
IEEE TRANS. AUTOMATIC CONTROL, 62(8):4202-4208, AUG. 2017. 1

Time-Average Optimization with Non-Convex
Decision Set and Its Convergence

Sucha Supittayapornpong, Longbo Huang, Michael J. Neely

Abstract—This paper considers time-average optimization,
where a decision vector is chosen every time step within a
(possibly non-convex) set, and the goal is to minimize a convex
function of the time averages subject to convex constraints on
these averages. Such problems have applications in networking,
multi-agent systems, and operations research, where decisions
are constrained to a discrete set and the decision average can
represent average bit rates or average agent actions. This time-
average optimization extends traditional convex formulations to
allow a non-convex decision set. This class of problems can be
solved by Lyapunov optimization. A simple drift-based algorithm,
related to a classical dual subgradient algorithm, converges to
an ε-optimal solution within O(1/ε2) time steps. Further, the
algorithm is shown to have a transient phase and a steady
state phase which can be exploited to improve convergence
rates to O(1/ε) and O(1/ε1.5) when vectors of Lagrange multi-
pliers satisfy locally-polyhedral and locally-smooth assumptions
respectively. Practically, this improved convergence suggests that
decisions should be implemented after the transient period.

I. INTRODUCTION

Convex optimization is often used to optimally control
communication networks (see [1] and references therein) and
distributed multi-agent systems [2]. This framework utilizes
both convexity properties of an objective function and a
feasible decision set. However, various systems have inherent
discrete (and hence non-convex) decision sets. For example,
a wireless system might constrain transmission rates to a
finite set corresponding to a fixed set of coding options.
Further, distributed agents might only have finite options of
decisions. This discreteness restrains the application of convex
optimization.

Let I and J be positive integers. This paper considers a class
of problems called time-average optimization where decision
vectors x(t) = (x1(t), . . . , xI(t)) are chosen sequentially over
time slots t ∈ {0, 1, 2, . . . } from a decision set X , which is
a closed and bounded subset of RI (possibly non-convex and
discrete), and its average x̄ = limT→∞

1
T

∑T−1
t=0 x(t) solves

This material is supported in part by one or more of: the NSF Career
grant CCF-0747525, the Network Science Collaborative Technology Alliance
sponsored by the U.S. Army Research Laboratory W911NF-09-2-0053. The
work of Longbo Huang was supported in part by the National Natural Science
Foundation of China Grants 61672316, 61303195, the Tsinghua Initiative
Research Grant, and the China youth 1000-talent grant.

S. Supittayapornpong and M. J. Neely are with Electrical Engineering
Department, University of Southern California, 3740 McClintock Ave., Los
Angeles, CA, USA 90089-2565, Tel: +1-213-740-4685, Fax: +1-213-740-
8729 supittay@usc.edu, mjneely@usc.edu

L. Huang is with Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, China, 100084, Tel: +8610-62781693, Fax:
+8610-62797331-2000 longbohuang@tsinghua.edu.cn

The corresponding author is Mr. Sucha Supittayapornpong.

the following problem:

Minimize f(x̄) (1)
Subject to gj(x̄) ≤ 0 j ∈ {1, . . . , J}

x(t) ∈ X t ∈ {0, 1, 2, . . . },

where f : X → R and gj : X → R are convex and continuous
functions and X is the convex hull of X .

This time-average optimization reflects a scenario where an
objective is in the time-average sense. For example, network
users are interested in average bit rates or throughput, and
distributed agents are concerned with average actions. The
formulation can be considered as a fine granularity version of
a one-shot average formulation, where an average decision is
chosen, and can be used to extend several convex optimization
problems in the literature, see for example [1] and references
therein, to have non-convex decision sets.

Formulation (1) has an optimal solution which can be
converted (by averaging) to the following convex optimization
problem:

Minimize f(x) (2)
Subject to gj(x) ≤ 0 j ∈ {1, . . . , J}

x ∈ X .

Note that an optimal solution to formulation (2) may not be in
the non-convex decision set X . Nevertheless, problems (1) and
(2) have the same optimal value. In addition, directly applying
a primal-average technique in [3], which can be traced back to
the work in [4], on a non-convex formation where the convex
hull in (2) is removed may lead to a local optimal solution with
respect to the time-average problem (1). For example, when
X = {0, 1}, J = 1, f(x) = (x − 2/3)2, g1(x) = 2/3 − x, a
primal average solution from the technique in [3] is 1, while
a solution to problem (1) is x̄ = 2/3.

Although there have been several techniques utilizing time-
average solutions [3], [5], [6], those works are limited to
convex formulations. In fact, this work can be considered as
a generalization of [3], [6] as decisions are allowed to be
chosen from a non-convex set. A non-convex optimization
problem is considered in [7], where an approximate prob-
lem is solved with the assumption of a unique vector of
Lagrange multipliers. In comparison, when f(x) and gj(x)’s
are Lipschitz continuous, the basic algorithm proposed in this
paper solves problem (1) without the uniqueness assumption.
However, the uniqueness assumption is used to prove faster
convergence time for the refined algorithms of this paper.
This paper is inspired by the Lyapunov optimization technique
[8] which solves stochastic and time-average optimization

2 IEEE TRANS. AUTOMATIC CONTROL, 62(8):4202-4208, AUG. 2017.

problems, including problems such as (1). This paper forms
the connection between the technique and a general convex
optimization to analyze a convergence time of a drift-plus-
penalty algorithm, which solves problem (1). Importantly,
this paper shows that faster convergence can be achieved by
starting time averages after a suitable period.

Another area of literature focuses on convergence time of
first-order algorithms to an ε-optimal solution to a convex
problem, including problem (2). For unconstrained optimiza-
tion without strong convexity of the objective function, the
accelerated method (with Lipschitz continuous gradients) has
O(1/

√
ε) convergence time [9], [10], while gradient and

subgradient methods take O(1/ε) and O(1/ε2) respectively
[3], [11]. Two O(1/ε) first-order methods for constrained
optimization are developed in [12], [13], but the results rely
on special convex formulations. A second-order method for
constrained optimization [14] has a fast convergence rate but
relies on special a convex formulation. All of these results rely
on convexity assumptions that do not hold in formulation (1).

This paper develops an algorithm for the formulation (1)
and analyzes its convergence time. The algorithm is shown to
have O(1/ε2) convergence time with a mild Slater condition.
However, inspired by results in [15], under a uniqueness
assumption on Lagrange multipliers the algorithm is shown to
enter two phases: a transient phase and a steady state phase.
Convergence time can be significantly improved by starting
the time averages after the transient phase. Specifically, when
a dual function satisfies a locally-polyhedral assumption, the
modified algorithm has O(1/ε) convergence time (including
the time spent in the transient phase), which equals the best
known convergence time for constrained convex optimization
via first-order methods. On the other hand, when the dual
function satisfies a locally-smooth assumption, the algorithm
has O(1/ε1.5) convergence time. An application of these
improved convergence times can be effective implementation
when decisions are implemented online after offline calcula-
tion during a transient period.

The contributions of this paper are summarized below.
1) We establish the connection between Lyapunov opti-

mization and a dual subgradient algorithm for a problem
with a non-convex decision set.

2) We generalize the modeling of a one-shot convex opti-
mization (2), extensively used in [1], to the time-average
formulation (1) that allows a non-convex decision set,
while optimality and complexity are preserved.

3) We investigate transient and steady-state behaviors of the
algorithm solving the time-average problem (1). Then,
we exploit the behaviors to obtain sequences of deci-
sions that achieve O(ε)-optimal solutions within O(1/ε)
and O(1/ε1.5) iterations under locally-polyhedral and
locally-smooth assumptions instead of the standard
O(1/ε2) iterations in [3], [6].

The paper is organized as follows. Section II constructs
an algorithm to solve the time-average problem. The general
O(1/ε2) convergence time is proven in Section III. Section IV
explores faster convergence times of O(1/ε) and O(1/ε1.5)
under the unique Lagrange multiplier assumption. Example
problems are given in Section V.

II. TIME-AVERAGE OPTIMIZATION
In order to solve problem (1), an embedded problem with a

similar solution is formulated with the following assumptions.

A. The extended set Y
Let Y be a closed, bounded, and convex subset of RI

that contains X . Assume the functions f(x), gj(x) for
j ∈ {1, . . . , J} extend as real-valued continuous and convex
functions over x ∈ Y . The set Y can be defined as X
itself. However, choosing Y as a larger set helps to ensure
a Slater condition is satisfied (defined below) and simplifies
the resulting optimization. For example, set Y might be chosen
as a closed and bounded hyper-rectangle that contains X in
its interior.

B. Lipschitz continuity and Slater condition
In addition to assuming that f(x) and gj(x) are convex

over x ∈ Y , assume they are Lipschitz continuous, so there is
a constant M > 0 such that for all x, y ∈ Y:

|f(x)− f(y)| ≤M‖x− y‖ (3)
|gj(x)− gj(y)| ≤M‖x− y‖ (4)

where ‖x‖ =
√
x21 + · · ·+ x2I is the Euclidean norm.

Further, assume that there exists a vector x̂ ∈ X that satisfies
gj(x̂) < 0 for all j ∈ {1, . . . , J}, and is such that x̂ is in the
interior of set Y . This is a Slater condition that ensures the
constraints are feasible for the problem of interest.

C. Relation to dual subgradient algorithm
Problem (1) can be solved by the Lyapunov optimization

technique [8], which is identical to a classic dual subgradient
method [3], [16] that solves problem (5), with the exception
that it takes a time average of primal values [15], [17].

Minimize f(y) (5)
Subject to gj(y) ≤ 0 j ∈ {1, . . . , J}

xi = yi i ∈ {1, . . . , I}
x ∈ X , y ∈ Y.

Problem (5) is called the embedded formulation of the time-
average problem (1) and is convex. It is not difficult to show
that the above problem has an optimal value f (opt) that is
the same as that of problems (1) and (2). Compared to a
formulation in [3], problem (5) contains additional equality
constraints and a set constraint X . This is different from [3],
whose results cannot be applied directly.

Now consider the dual of embedded formulation (5). Let
vectors w and z be dual variables of the first and second
constraints in problem (5), where the feasible set of (w, z)
is denoted by Π = RJ

+ × RI . Let g(y) = (g1(y), . . . , gJ(y))
denote a J-dimensional column vector of functions gj(y). A
Lagrangian is Λ(x, y, w, z) = f(y) + w>g(y) + z>(x − y).
Define:

x∗(z) = arginf
x∈X

z>x (with x∗(z) ∈ X)

y∗(w, z) = arginf
y∈Y

[f(y) + w>g(y)− z>y].

3

Notice that x∗(z) may have multiple candidates including
extreme point solutions, since z>x is a linear function. We
restrict x∗(z) to any of these extreme solutions, which implies
x∗(z) ∈ X . Then the dual function is defined as

d(w, z) = inf
x∈X ,y∈Y

Λ(x, y, w, z) (6)

= f(y∗(w, z)) + w>g(y∗(w, z)) + z>[x∗(z)− y∗(w, z)].
A pair of subgradients [16] with respect to w and z is:

∂wd(w, z) = g(y∗(w, z)), ∂zd(w, z) = x∗(z)− y∗(w, z).
Finally, the dual formulation of embedded problem (5) is

Maximize d(w, z) Subject to (w, z) ∈ Π. (7)

Let the optimal value of problem (7) be d∗. Since problem (5)
is convex, the duality gap is zero, and d∗ = f (opt). Problem (7)
can be treated by a dual subgradient method [16] with a fixed
stepsize 1/V and the restriction on x(t) ∈ X , where V > 0
is a paremeter. This leads to Algorithm 1 summarized in the
figure below, called the dual subgradient algorithm. Define
the operator [x]+ as a projection of x onto the non-negative
orthant. Note that the algorithm is different from the one in
[3] due to the equality constraints and the restriction on x(t).

Initialize w(0) and z(0).
for t = 0, 1, 2, . . . do

x(t) = arginfx∈X z(t)
>x (with x(t) ∈ X)

y(t) = arginfy∈Y [f(y) + w(t)>g(y)− z(t)>y]
w(t+ 1) =

[
w(t) + 1

V g(y(t))
]
+

z(t+ 1) = z(t) + 1
V [x(t)− y(t)]

end
Algorithm 1: Dual subgradient algorithm with restriction

Indeed, the primal vectors x(t) and y(t) do not converge to
anything near a solution in many cases, such as when the f(x)
and gj(x) functions are linear or piecewise linear. However,
Algorithm 1 ensures that the time averages of x(t) and y(t)
converge as desired.

We use the notation w(t) and z(t) from Algorithm 1, with
the update rule for w(t+ 1) and z(t+ 1) given there:

w(t+ 1) =

[
w(t) +

1

V
g(y(t))

]
+

(8)

z(t+ 1) = z(t) +
1

V
[x(t)− y(t)]. (9)

For ease of notation, define λ(t),(w(t), z(t)) as a concate-
nation of these vectors. Let C be some positive constant such
that ‖g(y)‖2 ≤ C and ‖x− y‖2 ≤ C for any x ∈ X and any
y ∈ Y , since X is closed and bounded. We first provide some
useful properties. It holds that

‖λ(t+ 1)− λ(t)‖ ≤
√

2C/V for all t, (10)

since

‖λ(t+ 1)− λ(t)‖2

= ‖w(t+ 1)− w(t)‖2 + ‖z(t+ 1)− z(t)‖2

≤ 1

V 2
‖g(y(t))‖2 +

1

V 2
‖x(t)− y(t)‖2 ≤ 2C/V 2 (11)

where (11) follows from (8)–(9) and the definition of C.

‖λ(t+ 1)‖2 − ‖λ(t)‖2

= ‖w(t+ 1)‖2 + ‖z(t+ 1)‖2 − ‖w(t)‖2 − ‖z(t)‖2

≤ 2C

V 2
+

2

V
w(t)>g(y(t)) +

2

V
z(t)[x(t)− y(t)],

where the last inequality uses the result of expanding the
squared norms of (8)–(9). Since Algorithm 1 chooses x(t),
y(t) to minimize Λ(x(t), y(t), w(t), z(t)) in (6), the above
bound implies that

d(λ(t)) = f(y(t)) + w(t)>g(y(t)) + z(t)>[x(t)− y(t)]

≥ f(y(t)) +
V

2

[
‖λ(t+ 1)‖2 − ‖λ(t)‖2

]
− C

V
. (12)

From convex analysis, the dual function d(λ), defined in
(6), has the following properties [16]:
• d(λ) ≤ f (opt) for all λ ∈ Π.
• If the Slater condition holds, then there are real numbers
F > 0, η > 0 such that: d(λ) ≤ F − η‖λ‖ for all λ ∈ Π.

• If the Slater condition holds, then there is an optimal
value λ∗ ∈ Π, called a Lagrange multiplier vector [16],
that maximizes d(λ). Specifically, d(λ∗) = f (opt).

The first two properties can be substituted into the inequality
(12) to ensure that, under Algorithm 1, the following inequal-
ities hold for all time slots t ∈ {0, 1, 2, . . . }:
V

2

[
‖λ(t+ 1)‖2 − ‖λ(t)‖2

]
+ f(y(t)) ≤ C

V
+ f (opt) (13)

V

2

[
‖λ(t+ 1)‖2 − ‖λ(t)‖2

]
+ f(y(t)) ≤ C

V
+ F

− η‖λ(t)‖ (14)

III. GENERAL CONVERGENCE RESULT
Define the average of variables {a(t)}T−1t=0 as

ā(T),
1

T

T−1∑
t=0

a(t) for T ∈ {1, 2, . . .}.

Theorem 1: Let {x(t), w(t), z(t)}∞t=0 be a sequence gener-
ated by Algorithm 1. For T > 0, we have

f(x̄(T))− f (opt) ≤ V

2T

[
‖λ(0)‖2 − ‖λ(T)‖2

]
+
C

V

+
VM

T
‖z(T)− z(0)‖ (15)

gj(x̄(T)) ≤ V

T
|wj(T)− wj(0)|+ VM

T
‖z(T)− z(0)‖

j ∈ {1, . . . , J}, (16)

where M is the Lipschitz constant from (3)–(4).
Proof: For the first part, we have from the Lipschitz

property (3):

f(x̄(T))− f (opt) ≤ [f(ȳ(T))− f (opt)] +M‖ȳ(T)− x̄(T)‖.
(17)

We first upper bound f(ȳ(T))−f (opt) on the right-hand side of
(17). Let {x(t), y(t), w(t), z(t)}∞t=0 be a sequence generated
by Algorithm 1. Relation (13) can be rewritten as

f(y(t))− f (opt) ≤ C

V
+
V

2

[
‖λ(t)‖2 − ‖λ(t+ 1)‖2

]
.

4 IEEE TRANS. AUTOMATIC CONTROL, 62(8):4202-4208, AUG. 2017.

Summing from t = 0, . . . , T − 1 and dividing by T gives:

1

T

T−1∑
t=0

f(y(t))− f (opt) ≤ C

V
+

V

2T

[
‖λ(0)‖2 − ‖λ(T)‖2

]
.

Using Jensen’s inequality and the convexity of f gives:

f(ȳ(T))− f (opt) ≤ V

2T

[
‖λ(0)‖2 − ‖λ(T)‖2

]
+
C

V
. (18)

For ‖ȳ(T)− x̄(T)‖ in (17), we consider the update equation
of z(t) in (9). Summing from t = 0, . . . , T −1 yields zi(T)−
zi(0) = 1

V

∑T−1
t=0 [xi(t)− yi(t)] for every i. Rearranging and

dividing by T gives:

x̄i(T)− ȳi(T) =
V

T
[zi(T)− zi(0)] i ∈ {1, . . . , I}. (19)

Substituting (18) and (19) into (17) proves (15).
For the second part, we have from (4):

gj(x̄(T)) ≤ gj(ȳ(T)) +M‖ȳ(T)− x̄(T)‖. (20)

We first bound gj(ȳ(T)). The update equation of w(t) in (8)
implies, for every j, that

wj(t+ 1) = [wj(t) +
1

V
gj(y(t))]+ ≥ wj(t) +

1

V
gj(y(t)),

and wj(t + 1) − wj(t) ≥ 1
V gj(y(t)). Summing from t =

0, . . . , T − 1 yields wj(T) − wj(0) ≥ 1
V

∑T−1
t=0 gj(y(t)).

Dividing by T and using Jensen’s inequality and convexity
of gj gives:

1

T
[wj(T)− wj(0)] ≥ 1

V T

T−1∑
t=0

gj(y(t)) ≥ 1

V
gj(ȳ(T)).

This shows that

gj(ȳ(T)) ≤ V

T
|wj(T)− wj(0)| j ∈ {1, . . . , J}. (21)

Substituting (21) and (19) into (20) proves (16).
Theorem 1 can be interpreted when ‖λ(T)‖ =

‖(w(T), z(T))‖ is bounded from above by some finite con-
stant to mean that the deviation from optimality (15) is
bounded from above by O(V/T + 1/V), and the constraint
violation (16) is bounded above by O(V/T). To have both
bounds be within O(ε), we set V = 1/ε and T = 1/ε2.
Thus the convergence time of Algorithm 1 is O(1/ε2). The
next lemma shows that such a constant exists when the Slater
condition holds.

Lemma 1: When V ≥ 1, wj(0) = zi(0) = 0 for all i and
j, then under Algorithm 1, the Slater condition implies there
is a constant D > 0 (independent of V) such that

‖λ(t)‖ =

√√√√ J∑
j=1

wj(t)2 +

I∑
i=1

zi(t)2 ≤ D for all t.

Proof: From (14) and V ≥ 1, if ‖λ(t)‖ ≥ (C + F −
f (min))/η where f (min) = infy∈Y f(y), then we have

V

2

[
‖λ(t+ 1)‖2 − ‖λ(t)‖2

]
≤ C

V
+ F − f(y(t))− η‖λ(t)‖

≤ 0

This implies that:

‖λ(t)‖ ≤ (C + F − f (min))/η + ‖λ(t+ 1)− λ(t)‖.

To complete the proof, note that ‖λ(t+ 1)− λ(t)‖ ≤
√

2C/V
from (10). Since V ≥ 1, letting D,(C+F−f (min))/η+

√
2C

proves the lemma.
This section shows that Algorithm 1 generates a sequence

of decisions that achieves an O(ε)-optimal solution within
O(1/ε2) iterations. The next section shows that it is possible
to generate an O(ε)-optimal achieving sequence of decisions
within O(1/ε) iterations and O(1/ε1.5) iterations (depending
on a curvature property of the problem) by analyzing a
transient phase and a steady state phase of Algorithm 1.

IV. CONVERGENCE OF TRANSIENT AND STEADY
STATE PHASES

We analyze the convergence time in the case when the dual
function satisfies a locally-polyhedral assumption and the case
when it satisfies a locally-smooth assumption. Both cases use
the following mild assumption:

Assumption 1: The dual formulation (7) has a unique
Lagrange multiplier denoted by λ∗,(w∗, z∗).

This assumption is assumed throughout Section IV, and
replaces the Slater assumption (which is no longer needed).
Note that this is a mild assumption when practical systems are
considered, e.g., [15], [18].

Lemma 2: Let {λ(t)}∞t=0 be a sequence generated by
Algorithm 1. The following relation holds:

‖λ(t+ 1)− λ∗‖2 ≤ ‖λ(t)− λ∗‖2 +
2

V
[d(λ(t))− d(λ∗)]

+
2C

V 2
, t ∈ {0, 1, 2, . . .}. (22)

Proof: Recall that λ(t) = (w(t), z(t)). Define
h(t),(g(y(t)), x(t) − y(t)) as the vector of the constraint
functions. From the non-expansive property, we have that

‖λ(t+ 1)− λ∗‖2

≤
∥∥λ(t) + 1

V h(t)− λ∗
∥∥2

= ‖λ(t)− λ∗‖2 + 1
V 2 ‖h(t)‖2 + 2

V [λ(t)− λ∗]>h(t)

≤ ‖λ(t)− λ∗‖2 + 2C
V 2 + 2

V [d(λ(t))− d(λ∗)], (23)

where the last inequality uses the definition of C and the
concavity of the dual function (6), i.e, d(λ1) ≤ d(λ2) +
∂d(λ2)>[λ1 − λ2] for any λ1, λ2 ∈ Π, and ∂d(λ(t)) = h(t).

A. Locally-Polyhedral Dual Function

Throughout Section IV-A, the dual function (6) is assumed
to have a locally-polyhedral property, introduced in [15], as
stated in Assumption 2. A dual function with this property is
illustrated in Figure 1. The property holds when f and gj for
every j are either linear or piece-wise linear.

Assumption 2: There exists an Lp > 0 such that the dual
function (6) satisfies

d(λ∗) ≥ d(λ) + Lp‖λ− λ∗‖ for all λ ∈ Π (24)

5

Locally polyhedron Locally smooth

Fig. 1. Illustration of locally-polyhedral and locally-smooth functions

where λ∗ is the unique Lagrange multiplier.
The “p” subscript in Lp represents “polyhedral.” Further-

more, concavity of dual function (6) ensures that if this
property holds locally about λ∗, it also holds globally for all
λ ∈ Π (see Figure 1).

The behavior of the generated dual variables with dual
function satisfying the locally-polyhedral assumption can be
described as follows. Define

Bp(V),max
{

Lp

2V ,
2C
V Lp

}
.

Lemma 3: Under Assumptions 1 and 2, whenever
‖λ(t)− λ∗‖ ≥ Bp(V), it follows that

‖λ(t+ 1)− λ∗‖ − ‖λ(t)− λ∗‖ ≤ −
Lp

2V
. (25)

Proof: Suppose the following condition holds

2

V
[d(λ(t))− d(λ∗)] +

2C

V 2
≤ −

Lp

V
‖λ(t)− λ∗‖+

L2
p

4V 2
, (26)

then the inequality (22) in Lemma 2 becomes

‖λ(t+ 1)− λ∗‖2 ≤ ‖λ(t)− λ∗‖2 −
Lp

V
‖λ(t)− λ∗‖+

L2
p

4V 2

=

[
‖λ(t)− λ∗‖ −

Lp

2V

]2
.

It follows that if ‖λ(t)− λ∗‖ ≥ Bp(V) ≥ Lp

2V , then inequality
(25) holds.

It requires to show that condition (26) holds when
‖λ(t)− λ∗‖ ≥ Bp(V). Note that condition (26) holds when

d(λ(t))− d(λ∗) ≤ −C
V
−
Lp

2
‖λ(t)− λ∗‖.

By the locally-polyhedral property (24), if −Lp‖λ(t)− λ∗‖ ≤
−C

V −
Lp

2 ‖λ(t)− λ∗‖, then the above inequality holds. This
means that condition (26) holds when ‖λ(t)− λ∗‖ ≥ 2C

V Lp
.

This proves the lemma.
Lemma 3 implies that, if the distance between λ(t) and λ∗

is at least Bp(V), the successor λ(t+ 1) will be closer to λ∗.
This suggests the existence of a convergence set in which a
subsequence of {λ(t)}∞t=0 resides. Note that

√
2C/V bounds

‖λ(t+ 1)− λ(t)‖ for all t as in (10).
The steady state of Algorithm 1 is defined from this set.

This convergence set is defined as

Rp(V) =
{
λ ∈ Π : ‖λ− λ∗‖ ≤ Bp(V) +

√
2C
V

}
. (27)

Let Tp be the first iteration that a generated dual variable
enters this set:

Tp = arginf
t≥0

{λ(t) ∈ Rp(V)}. (28)

Intuitively, Tp is the end of the transient phase and is the
beginning of the steady state phase.

Lemma 4: Under Assumptions 1 and 2, Tp ≤ O(V).
Proof: Since ‖λ(0)− λ∗‖ is a constant, Lemma 3 proves

the claim.
Then we show that dual variables generated after iteration

Tp never leave Rp(V).
Lemma 5: Under Assumptions 1 and 2, the generated dual

variables from Algorithm 1 satisfy λ(t) ∈ Rp(V) for all t ≥
Tp.

Proof: We prove the lemma by induction. First we note
that λ(Tp) ∈ Rp(V) by the definition of Tp. Suppose that
λ(t) ∈ Rp(V). Then two cases are considered.

i) If ‖λ(t)− λ∗‖ ≥ Bp(V), it follows from (25) that

‖λ(t+ 1)− λ∗‖ ≤ ‖λ(t)− λ∗‖ −
Lp

2V
≤ Bp(V) +

√
2C

V
.

ii) If ‖λ(t)− λ∗‖ ≤ Bp(V), it follows from the triangle
inequality that

‖λ(t+ 1)− λ∗‖ ≤ ‖λ(t+ 1)− λ(t)‖+ ‖λ(t)− λ∗‖

≤
√

2C

V
+Bp(V),

by (10) and the assumption of ‖λ(t)− λ∗‖. Hence, λ(t+1) ∈
Rp(V) in both cases. This proves the lemma by induction.

Finally, a convergence result is ready to be stated. Let

aTp(T) =
1

T

Tp+T−1∑
t=Tp

a(t)

be an average of sequence {a(t)}Tp+T−1
t=Tp

that starts from Tp.
Theorem 2: Under Assumptions 1 and 2, for T > 0, let

{x(t), w(t)}∞t=Tp
be a subsequence generated by Algorithm 1,

where Tp is defined in (28). The following bounds hold:

f(xTp(T))− f (opt) ≤ C

V
+

2VM

T

[√
2C

V
+Bp(V)

]
+

V

2T

{[√
2C

V
+Bp(V)

]2
+ 4‖λ∗‖

[√
2C

V
+Bp(V)

]}
(29)

gj(xTp(T)) ≤ 2V (1 +M)

T

[√
2C

V
+Bp(V)

]
,

j ∈ {1, . . . , J}. (30)

Proof: The first part of the theorem follows from (15)
with the average starting from Tp that

f(xTp(T))− f (opt) ≤ C

V
+

V

2T

[
‖λ(Tp)‖2 − ‖λ(Tp + T)‖2

]
+
VM

T
‖z(Tp + T)− z(Tp)‖. (31)

For any λ ∈ Π, it holds that:

‖λ‖2 = ‖λ− λ∗‖2 + ‖λ∗‖2 + 2[λ− λ∗]>λ∗.

6 IEEE TRANS. AUTOMATIC CONTROL, 62(8):4202-4208, AUG. 2017.

The second term on the right-hand-side of (31) can be upper
bounded by applying this equality.

‖λ(Tp)‖2 − ‖λ(Tp + T)‖2

= ‖λ(Tp)− λ∗‖2 + 2[λ(Tp)− λ∗]>λ∗

− ‖λ(Tp + T)− λ∗‖2 − 2[λ(Tp + T)− λ∗]>λ∗

≤ ‖λ(Tp)− λ∗‖2 + 2[λ(Tp)− λ(Tp + T)]>λ∗

≤ ‖λ(Tp)− λ∗‖2 + 2‖λ(Tp)− λ(Tp + T)‖‖λ∗‖ (32)

From Lemma 5, the first term of (32) is bounded by
‖λ(Tp)− λ∗‖2 ≤ [

√
2C/V +Bp(V)]2. From triangle inequal-

ity and Lemma 5, the last term of (32) is bounded by

‖λ(Tp + T)− λ(Tp)‖ ≤ ‖λ(Tp + T)− λ∗‖+ ‖λ∗ − λ(Tp)‖

≤ 2

[√
2C/V +Bp(V)

]
. (33)

Therefore, inequality (32) is bounded from above
by [

√
2C/V + Bp(V)]2 + 4‖λ∗‖[

√
2C/V + Bp(V)].

Substituting this bound into (31) and using the fact
that ‖z(Tp + T)− z(Tp)‖ ≤ ‖λ(Tp + T)− λ(Tp)‖ ≤
2[
√

2C/V +Bp(V)] proves the first part of the theorem.
The last part follows from (16) that

gj(xTp(T)) ≤ V

T
|wj(Tp + T)− wj(Tp)|

+
VM

T
‖z(Tp + T)− z(Tp)‖.

Since |wj(Tp + T)− wj(Tp)| and ‖z(Tp + T)− z(Tp)‖ are
bounded above by ‖λ(Tp + T)− λ(Tp)‖, the above inequality
is upper bounded by

gj(xTp(T)) ≤ V (1 +M)

T
‖λ(Tp + T)− λ(Tp)‖

≤ 2V (1 +M)

T

[√
2C

V
+Bp(V)

]
,

where the last inequality uses relation (33). This proves the
last part of the theorem.

Theorem 2 can be interpreted as follows. The deviation from
the optimality value (29) is bounded above by O(1/V +1/T).
The constraint violation (30) is bounded above by O(1/T). To
have both bounds be within O(ε), we set V = 1/ε and T =
1/ε, and the convergence time of Algorithm 1 is O(1/ε). Note
that both bounds consider the average starting after reaching
the steady state at time Tp, and this transient time Tp is at
most O(1/ε).

B. Locally-Smooth Dual Function

Throughout Section IV-B, the dual function (6) is assumed
to have a locally-smooth property, introduced in [15], as stated
in Assumption 3 and illustrated in Figure 1.

Assumption 3: Let λ∗ be the unique Largrange multiplier,
there exist S > 0 and Ls > 0 such that whenever λ ∈ Π and
‖λ− λ∗‖ ≤ S, dual function (6) satisfies

d(λ∗) ≥ d(λ) + Ls‖λ− λ∗‖2. (34)

Also, there exists Ds > 0 such that whenever λ ∈ Π and
d(λ∗)− d(λ) ≤ Ds, dual variable satisfies ‖λ− λ∗‖ ≤ S.

TABLE I
CONVERGENCE TIMES

General Polyhedron Smooth
Transient state 0 O(1/ε) O(1/ε1.5)
Steady state O(1/ε2) O(1/ε) O(1/ε1.5)

The “s” subscript in Ls represents “smooth.”
Using a similar proof process as in Section IV-A, the

convergence result under the locally-smooth property is as
follows. Define the smooth counterparts of Bp(V) and Tp(V):

Bs(V),max
{

1
V 1.5 ,

√
V+
√
V+4LsCV
2LsV

}
Rs(V) =

{
λ ∈ Π : ‖λ− λ∗‖ ≤ Bs(V) +

√
2C
V

}
(35)

Ts = arginf
t≥0

{λ(t) ∈ Rs(V)}.

Theorem 3: Under Assumptions 1 and 3, when V is
sufficiently large and Bs(V) +

√
2C
V < S, for T > 0, let

{x(t), w(t)}∞t=Ts
be a subsequence generated by Algorithm 1,

where Ts is defined in (35). The following bounds hold:

f(xTs(T))− f (opt) ≤ C

V
+

2VM

T

[√
2C

V
+Bs(V)

]
+

V

2T

{[√
2C

V
+Bs(V)

]2
+ 2‖λ∗‖

[√
2C

V
+Bs(V)

]}
(36)

gj(xTs(T)) ≤ 2V (1 +M)

T

[√
2C

V
+Bs(V)

]
,

j ∈ {1, . . . , J}. (37)

Proof: Please see the full proof in [19].
Theorem 3 can be interpreted as follows. The deviation from
the optimality (36) is bounded above by O(1/V +

√
V /T).

The constraint violation (37) is bounded above by O(
√
V /T).

To have both bounds be within O(ε), we set V = 1/ε and
T = 1/ε1.5, and the convergence time of Algorithm 1 is
O(1/ε1.5). Note that both bounds consider the average starting
after reaching the steady state at time Ts, and this transient
time Ts is at most O(1/ε1.5), which has been shown in [19].

C. Summary of Convergence Results

The results in Theorems 1, 2, and 3 (denoted by General,
Polyhedron, and Smooth) are summarized in Table I. Note that
the general convergence time is considered to be in the steady
state from the beginning.

D. Staggered Time Averages

In order to take advantage of the improved convergence
rates, computing time averages must be started after the tran-
sient phase. To achieve this performance without determining
the exact end time of the transient phase, time averages can be
restarted over successive frames whose frame lengths increase
geometrically. For example, if one triggers a restart at times
2k for integers k, then a restart is guaranteed to occur within a
factor of 2 of the time of the actual end of the transient phase.

7

0 5000 10000 15000 20000
t

0.8

0.9

1.0

1.1

1.2

1.3
va
lu
e

Staggered f(xTp(·))

Subgradient f(x(·))

Objective cost

0 5000 10000 15000 20000
t

 0.2

0.0

0.2

0.4

0.6

0.8

va
lu
e

Staggered g1 (xTp(·)) (blue)
Staggered g2 (xTp(·)) (green)
Subgradient g1 (x(·)) (blue)
Subgradient g2 (x(·)) (green)

Constraints

Fig. 2. Iterations solving problem (38) with f(x) = 1.5x1 + x2

V. SAMPLE PROBLEMS

This section illustrates the convergence times of the time-
average Algorithm 1 under locally-polyhedral and locally-
smooth assumptions. A considered formulation is

Minimize f(x̄) (38)
Subject to 2x̄1 + x̄2 ≥ 1.5, x̄1 + 2x̄2 ≥ 1.5

x1(t), x2(t) ∈ {0, 1, 2, 3}, t ∈ {0, 1, 2, . . . }

where function f will be given for different cases.
Under the locally-polyhedral assumption, let f(x) =

1.5x1 + x2 be the objective function of problem (38). In this
setting, the optimal value is 1.25 when x̄1 = x̄2 = 0.5. Figure
2 shows the values of objective and constraint functions of
time-averaged solutions. It is easy to see the faster convergence
time O(1/ε) from the polyhedral result (Tp = 2048) compared
to a general result with convergence time O(1/ε2).

Under the locally-smooth assumption, let f(x) = x21+x22 be
the objective function of problem (38). Note that the optimal
value of this problem is 0.5 where x̄1 = x̄2 = 0.5. Figure
3 shows the values of objective and constraint functions of
time-averaged solutions. The smooth result starts the average
from (Ts =)8192th iterations. It is easy to see that the general
result converges slower than the smooth result. This illustrates
the difference between O(1/ε2) and O(1/ε1.5).

VI. CONCLUSION

We consider the time-average optimization problem with
a non-convex (possibly discrete) decision set. We show that
the problem has a corresponding (one-shot) convex opti-
mization formulation. This connects the Lyapunov optimiza-
tion technique and convex optimization theory. Using convex
analysis we prove a general convergence time of O(1/ε2)
when the Slater condition holds. Under an assumption on
the uniqueness of a Lagrange multiplier, we prove that faster
convergence times O(1/ε) and O(1/ε1.5) are possible for
locally-polyhedral and locally-smooth problems.

0 5000 10000 15000 20000
t

0.30

0.35

0.40

0.45

0.50

0.55

0.60

va
lu

e

Staggered f(xTp(·))
Subgradient f(x(·))

Objective cost

0 5000 10000 15000 20000
t

−0.2

0.0

0.2

0.4

0.6

va
lu

e

Staggered g1 (xTp(·)) (blue)
Staggered g2 (xTp(·)) (green)
Subgradient g1 (x(·)) (blue)
Subgradient g2 (x(·)) (green)

Constraints

Fig. 3. Iterations solving problem (38) with f(x) = x21 + x22

REFERENCES

[1] M. Chiang, S. Low, A. Calderbank, and J. Doyle, “Layering as optimiza-
tion decomposition: A mathematical theory of network architectures,”
Proceedings of the IEEE, vol. 95, no. 1, Jan. 2007.

[2] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” Automatic Control, IEEE Transactions on, vol. 54,
no. 1, pp. 48–61, Jan 2009.

[3] ——, “Approximate primal solutions and rate analysis for dual subgra-
dient methods,” SIAM Journal on Optimization, vol. 19, no. 4, 2009.

[4] A. Nemirovskii and D. Yudin, “Cesaro convergence of the gradient
method for approximation of saddle points of convex-concave func-
tions,” Doklady AN SSSR 239, 1978.

[5] Y. Nesterov, “Primal-dual subgradient methods for convex problems,”
Mathematical Programming, vol. 120, no. 1, 2009.

[6] M. Neely, “Distributed and secure computation of convex programs over
a network of connected processors,” DCDIS Conf., Jul. 2005.

[7] M. Zhu and S. Martinez, “An approximate dual subgradient algorithm
for multi-agent non-convex optimization,” Automatic Control, IEEE
Transactions on, vol. 58, no. 6, pp. 1534–1539, June 2013.

[8] M. Neely, “Stochastic network optimization with application to commu-
nication and queueing systems,” Synthesis Lectures on Communication
Networks, vol. 3, no. 1, 2010.

[9] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course (Applied Optimization). Springer Netherlands, 2004.

[10] P. Tseng, “On accelerated proximal gradient methods for convex-
concave optimization,” submitted to SIAM Journal on Optimization,
2008.

[11] S. Boyd and L. Vandenberghe, Convex Optimization. New York, USA:
Cambridge University Press, 2004.

[12] A. Beck, A. Nedić, A. Ozdaglar, and M. Teboulle, “An o(1/k) gradient
method for network resource allocation problems,” IEEE Transactions
on Control of Network Systems, vol. 1, no. 1, pp. 64–73, Mar. 2014.

[13] E. Wei and A. Ozdaglar, “On the o(1/k) convergence of asynchronous
distributed alternating direction method of multipliers,” in 2013 IEEE
Global Conference on Signal and Information Processing, Dec. 2013.

[14] J. Liu, C. Xia, N. Shroff, and H. Sherali, “Distributed cross-layer opti-
mization in wireless networks: A second-order approach,” in INFOCOM,
2013 Proceedings IEEE, Apr 2013.

[15] L. Huang and M. Neely, “Delay reduction via lagrange multipliers in
stochastic network optimization,” Automatic Control, IEEE Transactions
on, vol. 56, no. 4, Apr. 2011.

[16] D. Bertsekas, A. Nedić, and A. Ozdaglar, Convex Analysis and Opti-
mization. Athena Scientific, 2003.

[17] M. Neely, E. Modiano, and C. Rohrs, “Dynamic power allocation and
routing for time varying wireless networks,” IEEE Journal on Selected
Areas in Communications, vol. 23, no. 1, Jan. 2005.

[18] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless
networks using queue-length-based scheduling and congestion control,”
Networking, IEEE/ACM Transactions on, vol. 15, no. 6, Dec. 2007.

[19] S. Supittayapornpong, L. Huang, and M. J. Neely, “Time-average
optimization with non-convex decision set and its convergence,”
arXiv:1610.02617 [math.OC], Oct. 2016.

