
Energy-Optimal Scheduling with Dynamic
Channel Acquisition in Wireless Downlinks

Chih-ping Li, Student Member, IEEE, and Michael J. Neely, Senior Member, IEEE

Abstract—We consider a wireless base station serving L users through L time-varying channels. It is well known that opportunistic

scheduling algorithms with full channel state information (CSI) can stabilize the system with any data rates within the capacity region.

However, such opportunistic scheduling algorithms may not be energy efficient when the cost of channel acquisition is high and traffic

rates are low. In particular, under the low traffic rate regime, it may be sufficient and more energy efficient to transmit data with no CSI,

i.e., to transmit data blindly, since no power for channel acquisition is consumed. In general, we show strategies that probe channels in

every slot or never probe channels in any slot are not necessarily optimal, and we must consider mixed strategies. We derive a unified

scheduling algorithm that dynamically chooses to transmit data with full or no CSI based on queue backlog and channel statistics. Our

methodology is general and can be naturally extended to include timing overhead due to channel acquisition, and to treat systems that

allow any subset of channels to be measured. Through Lyapunov analysis, we show that the unified algorithm is throughput-optimal and

stabilizes the downlink with optimal power consumption, balancing well between channel-aware and channel-blind transmission modes.

Index Terms—Stochastic control, queuing analysis, optimization, partial channel state information.

Ç

1 INTRODUCTION

TO transmit data efficiently over wireless channels, it is
important to accommodate time variations of channels

(due to changing environments, multipath fading, and
mobility, etc.) and the limited energy in wireless devices. In
particular, the concept of opportunistic scheduling has been
shown to enable the design of efficient control algorithms
that boost supportable data rates to the limit. The intuition
is that transmitting data only when channel states are good
can increase the throughput of a wireless network with a
limited energy budget.

The acquisition of channel states is central to opportunis-
tic scheduling. Works in [2], [3], [4], [5], [6] focus on
throughput/utility maximization with energy constraints
in wireless networks, assuming that channel states are
always known with negligible cost. In practical telecommu-
nication systems, however, channel acquisition consumes
power and time. To combat the power and timing overhead,
the problem of scheduling with partial channel acquisition
should be investigated. Related previous works include [7]
and [8], which show that measuring all channels regularly
may not be throughput optimal because of the trade-off
between multiuser diversity gain and the associated timing
overhead of channel probing. Kar et al. [9] study throughput-
achieving algorithms when channel states are only measured
every T > 1 slots. Gopalan et al. [10] develop a MaxWeight-
type throughput-optimal policy in a wireless downlink,
assuming that only a subset of channels, chosen from a fixed
collection of subsets, can be observed at any time and only
the channels with known states can serve packets. Works in

[11], [12], [13] study the performance of a wireless downlink
for which a channel state is only sent from a user to the base
station when the associated channel quality exceeds some
threshold. The works [14], [15], [16] develop optimal/near-
optimal policies for joint partial channel probing and rate
allocations to optimize a linear network utility.

In this paper, we consider channel measurement and
scheduling algorithms for throughput and energy optim-
ality. We extend the energy-optimal algorithm in [2], which
assumes that perfect channel state information (CSI) is
known at the beginning of each slot, by considering the case
when there is a nonzero power cost to acquire CSI. This case
has a larger decision space for control policies, including
policies that probe channels in every slot, policies that never
probe channels, and combinations of these. The problem
discussed in [2] can be viewed as a special case of our system
model, and the algorithm given there may no longer be
optimal when channel measurement costs are considered.

For the sake of simple demonstrations, in the first part of
the paper, we focus on a wireless downlink with the
restriction that either all or none of the channel states are
acquired in a slot, and we suppose the timing overhead due to
channel acquisition is negligible. Later in Section 6, we show
that our analysis can be naturally extended to models where
these restrictions are relaxed.

The next section describes our mathematical model and
provides simple motivating examples showing the neces-
sity of using both channel-aware and channel-unaware
transmission modes. Section 3 establishes the minimum
average power for stability when scheduling allows for both
modes. Section 4 presents our Dynamic Channel Acquisi-
tion algorithm (DCA) and proves that it yields stability with
average power consumption that is arbitrarily close to
optimal. Simulations verify that the algorithm efficiently
mixes between channel-aware and channel-unaware
modes, and adapts to different values of channel probing
power, packet transmission power, and data arrival rates.
Section 6 briefly discusses extensions to system models that
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allow any subset of channels to be measured and that
incorporate timing overhead due to channel acquisition

In the rest of the paper, we use the following notations:
For real vectors aa ¼ ða1; . . . ; aLÞ and bb ¼ ðb1; . . . ; bLÞ,

. aa � bb denotes that ai � bi for all i. aa � bb is defined
similarly.

. Define the product aa� bb ¼4 ða1b1; . . . ; aLbLÞ.

. Let PrfAg be the probability of event A occurring.
Define a vector of probabilities

PrPrðaa � bbÞ ¼4 ðPrfa1 � b1g; . . . ;PrfaL � bLgÞ:

Probability vector PrPrðaa � bbÞ is defined similarly.
. Let 1½A� be the indicator function where 1½A� ¼ 1 if

event A is true and 0 otherwise. Define the indicator
vector 1½aa�bb� ¼

4 ð1½a1�b1�; . . . ; 1½aL�bL �Þ.

2 SYSTEM MODEL, CAPACITY REGIONS, AND

MOTIVATING EXAMPLES

2.1 System Model

We consider a wireless base station serving L users
through L time-varying channels. Time is slotted with
normalized time slots t ¼ ½t; tþ 1Þ, t 2 ZZþ. Data are
measured in integer units of packets. Define aiðtÞ as the
number of packet arrivals for user i 2 f1; 2; . . . ; Lg in slot t.
Suppose aiðtÞ are independent for different i, i.i.d. over
slots, and independent of channel state processes. Assume
that aiðtÞ takes values in f0; 1; 2; . . . ; Amaxg with mean
IE½aiðtÞ� ¼ �i, where Amax is a finite integer. Let siðtÞ be the
channel state of user i in slot t. Assume that siðtÞ are i.i.d.
over slots, and take values in S ¼ f0; 1; 2; . . . ; �maxg, where
�max is a finite integer. Channel states remain the same in
every slot and only change on slot boundaries. The value of
siðtÞ represents the maximum number of packets that can
be transmitted over channel i in slot t. Channel statistics
are assumed to be known and fixed.

Suppose at the beginning of every time slot, the base
station decides whether or not to probe the channels. We
assume that either the states of all channels are acquired,
with power expenditure Pm (each channel measurement
consumes Pm=L units of power), or none of the channels are
probed (relaxation of this assumption is discussed later in
Section 6.2). After possible channel acquisitions, the base
station allocates service rates ��ðtÞ ¼ ð�1ðtÞ; . . . ; �LðtÞÞ 2 SL
chosen from a feasible set �, where �iðtÞ is the service rate
allocated to user i. The set � defines any additional system
restrictions. For example, in systems where at most one user
can be served in every slot, each vector in � has at most one
nonzero component.

When channel states are acquired in a slot, channel-

aware rates ��ðtÞ are allocated based on the channel states.

Otherwise, channel-blind rates ��ðtÞ are allocated, that is,

they are allocated without the knowledge of current

channel states. For each user i, if �iðtÞ � siðtÞ, which

indicates that the chosen service rate is supported by the
current channel state, at most �iðtÞ packets can be

successfully delivered (limited by the current backlog).

Otherwise, all packet transmissions over that channel fail

in that slot (which may be because bad channel states and

high-order modulations required for high transmission

rates yield low signal-to-noise ratios and almost surely
incorrect packet reception). In either case, channel i

consumes a constant transmission power Pt if the chosen
rate �iðtÞ is nonzero. We note that since allocating
unsupportable rate �iðtÞ > siðtÞ is equivalent to allocating
zero rate, we want to choose channel-supportable rates
whenever possible. To be precise, for channel states
ss ¼ ðs1; . . . ; sLÞ, we define the channel-aware feasible rate

set �ðssÞ ¼4 f�� 2 � j �� � ssg. Without loss of generality, we
assume if channel states ssðtÞ are acquired in a slot, we
always choose transmission rates from �ðssðtÞÞ in that slot.
We suppose at the end of each time slot, ACK/NACK
feedback is received via a reliable control channel (the
absence of an ACK signal is regarded as an NACK). This
feedback is used for retransmission control purposes.

With the current channel states ssðtÞ (possibly unknown)
and allocated rates ��ðtÞ, we define �̂�ðtÞ ¼ ð�̂1ðtÞ; . . . ; �̂LðtÞÞ
as the effective transmission rates, where for each i,

�̂iðtÞ ¼
�iðtÞ ¼ �iðt; siðtÞÞ; if channel i is measured;
�iðtÞ1½�iðtÞ�siðtÞ�; otherwise:

�
ð1Þ

We use the notation �iðt; siðtÞÞ (or ��ðt; ssðtÞÞ in vector form)
to emphasize that the transmission rates are aware of and
supported by the current channel states ssðtÞ. The indicator
function 1½�iðtÞ�siðtÞ� is required because of the possible blind
scheduling mode. Let PiðtÞ be the sum of measurement and
transmission power consumed by user i in slot t. We have

PiðtÞ ¼
Pm=Lþ Pt1½�iðtÞ>0�; if channel i is measured;
Pt1½�iðtÞ>0�; otherwise:

�
ð2Þ

The unfinished work Uiðtþ 1Þ of user i on time slot tþ 1
can thus be represented by the queuing dynamics:

Uiðtþ 1Þ ¼ maxðUiðtÞ � �̂iðtÞ; 0Þ þ aiðtÞ; ð3Þ

subject to the feasibility constraint ��ðtÞ 2 �. We say that the
wireless downlink is stabilized (by some scheduling policy)
if the following inequality holds [2]:

lim sup
t!1

1

t

Xt�1

�¼0

XL
i¼1

IE½Uið�Þ� <1:

We note that while our problem description focuses on a
wireless downlink, the same system model can be directly
applied to an uplink system, where a base station receives
transmissions from L energy-aware wireless users. This can
be seen as follows: A single queue is kept by each user to
hold data to be transmitted (rather than keeping all
L queues at the base station). On each slot, the base station
coordinates by signaling different users to either measure or
not measure their channels, and then, allocates uplink rates
to be used by the users. The goal for the base station is to
support data rates within full capacity, while the sum
power expenditure due to transmission and channel
acquisition by the users is minimized.

2.2 Motivating Examples

First of all, we give the following definitions:

Definition 1. A scheduling policy is said to be purely
channel-aware if packets are scheduled for transmission in
a slot only after the channel states are acquired in that slot. A
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scheduling policy is said to be purely channel-blind if it
never acquires channel states and can serve packets without
the channel state information.1

Definition 2. Define the blind capacity region �blind to be the
closure of the set of data rates that can be stabilized by purely
channel-blind policies. Define the capacity region � to be the
closure of the set of data rates that can be stabilized by purely
channel-aware policies.

We note that purely channel-aware policies can emulate
any policy that mixes channel-aware and channel-blind
decisions, including purely channel-blind policies. Thus, �
is the exact capacity region of the downlink, i.e., it contains
data rates that can be stabilized by any scheduling policies.
Further, we have �blind � �.

For motivations, we compare the performance of purely
channel-aware policies to that of purely channel-blind
policies in the following simplified examples.

2.2.1 Single Queue

Consider a single queue served by a Bernoulli ON/OFF
channel. Packets arrive independently over slots, and in
every time slot, one packet arrives with probability � and
zero with probability 1� � (and thus, the arrival rate is equal
to �). In every time slot, the channel is ON with probability q,
and OFF with probability 1� q. One packet can be served
when the channel state is ON. It is easy to show that purely
channel-aware and purely channel-blind scheduling share
the same capacity region f0 � � � qg, but the associated
power consumption to support data rate �may differ. Purely
channel-aware scheduling consumes average power
ðPm=qÞ þ Pt to deliver a packet (acquiring channel states,
on average, 1=q times to see an ON state, and transmitting a
packet once). Thus, the average power to support rate � is
�ðPm=q þ PtÞ. Purely channel-blind scheduling consumes
average power Pt=q to deliver a packet (blindly transmitting
the same packet 1=q times for a successful transmission), and
it takes average power �Pt=q to support �. Therefore, to
support any data rate � 2 ð0; qÞ, we prefer purely channel-
aware scheduling than purely channel-blind if ðPm=qÞ þ
Pt � Pt=q, i.e., Pm=Pt � 1� q, and we prefer purely channel-
blind scheduling ifPm=Pt > 1� q. This simple threshold rule
indicates that purely channel-blind scheduling may, de-
pending on the power ratio and channel statistics, outper-
form purely channel-aware scheduling.

2.2.2 Multiple Queues

Consider the problem of allocating a server to L queues with
independent Bernoulli ON/OFF channels. Channel states
are i.i.d. over slots for each channel. Only the channel with
the server can serve packets and at most one packet can be
served in every slot. It is equivalent to setting �max ¼ 1 and
siðtÞ 2 f0; 1g for all i and t. The feasible set � consists of
L-dimensional 0=1 vectors in each of which at most one entry
is 1. Define qi, i ¼ 1; 2; . . . ; L, as the probability of channel i
being ON, i.e., PrfsiðtÞ ¼ 1g ¼ qi. The following lemmas
characterize capacity region �, blind capacity region �blind,
and the minimum power required to stabilize data rates
within � and �blind (proofs are given in the Appendix).

Lemma 1. The blind capacity region �blind consists of data rates
�� ¼ ð�1; �2; . . . ; �LÞ satisfying

PL
i¼1 �i=qi � 1. Further, over

the class of purely channel-blind policies and for each arrival
rate vector �� interior to �blind, the system can be stabilized
with minimum power ð

PL
i¼1 �i=qiÞPt.

Lemma 2 (Theorem 1 in [17]). The capacity region � consists
of data rates �� satisfying, for each nonempty subset I of
f1; 2; . . . ; Lg,

P
i2I �i � 1��i2Ið1� qiÞ.

Lemma 3. Over the class of purely channel-aware policies and for
each arrival rate vector �� 6¼ 00 interior to �, the system can be
stabilized with minimum power ð

PL
i¼1 �iÞPt þ ��Pm, where

�� ¼4 inff� 2 ð0; 1Þ j �� 2 ��g.

Consider the caseL ¼ 2. Lemmas 1 and 2 show that there is
a capacity region difference between � and �blind (See Fig. 1).
Although data rates within �blind can be supported by both
purely channel-blind and purely channel-aware policies, we
note that the shaded areas in Fig. 1 illustrate areas in which
purely channel-blind scheduling is more energy efficient
than purely channel-aware. The shaded areas would shrink if
the power ratio Pm=Pt decreased. We also note that purely
channel-blind scheduling cannot stabilize the system with
arrival rates located outside �blind, and channel-aware
transmissions must be enforced. We will show in the next
section that a power-optimal stabilizing policy might be
neither purely channel-blind nor purely channel-aware.
Rather, mixed strategies are typically required.

3 OPTIMAL POWER FOR STABILITY

In the following, we show a theorem characterizing the
minimum power to stabilize data rates �� when dynamic
channel acquisition is allowed, using similar techniques of
proving [2, Theorem 1]. We show that the minimum
average power required for stabilizing �� can be obtained
by minimizing the average power expenditure over the
class of stationary randomized policies that achieve time
average transmission rate �i greater than or equal to �i for
each user i. Each such stationary randomized policy makes
decisions independently of queue backlog, and has the
following structure: On every time slot, the controller
probes the channels with some probability � (0 � � � 1).
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1. Note that both purely channel-aware and purely channel-blind
scheduling may take advantage of queue backlog information.

Fig. 1. For the case L ¼ 2, � consists of data rates that are within the
outer boundary (thick solid lines), while �blind consists of data rates
within the thick dotted line �1=q1 þ �2=q2 ¼ 1. Data rates in the shaded
areas are those that prefer purely channel-blind scheduling. The shaded
areas are decided under an additional assumption q1 � q2. As Pm=Pt
decreases, the shaded areas shrink in the directions given in the figure.
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If channel states ss are acquired, the controller allocates
channel-aware rates !! 2 �ðssÞ (that is, !! � ss) with some
probability �ð!!; ssÞ. If channels are not probed, the controller
blindly allocates rates !! 2 � with some probability �ð!!Þ.
Theorem 1. For i.i.d. channel state processes and i.i.d. arrival

processes with data rates �� interior to �, the minimum power

consumption to stabilize the system is the optimal objective of

the following problem PROBð��Þ (defined in terms of auxiliary

variables �, �ð!!; ssÞ for each channel state vector ss 2 SL and

each channel-aware rates !! ¼ ð!1; . . . ; !LÞ 2 �ðssÞ, and �ð!!Þ
for each !! 2 �):

min: �
X
ss2SL

	ss
X
!!2�ðssÞ

�ð!!; ssÞ Pm þ
XL
i¼1

1½!i>0�Pt

 !24 35
þ ð1� �Þ

X
!!2�

�ð!!Þ
XL
i¼1

1½!i>0�Pt

 !

s:t: �� � �
X
ss2SL

	ss
X
!!2�ðssÞ

�ð!!; ssÞ!!

0@ 1A
þ ð1� �Þ

X
!!2�

�ð!!Þ !!� PPrðSS � !!Þð Þ;

0 � � � 1; �ð!!Þ � 0 8!! 2 �;
X
!!2�

�ð!!Þ ¼ 1;

�ð!!; ssÞ � 0 8ss 2 SL and 8!! 2 �ðssÞ;X
!!2�ðssÞ

�ð!!; ssÞ ¼ 1 8ss 2 SL;

where 	ss is the steady-state probability of channel states ss, and
the capital SS ¼ ðS1; . . . ; SLÞ denotes a random vector of
channel states. The vector !!� PPrðSS � !!Þ is defined according
to notations given at the end of Section 1.

Proof of Theorem 1. Given in the Appendix. tu

We denote by Poptð��Þ the optimal objective of the above
optimization problem PROBð��Þ, that is, Poptð��Þ is the
minimum average power to stabilize ��. The following
corollary of Theorem 1 will be used later in the performance
analysis of our proposed control algorithm:

Corollary 1. For i.i.d. arrival and channel state processes and an
interior point �� of �, the optimal stationary randomized policy
that supports �� allocates service rates ��ðtÞ and consumes
power ðP1ðtÞ; . . . ; PLðtÞÞ that satisfy in every slot t,

XL
i¼1

IE½PiðtÞ� ¼ Poptð��Þ; IE½�̂�ðtÞ� � ��;

where �̂�ðtÞ are the effective transmission rates (see (1)).

We note that the capacity region � and the blind capacity
region �blind (see Definition 2) can also be characterized as
corollaries of Theorem 1: If we restrict the policy space to
the class of purely channel-aware policies and neglect the
power, the proof of Theorem 1 characterizes the capacity
region �. Restricting the policy space to the class of purely
channel-blind policies and neglecting the power give us the
blind capacity region �blind.

Corollary 2. For i.i.d. arrival and channel state processes, the
capacity region � of the L-queue downlink consists of data
rates �� for which there exists a probability distribution
f�ð!!; ssÞg!!2�ðssÞ, where, for each channel state vector ss, we
have �ð!!; ssÞ � 0 for all !! 2 �ðssÞ and

P
!!2�ðssÞ �ð!!; ssÞ ¼ 1,

such that

�� �
X
ss2SL

	ss
X
!!2�ðssÞ

�ð!!; ssÞ!!

0@ 1A;
where 	ss is the steady-state probability of states ss.

Corollary 3. For i.i.d. arrival and channel state processes, the
blind capacity region �blind of the L-queue downlink consists of
data rates �� for which there exists a probability distribution
f�ð!!Þg!!2�, where �ð!!Þ � 0 for all !! 2 �� and

P
!!2� �ð!!Þ ¼ 1,

such that

�� �
X
!!2�

�ð!!Þð!!� PPrðSS � !!ÞÞ:

4 THE UNIFIED ALGORITHM AND PERFORMANCE

ANALYSIS

4.1 Dynamic Channel Acquisition Algorithm

In the previous section, we established the minimum
average power consumption required for stability. Here,
we develop a unified DCA algorithm that provides stability
for the full capacity region and meanwhile consumes
average power that is arbitrarily close to minimum, with a
trade-off in average delay. The algorithm is stated as follows
(in terms of a positive control parameter V , chosen as desired
to affect the trade-off): On each time slot, we observe the
current queue backlog UUðtÞ ¼ ðU1ðtÞ; . . . ; ULðtÞÞ and decide
whether or not to probe the channels. We then allocate
transmission rates based on the potentially known channel
states. The associated decision variables mðtÞ, ��ðcÞðtÞ, and
��ðbÞðtÞ are defined as follows:mðtÞ is equal to 1 if channels are
probed in slot t, and 0 otherwise. Variables ��ðcÞðtÞ represent
feasible channel-aware transmission rates allocated when
channels are probed, and ��ðbÞðtÞ represent blind transmission
rates allocated when channels are not probed. Define 

ðtÞ ¼4
½mðtÞ; ��ðcÞðtÞ; ��ðbÞðtÞ� as the collection of control decision
variables on slot t. The DCA algorithm observes the current
queue backlog UUðtÞ and chooses 

ðtÞ in every slot to
maximize the function fðUUðtÞ; 

ðtÞÞ, defined as follows:

fðUUðtÞ; 

ðtÞÞ ¼4 mðtÞ
(
�V Pm

þ IEss

XL
i¼1

�
2UiðtÞ�ðcÞi ðtÞ � V Pt1½�ðcÞi ðtÞ>0�

��� UUðtÞ" #)

þmðtÞ
XL
i¼1

 
2UiðtÞ�ðbÞi ðtÞPr

�
Si � �ðbÞi ðtÞ

�
� V Pt1½�ðbÞi ðtÞ>0�

!
;

ð4Þ

where mðtÞ ¼4 1�mðtÞ.
The function fðUUðtÞ; 

ðtÞÞ comes from a performance

Lyapunov analysis argument [2], [18]. In essence, for the
sake of stability, the design principle here is that we would
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like to create a negative drift of queue backlogs in the
wireless network whenever the queue backlogs are suffi-
ciently large. Such negative drift keeps the queue backlogs
bounded, and thus, ensures stability in the system. We
show later in Theorem 2 and its proof that maximizing
fðUUðtÞ; 

ðtÞÞ in every slot is a way to generate such negative
drift. The structure of fðUUðtÞ; 

ðtÞÞ comes naturally in the
underlying analysis. The constant factor of 2 in fðUUðtÞ; 

ðtÞÞ
is also a by-product of the analysis. It can be dropped by
using a new constant eV ¼ V =2, because maximizing a
function is equivalent to maximizing the function scaled by
a positive constant. In addition, we note that blending the
power consumption into the drift analysis guarantees that
we can create the negative drift with average power that can
be made arbitrarily close to optimal. See Theorem 2 and its
proof later in the paper for more technical details.

Although fðUUðtÞ; 

ðtÞÞ looks complex at the first glance,
maximizing it can be achieved as follows: First, we
separately maximize the multiplicands of mðtÞ and mðtÞ
in (4). Then we compare them. We let mðtÞ ¼ 1 if its optimal
multiplicand is greater than that of mðtÞ, and mðtÞ ¼ 0,
otherwise. If mðtÞ ¼ 1, we measure the current channel
states ssðtÞ and allocate feasible rates ��ðcÞðtÞ � ssðtÞ as the
maximizer of the sum

XL
i¼1

�
2UiðtÞ�ðcÞi ðtÞ � V Pt1½�ðcÞi ðtÞ>0�

�
: ð5Þ

Otherwise, mðtÞ ¼ 0, and we blindly allocate feasible rates

��ðbÞðtÞ 2 � that maximize the multiplicand of mðtÞ. We note

that the option of idling the system is included in taking

mðtÞ ¼ 1 and ��ðbÞðtÞ ¼ 00.
Intuitively, the DCA algorithm estimates the expected gain of

channel-aware and channel-blind transmissions, and picks

the one with the better gain. We observe that these estimations

are the most complicated part of the algorithm, and they

require joint and marginal distributions of channel states. In

particular, in (4), the multiplicand of mðtÞ is a conditional

expectation taken over channel states ss. To maximize it, we

need to optimize the quantity (5) over channel-aware rates

��ðcÞðtÞ supported by each channel state vector ss, and then,

take an expectation of the optimized (5) using joint channel

state distributions. Optimizing the multiplicand of mðtÞ
needs the marginal distribution of channel states. In practice,

the channel statistics can be estimated by taking samples of

channel states and taking time averages of them. In

Section 4.2, we show that the DCA algorithm can be done

in polynomial time for the special case where at most one

packet can be served in every slot, provided that channel

statistics are known (or well estimated).
To prove the performance of the DCA algorithm, it is

important to note that the function fðUUðtÞ; 

ðtÞÞ can be

rewritten as

fðUUðtÞ; 

ðtÞÞ ¼
XL
i¼1

2UiðtÞIEss½�̂iðtÞ j UUðtÞ�
 !

� V IEss

XL
i¼1

PiðtÞ j UUðtÞ
" #

;

where �̂iðtÞ and PiðtÞ are, respectively, the effective service
rate and the associated power consumption for user i,
which can be represented as

�̂iðtÞ ¼4 mðtÞ�ðcÞi ðtÞ þmðtÞ�
ðbÞ
i ðtÞ1½�ðbÞi ðtÞ�siðtÞ�;

PiðtÞ ¼4 mðtÞ
Pm
L
þ Pt1½�ðcÞi ðtÞ>0�

� 	
þmðtÞPt1½�ðbÞi ðtÞ>0�:

The following theorem characterizes the performance of
the DCA algorithm:

Theorem 2. For arrival rates �� interior to �, the DCA algorithm

implemented with any control parameter V > 0 stabilizes the

system with time average queue backlog and time average

power expenditure satisfying:

lim sup
�!1

1

�

X��1

t¼0

XL
i¼1

IE UiðtÞ½ � � Bþ V ðPm þ LPtÞ
2�max

; ð6Þ

lim sup
�!1

1

�

X��1

t¼0

XL
i¼1

IE PiðtÞ½ � � B
V
þ Poptð��Þ; ð7Þ

where B ¼4 ð�2
max þA2

maxÞL, �max > 0 is the largest value such

that ð��þ ��maxÞ 2 �, where ��max is an all-�max vector.

Proof of Theorem 2. Given in the Appendix. tu

The two upper bounds in (6) and (7) are parameterized
by the positive scalar V , where V can be chosen as large as
desired to push the average power consumption arbitrarily
close (within B=V ) to the optimal Poptð��Þ, at the expense of
the linearly increasing average congestion bound (which, by
Little’s theorem, yields an average delay bound).

As an aside, we note that the i.i.d. channel assumption is
crucial to Theorem 1, and here we only show that the DCA
algorithm is power and throughput optimal for i.i.d.
channels. For general ergodic channels, the DCA algorithm
may not be optimal. For example, in time-correlated
channels, the history of observed channel states provides
partial information of future channel states. Thus, an
optimal policy for such channels should take advantage of
the time correlations. The DCA algorithm, however, makes
decisions only based on current queue backlogs, not on the
history of the system (which includes the history of
observed channel states, queue backlogs, and control
actions). Thus, the DCA algorithm may not be optimal for
general ergodic channels.

Despite the above, we note that DCA may still be a good
suboptimal policy for general ergodic channels. In parti-
cular, it can be shown that the optimal power level Poptð��Þ
given in Theorem 1 for i.i.d. channels can also be achieved
in the case of ergodic channels with the same steady-state
distribution as the i.i.d. channels. Further, it can be shown
that DCA achieves within Oð1=V Þ of this average power in
the general ergodic case. While Poptð��Þ is no longer optimal
in the case of channels with memory, the DCA algorithm, in
this case, can be viewed as optimizing over the restricted
class of policies that neglect past channel history in making
decisions. This simplifies algorithm design when channel
correlations are too complex to track.
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4.2 Server Allocation Problem and Algorithm
Implementation

Consider the simplified example of the L-queue downlink

given in Section 2.2.2, where at most one queue can be

served in every slot, and this queue can transmit at most

one packet. We show that the DCA algorithm, following the

explanation in Section 4.1, can be simply implemented as

follows: In each slot, if channel states are acquired, among

all users with ON channel state, we allocate the server to

the user with the largest positive f
ðcÞ
i ðtÞ ¼

4
2UiðtÞ � V Pt. If

f
ðcÞ
i ðtÞ is nonpositive for all users with ON state, we idle the

server. Otherwise, channels are not probed, and we allocate

the server to the user with the largest positive f
ðbÞ
i ðtÞ ¼

4

2UiðtÞPrfSi ¼ ONg � V Pt. If f
ðbÞ
i ðtÞ is nonpositive for all

users, we idle the server.
To decide whether or not to acquire channel states, we

compare the optimal multiplicands of mðtÞ and mðtÞ in (4).

Choosing the largest positive f
ðbÞ
i ðtÞ gives us the optimal

multiplicand of mðtÞ. The optimal multiplicand of mðtÞ can

be computed as

�V Pm þ
XL
i¼1

ð2UiðtÞ � V PtÞ1½2UiðtÞ>V Pt� Pr

�
siðtÞ ¼ 1;

sjðtÞ <
UiðtÞ
UjðtÞ

; 8j < i; skðtÞ �
UiðtÞ
UkðtÞ

; 8k > i



:

ð8Þ

It is because we assign the server to user i when channel i in
ON (siðtÞ ¼ 1), f

ðcÞ
i ðtÞ > 0, and UiðtÞ � sjðtÞUjðtÞ for all j 6¼ i

(we break ties by choosing the smallest index), which occurs

with probability

Pr siðtÞ ¼ 1; sjðtÞ <
UiðtÞ
UjðtÞ

; 8j < i; skðtÞ �
UiðtÞ
UkðtÞ

; 8k > i

� 

:

Then we acquire channel states if the optimal multiplicand

of mðtÞ is greater than that of mðtÞ.
Again, unlike the EECA algorithm in [2] which does not

require channel statistics, the DCA algorithm indeed

requires the joint channel statistics to make channel

acquisition decisions. If channels are independent, only

the marginal distribution of each channel is required. For

example, in the case of independent i.i.d. Bernoulli ON/

OFF channels, (8) can be easily computed in polynomial

time and requires storage of only the known marginals.

When channels have spatial correlations, (8) can also be

easily computed in polynomial time, provided that the joint

cumulative distribution function is known or estimated.

5 SIMULATIONS

5.1 Multirate Channels

We simulate the DCA algorithm for server allocation in a
symmetric three-user downlink, defined as follows: Three
users have independent Poisson arrivals with equal rates
�� ¼ �ð1; 1; 1Þ, where � is a scaling factor. Each user is served
over an independent i.i.d. channel, which has three states
fG;M;Bg. In state G, M, and B, the channel can serve at
most 2, 1, and 0 packets, respectively. For each channel i in
slot t, define probability qG ¼4 PrfsiðtÞ ¼ Gg ¼ 0:5. Prob-
abilities qM and qB are defined similarly with qM ¼ 0:3 and
qB ¼ 0:2. In every slot, the controller picks at most one user
to serve.

The maximum sum throughput of the downlink is

2 Prfat least one channel is Gg
þ 1 Prfnone of the channels is G; at least one is Mg
¼ 2½1� ð1� qGÞ3� þ ð1� qGÞ3 � ð1� qG � qMÞ3 ¼ 1:867:

Thus, one face of the capacity region boundary satisfies
�1 þ �2 þ �3 � 1:867, and the scaled vector �ð1; 1; 1Þ inter-
sects this face at � 	 0:622. In blind transmission mode, the
maximum sum throughput of the downlink is equal to
2 
 qG ¼ 1. One face of the boundary of �blind is
�1 þ �2 þ �3 ¼ 1, and �ð1; 1; 1Þ intersects it at � 	 0:33.
According to these boundary information, we simulate the
DCA algorithm for � from 0.05 to 0.6 with step size 0.05.
Transmission power Pt is set to be 10 units, and each
simulation is run for 10 million time slots.

Figs. 2 and 3 compare the power consumption of DCA
with the theoretical minimum of purely channel-aware and
purely channel-blind policies for Pm ¼ 0 and 10, respec-
tively. Parameter V is set to 100. The theoretical power
minimum of pure policies is computed by solving the
optimization problem in Theorem 1. The curve of purely
channel-blind is drawn up to � ¼ 0:3, a point close to the
boundary of �blind.

When Pm ¼ 0, channel states can be acquired with no
cost, and it is always better to probe the channels before
allocating rates. Therefore, purely channel-aware is no
worse than any mixed strategies, and thus, is optimal.
Fig. 2 shows that DCA consumes the same average power
as the optimal purely channel-aware policy for all values of
data rates. For Pm ¼ 10, it is sufficiently large so that
channel-blind transmissions are more energy efficient than
channel-aware ones for �� 2 �blind. In this case, Fig. 3 shows
that DCA performs as good as the optimal purely channel-
blind policy for �� 2 �blind (i.e., 0 < � < 0:33). When data
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Fig. 2. Average power of the DCA algorithm and optimal pure policies for
Pm ¼ 0. Note that the curves of purely channel-aware and DCA overlap
each other.

Fig. 3. Average power of the DCA algorithm and optimal pure policies for
Pm ¼ 10. Note that the curves of purely channel-blind and DCA overlap
each other for � 2 ½0:05; 0:3�.
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rates go beyond �blind (� � 0:33), DCA starts to incorporate
channel-aware transmissions for stability concerns, but still
yields a significant power gain over purely channel-aware
policies. These two cases show that at extreme values of Pm,
the DCA algorithm is adaptive and optimal.

Fig. 4 shows the performance of DCA for Pm ¼ 5. For a
mediate value of Pm, the DCA algorithm outperforms both
types of pure policies. To take a closer look, for a fixed
arrival rate vector �� ¼ ð0:3; 0:3; 0:3Þ, Fig. 5 shows the power
gain of DCA over pure policies as a function of Pm values.
One important observation here is that DCA has the largest
power gain when purely channel-aware and purely chan-
nel-blind have the same performance (around Pm ¼ 4:5). It
is counter intuitive because when the two types of pure
policies perform the same, we expect that mixing channel-
aware and channel-blind actions will not help. Nevertheless,
the simulation shows that we benefit more from mixing
strategies especially when one type of pure policy does not
significantly outperform the other. In this example, DCA
has as much as a 30 percent power gain over purely channel-
aware and purely channel-blind policies.

5.2 ON/OFF Channels

To have more insights on how DCA works, we perform
another set of simulations. The simulation setup is the same
as the previous one except for the channel model. Here, we
suppose that each user is served by an independent i.i.d.
Bernoulli ON/OFF channel. In every slot, channels 1, 2, and
3 are ON with probability 0.8, 0.5, and 0.2, respectively.
When a channel is ON, one packet can be served, and zero
otherwise. We simulate on arrival rates of the form �ð3; 2; 1Þ.

It is easy to show that � 	 0:1533 and 0.0784 correspond to
the boundary of the associated � and �blind, respectively.
We set Pt ¼ 10, and each simulation is again run for
10 million time slots.

5.2.1 User Backlogs

We first simulate on V ¼ Pm ¼ 10 and � ¼ 0:07. Fig. 6 shows
sample backlog processes of the three users in the last
105 time slots of the simulation. We observe in (4) that we
blindly serve user 3 only if U3ðtÞ � V Pt=ð2q3Þ ¼ 250. We
serve user 3 in channel-aware mode if U3ðtÞ � V Pt=2 ¼ 50.
Fig. 6 shows that most of the time, user 3 maintains its
backlog under 250 (but above 50). It is consistent with an
observation that user 3 serves packets mostly in channel-
aware mode. As mentioned in Section 4, the DCA algorithm
generates a negative drift pushing the backlog of user 3
back under 250 whenever it is above 250. It explains why
the user 3 backlog is maintained around 250. Similar
arguments can be made for the other two users, where
the reference backlog levels for negative drifts for users 1
and 2 are 62.5 and 100, respectively. We note that much of
this backlog can be eliminated by using the place holder

packet technique from [19]. Indeed, from (4), we see that no
packet is ever transmitted from queue i if 2UiðtÞ < V Pt, and
so place holder packets reduce average backlog by roughly
V Pt=2 in each queue, with no loss of energy optimality.

For different values of �, we show in Fig. 7 the average
backlog of each user and the sum average backlog of the
system. The DCA algorithm maintains roughly constant
average backlogs (around the reference point V Pt=ð2qiÞ
mentioned earlier) for all users, except when data rates are
close to the capacity region boundary. When data rates
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Fig. 4. Average power of the DCA algorithm and optimal pure policies for
Pm ¼ 5.

Fig. 5. Average power of the DCA algorithm and optimal pure policies for
different values of Pm. Note that the curve of the DCA algorithm overlaps
with other curves at both ends of Pm values.

Fig. 6. Sample backlog processes in the last 105 slots of the simulation.

Fig. 7. Average backlogs of three users and the average sum backlog of
the system.
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approach the capacity region boundary up to some point,
the negative drift cannot withhold the rapid increase of
average backlog.

5.2.2 How Control Parameter V Affects the

Performance

For control parameter V 2 f1; 10; 100g, Figs. 8 and 9 show
the average power consumption of DCA (with different
Pm values) and the average sum backlogs. We see that as V
increases, the power consumption improves (but the
improvement gets small) at the expense of increasing
network delays, which are suggested by (6) and (7).2 Figs. 8
and 9 also demonstrate that, in practice, a moderate V value
should be chosen to maintain reasonable network delays
without sacrificing much power consumption.3

6 APPLICATION TO MORE GENERAL MODELS

6.1 Channel Acquisition-Induced Timing Overhead

We generalize the system model in Section 2 by assuming
that channel acquisition indeed consumes time. Specifically,
suppose in every slot, channel acquisition consumes ð1� �Þ
of a slot for some 0 < � < 1. Therefore, if channel states are
acquired and rate vector ��ðtÞ is allocated, the true allocated
service rates are ���ðtÞ.

This timing overhead affects the system dramatically.
For example, the class of purely channel-aware policies can
no longer support the original capacity region � because the
new capacity region for purely channel-aware policies is
��. As a result, there may be some data rates that cannot be
supported by purely channel-aware policies, but can be
supportable by purely channel-blind policies. So, for the
sake of stability, blind data transmissions must be incorpo-
rated. In fact, it can be shown that the capacity region of the

new system with timing overhead, denoted by �new, is the
convex hull of the union of �� and �blind (see Fig. 10).4

For example, consider the simplified two-queue down-
link with the server allocation constraint in Section 2.2.2. In
Fig. 10, � is the original capacity region without the timing
overhead assumption. �� is the new capacity region for
purely channel-aware policies with timing overhead. �blind

is the capacity region of purely channel-blind policies, not
affected by the timing overhead. Note that data rates within
the set �blind � �� are supported by purely channel-blind
policies, but not by purely channel-aware policies.

Although the timing overhead assumption changes the
system characteristics dramatically, extending the DCA
algorithm to the new system is easy. We only need to
substitute every channel-aware rate allocation ��ðtÞ with the
vector ���ðtÞ. As an example, the new DCA algorithm
applied to the simplified two-queue downlink in Section 2.2.2
can be shown as follows:

Example DCA algorithm with timing overhead.

1. Channel acquisition: At the beginning of every
slot, define

f1 ¼
4 �V Pm þ q1q2½2�maxðU1ðtÞ; U2ðtÞÞ � V Pt�þ

þ q1q2½2�U1ðtÞ � V Pt�þ þ q1q2½2�U2ðtÞ � V Pt�þ;
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Fig. 8. Average power consumption of the DCA algorithm and optimal
pure policies under different values of V and � ¼ 0:07.

Fig. 9. The average backlog of the DCA algorithm for different values of
V . Pm is set to 10.

Fig. 10. The new capacity regions of a two-queue wireless downlink with
independent i.i.d. ON/OFF channels, server allocation constraint, and
timing overhead assumption.

2. We note that performance bounds (6) and (7) are loose for Poisson
arrivals because the associated Amax ¼ 1 (and thus, B ¼ 1). It is a minor
concern because Amax is bounded with probability arbitrarily close to one,
and bound (6) is well known to be loose.

3. We note that in Fig. 8, DCA does not beat purely channel-aware when
V ¼ 1 and Pm close to zero. It may be because smaller V values do not allow
DCA to maintain reasonable backlog levels in all queues, and as a result,
opportunistic scheduling gain cannot be fully enjoyed in channel-aware
mode. It is a minor concern, but still suggests that a moderate V value is
needed.

4. It can be proved by following the proof of Theorem 1, where we
neglect the power part and substitute every channel-aware rates ��ðtÞ with
the scaled rate vector ���ðtÞ. We can see that together with Corollaries 2 and
3, the new capacity region �new consists of data rates �� for which there exists
a scalar �, 0 � � � 1, such that �� 2 �ð��Þ þ ð1� �Þ�blind.
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where qi ¼4 1� qi, and ½x�þ ¼4 maxðx; 0Þ. Define

f2 ¼4 ½maxð2q1U1ðtÞ; 2q2U2ðtÞÞ � V Pt�þ:

Then, we probe the channels if and only if f1 > f2.
2. Server allocation: If channel states are acquired,

serve the ON channel with the largest positive
ð2�UiðtÞ � V PtÞ. Do not serve any channel if all
channels are OFF or ð2�UiðtÞ � V PtÞ � 0 for all
ON channels. If channel states are not acquired,
blindly serve the channel with the largest positive
ð2qiUiðtÞ � V PtÞ. Do not serve any channel if
ð2qiUiðtÞ � V PtÞ � 0 for all i.

6.2 Partial Channel State Acquisition

In the system model in Section 2, we restrict possible actions
on channel acquisition to measuring either all channels or
none of the channels. To relax this assumption, suppose
now we allow acquiring the states of any subset of channels in
every slot (such partial channel probing model is first
introduced in [10]). Specifically, we denote by JðtÞ �
f1; 2; . . . ; Lg the subset of channels that are measured on
slot t. For example, JðtÞ ¼ f3; 5g indicates that the third and
the fifth channels are measured on slot t. After channels in
JðtÞ are measured, rates ��ðtÞ ¼ ð�1ðtÞ; . . . ; �LðtÞÞ are allo-
cated in the way that �iðtÞ is chosen aware of the current
channel state if i 2 JðtÞ, and is chosen blindly if i 62 JðtÞ.
The effective service rate �̂iðtÞ and the associated power
consumption PiðtÞ for user i can thus be represented as

�̂iðtÞ ¼ 1½i2JðtÞ��iðtÞ þ 1½i62JðtÞ��iðtÞ1½�iðtÞ�siðtÞ�; ð9Þ

PiðtÞ ¼ 1½i2JðtÞ�
Pm
L
þ Pt1½�iðtÞ>0�

� 	
þ 1½i62JðtÞ�Pt1½�iðtÞ>0�: ð10Þ

To derive the corresponding DCA algorithm, we note
that the same drift analysis in the proof of Theorem 2 can be
directly applied here by substituting (9) and (10) into the
drift analysis. In particular, the drift inequality (35) still
holds. Again, the DCA algorithm is designed to minimize
the right side of (35) over all feasible decision options. The
difference is that now our decisions allow for measuring
only a subset of the channels. We describe the correspond-
ing DCA algorithm as follows:

Generalized DCA algorithm. In every slot t,

1. Channel acquisition: Suppose the current backlog
is UUðtÞ. For each JðtÞ � f1; 2; . . . ; Lg, we define
HJðtÞ � SjJðtÞj as a set of the probed channel states,
i.e., HJðtÞ ¼ fsiðtÞ; i 2 JðtÞg. We define HJðtÞ ¼ ; if
JðtÞ ¼ ;. Then, for each JðtÞ and for each possible
set HJðtÞ of observed partial channel states asso-
ciated with JðtÞ, we define g�ðJðtÞ; UUðtÞ; HJðtÞÞ as
the maximum of the quantityX
i2JðtÞ

2UiðtÞ�iðtÞ � V
Pm
L
þ Pt1½�iðtÞ>0�

� 	� 	
þ
X
i62JðtÞ

�
2UiðtÞ�iðtÞPr

�
Si � �iðtÞ j HJðtÞ

�
� V Pt1½�iðtÞ>0�

�
ð11Þ

over ð�1ðtÞ; . . . ; �LðtÞÞ 2 � and �iðtÞ � siðtÞ if
i 2 JðtÞ. We denote by ���ðJðtÞ; UUðtÞ; HJðtÞÞ the
maximizer of (11). Then we compute the quantity
g�ðJðtÞ; UUðtÞÞ defined by

g�ðJðtÞ; UUðtÞÞ ¼4 IEfg�ðJðtÞ; UUðtÞ; HJðtÞÞg;

where the expectation is taken over HJðtÞ. Define

J�ðtÞ ¼4 arg max
JðtÞ

g�ðJðtÞ; UUðtÞÞ:

If maxJðtÞg
�ðJðtÞ; UUðtÞÞ is positive, we probe the

channels in J�ðtÞ (no channel is probed if
J�ðtÞ ¼ ;). Otherwise, it is easy to show that
maxJðtÞg

�ðJðtÞ; UUðtÞÞ ¼ 0 and we idle the system
(including skipping the Rate Allocation step
described next).

2. Rate allocation: Suppose the set of acquired
channel states in J�ðtÞ is HJ�ðtÞ. We allocate to
the system the rates ���ðJ�ðtÞ; UUðtÞ; HJ�ðtÞÞ (com-
puted in the previous step).

Essentially, in our original system model, the decision
space of channel measurement has only two elements:
measure all or none of the channels. Allowing to measure
any subset of channels expands the measurement decision
space from cardinality 2 to 2L, where L is the number of
channels. It is not hard to show that the corresponding
Theorem 1 to the generalized system demonstrates that an
optimal policy that stabilizes rates �� with minimum power
consumption is a convex combination of 2L stationary
randomized policies, each of which corresponds to a partial
channel acquisition decision JðtÞ. The generalized DCA
algorithm evaluates a metric for each of the 2L measure-
ment decisions and executes one with the best metric. Note
that the associated computational complexity is exponen-
tial. We may restrict the measurement space to a predefined
collection of subsets of channels, from which the set of
channels to probe must be chosen. In this way, we
incorporate a more general system model than our original
one, but the complexity of the DCA algorithm does not
grow exponentially in the number of channels.

7 CONCLUSION

Under the assumption that channel acquisition incurs
power overhead, we propose a DCA algorithm that
dynamically acquires channel states to stabilize a wireless
downlink. DCA is a unified treatment of incorporating both
channel-aware and channel-blind actions to achieve energy
optimality. Through Lyapunov analysis, we prove that
DCA can stabilize the system with average power arbi-
trarily close to optimal, at the expense of increasing network
delays. Simulations show that DCA can optimally adapt to
different system parameters, including input data rates and
transmission and channel probing power. DCA has the
largest power gain when both types of pure strategies have
the same performance, which is counter intuitive. We also
discussed how to extend the DCA algorithm to two
generalized models of nonzero timing overhead and
completely partial channel acquisition.
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APPENDIX

Proof of Lemma 1. First, assume that rates �� ¼ ð�1; . . . ; �LÞ
can be stabilized by some purely channel-blind policy.
Since a successful blind packet transmission through
channel i 2 f1; 2; . . . ; Lg takes, on average, 1=qi attempts,
the fraction of time the single server is busy is equal toPL

i¼1 �i=qi (by Little’s theorem). This must be less than or
equal to 1 for stability. The associated necessary average
power consumption is equal to ð

PL
i¼1 �i=qiÞPt. Conver-

sely, for each rate vector �� 6¼ 00 satisfying
PL

i¼1 �i=qi < 1,
we define � ¼4

PL
i¼1 �i=qi, and there exists some � > 0 such

that �þ � < 1. Consider the policy that, in every slot,
assigns the server to queue i with probability ð�þ �Þ�i,
where �i ¼4 �i=ðqi�Þ, and is idle with probability 1� �� �.
The associated average power consumption is ð�þ �ÞPt. It
is easy to see that this policy yields average transmission
rates strictly greater than �� entrywise, and thus, stabilizes
the system. By passing �! 0, the rate vector �� is stabilized
with average power consumption arbitrarily close to
�Pt ¼ ð

PL
i¼1 �i=qiÞPt. tu

Proof of Lemma 3. Suppose the rate vector �� can be
stabilized by a purely channel-aware policy �. For
simplicity, we assume that � is ergodic with well-
defined time averages (the general case can be proven
similarly, as in [2]). Define � to be the fraction of time �
probes the channels. Then the average power consump-
tion to stabilize �� is ð

PL
i¼1 �iÞPt þ �Pm. Suppose �

satisfies 0 < � < ��. A necessary condition to stabilize ��
is that for each subset J � f1; 2; . . . ; Lg of channels, the
partial sum

P
i2J �i must be less than or equal to the

fraction of time at least one channel in J can serve
packets. In other words, for each J , we have

X
i2J

�i � � 1�
Y
i2J
ð1� qiÞ

 !
:

In other words, �� 2 ��. But this contradicts the definition
of ��, finishing the proof of the necessity part.

Conversely, since �� 2 ���, �� is an interior point of the
set ð�� þ �Þ� for some � > 0 satisfying �� þ � < 1. We define
a policy � that works as follows: On every slot, � probes
the channels with probability ð�� þ �Þ. When channels are
probed in a slot, we serve the longest ON queue.
Otherwise, we idle the system. We note that applying �
to the original downlink is equivalent to applying Longest
Connected Queue (LCQ) policy [17] to a new wireless
downlink in which a channel is ON if and only if it is
probed and known to be ON. It is easy to see that the
capacity region of the new system is ð�� þ �Þ�. Although
channels in different links in the new system are
correlated, it is well known that LCQ policy is still
throughput optimal to the new system. Equivalently, if ��
is interior to ð�� þ �Þ�, policy � stabilizes �� with average
power consumption equal to ð

PL
i¼1 �iÞPt þ ð�� þ �ÞPm.

Passing �! 0 finishes the sufficiency part of the proof. tu
Proof of Theorem 1. Suppose rates �� are interior to �. We

first show the necessity part of the proof saying that there
is no policy able to stabilize �� with average power strictly
less than Poptð��Þ. Then we finish the sufficiency part of the

proof by showing that rates �� can be stabilized with

average power arbitrarily close to Poptð��Þ.
(Necessity). Suppose rates �� can be stabilized by a

policy � which decides in which slots channels are
probed and allocates transmission rates ��ðtÞ with power
consumption ðP1ðtÞ; . . . ; PLðtÞÞ (see (2)) in every slot t. In
an interval ½0;MÞ, M 2 IN, we define

�̂�avðMÞ ¼
4 1

M

XM�1

�¼0

�̂�ð�Þ; ð12Þ

as the empirical service rates of policy � (rates �̂�ð�Þ are

defined in (1)). We define

PavðMÞ ¼4
1

M

XM�1

�¼0

XL
i¼1

Pið�Þ; ð13Þ

as the empirical average power consumption of �. Let

Pav ¼4 lim inf
M!1

PavðMÞ: ð14Þ

Pav is a lower bound on the average power consumption

of �.5 We show in the following that for any ��-stabilizing

policy � (ergodic or nonergodic), there exists a stationary

randomized policy �̂ that consumes average power Pav

and yields average service rates �� � ��. In particular,

policy �̂ is feasible to the optimization problem PROBð��Þ
(defined in Theorem 1) in the sense that the associated

parameters of �̂ constitute a feasible point of PROBð��Þ.
Consequently, we have Pav � Poptð��Þ. By (14), policy �

consumes average power at least Pav � Poptð��Þ. This is

true for any ��-stabilizing policy �. Thus, the necessary

power to stabilize �� is at least Poptð��Þ.
Let T

ðcÞ
M and T

ðbÞ
M be the sets of slots in ½0;MÞ in which

channels are probed and not probed, respectively. Note

that jT ðcÞM j þ jT
ðbÞ
M j ¼M for all M. Without loss of general-

ity, we assume that T
ðcÞ
M and T

ðbÞ
M are nonempty.

According to (1), we define

�̂�ðcÞav ðMÞ ¼
4 1

M

X
�2T ðcÞ

M

�̂�ð�Þ ¼ 1

M

X
�2T ðcÞ

M

��ð�; ssð�ÞÞ; ð15Þ

�̂�ðbÞav ðMÞ ¼
4 1

M

X
�2T ðbÞ

M

�̂�ð�Þ ¼ 1

M

X
�2T ðbÞ

M

��ð�Þ � 11½��ð�Þ�ssð�Þ�; ð16Þ

where 11½��ð�Þ�ssð�Þ� is defined at the end of Section 1. It is

easy to see that �̂�avðMÞ (defined in (12)) satisfies

�̂�avðMÞ ¼ �̂�ðcÞav ðMÞ þ �̂�ðbÞav ðMÞ: ð17Þ

We next define

P ðcÞav ðMÞ ¼
4 1

M

X
�2T ðcÞ

M

XL
i¼1

Pið�Þ; ð18Þ
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is the exact limiting time average power consumption of �. If � is
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P ðbÞav ðMÞ ¼
4 1

M

X
�2T ðbÞ

M

XL
i¼1

Pið�Þ; ð19Þ

and PavðMÞ (defined in (13)) satisfies

PavðMÞ ¼ P ðcÞav ðMÞ þ P ðbÞav ðMÞ: ð20Þ

Consider the rate-power vector ð�̂�ðcÞav ðMÞ;P ðcÞav ðMÞÞ
associated with channel-aware transmissions. By (15),
(18), and simple arithmetics, we have

�
�̂�ðcÞav ðMÞ;P ðcÞav ðMÞ

�
¼ 1

M

X
�2T ðcÞ

M

��ð�; ssð�ÞÞ;
XL
i¼1

Pið�Þ
 !

¼ jT
ðcÞ
M j
M

X
ss2SL

jT ðcÞM ðssÞj
jT ðcÞM j

1

jT ðcÞM ðssÞj

X
�2T ðcÞ

M
ðssÞ

��ð�; ssÞ;
XL
i¼1

Pið�Þ
 !

¼ �M
X
ss2SL

MðssÞ xxMðssÞ;

ð21Þ

where we define

�M ¼4
jT ðcÞM j
M

; MðssÞ ¼4
jT ðcÞM ðssÞj
jT ðcÞM j

; ð22Þ

T
ðcÞ
M ðssÞ � T

ðcÞ
M is defined as the subset of slots in T

ðcÞ
M in

which channel states are ss, and

xxMðssÞ ¼4
1

jT ðcÞM ðssÞj

X
�2T ðcÞ

M
ðssÞ

��ð�; ssÞ;
XL
i¼1

Pið�Þ
 !

: ð23Þ

Observe that xxMðssÞ is a convex combination of vectors of

the form ð��ð�; ssÞ;
PL

i¼1 Pið�ÞÞ. By regrouping terms in (23),

there exists a real sequence f�Mð!!; ssÞg!!2�ðssÞ, �Mð!!; ssÞ � 0

for each !! 2 �ðssÞ and
P

!!2�ðssÞ �Mð!!; ssÞ ¼ 1, such that

xxMðssÞ can be rewritten as

xxMðssÞ ¼
X
!!2�ðssÞ

�Mð!!; ssÞ !!;Pm þ
XL
i¼1

1½!i>0�Pt

 !
: ð24Þ

We note that the sequence f�Mð!!; ssÞg!!2�ðssÞ can be

viewed as a probability distribution.
Next, the rate-power vector ð�̂�ðbÞav ðMÞ;P ðbÞav ðMÞÞ asso-

ciated with channel-blind transmissions satisfies

ð�̂�ðbÞav ðMÞ;P ðbÞav ðMÞÞ

¼ 1

M

X
�2T ðbÞ

M

��ð�Þ � 11½��ð�Þ�ssð�Þ�;
XL
i¼1

Pið�Þ
 !

¼ 1

M

X
!!2�

X
�2T ðbÞ

M
ð!!Þ

!!� 11½!!�ssð�Þ�;
XL
i¼1

Pið�Þ
 !

¼ ð1� �MÞ
X
!!2�

�Mð!!Þ yyMð!!Þ;

ð25Þ

where in (25), the first equality is by (16) and (19). The

second equality is by regrouping terms and defining the

set T
ðbÞ
M ð!!Þ � T

ðbÞ
M as the subset of slots in which

transmission rates ��ð�Þ ¼ !! are allocated. The third

equality is by defining �Mð!!Þ ¼4 jT ðbÞM ð!!Þj=jT
ðbÞ
M j and

yyMð!!Þ ¼
4 1��T ðbÞM ð!!Þ��

X
�2T ðbÞ

M
ð!!Þ

!!� 11½!!�ssð�Þ�;
XL
i¼1

Pið�Þ
 !

; ð26Þ

and seeing that 1� �M ¼ jT ðbÞM j=M. Note that, for every
M, we have

P
!!2� �Mð!!Þ ¼ 1, and thus, f�Mð!!Þg!!2� can

be viewed as a probability distribution as well.
Next, observe that the M-indexed sequence fPavðMÞÞg

is bounded because power consumption in a slot is
nonnegative and at most ðPm þ LPtÞ. Together with
Weierstrass’s theorem [20, Theorem 2.42], limit points of
fPavðMÞÞg exist and are all finite. By [20, Theorem 3.17],
lim inf of fPavðMÞÞg is a limit point of fPavðMÞÞg and
there exists an integer subsequence fMng such that

lim
n!1

PavðMnÞ ¼ lim inf
M!1

PavðMÞ ¼ Pav: ð27Þ

By (17), (20), (21), and (25), we have

ð�̂�avðMÞ;PavðMÞÞ
¼ �M

X
ss2SL

MðssÞ xxMðssÞ þ ð1� �MÞ
X
!!2�

�Mð!!Þ yyMð!!Þ; ð28Þ

where xxMðssÞ and yyMð!!Þ can be expanded by (24) and
(26), respectively. For terms in (28) where xxMðssÞ is
expanded by (24), we observe the Mn-indexed subse-
quences fMn

ðssÞg and f�Mn
ð!!; ssÞg for all ss and !! 2 �ðssÞ,

f�Mn
ð!!Þg and fyyMn

ð!!Þg for all !! 2 �, and f�Mn
g are all

bounded as well. By iteratively applying Weierstrass’s
theorem to the above subsequences, there exists a
subsequence fMkg of fMng such that the above
subsequences all have converging sub-subsequences
indexed by fMkg. Consequently, there exists a scalar �,
0 � � � 1, a probability distribution f�ð!!; ssÞg!!2�ðssÞ
for each ss, and a probability distribution f�ð!!Þg!!2� such
that as k goes to infinity, we have �Mk

! � and

�Mk
ð!!; ssÞ ! �ð!!; ssÞ; for all ss 2 SL and !! 2 �ðssÞ;

�Mk
ð!!Þ ! �ð!!Þ; for all !! 2 �:

Further, let 	ss be the steady-state probability of channel
states ss. Because channel acquisition in a slot is
independent of channel states in that slot, by the Law
of Large Numbers (LLNs), Mk

ðssÞ ! 	ss as k!1 (see
(22)). We also observe that for each !! 2 �, the vectors
!!� 11½!!�ssð�Þ� are i.i.d. over time slots � 2 T ðbÞMk

ð!!Þ. Again
by LLN,

yyMk
ð!!Þ ! !!� PrPrðSS � !!Þ;

XL
i¼1

1½!i>0�Pt

 !
; as k!1:

By the above discussion, as k goes to infinity, the sub-
subsequence fð�̂�avðMkÞ;PavðMkÞÞg converges to

�
X
ss2SL

	ss
X
!!2�ðssÞ

�ð!!; ssÞ !!;Pm þ
XL
i¼1

1½!i>0�Pt

 !24 35
þ ð1� �Þ

X
!!2�

�ð!!Þ !!� PPrðSS � !!Þ;
XL
i¼1

1½!i>0�Pt

 !
:

ð29Þ

Using the stability definition and [5, Lemma 1], the
following necessary condition holds with probability 1:
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�� � lim inf
t!1

1

t

Xt�1

�¼0

�̂�ð�Þ: ð30Þ

It yields that

�� � lim
k!1

1

Mk

XMk�1

�¼0

�̂�ð�Þ ¼ lim
k!1

�̂�avðMkÞ

¼ �
X
ss2SL

	ss

 X
!!2�ðssÞ

�ð!!; ssÞ!!
!

þ ð1� �Þ
X
!!2�

�ð!!Þ !!� PPrðSS � !!Þð Þ;

ð31Þ

where the first inequality of (31) is due to the fact that
lim inf of a sequence is a lower bound of all limit points
of the sequence. Further, (27) and (29) yield that

Pav ¼ �
X
ss2SL

	ss
X
!!2�ðssÞ

�ð!!; ssÞ Pm þ
XL
i¼1

1½!i>0�Pt

 !24 35
þ ð1� �Þ

X
!!2�

�ð!!Þ
XL
i¼1

1½!i>0�Pt

 !
:

ð32Þ

From (31) and (32), if there is a ��-stabilizing policy �, there
is a stationary randomized policy �̂ operating as follows:
In every slot, �̂ probes the channels with probability �. If
channel states ss are acquired, �̂ allocates channel-aware
rates !! 2 �ðssÞ with probability �ð!!; ssÞ. Otherwise, �̂

blindly allocates rates !! 2 � with probability �ð!!Þ.
Further, policy �̂ has service rates greater than or equal
to �� entrywise, and consumes average power equal to Pav.
This finishes the necessity part of the proof.

(Sufficiency) Conversely, for each rate vector ��
interior to �, there exists a positive scalar � such that
��þ �� is interior to �, where �� is a vector of which every
component is �. The optimal solution to PROBð��þ ��Þ
yields a stationary randomized policy �̂ whose average
service rates are greater than or equal to ��þ �� entrywise.
By [18, Lemma 3.6], policy �̂ stabilizes �� with average
power consumption equal to Poptð��þ ��Þ. By pushing � to
zero, there exists a stationary randomized policy which
stabilizes �� with average power consumption arbitrarily
close to Poptð��Þ. tu

Proof of Theorem 2. First, by squaring (3) for each i and the
facts that

ðmaxðUiðtÞ � �̂iðtÞ; 0ÞÞ2 � ðUiðtÞ � �̂iðtÞÞ2;
UiðtÞ � �̂iðtÞ � UiðtÞ; �̂iðtÞ � �max; aiðtÞ � Amax;

we have

XL
i¼1

�
U2
i ðtþ 1Þ � U2

i ðtÞ
�
� B� 2

XL
i¼1

UiðtÞð�̂iðtÞ � aiðtÞÞ;

ð33Þ

where B ¼4 ð�2
max þA2

maxÞL. We define the Lyapunov
function

LðtÞ ¼4
XL
i¼1

U2
i ðtÞ

and the one-step Lyapunov drift

�ðUUðtÞÞ ¼4 IE½Lðtþ 1Þ � LðtÞjUUðtÞ�:

By taking expectation of (33) conditioning on current

backlog UUðtÞ and noting that arrival processes are i.i.d.

over slots, it is easy to show that

�ðUUðtÞÞ � Bþ 2
XL
i¼1

UiðtÞ�i �
XL
i¼1

2UiðtÞIE �̂iðtÞ j UUðtÞ½ �:

ð34Þ

Motivated by the performance optimal Lyapunov opti-

mization technique developed in [2] and [18], we add the

cost metric V IE½
PL

i¼1 PiðtÞ j UUðtÞ� which is weighted by V

to both sides of (34), yielding

�ðUUðtÞÞ þ V IE
XL
i¼1

PiðtÞ j UUðtÞ
" #

� Bþ 2
XL
i¼1

UiðtÞ�i

�
XL
i¼1

2UiðtÞIE �̂iðtÞ j UUðtÞ½ � � V IE
XL
i¼1

PiðtÞ j UUðtÞ
" # !

:

ð35Þ

The DCA algorithm is designed to minimize the right side

of (35) over all possible control options 

ðtÞ. Equivalently,

the DCA algorithm maximizes fðUUðtÞ; 

ðtÞÞ (see (4)) over

all feasible 

ðtÞ, which can be done by the procedures

described in Section 4.1
For performance analysis, we note that the resulting

right side of (35) under the DCA algorithm is less than or
equal to a right side associated with the use of some other
policy. In particular, we choose the some other policy to be
the optimal stationary randomized policy, denoted by
�r, associated with the optimal solution to the problem
PROBð��þ ��Þ in Theorem 1, where the vector �� > 00 is an
all-� vector such that ��þ �� is interior to �. Let �̂�rðtÞ and
ðPr

1 ðtÞ; . . . ; P r
LðtÞÞ be the effective service rates and power

consumption associated with �r in slot t. Then, from (35),
we have for each slot t

�ðUUðtÞÞ þ V IE
XL
i¼1

PiðtÞ j UUðtÞ
" #

� Bþ 2
XL
i¼1

UiðtÞ�i

�
XL
i¼1

2UiðtÞIE �̂ri ðtÞ j UUðtÞ
� �

� V IE
XL
i¼1

Pr
i ðtÞ j UUðtÞ

" # !
:

ð36Þ

By Corollary 1, the policy �r makes control decisions



rðtÞ, independent of current queue backlog UUðtÞ,
resulting in effective service rates �̂�rðtÞ and power

consumption ðPr
1 ðtÞ; . . . ; P r

LðtÞÞ that satisfy

IE �̂�rðtÞ j UUðtÞ½ � � ��þ ��; ð37Þ

IE
XL
i¼1

Pr
i ðtÞ j UUðtÞ

" #
¼ Poptð��þ ��Þ; ð38Þ
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in every slot t. Plugging (37) and (38) into (36) yields

�ðUUðtÞÞ þ V IE
XL
i¼1

PiðtÞ j UUðtÞ
" #

� B� 2�
XL
i¼1

UiðtÞ þ V Poptð��þ ��Þ:
ð39Þ

Taking expectation of (39) over UUðtÞ, summing it from

t ¼ 0 to � � 1, and dividing the sum by � yield

2�

�

X��1

t¼0

XL
i¼1

IE UiðtÞ½ � � Bþ IE LðUUð0ÞÞ½ � � IE LðUUð�ÞÞ½ �
�

þ V Poptð��þ ��Þ �
V

�
IE
X��1

t¼0

XL
i¼1

PiðtÞ
" #

:

ð40Þ

Suppose the initial backlogUUð0Þ is finite. By taking lim sup

of (40) as � !1 and the fact that Poptð��þ ��Þ � Pm þ LPt,
we have

lim sup
�!1

1

�

X��1

t¼0

XL
i¼1

IE UiðtÞ½ � � Bþ V ðPm þ LPtÞ
2�

; ð41Þ

lim sup
�!1

1

�

X��1

t¼0

XL
i¼1

IE PiðtÞ½ � � B

V
þ Poptð��þ ��Þ: ð42Þ

Equations (41) and (42) hold for any � > 0 that satisfies the

condition that ��þ �� is interior to the capacity region �.

Thus, we can tighten the bounds by setting � ¼ �max in

(41), where �max > 0 is the largest real number satisfying

��þ ��max 2 �, and by setting � ¼ 0 in (42). It yields

lim sup
�!1

1

�

X��1

t¼0

XL
i¼1

IE UiðtÞ½ � � Bþ V ðPm þ LPtÞ
2�max

;

lim sup
�!1

1

�

X��1

t¼0

XL
i¼1

IE PiðtÞ½ � � B

V
þ Poptð��Þ:

ut
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