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Abstract

We consider the problem of utility optimal scheduling in general processing networks with random

arrivals and network conditions. These are generalizations of traditional data networks where commodities

in one or more queues can be combined to produce new commodities that are delivered to other parts

of the network, and can be used to model problems such as in-network data fusion, stream processing,

MapReduce scheduling, and grid computing. Scheduling actions are complicated by the underflow problem

that arises when some queues with required components go empty. In this paper, we develop a novel

methodology for constructing and analyzing online algorithms for such processing networks. Specifically,

we develop the Perturbed Max-Weight algorithm (PMW) to achieve optimal utility. The idea of PMW is

to perturb the weights used by the usual Max-Weight algorithm to “push” queue levels towards non-zero

values (avoiding underflows). We then show, using a novel combination of Lyapunov drift analysis and

duality theory, that when the perturbations are carefully chosen, PMW is able to achieve a utility that is

within O(1/V ) of the optimal value for any V � 1, while ensuring an average network backlog of O(V ).

The methodology developed here is very general and can also be applied to other problems that involve

such underflow constraints.

1 Introduction

Recently, there has been much attention on developing optimal scheduling algorithms for the class of pro-

cessing networks e.g., [1], [2], [3], [4], [5]. These networks are generalizations of traditional data networks.

Contents in these networks can represent information, data packets, or certain raw materials, that need to

go through multiple processing stages in the network before they can be utilized. One example of such

processing networks is the Fork and Join network considered in [4], which models, e.g., stream processing

[6] [7], MapReduce scheduling [8], and grid computing [9]. In the stream processing case, the contents in

the network represent di↵erent types of data, say voice and video, that need to be combined or jointly com-

pressed, and the network topology represents a particular sequence of operations that needs to be conducted
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during processing. Another example of a processing network is a sensor network that performs data fusion

[10], in which case sensor data must first be fused before it is delivered. Finally, these processing networks

also contain the class of manufacturing networks, where raw materials are assembled into products [3], [5].

In this paper, we develop optimal scheduling algorithms for the following general utility maximization

problem in processing networks. We are given a discrete time stochastic processing network. The network

state, which describes the network randomness (such as random channel conditions or commodity arrivals),

is time varying according to some probability law. A network controller performs some action at every time

slot, based on the observed network state, and subject to the constraint that the network queues must have

enough contents to support the action. The chosen action generates some utility, but also consumes some

amount of contents from some queues, and possibly generates new contents for some other queues. These

contents cause congestion, and thus lead to backlogs at queues in the network. The goal of the controller

is to maximize its time average utility subject to the constraint that the time average total backlog in the

network is finite.

Many of the utility maximization problems in data networks fall into this general framework. For instance,

[11], [12], [13] [14], [15], can be viewed as special cases of the above framework which allow scheduling

actions to be independent of the content level in the queues (see [16] for a survey of problems in data

networks). By comparing the processing networks with the data networks, we note that the main di�culty

in performing utility optimal scheduling in these processing networks is that we need to build an optimal

scheduling algorithm on top of a mechanism that prevents queue underflows. Scheduling problems with such

no-underflow constraints are usually formulated as dynamic programs, e.g., [17], which require substantial

statistical knowledge of the network randomness, and are usually very di�cult to solve.

In this paper, we develop a novel methodology for constructing and analyzing online algorithms for these

processing networks. Specifically, we develop the Perturbed Max-Weight algorithm (PMW) for achieving

optimal utility in processing networks. PMW is a greedy algorithm that makes decisions every time slot,

without requiring any statistical knowledge of the network randomness. PMW is based on the Max-Weight

algorithm developed in the data network context [18] [19]. There, Max-Weight has been shown to be able

to achieve a time average utility that is within O(1/V ) of the optimal network utility for any V � 1, while

ensuring that the average network delay is O(V ), when the network dynamics are i.i.d. [19]. The idea of

PMW is to perturb the weights used in the Max-Weight algorithm so as to “push” the queue sizes towards

some nonzero values. Doing so properly, we can ensure that the queues always have enough contents for the

scheduling actions. Once this is accomplished, we then do scheduling as in the usual Max-Weight algorithm

with the perturbed weights. In this way, we simultaneously avoid queue underflows and achieve good utility

performance, and also eliminate the need to solve complex dynamic programs. We show, using a novel
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combination of Lyapunov drift analysis and duality theory, that when the perturbations are carefully chosen,

PMW achieves a utility that is within O(1/V ) of the optimal for any V � 1, while ensuring that the average

network backlog is O(V ).

The PMW algorithm is quite di↵erent from the approaches used in the processing network literature. [1]

analyzes manufacturing networks using Brownian approximations. [2] applies the Max-Weight algorithm to

do scheduling in manufacturing networks, assuming all the queues always have enough contents. [3] develops

the Deficit Max-Weight algorithm (DMW), by using Max-Weight based on an alternative control process

for decision making. [4] formulates the problem as a convex optimization problem to match the input and

output rates of the queues, without considering the queueing level dynamics. PMW instead provides a way

to explicitly avoid queue underflows, and allows us to compute explicit backlog bounds. Our algorithm is

perhaps most similar to the DMW algorithm in [3]. DMW achieves the desired performance by bounding

the “deficit” incurred by the algorithm and applies to both stability and utility maximization problems;

whereas PMW uses perturbations to avoid deficits entirely and allows for more general time varying system

dynamics, e.g., random arrivals and random costs. Our previous work [5] introduces a similar perturbed

Lyapunov function. However, [5] treats a 1-hop manufacturing model with a simplified structure, whereas

the current work treats a model with general cost functions and possibly multi-hop dynamics. The choice of

the perturbation value is not obvious in this general context, and this paper develops a method for choosing

an appropriate perturbation. It also uses a combination of Lyapunov drift analysis and duality theory that

is di↵erent from the approach in [5].

The main contributions of this paper are summarized as follows:

• We present a general processing network model that can be used to model many problems involving the

no-underflow constraint, including manufacturing networks, stream processing, and energy harvesting

networks etc.

• We develop a general methodology for constructing online algorithms for such processing networks

based on weight perturbation in Max-Weight. Using the methodology, we develop the Perturbed Max-

Weight algorithm (PMW), and prove that PMW resolves the no-underflow constraint and achieves an

[O(1/V ), O(V )] utility-congestion tradeo↵.

• We present an explicit construction of approximate PMW algorithms for networks with output reward.

• We present an explanation on why perturbation is needed for processing network problems, which

contributes to a better understanding of the interaction between queue engineering and mathematical

programming.

The paper is organized as follows: In Section 2 we set up our notations. In Section 3, we present a study

on a data processing example to demonstrate the main idea of the paper. In Section 4 we state the general
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model and the scheduling problem. In Section 5 we characterize optimality, and in Sections 6 we develop the

PMW algorithm and show its utility can approach the optimum. Section 7 constructs a PMW algorithm for

a broad class of networks. Simulation results are presented in Section 8. We discuss the role of perturbation

in algorithm design for processing networks in Section 9.

2 Notations

Here we first set up the notations used in this paper: R represents the set of real numbers. R+ (or R�)

denotes the set of nonnegative (or non-positive) real numbers. Rn (or Rn

+) is the set of n dimensional column

vectors, with each element being in R (or R+). Bold symbols a and aT represent a column vector and its

transpose. a ⌫ b means vector a is entrywise no less than vector b. ||a� b|| is the Euclidean distance of a

and b. 0 and 1 denote column vectors with all elements being 0 and 1. For any two vectors a = (a1, ..., an)T

and b = (b1, ..., bn)T , the vector a⌦ b = (a1b1, ..., anbn)T . Finally [a]+ = max[a, 0].

3 A data processing example

In this section, we study a data processing example and develop the Perturbed Max-Weight algorithm (PMW)

in this case. This example demonstrates the main idea of this paper. We will later present the general model

in Section 4.

3.1 Network Settings

We consider a network shown in Fig. 1, where the network performs a 2-stage data processing for the arriving

data. In this network, there are two random data streams R1(t), R2(t), which represent, e.g., sensed data

q1 P1 P2q3

q2

OutputR1(t)

R2(t)

!1(t)

!3(t)

!2(t)

Figure 1: LEFT: An example network consisting of three queues q1, q2, q3 and two processors P1, P2. RIGHT: The
slot structure.

that arrives, or video and voice data that need to be mixed. We assume that R
i

(t) = 1 or 0, equally likely,

for i = 1, 2. At every time slot, the network controller first decides whether or not to admit the new arrivals.

The controller then has to decide how to activate the two processors P1, P2 for data processing. We assume

that both processors can be activated simultaneously. When activated, P1 consumes one unit of data from

both q1 and q2, and generates one unit of fused data into q3. This data needs further processing that is done

by P2. When P2 is activated, it consumes one unit of data from q3, and generates one unit of processed data.
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We assume that each unit of successfully fused and processed data generates a profit of p(t), where p(t) is

i.i.d. and takes value 4 or 1 with equal probabilities. However, every activation of the processor P
i

incurs a

unit cost. The network controller’s objective is to maximize the average utility, i.e., profit minus cost, subject

to queue stability.

For the ease of presenting the general model later, we define a network state S(t) = (R1(t), R2(t), p(t)),

which describes the current network randomness. 1 We also denote the controller’s action at time t to be

x(t) = (D1(t), D2(t), I1(t), I2(t)), where D
j

(t) = 1 (D
j

(t) = 0) means to admit (reject) the new arrivals

into queue j, and I
i

(t) = 1 (I
i

(t) = 0) means processor P
i

is activated (turned o↵). We note the following

no-underflow constraints must be met for all time when we activate processors P1, P2:

I1(t)  q1(t), I1(t)  q2(t), I2(t)  q3(t). (1)

That is, I1(t) = 1 only when q1 and q2 are both nonempty, and I2(t) = 1 only if q3 is nonempty. Note

that [3] is the first to identify such no-underflow constraints and propose an explicit solution that shows the

fraction of time these constraints are violated converges to zero under certain network assumptions. Here we

propose a di↵erent approach that ensures the constraints are never violated, and holds for a broader class

of problems. Subject to (1), we can write the amount of arrivals into q1, q2, q3, and the service rates of the

queues at time t as functions of the network state S(t) and the action x(t), i.e.,

A
j

(t) = A
j

(S(t), x(t)) = D
j

(t)R
j

(t), j = 1, 2, A3(t) = A3(S(t), x(t)) = I1(t). (2)

µ
j

(t) = µ
j

(S(t), x(t)) = I1(t), j = 1, 2, µ3(t) = µ3(S(t), x(t)) = I2(t). (3)

Then we see that the queues evolve according to the following:

q
j

(t+ 1) = q
j

(t)� µ
j

(t) +A
j

(t), j = 1, 2, 3, 8 t. (4)

We assume that in every time slot, each queue first supplies the contents to the associated processors. It

then receives new contents at the end of the slot. This slot structure is shown in Fig. 1. The instantaneous

utility is given by:

f(t) = f(S(t), x(t)) = p(t)I2(t)� I1(t)� I2(t). (5)

The goal is to maximize the time average value of f(t) subject to network stability.

Note that the constraint (1) greatly complicates the design of an optimal scheduling algorithm. This

is because the decision made at time t may a↵ect the queue states in future time slots, which can in turn

a↵ect the set of possible actions in the future. In the following, we will develop the Perturbed Max-Weight

1The network state here contains just R1(t), R2(t) and p(t). More complicated settings, where the amount consumed from
queues may also depend on the random link conditions between queues and processors can also be modeled by incorporating
the link components into the network state, e.g., [20].
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algorithm (PMW) for this example. The idea of PMW is to use the usual Max-Weight algorithm, but

perturb the weights so as to push the queue sizes towards certain nonzero values. By carefully designing the

perturbation, we can simultaneously ensure that the queues always have enough data for processing and the

achieved utility is close to optimal.

3.2 The Perturbed Max-Weight algorithm (PMW)

We now present the construction of the PMW algorithm for this simple example (this is extended to general

network models in Section 6). To start, we first define a perturbation vector ✓ = (✓1, ✓2, ✓3)T and the

Lyapunov function L(t) = 1
2

P3
j=1[qj(t)� ✓

j

]2. We then define the one-slot conditional drift as:

�(t) = E
�
L(t+ 1)� L(t) | q(t)

 
, (6)

where the expectation is taken over the random network state S(t) and the randomness over the actions.

Using the queueing dynamics (4), it is easy to obtain that:

�(t)  B �
3X

j=1

E
�
(q

j

(t)� ✓
j

)[µ
j

(t)�A
j

(t)] | q(t)
 
,

where B = 3
2 . Now we use the “drift-plus-penalty” approach in [19] to design our algorithm for this problem.

To do so, we define a control parameter V � 1, which will a↵ect our utility-backlog tradeo↵, and add to both

sides the term �V E
�
f(t) | q(t)

 
to get:

�(t)� V E
�
f(t) | q(t)

 
 B � V E

�
f(t) | q(t)

 
�

3X

j=1

E
�
(q

j

(t)� ✓
j

)[µ
j

(t)�A
j

(t)] | q(t)
 
. (7)

Denote �
V

(t) = �(t)� V E
�
f(t) | q(t)

 
, and plug (2), (3) and (5) into the above, to get:

�
V

(t)  B + E
�
D1(t)R1(t)[q1(t)� ✓1] | q(t)

 
+ E

�
D2(t)R2(t)[q2(t)� ✓2] | q(t)

 
(8)

�E
�
I2(t)[q3(t)� ✓3 + (p(t)� 1)V ] | q(t)

 
� E

�
I1(t)[q1(t)� ✓1 + q2(t)� ✓2 � (q3(t)� ✓3)� V ] | q(t)

 
.

We now develop our PMW algorithm by choosing an action at every time slot to minimize the right-hand

side (RHS) of (8) subject to (1). The algorithm then works as follows:

PMW: At every time slot, observe S(t) and q(t), and do the following:

1. Data Admission: For each j = 1, 2, choose D
j

(t) = 1, i.e., admit the new arrivals to q
j

if:

q
j

(t)� ✓
j

< 0, (9)

else set D
j

(t) = 0 and reject the arrivals.

2. Processor Activation: Choose I1(t) = 1, i.e., activate processor P1, if q1(t) � 1, q2(t) � 1, and that:

q1(t)� ✓1 + q2(t)� ✓2 � (q3(t)� ✓3)� V > 0, (10)
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else choose I1(t) = 0. Similarly, choose I2(t) = 1, i.e., activate processor P2, if q3(t) � 1, and that:

q3(t)� ✓3 + (p(t)� 1)V > 0, (11)

else choose I2(t) = 0.

3. Queueing update: Update q
j

(t), 8 j, according to (4).

One important thing to notice here is that if we use the usual Max-Weight algorithm, i.e., do not use

perturbation and set ✓
j

= 0, 8 j, then (9) implies that we admit a new arrival to q
j

only when q
j

< 0,

which is impossible because q
j

(t) � 0 for all t. Hence, this example clearly demonstrates the fact that the

usual Max-Weight may not be applicable to processing network problems. Below, we show that the use of

perturbation e↵ectively resolves this problem.

3.3 Performance of PMW

Here we analyze the performance of PMW. We will first prove the following important claim: under a

proper ✓ vector, PMW minimizes the RHS of (8) over all possible policies of arrival admission and processor

activation, including those that choose actions regardless of the constraint (1). We then use this claim to

prove the performance of PMW, by comparing the value of the RHS of (8) under PMW versus that under

an alternate policy.

To prove the claim, we first see that the policy that minimizes the RHS of (8) without the constraint (1)

di↵ers from PMW only in the processor activation part, where PMW also considers the constraints q1(t) � 1,

q2(t) � 1 and q3(t) � 1. Thus if one can show that these constraints are indeed redundant in the PMW

algorithm under a proper ✓ vector, i.e., one can activate the processors without considering them but still

ensure them, then PMW minimizes the RHS of (8) over all possible policies. In the following, we will use

the following ✓
j

values:

✓1 = 2V + 1, ✓2 = 2V + 1, ✓3 = 3V + 1. (12)

We will also assume that q
j

(0) = 1 for all j = 1, 2, 3. Note that this can easily be satisfied by storing an

initial backlog in the queues.

We now look at the queue sizes q
j

(t), j = 1, 2, 3. From (11), P2 is activated, i.e., I2(t) = 1 if and only if:

q3(t) � ✓3 � (p(t)� 1)V + 1, and q3(t) � 1. (13)

Since p(t)�1 = 3 or 0, we see that I2(t) = 1 whenever q3(t) � ✓3+1, but I2(t) = 0 unless q3(t) � ✓3�3V +1.

Since q3 can receive and deliver at most one unit of data at a time, we get:

✓3 + 1 � q3(t) � ✓3 � 3V, 8 t. (14)
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Using ✓3 = 3V + 1, this implies:

3V + 2 � q3(t) � 1, 8 t. (15)

This shows that with ✓3 = 3V + 1, the activations of P2 are always feasible even if the constraint q3(t) � 1

is removed. We now look at q1(t) and q2(t). We see from (9) that for ✓1, ✓2 � 0, we have:

q
j

(t)  ✓
j

, j = 1, 2. (16)

Also, using (10) and (14), it is easy to see that when I1(t) = 1, i.e., when P1 is turned on, we have:

q1(t)� ✓1 + q2(t)� ✓2 > q3(t)� ✓3 + V � �2V. (17)

Combining (17) with (16), we see that if I1(t) = 1, we have:

q
j

(t) � 2, j = 1, 2. (18)

This is so because, e.g., if q1(t)  1, then q1(t)� ✓1  1� ✓1 = �2V . Since q2(t)� ✓2  0 by (16), we have:

q1(t)� ✓1 + q2(t)� ✓2  �2V � 0 = �2V,

which cannot be greater than �2V in (17). Thus, by (15), (18), and the fact that q
j

(0) � 1, 8 j, we have:

q
j

(t) � 1, j = 1, 2, 3, 8 t. (19)

This shows that by using the ✓
j

values in (12), PMW automatically ensures that no queue underflow happens,

and hence PMW minimizes the RHS of (8) over all possible policies.

Given the above observation, the utility performance of PMW can now be analyzed using a similar

argument as in [5]. Specifically, we can first prove that there exists a stationary and randomized policy which

chooses scheduling actions purely as a function of S(t), and achieves E
�
µ
j

(t)�A
j

(t) | q(t)
 
= 0 for all j and

E
�
f(t) | q(t)

 
= f⇤

av

= 1
2 , where f⇤

av

is the optimal average utility. Then we can compare the drift under

PMW with that under this optimal policy. Note that this analysis approach would not have been possible

here without using the perturbation to ensure (19). Now plugging this policy into (7), we obtain:

�(t)� V E
�
f(t) | q(t)

 
 B � V f⇤

av

. (20)

Taking expectations over q(t) on both sides and summing it over t = 0, 1, ..., T � 1, we get:

E
�
L(T )� L(0)

 
� V

T�1X

t=0

E
�
f(t)

 
 TB � V Tf⇤

av

. (21)

Now rearranging the terms, dividing both sides by V T , and using the fact that L(t) � 0, we get:

1

T

T�1X

t=0

E
�
f(t)

 
� f⇤

av

� B

V
�

E
�
L(0)

 

TV
. (22)
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Taking a liminf as T ! 1, and using E
�
L(0)

 
< 1,

fPMW

av

= lim inf
T!1

1

T

T�1X

t=0

E
�
f(t)

 
� f⇤

av

� B

V
, (23)

where fPMW

av

denotes the time average utility achieved by PMW. This thus shows that PMW is able to

achieve a time average utility that is within O(1/V ) of the optimal value, and guarantees q
j

(t)  O(V ) for all

time (recall equations (12), (15) and (16)). Note that PMW is similar to the DMW algorithm developed in

[3]. However, DMW allows the queues to be empty when activating processors, which may lead to “deficit,”

whereas PMW e↵ectively avoids this by using a perturbation vector.

In the following, we will present the general processing network utility optimization model, and analyze the

performance of the general PMW algorithm under this general model. Our analysis uses a novel combination

of Lyapunov drift analysis and duality theory, and will be di↵erent from that used above.

4 General System Model

In this section, we present the general network model. We consider a network controller that operates a

general network with the goal of maximizing the time average utility, subject to the network stability. The

network is assumed to operate in slotted time, i.e., t 2 {0, 1, 2, ...}, and contains r � 1 queues.

4.1 Network State

In every slot t, we use S(t) to denote the current network state, which indicates the current network pa-

rameters, such as a vector of channel conditions for each link, or a collection of other relevant information

about the current network links and arrivals. We assume that S(t) is i.i.d. every time slot, with a total

of M di↵erent random network states denoted by S = {s1, s2, . . . , sM}. 2 We let ⇡
s

i

= Pr{S(t) = s
i

}.

The network controller can observe S(t) at the beginning of every slot t, but the ⇡
s

i

probabilities are not

necessarily known.

4.2 The Utility, Tra�c, and Service

At each time t, after observing S(t) = s
i

and the network backlog vector, the controller performs an action

x(t). This action represents the aggregate decisions made by the controller at t, which can include, e.g., in

the previous example, the set of processors to turn on, or the amount of arriving contents to accept, etc.

We denote X (s
i

) as the set of all possible actions for network state s
i

, assuming all the queues contain

enough contents to meet the scheduling requirements. Note that we always have x(t) = x(s
i

) for some

2Note that all our results can easily be extended to the case when S(t) evolves according to a finite state aperiodic and
irreducible Markov chain, by using the results developed in [21].
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x(s
i

) 2 X (s
i

) whenever S(t) = s
i

. The set X (s
i

) is assumed to be time-invariant and compact for all s
i

2 S.

If the chosen action x(t) = x(s
i

) at time t can be performed, i.e., it is possible and all the queues have enough

contents, then the utility, tra�c, and service generated by x(t) are as follows: 3

(a) The chosen action has an associated utility given by the utility function f(t) = f(s
i

, x(s
i

)) : X (s
i

) 7! R;

(b) The amount of contents generated by the action to queue j is determined by the tra�c function

A
j

(t) = A
j

(s
i

, x(s
i

)) : X (s
i

) 7! R+, in units of contents;

(c) The amount of contents consumed from queue j by the action is given by the rate function µ
j

(t) =

µ
j

(s
i

, x(s
i

)) : X (s
i

) 7! R+, in units of contents.

Note that A
j

(t) includes both the exogenous arrivals from outside the network to queue j, and the endogenous

arrivals from other queues, i.e., the newly generated contents by processing contents in some other queues,

to queue j. We assume the functions f(s
i

, ·), µ
j

(s
i

, ·) and A
j

(s
i

, ·) are continuous, time-invariant, their

magnitudes are uniformly upper bounded by some constant �
max

2 (0,1) for all s
i

, j, and they are known

to the network operator. Note that these assumptions are not restrictive. In practice, e.g., in a manufacturing

network, or in a stream processing system, the amount of contents consumed from or generated for a queue

under a particular action, is typically known to the operator and is finite. Thus, the network operator can

easily measure the tra�c functions A
j

(s
i

, ·) and the service functions µ
j

(s
i

, ·). In many cases, e.g., the one in

Section 7, the operator also knows its utility functions f(s
i

, ·), or can easily estimate them via measurements

over time.

In any actual algorithm implementation, however, we see that not all actions in the set X (s
i

) can be

performed when S(t) = s
i

, due to the fact that some queues may not have enough contents for the action.

We say that an action x(s
i

) 2 X (s
i

) is feasible at time t with S(t) = s
i

only when the following general

no-underflow constraint is satisfied:

q
j

(t) � µ
j

(s
i

, x(s
i

)), 8 j. (24)

That is, all the queues must have contents greater than or equal to what will be consumed. Note that due

to this no-underflow constraint, some actions in X (s
i

) may not be possible to execute at time t. Thus, we

assume that each set X (s
i

) contains an idle action, which always ensures (24) and makes no contribution to

the utility. 4 We also assume that there exists a set of actions {x̂(s
i

)
k

}k=1,2,...,r+2
i=1,...,M with x̂

(s
i

)
k

2 X (s
i

) and some

variables â(si)
k

� 0 for all s
i

and k with
P

r+2
k=1 â

(s
i

)
k

= 1 for all s
i

, such that:

X

s

i

⇡
s

i

� r+2X

k=1

â
(s

i

)
k

[A
j

(s
i

, x̂
(s

i

)
k

)� µ
j

(s
i

, x̂
(s

i

)
k

)]
 
 �⌘, (25)

3Here we implicitly assume that each action takes only one unit time. We will further discuss this issue in Section 4.4.
4This assumption is typically satisfied in practical systems. It is made to ensure that the system does not go into a deadlock

mode where nothing is possible. For instance, in the example in Section 3, an idle action is to not admit any data and not
activate any processor.
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for some ⌘ > 0 for all j. That is, the “stability constraints” are feasible with ⌘-slack.

4.3 Queueing, Average Cost, and the Objective

Let q(t) = (q1(t), ..., qr(t))T 2 Rr

+, t = 0, 1, 2, ... be the queue backlog vector process of the network, in units

of contents. Due to the feasibility condition (24) of the actions, we see that the queues evolve according to

the following dynamics:

q
j

(t+ 1) = q
j

(t)� µ
j

(t) +A
j

(t), 8j, t � 0, (26)

with some ||q(0)|| < 1. Note that using a nonzero q
j

(0) can be viewed as placing an “initial stock” in the

queues to facilitate algorithm implementation. We assume a slot structure as shown in Fig. 1. In this paper,

we adopt the following notion of queue stability:

q , lim sup
t!1

1

t

t�1X

⌧=0

rX

j=1

E
�
q
j

(⌧)
 
< 1. (27)

We also use f⇧
av

to denote the time average utility induced by an action-choosing policy ⇧, defined as:

f⇧
av

, lim inf
t!1

1

t

t�1X

⌧=0

E
�
f⇧(⌧)

 
, (28)

where f⇧(⌧) is the utility incurred at time ⌧ by policy ⇧. We call an action-choosing policy feasible if at

every time slot t it only chooses actions from the possible action set X (S(t)) that satisfy (24). We then call

a feasible action-choosing policy under which (27) holds a stable policy, and use f⇤
av

to denote the optimal

time average utility over all stable policies.

In every slot, the network controller observes the current network state and the queue backlog vector, and

chooses a feasible control action that ensures (24), with the objective of maximizing the time average utility

subject to network stability. Note that if (24) can be ignored, and if any processor only requires contents from

a single queue, then this problem falls into the general stochastic network optimization framework considered

in [19], in which case it can be solved by using the usual Max-Weight algorithm to achieve a utility that is

within O(1/V ) of the optimal while ensuring that the average network backlog is O(V ).

4.4 Discussion of the Model

We note that the model is very general and can be used to model many problems that involve such no-

underflow constraints. For instance, manufacturing networks where parts are assembled into products, or

energy harvesting networks that are powered by finite capacity energy storage devices.

Our model assumes a slot structure of the network. This implicitly implies that all the network actions

must consume only one unit time. However, in many applications, e.g., stream processing, di↵erent processors

may take di↵erent amounts of time to process di↵erent data. Although this problem can easily be incorporated

11



into our network by using a large enough slot length, such an easy fix may lead to utility loss. Quantifying

the utility loss due to slot length selection and designing algorithms that allow for arbitrary heterogeneous

action times are interesting problems of our future research.

5 Upper bounding the optimal utility

In this section, we first obtain an upper bound of the optimal utility that the network controller can achieve.

This upper bound will later be used to analyze the performance of our algorithm. The result is summarized

in the following theorem.

Theorem 1. Suppose that the initial queue backlog q(t) satisfies E
�
q
j

(0)
 
< 1 for all j = 1, ..., r. Then,

V f⇤
av

 �⇤, (29)

where �⇤ is the optimal value of the following deterministic optimization problem:

max : � =
X

s

i

⇡
s

i

V

r+2X

k=1

a
(s

i

)
k

f(s
i

, x
(s

i

)
k

) (30)

s.t.
X

s

i

⇡
s

i

r+2X

k=1

a
(s

i

)
k

A
j

(s
i

, x
(s

i

)
k

) =
X

s

i

⇡
s

i

r+2X

k=1

a
(s

i

)
k

µ
j

(s
i

, x
(s

i

)
k

), (31)

x
(s

i

)
k

2 X (s
i

), 8 s
i

, k, (32)

a
(s

i

)
k

� 0, 8 s
i

, k,
X

k

a
(s

i

)
k

= 1, 8 s
i

. (33)

Proof. See Appendix A.

Note that the problem (30) only requires that the time average input rate into a queue is equal to its time

average output rate. This requirement ignores the action feasibility constraint (24), and makes (30) easier

to solve than the actual scheduling problem. We now look at the dual problem of the problem (30). The

following lemma shows that the dual problem of (30) does not have to include the variables {a(si)
k

}k=1,...,r+2
i=1,...,M .

This lemma will also be useful for our later analysis.

Lemma 1. The dual problem of (30) is given by:

min : g(�), s.t. � 2 Rr, (34)

where the function g(�) is defined:

g(�) = sup
x

(s
i

)2X (s
i

)

X

s

i

⇡
s

i

⇢
V f(s

i

, x(s
i

))�
X

j

�
j

⇥
A

j

(s
i

, x(s
i

))� µ
j

(s
i

, x(s
i

))
⇤�

. (35)

Moreover, let �⇤ be any optimal solution of (34), we have: g(�⇤) � �⇤.

Proof. See Appendix B.
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In the following, it is useful to define the following function:

g
s

i

(�) = sup
x

(s
i

)2X (s
i

)

⇢
V f(s

i

, x(s
i

))�
X

j

�
j

⇥
A

j

(s
i

, x(s
i

))� µ
j

(s
i

, x(s
i

))
⇤�

. (36)

That is, g
s

i

(�) is the dual function of (30) when there is a single network state s
i

. We can see from (35) and

(36) that:

g(�) =
X

s

i

⇡
s

i

g
s

i

(�). (37)

In the following, we will use �⇤ = (�⇤
1 , ..., �

⇤
r

)T to denote an optimal solution of the problem (34).

6 The general perturbed max-weight algorithm and its perfor-

mance

In this section, we develop the general Perturbed Max-Weight algorithm (PMW) to solve our scheduling

problem. To start, we first choose a perturbation vector ✓ = (✓1, ..., ✓r)T . Then we define the following

weighted perturbed Lyapunov function with some positive constants {w
j

}r
j=1:

L(t) =
1

2

rX

j=1

w
j

�
q
j

(t)� ✓
j

�2
. (38)

We then define the one-slot conditional drift as in (7), i.e., �(t) = E
�
L(t+1)�L(t) | q(t)

 
. We will similarly

use the “drift-plus-penalty” approach in Section 3 to construct the algorithm. Specifically, we first use the

queueing dynamic equation (26), and have the following lemma:

Lemma 2. Under any feasible control policy that can be implemented at time t, we have:

�(t)� V E
�
f(t) | q(t)

 
 B � V E

�
f(t) | q(t)

 
�

rX

j=1

w
j

�
q
j

(t)� ✓
j

�
E
�
[µ

j

(t)�A
j

(t)] | q(t)
 
, (39)

where B = �2
max

P
r

j=1 wj

.

Proof. See Appendix C.

The general Perturbed Max-Weight algorithm (PMW) is then obtained by choosing an action x(t) 2

X (S(t)) at time t to minimize the right-hand side (RHS) of (39) subject to (24). Specifically, define the

function D
(s

i

)
✓,q(t)(x) as:

D
(s

i

)
✓,q(t)(x) , V f(s

i

, x) +
rX

j=1

w
j

�
q
j

(t)� ✓
j

�⇥
µ
j

(s
i

, x)�A
j

(s
i

, x)
⇤
. (40)

We see that the function D
(s

i

)
✓,q(t)(x) is indeed the term inside the conditional expectation on the RHS of (39)
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when S(t) = s
i

. We now also define D
(s

i

)⇤
✓,q(t) to be the optimal value of the following problem:

max : D
(s

i

)
✓,q(t)(x), s.t., x(s

i

) 2 X (s
i

). (41)

Hence D
(s

i

)⇤
✓,q(t) is the maximum value of D

(s
i

)
✓,q(t) over all possible policies, including those that may not

consider the no-underflow constraint (24). The general Perturbed Max-Weight algorithm (PMW) then works

as follows:

PMW: Initialize the perturbation vector ✓. At every time slot t, observe the current network state S(t)

and the backlog q(t). If S(t) = s
i

, choose x(s
i

) 2 X (s
i

) subject to (24) that minimizes D(s
i

)
✓,q(t)(x).

Note that depending on the problem structure, the PMW algorithm can usually be implemented easily,

e.g., [5], [12]. Now we analyze the performance of the PMW algorithm. We will prove our result under the

following condition:

Condition 1. There exists some finite constant C � 0, such that at every time slot t with a network state

S(t), the value of D(S(t))
✓,q(t)(x) under PMW is at least D(S(t))⇤

✓,q(t) � C.

The immediate consequence of Condition 1 is that PMW also minimizes the RHS of (39), i.e., the con-

ditional expectation, to within C of its minimum value over all possible policies. If C = 0, then PMW

simultaneously ensures (24) and minimizes the RHS of (39), e.g., as in the example in Section 3. However,

we note that Condition 1 does not require the value of D(S(t))
✓,q(t)(x) to be exactly the same as D

(S(t))⇤
✓,q(t) . This

allows for more flexibility in constructing the PMW algorithm (See Section 7 for an example). We also note

that Condition 1 can be ensured, e.g., by carefully choosing the ✓
j

values to ensure q
j

(t) � �
max

for all time

[5]. We will show that, under Condition 1, PMW achieves a time average utility that is within O(1/V ) of f⇤
av

,

while guaranteeing that the time average network queue size is O(V ) +
P

j

w
j

✓
j

, which is O(V ) if ✓ = ⇥(V )

and w
j

= O(1), 8 j. The following theorem summarizes PMW’s performance results.

Theorem 2. Suppose that (25) holds, that Condition 1 holds, and that E
�
q
j

(0)
 
< 1 for all j = 1, ..., r.

Then under PMW, we have: 5

fPMW

av

� f⇤
av

� B + C

V
, (42)

qPMW  B + C + 2V �
max

⌘
+

rX

j=1

w
j

✓
j

. (43)

Here B = �2
max

P
r

j=1 wj

, ⌘ is the slackness parameter in Section 4.2, fPMW

av

is defined in (28) to be the time

average expected utility of PMW, and qPMW is the time average expected weighted network backlog under

PMW, defined:

qPMW , lim sup
t!1

1

t

t�1X

⌧=0

rX

j=1

w
j

E
�
q
j

(⌧)
 
.

5Easy to see that (43) ensures (27), hence the network is stable under PMW.
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Proof. See Appendix D.

Theorem 2 shows that if Condition 1 holds, then PMW can be used as in previous networking problems,

e.g., [12], [13], to obtain explicit utility-backlog tradeo↵s. Note that in Theorem 2, B = ⇥(1), i.e., independent

of V . Moreover, in many cases, we also have C = ⇥(1) and
P

j

w
j

✓
j

= O(V ). In this case, Theorem 2 states

that PMW indeed achieves an [O(V ), O(1/V )] utility-backlog tradeo↵ for processing network problems. A

condition similar to Condition 1 was assumed in [2]. However, [2] only considers the usual Max-Weight

algorithm, under which case (24) may not be satisfied for all time. PMW instead resolves this problem by

carefully choosing the perturbation vector. One such example of PMW is the recent work [5], which applies

PMW to an assembly line scheduling problem and achieves an [O(1/V ), O(V )] utility-backlog tradeo↵.

We emphasize that though the results in Theorem 2 are similar to those in the data network problems [19],

the proof techniques are very di↵erent. Our analysis uses a novel combination of Lyapunov drift analysis and

duality theory, and allows one to obtain the performance result without proving the existence of an optimal

stationary and randomized policy.

7 Constructing PMW for networks with output reward

In this section, we look at a specific yet general processing network model, and explicitly construct a PMW

algorithm, including finding the proper ✓ vector and choosing actions at each time slot.

7.1 Network Model

We assume that the network is modeled by an acyclic directed graph G = (Q,P,L). Here Q = Qs [ Qin

is the set of queues, consisting of the set of source queues Qs where arrivals enter the network, and the

set of internal queues Qin where contents are stored for further processing. P = Pin [ Po is the set of

processors, consisting of a set of internal processors Pin, which generate partially processed contents for

further processing at other processors, and output processors Po, which generate fully processed contents

and deliver them to the output. L is the set of directed links that connects Q and P. Note that a link only

exists between a queue in Q and a processor in P. We denote N in

p

= |Pin|, No

p

= |Po| and N
p

= N in

p

+No

p

.

We also denote Ns

q

= |Qs|, N in

q

= |Qin| and N
q

= Ns

q

+N in

q

.

Each processor P
n

, when activated, consumes a certain amount of contents from a set of supply queues,

denoted by QS

n

, and generates some amount of new contents. These new contents either go to a set of demand

queues, denoted by QD

n

, if P
n

2 Pin, or are delivered to the output if P
n

2 Po. For any queue q
j

2 Q, we use

PS

j

to denote the set of processors that q
j

serves as a supply queue, and use PD

j

to denote the set of processors

that q
j

serves as a demand queue. An example of such a network is shown in Fig. 2. In the following, we
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assume that |QD

i

| = 1, 8 P
i

2 Pin, i.e., each processor only generates contents for a single demand queue.

We use �
nj

to denote the amount processor P
n

consumes from a queue q
j

in QS

n

when it is activated. For

each P
i

2 Pin, we also use ↵
ih

to denote the amount P
i

generates into the queue q
h

if q
h

= QD

i

, when it is

activated. For a processor P
k

2 Po, we use ↵
ko

to denote the amount of output generated by it when it is

turned on. 6 We denote �
max

= max
i,j

�
ij

, �
min

= min
i,j

�
ij

and ↵
max

= max
i,j,

[↵
ij

,↵
io

]. We assume that

�
min

,�
max

,↵
max

> 0. We also define M
p

to be the maximum number of supply queues that any processor

can have, define Md

q

to be the maximum number of processors that any queue can serve as a demand queue

for, and define Ms

q

to be the maximum number of processors that any queue can serve as a supply queue for.

We use R
j

(t) to denote the amount of contents arriving to a source queue q
j

2 Qs at time t. We assume

R
j

(t) is i.i.d. every slot, and that R
j

(t)  R
max

for all q
j

2 Qs and all t. We assume that there are no

exogenous arrivals into the queues in Qin.

R1

R2

R4

R3

Output 1

q1

q2

q3

q4

q5

q6

P2

P1 P3

P4

P5

Output 2

Figure 2: A general processing network. A dotted line between two processors means that the processors share some
common resources and thus cannot be activated at the same time.

We assume that in every slot t, admitting any unit amount of R
j

(t) arrival incurs a cost of c
j

(t), and that

activating any internal processor P
i

2 Pin incurs a cost of C
i

(t), whereas activating any output processor

P
k

2 Po generates a profit of p
k

(t) per unit output content. 7 We assume c
j

(t), C
i

(t), p
k

(t) are all i.i.d. every

time slot. In the following, we also assume that p
min

 p
k

(t)  p
max

, and that c
min

 c
j

(t)  c
max

and

C
min

 C
i

(t)  C
max

for all k, j, i and for all time.

Below, we use I
n

(t) = 1 to denote the activation decision of P
n

, i.e., I
n

(t) = 1 (I
n

(t) = 0) means that

P
n

is activated (turned o↵). We also use D
j

(t) 2 [0, 1] to denote the portion of arrivals from R
j

(t) that are

admitted into q
j

. We assume there exist some general constraint on how the processors can be activated,

which can be due to, e.g., resource sharing among processors. We model this constraint by defining an

activation vector I(t) = (I1(t), ..., IN
p

(t)), and then assume that I(t) 2 I for all time, where I denotes the

set of all possible processor activation decision vectors, assuming all the queues have enough contents for

6Note that here we only consider binary actions of processors, i.e., ON/OFF. Our results can also be generalized into the
case when there are multiple operation levels under which di↵erent amount of contents will be consumed and generated.

7This can be viewed as the di↵erence between profit and cost associated with these processors.
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processing. We assume that if a vector I 2 I, then by changing one element of I from one to zero, the newly

obtained vector I 0 satisfies I 0 2 I. Note that the chosen vector I(t) must always ensure the constraint (24),

which in this case implies that I(t) has to satisfy the following constraint:

q
j

(t) �
X

n2PS

j

I
n

(t)�
nj

, 8 j = 1, ..., r. (44)

Under this constraint, we see that the queues evolve according to the following queueing dynamics:

q
j

(t+ 1) = q
j

(t)�
X

n2PS

j

I
n

(t)�
nj

+D
j

(t)R
j

(t), 8j 2 Qs,

q
j

(t+ 1) = q
j

(t)�
X

n2PS

j

I
n

(t)�
nj

+
X

n2PD

j

I
n

(t)↵
nj

, 8j 2 Qin.

Note that we have used j 2 Q to represent q
j

2 Q, and use n 2 P to represent P
n

2 P in the above for

notation simplicity. The objective is to maximize the time average of the following utility function:

f(t) ,
X

k2Po

I
k

(t)p
k

(t)↵
ko

�
X

j2Qs

D
j

(t)R
j

(t)c
j

(t)�
X

i2Pin

I
i

(t)C
i

(t). (45)

Our model with the objective function (45) can be used to model applications where generating completely

processed contents is the primary target, e.g., [5].

7.2 Relation to the general model

We see that in this network, the network state, the action, and the tra�c and service functions are as follows:

• The network state is given by: S(t) = (c
j

(t), j 2 Qs, C
i

(t), i 2 Pin, p
k

(t), k 2 Po).

• The action x(t) = (D
j

(t), j 2 Qs, I
n

(t), n 2 P).

• The arrival functions are given by: A
j

(t) = A
j

(S(t), x(t)) = D
j

(t)R
j

(t), 8 q
j

2 Qs, and A
j

(t) =

A
j

(S(t), x(t)) =
P

n2PD

j

I
n

(t)↵
nj

, 8 q
j

2 Qin.

• The service functions are given by: µ
j

(t) = µ
j

(S(t), x(t)) =
P

n2PS

j

I
n

(t)�
nj

, 8 j.

Thus, we see that this network model falls into the general processing network framework in Section 4, and

Theorem 2 will apply in this case. Therefore, to ensure the algorithm performance, we only have to construct

our PMW algorithm to ensure that Condition 1 holds. Also note that in this case, we have:

�
max

= max
⇥
⌫
max

, No

p

p
max

↵
max

, Ns

q

R
max

c
max

+N in

p

C
max

⇤
. (46)

Here ⌫
max

is defined:

⌫
max

, max
⇥
Md

q

↵
max

, R
max

,Ms

q

�
max

⇤
. (47)
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7.3 The PMW algorithm

We now obtain the PMW algorithm for this general network. In this case, we will look for a perturbation

vector that is the same in all entries, i.e., ✓ = ✓1. We first compute the “drift-plus-penalty” expression using

the weighted perturbed Lyapunov function defined in (38) under some given positive constants {w
j

}r
j=1 and

some nonzero constant ✓:

�(t)� V E
�
f(t) | q(t)

 
 B �

X

j2Qs

E
�
w

j

⇥
q
j

(t)� ✓
⇤⇥ X

n2PS

j

I
n

(t)�
nj

�R
j

(t)D
j

(t)
⇤
| q(t)

 
(48)

�
X

j2Qin

E
�
w

j

⇥
q
j

(t)� ✓
⇤⇥ X

n2PS

j

I
n

(t)�
nj

�
X

n2PD

j

I
n

(t)↵
nj

⇤
| q(t)

 

�V E
� X

k2Po

I
k

(t)p
k

(t)↵
ko

�
X

j2Qs

D
j

(t)R
j

(t)c
j

(t)�
X

i2Pin

I
i

(t)C
i

(t) | q(t)
 
.

Here B = �2
max

P
j

w
j

with �
max

defined in (46). Rearranging the terms in (48), we get the following:

�(t)� V E
�
f(t) | q(t)

 
 B +

X

j2Qs

E
�⇥

V c
j

(t) + w
j

(q
j

(t)� ✓)
⇤
D

j

(t)R
j

(t) | q(t)
 

(49)

�
X

k2Po

E
�
I
k

(t)
⇥ X

j2QS

k

w
j

(q
j

(t)� ✓)�
kj

+ V p
k

(t)↵
ko

⇤
| q(t)

 

�
X

i2Pin

E
�
I
i

(t)
⇥ X

j2QS

i

w
j

(q
j

(t)� ✓)�
ij

� w
h

(q
h

(t)� ✓)↵
ih

� V C
i

(t)
⇤
| q(t)

 
.

Here in the last term q
h

= QD

i

. We now present the PMW algorithm. We see that in this case the D(S(t))
✓,q(t)(x)

function is given by:

D
(S(t))
✓,q(t)(x) = �

X

j2Qs

⇥
V c

j

(t) + w
j

(q
j

(t)� ✓)
⇤
D

j

(t)R
j

(t) +
X

k2Po

I
k

(t)
⇥ X

j2QS

k

w
j

(q
j

(t)� ✓)�
kj

+ V p
k

(t)↵
ko

⇤

+
X

i2Pin

I
i

(t)
⇥ X

j2QS

i

w
j

(q
j

(t)� ✓)�
ij

� w
h

(q
h

(t)� ✓)↵
ih

� V C
i

(t)
⇤
. (50)

Our goal is to design PMW in a way such that under any network state S(t), the value of D(S(t))
✓,q(t)(x) is close

to D
(S(t))⇤
✓,q(t) (x), which is the maximum value of D(S(t))

✓,q(t)(x) without the underflow constraint (44), i.e.,

D
(S(t))⇤
✓,q(t) (x) = max

D

j

(t)2[0,1],I(t)2I
D

(S(t))
✓,q(t)(x).

Specifically, PMW works as follows:

PMW: Initialize ✓. At every time slot t, observe S(t) and q(t), and do the following:

1. Content Admission: Choose D
j

(t) = 1, i.e., admit all new arrivals to q
j

2 Qs if:

V c
j

(t) + w
j

(q
j

(t)� ✓) < 0, (51)

else set D
j

(t) = 0.

18



2. Processor Activation: For each P
i

2 Pin, define its weight W (in)
i

(t) as:

W
(in)
i

(t) =
⇥ X

q

j

2QS

i

w
j

[q
j

(t)� ✓]�
ij

� w
h

[q
h

(t)� ✓]↵
ih

� V C
i

(t)
⇤+

, (52)

where q
h

= QD

i

. Similarly, for each P
k

2 Po, define its weight W (o)
k

(t) as:

W
(o)
k

(t) =
⇥ X

q

j

2QS

k

w
j

[q
j

(t)� ✓]�
kj

+ V p
k

(t)↵
ko

⇤+
. (53)

Then, choose an activation vector I(t) 2 I to maximize:

W (t) ,
X

i2Pin

I
i

(t)W (in)
i

(t) +
X

k2Po

I
k

(t)W (o)
k

(t), (54)

subject to the following queue edge constraints:

(a) For each P
i

2 Pin, set I
i

(t) = 1, i.e., activate processor P
i

, only if:

• q
j

(t) � Ms

q

�
max

for all q
j

2 QS

i

& q
h

(t)  ✓, where q
h

= QD

i

.

(b) For each P
k

2 Po, choose I
k

(t) = 1 only if:

• q
j

(t) � Ms

q

�
max

for all q
j

2 QS

k

.

The approach of imposing the queue edge constraints was inspired by the work [22], where similar constraints

are imposed for routing problems. Note that without these queue edge constraints, then PMW will be the

same as the action that maximizes D(s
i

)
✓,q(t)(x) without the underflow constraint (44). Maximizing the quantity

(54) in general can be NP-hard and requires centralized control [19]. However, if the processors do not conflict

with each other, then we can easily maximize (54) by activating all the processors that have positive weights.

Moreover, one can look for constant factor approximation solutions of (54), e.g., [23]. Such approximation

results can usually be found in a distributed manner in polynomial time, and one can show that PMW

achieves a constant factor of the optimal utility in this case [19].

7.4 Performance

Here we show that PMW indeed ensures that the value of D(S(t))
✓,q(t)(x) is within some additive constant of

D
(S(t))⇤
✓,q(t) (x). In the following, we denote w

max

= max
j

w
j

and w
min

= min
j

w
j

. We also assume that:

✓ � max
⇥V ↵

max

p
max

w
min

�
min

,
V c

min

w
min

+Ms

q

�
max

⇤
. (55)

We also assume that the {w
j

}r
j=1 values are chosen such that for any processor P

i

2 Pin with the demand

queue q
h

, we have for any supply queue q
j

2 QS

i

that:

w
j

�
ij

� w
h

↵
ih

. (56)

We note that (55) can easily be satisfied and only requires ✓ = ⇥(V ). A way of choosing the {w
j

}r
j=1 values

to satisfy (56) is given in Appendix E. Note that in the special case when �
ij

= ↵
ij

= 1 for all i, j, simply
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using w
j

= 1, 8 j meets the condition (56).

We first look at the queueing bounds. By (51), q
j

admits new arrivals only when q
j

(t) < ✓ � V c
min

/w
j

.

Thus:

q
j

(t)  ✓ � V c
min

/w
j

+R
max

, 8 q
j

2 Qs, t. (57)

Now by the processor activation rule, we also see that:

0  q
j

(t)  ✓ +Md

q

↵
max

, 8 q
j

2 Qin, t. (58)

This is because under the PMW algorithm, a processor is activated only when all its supply queues have

at least Ms

q

�
max

units of contents, and when its demand queue has at most ✓ units of contents. The first

requirement ensures that when we activate a processor, all its supply queues have enough contents, while the

second requirement ensures that q
j

(t)  ✓+Md

q

↵
max

. Using the definition of ⌫
max

in (47), we can compactly

write (57) and (58) as:

0  q
j

(t)  ✓ + ⌫
max

, 8 q
j

2 Q, t. (59)

Recall that by the discussion in Section 7.2, the problem described in this section falls into the general

framework presented in Section 4. Hence, to prove the performance of the PMW algorithm, it su�ces to

prove the following lemma, which shows that Condition 1 holds for some finite constant C under PMW.

Lemma 3. Suppose (55) and (56) hold. Then under PMW, D
(S(t))
✓,q(t)(x) � D

(S(t))⇤
✓,q(t) (x) � C, where C =

N
p

w
max

M
p

⌫
max

�
max

.

Proof. See Appendix F.

We now use Theorem 2 to have the following corollary concerning the performance of PMW in this case:

Corollary 1. Suppose (25), (55) and (56) hold. Then under PMW, (59) holds, and that:

fPMW

av

� f⇤
av

� B + C

V
, (60)

qPMW  B + C + 2V �
max

⌘
+ ✓

rX

j=1

w
j

, (61)

where C = N
p

w
max

M
p

⌫
max

�
max

, fPMW

av

and qPMW are the time average expected utility and time average

expected weighted backlog under PMW, respectively, and �
max

is given in (46). ⌅

Also, since (55) only requires ✓ = ⇥(V ), and w
j

= ⇥(1) for all j, we see that PMW achieves an

[O(1/V ), O(V )] utility-backlog tradeo↵ in this case.
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8 Simulation

In this section, we simulate the example given in Fig. 2. In this example, we assume each R
j

(t) is Bernoulli

being 0 or 2 with equal probabilities. For each P
i

2 Pin, i.e., P1, P2, P3, Ci

(t) is assumed to be 1 or 10

with probabilities 0.3 and 0.7, respectively. For the output processors P
k

2 Po, i.e., P4 and P5, we assume

that p
k

(t) = 1 or 5 with probabilities 0.8 and 0.2, respectively. We assume that each processor, when

activated, takes one unit of content from each of its supply queues and generates two units of contents into

its demand queue (or to the output if it is an output processor). Due to the activation constraints, P1

and P2 can not be activated at the same time. Also only one among P3, P4, P5 can be turned on at any

time. Note that in this case, we have c
j

(t) = 0 for all source queues q
j

. It is easy to see that in this case

M
p

= Ms

q

= Md

q

= 2, �
max

= �
min

= 1, and ↵
max

= 2. Using the results in the above, we choose w6 = 1,

w1 = w4 = w5 = 2, w2 = w3 = 4. We also use ✓ = 10V according to (55). We simulate the PMW algorithm

for V 2 {5, 7, 10, 15, 20, 50, 100}. Each simulation is run over 5⇥ 106 slots.

Fig. 3 shows the utility and backlog performance of the PMW algorithm. We see that as V increases,

the average utility performance quickly converges to the optimal value. The average backlog size also only

grows linear in V . Fig. 3 also shows three sample path queue processes in the first 104 slots under V = 100.
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Figure 3: LFET: Utility and backlog performance of PMW. RIGHT: Sample path backlog processes with V = 100.

We see that no queue has an underflow. This shows that all the activation decisions of PMW are feasible.

It is also easy to verify that the queueing bounds (57) and (58) hold. We observe in Fig. 3 that the queue

sizes usually fluctuate around certain fixed values. Similar “exponential attraction” phenomenon has been

observed in prior work [20]. Hence our results can also be extended, using the results developed in [20], to

achieve an average utility that is within O(1/V ) of the optimal with only ⇥([log(V )]2) average backlog size.

9 Perturbation and Tracking the Lagrange Multiplier

Note that although the main di↵erence between the PMW algorithm and the usual Max-Weight algorithm is

the use of the perturbation vector ✓, this seemingly small modification indeed has a large e↵ect on algorithm
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design for processing networks. To see this, first recall that we have shown in Section 3.2 that the usual

Max-Weight algorithm cannot be applied to this problem.

Now the reason perturbation resolves this issue is as follows. It has been shown in [20] that Max-

Weight applied to a queueing problem is equivalent to solving a corresponding deterministic optimization

problem using the randomized incremental subgradient method (RISM) [24], with the backlog vector being

the Lagrange multiplier. Thus Max-Weight relies on using the backlog vector to track the optimal Lagrange

multiplier value for achieving the desired utility performance, and the backlog vector under Max-Weight

will move towards the optimal Lagrange multiplier. However, in processing network problems, due to the

equality constraints in (32), the optimal Lagrange multiplier value may be negative. In this case, we can no

longer use only the queue size to represent the Lagrange multiplier as the queue will be stuck at zero and

the Max-Weight algorithm will not run properly. This is shown in Fig. 4.

The PMW algorithm instead resolves this problem by using the queue size minus the perturbation to

represent the Lagrange multiplier. This is equivalent to “lifting” the Lagrange multiplier by the perturbation

value, and making it trackable by the queue size. If we choose the perturbation carefully enough to ensure that

no further deviation from the optimal Lagrange multiplier will happen, we can guarantee that no underflow

ever happens. Then under the PMW algorithm, the queue size minus the perturbation will move towards

the optimal Lagrange multiplier and we can thus achieve the close-to-optimal utility performance, as in the

data network case.

γ*

Time

Start Here
γ*+θ

Time

Start Here

Q size

Before Perturbation After Perturbation

Can't happen!

θ

γ*

Figure 4: An explanation on why perturbation is needed and e↵ective.

10 Conclusion and Future Work

In this paper, we present a general processing network model that can be used to model many problems

involving the no-underflow constraint. We develop a general methodology for constructing online algorithms

for such processing networks based on weight perturbation in Max-Weight. Using this approach, we develop

the Perturbed Max-Weight algorithm (PMW) and show that PMW achieves an [O(V ), O(1/V )] utility-
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backlog tradeo↵. The results developed in this paper can find applications in areas such as manufacturing

networks, stream processing and energy harvesting networks.

The current work can be further extended in the following two directions. First, as we discussed in

Section 4.4, the use of a common slot size may lead to e�ciency loss in networks where di↵erent components

consume di↵erent times to process contents. It is thus desirable to quantify the e↵ect. Second, designing

optimal control algorithms that incorporate such heterogeneous processing times is another interesting future

research direction.
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Appendix A – Proof of Theorem 1

We prove Theorem 1 in this section, using an argument similar to the one used in [13].

Proof. (Theorem 1) Consider any stable scheduling policy ⇧, i.e., the conditions (24) and (27) are satisfied

under ⇧. We let {(f(0),A(0),µ(0)), (f(1),A(1),µ(1)), ...} be a sequence of (utility, arrival, service) triple

generated by ⇧. Then there exists a subsequence of times {T
i

}
i=1,2,... such that T

i

! 1 and that the limiting

time average utility over times T
i

is equal to the liminf average utility under ⇧ (defined by (28)). Now define

the conditional average of utility, and arrival minus service over T slots to be:

(�(s
i

)(T ); ✏(si)1 (T ); ...; ✏(si)
r

(T )) , 1

T

T�1X

t=0

E
�
f(t); ✏1(t); ...; ✏r(t) | S(t) = s

i

 
,

where ✏
j

(t) = A
j

(t)�µ
j

(t). Using Caratheodory’s theorem, it can be shown, as in [13] that, there exists a set of

variables {a(si)
k

(T )}r+2
k=1 and a set of actions {x(s

i

)
k

(T )}r+2
k=1 such that �(s

i

)(T ) =
P

r+2
k=1 a

(s
i

)
k

(T )f(s
i

, x
(s

i

)
k

(T )),
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and for all j = 1, ..., r that ✏
(s

i

)
j

(T ) =
P

r+2
k=1 a

(s
i

)
k

(T )[A
j

(s
i

, x
(s

i

)
k

(T )) � µ
j

(s
i

, x
(s

i

)
k

(T ))]. Now using the

continuity of f(s
i

, ·), A
j

(s
i

, ·), µ
j

(s
i

, ·), and the compactness of all the actions sets X (s
i

), we can thus find a

sub-subsequence T̃
i

! 1 of {T
i

}
i=1,2,... that:

a
(s

i

)
k

(T̃
i

) ! a
(s

i

)
k

, x
(s

i

)
k

(T̃
i

)) ! x
(s

i

)
k

,�(s
i

)(T̃
i

) ! �(s
i

), ✏
(s

i

)
j

(T̃
i

) ! ✏
(s

i

)
j

, 8 j = 1, ..., r. (62)

Therefore the time average utility under the policy ⇧ can be expressed as:

f⇧
av

=
X

s

i

⇡
s

i

�(s
i

) =
X

s

i

⇡
s

i

r+2X

k=1

a
(s

i

)
k

f(s
i

, x
(s

i

)
k

). (63)

Similarly, the average arrival rate minus the average service rate under ⇧ can be written as:

✏
j

=
X

s

i

⇡
s

i

✏
(s

i

)
j

=
X

s

i

⇡
s

i

r+2X

k=1

a
(s

i

)
k

[A
j

(s
i

, x
(s

i

)
k

)� µ
j

(s
i

, x
(s

i

)
k

)]  0. (64)

The last inequality is due to the fact that ⇧ is a stable policy and that E
�
q
j

(0)
 
< 1, hence the average

arrival rate to any q
j

must be no more than the average service rate of the queue [25]. However, by (24) we see

that what is consumed from a queue is always no more that what is generated into the queue. This implies

that the input rate into a queue is always no less than its output rate. Thus, ✏
j

� 0 for all j. Therefore we

conclude that ✏
j

= 0 for all j. Using this fact and (63), we see that V f⇧
av

 �⇤, where �⇤ is given in (30).

This proves Theorem 1.

Appendix B – Proof of Lemma 1

We prove Lemma 1 here.

Proof. (Lemma 1) It is easy to see from (30) that the dual function is given by:

ĝ(�) = sup
x

(s
i

)
k

,a

(s
i

)
k

X

s

i

⇡
s

i

⇢
r+2X

k=1

a
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i

)
k

V f(s
i

, x
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i

)
k

)�
X

j

�
j

r+2X

k=1

a
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i

)
k

⇥
A

j

(s
i

, x
(s

i

)
k

)� µ
j

(s
i

, x
(s

i

)
k

)
⇤�

. (65)

Due to the use of the {a(si)
k

}k=1,...,r+2
i=1,...,M variables, it is easy to see that ĝ(�) � g(�). However, if {x(s

i

)}M
i=1 is

a set of maximizers of g(�), then the set of variables {x(s
i

)
k

, a
(s

i

)
k

}k=1,...,r+2
i=1,...,M where for each s

i

, x(s
i

)
k

= x(s
i

)

for all k, and a
(s

i

)
1 = 1 with a

(s
i

)
k

= 0 for all k � 2, will also be maximizers of ĝ(�). Thus g(�) � ĝ(�). This

shows that g(�) = ĝ(�), and hence g(�) is the dual function of (30). g(�⇤) � �⇤ follows from weak duality

[24].

Appendix C – Proof of Lemma 2

Here we prove Lemma 2.
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Proof. Using the queueing equation (26), we have:

[q
j

(t+ 1)� ✓
j

]2 = [(q
j

(t)� µ
j

(t) +A
j

(t))� ✓
j

]2

= [q
j

(t)� ✓
j

]2 + (µ
j

(t)�A
j

(t))2 � 2
�
q
j

(t)� ✓
j

�
[µ

j

(t)�A
j

(t)]

 [q
j

(t)� ✓
j

]2 + 2�2
max

� 2
�
q
j

(t)� ✓
j

�
[µ

j

(t)�A
j

(t)].

Multiplying both sides with w

j

2 and summing the above over j = 1, ..., r, we see that:

L(t+ 1)� L(t)  B �
rX

j=1

w
j

�
q
j

(t)� ✓
j

�
[µ

j

(t)�A
j

(t)],

where B = �2
max

P
r

j=1 wj

. Now add to both sides the term �V f(t), we get:

L(t+ 1)� L(t)� V f(t)  B � V f(t)�
rX

j=1

w
j

�
q
j

(t)� ✓
j

�
[µ

j

(t)�A
j

(t)]. (66)

Taking expectations over S(t) on both sides conditioning on q(t) proves the lemma.

Appendix D – Proof of Theorem 2

Here we prove Theorem 2. We first have the following simple lemma.

Lemma 4. For any network state s
i

, we have:

D
(s

i

)⇤
✓,q(t) = g

s

i

((q(t)� ✓)⌦w), (67)

where w = (w1, ..., wr

)T and a⌦ b = (a1b1, ..., anbn)T .

Proof. By comparing (41) with (36), we see that the lemma follows.

Proof. (Theorem 2) We first recall the equation (66) as follows:

L(t+ 1)� L(t)� V f(t)  B � V f(t)�
rX

j=1

w
j

�
q
j

(t)� ✓
j

�
[µ

j

(t)�A
j

(t)]. (68)

Using D
(s

i

)
✓,q(t)(x) defined in (40), this can be written as:

L(t+ 1)� L(t)� V f(t)  B �D
(S(t))
✓,q(t)(x(t)).

Here x(t) is PMW’s action at time t. According to Condition 1, we see that for any network state S(t) = s
i

,

PMW ensures (24), and that:

D
(s

i

)
✓,q(t)(x) � D

(s
i

)⇤
✓,q(t) � C.

Using (67), this implies that under PMW,

L(t+ 1)� L(t)� V f(t)  B � g
s

i

((q(t)� ✓)⌦w) + C.
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Taking expectations over the random network state on both sides conditioning on q(t), and using (37), i.e.,

g(�) =
P

s

i

⇡
s

i

g
s

i

(�), we get:

�(t)� V E
�
f(t) | q(t)

 
 B + C � g((q(t)� ✓)⌦w). (69)

Now using Theorem 1 and Lemma 1, we have: V f⇤
av

 �⇤  g(�⇤)  g((q(t)� ✓)⌦w). Therefore,

�(t)� V E
�
f(t) | q(t)

 
 B + C � V f⇤

av

. (70)

Taking expectations over q(t) on both sides and summing the above over t = 0, ..., T � 1, we get:

E
�
L(T )� L(0)

 
�

T�1X

t=0

V E
�
f(t)

 
 T (B + C)� TV f⇤

av

.

Rearranging terms, dividing both sides by V T , using the facts that L(t) � 0 and E
�
L(0)

 
< 1, and taking

the liminf as T ! 1, we get:

fPMW

av

� f⇤
av

� (B + C)/V. (71)

This proves (42). Now we prove (43). First, by using the definition of ĝ(�) in (65), and plugging in the

{x̂(s
i

)
k

, â
(s

i

)
k

}k=1,...,r+2
i=1,...,M variables in the ⌘-slackness assumption (25) in Section 4.2, we see that:

ĝ((q(t)� ✓)⌦w) � ⌘

rX

j=1

w
j

[q
j

(t)� ✓
j

]� V �
max

. (72)

This by Lemma 1 implies that:

g((q(t)� ✓)⌦w) � ⌘

rX

j=1

w
j

[q
j

(t)� ✓
j

]� V �
max

.

Using this in (69), we get:

�(t)� V E
�
f(t) | q(t)

 
 B + C + V �

max

� ⌘

rX

j=1

w
j

[q
j

(t)� ✓
j

].

We can now use a similar argument as above to get:

⌘

T�1X

t=0

rX

j=1

w
j

E
�
[q

j

(t)� ✓
j

]
 
 T (B + C) + 2TV �

max

+ E
�
L(0)

 
.

Dividing both sides by ⌘T and taking the limsup as T ! 1, we get:

qPMW  B + C + 2V �
max

⌘
+

rX

j=1

w
j

✓
j

.

This completes the proof the theorem.

Appendix E – Choosing the {wj}rj=1 values

Here we describe how to choose the {w
j

}r
j=1 values to satisfy (56). We first let K be the maximum number of

processors that any path going from a queue to an output processor can have. It is easy to see that K  |N
p

|
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since there is no cycle in the network. The following algorithm terminates in K iterations. We use w
j

(k) to

denote the value of w
j

at the kth iteration. In the following, we use q
h

n

to denote the demand queue of a

processor P
n

.

1. At Iteration 1, denote the set of queues that serve as supply queues for any output processor as Ql

1,

i.e.,

Ql

1 = {q
j

: PS

j

\ Po 6= �}.

Then set w
j

(1) = 1 for each q
j

2 Ql

1. Also, set w
j

(1) = 0 for all other q
j

/2 Ql

1.

2. At Iteration k = 2, ...,K, denote Ql

k

to be the set of queues that serve as supply queues for any processor

whose demand queue is in Ql

k�1, i.e.,

Ql

k

= {q
j

: 9P
n

2 PS

j

s.t. QD

n

2 Ql

k�1}.

Then set:

w
j

(k) = max
⇥
w

j

(k � 1),max
n2PS

j

w
h

n

(k � 1)↵
nh

n

�
nj

⇤
, (73)

where ↵
nh

n

is the amount P
n

generates into q
h

n

, which is the demand queue of P
n

. Also, set w
j

(k) =

w
j

(k � 1) for all q
j

/2 Ql

k

.

3. Output the {w
j

}r
j=1 values.

The following lemma shows that the above algorithm outputs a set of {w
j

}r
j=1 values that satisfy (56).

Lemma 5. The {w
j

}r
j=1 values generated by the above algorithm satisfy (56).

Proof. (Proof of Lemma 5) The proof consists of two main steps. In the first step, we show that the algorithm

updates each w
j

value at least once. This shows that all the w
j

values for all the queues that serve as demand

queues are updated at least once. In the second step, we show that if q
h

is the demand queue of a processor

P
i

2 Pin, then every time after w
h

is updated, the algorithm will also update w
j

for any q
j

2 QS

i

before it

terminates. This ensures that (56) holds for any P
i

2 Pin and hence proves the lemma.

First we see that after K iterations, we must have Q ⇢ [K

⌧=1Ql

⌧

. This is because at Iteration k, we include

in [k

⌧=1Ql

⌧

all the queues starting from which there exists a path to an output processor that contains k

processors. Thus all the w
j

values are updated at least once.

Now consider a queue q
h

. Suppose q
h

is the demand queue of a processor P
i

2 Pin. We see that there

exists a time k̂  K at which w
h

is last modified. Suppose w
h

is last modified at Iteration k̂ < K, in which

case q
h

2 Ql

k̂

. Then all the queues q
j

2 QS

i

will be in Ql

k̂+1
. Thus their w

j

values will be modified at Iteration

k̂ + 1  K. This implies that at Iteration k̂ + 1, we will have w
j

(k̂ + 1)�
ij

� w
h

(k̂)↵
ih

. Since q
h

/2 Ql

k

for
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k � k̂ + 1, we have w
h

(k) = w
h

(k̂) for all k � k̂ + 1. Therefore w
j

(k)�
ij

� w
h

(k)↵
ih

8 k̂ + 1  k  K,

because w
j

(k) is not decreasing.

Therefore the only case when the algorithm can fail is when w
h

is updated at Iteration k = K, in which

case w
h

may increase but the w
j

values for q
j

2 QS

i

are not modified accordingly. However, since w
h

is

updated at Iteration k = K, this implies that there exists a path from q
h

to an output processor that has K

processors. This in turn implies that starting from any q
j

2 QS

i

, there exists a path to an output processor

that contains K + 1 processors. This contradicts the definition of K. Thus the lemma follows.

As a concrete example, we consider the example in Fig. 2, with the assumption that each processor, when

activated, consumes one unit of content from each of its supply queues and generates two units of contents

into its demand queue. In this example, we see that K = 3. Thus the algorithm works as follows:

1. Iteration 1, denote Ql

1 = {q4, q5, q6}, set w4(1) = w5(1) = w6(1) = 1. For all other queues, set

w
j

(1) = 0.

2. Iteration 2, denote Ql

2 = {q1, q2, q3, q4, q5}, set w1(2) = w2(2) = w3(2) = w4(2) = w5(2) = 2. Set

w6(2) = 1.

3. Iteration 3, denote Ql

3 = {q2, q3}, set w2(3) = w3(3) = 4. Set w1(3) = w4(3) = w5(3) = 2, w6(3) = 1.

4. Terminate and output w1 = w4 = w5 = 2, w2 = w3 = 4, w6 = 1.

Appendix F – Proof of Lemma 3

Here we prove Lemma 3 by comparing the values of the three terms in D
(S(t))
✓,q(t)(x) in (50) under PMW versus

their values under the action that maximizes D
(S(t))
✓,q(t)(x) in (50) subject to only the constraints D

j

(t) 2

[0, 1], 8 j 2 Qs and I(t) 2 I, called the max-action. That is, under the max-action, D(S(t))
✓,q(t)(x) = D

(S(t))⇤
✓,q(t) (x).

Note that the max-action di↵ers from PMW only in that it does not consider the queue edge constraint.

Proof. (A) We see that the first term, i.e., �
P

j2Qs

⇥
V c

j

(t) + w
j

(q
j

(t)� ✓)
⇤
D

j

(t)R
j

(t) is maximized under

PMW. Thus its value is the same as that under the max-action.

(B) We now show that for any processor P
n

2 P, if it violates the queue edge constraint, then its weight is

bounded by M
p

w
max

⌫
max

�
max

. This will then be used in Part (C) below to show that the value of D(S(t))
✓,q(t)(x)

under PMW is within a constant of D(S(t))⇤
✓,q(t) (x).

(B-I) For any P
i

2 Pin, the following are the only two cases under which P
i

violates the queue edge

constraint.

1. Its demand queue q
h

(t) � ✓. In this case, it is easy to see from (52) and (59) that:

W
(in)
i

(t) 
X

j2QS

i

w
j

⌫
max

�
ij

 M
p

w
max

⌫
max

�
max

. (74)
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2. At least one of P
i

’s supply queue has a queue size less than Ms

q

�
max

. In this case, we denote Q̂S

i

=

{q
j

2 QS

i

: q
j

(t) � Ms

q

�
max

}. Then we see that:

W
(in)
i

(t) =
X

j2Q̂S

i

w
j

[q
j

(t)� ✓]�
ij

� w
h

[q
h

(t)� ✓]↵
ih

+
X

j2QS

i

/Q̂S

i

w
j

[q
j

(t)� ✓]�
ij

� V C
i

(t)


X

j2Q̂S

i

w
j

⌫
max

�
ij

+ w
h

✓↵
ih

+
X

j2QS

i

/Q̂S

i

w
j

[Ms

q

�
max

� ✓]�
ij

.

Here q
h

= QD

i

. Now by our selection of {w
j

}r
j=1, w

j

�
ij

� w
h

↵
ih

for any q
j

2 QS

i

. Also using

⌫
max

� Ms

q

�
max

, we have:

W
(in)
i

(t)  M
p

w
max

⌫
max

�
max

. (75)

(B - II) For any P
k

2 Po, we see that it violates the queue edge constraint only when at least one of its

supply queues has size less than Ms

q

�
max

. In this case, we see that:

W
(o)
k

(t) 
X

j2Q̂S

k

w
j

[q
j

(t)� ✓]�
kj

+ V p
k

(t)↵
ko

+
X

j2QS

k

/Q̂S

k

w
j

(Ms

q

�
max

� ✓)�
ij

 M
p

w
max

⌫
max

�
max

+ V ↵
max

p
max

� w
min

✓�
min

.

This by (55) implies that:

W
(o)
k

(t)  M
p

w
max

⌫
max

�
max

. (76)

Using (74), (75) and (76), we see that whenever a processor violates the queue edge constraint, its weight is

at most M
p

w
max

⌫
max

�
max

.

(C) We now show that the value of D(S(t))
✓,q(t)(x) under PMW satisfies D(S(t))

✓,q(t)(x) � D
(S(t))⇤
✓,q(t) (x)� C, where

C = N
p

M
p

w
max

⌫
max

�
max

.

To see this, let I⇤(t) be the activation vector obtained by the max-action, and let W ⇤(t) be the value of

(54) under I⇤(t). We also use IPMW (t) and WPMW (t) to denote the activation vector chosen by the PMW

algorithm and the value of (54) under IPMW (t). We now construct an alternate activation vector Î(t) by

changing all elements in I⇤(t) corresponding to the processors that violate the queue edge constraints to zero.

Note then Î(t) 2 I is a feasible activation vector at time t, under which no processor violates the queue edge

constraint. By Part (B) above, we see that the value of (54) under Î(t), denoted by Ŵ (t), satisfies:

Ŵ (t) � W ⇤(t)�N
p

M
p

w
max

⌫
max

�
max

.

Now since IPMW (t) maximizes the value of (54) subject to the queue edge constraints, we have:

WPMW (t) � Ŵ (t) � W ⇤(t)�N
p

w
max

M
p

⌫
max

�
max

.

Thus, by combining the above and Part (A), we see that PMW maximizes the D
(S(t))
✓,q(t)(x) to within C =

N
p

M
p

w
max

⌫
max

�
max

of the maximum.
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