the FIFO version, although they did not provide any theoretical

performance guarantee. In this section, we provide a rigorous theoretical analysis for

this method. The importance of this method, as we will see, is that it does not require

any knowledge of γ∗V . This greatly simplifies the implementation of the algorithm, and

avoids the potential utility lost due to the error that can occur during the leaning phase

of FQLA.

We first state this LIFO version of the QLA algorithm below (QLA was stated in

Section 4.1.2). We will also follow the convention and call it the LIFO-Backpressure

algorithm.

LIFO-Backpressure: At every time slot t, observe the current network state S(t) and

the backlog q(t). If S(t) = si, choose x(si) ∈ X (si) that solves the following:

max −V f(si, x) +
r∑
j=1

qj(t)
[
µj(si, x)−Aj(si, x)

]
(4.60)

s.t. x ∈ X (si).

Then serve the packets in each queue using the LIFO discipline.

85

We show in Theorem 13 that, under the conditions of Theorem 6, under LIFO-

Backpressure, the time average delay for almost all packets entering the network is

O([log(V)]2) when the utility is pushed to within O(1/V) of the optimal value. Note

that the implementation complexity of LIFO-Backpressure is the same as the original

Backpressure, and LIFO-Backpressure only requires the knowledge of the instantaneous

network condition. This is a remarkable feature that distinguishes it from the previous

algorithms achieving similar poly-logarithmic tradeoffs in the i.i.d. case, e.g., [Nee06b]

[Nee07] [HN11a], which all require knowledge of some implicit network parameters other

than the instant network state.

4.4.1 Performance of LIFO-Backpressure

In this section, we analyze the performance LIFO-Backpressure. Below, we first provide

a simple example to demonstrate the need for careful treatment of the usage of LIFO in

Backpressure algorithms, and then present a modified Little’s theorem that will be used

for our proof.

4.4.1.1 A simple example on the LIFO delay

Consider a slotted system where two packets arrive at time 0, and one packet periodically

arrives every slot thereafter (at times 1, 2, 3, . . .). The system is initially empty and can

serve exactly one packet per slot. The arrival rate λ is clearly 1 packet/slot (so that

λ = 1). Further, under either FIFO or LIFO service, there are always 2 packets in the

system, so Q = 2.

86

Under FIFO service, the first packet has a delay of 1 and all packets thereafter have

a delay of 2:

WFIFO
1 = 1 , WFIFO

i = 2 ∀i ∈ {2, 3, 4, . . .},

where WFIFO
i is the delay of the ith packet under FIFO (WLIFO

i is similarly defined for

LIFO). We thus have:

W
FIFO M

= lim
K→∞

1

K

K∑
i=1

WFIFO
i = 2.

Thus, λW
FIFO

= 1 · 2 = 2, Q = 2, and so λW
FIFO

= Q indeed holds.

Now consider the same system under LIFO service. We still have λ = 1, Q = 2.

However, in this case the first packet never departs, while all other packets have a delay

equal to 1 slot:

WLIFO
1 =∞ , WLIFO

i = 1 ∀i ∈ {2, 3, 4, . . .}.

Thus, for all integers K > 0:

1

K

K∑
i=1

WLIFO
i =∞.

and so W
LIFO

= ∞. Clearly λW
LIFO 6= Q. On the other hand, if we ignore the one

packet with infinite delay, we note that all other packets get a delay of 1 (exactly half the

delay in the FIFO system). Thus, in this example, LIFO service significantly improves

delay for all but the first packet.

For the above LIFO example, it is interesting to note that if we define Q̃ and W̃ as

the average backlog and delay associated only with those packets that eventually depart,

then we have Q̃ = 1, W̃ = 1, and the equation λW̃ = Q̃ indeed holds. This motivates the

87

theorem in the next subsection, which considers a time average only over those packets

that eventually depart.

4.4.1.2 A Modified Little’s Theorem for LIFO systems

We now present the modified Little’s theorem. Let B represent a finite set of buffer

locations for a LIFO queueing system. Let N(t) be the number of arrivals that use a

buffer location within set B up to time t. Let D(t) be the number of departures from a

buffer location within the set B up to time t. Let Wi be the delay of the ith job to depart

from the set B. 9 Define W as the lim sup average delay considering only those jobs that

depart :

W M
= lim sup

t→∞

1

D(t)

D(t)∑
i=1

Wi.

We then have the following theorem:

Theorem 11. Suppose that the LIFO queueing discipline is used, that there is a constant

λmin > 0 such that with probability 1:

lim inf
t→∞

N(t)

t
≥ λmin,

Further suppose that limt→∞D(t) =∞ with probability 1 (so the number of departures is

infinite). Then the average delay W satisfies:

W M
= lim sup

t→∞

1

D(t)

D(t)∑
i=1

Wi ≤ |B|/λmin,

where |B| is the size of the finite set B.

Proof. See Section 4.10.4.

9Note here that, since we consider a LIFO system, a packet departs from any location in the set B will
leave the queue and not re-enter B.

88

4.4.1.3 LIFO-Backpressure proof

We now provide the analysis of LIFO-Backpressure. To prove our result, we first have

the following theorem, which is the first to show that Backpressure (with either FIFO or

LIFO) achieves the exact [O(1/V), O(V)] utility-delay tradeoff under a Markovian net-

work state process. It generalizes the [O(1/V), O(V)] performance result of Backpressure

in the i.i.d. case in [GNT06].

Theorem 12. Suppose that S(t) is a finite state irreducible and aperiodic Markov chain10

and condition (3.1) holds. Then, Backpressure (with either FIFO or LIFO) achieves the

following:

fBPav = f∗av +O(1/V), qBP = O(V), (4.61)

where fBPav and qBP are the expected time average cost and backlog under Backpressure.

Proof. See Section 4.10.5.

Theorem 12 thus shows that LIFO-Backpressure guarantees an average backlog of

O(V) when pushing the utility to within O(1/V) of the optimal value. We now consider

the delay performance of LIFO-Backpressure.

Below, the notion “average arrival rate” is defined as follows: Let Aj(t) be the number

of packets entering queue j at time t. Then the time average arrival rate of these packets

is defined (assuming it exists): λj = limt→∞
1
t

∑t−1
τ=0Aj(τ). For the theorem, we assume

that time averages under Backpressure exist with probability 1. This is a reasonable

assumption, and holds whenever the resulting discrete time Markov chain for the queue

10In Section 4.10.5, we prove the theorem under more general Markovian S(t) processes that include
the S(t) process assumed here.

89

vector q(t) under Backpressure is countably infinite and irreducible. Note that the state

space is indeed countably infinite if we assume that packets arrive in integer units. If the

system is also irreducible then the finite average backlog result of Theorem 12 implies

that all states are positive recurrent.

Let D1,K1, c
∗
1 be constants as defined in Theorem 6, and recall that these are all Θ(1)

(independent of V). Assume that V ≥ 1, and define Qj,High and Qj,Low as:

Qj,High
M
= γ∗V j +D1 +K1[log(V)]2, (4.62)

Qj,Low
M
= max[γ∗V j −D1 −K1[log(V)]2, 0]. (4.63)

Define the interval Bj M=[Qj,Low, Qj,High]. The following theorem considers the rate and

delay of packets that enter when qj(t) ∈ Bj and that eventually depart.

Theorem 13. Suppose that V ≥ 1, that γ∗V is unique, that the slackness assumption

(3.1) holds, and that the dual function g(γ) satisfies:

g(γ∗V) ≥ g(γ) + L||γ∗V − γ|| ∀ γ � 0, (4.64)

for some constant L > 0 independent of V . Define D1,K1, c
∗
1 as in Theorem 6, and define

Bj as above. Then for any queue j with a time average input rate λj > 0, we have under

LIFO-Backpressure that:

(a) The rate λ̃j of packets that both arrive to queue j when qj(t) ∈ Bj and that

eventually depart the queue satisfies:

λj ≥ λ̃j ≥
[
λj −

δmaxc
∗

V log(V)

]+

. (4.65)

(b) The average delay of these packets is at most Wbound, where:

Wbound
M
=[2D1 + 2K1[log(V)]2 + δmax]/λ̃j .

90

This theorem says that the delay of packets that enter when qj(t) ∈ Bj and that

eventually depart is at most O([log(V)]2). Further, by (4.65), when V is large, these

packets represent the overwhelming majority, in that the rate of packets not in this set

is at most O(1/V log(V)).

Proof. (Theorem 13) Theorem 12 shows that average queue backlog is finite. Thus, there

can be at most a finite number of packets that enter the queue and never depart, so the

rate of packets arriving that never depart must be 0. It follows that λ̃j is equal to the

rate at which packets arrive when qj(t) ∈ Bj . Define the indicator function 1j(t) to be 1

if qj(t) /∈ Bj , and 0 else. Define λ̃cj
M
=λj − λ̃j . Then with probability 1 we get: 11

λ̃cj = lim
t→∞

1

t

t−1∑
τ=0

Aj(τ)1j(τ) = lim
t→∞

1

t

t−1∑
τ=0

E
{
Aj(τ)1j(τ)

}
.

Then using the fact that Aj(t) ≤ δmax for all j, t:

E
{
Aj(t)1j(t)

}
= E

{
Aj(t)|qj(t) /∈ Bj

}
Pr{qj(t) /∈ Bj)

≤ δmaxPr(qj(t) /∈ [Qj,Low, Qj,High]).

Therefore:

λ̃cj ≤ δmax lim
t→∞

1

t

t−1∑
τ=0

Pr(qj(τ) /∈ [Qj,Low, Qj,High])

≤ δmax lim
t→∞

1

t

t−1∑
τ=0

Pr(|qj(τ)− γ∗V,j | > D1 +K1m),

where we define mM=[log(V)]2, and note that m ≥ 0 because V ≥ 1. From Theorem 6 we

thus have:

0 ≤ λ̃cj ≤ δmaxc∗1e−m =
δmaxc

∗
1

V log(V)
. (4.66)

11The time average expectation is the same as the pure time average by the Lebesgue Dominated
Convergence Theorem [Fol99], because we assume that the pure time average exists with probability 1,
and that 0 ≤ Aj(t) ≤ δmax ∀t.

91

This completes the proof of part (a). Now define B̃j = M
=[Qj,Low, Qj,High + δmax]. Since

Bj ⊂ B̃j , we see that the rate of the packets that enter B̃j is at least λ̃j . Part (b)

then follows from Theorem 11 and the facts that queue j is stable and that |B̃j | ≤

2D + 2K[log(V)]2 + δmax.

Note that if λj = Θ(1), we see from Theorem 13 that, under LIFO-Backpressure,

the time average delay for almost all packets going through queue j is only O([log(V)]2).

Applying this argument to all network queues with Θ(1) input rates, we see that all but a

tiny fraction of the traffic entering the network only experiences a delay of O([log(V)]2).

This contrasts with the delay performance result of the usual Backpressure with FIFO,

which states that the time average delay will be Θ(V) for all packets [HN11a]. The

downside is that, under LIFO-Backpressure, some packets may stay in the queue for a very

long time. This problem can be compensated by introducing certain coding techniques,

e.g., fountain codes [Mit04], into the LIFO-Backpressure algorithm.

4.4.2 Simulation

In this section, we provide simulation results of the LIFO-Backpressure algorithm. We

consider the network shown in Fig. 4.5, where we try to support a flow sourced by Node

1 destined for Node 7 with minimum energy consumption.

We assume that A(t) evolves according to the 2-state Markov chain in Fig. 4.6. When

the state is HIGH, A(t) = 3, else A(t) = 0. We assume that the condition of each link

can either be HIGH or LOW at a time. All the links except link (2, 4) and link (6, 7) are

assumed to be i.i.d. every time slot, whereas the conditions of link (2, 4) and link (6, 7)

are assumed to be evolving according to independent 2-state Markov chains in Fig. 4.6.

92

1

2

3

4

6

5

7

A(t)

(0.4, 3)

(0.2, 4)

(0.5, 3)

(0.4, 3)

(0.3, 4)

(0.4, 3)

(0.4, 3)

(0.3, 4)

(0.5, 4)

Figure 4.5: A multihop network. (a, b) represents the HIGH probability a and the rate b obtained
with one unit of power when HIGH.

Each link’s HIGH probability and unit power rate at the HIGH state is shown in Fig. 4.5.

The unit power rates of the links at the LOW state are all assumed to be 1. We assume

that the link states are all independent and there is no interference. However, each node

can only spend one unit of power per slot to transmit over one outgoing link, although

it can simultaneously receive from multiple incoming links. The goal is to minimize the

time average power while maintaining network stability.

HIGH LOW

0.3

0.7 0.7

0.3

Figure 4.6: The two state Markov chain with the transition probabilities.

We simulate Backpressure with both LIFO and FIFO for 106 slots with V ∈ {20, 50, 100,

200, 500}. The backlog vector converges to a unique attractor as V increases in this case.

The left two plots in Fig. 4.7 show the average power consumption and the average

backlog under LIFO-Backpressure. The average power quickly converges to the optimal

value and the average backlog grows linearly in V . The right plot of Fig. 4.7 shows the

percentage of time when there exists a qj whose value deviates from γ∗V j by more than

93

2[log(V)]2. As we can see, this percentage is always very small, i.e., between 0.002 and

0.013, showing a good match between the theory and the simulation results.

0 200 400 600
1.48

1.5

1.52

1.54

1.56

1.58

1.6

1.62

1.64

V

0 200 400 600
0

200

400

600

800

1000

1200

1400

1600

1800

2000

V

0 200 400 600

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

V

Power Backlog Deviation

Figure 4.7: LEFT: average network power consumption. MIDDLE: average network backlog size.
RIGHT: percentage of time when ∃ qj such that |qj − γ∗V j | > 2[log(V)]2.

Fig. 4.8 compares the delay statistics of LIFO and FIFO for more than 99.9% of the

packets that leave the system before the simulation ends, under the cases V = 100 and

V = 500. We see that LIFO not only dramatically reduces the average packet delay for

these packets, but also greatly reduces the delay for most of these packets. For instance,

when V = 500, under FIFO, almost all packets experience a delay that is equal to the

average delay, which is around 1220 slots. Under LIFO, the average packet delay is

brought down to 78. Moreover, 52.9% of the packets only experience delay less than 20

slots, and 90.4% of the packets experience delay less than 100 slots. Hence most packets’

delay are reduced by a factor of 12 under LIFO as compared to that under FIFO!

Fig. 4.9 also shows the delay for the first 20000 packets that enter the network in

the case when V = 500. We see that under Backpressure plus LIFO, most of the packets

experience very small delay; under Backpressure with FIFO, each packet experiences

roughly the average delay.

94

7

TABLE I
QLA WITH FIFO VS. QLA WITH LIFO

V=100
Case Avg. DL % DL < 20 % DL < 50 % DL < 100
LIFO 55.4 55.0 82.1 91.8
FIFO 260.6 0 0 0

V=500
Case Avg. DL % DL < 20 % DL < 50 % DL < 100
LIFO 78.3 52.9 80.4 90.4
FIFO 1219.8 0 0 0

VIII. EMPIRICAL VALIDATION

In this section we validate our analysis against empirical
results obtained from the same testbed and Backpressure Col-
lection Protocol (BCP) code developed in [10]. It is important
to note that these experiments are therefore not one-to-one
comparable with the analysis and simulations which we have
previously presented. We note that BCP runs atop the default
CSMA MAC for TinyOS which is not known to be throughput
optimal, that the testbed may not precisely be defined by
a finite state Markovian evolution, and finally that limited
storage availability on real wireless sensor nodes mandates the
introduction of virtual queues to maintain backpressure values
in the presence of data queue overflows.

In order to avoid using very large data buffers, in [10] the
forwarding queue of BCP has been implemented as a floating
queue. The concept of a floating queue is shown in Figure
10, which operates with a finite data queue of size Dmax

residing atop a virtual queue which preserves backpressure
levels. Packets that arrive to a full data queue result in a
data queue discard and the incrementing of the underlying
virtual queue counter. Underflow events (in which a virtual
backlog exists but the data queue is empty) results in null
packet generation, which are filtered and then discarded by
the sink. 3

Despite these real-world differences, we are able to demon-
strate clear order-equivalent delay gains due to LIFO usage in
BCP in the following experimentation.

Fig. 9. The 40 tMote Sky devices used in experimentation on Tutornet.

A. Testbed and General Setup

To demonstrate the empirical results, we deployed a col-
lection scenario across 40 nodes within the Tutornet testbed

3The LIFO floating queue can be shown (through sample path arguments) to
have a discard rate that is still proportional to O(1

V c0 log(V)) with c0 = Θ(1)
derived in [18].

(see Figure 9). This deployment consisted of Tmote Sky
devices embedded in the 4th floor of Ronald Tutor Hall at
the University of Southern California.

In these experiments, one sink mote (ID 1 in Figure 9)
was designated and the remaining 39 motes sourced traffic
simultaneously, to be collected at the sink. The Tmote Sky
devices were programmed to operate on 802.15.4 channel 26,
selected for the low external interference in this spectrum on
Tutornet. Further, the motes were programmed to transmit
at -15 dBm to provide reasonable interconnectivity. These
experimental settings are identical to those used in [10].

Fig. 10. The floating LIFO queues of [10] drop from the data
queue during overflow, placing the discards within an underlying
virtual queue. Services that cause data queue underflows generate
null packets, reducing the virtual queue size.

We vary Dmax over experimentation because the exact
value of Dmax is not readily apparent in a real system. This
highlights the difficulty faced by techniques requiring explicit
knowledge of this or similar system parameters (e.g., Fast-
QLA in [9]). In practice, BCP defaults to a Dmax setting of
12 packets, the maximum reasonable resource allocation for a
packet forwarding queue in these highly constrained devices.

B. Experiment Parameters
Experiments consisted of Poisson traffic at 1.0 packets

per second per source for a duration of 20 minutes. This
source load is moderately high, since the boundary of the
capacity region for BCP running on this subset of motes has
previously been documented at 1.6 packets per second per
source [10]. A total of 36 experiments were run using the
standard BCP LIFO queue mechanism, for all combinations
of V ∈ {1, 2, 3, 4, 6, 8, 10, 12} and LIFO storage threshold
Dmax ∈ {2, 4, 8, 12}. In order to present a delay baseline for
Backpressure we additionally modified the BCP source code
and ran experiments with 32-packet FIFO queues (no floating
queues) for V ∈ {1, 2, 3}. 4

C. Results
Testbed results in Figure 11 provide the system average

packet delay from source to sink over V and Dmax, and

4These relatively small V values are due to the constraint that the motes
have small data buffers. Using larger V values will cause buffer overflow at
the motes.

Figure 4.8: Delay statistics under Backpressure with LIFO and FIFO for packets that leave the
system before simulation ends (more than 99.9%). %DL < a is the percentage of packets that
enter the network and have delay less than a.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

2

4

6

8

10

12

14

!"#$%&$

&
'(
)*
$!
$+
,-
$.
/)
('
$

0%01

+%01

Figure 4.9: Packet delay under Backpressure with LIFO and FIFO

4.5 The LIFOp-Backpressure algorithm

In this section, we generalized the LIFO-Backpressure technique to allow interleaving

between both LIFO and FIFO. Specifically, at every time slot, each queue will randomly

decide to serve packets from either the back of the queue or the front of the queue. The

motivation of this interleaving approach is that a few packets may get stuck in the queues

for a very long time under LIFO-Backpressure. Thus we want to resolve this problem by

95

also allowing the FIFO discipline. We parameterize the algorithm by a single parameter

p ∈ [0, 1], 12 which represents the probability that a queue serves the packets from the back

of the queue at a given time. We call this approach the LIFOp-Backpressure algorithm.

4.5.1 The algorithm

The idea of LIFOp-Backpressure is shown in Fig. 4.10: We first pre-specify a probability

p. 13 Then at every time slot, after choosing all the network action decisions according

to Backpressure, the queue serves packets from its end with probability p; and from the

front otherwise. Note that this back/front decision is independent of the action taken by

Backpressure, and is independent for each queue. As we vary p from 0 to 1, the algorithm

basically goes from the usual (FIFO) Backpressure algorithm to the LIFO-Backpressure

algorithm.

qj(t)

Server

Arrival

Queue
Front

Queue
End

p 1-p

Qj,High Q̃j,Lowγ∗
V j

Figure 4.10: The LIFO-FIFO interleaving technique. A packet is either served when the queue
is serving the end of the queue, or it gradually moves to the right towards the front of the queue
and is served when the queue is serving the packets from the front of the queue.

12All the results in this section hold even if we choose different probabilities for different queues.
13This p value is pre-determined and not be changed. It is possible to use a p value that is a function

of time in implementation. However, the analysis will be very challenging.

96

4.5.2 Performance analysis

We analyze the performance of the LIFOp-Backpressure algorithm. First note that since

all the sample path queue processes here are the same as those under the regular Backpres-

sure, the O(1/V) close-to-optimal utility performance bounds still apply. Our following

theorem shows that LIFOp-Backpressure ensures that roughly a fraction p of the packets

experience only O([log(V)]2) queueing delay. This result generalizes Theorem 13. In the

theorem, we use Qj,High and Qj,Low defined in (4.62) and (4.63), i.e.,

Qj,High
M
= γ∗V j +D1 +K1[log(V)]2,

Qj,Low
M
= max[γ∗V j −D1 −K1[log(V)]2, 0],

as well as:

Q̃j,Low
M
= max[γ∗V j −D1 −K1[log(V)]2 − δmax, 0].

Note that Q̃j,Low is a bit different from the Qj,Low and is chosen to make the analysis

easier. Then we similarly define

B̃j , [Q̃j,Low, Qj,High], (4.67)

and assume throughout the theorem that all the corresponding limits exist.

Theorem 14. Suppose that V ≥ 1, that γ∗V is unique, that the slackness assumption

(3.1) holds, and that the dual function g(γ) satisfies:

g(γ∗V) ≥ g(γ) + L||γ∗V − γ|| ∀ γ � 0, (4.68)

for some constant L > 0 independent of V . Define D1,K1, c
∗
1 as in Theorem 6, and define

B̃j as in (4.67) above. Then for any queue j with a time average input rate λj > 0, we

have under LIFOp-Backpressure that:

(a) All the packets eventually leave the queue if 0 ≤ p < 1.

97

(b) There exists a set of packets Pj0 that arrive to queue j when qj(t) ∈ B̃j, that depart

before they move to the right of Q̃j,Low, and that are served when the queue is serving the

back of the queue. And Pj0 has an average rate λPj0 that satisfies:

pλj ≥ λPj0 ≥
[
pλj −O(

δmaxc
∗
1

V log(V)
)

]+

. (4.69)

(c) If λPj0 > 0, the average delay of these packets is at most Ŵbound, where:

Ŵbound
M
=2(D1 +K1[log(V)]2 + δmax)/λPj0 .

Theorem 14 says that by allocating a portion of the time serving the packets from

the front of the queue, the problem of packets being stuck in the queue can be resolved.

If the p parameter is chosen to be very close to one, then LIFOp-Backpressure achieves

almost the same performance guarantee as LIFO-Backpressure, while ensuring that all

the packets are delivered.

The formal proof of Theorem 14 is given in Section 4.10.6. Here we sketch the proof

idea: under the LIFOp-Backpressure policy, for any queue j with an input rate λj > 0,

the fraction of the packets that are served when the queue is serving the back of the

queue is pλj . Now we look at these packets that are served from the back. First, we

see that they will almost all arrive to the queue when qj ∈ B̃j by Theorem 6. Second,

they will also almost all leave the queue before they move to the right of Q̃j,Low. The

reason for this is that if a packet moves to the right of Q̃j,Low, i.e., it moves into a buffer

spot in [0, Q̃j,Low), then since qj(t) rarely gets below Qj,Low ≈ Q̃j,Low + µmax, it is very

unlikely that this packet will be served from the back of the queue. And it can only

gradually move to the front of the queue and be served there. Therefore, almost all the

packets that are served from the back will enter and leave the queue when they are in

98

the interval B̃j , which is of size O([log(V)]2), and they have an average rate of roughly

pλj . Using Theorem 11, we see that they experience an average delay of no more than

O([log(V)]2)/pλj .

4.6 Discussion of assumption 1: the uniqueness of the optimal

Lagrange multiplier

Without Assumption 1, all the exponential attraction results developed in Section 4.2

will still hold, provided that we replace ‖γ−γ∗V ‖ with dist(γ,Γ∗V), where Γ∗V is the set of

optimal Lagrange multipliers to the dual problem under a given V value, and dist(a,X)

is the Euclidean distance between the set X and vector a. In other words, the backlog

vector is exponentially attracted to a set.

However, the assumption is needed for the development of all the delay-efficient al-

gorithms, i.e., FQLA, LIFO-Backpressure and LIFOp-Backpressure. This is not because

the algorithms are not “clever” enough. Indeed, if the assumption is violated, Γ∗V will

be a set of size Θ(V) by Lemma 2. In this case, the backlog vector can take any value

within this set, and still make optimal control actions. This situation makes it impossi-

ble to design delay-efficient algorithms using only quadratic Lyapunov functions. It also

raises the interesting open problem on how to modify the deterministic problem so as to

make Γ∗V a singleton in a stochastic setting to enable the development of delay-efficient

algorithms, for networks where Assumption 1 does not hold.

99

4.7 Comparing QLA and the greedy primal-dual approach

Another general online algorithm design technique is the greedy primal-dual approach

(GPD) developed in [BN07]. Although GPD looks similar to QLA considered in this

chapter, they differ from each other in the following:

• QLA applies to problems with stochastic inputs and concerns about asymptotic

system performance. The performance guarantee is usually given in terms of the

utility loss. GPD is able to handle general sample path inputs, and focuses more

on finite horizon system utility. The performance measure of GPD algorithms is

the ratio between the achieved performance and the optimal value.

• QLA applies to problems with general constraints and objectives; GPD applies to

problems that can be formulated as a packing-covering program.

• QLA is closely related to the dual subgradient method, and relies on using time

averages to ensure that the constraints are met. The queue vector under QLA

naturally represents the Lagrange multiplier, which makes QLA an ideal tool for

controlled queueing network problems. GPD instead relies on a general method

for updating the primal and dual variables, and LP rounding techniques [Vaz03].

Under GPD, it is possible that the constraints are violated. The technique is very

useful for general combinatorial optimization problems.

100

4.8 Lagrange Multiplier: “shadow price” and “network gravity”

It is well known that Lagrange Multipliers can play the role of “shadow prices” to regulate

flows in many flow-based problems with different objectives, e.g., [Kel97b]. This impor-

tant feature has enabled the development of many distributed algorithms in resource

allocation problems, e.g., [CNT05]. However, a problem of this type typically requires

data transmissions to be represented as flows. Thus in a network that is discrete in na-

ture, e.g., time slotted or packetized transmission, a rate allocation solution obtained by

solving such a flow-based problem does not immediately specify a scheduling policy.

Recently, several Lyapunov algorithms have been proposed to solve utility optimiza-

tion problems under discrete network settings. In these algorithms, backlog vectors act

as the “gravity” of the network and allow optimal scheduling to be built upon them. It is

also revealed in [NMR05] that QLA is closely related to the dual subgradient method and

backlogs play the same role as Lagrange multipliers in a time invariant network. Now

we see by Theorem 5 and 8 that the backlogs indeed play the same role as Lagrange

multipliers even under a more general stochastic network.

In fact, the backlog process under QLA can be closely related to a sequence of updated

Lagrange multipliers under a subgradient method. Consider the following important

variant of OSM, called the randomized incremental subgradient method (RISM) [BNO03],

which makes use of the separable nature of (4.13) and solves the dual problem (4.11) as

follows:

101

RISM: Initialize γ(0); at iteration t, observe γ(t), choose a random state S(t) ∈ S

according to some probability law. (1) If S(t) = si, find x
(si)
γ(t) ∈ X (si) that solves the

following:

min : V f(si, x) +
∑
j

γj(t)
[
Aj(si, x)− µj(si, x)

]
s.t. x ∈ X (si). (4.70)

(2) Choose a step size αt. Using the x
(si)
γ(t) found, update γ(t) according to: 14

γj(t+ 1) = max

[
γj(t)− αtµj(si, x(si)

γ(t)), 0

]
+ αtAj(si, x

(si)
γ(t)).

As an example, S(t) can be chosen by independently choosing S(t) = si with proba-

bility πsi every time slot. In this case S(t) is i.i.d. Note that in the stochastic problem,

a network state si is chosen randomly by nature as the physical system state at time t,

while here a state is chosen artificially by RISM according to some probability law. Now

we see from (4.8) and (4.70) that given q(t) = γ(t) and si, QLA and RISM choose an

action in the same way. If also αt = 1 for all t, and S(t) under RISM evolves according

to the same probability law as S(t) of the physical system, we see that applying QLA

to the network is indeed equivalent to applying RISM to the dual problem of (4.10), with

the network state being chosen by nature, and the network backlog being the Lagrange

multiplier. Therefore, Lagrange Multipliers under such stochastic discrete network set-

tings act as the “network gravity,” thus allowing scheduling to be done optimally and

adaptively based on them. This “network gravity” functionality of Lagrange Multipliers

in discrete network problems can thus be viewed as the counterpart of their “shadow

price” functionality in the flow-based problems. Further more, the “network gravity”

14Note that this update rule is different from RISM’s usual rule, i.e., γj(t+1) = max
[
γj(t)−αtµj(si, x)+

αtAj(si, x), 0
]
, but it almost does not affect the performance of RISM.

102

property of Lagrange Multipliers enables the use of place holder bits to reduce network

delay in network utility optimization problems. This is a unique feature not possessed by

its “price” counterpart. We can also see from this connection that, the convergence time

of QLA can be characterized by studying the convergence time of the equivalent RISM

algorithm, which has been previously studied in [BNO03].

4.9 Chapter summary

In this chapter, we study the backlog behavior under the QLA algorithm for a class of

stochastic network optimization problems. We show that for every such problem, under

some mild conditions, the network backlog is “exponentially attracted” to an attractor,

which is the dual optimal solution of a corresponding deterministic optimization prob-

lem. Based on this finding, we develop three algorithms, i.e., FQLA, LIFO-Backpressure,

LIFOp-Backpressure, to achieve an [O(1/V), O([log(V)]2)] utility-delay tradeoff for prob-

lems with a discrete set of action options, and a square-root tradeoff for continuous

problems. The results in this chapter demonstrate how the Lyapunov networking tech-

nique is connected to the classic subgradient methods, and provide new insights into the

Lyapunov technique.

4.10 Proofs of the chapter

4.10.1 Proof of Lemma 3

Here we prove Lemma 3. First we prove the following:

103

Lemma 5. Under queueing dynamic (3.5), we have:

‖q(t+ 1)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + 2B2 − 2
(
γ∗V − q(t)

)T
(A(t)− µ(t)).

Proof. (Lemma 5) From (3.5), we see that q(t+1) is obtained by first projecting q(t)−µ(t)

onto Rr+ and then adding A(t). Thus we have (we use [a]+ to denote the projection of a

onto Rr+):

‖q(t+ 1)− γ∗V ‖2 = ‖[q(t)− µ(t)]+ +A(t)− γ∗V ‖2

=
(
[q(t)− µ(t)]+ +A(t)− γ∗V

)T (
[q(t)− µ(t)]+ +A(t)− γ∗V

)
=

(
[q(t)− µ(t)]+ − γ∗V

)T (
[q(t)− µ(t)]+ − γ∗V

)
+2
(
[q(t)− µ(t)]+ − γ∗V

)T
A(t) + ‖A(t)‖2. (4.71)

By the non expansive property of projection [BNO03], we have:

(
[q(t)− µ(t)]+ − γ∗V

)T (
[q(t)− µ(t)]+ − γ∗V

)
≤
(
q(t)− µ(t)− γ∗V

)T (
q(t)− µ(t)− γ∗V

)
= ‖q(t)− γ∗V ‖2 + ‖µ(t)‖2 − 2(q(t)− γ∗V)Tµ(t).

Plug this into (4.71), we have:

‖q(t+ 1)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + ‖µ(t)‖2 − 2(q(t)− γ∗V)Tµ(t) (4.72)

+‖A(t)‖2 + 2
(
[q(t)− µ(t)]+ − γ∗V

)T
A(t).

Now since q(t),µ(t),A(t) � 0, it is easy to see that:

(
[q(t)− µ(t)]+

)T
A(t) ≤ q(t)TA(t). (4.73)

By (4.72) and (4.73) we have:

‖q(t+ 1)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + ‖µ(t)‖2 − 2(q(t)− γ∗V)Tµ(t)

+‖A(t)‖2 + 2
(
q(t)− γ∗V

)T
A(t)

104

≤ ‖q(t)− γ∗V ‖2 + 2B2 − 2
(
γ∗V − q(t)

)T
(A(t)− µ(t)),

where the last inequality follows since ‖A(t)‖2 ≤ B2 and ‖µ(t)‖2 ≤ B2.

We now prove Lemma 3.

Proof. (Lemma 3) By Lemma 5 we see that when S(t) = si, we have the following for

any network state si with a given q(t) (here we add superscripts to q(t + 1), A(t) and

µ(t) to indicate their dependence on si):

‖q(si)(t+ 1)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + 2B2

−2(γ∗V − q(t))T (A(si)(t)− µ(si)(t)). (4.74)

By definition, A
(si)
j (t) = Aj(si, x

(si)
q(t)), and µ

(si)
j (t) = µj(si, x

(si)
q(t)), with x

(si)
q(t) being the

solution of (4.8) for the given q(t). Now consider the deterministic problem (4.10) with

only a single network state si, then the corresponding dual function (4.12) becomes:

gsi(γ) = inf
x(si)∈X (si)

{
V f(si, x

(si)) +
∑
j

γj
[
Aj(si, x

(si))− µj(si, x(si))
]}
. (4.75)

Therefore, by (4.15) we see that (A(si)(t) − µ(si)(t)) is a subgradient of gsi(γ) at q(t).

Thus, by (4.16) we have:

(γ∗V − q(t))T (A(si)(t)− µ(si)(t)) ≥ gsi(γ∗V)− gsi(q(t)). (4.76)

Plugging (4.76) into (4.74), we get:

‖q(si)(t+ 1)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + 2B2 − 2
(
gsi(γ

∗
V)− gsi(q(t))

)
. (4.77)

More generally, we have:

‖q(t+ 1)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + 2B2 − 2
(
gS(t)(γ

∗
V)− gS(t)(q(t))

)
. (4.78)

Now fixing ν > 0 and summing up (4.78) from time t to t+ Tν − 1, we obtain:

‖q(t+ Tν)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + 2TνB
2 (4.79)

105

−2

Tν−1∑
τ=0

[
gS(t+τ)(γ

∗
V)− gS(t+τ)(q(t+ τ))

]
.

Adding and subtracting the term 2
∑Tν−1

τ=0 gS(t+τ)(q(t)) from the RHS, we obtain:

‖q(t+ Tν)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + 2TνB
2 (4.80)

−2

Tν−1∑
τ=0

[
gS(t+τ)(γ

∗
V)− gS(t+τ)(q(t))

]
+ 2

Tν−1∑
τ=0

[
gS(t+τ)(q(t+ τ))− gS(t+τ)(q(t))

]
.

Since ‖q(t)− q(t+ τ)‖ ≤ τB and ‖A(si)(t)−µ(si)(t)‖ ≤ B, using (4.76) and the fact

that for any two vectors a and b, aTb ≤ ‖a‖‖b‖, we have:

gS(t+τ)(q(t+ τ))− gS(t+τ)(q(t)) ≤ τB2. (4.81)

Hence:

Tν−1∑
τ=0

[
gS(t+τ)(q(t+ τ))− gS(t+τ)(q(t))

]
≤

Tν−1∑
τ=0

(
τB2

)
=

1

2
(T 2
νB

2 − TνB2).

Plugging this into (4.80), we have:

‖q(t+ Tν)− γ∗V ‖2 ≤ ‖q(t)− γ∗V ‖2 + (T 2
ν + Tν)B2 (4.82)

−2

Tν−1∑
τ=0

[
gS(t+τ)(γ

∗
V)− gS(t+τ)(q(t))

]
.

Now denote Z(t) = (H(t), q(t)), i.e., the pair of the history up to time t,H(t) = {S(τ)}t−1
τ=0

and the current backlog. Taking expectations on both sides of (4.82), conditioning on

Z(t), we have:

E
{
‖q(t+ Tν)− γ∗V ‖2 | Z(t)

}
≤ E

{
‖q(t)− γ∗V ‖2 | Z(t)

}
+ (T 2

ν + Tν)B2

−2E
{ Tν−1∑
τ=0

[
gS(t+τ)(γ

∗
V)− gS(t+τ)(q(t))

]
| Z(t)

}
.

Since the number of times gsi(γ) appears in the interval [t, t+ Tν − 1] is ‖Tsi(t, Tν)‖,

we can rewrite the above as:

E
{
‖q(t+ Tν)− γ∗V ‖2 | Z(t)

}
≤ E

{
‖q(t)− γ∗V ‖2 | Z(t)

}
+ (T 2

ν + Tν)B2

−2TνE
{ M∑
i=1

‖Tsi(t, Tν)‖
Tν

[
gsi(γ

∗
V)− gsi(q(t))

]
| Z(t)

}
.

106

Adding and subtracting 2Tν
∑M

i=1 πsi
[
gsi(γ

∗
V)− gsi(q(t))

]
from the RHS, we have:

E
{
‖q(t+ Tν)− γ∗V ‖2 | Z(t)

}
≤ E

{
‖q(t)− γ∗V ‖2 | Z(t)

}
+ (T 2

ν + Tν)B2 (4.83)

−2Tν

M∑
i=1

πsi
[
gsi(γ

∗
V)− gsi(q(t))

]
−2TνE

{ M∑
i=1

[‖Tsi(t, Tν)‖
Tν

− πsi
]
×

[
gsi(γ

∗
V)− gsi(q(t))

]
| Z(t)

}
.

Denote the term inside the last expectation of (4.83) as Q, i.e.,

Q =

M∑
i=1

[‖Tsi(t, Tν)‖
Tν

− πsi
][
gsi(γ

∗
V)− gsi(q(t))

]
. (4.84)

Using the fact that gsi(γ
∗
V)− gsi(q(t)) is a constant given Z(t), we have:

E
{
Q | Z(t)

}
=

M∑
i=1

[
E
{
‖Tsi(t, Tν)‖ | Z(t)

}
Tν

− πsi
]
×
[
gsi(γ

∗
V)− gsi(q(t))

]
≤

M∑
i=1

∣∣∣∣E
{
‖Tsi(t, Tν)‖ | Z(t)

}
Tν

− πsi
∣∣∣∣× ∣∣gsi(γ∗V)− gsi(q(t))

∣∣.
By (4.76), gsi(γ

∗
V)− gsi(q(t)) ≤ B‖γ∗V − q(t)‖, thus we have:

E
{
Q | Z(t)

}
≤ B‖γ∗V − q(t)‖ ×

M∑
i=1

∣∣∣∣E
{
‖Tsi(t, Tν)‖ | Z(t)

}
Tν

− πsi
∣∣∣∣

≤ νB‖γ∗V − q(t)‖, (4.85)

where the last step follows from the definition of Tν . Now by (4.13) and (4.75):

M∑
i=1

πsi
[
gsi(γ

∗
V)− gsi(q(t))

]
= g(γ∗V)− g(q(t)).

Plug this and (4.85) into (4.83), we have:

E
{
‖q(t+ Tν)− γ∗V ‖2 | Z(t)

}
≤ E

{
‖q(t)− γ∗V ‖2 | Z(t)

}
+ (T 2

ν + Tν)B2

−2Tν
(
g(γ∗V)− g(q(t))

)
+ 2TννB‖γ∗V − q(t)‖.

Recall that Z(t) = (H(t), q(t)). Taking expectation over H(t) on both sides proves the

lemma.

107

4.10.2 Proof of (4.31)

Here we prove that for Ỹ (t) defined in the proof of part (b) of Theorem 5, we have for

all Ỹ (t) ≥ 0 that:

∆Tν (Ỹ (t)) ≤ e2wTνB − wη

2
ewỸ (t).

Proof. If Ỹ (t) > TνB, denote δ(t) = Ỹ (t+Tν)− Ỹ (t). It is easy to see that |δ(t)| ≤ TνB.

Rewrite (4.30) as:

∆Tν (Ỹ (t)) = ewỸ (t)E
{(
ewδ(t) − 1

)
| q(t)

}
. (4.86)

By a Taylor expansion, we have that:

ewδ(t) = 1 + wδ(t) +
w2δ2(t)

2
l(wδ(t)), (4.87)

where l(y) = 2
∑∞

k=2
yk−2

k! = 2(ey−1−y)
y2

[CL] has the following properties:

1. l(0) = 1; l(y) ≤ 1 for y < 0; l(y) is monotone increasing for y ≥ 0;

2. For y < 3,

l(y) = 2
∞∑
k=2

yk−2

k!
≤
∞∑
k=2

yk−2

3k−2
=

1

1− y/3 .

Thus by (4.87) we have:

ewδ(t) ≤ 1 + wδ(t) +
w2T 2

νB
2

2
l(wTνB). (4.88)

Plugging this into (4.86), and noting that Ỹ (t) > TνB, so by (4.29) we have E
{
δ(t) | q(t)

}
≤

−η. Hence:

∆Tν (Ỹ (t)) ≤ ewỸ (t)
(
− wη +

w2T 2
νB

2

2
l(wTνB)

)
. (4.89)

Choosing w = η
T 2
νB

2+TνBη/3
, we see that wTνB < 3, thus:

w2T 2
νB

2

2
l(wTνB) ≤ w2T 2

νB
2

2

1

1− wTνB/3
=
wη

2
,

108

where the last equality follows since:

w =
η

T 2
νB

2 + TνBη/3
⇒ w(T 2

νB
2 + TνBη/3) = η

⇒ wT 2
νB

2 = η − wTνBη/3

⇒ wT 2
νB

2 1

1− wTνB/3
= η.

Therefore (4.89) becomes:

∆Tν (Ỹ (t)) ≤ −wη
2
ewỸ (t) ≤ e2wTνB − wη

2
ewỸ (t). (4.90)

Now if Ỹ (t) ≤ TνB, it is easy to see that ∆Tν (Ỹ (t)) ≤ e2wTνB−ewỸ (t) ≤ e2wTνB−wη
2 e

wỸ (t),

since Ỹ (t+Tν) ≤ TνB+Ỹ (t) ≤ 2TνB and wη
2 ≤ 1, as η < TνB. Therefore for all Ỹ (t) ≥ 0,

we see that (4.31) holds.

4.10.3 Proof of Lemma 4

Here we prove Lemma 4. To save space, we sometimes use [a]+ to denote max[a, 0].

Proof. It suffices to show that (4.53) holds for a single queue j. Also, when Wj = 0,

(4.53) trivially holds, thus we only consider Wj > 0.

Part (A): We first prove qj(t) ≤ max[Wj(t) − Wj , 0] + δmax. First we see that it

holds at t = 0, since Wj(0) = Wj and qj(t) = 0. It also holds for t = 1. Since

qj(0) = 0 and Wj(0) = Wj , we have qj(1) = Aj(0) ≤ δmax. Thus we have qj(1) ≤

max[Wj(1)−Wj , 0] + δmax.

Now assume that qj(t) ≤ max[Wj(t) − Wj , 0] + δmax holds for t = 0, 1, 2, ..., k, we

want to show that it also holds for t = k + 1. We first note that if qj(k) ≤ µj(k), the the

result holds since then qj(k + 1) = [qj(k) − µj(k)]+ + Aj(k) = Aj(k) ≤ δmax. Thus we

only consider qj(k) ≥ µj(k) in the following:

109

(A-I) Suppose that Wj(k) ≥ Wj . Note that in this case we have:

qj(k) ≤Wj(k)−Wj + δmax. (4.91)

Also, qj(t+ 1) = max[qj(t)− µj(t), 0] +Aj(t). Since qj(k) ≥ µj(k), we have:

qj(k + 1) = qj(k)− µj(k) +Aj(k)

≤ Wj(k)−Wj + δmax − µj(k) +Aj(k)

≤ [Wj(k)− µj(k) +Aj(k)−Wj]
+ + δmax

≤
[
[Wj(k)− µj(k)]+ +Aj(k)−Wj

]+
+ δmax

= max[Wj(k + 1)−Wj , 0] + δmax,

where the first inequality is due to (4.91), the second and third inequalities are due to

the [a]+ operator, and the last equality follows from the definition of Wj(k + 1).

(A-II) Now suppose that Wj(k) < Wj . In this case we have qj(k) ≤ δmax, Ãj(k) =

[Aj(k)−Wj +Wj(k)]+ and:

qj(k + 1) = [qj(k)− µj(k)]+ + Ãj(k).

First consider the case when Wj(k) <Wj −Aj(k). In this case Ãj(k) = 0, so we have:

qj(k + 1) = qj(k)− µj(k) ≤ δmax − µj(k) ≤ δmax,

which implies qj(k+1) ≤ max[Wj(k+1)−Wj , 0]+δmax. Else ifWj−Aj(k) ≤Wj(k) <Wj ,

we have:

qj(k + 1) = qj(k)− µj(k) +Aj(k)−Wj +Wj(k)

≤ Wj(k)−Wj + δmax − µj(k) +Aj(k)

≤ max[Wj(k + 1)−Wj , 0] + δmax,

where the first inequality uses qj(k) ≤ δmax and the second inequality follows as in (A-I).

110

Part (B): We now show that qj(t) ≥ max[Wj(t) −Wj , 0]. First we see that it holds

for t = 0 since Wj(0) =Wj . We also have for t = 1 that:

[Wj(1)−Wj]
+ =

[
[Wj(0)− µj(0)]+ +Aj(0)−Wj

]+
≤

[
[Wj(0)− µj(0)−Wj]

+ +Aj(0)
]+

= Aj(0)

Thus qj(1) ≥ max[Wj(1) − Wj , 0] since qj(1) = Aj(0). Now suppose that qj(t) ≥

max[Wj(t) − Wj , 0] holds for t = 0, 1, ..., k, we will show that it holds for t = k + 1.

We note that if Wj(k + 1) <Wj , then max[Wj(k + 1)−Wj , 0] = 0 and we are done. So

we consider Wj(k + 1) ≥ Wj .

(B-I) First if Wj(k) ≥ Wj , we have Ãj(k) = Aj(k). Hence:

[Wj(k + 1)−Wj]
+ = [Wj(k)− µj(k)]+ +Aj(k)−Wj

≤ [Wj(k)− µj(k)−Wj]
+ +Aj(k)

≤ [[Wj(k)−Wj]
+ − µj(k)]+ +Aj(k)

≤ [qj(k)− µj(k)]+ +Aj(k),

where the first two inequalities are due to the [a]+ operator and the last inequality is due

to qj(k) ≥ [Wj(k)−Wj]
+. This implies [Wj(k + 1)−Wj]

+ ≤ qj(k + 1).

(B-II) Suppose that Wj(k) < Wj . Since Wj(k + 1) ≥ Wj , we have Wj − Aj(k) ≤

Wj(k) <Wj , for otherwiseWj(k) <Wj−Aj(k) andWj(k+1) = [Wj(k)−µj(t)]++Aj(t) <

Wj . Hence in this case Ãj(k) = Aj(k)−Wj +Wj(k) ≥ 0.

[Wj(k + 1)−Wj]
+ = [Wj(k)− µj(k)]+ +Aj(k)−Wj

≤ [Wj(k) + qj(k)− µj(k)]+ +Aj(k)−Wj

≤ [qj(k)− µj(k)]+ +Aj(k)−Wj +Wj(k)

111

= qj(k + 1),

where the two inequalities are due to the fact that qj(k) ≥ 0 and Wj(k) ≥ 0.

4.10.4 Proof of Theorem 11

Here we provide the proof of Theorem 11.

Proof. Consider a sample path for which the lim inf arrival rate is at least λmin and

for which we have an infinite number of departures (this happens with probability 1 by

assumption). There must be a non-empty subset of B consisting of buffer locations that

experience an infinite number of departures. Call this subset B̃. Now for a buffer slot

b ∈ B̃, let W
(b)
i be the delay of the ith departure from b, and let D(b)(t) denote the number

of departures from b up to time t, and use Q(b)(t) to denote the occupancy of the buffer

slot b at time t. Note that Q(b)(t) is either 0 or 1. For all t ≥ 0, it can be shown that:

D(b)(t)∑
i=1

W
(b)
i ≤

∫ t

0
Q(b)(τ)dτ. (4.92)

This can be seen from Fig. 4.11 below.

W1
(b)

W2
(b)

W3
(b)

W4
(b)

t0

Q
(b)
(t)

1

Figure 4.11: An illustration of inequality (4.92) for a particular buffer location b. At time t in
the figure, we have D(b)(t) = 3.

Therefore, we have: ∑
b∈B̃

D(b)(t)∑
i=1

W
(b)
i ≤

∫ t

0

∑
i∈B̃

Q(b)(τ)dτ

≤
∫ t

0
|B̃|dτ

112

≤ |B|t. (4.93)

The left-hand-side of the above inequality is equal to the sum of all delays of jobs that

depart from locations in B̃ up to time t. All other buffer locations (in B but not in B̃)

experience only a finite number of departures. Let J represent an index set that indexes

all of the (finite number) of jobs that depart from these other locations. Note that the

delay Wj for each job j ∈ J is finite (because, by definition, job j eventually departs).

We thus have:
D(t)∑
i=1

Wi ≤
∑
b∈B̃

D(b)(t)∑
i=1

W
(b)
i +

∑
j∈J

Wj ,

where the inequality is because the second term on the right-hand-side sums over jobs

in J , and these jobs may not have departed by time t. Combining the above and (4.93)

yields for all t ≥ 0:
D(t)∑
i=1

Wi ≤ |B|t+
∑
j∈J

Wj .

Dividing by D(t) yields:

1

D(t)

D(t)∑
i=1

Wi ≤
|B|t
D(t)

+
1

D(t)

∑
j∈J

Wj .

Taking a lim sup as t→∞ yields:

lim sup
t→∞

1

D(t)

D(t)∑
i=1

Wi ≤ lim sup
t→∞

|B|t
D(t)

, (4.94)

where we have used the fact that
∑

j∈J Wj is a finite number, and D(t)→∞ as t→∞,

so that:

lim sup
t→∞

1

D(t)

∑
j∈J

Wj = 0.

113

Now note that, because each buffer location in B can hold at most one job, the number

of departures D(t) is at least N(t)− |B|, which is a positive number for sufficiently large

t. Thus:

lim sup
t→∞

|B|t
D(t)

≤ lim sup
t→∞

[|B|t
N(t)− |B|

]
= lim sup

t→∞

[|B|
N(t)/t− |B|/t

]
≤ |B|/λmin.

Using this in (4.94) proves the result.

4.10.5 [O(1/V), O(V)] performance of QLA under Markovian dynamics

In this section, we prove that under the Markovian network state dynamics, QLA achieves

an exact [O(1
V), O(V)] utility-delay tradeoff for the stochastic problem. This is the first

formal proof of this result. It generalizes the [O(1
V), O(V)] performance result of QLA

in the i.i.d. case in [GNT06]. To prove the result, we use a variable multi-slot Lyapunov

drift argument. Different from previous multi-slot drift arguments, e.g., [NMR05] and

[Nee10b], where the drift is usually computed over a fixed number of slots, the slot number

here is a random variable corresponding to the return time of the network states. As we

will see, this variable multi-slot drift analysis allows us to obtain the exact [O(1
V), O(V)]

utility-delay tradeoff for QLA. Moreover, it also allows us to state QLA’s performance in

terms of explicit parameters of the Markovian S(t) process.

In the following, we define Ti(t0) to be the first return time of S(t) to state si given

that S(t0) = si, i.e.,

Ti(t0) = inf{T > 0, s.t. S(t0 + T) = si |S(t0) = si}.

114

We see that Ti(t0) has the same distribution for all t0. Thus, we use Ti to denote the

expected value of Ti(t) for any ts.t.S(t) = si and use T 2
i to denote its second moment.

By Theorem 3 in Chapter 5 of [Gal96], we have for all states si that:

Ti =
1

πsi
<∞, (4.95)

i.e., the expected return time of any state si is finite. In the following, we also use Tji(t0)

to denote the first hitting time for S(t) to enter the state si given that S(t0) = sj . It is

again easy to see that Tji(t0) has the same distribution at all t0. Hence we similarly use

Tji and T 2
ji to denote its first and second moments. Throughout the analysis, we make

the following assumption:

Assumption 2. There exists a state s1 such that:

T 2
j1 <∞, ∀ j.

That is, starting from any state sj (including s1), the random time needed to get into

state s1 has a finite second moment. This condition is not very restrictive and can be

satisfied in many cases, e.g., when S is finite.

We now have the following theorem summarizing QLA’s performance under the

Markovian network state dynamics:

Theorem 15. Suppose (3.1) holds. Then under the Markovian network state process

S(t), the QLA algorithm achieves the following:

fQLAav ≤ f∗av +
CB2

V T1

, (4.96)

r∑
j=1

qj ≤
CB2 + T1V δmax

η
+
DB2

2
, (4.97)

115

where η > 0 is the slack parameter defined in (3.1) in Section 3.1.2, and C,D are defined

as:

C = T 2
1 + T1, D = T 2

1 − T1, (4.98)

i.e., C and D are the sum and difference of the first and second moments of the return

time associated with s1.

Note that η, C,D = Θ(1) in (4.97), i.e., independent of V . Hence Theorem 15

shows that QLA indeed achieves an exact [O(1/V), O(V)] utility-delay tradeoff for general

stochastic network optimization problems with Markovian network dynamics. Although

our bounds may be loose when the number of states is large, we note that Theorem 15

also applies to the case when S(t) evolves according to a Markov modulated i.i.d. process,

in which case there is a Markov chain of only a few states, but in each Markov state,

there can be many i.i.d. randomness. For example, suppose S(t) is i.i.d. with 104 states.

Then we can view S(t) as having one Markov state, but within the Markov state, it has

104 i.i.d. random choices. In this case, Theorem 15 will apply with C = 2 and D = 0.

These Markov modulated processes can easily be incorporated into our analysis by taking

expectation over the i.i.d. randomness of the current Markov state in Equation (4.99).

These Markov modulated processes are important in stochastic modeling and include the

ON/OFF processes for modeling time-correlated arrivals processes, e.g., [Nee09a].

Proof. (Theorem 15) To prove the theorem, we first define the Lyapunov function L(t) =

1
2

∑r
j=1 q

2
j (t). By using the queueing dynamic equation (3.5), it is easy to obtain that:

1

2
q2
j (t+ 1)− 1

2
q2
j (t) ≤ δ2

max + qj(t)[Aj(t)− µj(t)].

116

Summing over all j = 1, ..., r and adding to both sides the term V f(t), we obtain:

L(t+ 1)− L(t) + V f(t) ≤ B2 +

{
V f(t) +

r∑
j=1

qj(t)[Aj(t)− µj(t)]
}
. (4.99)

We see from (4.8) then given the network state S(t), QLA chooses an action to minimize

the right-hand side (RHS) at time t. Now compare the term in {} in the RHS of (4.99)

with (4.75), we see that we indeed have:

L(t+ 1)− L(t) + V fQ(t) ≤ B2 + gS(t)(q(t)), (4.100)

where we use fQ(t) = f(xQLA(t)) to denote the utility incurred by QLA’s action at time

t, and gS(t)(·) is the function (4.75) with the network state being S(t).

(Part A: Proof of Utility) We first prove the utility performance. Consider t = 0 and

first assume that S(0) = s1. Summing up the inequality (4.100) from time t = 0 to time

t = T1(0)− 1, we have:

L(T1(0))− L(0) +

T1(0)−1∑
t=0

V fQ(t) ≤ T1(0)B2 +

T1(0)−1∑
t=0

gS(t)(q(t)).

This can be rewritten as:

L(T1(0))− L(0) +

T1(0)−1∑
t=0

V fQ(t) ≤ T1(0)B2 (4.101)

+

T1(0)−1∑
t=0

gS(t)(q(0)) +

T1(0)−1∑
t=0

[
gS(t)(q(t))− gS(t)(q(0))

]
.

Using (4.75) and the fact that ||q(t+ τ)− q(t)|| ≤ τB, we see that the final term can be

bounded by:∣∣∣∣ T1(0)−1∑
t=0

[
gS(t)(q(t))− gS(t)(q(0))

]∣∣∣∣ ≤ T1(0)−1∑
t=0

tB2 =
[1
2

(T1(0))2 − 1

2
T1(0)

]
B2.

Plugging this into (4.101), and letting Ĉ = 1
2(T1(0))2 + 1

2T1(0), we obtain:

L(T1(0))− L(0) +

T1(0)−1∑
t=0

V fQ(t) ≤ ĈB2 +

T1(0)−1∑
t=0

gS(t)(q(0))

= ĈB2 +
∑
si

nT1(0)
si (0)gsi(q(0)).

117

Here n
T1(0)
si (t0) denotes the number of times the network state si appears in the period

[t0, t0 + T1(0) − 1]. Now we take expectations over T1(0) on both sides conditioning on

S(0) = s1 and q(0), we have:

E
{
L(T1(0))− L(0) | S(0), q(0)

}
+ E

{ T1(0)−1∑
t=0

V fQ(t) | S(0), q(0)
}

(4.102)

≤ CB2 +
∑
si

E
{
nT1(0)
si (0) | S(0), q(0)

}
gsi(q(0)).

Here C = E
{
Ĉ | S(0), q(0)

}
= 1

2 [T 2
1 +T1]. The above equation uses the fact that gsi(q(0))

is a constant given q(0). Now by Theorem 2 in Page 154 of [Gal96] we have that:

E
{
nTi(0)
si (0) | S(0), q(0)

}
=
πsi
πs1

. (4.103)

Plug this into (4.102), we have:

E
{
L(T1(0))− L(0) | S(0), q(0)

}
+ E

{ T1(0)−1∑
t=0

V fQ(t) | S(0), q(0)
}

(4.104)

≤ CB2 +
1

πs1

∑
si

πsigsi(q(0)).

Now using (4.13) and (4.95), i.e., T1 = 1/πs1 and g(γ) =
∑

si
πsigsi(γ), we obtain:

E
{
L(T1(0))− L(0) | S(0), q(0)

}
+ E

{ T1(0)−1∑
t=0

V fQ(t) | S(0), q(0)
}

(4.105)

≤ CB2 + T1g(q(0)).

It is shown in [HN10a] that g(q(0)) ≤ g(γ∗) ≤ V f∗av. Thus we conclude that:

E
{
L(T1(0))− L(0) | S(0), q(0)

}
+ E

{ T1(0)−1∑
t=0

V fQ(t) | S(0), q(0)
}

(4.106)

≤ CB2 + T1V f
∗
av.

More generally, if tk = tk−1 + Ti(tk−1) with t0 = 0 is the kth time after time 0 when

S(t) = s1, we have:

E
{
L(tk+1)− L(tk) | S(tk), q(tk)

}
+ E

{ tk+1−1∑
t=tk

V fQ(t) | S(tk), q(tk)
}

(4.107)

≤ CB2 + T1V f
∗
av,

118

Now taking expectations over q(tk) on both sides, we have:

E
{
L(tk+1)− L(tk) | S(tk)

}
+ E

{ tk+1−1∑
t=tk

V fQ(t) | S(tk)
}
≤ CB2 + T1V f

∗
av.

Note that given S(0) = s1, we have the complete information of S(tk) for all k. Hence

the above is the same as:

E
{
L(tk+1)− L(tk) | S(0)

}
+ E

{ tk+1−1∑
t=tk

V fQ(t) | S(0)
}
≤ CB2 + T1V f

∗
av. (4.108)

Summing the above from k = 0 to K − 1, we get:

E
{
L(tK)− L(0) | S(0) = s1

}
+ E

{ tK−1∑
t=0

V fQ(t) | S(0) = s1

}
(4.109)

≤ KCB2 +KT1V f
∗
av.

Using the facts that |f(t)| ≤ δmax, dKT1e ≤ KT1 + 1, L(0) = 0 and L(t) ≥ 0 for all t, we

have:

E
{ dKT1e−1∑

t=0

V fQ(t) | S(0) = s1

}
≤ KCB2 +KT1V f

∗
av + V δmax

+V δmaxE
{
|KT1 − tK | | S(0) = s1

}
.

Dividing both sides by V dKT1e, we get:

1

dKT1e
E
{ dKT1e−1∑

t=0

fQ(t) | S(0) = s1

}
≤ CB2K

V dKT1e
+ f∗av

KT1V

dKT1e
+
V δmax

dKT1e
(4.110)

+E
{∣∣ tK −KT1

K

∣∣ | S(0) = s1

}Kδmax
dKT1e

.

Since tK =
∑K−1

k=0 Ti(tk) with t0 = 0, and each T1(tk) is i.i.d. distributed with mean T1

and second moment T 2
1 <∞, we have:[

E
{∣∣ tK −KT1

K

∣∣ | S(0) = s1

}]2

≤ E
{∣∣ tK −KT1

K

∣∣2 | S(0) = s1

}
≤ T 2

1

K
. (4.111)

119

This implies that the term E
{∣∣ tK−KT1

K

∣∣ | S(0) = s1

}
→ 0 as K → ∞. It is also easy

to see that dKT1e → ∞ and K
dKT1e

→ 1
T1

as K → ∞. Thus using (4.111) and taking a

limsup as K →∞ in (4.110), we have:

lim sup
K→∞

1

dKT1e
E
{ dKT1e−1∑

t=0

fQ(t) | S(0) = s1

}
≤ CB2

V T1

+ f∗av.

Now consider the case when the starting state is sj 6= s1. In this case, let Tj1(0)

be the first time the system enters state s1. Then we see that the above argument can

be repeated for the system starting at time Tj1(0). The only difference is that now the

“initial” backlog in this case is given by q(Tj1(0)). Specifically, we have from (4.109)

that:

E
{
L(t̂K)− L(Tj1(0)) | Tj1(0), S(0) = sj

}
+ E

{ ˆtK−1∑
t=Tj1(0)

V fQ(t) | Tj1(0), S(0) = sj
}

≤ KCB2 +KT1V f
∗
av.

Here t̂K is the Kth return time of S(t) to s1 after time Tj1(0). We thus obtain:

V E
{ ˆtK−1∑
t=Tj1(0)

fQ(t) | Tj1(0), S(0) = sj
}

≤ KCB2 +KT1V f
∗
av + E

{
L(Tj1(0)) | Tj1(0), S(0) = sj

}
.

However, since the increment of each queue is no more than δmax every time slot, we see

that L(Tj1(0)) ≤ [Tj1(0)]2B2/2. Also using the fact that |f(t)| ≤ δmax for all 0 ≤ t ≤

Tj1(0), we have:

V E
{ ˆtK−1∑

t=0

fQ(t) | Tj1(0), S(0) = sj
}

≤ KCB2 +KT1V f
∗
av + [Tj1(0)]2B2/2 + Tj1(0)V δmax.

120

Now taking expectations over Tj1(0) on both sides, and using a similar argument as

(4.110), we get that for any starting state sj , we have:

lim sup
K→∞

1

dTj1 +KT1e
E
{ dTj1+KT1e−1∑

t=0

fQ(t) | S(0) = sj
}
≤ CB2

V T1

+ f∗av.

This proves the utility part (4.96).

(Part B: Proof of Backlog) Now we look at the backlog performance of QLA. We

similarly first assume that S(0) = s1. Recall that equation (4.105) says:

E
{
L(T1(0))− L(0) | S(0), q(0)

}
+ E

{ T1(0)−1∑
t=0

V fQ(t) | S(0), q(0)
}

(4.112)

≤ CB2 + T1g(q(0)).

Now we define the following “convexified” dual function gc(γ):

gc(γ) = inf
x
(si)

k ∈X (si),a
(si)

k

∑
si

πsi

{
V

r+2∑
k=1

a
(si)
k f(si, x

(si)
k) (4.113)

+
∑
j

γj

[r+2∑
k=1

a
(si)
k Aj(si, x

(si)
k)−

r+2∑
k=1

a
(si)
k µj(si, x

(si)
k)

]}
.

Here the a
(si)
k variables are chosen to from the set: {a(si)

k ≥ 0,
∑

k a
(si)
k = 1, ∀ si}. Now by

comparing (4.113) and (4.13), we see that gc(γ) = g(γ) for all γ � 0. This is so because

at any γ � 0, we first have gc(γ) ≤ g(γ), due to the use of the a
(si)
k variables. And if

{x(si)}∞i=1 are the minimizers of g(γ), then {x(si)
k }

k=1,...,r+2
i=1,2,... , with x

(si)
k = x(si), a

(si)
1 = 1

and a
(si)
k = 0 if k 6= 1, will also be the minimizers of gc(γ).

Using the definition of gc(γ) defined in (4.113), and plugging the set of variables

{ϑ(si)
k }

k=1,2,...,r+2
i=1,2,... and the set of actions {x(si)

k }
k=1,2,...,r+2
i=1,2,... in the slackness assumption

(3.1), and using the facts that g(γ) = gc(γ) and 0 ≤ f(t) ≤ δmax, it can be shown that

g(γ) satisfies:

g(γ) ≤ V δmax − η
r∑
j=1

γj . (4.114)

121

Using this in (4.112), we have:

E
{
L(T1(0))− L(0) | S(0), q(0)

}
+ E

{ T1(0)−1∑
t=0

V fQ(t) | S(0), q(0)
}

(4.115)

≤ CB2 + T1V δmax − T1η

r∑
j=1

qj(0).

More generally, we have:

E
{
L(tk+1)− L(tk) | S(tk), q(tk)

}
(4.116)

≤ CB2 + T1V δmax − T1η

r∑
j=1

qj(tk).

Here tk is the kth return time of S(t) to state s1 after time 0. Taking expectations on

both sides over q(tk) and rearranging the terms, we get:

E
{
L(tk+1)− L(tk) | S(tk)

}
+ T1η

r∑
j=1

E
{
qj(tk) | S(tk)

}
≤ CB2 + T1V δmax. (4.117)

Now using the fact that conditioning on S(tk) is the same as conditioning on S(0), we

have:

E
{
L(tk+1)− L(tk) | S(0)

}
+ T1η

r∑
j=1

E
{
qj(tk) | S(0)

}
≤ CB2 + T1V δmax. (4.118)

Summing over k = 0, ...,K − 1, rearranging the terms, and using the facts that L(0) = 0

and L(t) ≥ 0 for all t:

K−1∑
k=0

T1η
r∑
j=1

E
{
qj(tk) | S(0)

}
≤ KCB2 +KT1V δmax. (4.119)

Dividing both sides by KT1η, we get:

1

K

K−1∑
k=0

r∑
j=1

E
{
qj(tk) | S(0)

}
≤ CB2 + T1V δmax

T1η
. (4.120)

Now using the fact that |qj(t+ τ)− qj(t)| ≤ τδmax, we have:

tk+1−1∑
τ=tk

r∑
j=1

qj(τ) ≤ T1(tk)

r∑
j=1

qj(tk) + [
1

2
(T1(tk))

2 − 1

2
T1(tk)]B

2.

122

Taking expectations on both sides conditioning on S(0) (which is the same as conditioning

on S(tk)), we get:

E
{ tk+1−1∑

τ=tk

r∑
j=1

qj(τ) | S(0)
}
≤ E

{
T1(tk)

r∑
j=1

qj(tk) | S(0)
}

+ [
1

2
T 2

1 −
1

2
T1]B2

= T1E
{ r∑
j=1

qj(tk) | S(0)
}

+ [
1

2
T 2

1 −
1

2
T1]B2.

In the last step, we have used the fact that T1(tk) is independent of q(tk). Summing the

above equation over k = 0, 1, ...,K − 1, we have:

E
{ tK−1∑

t=0

r∑
j=1

qj(t) | S(0)
}
≤

K−1∑
k=0

T1E
{ r∑
j=1

qj(tk) | S(0)
}

+
K[T 2

1 − T1]B2

2
.

Dividing both sides by K and using (4.120), we have:

1

K
E
{ tK−1∑

t=0

r∑
j=1

qj(t) | S(0)
}
≤ T1

K

K−1∑
k=0

E
{ r∑
j=1

qj(tk) | S(0)
}

+
[T 2

1 − T1]B2

2

≤ CB2 + T1V δmax
η

+
[T 2

1 − T1]B2

2
.

Now notice that we always have tK ≥ K. Hence:

1

K

K−1∑
t=0

E
{ r∑
j=1

qj(t) | S(0)
}
≤ 1

K
E
{ tK−1∑

t=0

r∑
j=1

qj(t) | S(0)
}

≤ CB2 + T1V δmax
η

+
[T 2

1 − T1]B2

2
.

This proves (4.97) for the case when S(0) = s1. The case when S(0) = sj 6= s1 can be

treated in a similar way as in Part A. It can be shown that the above backlog bound still

holds, as the effect of the backlog values before the first hitting time Tj1(0) will vanish

as time increases. This proves the backlog bound (4.97). Theorem 15 thus follows by

combining the two proofs.

4.10.6 Proof of Theorem 14

Here we prove Theorem 14.

123

Proof. First we see that under the conditions of Theorem 14, the network is stable. Thus

the average rate out of any queue j is equal to λj , which is the total input rate. That is,

letting µj(t) be the number of packets that depart from queue j at time t, we have:

µj , lim
t→∞

1

t

t−1∑
τ=0

µj(τ) = λj .

Now we use ej(t) to denote the event that queue j decides to serve packets from the end

of the queue, and let µEj be the time average arrival rate of the packets that are served

during the times when queue j serves the end of the queue. It is easy to see that:

µEj , lim
t→∞

1

t

t−1∑
τ=0

µj(τ)1[ej(τ)]

(∗)
= lim

t→∞

1

t

t−1∑
τ=0

E
{
µ(τ)1[ej(τ)]

}
= lim

t→∞

1

t

t−1∑
τ=0

E
{
µj(τ)

}
p = pλj .

Here 1[·] is the indicator function, and (∗) follows from the fact that the limit exists, that

0 ≤ µ(τ)1[e(τ)] ≤ δmax, and the Lebesgue Dominated Convergence Theorem [Fol99]. As

a result, the average rate of the packets that are served when the queue serves the front

of the queue, denoted by µFj , is (1 − p)λj . Thus, if 0 ≤ p < 1, we see that µEj , µ
F
j > 0.

This implies that every packet will eventually leave the queue. To see this, suppose this

is not the case. Then there exists at least one packet P ∗ that never leaves the queue.

In this case, for any finite number K > 0, there must be more than K packets in the

queue when P ∗ arrives, since the packets are drained out from the front with an average

rate µFj > 0. However, this implies that the queue size must be infinite when P ∗ arrives,

which contradicts the fact that the queue is stable. This proves Part (a).

Now define Pj0 to be the set of packets that (i) arrive to the queue when qj(t) ∈ B̃j,

and (ii) are served before they move to the right of Q̃j,Low and (iii) are served when the

124

queue is serving the end of the queue. Let λPj0 be the average rate of the packets in Pj0.

It is easy to see that λPj0 ≤ pλj . We want to show that:

λPj0 ≥
[
pλj −O(

δmaxc
∗
1

V log(V)
)
]+
. (4.121)

Then using the fact that the packets from Pj0 occupy an interval of size at most Qj,High +

Amax− Q̃j,Low ≤ 2(D1 +K1[log(V)]2 + δmax) = Θ([log(V)]2), we can use Theorem 11 and

conclude from (4.121) that the average delay for the packets in Pj0 is O([log(V)]2)/λPj0

if λPj0 > 0.

To prove (4.121), we first note that the packets that are served when the queue is

serving the end of the queue consist of the following packet sets:

1. Pj0

2. Pj1, the set of packets that arrive when qj(t) ∈ B̃j , and move to the right of Q̃j,Low

but are still served from the end of the queue

3. Pj2, the set of packets that are served from the end of the queue but arrive to the

queue when qj(t) > Qj,High

4. Pj3, the set of packets that are served from the end of the queue but arrive to the

queue when qj(t) < Q̃j,Low

Now define λPj1 , λPj2 and λPj3 to be the average rate of the packets in Pj1, Pj2 and Pj3,

respectively. We immediately have:

µEj = pλj = λPj0 + λPj1 + λPj2 + λPj3 .

This immediately implies that:

λPj0 = pλj − (λPj1 + λPj2 + λPj3). (4.122)

125

Therefore, to prove (4.121), it suffices to show that λPji = O(
δmaxc∗1
V log(V)) for j = 1, 2, 3. To do

this, we first note that λPj2 and λPj3 are upper bounded by the total arrival rates of the

packets that enter the queue when qj(t) > Qj,High and qj(t) < Q̃j,Low, respectively. Using

the definition of Qj,High and Q̃j,Low and Theorem 6, we have λPj2 = O(
δmaxc∗1
V log(V)), λPj3 =

O(
δmaxc∗1
V log(V)).

We now compute an upper bound on λPj1 . Note that when the queue decides to serve

packets from the end of the queue, in order for it to serve a packet in Pj1, i.e., a packet

that arrives to the queue when qj(t) ∈ B̃j but moves to the right of Q̃j,Low, we must

have qj(t) < Qj,Low. Therefore, if we denote µj1(t) the number of packets in Pj1 that are

served at time t, we easily see that µj1(t) ≤ µmax1[qj(t)<Qj,Low]1[ej(t)] for all t. Therefore,

λPj1 = lim
t→∞

1

t

t−1∑
τ=0

E
{
µj1(τ)

}
≤ lim

t→∞

1

t

t−1∑
τ=0

E
{
µmax1[qj(τ)<Qj,Low]1[ej(τ)]

}
(∗)
= pµmax lim

t→∞

1

t

t−1∑
τ=0

Pr(qj(τ) < Qj,Low)

(∗∗)
≤ pµmaxP(D1,K1[log(V)]2)

=
δmaxc

∗
1

V log(V)
.

Here (∗) uses the fact that ej(t) is independent of the queue process, and (∗∗) follows

from the definition of P(D1,K1[log(V)]2). Now using the fact that λPji = O(
δmaxc∗1
V log(V)) for

i = 1, 2, 3 in (4.122), we conclude that:

λPj0 ≥
[
pλj −O(

δmaxc
∗
1

V log(V)
)
]+
. (4.123)

This proves Part (b).

126

Now by the definition of Pj0, we see that the packets in Pj0 only occupy an interval of

size no more than Qj,High− Q̃j,Low +Amax ≤ 2(D1 +K1[log(V)]2 + δmax) = Θ([log(V)]2).

Thus, using Theorem 11, the average delay for the packets in Pj0 is O([log(V)]2)/λPj0 if

λPj0 > 0. This proves Part (c) and completes the proof of the theorem.

127

Chapter 5

On order-optimal scheduling: the redundant constraint

approach

In this chapter, we consider the problem of delay-efficient routing in stochastic networks.

This corresponds to having a common constant cost function for all actions in the general

model described in Chapter 3. In this case, we try to explore the possible delay reduc-

tion opportunities with respect to the network size under the Lyapunov technique. The

algorithms developed in this chapter can be combined with those in Chapter 4 to further

reduce the network delay. For ease of understanding, we state the specialized problem

settings below rather than working on the abstract model presented in Chapter 3. Our

solution is motivated by the connection between the Lyapunov technique and the RISM

algorithm established in Section 4.8.

128

!

"

#

$

%

&!

&#

&"

'%$()*

&!

&#

&"

Figure 5.1: An example of flows going through a multihop network, where the arrows indicate
the routes of the flows.

5.1 The redundant constraint approach: the intuition

In this section, we consider improving the delay performance of the Max-Weight type

(QLA type) scheduling algorithm using appropriate “redundant constraints.” To provide

a good motivation of this approach, we first look at a simple example.

Consider the example in Fig. 5.1, where we try to support three commodity flows

f1, f2, f3 with arrival rates λ1, λ2, λ3. We assume that the routes are all fixed. Suppose

all channels are static, i.e., no channel variation. At each time, we need to allocate power

and rates to the links for data transmission. Assume that due to physical constraints, e.g.,

interference, the obtained transmission rates are restricted to be in some rate allocation

set X . Now let µfi[m,n] be the rate allocated to flow fi over link [m,n]. Using the results in

Chapter 4, we see that the Max-Weight algorithm Dynamic Routing and Power Control

algorithm (DRPC) in [NMR05] applied to this problem is closely related to solving the

following optimization problem by a dual subgradient method:

(P1) min : 1, (5.1)

129

s.t. λ1 ≤ µf1[1,3], µ
f1
[1,3] ≤ µ

f1
[3,5],

λ2 ≤ µf2[2,3], µ
f2
[2,3] ≤ µ

f2
[3,5],

λ3 ≤ µf3[2,4],

(µfi[m,n], i = 1, 2, 3, ∀[m,n] ∈ L)T ∈ X .

Here L denote the set of communication links. Now consider modifying (P1) by adding

two redundant constraints as follows:

(P2) min : 1, (5.2)

s.t. λ1 ≤ µf1[1,3], µ
f1
[1,3] ≤ µ

f1
[3,5], λ2 ≤ µf2[2,3], µ

f2
[2,3] ≤ µ

f2
[3,5], λ3 ≤ µf3[2,4], (5.3)

θλ1 + (1− θ)µf1[1,3] ≤ µ
f1
[3,5], θλ2 + (1− θ)µf2[2,3] ≤ µ

f2
[3,5], (5.4)

(µfi[m,n], i = 1, 2, 3, ∀[m,n] ∈ L)T ∈ X .

The optimal solutions of (P1) and (P2) are always the same. Also, it has been ob-

served in the optimization context, e.g., [Ber03], that adding the redundant constraints

in (5.4) usually leads to faster convergence of the variables µfi(m,n) to their target values

under gradient type methods, due to the fact that these additional constraints effectively

“reduce” the search space of the optimal solutions for the optimization methods. Thus,

in the network scheduling problem, we add to the original network queues a set of accel-

erating queues, which mimic the functionality of the constraints in (5.4). As we will see,

by doing so one can indeed improve the convergence time of the allocated rate to each

flow, which will likely lead to a better delay guarantee for the flows.

Interestingly, the recent work in [Nee09b], which proves that the Max-Weight schedul-

ing algorithm achieves order-optimal (i.e., delay only scales as a function of the flow path

130

lengths, but not the number of flows) delay for downlink systems, can be viewed as con-

sidering all possible redundant constraints in the corresponding deterministic problem

in the delay analysis. Thus this redundant constraint approach may be a potential tool

for designing delay-order-optimal (delay increases only linearly in the flow path length)

scheduling algorithms for general multihop network problems.

5.2 Network model

We consider a network operator that operates a general multihop network as shown in

Fig. 5.1. The network is modeled as a graph G = (N ,L), where N = {1, 2, ..., N} denotes

the set of N nodes and L denotes the set of L directed links in the network. Here a link

[m,n] where m,n ∈ N is in L if there is a communication link from node m to node n.

The network is assumed to operate in slotted time, i.e., t ∈ {0, 1, 2, ...}. The goal of the

operator is to support a set of flows going through the network and to achieve good delay

performance.

5.2.1 The flow and routing model

We assume that there are a total of M flows going through the network. We denote the

set of flows as F = {1, 2, ...,M}. Each flow f ∈ F enters the network from its source

node sf and needs to be routed to its destination node df . Let Af (t) denote the number

of packets of flow f arriving at its source node at time t. We assume that Af (t) is i.i.d.

every slot and let λf = E
{
Af (t)

}
. The operator can observe the value of Af (t) at every

slot. However, the statistics of Af (t) may be unknown. We assume that there exists some

constant Amax <∞ such that Af (t) ≤ Amax for all f and t.

131

For each pair of nodes s, d, we define an acyclic path P between them to be a sequence

of nodes P = (n1, n2, ..., nK+1) such that [ni, ni+1] ∈ L for all i = 1, ...,K, n1 = s,

nK+1 = d and ni 6= nj if i 6= j. In order to highlight the scheduling component and to

convey the idea of our algorithm, we first assume that every flow f is routed via a single

given fixed path Pf to its destination. The case when every flow is routed over multiple

paths to its destination is considered in Section 5.8. We define the length of the path

Pf = {sf = n1, ..., nKf+1 = df} for flow f to be Kf . This denotes the number of links

that every packet from flow f has to be transmitted over. We use kf (n) to denote node

n’s order in the path Pf for all n ∈ Pf , e.g., kf (sf) = 1 and kf (df) = Kf + 1. For any

node n with kf (n) ≥ 2, we use uf (n) to denote its upstream node in the path Pf ; for any

node n with kf (n) ≤ Kf , we use lf (n) to denote its downstream node in the path Pf .

Note that this routing model is different from the multihop network considered in

[NMR05], [GJ07], where no route information is needed. However, this assumption is not

very restrictive. In many cases, e.g., the internet, such route information can easily be

obtained.

5.2.2 The transmission model

We assume that the channel states of the links are potentially time varying. We use

S(t) = (Smn(t),m, n ∈ N), where Smn(t) is the channel condition between nodes m and

n, to denote the aggregate channel state vector of the network. Note that S(t) contains

information of channels between all pairs of nodes in the network, even pairs that do not

have a communication link in between. This is to capture the fact that in some cases,

though one node can not communicate with another node, their transmissions can still

132

interfere with each other. We assume that S(t) takes values in a finite state space S. For

simplicity, we also assume that S(t) is i.i.d. over slots, but the components of S(t) are

allowed to be correlated. The network operator can observe the aggregate channel state

information S(t) at every time slot, but the distribution of S(t) is not necessarily known.

At every time t, after observing the channel state vector S(t), the network operator

allocates power to each link for data transmission. It does so by choosing a power alloca-

tion vector P (t) = (P[m,n](t), [m,n] ∈ L), where P[m,n](t) denotes the power allocated to

link [m,n]. We assume that if S(t) = S ∈ S, then P (t) is chosen from a feasible power

allocation set associated with S, denoted by P(S). We assume that for any S ∈ S, P(S) is

compact and time invariant. Given the channel state S(t) and the power vector P (t), the

rate over link [m,n] at time t is given by µ[m,n](t) = Φ[m,n](S(t),P (t)), for some general

rate-power function Φ[m,n](·, ·). Now let µf[m,n](t) be the rate allocated to flow f over link

[m,n] at time t, chosen subject to the following constraint:
∑

f µ
f
[m,n](t) ≤ µ[m,n](t). It

is evident that if m 6= uf (n), i.e., m is not the upstream node of n in the path Pf , then

µf[m,n](t) = 0 ∀ t. In the following, we assume that there exists some µmax <∞ such that

µ[m,n](t) ≤ µmax for all [m,n] ∈ L, S ∈ S and P ∈ P(S).

5.2.3 Queueing dynamics and network capacity region

Let Q(t) = (Qfn(t), f ∈ F , n ∈ Pf) and t = 0, 1, 2, ... be the queue backlog vector of the

network, in units of packets. 1 Note that the queues are associated with the nodes. We

assume that the following queueing dynamics for all nodes n ∈ Pf with kf (n) ≤ Kf :

Qfn(t+ 1) ≤ max[Qfn(t)− µf
[n,lf (n)]

(t), 0] + µf
[uf (n),n]

(t). (5.5)

1Nodes that are not used by any flow are assumed to always have zero backlog for all flows.

133

In the above equation, we assume that when kf (n) = 1, i.e., when node n is the source

node of flow f , µf
[uf (n),n]

(t) = Af (t) for all t. The inequality is due to the fact that the

upstream node may not have enough packets to send. When kf (n) = Kf +1, i.e., n = df ,

we always assume that Qfn(t) = µf
[n,lf (n)]

(t) = 0 for all t. Throughout this chapter, we

assume the following notion of queue stability:

Q , lim sup
t→∞

1

t

t−1∑
τ=0

∑
f,n

E
{
Qfn(τ)

}
<∞. (5.6)

Define Λ ⊂ RM to be the network capacity region, which is the closure of all arrival rate

vectors λ = (λ1, ..., λM)T for which under the routing and transmission configurations

of the network, e.g., fixed path routing, there exists a stabilizing control algorithm that

ensures (5.6). The following theorem from [GNT06] gives a useful characterization of the

capacity region in our setting and will be useful in the following analysis.

Theorem 16. The capacity region Λ is the set of arrival vectors λ = (λ1, ..., λM)T ∈ RM+

(R+ is the set of nonnegative real numbers) such that there exists a stationary randomized

power allocation and scheduling algorithm that allocates power and flow rates purely as a

function of S(t) and achieves

E
{
µf

[n,lf (n)]
(t)
}

= λf , ∀ f ∈ F , n ∈ Pf : kf (n) ≤ Kf , (5.7)

where the expectation is taken with respect to the random channel states and the (possibly)

random power allocation and scheduling actions. 2

In the following, we use S-only policies to refer to stationary randomized policies that

allocate power and flow rates purely as functions of the aggregate channel state S(t).

134

5.2.4 The delay efficient scheduling problem

Our goal is to find a joint power allocation and scheduling algorithm that, at every

time slot, chooses the right power allocation vector and transmits the right amount of

packets for each flow, so as to maintain queue stability in the network and yield good

delay performance. We refer to this problem as the Delay Efficient Scheduling Problem

(DESP).

5.3 Related work

This framework has been studied in many previous articles, e.g., [TE92], [NMR05]. It is

also well known that Max-Weight type algorithms in, e.g., [NMR05], [GNT06], can be

used to stabilize the network whenever the arrival rate vector is in the network capacity

region. However, the best known delay bounds of Max-Weight algorithms are not order

optimal. Indeed, all the known delay-efficient results for Max-Weight algorithms are for

single-hop networks, e.g., [TE93], [Nee09b]. For multihop networks, the Max-Weight

algorithm usually incurs a time average network delay which grows at least quadratically

in the network size [BSS09], and many algorithms, both Max-Weight type or non-Max-

Weight type, have thus been proposed trying to improve its delay performance, e.g.,

[YST08], [YSR09], [BSS09], [GJ07], [NZJ09], [SdV09], [SSS04] and [VL07]. However,

though the proposed schemes are intuitively delay efficient, it is usually difficult to obtain

explicit delay bounds for the non-Max-Weight type algorithms, and the analytical bounds

for the Max-Weight type schemes are usually not better than those of DRPC in [NMR05].

135

5.4 Towards better delay performance

In this section, we develop the Delay-Efficient SCheduling algorithm (DESC).

5.4.1 Accelerating queues and redundant constraints in optimization

We first define the notion of an accelerating queue (AQ). For each flow f traversing

a path Pf = (nf1 , n
f
2 , ..., n

f
Kf+1), we create Kf accelerating queues (AQ) Hf

n(t), n ∈

{nf1 , nf2 , ..., nfKf } that evolve as follows:

Hf
n(t+ 1) = max

[
Hf
n(t)− µf

[n,lf (n)]
(t), 0

]
+ θAf (t) + (1− θ)µf

[uf (n),n]
(t), (5.8)

where θ ∈ (0, 1] is a parameter that is chosen independent of the network size and rout-

ing configurations. We similarly define µf
[uf (n),n]

(t) = Af (t) if kf (n) = 1, i.e., n = sf . If

kf (n) = Kf + 1, i.e., n = df , we also define Hf
n(t) = µf

[n,lf (n)]
(t) = 0, ∀ t. These AQs are

used to propagate the instantaneous traffic arrival information to all downstream nodes.

We emphasize that these AQs are virtual queues (or counters) and can be easily imple-

mented in software. The actual queues in the system still obey the queueing dynamics in

(5.5). We relate the AQs to redundant constraints in (5.4). Consider solving the problem

(P2) in (5.2) with a dual subgradient method and assign to the redundant constraints in

(5.4) Lagrange multipliers Hf1
3 and Hf2

3 . Then Hf1
3 and Hf2

3 are updated according to:

Hf1
3 (t+ 1) =

[
Hf1

3 (t)− µf1[3,5](t)
]+

+ θλ1 + (1− θ)µf1[1,3](t)

Hf2
3 (t+ 1) =

[
Hf2

3 (t)− µf2[3,5](t)
]+

+ θλ2 + (1− θ)µf2[2,3](t).

Comparing these with the update rules (5.8), we see that the AQs correspond exactly to

the Lagrange multipliers of the redundant constraints.

136

5.4.2 The DESC algorithm

In this section, we develop the Delay Efficient SCheduling algorithm (DESC) that will be

applied to the DESP problem.

Delay Efficient SCheduling Algorithm (DESC): Choose a parameter θ ∈ (0, 1] inde-

pendent of the network size and routing configurations. At every time slot t, observe all

queue values Qfn(t) and Hf
n(t), and do:

(1) Link Weight Computing: For all [m,n] ∈ L such that there exists a flow f with

m = uf (n), find the flow f∗[m,n] such that (ties broken arbitrarily)

f∗[m,n] = arg max
f∈F :m=uf (n)

{
Qfm(t)−Qfn(t) +Hf

m(t)− (1− θ)Hf
n(t)

}
. (5.9)

Then define the weight of the link [m,n] to be:

W ∗[m,n](t) = max

[
Q
f∗
[m,n]
m (t)−Qf

∗
[m,n]
n (t) (5.10)

+H
f∗
[m,n]
m (t)− (1− θ)Hf∗

[m,n]
n (t), 0

]
.

If no such f exists, i.e., [m,n] is not used by any flow, define W ∗[m,n](t) = 0 ∀ t.

(2) Power Allocation: Observe the aggregate channel state S(t), if S(t) = S, choose

P (t) ∈ P(S) such that:

P (t) = arg max
P∈P(S)

∑
[m,n]∈L

µ[m,n](t)W
∗
[m,n](t), (5.11)

where µ[m,n](t) = Φ[m,n](S,P (t)).

(3) Scheduling: For each link [m,n] ∈ L, allocate the transmission rate as follows:

µf[m,n](t) =

µ[m,n](t) if f = f∗[m,n] and W ∗[m,n](t) > 0

0 else.

137

That is, the full transmission rate over each link [m,n] at time t is allocated to the flow

f∗[m,n] that achieves the maximum positive weight W ∗[m,n](t) of the link. If µ
f∗
[m,n]

[m,n] (t) >

Q
f∗
[m,n]
m (t), null bits are transmitted if needed.

(4) Queue Update: Update Qfn(t) and Hf
n(t), ∀ f, n ∈ Pf , according to (5.5) and (5.8),

respectively.

We note that DESC inherits almost all properties of previous Max-Weight type algo-

rithms: it does not require statistical knowledge of the arrival or channels, and it guar-

antees network stability whenever the arrival rate is inside the network capacity region.

DESC is also not very difficult to implement. The link weights can easily be computed

locally. The scheduling part can be done node-by-node. The AQs are virtual queues

implemented in software and can easily be updated by message passing the information

of Af (t) to all the nodes in Pf , similar to the assumptions of the internet flow models

in [LPC08], [LL99]. Although DESC requires routing information, such information is

usually not difficult to obtain in many contexts, e.g., the internet. The most complex

part is the power allocation computation, which in general can be NP-hard. However, it

can easily be solved in some special cases, e.g., when transmissions over different links do

not interfere with each other, e.g., internet, or it can be easily approximated at the cost

of some network capacity loss [GNT06].

We finally note that DESC is similar to the DRPC algorithm developed in [NMR05],

in terms of power allocation and scheduling. Indeed, the major difference is the use

of AQs in DESC. However, we will see later that this simple distinction can lead to a

significant difference in algorithm performance.

138

5.5 DESC: stability and delay performance

Now we present the performance results of DESC and discuss their implications, using the

DRPC algorithm in [NMR05] as the benchmark algorithm for comparison. The proofs are

presented in Section 5.6. Our first result characterizes the performance of DESC in terms

of queue stability. In particular, we show that whenever the arrival rate vector is within

the capacity region, both the actual queues and the AQs are stable. This result shows

that the DESC algorithm is throughput optimal. Our second result concerns the difference

between the aggregate packet arrival rates and the aggregate service rates allocated to

the flows. This result, as we will see, states that under DESC, the service rates allocated

to each flow over its path converge quickly to their desired rate values. We now have our

first performance result of DESC. In the rest of this chapter, the notation x(t) is defined:

x(t) = lim sup
T→∞

1

T

T−1∑
t=0

E
{
x(t)

}
, (5.12)

which denotes the expected time average of a sequence {x(t), t = 0, 1, 2, ...}.

Theorem 17. Suppose that there exists an ε > 0 such that λ+ 1ε ∈ Λ. Then, under the

DESC algorithm, we have:∑
f

∑
n∈Pf

Qfn(t)

Kf
≤

2
∑

f KfB
2

ε
−
∑
f

∑
n∈Pf

Hf
n(t)[θkf (n) + (1− θ)]

Kf
, (5.13)

∑
f

∑
n∈Pf

Hf
n(t) ≤

2
∑

f KfB
2

θε
−
∑
f

Qfsf (t)

θ
, (5.14)

where 1 is the M -dimensional column vector with every entry equal to 1, B = max[Amax, µmax].

Here the expectation is taken over the randomness of the arrivals and link states.

Note that here λ+1ε ∈ Λ means that (λ1 +ε, λ2 +ε, ..., λM +ε)T ∈ Λ. In other words,

we can increase the arrival rates of all flows by the same amount ε and the rate vector

139

is still supportable. Thus ε can be viewed as measuring how far the current rate vector

is from the boundary of the capacity region Λ. Also note that the bound (5.13) contains

the parameters Kf on the left-hand side, which are the path lengths of the flows. This is

due to the following: When analyzing the average total backlog size, one has to compare

the drift under DESC with the drift under an S-only strategy. To obtain bounds on the

total network backlog, the S-only strategy has to simultaneously ensure that for each

flow f , its average output rate at every node n ∈ Pf (n 6= df) is larger than its average

input rate into that node by some δfn > 0. To guarantee such a stationary randomized

policy exists, we need
∑

n∈Pf δ
f
n ≤ ε. In our case, all δfn are chosen to be equal, hence

δfn = ε/Kf and Kf appears on the left-hand side.

We note that the bound (5.13) has the potential to be strictly better than the bounds

of the DRPC and EDRPC algorithms in [NMR05]. Indeed, the corresponding congestion

bound under DRPC can be shown to be∑
f

∑
n∈Pf

Qfn(t)

Kf
≤

∑
f KfB

2

ε
. (5.15)

Hence if the second term in (5.13) is large, then (5.13) can be strictly better than (5.15).

As we will see in the simulation section, the second term is indeed large and thus the

bound in (5.13) can actually be better than (5.15) for DRPC.

We also note that the bound for the AQs in (5.14) is smaller than the bound (5.15) for

the actual queues under DRPC roughly by a factor θKf/2. Since the AQ sizes measure

the convergence speed of the allocated rates under DESC and the actual queue sizes

measure the convergence speed of the allocated rates under DRPC, we see from (5.14)

and (5.15) that the allocated rates under DESC converge faster to their target values

140

than under DRPC. To see this better, we define the following total approximate network

service lag function Lag(t) at time t as:

Lag(t) =
∑
f

[
KfAf [0, t− 1]−

∑
n∈Pf

µf
[n,lf (n)]

[0, t− 1]

]
, (5.16)

where Af [0, t− 1] =
∑t−1

τ=0Af (τ) and µf
[n,lf (n)]

[0, t− 1] =
∑t−1

τ=0 µ
f
[n,lf (n)]

(τ) are the total

number of arrivals of flow f and the total amount of rate allocated to flow f over link

[n, lf (n)] in the time period [0, t − 1]. Since every arrival from Af (t) needs to be trans-

mitted Kf times before reaching the destination, the quantity Lag(t) can be viewed as

approximating the total amount of “effective unserved data” that is currently in the net-

work. Hence any delay efficient algorithm is expected to have a small time average value

of Lag(t). The following theorem characterizes the performance of DESC with respect to

the Lag(t) metric.

Theorem 18. Suppose that there exists an ε > 0 such that λ+ 1ε ∈ Λ. Then, under the

DESC algorithm, we have:

Lag(t) ≤
2
∑

f KfB
2

θ2ε
−
∑
f

Qfsf (t)

θ2
, (5.17)

where the notion x(t) is defined in (5.12).

Note that if
∑

f Kf = O(N), e.g., M = O(1), and ε = Θ(1), then (5.17) implies that

the average total service lag in the network grows only linearly in the network size.

5.5.1 Example

As a concrete demonstration of Theorems 17 and 18, we look at a simple example shown

in Fig. 5.2, where a flow is going through an N + 1 node line wireless network, with the

source being node 1 and the destination being node N + 1.

141

1 2 3 4 N-1 NΑ(t)

μ
[1,2] μ[N, N+1]

N+1

f

μ
[2,3]

Figure 5.2: A flow traversing a tandem.

In this case we see that the path length Kf = N . Suppose that we choose θ = 1 in

the DESC algorithm. Then, Theorems 17 and 18 state that under DESC, we have:

N∑
i=1

Qn(t) ≤ 2N2B2

ε
−

N∑
n=1

nHn(t), (5.18)

N∑
n=1

Hn(t) ≤ 2NB2

ε
−Q1(t), (5.19)

Lag(t) = N
t−1∑
τ=0

A(τ)−
N∑
n=1

t−1∑
τ=0

µ[n,n+1](τ) ≤ 2NB2

ε
. (5.20)

Suppose the network parameters are such that λ = Θ(1) and ε = Θ(1). Then, we see

that the term
∑N

n=1 nHn(t) = Ω(N2). By subtracting out this term, the bound in (5.18)

can likely be small. (5.19) shows that the time average value of the AQs is O(N), which

implies that the rates allocated to the links converge in O(N) time to their target values.

(5.20) shows that the average total network service lag at all the nodes is no more than

some Θ(N) constant, whereas the average service lag under DRPC is Ω(N2) in this case.

We will see in the simulation section that under the DESC algorithm, the time average

actual queue backlog can indeed be Θ(N) when λ = Θ(1) and ε = Θ(1).

5.5.2 Discussion of the choice of θ

We note that the results in Theorems 17 and 18 hold for any θ ∈ (0, 1]. Hence the bounds

may be optimized by choosing the best θ. Intuitively, using a larger θ, e.g., θ = 1 will

lead to a faster convergence of the allocated rates. However, using a θ 6= 1 may also be

142

beneficial in some cases when we want to reduce the impact of the arrival information,

for example, when the propagated traffic information may become noisy.

5.6 Performance analysis

In this section we analyze the DESC algorithm. To start, we first have the following

lemma, which shows that if the current rate vector is strictly inside Λ, then we can find

an S-only policy that offers “perturbed” rates to all the nodes along the paths for all

flows.

Lemma 6. Suppose that there exists an ε > 0 such that λ+ 1ε ∈ Λ. Then, there exists

an S-only policy under which:

E
{
µf

[n,lf (n)]
(t)
}

= λf + δfn, ∀n ∈ Pf : kf (n) ≤ Kf , (5.21)

for any −λf ≤ δfn ≤ ε and for all f ∈ F .

Proof. By Theorem 16, we see that if λ + 1ε ∈ Λ, then there exists an S-only policy Π

that achieves:

E
{
µf

[n,lf (n)]
(t)
}

= λf + ε, ∀ f, n ∈ Pf : kf (n) ≤ Kf .

Now we create a new S-only policy Π′ by modifying Π as follows. In every time slot,

allocate rates to nodes using the policy Π. However, for each n ∈ Pf , in every time slot,

transmit packets for flow f with the corresponding rate with probability (λf+δfn)/(λf+ε)

(this is a valid probability since −λf ≤ δfn ≤ ε). We see that Π′ is an S-only policy, and

that (5.21) is satisfied under Π′.

143

We now analyze the performance of DESC. To start, we define the following Lyapunov

function:

L(Q(t),H(t)) =
1

2

∑
f

∑
n∈Pf

(
[Qfn(t)]2 + [Hf

n(t)]2
)
. (5.22)

Denote Z(t) = (Q(t),H(t)), and define the one-slot conditional Lyapunov drift to be

∆(t) = E
{
L(t+ 1)− L(t) | Z(t)

}
, (5.23)

where we use L(t) as a short-hand notation for L(Q(t),H(t)). We have the following

lemma:

Lemma 7. The drift ∆(t) defined in (5.23) satisfies:

∆(t) ≤ C −
∑
f

∑
n∈Pf

Hf
n(t)E

{
µf

[n,lf (n)]
(t)− (1− θ)µf

[uf (n),n]
(t)− θAf (t) | Z(t)

}
(5.24)

−
∑
f

∑
n∈Pf

Qfn(t)E
{
µf

[n,lf (n)]
(t)− µf

[uf (n),n]
(t) | Z(t)

}
,

where C = 2
∑

f KfB
2.

Proof. See Section 5.12.1.

We are now ready to prove Theorem 17. We use the following theorem, which is

Lemma 5.3 in Page 81 in [GNT06].

Theorem 19. Let Q(t) be a vector process of queue backlogs that evolves according to

some probability law, and let L(Q(t)) be a non-negative function of Q(t). If there exists

processes f(t) and g(t) and positive constants a, b > 0 such that at all times t, we have:

∆(t) ≤ ag(t)− bf(t),

then

b lim sup
t→∞

1

t

t−1∑
τ=0

E
{
f(τ)

}
≤ a lim sup

t→∞

1

t

t−1∑
τ=0

E
{
g(τ)

}
. 2

144

Proof. (Theorem 17) Rearranging the terms in (5.24), we obtain:

∆(t) ≤ C +
∑
f

∑
n∈Pf

θHf
n(t)E

{
Af (t) | Z(t)

}
(5.25)

+
∑
f

[
Qfsf (t) + (1− θ)Hf

sf
(t)
]
E
{
Af (t) | Z(t)

}
−
∑
f

∑
n∈Pf :kf (n)≤Kf

E
{
µf

[n,lf (n)]
(t)
[
Qfn(t)−Qf

lf (n)
(t)

+Hf
n(t)− (1− θ)Hf

lf (n)
(t)
]
| Z(t)

}
.

Comparing (5.25) and DESC, and recalling that µ[m,n](t) = Φ[m,n](S(t),P (t)), we see

that at every time slot, the DESC algorithm chooses the power allocation vector and

allocates transmission rates to flows to minimize the right-hand side (RHS) of the drift

expression (5.25). Because the RHS of (5.24) and (5.25) are equivalent, the drift value

satisfies:

∆(t) ≤ C −
∑
f

∑
n∈Pf

Hf
n(t)E

{
µ∗f

[n,lf (n)]
(t)− (1− θ)µ∗f

[uf (n),n]
(t)− θAf (t) | Z(t)

}
−
∑
f

∑
n∈Pf

Qfn(t)E
{
µ∗f

[n,lf (n)]
(t)− µ∗f

[uf (n),n]
(t) | Z(t)

}
, (5.26)

where µ∗f
[n,lf (n)]

(t) corresponds to the rate allocated to Flow f on link [n, lf (n)] at time t

by any other alternative algorithms.

Now since λ + ε ∈ Λ, by Lemma 6, we see that there exists an S-only policy that

chooses the power allocation vector P (t) and allocates transmission rates µf
[n,lf (n)]

(t)

purely as a function of the aggregate channel state S(t), and yields:

E
{
µ∗f

[n,lf (n)]
(t) | Z(t)

}
= λf +

kf (n)ε

Kf
, (5.27)

for all f ∈ F and n ∈ Pf : kf (n) ≤ Kf . Thus,

E
{
µ∗f

[n,lf (n)]
(t)
}

= λf +
kf (n)ε

Kf
, (5.28)

E
{
µ∗f

[uf (n),n]
(t)
}

= λf +
(kf (n)− 1)ε

Kf
. (5.29)

145

Plugging this alternative algorithm into (5.26), we have:

∆(t) ≤ C −
∑
f

∑
n∈Pf

Qfn(t)
ε

Kf
−
∑
f

∑
n∈Pf

Hf
n(t)

[θkf (n) + (1− θ)]ε
Kf

, (5.30)

which by Theorem 19 implies∑
f

∑
n∈Pf

[
Qfn(t)

Kf
+
Hf
n(t)[θkf (n) + (1− θ)]

Kf

]
≤ C

ε
=

2
∑

f KfB
2

ε
. (5.31)

Rearranging terms, we have:∑
f

∑
n∈Pf

Qfn(t)

Kf
≤

2
∑

f KfB
2

ε
−
∑
f

∑
n∈Pf

Hf
n(t)[θkf (n) + (1− θ)]

Kf
.

This proves (5.13). Now similar to the derivation of (5.30), but plug in (5.26) another

alternative S-only policy that yields for all f ∈ F :

E
{
µ∗f

[n,lf (n)]
(t) | Z(t)

}
= λf + ε, n ∈ Pf : kf (n) ≤ Kf . (5.32)

Such an algorithm exists by Lemma 6. We then obtain

∆(t) ≤ C −
∑
f

Qfsf (t)ε−
∑
f

∑
n∈Pf

Hf
n(t)θε−

∑
f

Hf
sf

(t)(1− θ)ε. (5.33)

Using the fact that Hf
sf (t)(1− θ)ε ≥ 0, ∀ t, (5.33) implies that∑
f

Qfsf (t)

θ
+
∑
f

∑
n∈Pf

Hf
n(t) ≤

2
∑

f KfB
2

θε
, (5.34)

proving the theorem.

Now we prove Theorem 18:

Proof. (Theorem 18) For a flow f ∈ F , let its path be Pf = {n1, n2, ..., nKf+1}, where

n1 = sf and nKf+1 = df . From (5.8), it can be shown as in [GNT06] that for all t, we

have

Hf
n1

(t) ≥
t−1∑
τ=0

Af (τ)−
t−1∑
τ=0

µf[n1,n2](τ),

which implies

t−1∑
τ=0

µf[n1,n2](τ) ≥
t−1∑
τ=0

Af (τ)−Hf
n1

(t). (5.35)

146

Repeating the above for n2, we have

Hf
n2

(t) ≥
t−1∑
τ=0

[θAf (τ) + (1− θ)µf[n1,n2](τ)]−
t−1∑
τ=0

µf[n2,n3](τ)

≥
t−1∑
τ=0

Af (τ)−
t−1∑
τ=0

µf[n2,n3](τ)− (1− θ)Hf
n1

(t),

where the second inequality follows from (5.35). Hence,

Hf
n2

(t) + (1− θ)Hf
n1

(t) ≥
t−1∑
τ=0

Af (τ)−
t−1∑
τ=0

µf[n2,n3](τ).

More generally, we have for all i = 1, ...,Kf that

i∑
j=1

(1− θ)i−jHf
nj (t) ≥

t−1∑
τ=0

Af (τ)−
t−1∑
τ=0

µf[ni,ni+1](τ).

Summing up all i = 1, 2, ...,Kf , we have

Kf∑
i=1

i∑
j=1

(1− θ)i−jHf
nj (t) ≥

Kf∑
i=1

[t−1∑
τ=0

Af (τ)−
t−1∑
τ=0

µf[ni,ni+1](τ)

]
.

However, we see that

Kf∑
i=1

i∑
j=1

(1− θ)i−jHf
nj (t) =

Kf∑
i=1

Hf
ni(t) ·

[Kf−i∑
j=0

(1− θ)j
]
≤ 1

θ

Kf∑
i=1

Hf
ni(t),

which implies

Kf∑
i=1

[t−1∑
τ=0

Af (τ)−
t−1∑
τ=0

µf[ni,ni+1](τ)

]
≤ 1

θ

Kf∑
i=1

Hf
ni(t).

Summing this over all f ∈ F and using (5.14) in Theorem 17 proves Theorem 18.

5.7 DESC under delayed arrival information

Here we consider the case when the time required to propagate the arrival information

Af (t) is nonzero. Such a case can happen, for instance, when there is no central controller,

and thus, message passing is required to propagate the Af (t) values. Let Df
n(t) be the

delay (in number of slots) to propagate the Af (t) information from sf to node n ∈

Pf at time t. We assume that there exists a constant D < ∞ such that Df
n(t) ≤ D

147

for all f, n, t. Note that in this case, we can no longer use (5.8) to update the AQs

due to the message passing delay. Instead, we modify the DESC algorithm to use the

“delayed” traffic information. Specifically, we create a set of AQs using the “delayed”

traffic information Af (t − D) as follows: For all 0 ≤ t < D, let Hf
n(t) = 0, and for all

t ≥ D, we update the AQs according to:

Hf
n(t+ 1) = max

[
Hf
n(t)− µf

[n,lf (n)]
(t), 0

]
(5.36)

+θAf (t−D) + (1− θ)µf
[uf (n),n]

(t).

We then define the following Delayed-DESC algorithm to perform power allocation and

scheduling.

Delayed-DESC : Choose a parameter θ ∈ (0, 1] independent of the network size and

routing configurations. At every time slot, observe all queue values Qfn(t−D) and Hf
n(t),

and do the followings

1. Link Weight Computing: For all [m,n] ∈ L such that there exists a flow f with

m = uf (n), find the flow f∗[m,n] such that (ties broken arbitrarily):

f∗[m,n] = arg max
f∈F :m=uf (n)

{
Qfm(t−D)−Qfn(t−D) +Hf

m(t)− (1− θ)Hf
n(t)

}
. (5.37)

Then define the weight of the link [m,n] to be:

W ∗[m,n](t) = max

[
Q
f∗
[m,n]
m (t−D)−Qf

∗
[m,n]
n (t−D) (5.38)

+H
f∗
[m,n]
m (t)− (1− θ)Hf∗

[m,n]
n (t), 0

]
.

If no such f exists, i.e., [m,n] is not used by any flow, define W ∗[m,n](t) = 0 ∀ t.

2. Power Allocation and Scheduling are the same as DESC except that the weights

are now given by (5.38).

148

3. Queue Update: Update Qfn(t) and Hf
n(t) for all n, f according to (5.5) and (5.36),

respectively.

Specifically, Delayed-DESC is the same as DESC except that it uses (Q(t−D),H(t))

as the queue backlog vector to perform power and rate allocation, and the AQ values

are updated according to (5.36) instead of (5.8). The performance of Delayed-DESC is

summarized in the following theorem.

Theorem 20. Suppose that there exists an ε > 0 such that λ+ 1ε ∈ Λ. Then under the

Delayed-DESC algorithm with parameter D, we have:∑
f

∑
n∈Pf

Qfn(t)

Kf
≤

2
∑

f Kf (1 +D)B2

ε
−
∑
f

∑
n∈Pf

Hf
n(t)[θkf (n) + (1− θ)ε]

Kf
,

∑
f

∑
n∈Pf

Hf
n(t) ≤

2
∑

f Kf (1 +D)B2

θε
−
∑
f

Qfsf (t)

θ
,

Lag(t) ≤
2
∑

f Kf (1 +D)B2

θ2ε
−
∑
f

Qfsf (t)

θ2
,

where x(t) represents the expected time average of the sequence {x(t)}∞t=0 and is defined

in (5.12).

Note that since we typically only need a few bits to represent the Af (t) values, and we

can pass this AQ information at a much faster time scale, i.e., not necessarily once per slot,

the D value is typically very small. In this case, Theorem 20 states that Delayed-DESC

performs nearly as well as DESC.

Proof. (Theorem 20) Let Ẑ(t) = (Q(t−D),H(t)) be the delayed queue state and define

the drift to be

∆(t) , E
{
L(t+ 1)− L(t) | Ẑ(t)

}
,

149

where if t−D < 0 we define Qfn(t−D) = 0. Now using Lemma 7, we see that

∆(t) ≤ C −
∑
f

∑
n∈Pf

Hf
n(t)E

{
µf

[n,lf (n)]
(t) (5.39)

−(1− θ)µf
[uf (n),n]

(t)− θAf (t−D) | Ẑ(t)
}

−
∑
f

∑
n∈Pf

E
{
Qfn(t)

[
µf

[n,lf (n)]
(t)− µf

[uf (n),n]
(t)
]
| Ẑ(t)

}
,

where C = 2
∑

f KfB
2 and B = max[Amax, µmax]. Denote the RHS of (5.39) as ∆R(t).

Using the fact that for any f and n ∈ Pf , we get

Qfn(t−D)−DB ≤ Qfn(t) ≤ Qfn(t−D) +DB,

we have: ∑
f

∑
n∈Pf

Qfn(t)
[
µf

[n,lf (n)]
(t)− µf

[uf (n),n]
(t)
]
≥ −

∑
f

∑
n∈Pf

2DB2

+
∑
f

∑
n∈Pf

Qfn(t−D)
[
µf

[n,lf (n)]
(t)− µf

[uf (n),n]
(t)
]
,

Plugging this into (5.39), we get

∆R(t) ≤ C + 2
∑
f

KfDB
2 (5.40)

−
∑
f

∑
n∈Pf

Qfn(t−D)E
{
µf

[n,lf (n)]
(t)− µf

[uf (n),n]
(t) | Ẑ(t)

}
−
∑
f

∑
n∈Pf

Hf
n(t)E

{
µf

[n,lf (n)]
(t)− (1− θ)µf

[uf (n),n]
(t)− θAf (t−D) | Ẑ(t)

}
.

We can similarly see that the power and rate allocation of Delayed-DESC minimizes the

RHS of (5.40). Hence the above inequality holds if we plug in any alternative power and

rate allocation policy. Thus under Delayed-DESC, we have:

∆(t) ≤ C + 2
∑
f

KfDB
2 (5.41)

−
∑
f

∑
n∈Pf

Qfn(t−D)E
{
µ∗f

[n,lf (n)]
(t)− µ∗f

[uf (n),n]
(t) | Ẑ(t)

}
−
∑
f

∑
n∈Pf

Hf
n(t)E

{
µ∗f

[n,lf (n)]
(t)− (1− θ)µ∗f

[uf (n),n]
(t)− θAf (t−D) | Ẑ(t)

}
,

150

where µ∗f
[n,lf (n)]

(t) is the rate allocated to flow f over link [n, lf (n)] by any alternative

policy. The rest of the proof follows by using a similar argument as in the proofs of

Theorem 17 and 18.

5.8 M-DESC for multi-path routing

In this section, we extend the DESC algorithm to the case where each flow can be routed

via several acyclic paths to its destination. Specifically, we assume that each flow f uses

a set of Jf paths, denoted by Pf = {P 1
f , P

2
f , ..., P

Jf
f }.

We assume that each path is acyclic and that P jf ∩ P kf = {sf , df} for all P jf , P
k
f ∈ Pf

with j 6= k. That is, all paths are node-disjoint except for the source and destination

nodes. 2 Such a setting allows more flexibility in routing packets to destinations. As

in the single-path routing case, we denote by Kj
f the path length of the path P jf , and

denote by kjf (n) the order of node n ∈ P jf , for each node n ∈ P jf (Recall that sf is the

1st node and df is the (Kj
f + 1)th node in path P jf .) In the following, it is also useful to

denote by ŝjf the second node in the path P jf of the flow f (the first node in each path

is always the source node). For any node n ∈ P jf with kjf (n) ≥ 2, we again use uf (n) to

denote the set of upstream nodes of node n. Note that uf (n) contains only one node for

any n 6= df , since all the paths are node-disjoint. For any n ∈ P jf with kjf (n) ≤ Kj
f , we

use lf (n) to denote its set of downstream nodes. Similarly lf (n) contains only one node

when n 6= sf . In this case, an actual queue Qfn(t) again evolves according to the queueing

2This assumption is made mainly for notation simplicity. The results can easily be generalized to the
case where paths share nodes other than the source and the destination nodes.

151

dynamic (5.5) if n is not the source node for the flow f , i.e., n 6= sf . When n = sf , we

see that Qfn(t) evolves according to

Qfsf (t+ 1) = max[Qfsf (t)−
∑
P jf

µf
[sf ,ŝ

j
f]

(t), 0] +Af (t). (5.42)

Before stating the DESC algorithm for this multi-path routing case, we first state

a theorem which can be proven similarly to Theorem 16, and which characterizes the

capacity region in this multi-path routing case. In the theorem, we use the notion of a

feasible network rate splitting vector. Specifically, we say that a vector γf = (γ1
f , ..., γ

Jf
f)T

is a feasible rate splitting vector for flow f if there exists an S-only policy under which:

E
{
µf

[n,lf (n)]
(t)
}

= γjf , (5.43)

for all n ∈ P jf with kjf (n) ≤ Kj
f , and for all P jf . That is, γjf represents the time average

rate achieved over the path P jf for flow f . Here the expectation is taken with respect

to the random channel states and the (possibly) random power allocation and routing

actions. If there exists an S-only policy that simultaneously achieves γf for each f , we

call the vector γ = (γ1, ...,γM)T a feasible network rate splitting vector.

Theorem 21. The capacity region Λ in the multi-path routing case is the set of arrival

rate vectors λ = (λ1, ..., λM)T ∈ RM+ such that there exists a feasible network rate spitting

vector γ with:

γTf · 1 =
∑
j

E
{
µf

[sf ,ŝ
j
f]

(t)
}

= λf , (5.44)

for all flows f ∈ F . 2

We now describe the DESC algorithm for this multi-path case. Under this setting,

we can no longer use the AQs as before. This is the due to the fact that the arrivals to

the source will no longer be all routed via a single path. In this case, we again create a

152

set of AQs. However, for each AQ, we use the arrival to the second node ŝjf in each path

as part of its input. Specifically, for each path P jf , we create Kj
f − 1 AQs as follows: for

each n ∈ P jf with 2 ≤ kjf (n) ≤ Kj
f , we have:

Hf
n(t+ 1) = max

[
Hf
n(t)− µf

[n,lf (n)]
(t), 0

]
+ θµf

[sf ,ŝ
j
f]

(t) + (1− θ)µf
[uf (n),n]

(t). (5.45)

For notation simplicity, we also define Hf
sf (t) = Hf

df
(t) = 0 for all t and all f . We now

present the DESC algorithm for this multi-path routing case.

Multi-path DESC (M-DESC): Choose a parameter θ ∈ (0, 1] independent of the net-

work size and routing configuration. At every time slot t, observe all queue values Qfn(t)

and Hf
n(t), and do the following

(1) Link Weight Computing: For all [m,n] ∈ L such that there exists a flow f with

m ∈ uf (n), compute a weight W f
[m,n](t) for the flow f over [m,n] as follows:

1. If m = sf , n ∈ P jf , i.e., n = ŝjf , then:

W f
[m,n](t) = max

[
Qfm(t)−Qfn(t)− (1− θ)Hf

n(t)− θ
∑
n′∈P jf

Hf
n′(t), 0

]
. (5.46)

2. If m 6= sf , m,n ∈ P jf , then:

W f
[m,n](t) = max

[
Qfm(t)−Qfn(t) +Hf

m(t)− (1− θ)Hf
n(t), 0

]
. (5.47)

Find the flow f∗[m,n] such that (ties broken arbitrarily):

f∗[m,n] = arg max
f∈F :m∈uf (n)

W f
[m,n](t).

Then define the weight of the link [m,n] to be:

W ∗[m,n](t) = W
f∗
[m,n]

[m,n] (t). (5.48)

If no such f exists, i.e., [m,n] is not used by any flow, define W ∗[m,n](t) = 0 ∀ t.

(2) Power Allocation: same as DESC, except that the weights are now given by (5.48).

153

(3) Routing: Define transmission rates as follows:

µf[m,n](t) =

µ[m,n](t) if f = f∗[m,n] and W ∗[m,n](t) > 0

0 else.

For each link [m,n], transmit flow f∗[m,n] data according to the rate µ[m,n](t). If node m

does not have enough packets to send over all its outgoing links, null bits are delivered.

(4) Queue Update: Update Qfn(t) and Hf
n(t), ∀ f, P jf , n ∈ P jf , n 6= sf , according to

(5.5) and (5.45), respectively. Update Qfsf (t) according to (5.42) for all f .

We note that M-DESC is very similar to the DESC algorithm. Indeed, the main

difference here is that M-DESC has to decide which path to route the packets through.

For this part, we see from (5.46) that the weights of the links from the source nodes to

their second-hop nodes are calculated differently. We also note that (5.46) requires the

AQ values over the entire routing path. Such information is easy to obtain if centralized

control is available. In the case when obtaining such information incurs a nonzero delay,

one can also use an approach similar to the one used by Delayed-DESC in Section 5.7.

The following theorem states the performance results of M-DESC:

Theorem 22. Suppose λ is such that there exists a feasible network rate splitting vector

γ that achieves γf + ε1 for each flow f with
∑

j γ
j
f = λf for some ε > 0. Then under

M-DESC, we have the following bounds:∑
f

∑
P jf

∑
n∈P jf

Hf
n(t) ≤ C̃

θε
−
∑
f

∑
P jf

Qf
ŝjf

(t)/θ, (5.49)

∑
f

Qfsf (t)cf +
∑
f

∑
P jf

∑
n∈P jf ,n6=sf

Qfn(t)

Kj
f

(5.50)

≤ C̃

ε
−
∑
f

∑
P jf

∑
n∈P jf

Hf
n(t)

θ(kjf (n)− 1) + (1− θ)
Kj
f

.

154

Here C̃ = B2
∑

f

[
1
2(J2

f + 1) + 2
∑

P jf
(Kj

f − 1)
]
, cf =

∑
P jf

1

Kj
f

, and the notation x(t) is

defined in (5.12).

We note that the performance result for M-DESC has one additional requirement:

we need each element of the rate splitting vector γf for each flow f to be feasible after

an ε increment. This implies that the arrival rate of flow f is at εJf distance from the

boundary of the capacity region (since flow f is served by Jf paths). This additional

requirement is due to the fact that when multiple routes are available, M-DESC will

explore all of them. Hence we must take into account the effective load on each path

when analyzing the congestion in the entire network. We also note that similar results

as Theorem 18 on the network service lag can be obtained in this case. We can similarly

see from (5.49) that if M = O(1), Jf = O(1) and ε = O(1) for all f , then the average

total network service lag will again only grow linearly in the network size.

Proof. (Theorem 22) In this case, we use the following Lyapunov function that is similar

to the one defined in (5.22):

L(Q(t),H(t)) =
1

2

∑
f

∑
P jf

∑
n∈P jf

(
[Qfn(t)]2 + [Hf

n(t)]2
)
.

We similarly define Z(t) = (Q(t),H(t)). Using the same approach as in Lemma 7, we

can compute the drift as:

∆(t) ≤ C̃ −
∑
f

E
{
Qfsf (t)

[∑
P jf

µf
[sf ,ŝ

j
f]

(t)−Af (t)
]
| Z(t)

}
−
∑
f

∑
P jf

∑
n∈P jf :n6=sf

E
{
Qfn(t)

[
µf

[n,lf (n)]
(t)− µf

[uf (n),n]
(t)
]
| Z(t)

}
(5.51)

−
∑
f

∑
P jf

∑
n∈P jf

E
{
Hf
n(t)

[
µf

[n,lf (n)]
(t)

−θµf
[sf ,ŝ

j
f]

(t)− (1− θ)µf
[uf (n),n]

(t)
]
| Z(t)

}
.

155

where C̃ = B2
∑

f

[
(J2
f + 1) + 2

∑
P jf

(Kj
f − 1)

]
. Now by rearranging the terms, we have:

∆(t) ≤ C̃ +
∑
f

E
{
Qfsf (t)Af (t) | Z(t)

}
(5.52)

−
∑
f

∑
P jf

E
{
µf

[sf ,ŝ
j
f]

(t)
[
Qfsf (t)−Qf

ŝjf
(t)

−(1− θ)Hf

ŝjf
(t)− θ

∑
n∈P jf

Hf
n(t)

]
| Z(t)

}
−
∑
f

∑
P jf

∑
n∈P jf :n6=sf

E
{
µf

[n,lf (n)]
(t)
[
Qfn(t)−Qf

lf (n)
(t)

+Hf
n(t)− (1− θ)Hf

lf (n)
(t)
]
| Z(t)

}
.

Thus we see that the M-DESC algorithm chooses a power allocation vector and allocates

rates to the flows to minimize the RHS of (5.51) at every time slot. Hence using the same

argument as in the proof of Theorem 17, we can now plug into (5.52) an S-only policy

that achieves for each flow f ,

E
{
µf

[sf ,ŝ
j
f]

(t) | Z(t)
}

= γjf , (5.53)

with
∑

j γ
j
f = λf , ∀ f , and for each n ∈ P jf with 2 ≤ kjf (n) ≤ Kj

f that:

E
{
µf

[n,lf (n)]
(t) | Z(t)

}
= γjf + ε. (5.54)

Using (5.51), we thus obtain:

∆(t) ≤ C̃ −
∑
f

∑
P jf

Qf
ŝjf

(t)ε−
∑
f

∑
P jf

∑
n∈P jf

θεHf
n(t)−

∑
f

∑
P jf

Hf

ŝjf
(t)(1− θ)ε.

Using Theorem 19 and the fact that Hf

ŝjf
(t) ≥ 0, ∀ t, we have:∑

f

∑
P jf

∑
n∈P jf

Hf
n(t) ≤ C̃

θε
−
∑
f

∑
P jf

Qf
ŝjf

(t)/θ. (5.55)

This proves (5.49).

Now we plug in (5.52) another S-only policy that achieves for each flow f :

E
{
µf

[n,lf (n)]
(t) | Z(t)

}
= γjf + ε

kjf (n)

Kj
f

, (5.56)

156

for each n ∈ P jf with 1 ≤ kjf (n) ≤ Kj
f , where

∑
j γ

j
f = λf , ∀ f . Using (5.51) again, we

see that:

∆(t) ≤ C̃ −
∑
f

Qfsf (t)ε
(∑
P jf

1

Kj
f

)
−
∑
f

∑
P jf

∑
n∈P jf ,n 6=sf

Qfn(t)
ε

Kj
f

−
∑
f

∑
P jf

∑
n∈P jf

Hf
n(t)ε

θ(kjf (n)− 1) + (1− θ)
Kj
f

.

Now denoting cf =
∑

P jf

1

Kj
f

, we have:

∑
f

Qfsf (t)cf +
∑
f

∑
P jf

∑
n∈P jf ,n6=sf

Qfn(t)

Kj
f

≤ C̃

ε
−
∑
f

∑
P jf

∑
n∈P jf

Hf
n(t)

θ(kjf (n)− 1) + (1− θ)
Kj
f

.

This proves (5.50) and completes the proof of Theorem 22.

It is not difficult to show, as in [Nee03], that under this multi-path routing case, the

congestion bound under DRPC is given by:∑
f

Qfsf (t)cf +
∑
f

∑
P jf

∑
n∈P jf ,n 6=sf

Qfn(t)

Kj
f

≤ Ĉ

ε
, (5.57)

where Ĉ = B2
∑

f

[
1
2(J2

f + 1) +
∑

P jf
(Kj

f − 1)
]
. Comparing this bound with (5.49) and

(5.50), we see again that the backlog bound of M-DESC can potentially be better than

that of DRPC, and the rate convergence speed is faster under M-DESC.

5.9 Simulation

Here we provide simulation results of our algorithms. For simplicity, we only simulate

the DESC algorithm and the M-DESC algorithm, and compare them with the DRPC

algorithm.

157

5.9.1 The single-path case

The network topology and flow configuration are shown in Fig. 5.3. We assume that

the channel conditions are independent and each link [m,n] is i.i.d., every slot being

ON with probability 0.8 and OFF with probability 0.2. When the channel is “ON,” we

can allocate one unit of power and transmit two packets; otherwise we can send zero

packets. We further assume that all links can be activated without affecting others.

However, a node can only transmit over one link at a time, though it can simultaneously

receive packets from multiple nodes. Each flow fi is an independent Bernoulli process

with Afi(t) = 2 with probability λi/2 and Afi(t) = 0 else. The rate vector is given by

λ = (λ1, λ2, λ3, λ4)T = (0.8, 0.4, 0.2, 0.6)T . We simulate the system with (h = η
2 , υ = η

2),

where η, h and υ are parameters in Fig. 5.3. Note that in this case, N = 3η
2 + 7. The η

value is chosen to be {10, 50, 100, 200, 500}. We use θ = 0.5.

s1 3 η-12 η-k

s2

1d3

η

f1

ν

3+h

s3

f2

f3 s4

d1

d2

d4f4

Figure 5.3: A Network with 4 Flows. η is f1’s path length, h measures the path overlap length
of f1 and f2, and υ is the vertical path length of f2.

Fig. 5.4 and Fig. 5.5 show the simulation results. Fig. 5.4 shows that under DESC,

the average total backlogs of Flow 1 and 2 scale only linearly in N . This is in contrast to

158

the example provided in [BSS09], which shows that the average backlog grows quadrati-

cally with N under the usual Max-Weight scheduling policy. We also see that the average

total backlog of Flows 3 and 4 remains roughly the same. This is intuitive, as their path

lengths do not grow with N . Interestingly, we observe that
∑

n∈Pf H
f
n(t) ≥∑n∈Pf Q

f
n(t),

∀ f . By equation (5.14) of Theorem 17, this implies that :∑
f

∑
n∈Pf

Qfn(t) ≤
∑
f

∑
n∈Pf

Hf
n(t) ≤

2
∑

f KfB
2

θε
.

Since we also have
∑

f Kf = O(N) and ε = Θ(1) in this example, we see that indeed∑
f

∑
n∈Pf Q

f
n(t) = O(N) in this case. This suggests that DESC can potentially be a

way to achieve delay-order-optimal scheduling in general multihop networks. Fig. 5.5

shows that the total average rates (running averages) allocated to Flows 1 and 2 over

their paths, i.e., 1
tKf1

∑
ni∈Pf1

µf1
[ni,lf1 (ni)]

[0, t − 1] and 1
tKf2

∑
nj∈Pf2

µf2
[nj ,lf2 (nj)]

[0, t − 1]

with µfk
[ni,l

fk (ni)]
[0, t−1] =

∑t−1
τ=0 µ

fk
[ni,l

fk (ni)]
(τ), converge quickly from above to the actual

average arrival rates i.e., 1
tAf [0, t− 1]; on the other hand the corresponding rates under

DRPC converge very slowly from below to the actual average arrival rate. These plots

suggest that the poor delay performance of many Max-Weight type algorithms in multihop

networks can be due to slow convergence of the corresponding service rates.

5.9.2 The multi-path case

We now look at the multi-path routing case. We consider a simple network having two

paths as shown in Fig. 5.6. Each flow uses both paths. The two paths are given by

P1 = (n1, n2, ..., nK1) and P2 = (m1,m2, ...,mK2), where K1 = η,K2 = η/2, and η is

chosen to be {10, 50, 100, 200, 500}. Similar as above, we assume that each link is i.i.d.

ON with probability 0.6, and OFF with probability 0.4. When ON, we can allocate one

159

0 100 200 300 400 500
0

500

1000

1500

!

0 100 200 300 400 500
2

3

4

5

6

7

8

9

!

H4

Q1

Q2

Q4

Q3

H3

H2

H1

"=0.5

Figure 5.4: Qi and Hi, i = 1, 2, 3, 4, are the average total actual and AQ backlog sizes of flow i,
respectively.

unit of power to serve 2 packets; otherwise we cannot serve any. We assume that all

the transmissions over the links are independent, and do not affect others. A node can

simultaneously receive from multiple nodes, but can only send over one outgoing link.

A1(t) is i.i.d., being 2 with probability λ1 = 0.5, and being 0 else. A2(t) is i.i.d., being 2

with probability λ2 = 0.3 and being 0 else. We use θ = 0.5.

We see from Fig.5.7 that as in the single path routing case, the network backlog only

increases linearly in the network size. In this case, though the average total actual backlog

size is not always below the average total AQ backlog size, as in Fig. 5.4, we see that the

total AQ size is always above the total actual queue size excluding the source nodes. As

in the single-path case, this result can also be used together with (5.49) to show that in

this example, M-DESC achieves a total network backlog that grows only linearly in the

network size.

Similar to Fig. 5.5 in the single path routing case, Fig. 5.8 also shows the aggregate

rates of the two flows over their paths versus their arrival rates. We again see that the

rates converge faster under M-DESC than under the DRPC algorithm.

160

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

Time

A
v
g

.
R

a
te

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

A
v
g

.
R

a
te

Avg. Rate to Flow 1 by DPRC

Flow 1 Avg. Arrival Rate

Avg. Rate to Flow 1 by DESC

Avg. Rate to Flow 2 by DRPC

Flow 2 Avg. Arrival Rate

Avg. Rate to Flow 2 by DESC

Figure 5.5: UP: the average rate allocated to Flow 1 (η = 100); DOWN: the average rate allocated
to Flow 2 (η = 100).

s1 n1 n2 nK1

m1 m2
mK2

d1

s2 d2

A1(t)

A2(t)

Figure 5.6: Two flows going through a network with two paths.

5.10 Further discussion

The redundant constraint approach can also be applied to network utility optimization

problems. In this case, the method can also be combined with any of the delay-reduction

techniques, i.e., FQLA, LIFO-Backpressure and LIFOp-Backpressure, to further improve

the delay performance of the algorithms.

As in Section 4.2.4, the assumption that there exists ε > 0 such that λ + ε1 ∈ Γ

is important for deriving the queueing bounds. When this assumption is violated, the

161

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

!
0 100 200 300 400 500
0

200

400

600

800

1000

1200

!

Q1

H1

Q1’

Q2

H2

Q2’

Figure 5.7: Here Qi and Hi, i = 1, 2 denote the time average actual and AQ backlog sizes. Q′i,
i = 1, 2 denotes the average total actual backlog without the source nodes.

arrival rate vector is either on the boundary, or outside the capacity region. In both

cases, the network congestion will go unbounded.

5.11 Chapter summary

In this chapter, we consider the problem of delay-efficient scheduling in general multihop

networks. We develop a Max-Weight type Delay Efficient SCheduling Algorithm (DESC).

We show that DESC is throughput optimal and derive a queueing bound which can

potentially be better than previous congestion bounds on Max-Weight type algorithms.

We also show that under DESC, the time required for the allocated rates to converge to

their target values scales only linearly in the network size. This contrasts with the usual

Max-Weight algorithms, which typically require a time that is at least quadratic in the

network size.

162

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

A
vg

. R
at

e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

A
vg

. R
at

e

Flow 1 Avg. Arrival Rate

Avg. Rate to Flow 1 by MDESC

Avg. Rate to Flow 1 by DRPC

Flow 2 Avg. Arrival Rate

Avg. Rate to Flow 2 by MDESC

Avg. Rate to Flow 2 by DRPC

Figure 5.8: UP: the average rate allocated to Flow 1 (η = 100); DOWN: the average rate allocated
to Flow 2 (η = 100).

5.12 Proofs of the chapter

5.12.1 Proof of Lemma 7

Proof. Define B = max[Amax, µmax]. From the queueing dynamic equation (5.5) we have

for all node n ∈ Pf with kf (n) ≤ Kf that:

[Qfn(t+ 1)]2 =
(
[Qfn(t)− µf

[n,lf (n)]
(t)]+ + µf

[uf (n),n]
(t)
)2

=
(
[Qfn(t)− µf

[n,lf (n)]
(t)]+

)2
+ [µf

[uf (n),n]
(t)]2

+2([Qfn(t)− µf
[n,lf (n)]

(t)]+)µf
[uf (n),n]

(t)

≤ [Qfn(t)− µf
[n,lf (n)]

(t)]2 +B2 + 2Qfn(t)µf
[uf (n),n]

(t).

The inequality holds since ([Qfn(t) − µf
[n,lf (n)]

(t)]+)µf
[uf (n),n]

(t) ≤ Qfn(t)µf
[uf (n),n]

(t), and

for any x ∈ R, we have ([x]+)2 ≤ x2. We also use in the above equation that if kf (n) = 1,

163

i.e., node n is the source node of flow f , then µf
[uf (n),n]

(t) = Af (t) for all t. Thus by

expanding the term [Qfn(t)− µf
[n,lf (n)]

(t)]2, we have for all n ∈ Pf with kf (n) ≤ Kf that:

[Qfn(t+ 1)]2 ≤ [Qfn(t)]2 + 2B2 − 2Qfn(t)
[
µf

[n,lf (n)]
(t)− µf

[uf (n),n]
(t)
]
.

Note that if kf (n) = Kf + 1, i.e., n = df , we have Qfn(t) = 0 for all t, and so [Qfn(t +

1)]2 − [Qfn(t)]2 = 0, ∀t. Summing the above over all n, f , and multiply by 1
2 , we have:

1

2

∑
f

∑
n∈Pf

[Qfn(t+ 1)]2 − 1

2

∑
f

∑
n∈Pf

[Qfn(t)]2 (5.58)

≤ Y1B
2 −

∑
f

∑
n∈Pf

Qfn(t)
[
µf

[n,lf (n)]
(t)− µf

[uf (n),n]
(t)
]
,

where Y1 =
∑

f Kf . Repeat the above argument on the term
∑

f

∑
n∈Pf [Hf

n(t + 1)]2 −∑
f

∑
n∈Pf [Hf

n(t)]2, we obtain:

1

2

∑
f

∑
n∈Pf

[Hf
n(t+ 1)]2 − 1

2

∑
f

∑
n∈Pf

[Hf
n(t)]2 (5.59)

≤ Y1B
2 −

∑
f

∑
n∈Pf

Hf
n(t)[µf

[n,lf (n)]
(t)− (1− θ)µf

[uf (n),n]
(t)− θAf (t)].

Now adding (5.58) to (5.59), taking expectations conditioning on Z(t) = (Q(t),H(t)),

and letting C = 2Y1B
2 = 2

∑
f KfB

2 proves the lemma.

164

Part III

Utility Optimal Scheduling for Complex Networks

165

Chapter 6

Resolving underflows in complex network scheduling

problems

In this chapter, we consider the problem of optimal scheduling in general complex net-

works that involve the “no-underflow” constraint. This network class contains the impor-

tant class of processing networks, which are generalizations of traditional communication

networks. Such scheduling problems are usually hard to solve, and the dynamic pro-

gramming technique is often used. We instead develop the novel perturbed Max-Weight

approach for algorithm design for these networks. This approach has low complexity

and avoids the “curse of dimensionality” of dynamic programming. The results devel-

oped in this chapter can be applied to areas such as manufacturing networks, information

processing, network coding and energy harvesting networks.

166

6.1 A data processing example

In this section, we study a data processing example and develop the Perturbed Max-

Weight algorithm (PMW) in this case. This example demonstrates the main idea of this

chapter. We later present the general model in Section 6.2.

6.1.1 Network settings

We consider a network shown in Fig. 6.1, where the network performs 2-stage data

processing for the arriving data. In this network, there are two random data streams

q1 P1 P2q3

q2

OutputR1(t)

R2(t)

μ1(t)

μ3(t)
μ2(t)

Figure 6.1: An example network consisting of three queues q1, q2, q3 and two processors P1, P2.

R1(t), R2(t), which represent, e.g., sensed data that arrives, or video and voice data that

need to be mixed. We assume that Ri(t) = 1 or 0, equally likely, for i = 1, 2. At every

time slot, the network controller first decides whether or not to admit the new arrivals,

given that accepting any one new arrival unit incurs a cost of 1. The controller then

has to decide how to activate the two processors P1, P2 for data processing. We assume

that both processors can be activated simultaneously. When activated, P1 consumes one

unit of data from both q1 and q2, and generates one unit of fused data into q3. This

data needs further processing that is done by P2. When P2 is activated, it consumes one

unit of data from q3, and generates one unit of processed data. We assume that each

unit of successfully fused and processed data generates a profit of p(t), where p(t) is i.i.d.

167

and takes value 3 or 1 with equal probabilities. The network controller’s objective is to

maximize the average utility, i.e., profit minus cost, subject to queue stability.

For ease of presenting the general model later, we define a network state S(t) =

(R1(t), R2(t), p(t)), 1 which describes the current network random state. We also denote

the controller’s action at time t by x(t) = (D1(t), D2(t), I1(t), I2(t)), where Dj(t) = 1

(Dj(t) = 0) means to admit (reject) the new arrivals into queue j, and Ii(t) = 1 (Ii(t) = 0)

means that processor Pi is activated (turned off). The following no-underflow constraints

must be met at all times when we activate processors P1, P2:

I1(t) ≤ q1(t), I1(t) ≤ q2(t), I2(t) ≤ q3(t). (6.1)

That is, I1(t) = 1 only when q1 and q2 are both nonempty, and I2(t) = 1 only if q3 is

nonempty. Note that [JW09] is the first paper to identify such no-underflow constraints

and propose an explicit solution that shows that the fraction of time that these constraints

are violated converges to zero under certain network assumptions. Here we propose a

different approach that ensures that the constraints are never violated, and holds for a

broader class of problems. Subject to (6.1), we can write the amount of arrivals into

q1, q2, q3, and the service rates of the queues at time t as functions of the network state

S(t) and the action x(t), i.e.,

Aj(t) = Aj(S(t), x(t)) = Dj(t)Rj(t), j = 1, 2, A3(t) = A3(S(t), x(t)) = I1(t). (6.2)

µj(t) = µj(S(t), x(t)) = I1(t), j = 1, 2, µ3(t) = µ3(S(t), x(t)) = I2(t). (6.3)

Then we see that the queues evolve according to the following:

qj(t+ 1) = qj(t)− µj(t) +Aj(t), j = 1, 2, 3, ∀ t. (6.4)

1The network state here contains just R1(t), R2(t) and p(t). More complicated settings, where the
amount consumed from queues may also depend on the random link conditions between queues and
processors can also be modeled by incorporating the link components into the network state, e.g., [HN11a].

168

The instantaneous utility is given by:

f(t) = f(S(t), x(t)) = p(t)I2(t)−D1(t)R1(t)−D2(t)R2(t). (6.5)

The goal is to maximize the time average value of f(t) subject to network stability.

The constraint (6.1) greatly complicates the design of an optimal scheduling algorithm.

This is because the decision made at time t may affect the queue states in future time

slots, which can in turn affect the set of possible actions in the future. In the following,

we develop the Perturbed Max-Weight algorithm (PMW) for this example. The idea of

PMW is to use the usual Max-Weight algorithm, but perturb the weights so as to push

the queue sizes towards certain nonzero values. By carefully designing the perturbation,

we can simultaneously ensure that the queues always have enough data for processing

and the achieved utility is close to optimal.

6.1.2 The perturbed Max-Weight algorithm (PMW)

We now present the construction of the PMW algorithm for this simple example (This is

extended to general network models in Section 6.4.) To start, we first define a perturbation

vector θ = (θ1, θ2, θ3)T and the Lyapunov function L(t) = 1
2

∑3
j=1[qj(t)− θj]2. We then

define the one-slot conditional drift as:

∆(t) = E
{
L(t+ 1)− L(t) | q(t)

}
, (6.6)

where the expectation is taken over the random network state S(t) and the randomness

over the actions. Using the queueing dynamics (6.4), it is easy to obtain that:

∆(t) ≤ B −
3∑
j=1

E
{

(qj(t)− θj)[µj(t)−Aj(t)] | q(t)
}
,

169

where B = 3. Now we use the “drift-plus-penalty” approach, i.e., QLA, in Chapter

4 to design our algorithm for this problem. To do so, we define a control parameter

V ≥ 1, which will affect our utility-backlog tradeoff, and add to both sides the term

−V E
{
f(t) | q(t)

}
to get: 2

∆(t)− V E
{
f(t) | q(t)

}
≤ B − V E

{
f(t) | q(t)

}
(6.7)

−
3∑
j=1

E
{

(qj(t)− θj)[µj(t)−Aj(t)] | q(t)
}
.

Denote ∆V (t) = ∆(t) − V E
{
f(t) | q(t)

}
, and plug (6.2), (6.3) and (6.5) into the above,

to get:

∆V (t) ≤ B + E
{
D1(t)R1(t)[q1(t)− θ1 + V] | q(t)

}
(6.8)

+E
{
D2(t)R2(t)[q2(t)− θ2 + V] | q(t)

}
−E

{
I2(t)[q3(t)− θ3 + p(t)V] | q(t)

}
−E

{
I1(t)[q1(t)− θ1 + q2(t)− θ2 − (q3(t)− θ3)] | q(t)

}
.

We now develop our PMW algorithm by choosing an action at every time slot to minimize

the right-hand side (RHS) of (6.8) subject to (6.1). The algorithm then works as follows:

PMW: At every time slot, observe S(t) and q(t), and do the following:

1. Data Admission: For each j = 1, 2, choose Dj(t) = 1, i.e., admit the new arrivals

to qj if:

qj(t)− θj + V < 0, (6.9)

else set Dj(t) = 0 and reject the arrivals.

2The construction is the same as QLA in Section 4.1.2 of Chapter 4.

170

2. Processor Activation: Choose I1(t) = 1, i.e., activate processor P1, if q1(t) ≥ 1,

q2(t) ≥ 1, and

q1(t)− θ1 + q2(t)− θ2 − (q3(t)− θ3) > 0, (6.10)

else choose I1(t) = 0. Similarly, choose I2(t) = 1, i.e., activate processor P2, if

q3(t) ≥ 1, and

q3(t)− θ3 + p(t)V > 0, (6.11)

else choose I2(t) = 0.

3. Queueing update: Update qj(t), ∀ j, according to (6.4).

One important thing to notice here is that if we use the usual Max-Weight algorithm, i.e.,

do not use perturbation and set θj = 0, ∀ j, then (6.9) implies that we admit a new arrival

to qj only when qj + V < 0, which is impossible because qj ≥ 0 and V ≥ 1. Hence, this

example clearly demonstrates the fact that the usual Max-Weight may not be applicable

to processing network problems. Below, we show that the use of perturbation effectively

resolves this problem. The fundamental reason why Max-Weight does not work, and that

perturbation is able to resolve this problem are discussed in Section 6.8.

6.1.3 Performance of PMW

Here we analyze the performance of PMW. We first prove the following important claim:

under a proper θ vector, PMW minimizes the RHS of (6.8) over all possible policies of

arrival admission and processor activation, including those that choose actions regardless

of the constraint (6.1). We then use this claim to analyze the performance of PMW, by

comparing the value of the RHS of (6.8) under PMW to that under an alternative policy.

171

To prove the claim, we first see that the policy that minimizes the RHS of (6.8)

without the constraint (6.1) differs from PMW only in the processor activation part,

where PMW also considers the constraints q1(t) ≥ 1, q2(t) ≥ 1 and q3(t) ≥ 1. Thus if

one can show that these constraints are indeed redundant in the PMW algorithm under

a proper θ vector, i.e., one can activate the processors without considering them but still

ensure them, then PMW minimizes the RHS of (6.8) over all possible policies. In the

following, we use the following θj values:

θ1 = 2V + 1, θ2 = 2V + 1, θ3 = 3V + 1. (6.12)

We also assume that qj(0) = 1 for all j = 1, 2, 3. This can easily be satisfied by storing

an initial backlog in the queues.

We now look at the queue sizes qj(t), j = 1, 2, 3. From (6.11), P2 is activated, i.e.,

I2(t) = 1 if and only if:

q3(t) ≥ θ3 − p(t)V + 1, and q3(t) ≥ 1. (6.13)

Since p(t) = 3 or 1, we see that I2(t) = 1 whenever q3(t) ≥ θ3 − V + 1, but I2(t) = 0

unless q3(t) ≥ θ3 − 3V + 1. Since q3 can receive and deliver at most one unit of data at

a time, we get:

θ3 − V + 1 ≥ q3(t) ≥ θ3 − 3V, ∀ t. (6.14)

Using θ3 = 3V + 1, this implies:

2V + 2 ≥ q3(t) ≥ 1, ∀ t. (6.15)

172

This shows that with θ3 = 3V , the activations of P2 are always feasible even if the

constraint q3(t) ≥ 1 is removed. We now look at q1(t) and q2(t). We see from (6.9) that

for θ1, θ2 ≥ V , we have:

qj(t) ≤ θj − V, j = 1, 2. (6.16)

Also, using (6.10) and (6.14), we see that when I1(t) = 1, i.e., when P1 is turned on, we

have:

q1(t)− θ1 + q2(t)− θ2 > q3(t)− θ3 ≥ −3V. (6.17)

Combining (6.17) with (6.16), we see that if I1(t) = 1, we have:

qj(t) ≥ 2, j = 1, 2. (6.18)

This is so because, e.g., if q1(t) ≤ 1, then q1(t)−θ1 ≤ 1−θ1 = −2V . Since q2(t)−θ2 ≤ −V

by (6.16), we have:

q1(t)− θ1 + q2(t)− θ2 ≤ −2V − V = −3V,

which cannot be greater than −3V in (6.17). Thus by (6.15), (6.18), and the fact that

qj(0) ≥ 1, ∀ j, we have:

qj(t) ≥ 1, j = 1, 2, 3, ∀ t. (6.19)

This shows that by using the θj values in (6.12), PMW automatically ensures that no

queue underflow happens, and hence PMW minimizes the RHS of (6.8) over all possible

policies. In other words, the perturbation enables us to ignore the no-underflow constraint

(6.1) when doing scheduling, by properly modifying the weights.

Given the above observation, the utility performance of PMW can now be analyzed

using a similar argument as in [NH10]. Specifically, we can first prove that there exists a

stationary and randomized policy which chooses scheduling actions purely as a function

173

of S(t), and achieves E
{
µj(t) − Aj(t) | q(t)

}
= 0 for all j and E

{
f(t) | q(t)

}
= f∗av = 1

2 ,

where f∗av is the optimal average utility. Then we can compare the drift under PMW

with that under this optimal policy. Note that this analysis approach would not have

been possible here without using the perturbation to ensure (6.19). Now plugging this

policy into (6.7), we obtain:

∆(t)− V E
{
f(t) | q(t)

}
≤ B − V f∗av. (6.20)

Taking expectations over q(t) on both sides and summing it over t = 0, 1, ..., T − 1, we

get:

E
{
L(T)− L(0)

}
− V

T−1∑
t=0

E
{
f(t)

}
≤ TB − V Tf∗av. (6.21)

Now rearranging the terms, dividing both sides by V T , and using the fact that L(t) ≥ 0,

we get:

1

T

T−1∑
t=0

E
{
f(t)

}
≥ f∗av −

B

V
− E

{
L(0)

}
TV

. (6.22)

Taking a liminf as T →∞, and using E
{
L(0)

}
<∞,

fPMW
av = lim inf

T→∞

1

T

T−1∑
t=0

E
{
f(t)

}
≥ f∗av −

B

V
, (6.23)

where fPMW
av denotes the time average utility achieved by PMW. This shows that PMW

is able to achieve a time average utility that is within O(1/V) of the optimal value, and

guarantees qj(t) ≤ O(V) for all times (recall Equations (6.12), (6.15) and (6.16)). Note

that PMW is similar to the DMW algorithm developed in [JW09]. However, DMW allows

the queues to be empty when activating processors, which may lead to “deficit,” whereas

PMW effectively avoids this by using a perturbation vector.

In the following, we present the general processing network utility optimization model,

and analyze the performance of the general PMW algorithm under this general model.

174

Our analysis uses a novel combination of Lyapunov drift analysis and duality theory,

and is different from that in [NH10]. As we will see, our approach allows one to analyze

the algorithm performance without proving the existence of an optimal stationary and

randomized algorithm.

6.2 General system model

In this section, we present the general network model. We consider a network controller

that operates a general network with the goal of maximizing the time average utility,

subject to network stability. The network is assumed to operate in slotted time, i.e.,

t ∈ {0, 1, 2, ...}. We assume that there are r ≥ 1 queues in the network.

6.2.1 Network state

In every slot t, we use S(t) to denote the current network state, which indicates the

current network parameters, such as a vector of channel conditions for each link, or a

collection of other relevant information about the current network links and arrivals. We

assume that S(t) is i.i.d. every time slot, with a total of M different random network

states denoted by S = {s1, s2, . . . , sM}. 3 We let πsi = Pr{S(t) = si}. The network

controller can observe S(t) at the beginning of every slot t, but the πsi probabilities are

not necessarily known.

3Note that all our results can easily be extended to the case when S(t) evolves according to a finite
state aperiodic and irreducible Markov chain, by using the results developed in [HN10a].

175

6.2.2 The utility, traffic, and service

At each time t, after observing S(t) = si and the network backlog vector, the controller

performs an action x(t). This action represents the aggregate decisions made by the

controller at t, which can include (such as in the previous example), the set of processors

to turn on, the amount of arriving contents to accept, etc.

We denote by X (si) the set of all possible actions for network state si, assuming that

all the queues contain enough content to meet the scheduling requirements. Note that

we always have x(t) = x(si) for some x(si) ∈ X (si) whenever S(t) = si. The set X (si) is

assumed to be time-invariant and compact for all si ∈ S. If the chosen action x(t) = x(si)

at time t can be performed, i.e., it is possible and all the queues have enough content,

then the utility, traffic, and service generated by x(t) are as follows: 4

(a) The chosen action has an associated utility given by the utility function f(t) =

f(si, x
(si)) : X (si) → R;

(b) The amount of content generated by the action to queue j is determined by the

traffic function Aj(t) = Aj(si, x
(si)) : X (si) → R+, in units of content;

(c) The amount of content consumed from queue j by the action is given by the rate

function µj(t) = µj(si, x
(si)) : X (si) → R+, in units of content.

Note that Aj(t) includes both the exogenous arrivals from outside the network to queue

j, and the endogenous arrivals from other queues, i.e., the newly generated contents by

processing contents in some other queues, to queue j. We assume that the functions

4Here we implicitly assume that each action takes only one unit time. We further discuss this issue in
Section 6.2.4.

176

f(si, ·), µj(si, ·) and Aj(si, ·) are continuous, time-invariant, their magnitudes are uni-

formly upper bounded by some constant δmax ∈ (0,∞) for all si, j, and they are known

to the network operator.

In any actual algorithm implementation, however, we see that not all actions in the

set X (si) can be performed when S(t) = si, due to the fact that some queues may not

have enough contents for the action. We say that an action x(si) ∈ X (si) is feasible at

time t with S(t) = si only when the following general no-underflow constraint is satisfied:

qj(t) ≥ µj(si, x(si)), ∀ j. (6.24)

That is, all the queues must have contents greater than or equal to what will be consumed.

In the following, we assume that there exists a set of actions {x(si)
k }

k=1,2,...,r+2
i=1,...,M with

x
(si)
k ∈ X (si) and some variables ϑ

(si)
k ≥ 0 for all si and k with

∑r+2
k=1 ϑ

(si)
k = 1 for all si,

such that: ∑
si

πsi
{ r+2∑
k=1

ϑ
(si)
k [Aj(si, x

(si)
k)− µj(si, x(si)

k)]
}
≤ −η, (6.25)

for some η > 0 for all j. That is, the “stability constraints” are feasible with η-slack.

5 The slackness condition here is slightly different from the one assumed in Chapter

4. There, we consider communication networks and the actions correspond to packet

transmissions/receptions. Thus, all the actions are feasible even when the queues are

empty. Hence the slackness condition translates into the existence of a stationary and

randomized policy that stabilizes the network. Here, the condition ignores the feasibility

constraint (6.24) of the network actions, i.e., when they are performed, they need enough

5The use of r + 2 actions here is due to the use of Caratheodory’s theorem [BNO03] in the proof of
Theorem 23.

177

content in the queues. Thus, it does not immediately imply the existence of such a feasible

stationary randomized policy.

6.2.3 Queueing, average cost, and the objective

Let q(t) = (q1(t), ..., qr(t))
T ∈ Rr+, t = 0, 1, 2, ... be the queue backlog vector process of

the network, in units of contents. Due to the feasibility condition (6.24) of the actions,

we see that the queues evolve according to the following dynamics:

qj(t+ 1) = qj(t)− µj(t) +Aj(t), ∀j, t ≥ 0, (6.26)

with some ||q(0)|| < ∞. Note that using a nonzero qj(0) can be viewed as placing an

“initial stock” in the queues to facilitate algorithm implementation. In this chapter, we

adopt the following notion of queue stability:

q , lim sup
t→∞

1

t

t−1∑
τ=0

r∑
j=1

E
{
qj(τ)

}
<∞. (6.27)

We also use fΠ
av to denote the time average utility induced by an action-choosing policy

Π, defined as:

fΠ
av , lim inf

t→∞

1

t

t−1∑
τ=0

E
{
fΠ(τ)

}
, (6.28)

where fΠ(τ) is the utility accrued at time τ by policy Π. We call an action-choosing

policy feasible if at every time slot t it only chooses actions from the possible action set

X (S(t)) that satisfy (6.24). We then call a feasible action-choosing policy under which

(6.27) holds a stable policy, and use f∗av to denote the optimal time average utility over

all stable policies.

In every slot, the network controller observes the current network state and the queue

backlog vector, and chooses a feasible control action that ensures (6.24), with the objective

178

of maximizing the time average utility subject to network stability. Note that if (6.24)

can be ignored, and if any processor only requires contents from a single queue, then this

problem falls into the general stochastic network optimization framework considered in

[GNT06], in which case it can be solved by using the usual Max-Weight algorithm to

achieve a utility that is within O(1/V) of the optimal while ensuring that the average

network backlog is O(V).

6.2.4 Discussion of the model

We note that the model is very general and can be used to model many problems that

involve such no-underflow constraints. For instance, manufacturing networks where parts

are assembled into products, or energy harvesting networks that are powered by finite

capacity energy storage devices.

Our model assumes that the network operates in slotted time. This implicitly implies

that all the network actions must consume only one unit time. However, in many appli-

cations, e.g., stream processing, different processors may take different amounts of time

to process different data. Although this problem can easily be incorporated into our net-

work by using a large slot size, such an easy fix may lead to utility loss. Quantifying the

utility loss due to slot length selection and designing algorithms that allow for arbitrary

heterogeneous action times are interesting problems of our future research.

179

6.3 Upper bounding the optimal utility

In this section, we first obtain an upper bound on the optimal utility that the network

controller can achieve. This upper bound will later be used to analyze the performance

of our algorithm. The result is summarized in the following theorem.

Theorem 23. Suppose that the initial queue backlog q(t) satisfies E
{
qj(0)

}
<∞ for all

j = 1, ..., r. Then we have:

V f∗av ≤ φ∗, (6.29)

where φ∗ is the optimal value of the following deterministic optimization problem:

max : φ =
∑
si

πsiV

r+2∑
k=1

a
(si)
k f(si, x

(si)
k) (6.30)

s.t.
∑
si

πsi

r+2∑
k=1

a
(si)
k Aj(si, x

(si)
k) =

∑
si

πsi

r+2∑
k=1

a
(si)
k µj(si, x

(si)
k), (6.31)

x
(si)
k ∈ X (si), ∀ si, k, (6.32)

a
(si)
k ≥ 0, ∀ si, k,

∑
k

a
(si)
k = 1,∀ si. (6.33)

Proof. See Section 6.10.1.

Note that the problem (6.30) only requires that the time average input rate into a

queue is equal to its time average output rate. This requirement ignores the action feasibil-

ity constraint (6.24), and makes (6.30) easier to solve than the actual scheduling problem.

We now look at the dual problem of the problem (6.30). The following lemma shows that

the dual problem of (6.30) does not have to include the variables {a(si)
k }

k=1,...,r+2
i=1,...,M . This

lemma will also be useful for our later analysis.

Lemma 8. The dual problem of (6.30) is given by:

min : g(γ), s.t. γ ∈ Rr, (6.34)

180

where the function g(γ) is defined as follows:

g(γ) = sup
x(si)∈X (si)

∑
si

πsi

{
V f(si, x

(si))−
∑
j

γj
[
Aj(si, x

(si))− µj(si, x(si))
]}
. (6.35)

Moreover, letting γ∗ be any optimal solution of (6.34), we have g(γ∗) ≥ φ∗.

Proof. See Section 6.10.2.

For our later analysis, it is useful to define the following function:

gsi(γ) = sup
x(si)∈X (si)

{
V f(si, x

(si))−
∑
j

γj
[
Aj(si, x

(si))− µj(si, x(si))
]}
. (6.36)

That is, gsi(γ) is the dual function of (6.30) when there is a single network state si. We

can see from (6.35) and (6.36) that:

g(γ) =
∑
si

πsigsi(γ). (6.37)

In the following, we use γ∗ = (γ∗1 , ..., γ
∗
r)T to denote an optimal solution of the problem

(6.34).

6.4 The general perturbed Max-Weight algorithm and its

performance

In this section, we develop the general Perturbed Max-Weight algorithm (PMW) to solve

our scheduling problem. To start, we first choose a perturbation vector θ = (θ1, ..., θr)
T .

Then we define the following weighted perturbed Lyapunov function with some positive

constants {wj}rj=1:

L(t) =
1

2

r∑
j=1

wj
(
qj(t)− θj

)2
. (6.38)

181

We then define the one-slot conditional drift as in (6.7), i.e., ∆(t) = E
{
L(t + 1) −

L(t) | q(t)
}

. We similarly use the “drift-plus-penalty” approach in Section 6.1 to con-

struct the algorithm. Specifically, we first use the queueing dynamic equation (6.26), and

have the following lemma:

Lemma 9. Under any feasible control policy that can be implemented at time t, we have:

∆(t)− V E
{
f(t) | q(t)

}
≤ B − V E

{
f(t) | q(t)

}
(6.39)

−
r∑
j=1

wj
(
qj(t)− θj

)
E
{

[µj(t)−Aj(t)] | q(t)
}
,

where B = δ2
max

∑r
j=1wj.

Proof. See Section 6.10.3.

The general Perturbed Max-Weight algorithm (PMW) is then obtained by choosing

an action x(t) ∈ X (S(t)) at time t to minimize the right-hand side (RHS) of (6.39) subject

to (6.24). Specifically, define the function D
(si)
θ,q(t)(x) as:

D
(si)
θ,q(t)(x) , V f(si, x) +

r∑
j=1

wj
(
qj(t)− θj

)[
µj(si, x)−Aj(si, x)

]
. (6.40)

We see that the function D
(si)
θ,q(t)(x) is indeed the term inside the conditional expectation

on the RHS of (6.39) when S(t) = si. We now also define D
(si)∗
θ,q(t) to be the optimal value

of the following problem:

max : D
(si)
θ,q(t)(x), s.t., x(si) ∈ X (si). (6.41)

Hence D
(si)∗
θ,q(t) is the maximum value of D

(si)
θ,q(t) over all possible policies, including those

that may not consider the no-underflow constraint (6.24). The general Perturbed Max-

Weight algorithm (PMW) then works as follows:

182

PMW: Initialize the perturbation vector θ. At every time slot t, observe the current

network state S(t) and the backlog q(t). If S(t) = si, choose x(si) ∈ X (si) subject to

(6.24) that minimizes D
(si)
θ,q(t)(x).

Note that depending on the problem structure, the PMW algorithm can usually be

implemented easily, e.g., [NH10], [Nee06c]. Now we analyze the performance of the PMW

algorithm. We prove our result under the following condition:

Condition 1. There exists some finite constant C ≥ 0, such that at every time slot t

with a network state S(t), the value of D
(S(t))
θ,q(t)(x) under PMW is at least D

(S(t))∗
θ,q(t) − C.

The immediate consequence of Condition 1 is that PMW also minimizes the RHS of

(6.39), i.e., the conditional expectation, to within C of its minimum value over all possible

policies. If C = 0, then PMW simultaneously ensures (6.24) and minimizes the RHS of

(6.39), e.g., as in the example in Section 6.1. However, we note that Condition 1 does

not require the value of D
(S(t))
θ,q(t)(x) to be exactly the same as D

(S(t))∗
θ,q(t) . This allows for

more flexibility in constructing the PMW algorithm. (See Section 6.6 for an example.)

We also note that Condition 1 can be ensured, e.g., by carefully choosing the θj values

to ensure qj(t) ≥ δmax for all times [NH10]. We show that, under Condition 1, PMW

achieves a time average utility that is within O(1/V) of f∗av, while guaranteeing that the

time average network queue size is O(V) +
∑

j wjθj , which is O(V) if θ = Θ(V) and

wj = O(1), ∀ j. The following theorem summarizes PMW’s performance results.

183

Theorem 24. Suppose that (6.25) holds, that Condition 1 holds, and that E
{
qj(0)

}
<∞

for all j = 1, ..., r. Then under PMW, we have: 6

fPMW
av ≥ f∗av −

B + C

V
, (6.42)

qPMW ≤ B + C + 2V δmax
η

+
r∑
j=1

wjθj . (6.43)

Here B = δ2
max

∑r
j=1wj, η is the slackness parameter in Section 6.2.2, fPMW

av is defined

in (6.28) to be the time average expected utility of PMW, and qPMW is the time average

expected weighted network backlog under PMW, defined:

qPMW , lim sup
t→∞

1

t

t−1∑
τ=0

r∑
j=1

wjE
{
qj(τ)

}
.

Proof. See Section 6.10.4.

Theorem 24 shows that if Condition 1 holds, then PMW can be used as in previous

networking problems, e.g., [Nee06c], [HN10c], to obtain explicit utility-backlog tradeoffs.

We note that a condition similar to Condition 1 was assumed in [DL05]. However, [DL05]

only considers the usual Max-Weight algorithm, in which case (6.24) may not be satisfied

for all time slots. PMW instead resolves this problem by carefully choosing the perturba-

tion vector. One such example of PMW is the recent work [NH10], which applies PMW

to an assembly line scheduling problem and achieves an [O(1/V), O(V)] utility-backlog

tradeoff.

We emphasize that though the results in Theorem 24 look similar to those in the

data network problems [GNT06], the proof techniques are very different. Our analysis

uses a novel combination of Lyapunov drift analysis and duality theory, and allows one

to obtain the performance result without proving the existence of an optimal stationary

6We see that (6.43) ensures (6.27), hence the network is stable under PMW.

184

and randomized policy. Also, though the no-underflow constraints make the problems

in this chapter very different from the communication network problems, the method-

ology developed in Chapter 4 for obtaining improved tradeoffs can still be applied to

such problems. Indeed, in Chapter 7, we develop a novel algorithm for achieving the

[O(1/V), O([log(V)]2)] utility-buffer tradeoff for energy harvesting networks, which also

involve such no-underflow constraints.

6.5 Discussion of finding the perturbation value

In the PMW algorithm, we have assumed that the value of the perturbation vector θ

can be chosen to ensure Condition 1. However, developing a systematic approach for

finding such a perturbation value is still an open problem. In the following section, we

show how to find the θ value for a general class of processing networks. This section

highlights the fact that although the value of θ is application-specific, we can still find

its value efficiently in many cases. More discussions regarding the role of θ can be found

in Section 6.8.

6.6 Constructing PMW for stochastic processing networks

with output reward

In this section, we look at a specific yet general processing network model, and explicitly

construct a PMW algorithm, including finding the proper θ vector and choosing actions

at each time slot.

185

6.6.1 Network model

We assume that the network is modeled by an acyclic directed graph G = (Q,P,L).

Here Q = Qs ∪ Qin is the set of queues, consisting of the set of source queues Qs where

arrivals enter the network, and the set of internal queues Qin where content are stored

for further processing. P = P in∪Po is the set of processors, consisting of a set of internal

processors P in, which generate partially processed contents for further processing at other

processors, and output processors Po, which generate fully processed contents and deliver

them to the output. L is the set of directed links that connects Q and P. Note that a link

only exists between a queue in Q and a processor in P. We denote N in
p = |P in|, No

p = |Po|

and Np = N in
p +No

p . We also denote N s
q = |Qs|, N in

q = |Qin| and Nq = N s
q +N in

q .

Each processor Pn, when activated, consumes a certain amount of content from a set

of supply queues, denoted by QS
n , and generates some amount of new contents. These

new contents either go to a set of demand queues, denoted by QD
n , if Pn ∈ P in, or are

delivered to the output if Pn ∈ Po. For any queue qj ∈ Q, we use PSj to denote the set of

processors that qj serves as a supply queue, and use PDj to denote the set of processors

that qj serves as a demand queue. An example of such a network is shown in Fig. 6.2.

In the following, we assume that |QD
i | = 1, ∀ Pi ∈ P in, i.e., each processor only generates

contents for a single demand queue.

We use βnj to denote the amount processor Pn consumes from a queue qj in QS
n when

it is activated. For each Pi ∈ P in, we also use αih to denote the amount Pi generates

into the queue qh if qh = QD
i , when it is activated. For a processor Pk ∈ Po, we use

186

αko to denote the amount of output generated by it when it is turned on. 7 We denote

βmax = maxi,j βij , βmin = mini,j βij and αmax = maxi,j,[αij , αio]. We assume that

βmin, βmax, αmax > 0. We also define Mp to be the maximum number of supply queues

that any processor can have, define Md
q to be the maximum number of processors that

any queue can serve as a demand queue for, and define M s
q to be the maximum number

of processors that any queue can serve as a supply queue for. We use Rj(t) to denote the

amount of content arriving at a source queue qj ∈ Qs at time t. We assume that Rj(t) is

i.i.d. every slot, and that Rj(t) ≤ Rmax for all qj ∈ Qs and all t. We assume that there

are no exogenous arrivals at the queues in Qin.

R1

R2

R4

R3

Output 1

q1

q2

q3

q4

q5

q6

P2

P1 P3

P4

P5
Output 2

Figure 6.2: A general processing network. A dotted line between two processors means that the
processors share some common resources and thus cannot be activated at the same time.

We assume that in every slot t, admitting any unit amount of Rj(t) arrival incurs a

cost of cj(t), and that activating any internal processor Pi ∈ P in incurs a cost of Ci(t),

whereas activating any output processor Pk ∈ Po generates a profit of pk(t) per unit

output content. 8 We assume that cj(t), Ci(t), pk(t) are all i.i.d. every time slot. In the

7Note that here we only consider binary actions of processors, i.e., ON/OFF. Our results can also be
generalized to the case when there are multiple operation levels under which different amounts of content
are consumed and generated.

8This can be viewed as the difference between profit and cost associated with these processors.

187

following, we also assume that pmin ≤ pk(t) ≤ pmax, and that cmin ≤ cj(t) ≤ cmax and

Cmin ≤ Ci(t) ≤ Cmax for all k, j, i and for all time.

Below, we use In(t) = 1 to denote the activation decision of Pn, i.e., In(t) = 1

(In(t) = 0) means that Pn is activated (turned off). We also use Dj(t) ∈ [0, 1] to denote

the portion of arrivals from Rj(t) that are admitted into qj . We assume that there

exist some general constraints on how the processors can be activated, which can be due

to, e.g., resource sharing among processors. We model these constraints by defining an

activation vector I(t) = (I1(t), ..., INp(t)), and then assume that I(t) ∈ I for all times,

where I denotes the set of all possible processor activation decision vectors, assuming all

the queues have enough contents for processing. We assume that if a vector I ∈ I, then

by changing one element of I from one to zero, the newly obtained vector I ′ satisfies

I ′ ∈ I. Note that the chosen vector I(t) must always ensure the constraint (6.24), which

in this case implies that I(t) has to satisfy the following constraint:

qj(t) ≥
∑
n∈PSj

In(t)βnj , ∀ j = 1, ..., r. (6.44)

Under this constraint, we see that the queues evolve according to the following queueing

dynamics:

qj(t+ 1) = qj(t)−
∑
n∈PSj

In(t)βnj +Dj(t)Rj(t), ∀j ∈ Qs,

qj(t+ 1) = qj(t)−
∑
n∈PSj

In(t)βnj +
∑
n∈PDj

In(t)αnj , ∀j ∈ Qin.

Note that we have used j ∈ Q to represent qj ∈ Q, and use n ∈ P to represent Pn ∈ P in

the above for notation simplicity. The objective is to maximize the time average of the

following utility function:

f(t) ,
∑
k∈Po

Ik(t)pk(t)αko −
∑
j∈Qs

Dj(t)Rj(t)cj(t)−
∑
i∈Pin

Ii(t)Ci(t). (6.45)

188

Our model with the objective function (6.45) can be used to model applications where

generating completely processed contents is the primary target, e.g., [NH10].

6.6.2 Relation to the general model

We see that in this network, the network state, the action, and the traffic and service

functions are as follows:

• The network state is given by: S(t) = (cj(t), j ∈ Qs, Ci(t), i ∈ P in, pk(t), k ∈ Po).

• The action x(t) = (Dj(t), j ∈ Qs, In(t), n ∈ P).

• The arrival functions are given by: Aj(t) = Aj(S(t), x(t)) = Dj(t)Rj(t), ∀ qj ∈ Qs,

and Aj(t) = Aj(S(t), x(t)) =
∑

n∈PDj
In(t)αnj , ∀ qj ∈ Qin.

• The service functions are given by: µj(t) = µj(S(t), x(t)) =
∑

n∈PSj
In(t)βnj , ∀ j.

Thus, we see that this network model falls into the general processing network framework

in Section 6.2, and Theorem 24 applies in this case. Therefore, to ensure the algorithm

performance, we only have to construct our PMW algorithm to ensure that Condition 1

holds. Also note that in this case, we have:

δmax = max
[
νmax, N

o
ppmaxαmax, N

s
qRmaxcmax +N in

p Cmax
]
. (6.46)

Here νmax is defined:

νmax , max
[
Md
q αmax, Rmax,M

s
qβmax

]
. (6.47)

6.6.3 The PMW algorithm

We now obtain the PMW algorithm for this general network. In this case, we look for

a perturbation vector that is the same in all entries, i.e., θ = θ1. We first compute the

189

“drift-plus-penalty” expression using the weighted perturbed Lyapunov function defined

in (6.38) under some given positive constants {wj}rj=1 and some nonzero constant θ:

∆(t)− V E
{
f(t) | q(t)

}
(6.48)

≤ B −
∑
j∈Qs

E
{
wj
[
qj(t)− θ

][∑
n∈PSj

In(t)βnj −Rj(t)Dj(t)
]
| q(t)

}
−
∑
j∈Qin

E
{
wj
[
qj(t)− θ

][∑
n∈PSj

In(t)βnj −
∑
n∈PDj

In(t)αnj
]
| q(t)

}
−V E

{ ∑
k∈Po

Ik(t)pk(t)αko −
∑
j∈Qs

Dj(t)Rj(t)cj(t)−
∑
i∈Pin

Ii(t)Ci(t) | q(t)
}
.

Here B = δ2
max

∑
j wj with δmax defined in (6.46). Rearranging the terms in (6.48), we

get the following:

∆(t)− V E
{
f(t) | q(t)

}
(6.49)

≤ B +
∑
j∈Qs

E
{[
V cj(t) + wj(qj(t)− θ)

]
Dj(t)Rj(t) | q(t)

}
−
∑
k∈Po

E
{
Ik(t)

[∑
j∈QSk

wj(qj(t)− θ)βkj + V pk(t)αko
]
| q(t)

}
−
∑
i∈Pin

E
{
Ii(t)

[∑
j∈QSi

wj(qj(t)− θ)βij − wh(qh(t)− θ)αih − V Ci(t)
]
| q(t)

}
.

Here in the last term qh = QD
i . We now present the PMW algorithm. We see that in this

case the D
(S(t))
θ,q(t)(x) function is given by:

D
(S(t))
θ,q(t)(x) = −

∑
j∈Qs

[
V cj(t) + wj(qj(t)− θ)

]
Dj(t)Rj(t) (6.50)

+
∑
k∈Po

Ik(t)
[∑
j∈QSk

wj(qj(t)− θ)βkj + V pk(t)αko
]

+
∑
i∈Pin

Ii(t)
[∑
j∈QSi

wj(qj(t)− θ)βij − wh(qh(t)− θ)αih − V Ci(t)
]
.

190

Our goal is to design PMW in a way such that under any network state S(t), the value of

D
(S(t))
θ,q(t)(x) is close to D

(S(t))∗
θ,q(t) (x), which is the maximum value of D

(S(t))
θ,q(t)(x) without the

no-underflow constraint (6.44), i.e.,

D
(S(t))∗
θ,q(t) (x) = max

Dj(t)∈[0,1],I(t)∈I
D

(S(t))
θ,q(t)(x).

Specifically, PMW works as follows:

PMW: Initialize θ (to be specified in (6.55)). At every time slot t, observe S(t) and

q(t), and do the following:

1. Content Admission: Choose Dj(t) = 1, i.e., admit all new arrivals to qj ∈ Qs if:

V cj(t) + wj(qj(t)− θ) < 0, (6.51)

else set Dj(t) = 0.

2. Processor Activation: For each Pi ∈ P in, define its weight W
(in)
i (t) as:

W
(in)
i (t) =

[∑
qj∈QSi

wj [qj(t)− θ]βij − wh[qh(t)− θ]αih − V Ci(t)
]+
, (6.52)

where qh = QD
i . Similarly, for each Pk ∈ Po, define its weight W

(o)
k (t) as:

W
(o)
k (t) =

[∑
qj∈QSk

wj [qj(t)− θ]βkj + V pk(t)αko
]+
. (6.53)

Then, choose an activation vector I(t) ∈ I to maximize:

W (t) ,
∑
i∈Pin

Ii(t)W
(in)
i (t) +

∑
k∈Po

Ik(t)W
(o)
k (t), (6.54)

subject to the following queue edge constraints:

(a) For each Pi ∈ P in, set Ii(t) = 1, i.e., activate processor Pi, only if:

• qj(t) ≥M s
qβmax for all qj ∈ QS

i & qh(t) ≤ θ, where qh = QD
i .

(b) For each Pk ∈ Po, choose Ik(t) = 1 only if:

• qj(t) ≥M s
qβmax for all qj ∈ QS

k .

191

The approach of imposing the queue edge constraints was inspired by the work [Nee10a],

where similar constraints are imposed for routing problems. Note that without these

queue edge constraints, PMW is the same as the action that maximizes D
(si)
θ,q(t)(x) without

the no-underflow constraint (6.44).

6.6.4 Performance

Here we show that PMW indeed ensures that the value of D
(S(t))
θ,q(t)(x) is within some

additive constant of D
(S(t))∗
θ,q(t) (x). In the following, we denote wmax = maxj wj and wmin =

minj wj . We also assume that:

θ ≥ max
[V αmaxpmax
wminβmin

,
V cmin
wmin

+M s
qβmax

]
. (6.55)

We also assume that the {wj}rj=1 values are chosen such that for any processor Pi ∈ P in

with demand queue qh, we have for any supply queue qj ∈ QS
i that:

wjβij ≥ whαih. (6.56)

As we will see in the proof of Lemma 10, these wj values are chosen to resolve the technical

issues caused by the different content generation and consumption rates. We note that

(6.55) can easily be satisfied and only requires θ = Θ(V). A way of choosing the {wj}rj=1

values to satisfy (6.56) is given in Section 6.10.5. Note that in the special case when

βij = αij = 1 for all i, j, simply using wj = 1, ∀ j meets the condition (6.56).

We first look at the queueing bounds. By (6.51), qj admits new arrivals only when

qj(t) < θ − V cmin/wj . Thus:

qj(t) ≤ θ − V cmin/wj +Rmax, ∀ qj ∈ Qs, t. (6.57)

192

Now by the processor activation rule, we also see that:

0 ≤ qj(t) ≤ θ +Md
q αmax, ∀ qj ∈ Qin, t. (6.58)

This is because under the PMW algorithm, a processor is activated only when all its

supply queues have at least M s
qβmax units of contents, and when its demand queue has at

most θ units of contents. The first requirement ensures that when we activate a processor,

all its supply queues have enough contents, while the second requirement ensures that

qj(t) ≤ θ+Md
q αmax. Using the definition of νmax in (6.47), we can compactly write (6.57)

and (6.58) as:

0 ≤ qj(t) ≤ θ + νmax, ∀ qj ∈ Q, t. (6.59)

Recall that by the discussion in Section 6.6.2, the problem described in this section falls

into the general framework presented in Section 6.2. Hence, to prove the performance of

the PMW algorithm, it suffices to prove the following lemma, which shows that Condition

1 holds for some finite constant C under PMW.

Lemma 10. Suppose that (6.55) and (6.56) hold. Then under PMW, D
(S(t))
θ,q(t)(x) ≥

D
(S(t))∗
θ,q(t) (x)− C, where C = NpwmaxMpνmaxβmax.

Proof. See Section 6.10.6.

We now use Theorem 24 to have the following corollary concerning the performance

of PMW in this case:

Corollary 3. Suppose that (6.25), (6.55) and (6.56) hold. Then under PMW, (6.59)

holds, and that:

fPMW
av ≥ f∗av −

B + C

V
, (6.60)

193

qPMW ≤ B + C + 2V δmax
η

+ θ
r∑
j=1

wj , (6.61)

where C = NpwmaxMpνmaxβmax, fPMW
av and qPMW are the time average expected utility

and time average expected weighted backlog under PMW, respectively, and δmax is given

in (6.46). �

Also, since (6.55) only requires θ = Θ(V), and wj = Θ(1) for all j (shown in Section

6.10.5), we see that PMW achieves an [O(1/V), O(V)] utility-backlog tradeoff in this case.

6.7 Simulation

In this section, we simulate the example given in Fig. 6.2. In this example, we assume

that each Rj(t) is Bernoulli being 0 or 2 with equal probability. For each Pi ∈ P in, i.e.,

P1, P2, P3, Ci(t) is assumed to be 1 or 10 with probabilities 0.3 and 0.7, respectively.

For the output processors Pk ∈ Po, i.e., P4 and P5, we assume that pk(t) = 1 or 5 with

probabilities 0.8 and 0.2, respectively. We assume that each processor, when activated,

takes one unit of content from each of its supply queues and generates two units of

contents into its demand queue (or to the output if it is an output processor). Due to

the activation constraints, P1 and P2 can not be activated at the same time. Also, only

one among P3, P4, P5 can be turned on at any time. Note that in this case, we have

cj(t) = 0 for all source queues qj . It can be seen that in this case Mp = M s
q = Md

q = 2,

βmax = βmin = 1, and αmax = 2. Using the results in Section 6.10.5, we choose w6 = 1,

w1 = w4 = w5 = 2, w2 = w3 = 4. We also use θ = 10V according to (6.55). We simulate

the PMW algorithm for V ∈ {5, 7, 10, 15, 20, 50, 100}. Each simulation is run over 5×106

slots.

194

Fig. 6.3 shows the utility and backlog performance of the PMW algorithm. We see

that as V increases, the average utility performance quickly converges to the optimal

value. The average backlog size also only grows linearly in V . Fig. 6.4 also shows three

0 20 40 60 80 100
1.85

1.86

1.87

1.88

1.89

1.9

1.91

1.92

1.93

1.94

1.95

V 0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

V

Utility Backlog

Figure 6.3: Utility and backlog performance of PMW.

sample path queue processes in the first 104 slots under V = 100. We see that no queue

has an underflow. This shows that all the activation decisions of PMW are feasible.

It is also easy to verify that the queueing bounds (6.57) and (6.58) hold. We observe

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

1000

1200

Time

Q
u

eu
e

S
iz

e

q
1

q
3

q
5

Figure 6.4: Sample path backlog processes with V = 100.

in Fig. 6.4 that the queue sizes usually fluctuate around certain fixed values. This is

consistent with the exponential attraction result in Theorem 6. Hence our results can

195

also be extended, using the results developed in [HN11a], to achieve an average utility

that is within O(1/V) of the optimal with only Θ([log(V)]2) average backlog size.

6.8 Perturbation and tracking the Lagrange multiplier

Note that although the main difference between the PMW algorithm and the usual Max-

Weight algorithm is the use of the perturbation vector θ, this seemingly small modification

has a large effect on algorithm design for processing networks. To see this, first recall that

we have shown in Section 6.1.2 that the usual Max-Weight algorithm cannot be applied

to this problem.

The reason perturbation resolves this issue is as follows. It has been shown in Chapter

4 that Max-Weight applied to a queueing problem is equivalent to solving a correspond-

ing deterministic optimization problem using the randomized incremental subgradient

method (RISM) [BNO03], with the backlog vector being the Lagrange multiplier. Thus

Max-Weight relies on using the backlog vector to track the optimal Lagrange multiplier

value for achieving the desired utility performance, and the backlog vector under Max-

Weight will move towards the optimal Lagrange multiplier. However, in processing net-

work problems, due to the equality constraints in (6.32), the optimal Lagrange multiplier

value may be negative. In this case, we can no longer use only the queue size to represent

the Lagrange multiplier as the queue will be stuck at zero and the Max-Weight algorithm

will not run properly. This is shown in Fig. 6.5.

The PMW algorithm instead resolves this problem by using the queue size minus

the perturbation to represent the Lagrange multiplier. This is equivalent to “lifting” the

196

Lagrange multiplier by the perturbation value, and making it trackable by the queue

size. If we choose the perturbation carefully enough to ensure that no further deviation

from the optimal Lagrange multiplier will happen, we can guarantee that no underflow

ever happens. Then under the PMW algorithm, the queue size minus the perturbation

will move towards the optimal Lagrange multiplier and we can thus achieve the close-to-

optimal utility performance, as in the data network case.

γ*

Time

Start Here γ*+θ

Time
Start Here

Q size

Before Perturbation After Perturbation

Can't happen!

θ

γ*

Figure 6.5: An explanation on why perturbation is needed and effective.

6.9 Chapter summary

In this chapter, we develop the Perturbed Max-Weight algorithm (PMW) for utility op-

timization problems in complex networks that involve the “no-underflow” constraints.

PMW is based on the usual Max-Weight algorithm for data networks. It has two main

functionalities: queue underflow prevention and utility optimal scheduling. PMW simul-

taneously achieves both objectives by carefully perturbing the weights used in the usual

197

Max-Weight algorithm. We show that PMW is able to achieve an [O(1/V), O(V)] utility-

backlog tradeoff. The PMW algorithm developed here can be applied to problems in the

areas of data fusion, stream processing and cloud computing.

6.10 Proofs of the chapter

6.10.1 Proof of Theorem 23

We prove Theorem 23 in this section, using an argument similar to the one used in

[HN10c].

Proof. (Theorem 23) Consider any stable scheduling policy Π, i.e., the conditions (6.24)

and (6.27) are satisfied under Π. Let {(f(0),A(0),µ(0)), (f(1),A(1),µ(1)), ...} be a se-

quence of (utility, arrival, service) triple generated by Π. Then there exists a subsequence

of times {Ti}i=1,2,... such that Ti → ∞ and that the limiting time average utility over

times Ti is equal to the liminf average utility under Π (defined by (6.28)). Now define

the conditional average of utility, and arrival minus service over T slots to be:

(φ(si)(T); ε
(si)
1 (T); ...; ε(si)r (T)) ,

1

T

T−1∑
t=0

E
{
f(t); ε1(t); ...; εr(t) | S(t) = si

}
,

where εj(t) = Aj(t)−µj(t). Using Caratheodory’s theorem, it can be shown, as in [HN10c]

that, there exists a set of variables {a(si)
k (T)}r+2

k=1 and a set of actions {x(si)
k (T)}r+2

k=1 such

that:

φ(si)(T) =
r+2∑
k=1

a
(si)
k (T)f(si, x

(si)
k (T)),

and for all j = 1, ..., r that:

ε
(si)
j (T) =

r+2∑
k=1

a
(si)
k (T)[Aj(si, x

(si)
k (T))− µj(si, x(si)

k (T))].

198

Now using the continuity of f(si, ·), Aj(si, ·), µj(si, ·), and the compactness of all the

actions sets X (si), we can thus find a sub-subsequence T̃i →∞ of {Ti}i=1,2,... that:

a
(si)
k (T̃i)→ a

(si)
k , x

(si)
k (T̃i))→ x

(si)
k , φ(si)(T̃i)→ φ(si), ε

(si)
j (T̃i)→ ε

(si)
j , ∀ j = 1, ..., r.

Therefore the time average utility under the policy Π can be expressed as:

fΠ
av =

∑
si

πsiφ
(si) =

∑
si

πsi

r+2∑
k=1

a
(si)
k f(si, x

(si)
k). (6.62)

Similarly, the average arrival rate minus the average service rate under Π can be written

as:

εj =
∑
si

πsiε
(si)
j (6.63)

=
∑
si

πsi

r+2∑
k=1

a
(si)
k [Aj(si, x

(si)
k)− µj(si, x(si)

k)]

≤ 0.

The last inequality is due to the fact that Π is a stable policy and that E
{
qj(0)

}
< ∞,

hence the average arrival rate to any qj must be no more than the average service rate

of the queue [Nee03]. However, by (6.24) we see that what is consumed from a queue is

always no more that what is generated into the queue. This implies that the input rate

into a queue is always no less than its output rate. Thus, εj ≥ 0 for all j. Therefore we

conclude that εj = 0 for all j. Using this fact and (6.62), we see that V fΠ
av ≤ φ∗, where

φ∗ is given in (6.30). This proves Theorem 23.

6.10.2 Proof of Lemma 8

We prove Lemma 8 here.

199

Proof. (Lemma 8) It is easy to see from (6.30) that the dual function is given by:

ĝ(γ) = sup
x
(si)

k ,a
(si)

k

∑
si

πsi

{ r+2∑
k=1

a
(si)
k V f(si, x

(si)
k) (6.64)

−
∑
j

γj

r+2∑
k=1

a
(si)
k

[
Aj(si, x

(si)
k)− µj(si, x(si)

k)
]}
.

Due to the use of the {a(si)
k }

k=1,...,r+2
i=1,...,M variables, it is easy to see that ĝ(γ) ≥ g(γ). How-

ever, if {x(si)}Mi=1 is a set of maximizers of g(γ), then the set of variables {x(si)
k , a

(si)
k }

k=1,...,r+2
i=1,...,M

where for each si, x
(si)
k = x(si) for all k, and a

(si)
1 = 1 with a

(si)
k = 0 for all k ≥ 2, will

also be maximizers of ĝ(γ). Thus g(γ) ≥ ĝ(γ). This shows that g(γ) = ĝ(γ), and hence

g(γ) is the dual function of (6.30). g(γ∗) ≥ φ∗ follows from weak duality [BNO03].

6.10.3 Proof of Lemma 9

Here we prove Lemma 9.

Proof. Using the queueing equation (6.26), we have:

[qj(t+ 1)− θj]2 = [(qj(t)− µj(t) +Aj(t))− θj]2

= [qj(t)− θj]2 + (µj(t)−Aj(t))2 − 2
(
qj(t)− θj

)
[µj(t)−Aj(t)]

≤ [qj(t)− θj]2 + 2δ2
max − 2

(
qj(t)− θj

)
[µj(t)−Aj(t)].

Multiplying both sides with
wj
2 and summing the above over j = 1, ..., r, we see that:

L(t+ 1)− L(t) ≤ B −
r∑
j=1

wj
(
qj(t)− θj

)
[µj(t)−Aj(t)],

where B = δ2
max

∑r
j=1wj . Now add to both sides the term −V f(t), we get:

L(t+ 1)− L(t)− V f(t) ≤ B − V f(t)−
r∑
j=1

wj
(
qj(t)− θj

)
[µj(t)−Aj(t)]. (6.65)

Taking expectations over the random network state S(t) on both sides conditioning on

q(t) proves the lemma.

200

6.10.4 Proof of Theorem 24

Here we prove Theorem 24. We first have the following simple lemma.

Lemma 11. For any network state si, we have:

D
(si)∗
θ,q(t) = gsi((q(t)− θ)⊗w), (6.66)

where w = (w1, ..., wr)
T and a⊗ b = (a1b1, ..., anbn)T .

Proof. By comparing (6.41) with (6.36), we see that the lemma follows.

Proof. (Theorem 24) We first recall the equation (6.65) as follows:

L(t+ 1)− L(t)− V f(t) ≤ B − V f(t)−
r∑
j=1

wj
(
qj(t)− θj

)
[µj(t)−Aj(t)]. (6.67)

Using D
(si)
θ,q(t)(x) defined in (6.40), this can be written as:

L(t+ 1)− L(t)− V f(t) ≤ B −D(S(t))
θ,q(t)(x(t)).

Here x(t) is PMW’s action at time t. According to Condition 1, we see that for any

network state S(t) = si, PMW ensures (6.24), and that:

D
(si)
θ,q(t)(x) ≥ D(si)∗

θ,q(t) − C.

Using (6.66), this implies that under PMW,

L(t+ 1)− L(t)− V f(t) ≤ B − gsi((q(t)− θ)⊗w) + C.

Taking expectations over the random network state on both sides conditioning on q(t),

and using (6.37), i.e., g(γ) =
∑

si
πsigsi(γ), we get:

∆(t)− V E
{
f(t) | q(t)

}
≤ B + C − g((q(t)− θ)⊗w). (6.68)

Now using Theorem 23 and Lemma 8, we have:

V f∗av ≤ φ∗ ≤ g(γ∗) ≤ g((q(t)− θ)⊗w).

201

Therefore,

∆(t)− V E
{
f(t) | q(t)

}
≤ B + C − V f∗av. (6.69)

Taking expectations over q(t) on both sides and summing the above over t = 0, ..., T − 1,

we get:

E
{
L(T)− L(0)

}
−
T−1∑
t=0

V E
{
f(t)

}
≤ T (B + C)− TV f∗av.

Rearranging terms, dividing both sides by V T , using the facts that L(t) ≥ 0 and

E
{
L(0)

}
<∞, and taking the liminf as T →∞, we get:

fPMW
av ≥ f∗av − (B + C)/V. (6.70)

This proves (6.42). Now we prove (6.43). First, by using the definition of ĝ(γ) in (6.64),

and plugging in the {x(si)
k , ϑ

(si)
k }

k=1,...,r+2
i=1,...,M variables in the η-slackness assumption (6.25)

in Section 6.2.2, we see that:

ĝ((q(t)− θ)⊗w) ≥ η
r∑
j=1

wj [qj(t)− θj]− V δmax. (6.71)

This by Lemma 8 implies that:

g((q(t)− θ)⊗w) ≥ η
r∑
j=1

wj [qj(t)− θj]− V δmax.

Using this in (6.68), we get:

∆(t)− V E
{
f(t) | q(t)

}
≤ B + C + V δmax − η

r∑
j=1

wj [qj(t)− θj].

We can now use a similar argument as above to get:

η
T−1∑
t=0

r∑
j=1

wjE
{

[qj(t)− θj]
}
≤ T (B + C) + 2TV δmax + E

{
L(0)

}
.

Dividing both sides by ηT and taking the limsup as T →∞, we get:

qPMW ≤ B + C + 2V δmax
η

+

r∑
j=1

wjθj .

This completes the proof the theorem.

202

6.10.5 Choosing the {wj}rj=1 values

Here we describe how to choose the {wj}rj=1 values to satisfy (6.56). We first let K be the

maximum number of processors that any path going from a queue to an output processor

can have. We have that K ≤ |Np| since there is no cycle in the network. The following

algorithm terminates in K iterations. We use wj(k) to denote the value of wj in the kth

iteration. In the following, we use qhn to denote the demand queue of a processor Pn.

1. At Iteration 1, denote the set of queues that serve as supply queues for any output

processor by Ql
1, i.e.,

Ql
1 = {qj : PSj ∩ Po 6= φ}.

Then, set wj(1) = 1 for each qj ∈ Ql
1. Also, set wj(1) = 0 for all other qj /∈ Ql

1.

2. At Iteration k = 2, ...,K, denote by Ql
k the set of queues that serve as supply queues

for any processor whose demand queue is in Ql
k−1, i.e.,

Ql
k = {qj : ∃Pn ∈ PSj s.t. QD

n ∈ Ql
k−1}.

Then, set:

wj(k) = max
[
wj(k − 1),max

n∈PSj

whn(k − 1)αnhn
βnj

]
, (6.72)

where αnhn is the amount Pn generates into qhn , which is the demand queue of Pn.

Also, set wj(k) = wj(k − 1) for all qj /∈ Ql
k.

3. Output the {wj}rj=1 values.

The following lemma shows that the above algorithm outputs a set of {wj}rj=1 values that

satisfy (6.56).

203

Lemma 12. The {wj}rj=1 values generated by the above algorithm satisfy (6.56).

Proof. (Proof of Lemma 12) The proof consists of two main steps. In the first step, we

show that the algorithm updates each wj value at least once. This shows that all the wj

values for all the queues that serve as demand queues are updated at least once. In the

second step, we show that if qh is the demand queue of a processor Pi ∈ P in, then every

time after wh is updated, the algorithm will also update wj for any qj ∈ QS
i before it

terminates. This ensures that (6.56) holds for any Pi ∈ P in and hence proves the lemma.

First we see that after K iterations, we must have Q ⊂ ⋃K
τ=1 Ql

τ . This is because at

Iteration k, we include in
⋃k
τ=1 Ql

τ all the queues starting from which there exists a path

to an output processor that contains k processors. Thus all the wj values are updated at

least once.

Now consider a queue qh. Suppose qh is the demand queue of a processor Pi ∈ P in.

We see that there exists a time k̂ ≤ K at which wh is last modified. Suppose wh is last

modified at Iteration k̂ < K, in which case qh ∈ Ql
k̂
. Then all the queues qj ∈ QS

i will be

in Ql
k̂+1

. Thus their wj values will be modified at Iteration k̂+ 1 ≤ K. This implies that

at Iteration k̂+ 1, we will have wj(k̂+ 1)βij ≥ wh(k̂)αih. Since qh /∈ Ql
k for k ≥ k̂+ 1, we

have wh(k) = wh(k̂) for all k ≥ k̂ + 1. Therefore wj(k)βij ≥ wh(k)αih ∀ k̂ + 1 ≤ k ≤ K,

because wj(k) is not decreasing.

Therefore the only case when the algorithm can fail is when wh is updated at Iteration

k = K, in which case wh may increase but the wj values for qj ∈ QS
i are not modified

accordingly. However, since wh is updated at Iteration k = K, this implies that there

exists a path from qh to an output processor that has K processors. This in turn implies

204

that starting from any qj ∈ QS
i , there exists a path to an output processor that contains

K + 1 processors. This contradicts the definition of K. Thus the lemma follows.

As a concrete example, we consider the example in Fig. 6.2, with the assumption

that each processor, when activated, consumes one unit of content from each of its supply

queues and generates two units of contents into its demand queue. In this example, we

see that K = 3. Thus the algorithm works as follows:

1. Iteration 1, denote Ql
1 = {q4, q5, q6}, set w4(1) = w5(1) = w6(1) = 1. For all other

queues, set wj(1) = 0.

2. Iteration 2, denote Ql
2 = {q1, q2, q3, q4, q5}, set w1(2) = w2(2) = w3(2) = w4(2) =

w5(2) = 2. Set w6(2) = 1.

3. Iteration 3, denote Ql
3 = {q2, q3}, set w2(3) = w3(3) = 4. Set w1(3) = w4(3) =

w5(3) = 2, w6(3) = 1.

4. Terminate and output w1 = w4 = w5 = 2, w2 = w3 = 4, w6 = 1.

6.10.6 Proof of Lemma 10

Here we prove Lemma 10 by comparing the values of the three terms in D
(S(t))
θ,q(t)(x) in

(6.50) under PMW versus their values under the action that maximizes D
(S(t))
θ,q(t)(x) in

(6.50) subject to only the constraints Dj(t) ∈ [0, 1], ∀ j ∈ Qs and I(t) ∈ I, called the

max-action. That is, under the max-action, D
(S(t))
θ,q(t)(x) = D

(S(t))∗
θ,q(t) (x). Note that the max-

action differs from PMW only in that it does not consider the queue edge constraint.

205

Proof. (A) We see that the first term, i.e., −∑j∈Qs
[
V cj(t) +wj(qj(t)− θ)

]
Dj(t)Rj(t) is

maximized under PMW. Thus its value is the same as that under the max-action.

(B) We now show that for any processor Pn ∈ P, if it violates the queue edge con-

straint, then its weight is bounded by Mpwmaxνmaxβmax. This will then be used in

Part (C) below to show that the value of D
(S(t))
θ,q(t)(x) under PMW is within a constant of

D
(S(t))∗
θ,q(t) (x).

(B-I) For any Pi ∈ P in, the following are the only two cases under which Pi violates

the queue edge constraint.

1. Its demand queue qh(t) ≥ θ. In this case, it is easy to see from (6.52) and (6.59)

that:

W
(in)
i (t) ≤

∑
j∈QSi

wjνmaxβij ≤Mpwmaxνmaxβmax. (6.73)

2. At least one of Pi’s supply queue has a queue size less than M s
qβmax. In this case,

we denote Q̂S
i = {qj ∈ QS

i : qj(t) ≥M s
qβmax}. Then, we see that:

W
(in)
i (t) =

∑
j∈Q̂Si

wj [qj(t)− θ]βij − wh[qh(t)− θ]αih +
∑

j∈QSi /Q̂Si

wj [qj(t)− θ]βij − V Ci(t)

≤
∑
j∈Q̂Si

wjνmaxβij + whθαih +
∑

j∈QSi /Q̂Si

wj [M
s
qβmax − θ]βij .

Here qh = QD
i . Now by our selection of {wj}rj=1, wjβij ≥ whαih for any qj ∈ QS

i .

Also using νmax ≥M s
qβmax, we have:

W
(in)
i (t) ≤Mpwmaxνmaxβmax. (6.74)

(B - II) For any Pk ∈ Po, we see that it violates the queue edge constraint only when

at least one of its supply queues has size less than M s
qβmax. In this case, we see that:

W
(o)
k (t) ≤

∑
j∈Q̂Sk

wj [qj(t)− θ]βkj + V pk(t)αko +
∑

j∈QSk /Q̂
S
k

wj(M
s
qβmax − θ)βij

206

≤Mpwmaxνmaxβmax + V αmaxpmax − wminθβmin.

This by (6.55) implies that:

W
(o)
k (t) ≤Mpwmaxνmaxβmax. (6.75)

Using (6.73), (6.74) and (6.75), we see that whenever a processor violates the queue edge

constraint, its weight is at most Mpwmaxνmaxβmax.

(C) We now show that the value of D
(S(t))
θ,q(t)(x) under PMW satisfies D

(S(t))
θ,q(t)(x) ≥

D
(S(t))∗
θ,q(t) (x)− C, where C = NpMpwmaxνmaxβmax.

To see this, let I∗(t) be the activation vector obtained by the max-action, and let

W ∗(t) be the value of (6.54) under I∗(t). We also use IPMW (t) and WPMW (t) to de-

note the activation vector chosen by the PMW algorithm and the value of (6.54) under

IPMW (t). We now construct an alternate activation vector Î(t) by changing all elements

in I∗(t) corresponding to the processors that violate the queue edge constraints to zero.

Note then Î(t) ∈ I is a feasible activation vector at time t, under which no processor

violates the queue edge constraint. By Part (B) above, we see that the value of (6.54)

under Î(t), denoted by Ŵ (t), satisfies:

Ŵ (t) ≥W ∗(t)−NpMpwmaxνmaxβmax.

Now since IPMW (t) maximizes the value of (6.54) subject to the queue edge constraints,

we have:

WPMW (t) ≥ Ŵ (t) ≥W ∗(t)−NpwmaxMpνmaxβmax.

Thus, by combining the above and Part (A), we see that PMW maximizes the D
(S(t))
θ,q(t)(x)

to within C = NpMpwmaxνmaxβmax of the maximum.

207

Chapter 7

Utility optimal scheduling in energy harvesting networks

Recent developments in hardware design have enabled many general wireless networks

to support themselves by harvesting energy from the environment, for instance, by con-

verting mechanical vibration into energy [MMMA+01], by using solar panels [RKH+05],

by utilizing thermoeletric generators [CC08], or by converting ambient radio power into

energy [GKK+09]. Such harvesting methods are also referred to as “recycling” energy

[ene10]. This energy harvesting ability is crucial for many network design problems. It

frees the network devices from having an “always on” energy source and provides a way

of operating the network with a potentially infinite lifetime. These two advantages are

particularly useful for networks that work autonomously, e.g., wireless sensor networks

that perform monitoring tasks in dangerous fields [WALJ+06], tactical networks [HC10],

or wireless handheld devices that operate over a longer period [GR09].

However, to take full advantage of the energy harvesting technology, efficient schedul-

ing algorithms must consider the finite capacity for energy storage at each network node,

and the “no-energy-outage” constraint which requires that the network nodes cannot

spend more energy than what is stored. These two constraints impose great challenges

208

on algorithm design for such networks. In this chapter, we propose a general framework

for modeling energy harvesting network problems based on the general complex network

model presented in Chapter 6, and develop an optimal online energy harvesting and

scheduling algorithm using the perturbation technique developed in Chapter 6.

7.1 The network model

We consider a general interconnected multi-hop network that operates in slotted time.

The network is modeled by a directed graph G = (N ,L), whereN = {1, 2, ..., N} is the set

of the N nodes in the network, and L = {[n,m], n,m ∈ N} is the set of communication

links in the network. For each node n, we use N (o)
n to denote the set of nodes b with

[n, b] ∈ L, and use N (in)
n to denote the set of nodes a with [a, n] ∈ L. We then define

dmax , maxn(|N (in)
n |, |N (o)

n |) to be the maximum in-degree/out-degree that any node

n ∈ N can have.

7.1.1 The traffic and utility model

At every time slot, the network decides how many packets destined for node c to admit

at node n. We call these packets the commodity c data and use R
(c)
n (t) to denote the

amount of new commodity c data admitted. We assume that 0 ≤ R
(c)
n (t) ≤ Rmax for all

n, c with some finite Rmax at all time. 1 We assume that each commodity c at every node

n is associated with a utility function U
(c)
n (rnc), where rnc is the time average rate of the

1Note that this setting implicitly assumes that nodes always have packets to admit. The case when the
number of packets available is random can also be incorporated into our model and solved by introducing
auxiliary variables, as in [NML08]. Also note that this traffic admission model can be viewed as “shaping”
the arrivals from some external sending nodes. One future extension of our model is to also evaluate the
backlogs at these sending nodes.

209

commodity c traffic admitted into node n, defined as rnc = limt→∞
1
t

∑t−1
τ=0 E

{
R

(c)
n (τ)

}
(assume to exist for now). Each U

(c)
n (r) function is assumed to be increasing, continuously

differentiable, and strictly concave in r with a bounded first derivative and U
(c)
n (0) = 0.

We use βnc to denote the maximum first derivative of U
(c)
n (r), i.e., βnc = (U

(c)
n)′(0) and

denote

β , max
n,c

βnc. (7.1)

7.1.2 The transmission model

2 In order to deliver the data to their destinations, each node needs to allocate power

over its outgoing links for data transmission at every time slot. To model the effect

that the transmission rates typically also depend on the link conditions and that the link

conditions may be time varying, we let S(t) be the network channel state, i.e., the N -

by-N matrix where the (n,m) component of S(t) denotes the channel condition between

nodes n and m. We assume that S(t) takes values in some finite set S = (s1, ..., sMs).

We assume in the following that the energy state (defined later) and S(t) pair is i.i.d.

every slot. At every time slot, if S(t) = si, then the power allocation vector P (t) =

(P[n,m](t), [n,m] ∈ L), where P[n,m](t) is the power allocated to link [n,m] at time t, must

be chosen from some feasible power allocation set P(si). We assume that P(si) is compact

for all si, and that every power vector in P(si) satisfies the constraint that for each node

n, 0 ≤ ∑
b∈N (o)

n
P[n,b](t) ≤ Pmax for some Pmax < ∞. Also, we assume that setting any

P[n,m] in a vector P ∈ P(si) to zero yields another power vector that is still in P(si).

Given the channel state S(t) and the power allocation vector P (t), the transmission rate

2The transmission model is similar to the one used in Chapter 5. We restate it here for completeness.

210

over the link [n,m] is given by the rate-power function µ[n,m](t) = µ[n,m](S(t),P (t)). For

each si, we assume that the function µ[n,m](si,P) satisfies the following properties:

Property 1. For any P ,P ′ ∈ P(si), where P ′ is obtained by changing any single com-

ponent P[n,m] in P to zero, we have for some finite constant δ > 0 that: 3

µ[n,m](si,P) ≤ µ[n,m](si,P
′) + δP[n,m]. (7.2)

Property 2. If P ′ is obtained by setting the entry P[n,b] in P to zero, then:

µ[a,m](si,P) ≤ µ[a,m](si,P
′), ∀ [a,m] 6= [n, b]. (7.3)

Property 1 states that the rate obtained over a link [n,m] is upper bounded by some

linear function of the power allocated to it; whereas Property 2 states that reducing the

power over any link does not reduce the rate over any other links. We see that Properties

1 and 2 can be satisfied by most rate-power functions, e.g., when the rate function is

differentiable and has finite directional derivatives with respect to power [Nee06c], and

the link rates do not improve with increased interference.

We also assume that there exists some finite constant µmax such that µ[n,m](t) ≤ µmax

for all time slots under any power allocation vector and any channel state S(t). 4 In the

following, we also use µ
(c)
[n,b](t) to denote the rate allocated to the commodity c data over

link [n, b] at time t. At every time t, we have:∑
c

µ
(c)
[n,b](t) ≤ µ[n,b](t),∀ [n, b]. (7.4)

3This is also known as Lipschitz-continuity [BNO03].
4In our transmission model, we did not explicitly take into account the reception power. We can easily

incorporate that it our model at the expense of more complicated notation. In that case, our algorithm
will also optimize over the reception power consumption, and the results in this chapter still hold.

211

7.1.3 The energy queue model

We now specify the energy model. Every node in the network is assumed to be powered

by a finite capacity energy storage device, e.g., a battery or ultra-capacitor [SMJG10].

We model such a device using an energy queue. We use the energy queue size at node n

at time t, denoted by En(t), to measure the amount of energy left in the storage device at

node n at time t. We assume that each node n knows its own current energy availability

En(t). In any time slot t, the power allocation vector P (t) must satisfy the following

“energy-availability” constraint: 5

∑
b∈N (o)

n

P[n,b](t) ≤ En(t), ∀ n. (7.5)

That is, the consumed power must be no more than what is available. Each node in

the network is assumed to be capable of harvesting energy from the environment, using,

for instance, solar panels [SMJG10]. However, the amount of harvestable energy in a

time slot is typically not fixed and varies over time. We use hn(t) to denote the amount

of energy harvestable by node n at time t, and denote by h(t) = (h1(t), ..., hN (t)) the

harvestable energy vector at time t, called the energy state. We assume that h(t) takes

values in some finite set H = {h1, ...,hMh
}. In the following, we carry out the algorithm

construction and analysis assuming that the pair [h(t),S(t)] is i.i.d. over slots (possibly

correlated in the same slot), with distribution πhi,sj and marginal distributions πhi and

πsj , respectively. We then extend the results to the case when they are Markovian.

We assume that there exists hmax <∞ such that hn(t) ≤ hmax for all n, t. The energy

harvested at time t is assumed to be available for use at time t + 1. In the following,

5We measure time in unit size “slots,” so that our power P[n,b](t) has units of energy/slot, and P[n,b](t)×
(1 slot) is the resulting energy use in one slot. For simplicity, we suppress the implicit multiplication by
1 slot when converting between power and energy.

212

it is convenient for us to assume that each energy queue has infinite capacity, and that

each node can decide whether or not to harvest energy in each slot. We model this

harvesting decision by using en(t) ∈ [0, hn(t)] to denote the amount of energy that is

actually harvested at time t. We show later that our algorithm always harvests energy

when the energy queue is below a finite threshold of size O(1/ε) and drops it otherwise.

Thus, it can be implemented with finite capacity storage devices. We also discuss why

the algorithms developed under our model is also very useful in practice.

7.1.4 Queueing dynamics

Let Q(t) = (Q
(c)
n (t), n, c ∈ N), t = 0, 1, 2, ... be the data queue backlog vector in the

network, where Q
(c)
n (t) is the amount of commodity c data queued at node n. We assume

the following queueing dynamics:

Q(c)
n (t+ 1) ≤

[
Q(c)
n (t)−

∑
b∈N (o)

n

µ
(c)
[n,b](t)

]+
+

∑
a∈N (in)

n

µ
(c)
[a,n](t) +R(c)

n (t), (7.6)

with Q
(c)
n (0) = 0 for all n, c ∈ N , Q

(c)
c (t) = 0 ∀ t. The inequality in (7.6) is due to the fact

that some nodes may not have enough commodity c packets to fill the allocated rates. In

this chapter, we say that the network is stable if the following is met:

Q , lim sup
t→∞

1

t

t−1∑
τ=0

∑
n,c

E
{
Q(c)
n (τ)

}
<∞. (7.7)

213

Similarly, let E(t) = (En(t), n ∈ N) be the vector of the energy queue sizes. Due to

the energy availability constraint (7.5), we see that for each node n, the energy queue

En(t) evolves according to the following: 6

En(t+ 1) = En(t)−
∑

b∈N (o)
n

P[n,b](t) + en(t), (7.8)

with En(0) = 0 for all n. 7 Note again that by using the queueing dynamic (7.8), we

start by assuming that each energy queue has infinite capacity. Later we show that under

our algorithms, all the En(t) values are determinstically upper bounded. Thus, we only

need a finite energy capacity in algorithm implementation.

7.1.5 Utility maximization with energy management

The goal of the network is thus to design a joint flow control, routing and scheduling, and

energy management algorithm that at every time slot admits the right amount of data

R
(c)
n (t), chooses a power allocation vector P (t) ∈ P(si) subject to (7.5), and transmits

packets accordingly, so as to maximize the utility function:

Utot(r) =
∑
n,c

U (c)
n (rnc), (7.9)

subject to the network stability constraint (7.7). Here r = (rnc,∀n, c ∈ N) is the vector

of the average expected admitted rates. Below, we refer to this problem as the Utility

Maximization with Energy Management problem (UMEM).

6Note that we do not explicitly consider energy leakage due to the imperfections of the energy storage
devices. This is a valid assumption if the rate of energy leakage is very small compared to the amount
spent in each time slot.

7We can also pre-store energy in the energy queue and initialize En(0) to any finite positive value up
to its capacity. The results here will not be affected.

214

7.1.6 Discussion of the model

(I) Our model is quite general and can be used to model many networks where nodes

are powered by finite capacity batteries, for instance, a field monitoring sensor network

[WALJ+06], or many mobile ad hoc networks [PPC06]. Also, our model allows the

harvestable energy to be correlated among network nodes. This is particularly useful: in

practice, nodes that are colocated may have similar harvestable energy conditions.

(II) Although our model looks similar to the utility maximization model considered

in [GNT06] and Chapter 4, the problem considered here is much more complicated.

The main difficulty here is imposed by the constraint (7.5). Indeed, (7.5) couples the

current power allocation action and future actions, in that a current action may cause

the energy queue to be empty and hence block some power allocation actions in the future.

The work in [GGT10] overcomes this “no-underflow” requirement by enforcing a positive

drift constraint on the harvested energy and using Lyapunov optimization with this new

constraint. Our approach is different and uses a modified Lyapunov function, which

simplifies analysis and provides more explicit performance guarantees for the multi-hop

case. Our MESA algorithm also fundamentally improves the resulting buffer size tradeoffs

from O(1/ε) to O([log(1/ε)]2).

(III) Finally, note that our algorithm can also be shown to perform well under arbitrary

S(t) and h(t) processes using the universal scheduling technique developed in [Nee10a].

215

7.2 Related work

There have been many previous articles developing algorithms for energy harvesting net-

works. [SMJG10] develops algorithms for a single sensor node for achieving maximum

capacity and minimizing delay when the rate-power curve is linear. [KHZS07] consid-

ers the problem of optimal power management for sensor nodes, under the assumption

that the harvested energy satisfies a leaky-bucket type property. [SK10] looks at the

problem of designing energy-efficient schemes for maximizing the decay exponent of the

queue length. [GGT10] develops scheduling algorithms to achieve close-to-optimal utility

for energy harvesting networks with time varying channels. [LSS05] develops an energy-

aware routing scheme that approaches optimality as the network size increases. Outside

the energy harvesting context, [LSS07] considers the problem of maximizing the lifetime

of a network with finite energy capacity and constructs a scheme that achieves a close-

to-maximum lifetime. [Nee06c] and [Nee07] develop algorithms for minimizing the time

average network energy consumption for stochastic networks with “always on” energy

sources. However, most of the existing results focus on single-hop networks and often

require sufficient statistical knowledge of the harvestable energy, and results for multi-

hop networks often do not give explicit queueing bounds and do not provide explicit

characterizations of the needed energy storage capacities.

7.3 Upper bounding the optimal network utility

In this section, we first obtain an upper bound on the optimal utility. This upper bound

will be useful for our later analysis. The result is presented in the following theorem, in

216

which we use r∗ to denote the optimal solution of the UMEM problem, subject to the

constraint that the network nodes are powered by finite capacity energy storage devices.

The V parameter in the theorem can be any positive constant that is greater or equal to

1, and is included for our later analysis.

Theorem 25. The optimal network utility Utot(r
∗) satisfies: V Utot(r

∗) ≤ φ∗, where φ∗

is obtained over the class of stationary and randomized policies that have the following

structure: allocate constant admission rates rnc every slot; when S(t) = si, choose a power

vector P
(si)
k and allocate service rate µ

(c)
[n,b](si,P

(si)
k) to node n with probability %

(si)
k ; and

harvest energy e
(hi)
n,k with probability ϕ

(hi)
k when h(t) = hi, subject to (7.4), (7.6) and

(7.8), without regard to the energy availability constraint (7.5), to satisfy:

max : φ = V
∑
n,c

U (c)
n (rnc) (7.10)

s.t. rnc +
∑
si

πsi

K∑
k=1

%
(si)
k

∑
a∈N (in)

n

µ
(c)
[a,n](si,P

(si)
k)

≤
∑
si

πsi

K∑
k=1

%
(si)
k

∑
b∈N (o)

n

µ
(c)
[n,b](si,P

(si)
k),∀ (n, c), (7.11)

∑
si

πsi

K∑
k=1

%
(si)
k

∑
b∈N (o)

n

P
(si)
k,[n,b] =

∑
hj

πhj

K∑
k=1

ϕ
(hj)
k e

(hj)
n,k ,∀n, (7.12)

P
(si)
k ∈ P(si), 0 ≤ %(si)

k , ϕ
(hj)
k ≤ 1,∀si, k,hj ,

K∑
k=1

%
(si)
k = 1,

K∑
k=1

ϕ
(hj)
k = 1,∀si,hj ,

0 ≤ rnc ≤ Rmax, ∀ (n, c), 0 ≤ e(hj)
n,k ≤ h

(hj)
n , ∀ n, k,hj .

Here πsi and πhj are the marginal distribution of the random channel state si and energy

state hj, and K = N2 +N + 2. 8

8The number K is due to the use of Caratheodory’s Theorem in the proof argument used in Chapter
6.

217

Proof. The proof argument is essentially the same as the one used in proving Theorem

23 in Chapter 6. Hence we omit it here.

In the theorem, (7.11) says that the rate of incoming data to node n is no more

than the transmission rate out, and the equality constraint (7.12) says that the rate of

harvested energy is equal to the energy consumption rate. We note that Theorem 25

indeed holds under more general ergodic S(t) and h(t) processes, e.g., when S(t) and

h(t) evolve according to some finite state irreducible and aperiodic Markov chains.

7.4 Engineering the queues

In this section, we present our Energy-limited Scheduling Algorithm (ESA) for the UMEM

problem. ESA is designed based on the Lyapunov optimization technique developed in

Chapter 6 and [GNT06]. The idea of ESA is to construct a Lyapunov scheduling algorithm

with perturbed weights for determining the energy harvesting, power allocation, routing

and scheduling decisions. We show that, by carefully perturbing the weights, one can

ensure that whenever we allocate power to the links, there is always enough energy in the

energy queues.

7.4.1 The ESA Algorithm

To start, we first choose a perturbation vector θ = (θn, n ∈ N) (to be specified later). We

then define a perturbed Lyapunov function as follows:

L(t) ,
1

2

∑
n,c∈N

[
Q(c)
n (t)

]2
+

1

2

∑
n∈N

[
En(t)− θn

]2
. (7.13)

218

The intuition behind the use of the θ vector is that by keeping the Lyapunov function

value small, we indeed “push” the En(t) value towards θn. Thus by carefully choosing

the value of θn, we can ensure that the energy queues always have enough energy for

transmission. This is shown in Fig. 7.1.

θ

0

drift

queue

size

Figure 7.1: The intuition behind perturbation

Now denote Z(t) = (Q(t),E(t)), and define a one-slot conditional Lyapunov drift as

follows:

∆(t) , E
{
L(t+ 1)− L(t) | Z(t)

}
. (7.14)

Here the expectation is taken over the randomness of the channel state and the energy

state, as well as the randomness in choosing the data admission action, the power allo-

cation action, the routing and scheduling action, and the energy harvesting action. For

notational simplicity, we also define:

∆V (t) , ∆(t)− V E
{∑
n,c

U (c)
n (R(c)

n (t)) | Z(t)
}
. (7.15)

We have the following lemma regarding the drift:

219

Lemma 13. Under any data admission action, power allocation action, routing and

scheduling action, and energy harvesting action, which satisfies the energy availability

constraint (7.5), that can be implemented at time t, we have:

∆V (t) ≤ B +
∑
n∈N

(En(t)− θn)E
{
en(t) | Z(t)

}
(7.16)

−E
{∑
n,c

[
V U (c)

n (R(c)
n (t))−Q(c)

n (t)R(c)
n (t)

]
| Z(t)

}
−E
{∑

n

[∑
c

∑
b∈N (o)

n

µ
(c)
[n,b](t)

[
Q(c)
n (t)−Q(c)

b (t)
]

+(En(t)− θn)
∑

b∈N (o)
n

P[n,b](t)

]
| Z(t)

}
.

Here B = N2(3
2d

2
maxµ

2
max + R2

max) + N
2 (Pmax + hmax)2, and dmax is defined in Section

7.1 as the maximum in-degree or out-degree of any node in the network.

Proof. See Section 7.9.1.

We now present the ESA algorithm. The idea of the algorithm is to approximately

minimize the right-hand side (RHS) of (7.16) subject to the energy-availability constraint

(7.5). In ESA, we use a parameter γ , Rmax+dmaxµmax, which is used in the link weight

definition to allow deterministic upper bounds on queue sizes.

Energy-limited Scheduling Algorithm (ESA): Initialize θ. At every slot t, observe

Q(t), E(t), S(t), and do:

• Energy Harvesting: If En(t) − θn < 0, perform energy harvesting and store the

harvested energy, i.e., en(t) = hn(t). Else set en(t) = 0. Note that this decision on

en(t) indeed minimizes the (En(t)− θn)E
{
en(t) | Z(t)

}
term in (7.16).

220

• Data Admission: Choose R
(c)
n (t) to be the optimal solution of the following opti-

mization problem:

max : V U (c)
n (r)−Q(c)

n (t)r, s.t. 0 ≤ r ≤ Rmax. (7.17)

Note that this decision minimizes the terms involving R
(c)
n (t) in the RHS of (7.16).

• Power Allocation: Define the weight of the commodity c data over link [n, b] as:

W
(c)
[n,b](t) ,

[
Q(c)
n (t)−Q(c)

b (t)− γ
]+
. (7.18)

Then define the link weight W[n,b](t) = maxcW
(c)
[n,b](t), and choose P (t) ∈ P(si) to

maximize:

G(P (t)) ,
∑
n

[∑
b∈N (o)

n

µ[n,b](t)W[n,b](t) + (En(t)− θn)
∑

b∈N (o)
n

P[n,b](t)

]
, (7.19)

subject to the energy availability constraint (7.5).

• Routing and Scheduling: For every node n, find any c∗ ∈ arg maxcW
(c)
[n,b](t). If

W
(c∗)
[n,b](t) > 0, set:

µ
(c∗)
[n,b](t) = µ[n,b](t), (7.20)

that is, allocate the full rate over the link [n, b] to any commodity that achieves the

maximum positive weight over the link. Use idle-fill if needed. If W
(c∗)
[n,b](t) = 0, set

µ
(c)
[n,b](t) = 0 for all c over link [n, b]. 9

• Queue Update: Update Q
(c)
n (t) and En(t) according to the dynamics (7.6) and (7.8),

respectively.

9Note that we still use the same power allocation P[n,b](t) (can be nonzero) in the case when W
(c∗)
[n,b](t) =

0, although all the rates µ
(c)

[n,b](t) are zero. We show that doing this still yields performance that can be
pushed arbitrarily close to optimal. In the actual implementation, however, we can always save the power
P[n,b](t) when µ

(c)

[n,b](t) = 0 ∀ c. Similar performance results can also be obtained.

221

The combined Power Allocation and Routing and Scheduling step would have minimized

the terms involving µ
(c)
[n,b](t) and P (t) in the RHS of (7.16) if we had defined γ = 0.

However, we have included a non-zero γ in the differential backlog definition (7.18),

resulting in a decision that comes within an additive constant of minimizing the RHS

of (7.16). The advantage of using this γ is that it leads to a deterministic bound on all

queue sizes, as we show in the next section.

In the energy harvesting step of ESA, node n performs energy harvesting only when

the energy volume is less than θn, and hence En(t) ≤ θn + hmax for all t. This feature

is very important because it allows one to implement ESA with finite energy storage

capacity. More importantly, we show in later sections that it provides us with a very easy

way to size our energy storage devices if we want to achieve a utility that is within O(ε)

of the optimal: use energy storage devices of size O(1/ε). In practice, once the energy

storage capacity is determined, we can always modify ESA by having the nodes perform

energy harvesting in every time slot, in which case nodes always have more energy than

that under ESA, and the same utility performance can be achieved.

7.4.2 Implementation of ESA

(I) First we note that ESA only requires the knowledge of the instant channel state S(t),

the queue sizes Q(t) and E(t). It does not even require any knowledge of the energy state

process h(t). This is very useful in practice when the knowledge of the energy source

is difficult to obtain. ESA is also very different from previous algorithms for energy

harvesting networks, e.g., [SMJG10] [KHZS07], where sufficient statistical knowledge of

the energy source is often required.

222

(II) Note that the implementation of ESA involves maximizing (7.19). Thus ESA’s

complexity is the same as the widely used Max-Weight algorithms, which in general

requires centralized control and can be NP-hard [GNT06]. However, in cases when the

links do not interfere with each other, ESA can easily be implemented in a distributed

manner, where each node only has to know about the queue sizes at its neighbor nodes and

can decide on the power allocation locally. Moreover, one can look for constant factor

approximation solutions of (7.19), e.g., [LS06] and Sections 4.7 and 5.2.1 in [GNT06].

Such approximation results can usually be found in a distributed manner in polynomial

time, and ESA can be shown to achieve a utility that is at least a constant factor of

Utot(r
∗) under these solutions.

7.5 Performance analysis

We now present the performance results of the ESA algorithm. In the following, we first

present the results under i.i.d. network randomness and give its proof in Section 7.9. We

later extend the performance results of ESA to the case when the network randomness is

Markovian. Below, the parameter β is the largest first derivative of the utility functions

defined in (7.1), and the parameter θn is defined

θn , δβV + Pmax. (7.21)

7.5.1 ESA under I.I.D. randomness

Theorem 26. Under the ESA algorithm with β and θn defined in (7.1) and (7.21), we

have the following:

223

(a) The data queues and the energy queues satisfy the following for all time steps under

any arbitrary S(t) and h(t) processes:

0 ≤ Q(c)
n (t) ≤ βV +Rmax, ∀ (n, c), (7.22)

0 ≤ En(t) ≤ θn + hmax, ∀ n. (7.23)

Moreover, when a node n allocates nonzero power to any of its outgoing links,

En(t) ≥ Pmax.

(b) Let r(T) = (rnc(T),∀ (n, c)) be the time average admitted rate vector achieved by

ESA up to time T , i.e., rnc(T) = 1
T

∑T−1
t=0 E

{
R

(c)
n (t)

}
. Then:

lim inf
T→∞

Utot(r(T)) = lim inf
T→∞

∑
n,c

U (c)
n (rnc(T)) ≥ Utot(r∗)−

B̃

V
, (7.24)

where r∗ is an optimal solution of the UMEM problem, and B̃ = B+N2γdmaxµmax,

which is Θ(1), i.e., independent of V .

Proof. See Section 7.9.2.

We note the following of Theorem 26:

(I) Part (a) is a sample path result. Hence, it holds even under non-stationary S(t)

and h(t) processes.

(II) By taking ε = 1/V , Part (a) implies that the average data queue size is O(1/ε).

Combining this with Part (b), we see that ESA achieves an [O(ε), O(1/ε)] utility-

backlog tradeoff for the UMEM problem.

(III) We see from Part (a) that the energy queue size is deterministically upper bounded

by a constant of size O(1/ε). This provides an explicit characterization of the size

224

of the energy storage device needed for achieving the desired utility performance.

Such explicit bounds are particularly useful for practical system deployments.

(IV) Note that we prove a utility performance bound, i.e., (7.24), that is slightly different

from the objective of Utot(limT→∞ r(T)). The reason is that the limit limT→∞ r(T)

may not exist. However, whenever the limit does exist, we can replace lim inf with

the regular limit and push the limit inside the summation. Then, (7.24) becomes

Utot(limT→∞ r(T)) ≥ Utot(r∗)− B̃
V .

7.5.2 ESA under Markovian randomness

We now extend our results to the more general setting where the channel state S(t) and

the energy state h(t) both evolve according to some finite state irreducible and aperiodic

Markov chains. In this case πsi and πhi represent the steady state probability of the

events {S(t) = si} and {h(t) = hi}, respectively. In this case, the performance results of

ESA are summarized in the following theorem:

Theorem 27. Suppose that [S(t),h(t)] evolves according to some finite state irreducible

and aperiodic Markov chain. Then under ESA, we have: (a) the bounds (7.22) and (7.23)

still hold; (b) the average utility is within O(1/V) of Utot(r
∗), i.e., lim infT→∞ Utot(r(T)) =

lim infT→∞
∑

n,c U
(c)
n (rnc(T)) ≥ Utot(r∗)−O(1/V).

Proof. Part (a) follows from Theorem 26, since (7.22) and (7.23) are sample-path results.

The utility performance follows from Section 4.10.5 in Chapter 4.

225

7.6 Reducing the buffer size

In this section, we show that it is possible to achieve the same O(ε) close-to-optimal

utility performance guarantee using energy storage devices of only O([log(1/ε)]2) sizes,

while guaranteeing a much smaller average data queue size, i.e., O([log(1/ε)]2). Our

algorithm is motivated by the “exponential attraction” result developed in Chapter 4,

which states that the probability for the network backlog vector to deviate from some

fixed point typically decreases exponentially with the deviation distance. This suggests

that most of the queue backlogs are kept in the queues to maintain a “proper” queue vector

value to base the decisions on. If we can somehow learn the value of this vector, then

we can “subtract out” a large amount of data and energy backlog from the network and

reduce the required buffer sizes. Below, we present the Modified-ESA (MESA) algorithm

to achieve this goal.

7.6.1 The Modified-ESA algorithm

To start, for a given ε, we let V = 1/ε, and define M = 4[log(V)]2. We then associate

with each node n a virtual energy queue process Ên(t) and a set of virtual data queues

Q̂
(c)
n (t), ∀ c. We also associate with each node n an actual energy queue with size M . We

assume that V is chosen to be such that M
2 > αmax , max[Pmax, hmax]. MESA consists

of two phases: Phase I runs the system using the virtual queue processes, to discover the

“attraction point” values of the queues (as explained below). Phase II then uses these

values to carefully perform the actions so as to ensure energy availability and reduce

network delay. We emphasize that, although MESA looks similar to the FQLA algorithms

226

developed in Chapter 4, it only uses finite energy storage capacities. This feature makes

it very different from FQLA and requires a new analysis for its performance.

Modified-ESA (MESA): Initialize θ. Perform:

• Phase I: Choose a sufficiently large T . From time t = 0, ..., T , run ESA using Q̂(t)

and Ê(t) as the data and energy queues. Obtain two vectors Q = (Q(c)
n , ∀ (n, c))

and E = (En,∀n) with Q(c)
n = [Q̂

(c)
n (T)− M

2]+ and En = [Ên(T)− M
2]+.

• Phase II: Reset t = 0. Initialize Ê(0) = E and Q̂(0) = Q. Also set Q(0) = 0

and E(0) = 0. In every time slot, first run the ESA algorithm based on Q̂(t),

Ê(t), and S(t), to obtain the action variables, i.e., the corresponding en(t), R
(c)
n (t),

and µ
(c)
[n,b](t) values. Perform Data Admisson, Power Allocation, and Routing and

Scheduling exactly as ESA, plus the following:

– Energy harvesting: If Ên(t) < En, let ẽn(t) = [en(t)− (En − Ên(t))]+. Harvest

ẽ(t) amount of energy, i.e., update En(t) as follows:

En(t+ 1) = min
[
[En(t)−

∑
b∈N (o)

n

P[n,b](t)]
+ + ẽn(t),M

]
.

Else if Ên(t) > En +M , do not spend any power and update En(t) according

to:

En(t+ 1) = min
[
En(t) + en(t),M

]
.

Else update En(t) according to:

En(t+ 1) = min
[
[En(t)−

∑
b∈N (o)

n

P[n,b](t)]
+ + en(t),M

]
.

– Packet Dropping: For any node n with Ên(t) < En +Pmax or Ên(t) > En +M ,

drop all the packets that should have been transmitted, i.e., change the input

227

into any Q
(c)
n (t) to (use idle fill whenever a node does not have enough data to

send):

A(c)
n (t) = R(c)

n (t) +
∑

a∈N (in)
n

µ
(c)
[a,n](t)1[Fa(t)].

Here 1[·] is the indicator function and Fa(t) is the event that Êa(t) ∈ [Ea +

Pmax, Ea +M]. Then further modify the routing and scheduling action under

ESA as follows:

∗ If Q̂
(c)
n (t) < Q(c)

n , let Ã
(c)
n (t) =

[
A

(c)
n (t)− [Q(c)

n − Q̂(c)
n (t)]

]+
, update Q

(c)
n (t)

by:

Q(c)
n (t+ 1) ≤

[
Q(c)
n (t)−

∑
b∈N (o)

n

µ
(c)
[n,b](t)

]+
+ Ã(c)

n (t).

∗ If Q̂
(c)
n (t) ≥ Q(c)

n , update Q
(c)
n (t) by:

Q(c)
n (t+ 1) ≤

[
Q(c)
n (t)−

∑
b∈N (o)

n

µ
(c)
[n,b](t)

]+
+A(c)

n (t).

– Update Ê(t) and Q̂(t) using (7.8) and (7.6).

Note here we have used the [·]+ operator for updating En(t) in the energy harvesting

part. This is due to the fact that the power allocation decisions are now made based

on Ê(t) but not E(t). If Ên(t) never gets below En or above En + M , then we always

have En(t) = Ên(t)−En. Similarly, if Q̂
(c)
n (t) is always above Q(c)

n and Ên(t) is always in

[En + Pmax, En +M], then we always have Q
(c)
n (t) = Q̂

(c)
n (t)−Q(c)

n . MESA is designed to

ensure that Q̂
(c)
n (t) and Ên(t) mostly stay in these “right” ranges. We see in the following

lemma that, although Q̂
(c)
n (t) and Ên(t) can go out of the ranges, our algorithm ensures

that the queue processes are in fact close to each other.

228

Lemma 14. For all time steps t, we have the following:

0 ≤ Q(c)
n (t) ≤ [Q̂(c)

n (t)−Q(c)
n]+ + γ, ∀ (n, c), (7.25)

min
[
[Ên(t)− En]+,M

]
≤ En(t), ∀n. (7.26)

Proof. See Section 7.9.3.

By Lemma 14, when Ên(t) ∈ [En + Pmax, En +M], we have En(t) ≥ [Ên(t)− En]+ ≥

Pmax. Thus all the power allocations are valid under MESA, i.e., under MESA, although

the power allocation decision is made based on Ê(t), the energy availability constraint is

still ensured for all time.

7.6.2 Performance of MESA

To study the performance of MESA, we first denote by g(υ,ν) the dual function of

the problem (7.10). The following lemma shows that the dual function can be written

in a form that is without the variables %
(si)
k and ϕ

(hi)
k . This fact greatly simplifies the

evaluation of the dual function.

Lemma 15. The dual problem of (7.10) is given by:

min : g(υ,ν), s.t. υ � 0,ν ∈ RN , (7.27)

where υ = (υ
(c)
n ,∀ (n, c)), ν = (νn, ∀n), and g(υ,ν) is the dual function defined by

g(υ,ν) = sup

rnc,P (si),e
(hj)
n

∑
si

πsi
∑
hj

πhj

{
V
∑
n,c

U (c)
n (rnc)

−
∑
n,c

υ(c)
n

[
rnc +

∑
a∈N (in)

n

µ
(c)
[a,n](si,P

(si)) (7.28)

−
∑

b∈N (o)
n

µ
(c)
[n,b](si,P

(si))
]
−
∑
n

νn
[∑
b∈N (o)

n

P
(si)
[n,b] − e

(hj)
n

]}
.

Proof. The proof is the same as that of Lemma 8 in Chapter 6.

229

We now summarize the performance results of MESA in the following theorem. In

the theorem, we denote y = (υ,ν), and write g(υ,ν) as a function of y.

Theorem 28. Suppose that y∗ = (υ∗,ν∗) is finite and unique, that θ is chosen such that

θn + ν∗n > 0, ∀ n, and that for all y = (υ,ν) with υ � 0,ν ∈ RN , the dual function g(y)

satisfies:

g(y∗) ≥ g(y) + L||y∗ − y||, (7.29)

for some constant L > 0 independent of V , that the system is in steady state at time T ,

and that a steady state distribution for the queues exists under ESA. Then under MESA

with a sufficiently large V , with probability 1−O(1
V 4), we have:

Q ≤ O([log(V)]2), (7.30)

lim inf
T→∞

Utot(r(T)) ≥ Utot(r
∗)−O(1/V), (7.31)

where Utot(r(T)) is defined in Theorem 26. Furthermore, the fraction of packets dropped

in the packet dropping step is O(1
V 3 log(V)/2).

Proof. See Section 7.9.4.

Note that the theorem also holds when [S(t),h(t)] are Markovian as in Theorem

27. The condition (7.29) is indeed the condition needed for proving the exponential

attraction result (Theorem 5) in Chapter 4. It has been observed that (7.29) typically

holds in practice, particularly when the network action set is finite, in which case the dual

function g(y) is polyhedral in y (see Section 4.2.3 in Chapter 4 for more discussion). It has

been shown that in this case, the queue backlog vector pair is “exponentially attracted”

to the fixed point (υ∗,ν∗ + θ) = Θ(V), in that the probability of deviating decreases

exponentially with the deviation distance. Therefore, the probability of deviating by

230

some Θ([log(V)]2) distance is 1/V log(V), which is very small when V is large. Theorem

28 then shows that under this condition, one can significantly reduce the energy capacity

needed to achieve the O(ε) close-to-optimal utility performance and greatly reduce the

network congestion.

7.7 Simulation

In this section, we provide simulation results of our algorithms. We consider a data

collection network shown in Fig. 7.2. Such a network typically appears in the sensor

network scenario where sensors are used to sense data and forward them to the sink. In

this network, there are 6 nodes. The node S represents the sink node, the nodes 1, 2, 3

sense data and deliver them to node S via the relay of nodes 4, 5.

1

4

S

5

2

3

R1

R2

R3

L1

L2

L3

L4

L5

L6

Figure 7.2: A data collection network.

The channel state of each communication link, represented by a directed edge, is i.i.d.

every time slot and can be either “G=Good” or “B=Bad” with equal probability. One

unit of power can serve two packets over a link when the channel state is good, but can only

serve one when the channel is bad. We assume that Rmax = 3 and the utility functions

are given by: U
(S)
1 (r) = U

(S)
2 (r) = U

(S)
3 (r) = log(1 + r) and U

(S)
4 (r) = U

(S)
5 (r) = 0.

For simplicity, we also assume that all the links do not interfere with each other. We

231

assume that for each node, the available energy hn(t) is i.i.d. and hn(t) = 2/0 with equal

probability.

It is easy to see that in this case, we can use β = 1, δ = 2, µmax = 2, dmax = 2,

Pmax = 2, and γ = dmaxµmax+Rmax = 7. Using Theorem 26, we set θn = δβV +Pmax =

2V + 2. We simulate V ∈ {20, 30, 40, 50, 80, 100, 200}. Each simulation is run for 106

slots. The simulation results are plotted in Fig. 7.3. We see that the total network utility

converges quickly to very close to the optimal value, which can be shown to be roughly

2.03, and that the average data queue size and the average energy queue size both grow

linearly in V .

0 100 200
0

0.5

1

1.5

2

2.5

V

Utility

0 100 200
0

100

200

300

400

500

600

V

Data Q

0 100 200
200

400

600

800

1000

1200

1400

1600

1800

2000

V

Energy Q

Figure 7.3: Simulation results of ESA.

Fig. 7.4 also shows two sample-path data queue processes and two energy queue

processes under V = 100. It can be verified that all the queue sizes satisfy the queueing

bounds in Theorem 26. We also observe the “exponential attraction” behavior of the

queues, as shown in Chapter 4. However, different from the simulation results in Chapter

4, we see that the queue size of Q
(S)
1 (t) does not approach the fixed point from below. It

instead first has a “burst” in the early time slots. This is due to the fact that the system

232

“waits” for E1(t) to come close enough to its fixed point. Such an effect can be mitigated

by storing an initial energy of size θ in the energy queue.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

250

Time

Q
1

Q
3

E
1

E
3

Figure 7.4: Sample path queue processes.

We also simulate the MESA algorithm for the same network with the same θ vector.

We use T = 50V in Phase I for obtaining the vectors E and Q. Fig. 7.5 plots the

performance results. We observe that no packet is dropped throughout the simulations

under any V values. The utility again quickly converges to the optimal as V increases.

We also see from the second and third plots that the actual queues only grow poly-

logarithmically in V , i.e., O([log(V)]2), while the virtual queues, which are the same as

the actual queues under ESA, grows linearly in V . This shows a good match between the

simulations and Theorem 28.

233

0 100 200
0.8

1

1.2

1.4

1.6

1.8

2

2.2

V
0 100 200
0

100

200

300

400

500

600

V
0 100 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

V

Utility Data Q Energy Q

virtual

virtual

actual

actual

5M

5M

Figure 7.5: Simulation results of MESA. 5M is the total network energy buffer size.

7.8 Chapter summary

In this chapter, we use the perturbation technique in Chapter 6 to develop the Energy-

limited Scheduling Algorithm (ESA) for achieving optimal utility in general energy har-

vesting networks equipped with finite capacity energy storage device. ESA is an online

algorithm and does not require any knowledge of the harvestable energy processes. We

show that ESA achieves an average utility that is within O(ε) of the optimal for any ε > 0

using energy storage devices of size O(1/ε), while guaranteeing that the time average net-

work congestion is O(1/ε). We then also develop the Modified-ESA algorithm (MESA),

and show that MESA can achieve the same O(ε) utility performance using energy storage

devices of only size O([log(1
ε)]

2).

7.9 Proofs of the chapter

7.9.1 Proof of Lemma 13

Here we prove Lemma 13.

234

Proof. First by squaring both sides of (7.6), and using the fact that for any x ∈ R,

([x]+)2 ≤ x2, we have:

[Q(c)
n (t+ 1)]2 − [Q(c)

n (t)]2 ≤ [
∑

b∈N (o)
n

µ
(c)
[n,b](t)]

2 + [
∑

a∈N (in)
n

µ
(c)
[a,n](t) +R(c)

n (t)]2 (7.32)

−2Q(c)
n (t)

[∑
b∈N (o)

n

µ
(c)
[n,b](t)−

∑
a∈N (in)

n

µ
(c)
[a,n](t)−R

(c)
n (t)

]
.

Multiplying both sides by 1
2 , and defining B̂ = 3

2d
2
maxµ

2
max +R2

max, 10 we have:

1

2

(
[Q(c)

n (t+ 1)]2 − [Q(c)
n (t)]2

)
≤ B̂ (7.33)

−Q(c)
n (t)

[∑
b∈N (o)

n

µ
(c)
[n,b](t)−

∑
a∈N (in)

n

µ
(c)
[a,n](t)−R

(c)
n (t)

]
.

Using a similar approach, we get that:

1

2

(
[En(t+ 1)− θn]2 − [En(t)− θn]2

)
(7.34)

≤ B̂′ − [En(t)− θn]
[∑
b∈N (o)

n

P[n,b](t)− en(t)
]
,

where B̂′ = 1
2(Pmax + hmax)2. Now by summing (7.33) over all (n, c) and (7.34) over all

n, and by defining B = N2B̂+NB̂′ = N2(3
2d

2
maxµ

2
max +R2

max) + 1
2N(Pmax + hmax)2, we

have:

L(t+ 1)− L(t) ≤ B −
∑
n,c

Q(c)
n (t)

[∑
b∈N (o)

n

µ
(c)
[n,b](t)−

∑
a∈N (in)

n

µ
(c)
[a,n](t)−R

(c)
n (t)

]
−
∑
n

[En(t)− θn]
[∑
b∈N (o)

n

P[n,b](t)− en(t)
]
.

Taking expectations on both sides over the random channel and energy states and the

randomness over actions conditioning on Z(t), subtracting from both sides the term

V E
{∑

n,c U
(c)
n (R

(c)
n (t)) | Z(t)

}
, and rearranging the terms, we see that the lemma follows.

10This uses
∑
b∈N (o)

n
µ
(c)

[n,b](t) ≤ dmaxµmax and
∑
a∈N (in)

n
µ
(c)

[a,n](t) +R
(c)
n (t) ≤ dmaxµmax +Rmax.

235

7.9.2 Proof of Theorem 26

Here we prove Theorem 26.

Proof. (Part (a)) We first prove (7.22) using a similar argument as in [Nee06c]. It is easy

to see that it holds for t = 0, since Q
(c)
n (0) = 0 for all (n, c). Now assume that Q

(c)
n (t) ≤

βV +Rmax for all (n, c) at t, we want to show that it holds for time t+ 1. First, if node

n does not receive any new commodity c data, then Q
(c)
n (t) ≤ Q

(c)
n (t+ 1) ≤ βV +Rmax.

Second, if node n receives endogenous commodity c data from any other node b, then we

must have:

Q(c)
n (t) ≤ Q(c)

b (t)− γ ≤ βV +Rmax − γ.

However, since any node can receive at most γ commodity c packets in every slot, we

have Q
(c)
n (t + 1) ≤ βV + Rmax. Finally, if node n does not receives endogenous arrivals

but receives exogenous packets from outside, then according to (7.17), we must have

Q
(c)
n (t) ≤ βV . Hence Q

(c)
n (t+ 1) ≤ βV +Rmax.

Now it is also easy to see from the energy storage part of ESA that En(t) ≤ θn+hmax,

which proves (7.23).

We now show that if En(t) < Pmax, then G(P (t)) in (7.19) will be maximized by

choosing P[n,m](t) = 0 for all m ∈ N (o)
n at node n. To see this, first note that since all the

data queues are upper bounded by βV +Rmax, we have: W[n,b](t) ≤
[
βV − dmaxµmax

]+
for all [n, b] and for all time.

Now let the power vector that maximizes G(P (t)) be P ∗ and assume that there

exists some P ∗[n,m] that is positive. We now create a new power allocation vector P by

236

setting only P ∗[n,m] = 0 in P ∗. Then we have the following, in which we have written

µ[n,m](S(t),P (t)) only as a function of P (t) to simplify notation:

G(P ∗)−G(P)

=
∑
n

∑
b∈N (o)

n

[
µ[n,b](P

∗)− µ[n,b](P)
]
W[n,b](t) + (En(t)− θn)P ∗[n,m]

≤
(
µ[n,m](P

∗)− µ[n,m](P)
)
W[n,m](t) + (En(t)− θn)P ∗[n,m].

Here in the last step we have used (7.3) in Property 2 of µ[n,m](·,P), which implies that

µ[n,b](P
∗) − µ[n,b](P) ≤ 0 for all b 6= m. Now suppose En(t) < Pmax. We see then

En(t)− θn < −δβV . Using Property 1 and the fact that W[n,m](t) ≤
[
βV − dmaxµmax

]+
,

the above implies:

G(P ∗)−G(P) <
[
βV − dmaxµmax

]+
δP ∗[n,m] − δβV P ∗[n,m] < 0.

This shows that P ∗ cannot have been the power vector that maximizes G(t) if En(t) <

Pmax. Therefore En(t) ≥ Pmax whenever node n allocates any nonzero power over any of

its outgoing links. Hence all the power allocation decisions are feasible. This shows that

the constraint (7.5) is indeed redundant in ESA and completes the proof of Part (a).

(Part (b)) We now prove Part (b). We first show that ESA approximately minimizes

the RHS of (7.16). To see this, note from Part (A) that ESA indeed minimizes the

following function at time t:

D(t) =
∑
n∈N

(En(t)− θn)en(t) (7.35)

−
∑
n,c∈N

[
V U (c)

n (R(c)
n (t))−Q(c)

n (t)R(c)
n (t)

]
−
∑
n∈N

[∑
c

∑
b∈N (o)

n

µ
(c)
[n,b](t)

[
Q(c)
n (t)−Q(c)

b (t)− γ
]

+ (En(t)− θn)
∑

b∈N (o)
n

P[n,b](t)

]
,

237

subject to only the constraints: en(t) ∈ [0, hn(t)], R
(c)
n (t) ∈ [0, Rmax], P (t) ∈ P(si) and

(7.4), i.e., without the energy-availability constraint (7.5). Now define D̃(t) as follows:

D̃(t) =
∑
n∈N

(En(t)− θn)en(t) (7.36)

−
∑
n,c∈N

[
V U (c)

n (R(c)
n (t))−Q(c)

n (t)R(c)
n (t)

]
−
∑
n∈N

[∑
c

∑
b∈N (o)

n

µ
(c)
[n,b](t)

[
Q(c)
n (t)−Q(c)

b (t)
]

+ (En(t)− θn)
∑

b∈N (o)
n

P[n,b](t)

]
.

Note that D̃(t) is indeed the function inside the expectation on the RHS of the drift

bound (7.16). It is easy to see from the above that:

D(t) = D̃(t) +
∑
n

∑
c

∑
[n,b]∈N (o)

n

µ
(c)
[n,b](t)γ.

Since ESA minimizes D(t), we see that:

D̃E(t) +
∑
n

∑
c

∑
b∈N (o)

n

µ
(c)E
[n,b] (t)γ ≤ D̃

ALT (t) +
∑
n

∑
c

∑
b∈N (o)

n

µ
(c)ALT
[n,b] (t)γ,

where the superscript E represents the ESA algorithm, and ALT represents any other

alternate policy. Since

0 ≤
∑
n

∑
c

∑
b∈N (o)

n

µ
(c)
[n,b](t)γ ≤ N

2γdmaxµmax,

we have:

D̃E(t) ≤ D̃ALT (t) +N2γdmaxµmax. (7.37)

That is, the value of D̃(t) under ESA is no greater than its value under any other

alternative policy plus a constant, including the ones that ignore the energy availability

constraint (7.5). Further, Part (a) shows that the energy availability constraint (7.5) is

naturally satisfied under ESA without explicitly being enforced. Now using the definition

of D̃(t), (7.16) can be rewritten as:

∆(t)− V E
{∑
n,c

U (c)
n (R(c)

n (t)) | Z(t)
}
≤ B + E

{
D̃E(t) | Z(t)

}
.

238

Using (7.37), we get:

∆(t)− V E
{∑
n,c

U (c)
n (R(c)

n (t)) | Z(t)
}
≤ B̃ + E

{
D̃ALT (t) | Z(t)

}
, (7.38)

where B̃ = B +N2γdmaxµmax. Plugging into (7.38) the policy in Theorem 25, which by

comparing (7.10) and (7.36) can easily be shown to result in E
{
D̃ALT (t) | Z(t)

}
= φ∗,

and using the fact that φ∗ ≥ V Utot(r∗), we have:

∆(t)− V E
{∑
n,c

U (c)
n (R(c)

n (t)) | Z(t)
}
≤ B̃ − V Utot(r∗).

Taking expectations over Z(t) and summing the above over t = 0, ..., T − 1, we have:

E
{
L(T)− L(0)

}
− V

T−1∑
t=0

E
{∑
n,c

U (c)
n (R(c)

n (t))
}
≤ TB̃ − TV Utot(r∗).

Rearranging the terms, using the facts that L(t) ≥ 0 and L(0) = 0, dividing both sides

by V T , we get:

1

T

T−1∑
t=0

E
{∑
n,c

U (c)
n (R(c)

n (t))
}
≥ Utot(r∗)− B̃/V.

Using Jensen’s inequality, we see that:∑
n,c

U (c)
n (

1

T

T−1∑
t=0

E
{
R(c)
n (t)

}
) ≥ Utot(r∗)− B̃/V.

Taking a liminf as T →∞ and using the definition of rnc(T), i.e., rnc(T) = 1
T

∑T−1
t=0 E

{
R

(c)
n (t)

}
,

we have

lim inf
T→∞

∑
n,c

U (c)
n (rnc(T)) ≥ Utot(r∗)− B̃/V.

This completes the proof of Part (b).

7.9.3 Proof of Lemma 14

Here we prove Lemma 14. We recall that M = 4[log(V)]2 is the size of the energy buffer.

Proof. We first prove (7.25). Define an intermediate process Q̃
(c)
n (t) that evolves exactly

as Q
(c)
n (t) except that it does not discard packets when Ên(t) < En + Pmax or Ên(t) >

239

En + M . We see then Q
(c)
n (t) ≤ Q̃

(c)
n (t). Using Lemma 4 in Chapter 4, we see that:

Q̃
(c)
n (t) ≤ [Q̂

(c)
n (t)−Q(c)

n]+ + γ. Hence Q
(c)
n (t) ≤ [Q̂

(c)
n (t)−Q(c)

n]+ + γ and (7.25) follows.

11

We now look at (7.26). First, it holds at time 0 since 0 = Ên(0)− En = En(0). Now

suppose that it holds for t = 0, 1, ..., k. We want to show that it holds for t = k+ 1. First

note that if Ên(k + 1) ≤ En, then (7.26) always holds because En(k) is nonnegative for

all k. Therefore, in the following we only consider the case when Ên(k + 1) > En, i.e.,

[Ên(k + 1)− En]+ = Ên(k + 1)− En. (7.39)

Also note that since all the actions are made based on Q̂(k) and Ê(k), by Theorem 26,

we always have Ên(k) ≥∑
b∈N (o)

n
P[n,b](k), thus:

Ên(k + 1) = Ên(k)−
∑

b∈N (o)
n

P[n,b](k) + en(k). (7.40)

We consider the following three cases:

(I) Ên(k) < En. Since Ên(k + 1) > En, we must have En − Ên(k) ≤ en(k). Then

according to the harvesting rule,

En(k + 1) = min
[
[En(k)−

∑
b∈N (o)

n

P[n,b](k)]+ + en(k)− En + Ên(k),M
]

≥ min
[
[Ên(k) + En(k)−

∑
b∈N (o)

n

P[n,b](k)]+ + en(k)− En,M
]

≥ min
[
Ên(k)−

∑
b∈N (o)

n

P[n,b](k) + en(k)− En,M
]

= min
[
Ên(k + 1)− En,M

]
= min

[
[Ên(k + 1)− En]+,M

]
.

11Note that Lemma 4 in Chapter 4 concerns only about data queues; whereas here we also have the
energy queues. However, by neglecting the effect of them, the same lemma applies.

240

Here the first inequality uses the property of [·]+, and the second inequality uses En(k) ≥ 0

and Ên(k) ≥∑
b∈N (o)

n
P[n,b](k).

(II) Ên(k) > En +M . In this case, we see by the induction assumption that En(k) ≥

min
[
[Ên(k)− En]+,M

]
= M , which implies that En(k) = M . Then, by the update rule,

we see that:

En(k + 1) = min
[
En(k) + en(k),M

]
= M. (7.41)

Thus (7.26) still holds.

(III) En ≤ Ên(k) ≤ En +M . In this case, we have by induction that:

En(k) ≥ min
[
[Ên(k)− En]+,M

]
= Ên(k)− En. (7.42)

We have two sub-cases:

(III-A) If Ên(k + 1)− En ≤M , then using (7.39) and (7.40), we have:

min
[
[Ên(k + 1)− En]+,M

]
= Ên(k)−

∑
b∈N (o)

n

P[n,b](k) + en(k)− En

≤ min
[[

[Ên(k)− En]+ −
∑

b∈N (o)
n

P[n,b](k)
]+

+ en(k),M
]

≤ min
[
[En(k)−

∑
b∈N (o)

n

P[n,b](k)]+ + en(k),M
]

= En(k + 1).

Here the first inequality uses the property of the operator [·]+, and the second inequality

uses the induction that En(k) ≥ min
[
[Ên(k)− En]+,M

]
= [Ên(k)− En]+.

(III-B) If Ên(k+ 1)−En > M , then we must have Ên(k) ≥ En +M −αmax, and that

En(k) ≥ Ên(k) − En ≥ M − αmax. Using the fact that M
2 ≥ αmax ≥ Pmax, we see that

En(k)−∑
b∈N (o)

n
P[n,b](k) ≥ 0. Thus:

En(k + 1) = min
[
En(k)−

∑
b∈N (o)

n

P[n,b](k) + en(k),M
]

241

≥ min
[
Ên(k)−

∑
b∈N (o)

n

P[n,b](k) + en(k)− En,M
]

= min[Ên(k + 1)− En,M],

which implies En(k+ 1) = M . Thus (7.26) holds. This completes the proof of (7.26) and

proves the lemma.

7.9.4 Proof of Theorem 28

Here we prove Theorem 28. We use the following “exponential attraction” theorem, which

is a modified version of Theorem 6 in Chapter 4. In the theorem, we write g(υ,ν) as a

function of y = (υ,ν), and use y∗ to denote an optimal solution of g(y).

Theorem 29. Suppose that [h(t), S(t)] evolves according some finite state irreducible and

aperiodic Markov chain, that y∗ = (υ∗,ν∗) is finite and unique, that θ is chosen such

that θn + ν∗n > 0, ∀ n, and that for all y = (υ,ν) with υ � 0,ν ∈ RN , the dual function

g(y) satisfies:

g(y∗) ≥ g(y) + L||y∗ − y||, (7.43)

for some constant L > 0 independent of V . Then y∗ = Θ(V), and that under ESA, there

exists constants D,K, c∗ = Θ(1), i.e., all independent of V , such that for any m ∈ R+,

P(r)(D,Km) ≤ c∗e−m, (7.44)

where P(r)(D,Km) is defined:

P(r)(D,Km) , lim sup
t→∞

1

t

t−1∑
τ=0

Pr{E(τ,m)}, (7.45)

with E(t,m) being the following deviation event:

E(t,m) = {∃ (n, c), |Q(c)
n (t)− υ(c)∗

n | > D +Km} (7.46)

∪{∃ n, |(En(t)− θn)− ν∗n| > D +Km}.

242

Proof. The proof is similar to the proof of Theorem 5 in Chapter 4 and is thus omitted

here.

Now we present the proof of Theorem 28.

Proof. (Theorem 28) Since a steady state distribution for the queues exists under the

ESA algorithm, we see that P(r)(D,Km) is the steady state probability that event E(t,m)

happens. Now consider a large V value that satisfies M
8 = 1

2 [log(V)]2 ≥ 2D and log(V) ≥

16K, and define:

m∗ ,
1
2 [log(V)]2 −D

K
≥

1
4 [log(V)]2

K
≥ 4 log(V). (7.47)

Since at time T , the system is in its steady state, by using (7.44) and (7.47), we see that

Pr(E(T,m∗)) = Pr(E(T,
1
2 [log(V)]2 −D

K
))

≤ c∗e−m
∗

≤ c∗e−4 log(V) = O(1/V 4).

Using the definition of E(t,m), we see that when V is large enough, i.e., when (7.47)

holds, with probability 1−O(1/V 4), the vectors Ê(T) and Q̂(T) satisfy the following for

all n, c:

|Q̂(c)
n (T)− υ(c)∗

n | ≤ M

8
, |Ên(T)− (θn + ν∗n)| ≤ M

8
. (7.48)

Using the fact that Q(c)
n = [Q̂

(c)
n (T)− M

2]+ and En = [Ên(T)− M
2]+, (7.48) and the facts

that M = 4[log(V)]2 and y∗ = (υ∗,ν∗) = Θ(V), we see that when V is large enough,

with probability 1−O(1/V 4), we have:

−3M

8
≥ Q(c)

n − υ(c)∗
n ≥ −5M

8
, ∀ (n, c) s.t. υ(c)∗

n 6= 0, (7.49)

Q(c)
n = υ(c)∗

n , ∀ (n, c) s.t. υ(c)∗
n = 0, (7.50)

243

−3M

8
≥ En − (θn + ν∗n) ≥ −5M

8
, ∀n. (7.51)

Having established (7.49)-(7.51), (7.30) can now be proven using (7.25) in Lemma 14 and

a same argument as in the proof of Theorem 9 in Chapter 4.

Now we consider (7.31). Since at every time t, MESA performs ESA’s data admission,

and routing and scheduling actions, if there was no packet dropping, then MESA achieves

the same utility performance as ESA. However, since all the utility functions have bounded

derivatives, to prove the utility performance of MESA, it suffices to show that the average

rate of the packets dropped is O(ε) = O(1/V).

To prove this, we first see that packet dropping happens at time t only when the

following event Ê(t) happens, i.e.,

Ê(t) = {∃ n, Ên(t) < En + Pmax} (7.52)

∪{∃ n, Ên(t) > En +M}

∪{∃ (n, c), Q̂(c)
n (t) < Q(c)

n }.

However, assuming (7.49)-(7.51) hold, we have: En + Pmax ≤ (θn + ν∗n) − 3M
8 + Pmax,

En +M ≥ (θn + ν∗n) + 3M
8 and Q(c)

n ≤ υ(c)∗
n − 3M

8 for all υ
(c)∗
n 6= 0. Therefore the following

event must happen for Ê(t) to happen:

Ẽ(t) = {∃n, Ên(t) < (θn + ν∗n)− 3M

8
+ Pmax}

∪{∃n, Ên(t) > (θn + ν∗n) +
3M

8
}

∪{∃ (n, c), Q̂(c)
n (t) < υ(c)∗

n − 3M

8
, ∀ υ(c)∗

n 6= 0}.

244

Therefore Ê(t) ⊂ Ẽ(t). However, it is easy to see from (7.46) that Ẽ(t) ⊂ E(t, m̃) with

m̃ = (3M
8 −Pmax−D)/K = (3

2 [log(V)]2−Pmax−D)/K. Therefore Ê(t) ⊂ E(t, m̃). Using

(7.44) again, we see that:

lim sup
t→∞

1

t

t−1∑
τ=0

Pr(Ê(τ)) ≤ lim sup
t→∞

1

t

t−1∑
τ=0

Pr(E(τ, m̃))

≤ c∗e−(
3[log(V)]2

2
−Pmax−D)/K . (7.53)

Using the facts that 1
2 [log(V)]2 ≥ 2D and log(V) ≥ 16K, we see that:

3[log(V)]2

2 −D
K

≥
5[log(V)]2

4

K
≥ 20 log(V). (7.54)

Thus we conclude that: 12

lim sup
t→∞

t−1∑
τ=0

Pr(Ê(τ)) ≤ c∗ePmax/K

V 20
= O(1/V).

Since at every time slot, the total amount of packets dropped is no more than 2N2µmax+

NRmax, we see that the average rate of packets dropped is O(1/V).

Finally, by (7.53) and (7.54), we see that the packet drop rate is O(1/V
3 log(V)

2). This

completes the proof of Theorem 28.

12Note here that the term 1
V 20 is due to the M value we choose. We can choose a different M value to

get a different exponent.

245

Part IV

Conclusion and Future Work

246

Chapter 8

Conclusion and future work

In this thesis, we extend the Lyapunov network optimization technique to resolve two im-

portant and challenging problems in the queueing network area, i.e., delay and underflow.

By establishing a novel connection between the Lyapunov technique and a deterministic

optimization program, we develop two extensions of the Lyapunov technique. Specifically,

we present two systematic ways for constructing algorithms to achieve good delay per-

formance for optimization problems in communication networks, and to perform optimal

scheduling in complex networks in the presence of no-underflow constraints. These two

extensions greatly enlarge the range of problems that can be solved by the Lyapunov opti-

mization technique and contribute to developing an optimal control theory for stochastic

networks. The development of the results provides us with the following insights into

algorithm design for queueing network problems.

• Queue as Lagrange multiplier: To achieve optimal network utility, Max-Weight al-

gorithms use the queue vector to represent the Lagrange multiplier. Thus, the imple-

mentation of Max-Weight can be viewed as applying a dual subgradient method to an

247

underlying optimization problem. This important feature ensures the performance of the

Max-Weight algorithms.

• Delay reduction as Lagrange multiplier engineering: The problem of reducing net-

work queueing delay is equivalent to engineering the Lagrange multiplier, so that it goes

through a trajectory that has a small sum value. In this case, to develop delay-efficient

algorithms, it is very important to take the structure of the underlying dual function into

account.

•Underflow prevention as lifting the Lagrange multiplier: The no-underflow constraint

requires that the output rates of some queues in the network must be exactly equal to

their input rates. This requirement makes some entries of the Lagrange multiplier nega-

tive. Hence, Max-Weight can no longer be applied, because it only uses the nonnegative

queue vector to track the Lagrange multiplier. In this case, perturbation resolves this

problem by lifting the Lagrange multiplier values to make it entry-wise positive. This

again highlights the importance of Lagrange multiplier engineering for queueing network

algorithm design.

There are many interesting directions in which the results in this thesis can be further

extended.

• Better buffer provision with respect to network size: The results developed in Chap-

ters 4, 6 and 7, though being effective, all treat the network sizes as given parameters,

and only explore buffer reduction with respect to the proximity to the optimal utility.

Specifically, the results show that the required buffer sizes are O(1/ε) for an O(ε) close-to-

optimal utility. However, the constants multiplying these order terms are Θ(N2), where

N is the network size. Such an scaling law can be very inefficient, and incur large network

248

congestion when the network size is large. Thus, it is important to construction algo-

rithms that have smaller multiplicative constants, e.g., O(N). The redundant constraint

approach developed in Chapter 5 can likely be useful in this case.

• Multi-time-scale network control: The models in this thesis all assume time-slotted

systems, where the network dynamics and actions change every time slot. However,

in practice, different components of the network may evolve according to different time

scales. For instance, in a sensor network, the nodes may go to sleep and wake up every tens

of seconds, whereas they may schedule packet transmissions and receptions every hundred

milliseconds. As another example, in a processing network, assembling two different parts

may take a longer time than painting each one of them. Thus, one important extension

of the current work is to develop multi-time-scale stochastic network control techniques.

Such an extension is very challenging, and will find applications in many important

networking problems as well as in the operations research area.

• Game theoretic optimal network control: The results in this work can be viewed as

being derived in the optimal network control regime, where all the network components

are assumed to comply with the rules and behave accordingly. However, in practice, due

to the abundant information available to the network components, as well as the self-

interests of them, the network nodes may not always behave in this “normal” manner.

For instance, in a transportation network, the nodes may want to reduce its own delay

and choose to traverse a path that is less congested, rather than going to a suggested

route by the controller, or customers using a network access point may want to anticipate

the prices and transmit packets strategically, rather than being price-takers. In this case,

it is important to develop network control algorithms that also take into account such

249

selfish behavior of the network components. Such algorithms will be very useful in areas

such as transportation networks and the Smart Grid.

• Delay-efficient low-complexity algorithm design: Another interesting problem is to

see how the techniques developed here can be combined with the low-complexity CSMA

algorithm design technique developed recently in [JW10]. This CSMA-type technique is

very suitable for distributed algorithm design in, e.g., peer-to-peer systems. However,

these CSMA-type algorithms tend to have unsatisfying delay performance. Also, it is not

clear whether it can easily be applied to problems involving the no-underflow constraints.

It will therefore be interesting to see how the results here can be used together with this

technique to develop low-complexity algorithms for queueing networks.

250

Bibliography

[Alt99] E. Altman. Constrained Markov Decision Processes. Chapman and
Hall/CRC, 1999.

[AOS04] D. Acemoglu, A. Ozdaglar, and R. Srikant. The marginal user principle
for resource allocation in wireless networks. Proceedings of IEEE Conf. on
Decision and Control, Dec. 2004.

[BC03] G. R. Bitran and R. Caldentey. An overview of pricing models for revenue
management. Manufacturing and Service Operations Management, Vol. 5,
No. 3, pp. 203-209, Summer 2003.

[Ber03] D. P. Bertsekas. Nonlinear Programming, 2nd Edition. Athena Scientific,
2003.

[Ber07] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vols. I and
II. Boston: Athena Scientific, 2005 and 2007.

[BN07] N. Buchbinder and J. Naor. The Design of Competitive Online Algorithms
via a PrimalDual Approach. Foundations and Trends in Theoretical Com-
puter Science Vol. 3, Nos. 2-3, pp. 93-263, 2007.

[BNO03] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and Op-
timization. Boston: Athena Scientific, 2003.

[BS02] T. Basar and R. Srikant. Revenue-maximizing pricing and capacity expan-
sion in a many-users regime. Proceedings of IEEE INFOCOM, 2002.

[BSS09] L. Bui, R. Srikant, and A. Stolyar. Novel architectures and algorithms for
delay reduction in back-pressure scheduling and routing. Proceedings of
IEEE INFOCOM 2009 Mini-Conference, April 2009.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2004.

[BZ99] E. K. Browning and M. A. Zupan. Microeconomic theory and applications.
Addison-Wesley Educational Publishers, Inc., 1999.

[CC08] S. Chalasani and J. M. Conrad. A survey of energy harvesting sources for
embedded systems. IEEE Southeastcon, 2008.

251

[CFK95] M. A. Crew, C. S. Fernando, and P. R. Kleindorfer. The theory of peak-
load pricing: A survey. Journal of Regulatory Economics, 8(3):215–48,
November 1995.

[CL] F. Chung and L. Lu. Concentration inequalities and martingale inequali-
ties: a survey. Internet Math., 3 (2006-2007), 79–127.

[CNT05] C. Curescu and S. Nadjm-Tehrani. Price/utility-based optimized resource
allocation in wireless ad hoc networks. IEEE SECON, 85- 95, 2005.

[DL05] J. G. Dai and W. Lin. Maximum pressure policies in stochastic processing
networks. Operations Research, Vol 53, 197-218, 2005.

[Dur05] R. Durret. Probability: Theory and Examples. Cambridge University Press,
3rd Edition, 2005.

[ene10] Power from thin air. Economist, June 10, 2010.

[ES07] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless networks
using queue-length-based scheduling and congestion control. IEEE/ACM
Trans. Netw., 15(6):1333–1344, 2007.

[Fol99] G. B. Folland. Real Analysis: Modern Techniques and their Applications.
Wiley, 2nd edition, 1999.

[FP03] E. J. Friedman and D. C. Parkes. Pricing wifi at starbucks– issues in online
mechanism design. Proceedings of Fourth ACM Conf. on Elec. Commerce
(EC’03), pp.240-241, 2003.

[Gal96] R. G. Gallager. Discrete Stochastic Processes. Kluwer Academic Publish-
ers, 1996.

[GGT10] M. Gatzianas, L. Georgiadis, and L. Tassiulas. Control of wireless networks
with rechargeable batteries. IEEE Trans. on Wireless Communications,
Vol. 9, No. 2, Feb. 2010.

[GJ07] P. Gupta and T. Javidi. Towards throughput and delay-optimal routing for
wireless ad-hoc networks. Asilomar Conference on Signals, Systems and
Computers, Nov 2007.

[GKK+09] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang, and
G. Zussman. Challenge: Ultra-low-power energy-harvesting active net-
worked tags (EnHANTs). Proceedings of MobiCom, Sept. 2009.

[GNT06] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource Allocation and
Cross-Layer Control in Wireless Networks. Foundations and Trends in
Networking Vol. 1, no. 1, pp. 1-144, 2006.

[GR09] D. Graham-Rowe. Wireless power harvesting for cell phones. MIT Tech-
nology Review, June, 2009.

252

[HC10] T. R. Halford and K. M. Chugg. Barrage relay networks. Information
Theory and Applications Workshop (ITA), 2010.

[HMNK11] L. Huang, S. Moeller, M. J. Neely, and B. Krishnamachari. Lifo-
backpressure achieves near optimal utility-delay tradeoff. Proceedings of
WiOpt, May 2011.

[HN07] L. Huang and M. J. Neely. The optimality of two prices: Maximizing
revenue in a stochastic network. Proceedings of 45th Annual Allerton Con-
ference on Communication, Control, and Computing (invited paper), Sept.
2007.

[HN09] L. Huang and M. J. Neely. Delay reduction via Lagrange multipliers in
stochastic network optimization. Proceedings of WiOpt, June 2009.

[HN10a] L. Huang and M. J. Neely. Max-weight achieves the exact [O(1/V), O(V)]
utility-delay tradeoff under Markov dynamics. arXiv:1008.0200v1, 2010.

[HN10b] L. Huang and M. J. Neely. Utility optimal scheduling in processing net-
works. ArXiv Technical Report, avXiv:1008.1862v1, 2010.

[HN10c] L. Huang and M. J. Neely. The optimality of two prices: Maximizing
revenue in a stochastic network. IEEE/ACM Transactions on Networking,
Vol. 18, No.2, April 2010.

[HN10d] L. Huang and M. J. Neely. Delay efficient scheduling via redundant con-
straints in multihop networks. Proceedings of WiOpt 2011, May, 2010.

[HN11a] L. Huang and M. J. Neely. Delay reduction via Lagrange multipliers in
stochastic network optimization. IEEE Transactions on Automatic Con-
trol, Volume 56, Issue 4, pp. 842-857, April 2011.

[HN11b] L. Huang and M. J. Neely. Utility optimal scheduling in energy harvesting
networks. Proceedings of MobiHoc, May 2011.

[HNar] L. Huang and M. J. Neely. Delay efficient scheduling via redundant con-
straints in multihop networks. Elsevier’s Performance Evaluation, To ap-
pear.

[HR51] O. Hanner and H. R̊adström. A generalization of a theorem of F̧enchel.
Proceedings of American Mathematical Society, vol. 2, no. 4, pp. 589-593,
Aug. 1951.

[JW09] L. Jiang and J. Walrand. Stable and utility-maximizing scheduling for
stochastic processing networks. Allerton Conference on Communication,
Control, and Computing, 2009.

[JW10] Libin Jiang and Jean Walrand. A distributed csma algorithm for through-
put and utility maximization in wireless networks. IEEE/ACM Transac-
tions on Networking, vol. 18, no.3, pp. 960 - 972, Jun. 2010.

253

[KA03] N. J. Keon and G. Anandalingam. Optimal pricing for multiple ser-
vices in telecommunications networks offering quality-of-service guarantees.
IEEE/ACM Trans. Netw., 11(1):66–80, 2003.

[Kel97a] F. Kelly. Charging and rate control for elastic traffic. European Transac-
tions on Telecommunications, vol. 8, pp. 33-37, 1997.

[Kel97b] F. Kelly. Charging and rate control for elastic traffic. European Transac-
tions on Telecommunications, vol. 8, pp. 33-37, 1997.

[KHZS07] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Power management in
energy harvesting sensor networks. ACM Trans. on Embedded Computing
Systems, Vol.6, Issue 4, Sept. 2007.

[LCL07] R. K. Lam, D. Chiu, and J. C. S. Lui. On the access pricing and network
scaling issues of wireless mesh networks. IEEE Transactions on Computers,
vol. 56, No. 11, Nov. 2007.

[LL99] S. H. Low and D. E. Lapsley. Optimization flow control, i: Basic algorithm
and convergence. IEEE/ACM Transactions on Networking, vol. 7(6): 861-
75, Dec. 1999.

[LPC08] Y. Li, A. Papachristodoulou, and M. Chiang. Stability of congestion control
schemes with delay sensitive traffic. Proceedings of IEEE ACC, Seattle,
WA, June 2008.

[LPW08] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing
Times. American Mathematical Society, 1st Edition, Dec 2008.

[LS05] X. Lin and N. B. Shroff. Simplification of network dynamics in large sys-
tems. IEEE/ACM Transactions on Networking, vol. 13, no. 4, pp. 813-826,
August 2005.

[LS06] X. Lin and N. B. Shroff. The impact of imperfect scheduling on cross-
layer congestion control in wireless networks. IEEE/ACM Transactions on
Networking, vol. 14, no. 2, pp302-315, April 2006.

[LSS05] L. Lin, N. B. Shroff, and R. Srikant. Asymptotically optimal power-aware
routing for multihop wireless networks with renewable energy sources. Pro-
ceedings of INFOCOM, 2005.

[LSS07] L. Lin, N. B. Shroff, and R. Srikant. Energy-aware routing in sensor net-
works: A large system appraoch. Ad Hoc Networks, Vol. 5, Issue 6, 818-
831, 2007.

[MB02] P. Marbach and R. Berry. Downlink resource allocation and pricing for
wireless networks. Proceedings of IEEE INFOCOM, 2002.

[McA02] R. Preston McAfee. Coarse matching. Econometrica, Vol. 70, Number 5,
2025-2034, September 2002.

254

[Mit04] M. Mitzenmacher. Digital fountains: A survey and look forward. Informa-
tion Theory Workshop, 2004.

[MMMA+01] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, and
J. H. Lang. Vibration-to-eletric energy conversion. IEEE Trans. on VLSI,
Vol. 9, No.1, Feb. 2001.

[MMV95] J. K. MacKie-Mason and H. R. Varian. Pricing congestible network re-
sources. IEEE Journal on Selected Areas in Communications, vol. 13, no.
7, pp. 1141–1149, 1995.

[MSKG10] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali. Routing
without routes: The backpressure collection protocol. 9th ACM/IEEE
International Conference on Information Processing in Sensor Networks
(IPSN), pp. 279-290, 2010.

[Mun00] J. R. Munkres. Topology. NJ: Prentice Hall, Inc., 2000.

[MW06] J. Musacchio and J. Walrand. Wifi access point pricing as a dynamic game.
IEEE/ACM Trans. Netw., 14(2):289–301, 2006.

[Nee03] M. J. Neely. Dynamic Power Allocation and Routing for Satellite and Wire-
less Networks with Time Varying Channels. PhD thesis, Massachusetts
Institute of Technology, Laboratory for Information and Decision Systems
(LIDS), 2003.

[Nee06a] M. J. Neely. Intelligent packet dropping for optimal energy-delay tradeoffs
in wireless downlinks. Proceedings of the 4th Int. Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
April 2006.

[Nee06b] M. J. Neely. Super-fast delay tradeoffs for utility optimal fair scheduling
in wireless networks. IEEE Journal on Selected Areas in Communications
(JSAC), Special Issue on Nonlinear Optimization of Communication Sys-
tems, vol. 24, no. 8, pp. 1489-1501, Aug. 2006.

[Nee06c] M. J. Neely. Energy optimal control for time-varying wireless networks.
IEEE Transactions on Information Theory 52(7): 2915-2934, July 2006.

[Nee07] M. J. Neely. Optimal energy and delay tradeoffs for multi-user wireless
downlinks. IEEE Transactions on Information Theory vol. 53, no. 9, pp.
3095-3113, Sept. 2007.

[Nee09a] M. J. Neely. Delay analysis for maximal scheduling with flow control in
wireless networks with bursty traffic. IEEE Transactions on Networking,
vol. 17, no. 4, pp. 1146-1159, August 2009.

[Nee09b] M. J. Neely. Delay analysis for max weight opportunistic scheduling in
wireless systems. IEEE Transactions on Automatic Control, Vol. 54, No.
9, pp. 2137-2150, Sept. 2009.

255

[Nee10a] M. J. Neely. Universal scheduling for networks with arbitrary traffic, chan-
nels, and mobility. Proceedings of IEEE Conf. on Decision and Control
(CDC), Atlanta, GA, Dec 2010.

[Nee10b] M. J. Neely. Stability and capacity regions or discrete time queueing net-
works. arXiv:1003.3396v1, March 2010.

[NH10] M. J. Neely and L. Huang. Dynamic product assembly and inventory
control for maximum profit. IEEE Conference on Decision and Control
(CDC), Atlanta, Georgia, Dec. 2010.

[NML08] M. J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic control
for heterogeneous networks. IEEE/ACM Trans. on Networking, vol. 16,
no. 2, pp. 396-409, April 2008.

[NMR05] M. J. Neely, E. Modiano, and C. E. Rohrs. Dynamic power allocation
and routing for time-varying wireless networks. IEEE Journal on Selected
Areas in Communications, Vol 23, NO.1, pp. 89-103, January 2005.

[NU08] M. J. Neely and R. Urgaonkar. Opportunism, backpressure, and stochastic
optimization with the wireless broadcast advantage. Asilomar Conference
on Signals, Systems, and Computers, Pacific Grove, CA (Invited paper),
Oct. 2008.

[NZJ09] M. Naghshvar, H. Zhuang, and T. Javidi. A general class of throughput op-
timal routing policies in multi-hop wireless networks. arXiv:0908.1273v1,
Aug 2009.

[PPC06] L. Pelusi, A. Passarella, and M. Conti. Opportunistic networking: data for-
warding in disconnected mobile ad hoc networks. IEEE Communications
Magazine, Vol. 44, Issue 11, Nov. 2006.

[PT00] I. Ch. Paschalidis and J. N. Tsitsiklis. Congestion-dependent pricing of
network services. IEEE/ACM Trans. Netw., 8(2):171–184, 2000.

[RKH+05] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. B. Srivastava.
Design considerations for solar energy harvesting wireless embedded sys-
tems. Proceedings of IEEE IPSN, April 2005.

[Ros96] S. Ross. Stochastic Processes. John Wiley and Sons Inc., New York, 1996.

[SdV09] B. Sadiq and S. Baekand G. de Veciana. Delay-optimal opportunistic
scheduling and approximations: The log rule. Proceedings of IEEE IN-
FOCOM, April 2009.

[SK10] R. Srivastava and C. E. Koksal. Basic tradeoffs for energy management in
rechargeable sensor networks. ArXiv Techreport arXiv: 1009.0569v1, Sept.
2010.

256

[SMJG10] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta. Optimal energy man-
agement policieis for energy harvesting sensor nodes. IEEE Trans. on
Wireless Communication, Vol.9, Issue 4., April 2010.

[SS06] S. Shakkottai and R. Srikant. Economics of network pricing with multiple
isps. IEEE/ACM Trans. Netw., 14(6):1233–1245, 2006.

[SSS04] S. Shakkottai, R. Srikant, and A. Stolyar. Pathwise optimality of the ex-
ponential scheduling rule for wireless channels. Advances in Applied Prob-
ability,, December 2004.

[TE92] L. Tassiulas and A. Ephremides. Stability properties of constrained queue-
ing systems and scheduling policies for maximum throughput in multihop
radio networks. IEEE Trans. on Automatic Control, vol. 37, no. 12, pp.
1936-1949, Dec. 1992.

[TE93] L. Tassiulas and A. Ephremides. Dynamic server allocation to parallel
queues with randomly varying connectivity. IEEE Transactions on Infor-
mation Theory, Vol. 39, No. 2, pp. 466-478, March1993.

[UN08] R. Urgaonkar and M. J. Neely. Opportunistic scheduling with reliability
guarantees in cognitive radio networks. Proceedings of INFOCOM, April
2008.

[Vaz03] V. V. Vazirani. Approximation Algorithms. Springer, 2003.

[VL07] V. J. Venkataramanan and X. Lin. Structural properties of ldp for queue-
length based wireless scheduling algorithms. 45th Annual Allerton Con-
ference on Communication, Control, and Computing, Monticello, Illinois,,
September 2007.

[WALJ+06] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity
and yield in a volcano monitoring sensor network. 7th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2006.

[YC08] Y. Yi and M. Chiang. Stochastic network utility maximization: A tribute
to Kelly’s paper published in this journal a decade ago. European Trans-
actions on Telecommunications, vol. 19, no. 4, pp. 421-442, June 2008.

[YSR09] L. Ying, S. Shakkottai, and A. Reddy. On combining shortest-path and
back-pressure routing over multihop wireless networks. Proceedings of
IEEE INFOCOM, April 2009.

[YST08] L. Ying, R. Srikant, and D. Towsley. Cluster-based back-pressure routing
algorithm. Proceedings of IEEE INFOCOM, April 2008.

[YZC09] Y. Yi, J. Zhang, and M. Chiang. Delay and effective throughput of wireless
scheduling in heavy trafc regimes: Vacation model for complexity. Proceed-
ings of MobiHoc, May 2009.

257

[ZDT07] Z. Zhang, D. Dey, and Y. Tan. Pricing communication services with delay
guarantee. INFORMS Journal on Computing, Vol.19, No.2, pp248-260,
2007.

258

Appendix

Duality

In this appendix, we provide a very brief review of the duality theory. The materials here

are based on books [BNO03] and [BV04]. The notation is a little bit different from those

in [BNO03] and [BV04], and is chosen to be consistent with the notation used in this

thesis.

We consider the following problem:

min : f(x) (.1)

s.t. hj(x) ≤ 0, ∀ j, (.2)

x ∈ X . (.3)

Here X is a subset of Rn, f(x) : X → R, gj(x) : X → R, ∀ j, are given functions.

This problem is referred to as the primal problem. Note that equality constraints, i.e.,

hj(x) = 0 can also be included in the problem (.1) - (.3), by writing every such constraint

as two inequality constraints, i.e., hj(x) ≤ 0 and −hj(x) ≤ 0.

259

To obtain the dual problem of (.1), we associate with each constraint in (.2) a

multiplier γj , and form the following Lagrangian

L(x,γ) , f(x) +
∑
j

γjhj(x). (.4)

The Lagrangian is a function of the primal variable x and the dual variable γ = (γ1, ..., γr)
T ,

which is also called the Lagrange multiplier. The dual function g(γ) is given by

g(γ) , inf
x∈X

L(x,γ) (.5)

= inf
x∈X

{
f(x) +

∑
j

γjhj(x)

}
.

The dual problem is then given by:

max : g(γ) (.6)

s.t. γ � 0. (.7)

The constraint (.7) is due to the fact that the primal constraints are inequality constraints.

In this appendix, we assume that both the primal problem and the dual problem have

finite optimal values, and denote them by f∗ and g∗, i.e.,

f∗ , inf
x∈X ,gj(x)≤0

f(x), g∗ , sup
γ�0

g(γ). (.8)

In many cases, for example, when the functions f(·), gj(·) are convex, the feasible set

X is convex and certain qualifying conditions such as slackness, are met, we have g∗ = f∗,

in which cases we say that there is no duality gap. However, for any general f(·) and

gj(·) functions and feasible set X , we always have the following theorem, which is more

important for the results in this thesis.

260

Theorem 30. (Weak Duality) We have g∗ ≤ f∗.

Proof. Consider any γ � 0. For any x ∈ X with gj(x) ≤ 0 for all j, we have

g(γ) = inf
x∈X

{
f(x) +

∑
j

γjhj(x)

}
≤ f(x) +

∑
j

γjhj(x) ≤ f(x).

Thus,

g∗ = sup
γ�0

g(γ) ≤ inf
x∈X ,gj(x)≤0

f(x) = f∗,

completing the proof.

261

