
STOCHASTIC OPTIMIZATION OVER PARALLEL QUEUES: CHANNEL-BLIND

SCHEDULING, RESTLESS BANDIT, AND OPTIMAL DELAY

by

Chih-ping Li

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(ELECTRICAL ENGINEERING)

August 2011

Copyright 2011 Chih-ping Li



Dedication

To Mom and Dad,

and my beloved wife Ling-chih

ii



Acknowledgments

Pursuing a Ph.D. at USC has been the most rewarding experience in my life. For the

most of it, I thank my advisor Michael J. Neely. Apart from being a great role model

over the years, Mike urges me to boldly pursue difficult research problems, and provides

me with generous guidance and support to develop elegant solutions. I thank Mike for

giving me the opportunity to struggle, nurturing me as an independent researcher, and

showing me the joy of doing good research. I have learned about myself and research

more than I expected when I first arrived at USC, and I am forever indebted to Mike

for this.

I thank Bhaskar Krishnamachari and Qing Zhao for introducing their work on cog-

nitive radio networks to me during a seminar at USC. Their work gives me a brand

new perspective on doing stochastic optimization over Markovian channels and, more

generally, over frame-based systems. Such a paradigm shift leads to a large part of this

dissertation.

I appreciate Bhaskar Krishnamachari, Giuseppe Caire, Rahul Jain, and Amy R. Ward

for taking their time serving on both my qual exam and defense exam committee, and I

thank them for their valuable comments. I thank Gerrielyn Ramos, Anita Fung, Mayumi

Thrasher, and Milly Montenegro for their generous administrative support that makes

my life hassle-free at the Communication Sciences Institute.

Working at “the 5th floor” of EEB is memorable because of my friends and officemates

Longbo Huang, Rahul Urgaonkar, Ozgun Bursalioglu, Paihan Huang, Wei-cherng Liao,

and Hoon Huh. I also thank Wei-jen Hsu, Shiou-Hung Chen, Chihhan Chou, I-Hsiang

iii



Lin, Chi-hsien Lin, May-chen Kuo, and Yenting Lin for their friendship all the way from

National Taiwan University to USC and Los Angeles.

Getting a Ph.D. would not have been possible without the constant support and

understanding from my family. My dad has always been encouraging me to pursue

a higher degree, and my mom supports every decision I make. This dissertation is

dedicated to them. I also thank my parents-in-law for their understanding and support

over the past two years and the years to come.

Finally, I want to thank my wife and best friend Ling-chih, who has always been

accompanying me even during our five years of long distance relationship. Thank you,

Ling-chih, for loving me as who I am, and for being the most supportive wife in the

world.

iv



Table of Contents

Dedication ii

Acknowledgments iii

List of Tables ix

List of Figures x

Abstract xii

Chapter 1: Introduction to Single-Hop Network Control 1
1.1 Partially Observable Wireless Networks . . . . . . . . . . . . . . . . . . . 2

1.1.1 Q1: Dynamic Channel Probing . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Q2: Exploiting Channel Memory . . . . . . . . . . . . . . . . . . . 3
1.1.3 Q3: Throughput Utility Maximization over Markovian Channels . 4

1.2 Multi-Class Queueing Systems . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Q4: Delay-Optimal Control in a Multi-Class M/G/1 Queue with

Adjustable Service Rates . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Achievable Region Approach . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Lyapunov Drift Theory . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2: Dynamic Wireless Channel Probing 13
2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Optimal Power for Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Full and Blind Network Capacity Region . . . . . . . . . . . . . . 23
2.4 Dynamic Channel Acquisition (DCA) Algorithm . . . . . . . . . . . . . . . 24

2.4.1 Example of Server Allocation . . . . . . . . . . . . . . . . . . . . . 27
2.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Multi-Rate Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 I.I.D. ON/OFF Channels . . . . . . . . . . . . . . . . . . . . . . . 30

v



2.6 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.1 Timing Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.2 Partial Channel Probing . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Chapter Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.9 Proofs in Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9.1 Proof of Lemma 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.9.2 Proof of Lemma 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.9.3 Proof of Theorem 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.9.4 Proof of Theorem 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 3: Exploiting Wireless Channel Memory 51
3.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Round Robin Policy RR(M) . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Throughput Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Example of Symmetric Channels . . . . . . . . . . . . . . . . . . . 61
3.2.3 Asymptotical Throughput Optimality . . . . . . . . . . . . . . . . 62

3.3 Randomized Round Robin Policy RandRR . . . . . . . . . . . . . . . . . . 63
3.3.1 Achievable Network Capacity: An Inner Bound . . . . . . . . . . . 66
3.3.2 Outer Capacity Bound . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.3 Example of Symmetric Channels . . . . . . . . . . . . . . . . . . . 72
3.3.4 A Heuristically Tighter Inner Bound . . . . . . . . . . . . . . . . . 73

3.4 Tightness of Inner Capacity Bound: Symmetric Case . . . . . . . . . . . . 74
3.4.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Queue-Dependent Round Robin Policy QRR . . . . . . . . . . . . . . . . . 79
3.6 Chapter Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . 83
3.7 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.8 Proofs in Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.8.1 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.8.2 Proof of Lemma 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.8.3 Proof of Theorem 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.8.4 Proof of Lemma 3.18 . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.8.5 Proof of Lemma 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.8.6 Proof of Lemma 3.19 . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.8.7 Proof of Lemma 3.15 . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.8.8 Proof of Theorem 3.17 . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.8.9 Proof of Lemma 3.20 . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 4: Throughput Utility Maximization over Markovian Channels 105
4.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2 Randomized Round Robin Policy RandRR . . . . . . . . . . . . . . . . . . 108
4.3 Network Utility Maximization . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.1 The QRRNUM policy . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.2 Lyapunov Drift Inequality . . . . . . . . . . . . . . . . . . . . . . . 112

vi



4.3.3 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.4 Construction of QRRNUM . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.5 Chapter Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . 118
4.6 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.7 Proofs in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7.1 Proof of Lemma 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.7.2 Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . 120

Chapter 5: Delay-Optimal Control in a Multi-Class M/G/1 Queue with Ad-
justable Service Rates 127
5.1 Queueing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1.1 Definition of Average Delay . . . . . . . . . . . . . . . . . . . . . . 130
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3 Achieving Delay Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.1 Delay Feasible Policy DelayFeas . . . . . . . . . . . . . . . . . . . . 136
5.3.2 Construction of DelayFeas . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.3 Performance of DelayFeas . . . . . . . . . . . . . . . . . . . . . . . 138

5.4 Convex Delay Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.4.1 Delay Proportional Fairness . . . . . . . . . . . . . . . . . . . . . . 140
5.4.2 Delay Fairness Policy DelayFair . . . . . . . . . . . . . . . . . . . . 141
5.4.3 Construction of DelayFair . . . . . . . . . . . . . . . . . . . . . . . 142
5.4.4 Intuition on DelayFair . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.4.5 Performance of DelayFair . . . . . . . . . . . . . . . . . . . . . . . . 145

5.5 Delay-Constrained Optimal Rate Control . . . . . . . . . . . . . . . . . . 147
5.5.1 Dynamic Rate Control Policy DynRate . . . . . . . . . . . . . . . . 149
5.5.2 Intuition on DynRate . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.5.3 Construction of DynRate . . . . . . . . . . . . . . . . . . . . . . . . 151
5.5.4 Performance of DynRate . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6 Cost-Constrained Convex Delay Optimization . . . . . . . . . . . . . . . . 154
5.6.1 Cost-Constrained Delay Fairness Policy CostDelayFair . . . . . . . 155
5.6.2 Construction of CostDelayFair . . . . . . . . . . . . . . . . . . . . . 156
5.6.3 Performance of CostDelayFair . . . . . . . . . . . . . . . . . . . . . 158

5.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.7.1 DelayFeas and DelayFair Policy . . . . . . . . . . . . . . . . . . . . 158
5.7.2 DynRate and CostDelayFair Policy . . . . . . . . . . . . . . . . . . . 160

5.8 Chapter Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . 164
5.9 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.10 Additional Results in Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . 167

5.10.1 Proof of Lemma 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.10.2 Lemma 5.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.10.3 Proof of Lemma 5.14 . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.10.4 Independence of Second-Order Statistics in DynRate . . . . . . . . 171
5.10.5 Proof of Lemma 5.17 . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.10.6 Proof of Theorem 5.18 . . . . . . . . . . . . . . . . . . . . . . . . . 173

vii



Chapter 6: Conclusions 175

Bibliography 177

viii



List of Tables

5.1 Simulation for the DelayFair policy under different values of V . . . . . . . 160
5.2 Simulation for the DynRate policy under different values of V . . . . . . . . 162
5.3 Simulation for the CostDelayFair policy under different values of V . . . . . 163

ix



List of Figures

2.1 The network capacity region Λ and the blind network capacity region
Λblind in a two-user network. . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Average power of DCA and optimal pure policies for Pmeas = 0. The
curves of purely channel-aware and DCA overlap each other. . . . . . . . . 29

2.3 Average power of DCA and optimal pure policies for Pmeas = 10. . . . . . 29
2.4 Average power of DCA and optimal pure policies for Pmeas = 5. . . . . . . 30
2.5 Average power of DCA and optimal pure policies for different values of

Pmeas. The power curve of DCA overlaps with others at both ends of
Pmeas values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Sample backlog processes in the last 105 slots of the DCA simulation. . . . 32
2.7 Average backlogs of the three users under DCA. . . . . . . . . . . . . . . . 33
2.8 Average power of DCA and optimal pure policies for different values of V .

We set ρ = 0.07. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.9 The average backlog of DCA under different values of V ; we set Pmeas = 10. 35
2.10 The new network capacity regions Λnew of a two-user network with chan-

nel probing delay, Bernoulli ON/OFF channels, and a server allocation
constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 A two-state Markov ON/OFF chain for channel n ∈ {1, 2, . . . , N}. . . . . . 53

3.2 The k-step transition probabilities P
(k)
n,01 and P

(k)
n,11 of a positively corre-

lated Markov ON/OFF channel. . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 The mapping fn from information states ωn(t) to modes {M1,M2}. . . . . 68
3.4 Mode transition diagrams for the real channel n. . . . . . . . . . . . . . . 69
3.5 Mode transition diagrams for the fictitious channel n. . . . . . . . . . . . 69
3.6 Comparison of throughput regions under different assumptions. . . . . . . 73
3.7 Comparison of our inner capacity bound Λint, the unknown network ca-

pacity region Λ, and a heuristically better inner capacity bound Λheuristic. 74
3.8 An example for Lemma 3.15 in the two-user symmetric network. Point B

and C achieve sum throughput c1 = πON = 0.5, and the sum throughput
at D is c2 ≈ 0.615. Any other boundary point of Λint has sum throughput
between c1 and c2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Simulation for the DelayFeas policy under different delay constraints (d1, d2).159
5.2 The performance region W of mean queueing delay in the simulations for

the DynRate and the CostDelayFair policy. . . . . . . . . . . . . . . . . . . 161

x



5.3 The two dotted lines passing point C on AB represent two arbitrary ran-
domized policies that achieve C. Geometrically, they have the same mix-
ture of one point on W(25) and one on W(16). Therefore, they incur the
same average service cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xi



Abstract

This dissertation addresses several optimal stochastic scheduling problems that arise

in partially observable wireless networks and multi-class queueing systems. They are

single-hop network control problems under different channel connectivity assumptions

and different scheduling constraints. Our goals are two-fold: To identify stochastic

scheduling problems of practical interest, and to develop analytical tools that lead to

efficient control algorithms with provably optimal performance.

In wireless networks, we study three sets of problems. First, we explore how the

energy and timing overhead due to channel probing affects network performance. We

develop a dynamic channel probing algorithm that is both throughput and energy op-

timal. The second problem is how to exploit time correlations of wireless channels to

improve network throughput when instantaneous channel states are unavailable. Specif-

ically, we study the network capacity region over a set of Markov ON/OFF channels

with unknown current states. Recognizing that this is a difficult restless multi-armed

bandit problem, we construct a non-trivial inner bound on the network capacity region

by randomizing well-designed round robin policies. This inner bound is considered as an

operational network capacity region because it is large and easily achievable. A queue-

dependent round robin policy is constructed to support any throughput vector within

the inner bound. In the third problem, we study throughput utility maximization over

partially observable Markov ON/OFF channels (specifically, over the inner bound pro-

vided in the previous problem). It has applications in wireless networks with limited

channel probing capability, cognitive radio networks, target tracking of unmanned aerial

xii



vehicles, and restless multi-armed bandit systems. An admission control and channel

scheduling policy is developed to achieve near-optimal throughput utility within the in-

ner bound. Here we use a novel ratio MaxWeight policy that generalizes the existing

MaxWeight-type policies from time-slotted networks to frame-based systems that have

policy-dependent random frame sizes.

In multi-class queueing systems, we study how to optimize average service cost and

per-class average queueing delay in a nonpreemptive multi-class M/G/1 queue that has

adjustable service rates. Several convex delay penalty and service cost minimization

problems with time-average constraints are investigated. We use the idea of virtual

queues to transform these problems into a new set of queue stability problems, and the

queue-stable policies are the desired solutions. The solutions are variants of dynamic cµ

rules, and implement weighted priority policies in every busy period, where the weights

are functions of past queueing delays in each job class.

Throughout these problems, our analysis and algorithm design uses and generalizes

an achievable region approach driven by Lyapunov drift theory. We study the perfor-

mance region (in throughput, power, or delay) of interest and identify, or design, a policy

space so that every feasible performance vector is attained by a stationary randomiza-

tion over the policy space. This investigation facilitates us to design queue-dependent

network control policies that yield provably optimal performance. The resulting policies

make greedy and dynamic decisions at every decision epoch, require limited or no statis-

tical knowledge of the system, and can be viewed as learning algorithms over stochastic

queueing networks. Their optimality is proved without the knowledge of the optimal

performance.

xiii



Chapter 1

Introduction to Single-Hop

Network Control

A single-hop network consists of a server relaying data to a set of users. Data destined

for each user arrives randomly at the server, and is stored in a user-specific queue for

eventual service. The server and each user are connected through a channel with random

or constant connectivity. Channel states determine the maximum rate at which data can

be reliably transferred across the channel. At each decision epoch, the server makes two

sets of decisions. First, an admission control policy may be deployed so that only part

of the arriving traffic is accepted. One reason of doing so is to prevent unsupported ar-

rivals from overloading the network and creating unbounded queues. Second, the server

schedules data transmissions to users until the next decision epoch. These decisions

may depend on full or partial information of current channel states and current queue-

ing information, and are possibly restricted by channel interference constraints, feasible

power allocations, or predefined performance requirements such as mean delay or average

power consumption. Overall, we study how to base control decisions on network states

to optimize given performance objectives.

In this dissertation, we explore four stochastic scheduling problems using this single-

hop model. The first three are in the context of scheduling over partially observable

wireless channels (a single-hop network with random channel connectivity), and the last

one is in the context of delay and rate-optimal priority scheduling over a multi-class

M/G/1 queue with adjustable service rates (a single-hop network with constant channel

connectivity).

1



1.1 Partially Observable Wireless Networks

To fully utilize a high-speed wireless network, we need to study its fundamental perfor-

mance and develop efficient control algorithms. The key challenge is to accommodate

time variations of channels (due to changing environments, multi-path fading, and mobil-

ity, etc.), and to adapt to other constraints such as channel interference or limited energy

in mobile devices. It is now well known that opportunistic scheduling, which gives ser-

vice priority to users with favorable channel conditions, can greatly improve network

throughput. One example is the celebrated MaxWeight [Tassiulas and Ephremides 1993]

throughput-optimal policy. This policy uses instantaneous channel state information

and queueing information to schedule data transmissions, and is shown to support any

achievable network throughput without the knowledge of traffic and channel statistics.

Previous work on opportunistic scheduling adopts some idealized assumptions. In

a time-slotted wireless network, channel states are assumed i.i.d. over slots, and are

instantaneously available by channel probing with negligible overheads. These assump-

tions, however, do not necessarily hold in practice. Furthermore, the same analytical

techniques and MaxWeight policies do not necessarily work when these assumptions are

removed. Specifically, while it is known that the MaxWeight opportunistic scheduling

policy is capacity-achieving in ergodic but non-i.i.d. systems when channel states are

always known in advance [Neely et al. 2005, Tassiulas 1997], the same is not true when

channel states are unknown or only partially known. Therefore, we are motivated to

study the challenging problems of control of wireless networks under more realistic as-

sumptions. In particular, we look for practical performance-affecting factors previously

overlooked, and explore how to adapt to them. Two such factors we address are chan-

nel probing overhead and channel memory. Specifically, we focus on the following three

problems.

2



1.1.1 Q1: Dynamic Channel Probing

Channel state information, obtained by probing, plays a central role in modern high-

performance wireless protocols. Practical channel probing, however, incurs overheads

such as energy and delay. Energy is an importance resource in mobile devices and needs

to be conserved. Delay due to probing degrades network throughput because the time

used for probing cannot be re-used for data transmission. Therefore, it is important

to understand how these overheads affect network performance, and how they can be

optimized. Thus, we ask:

1. What is the set of all achievable throughput vectors, i.e., the network capacity

region?

2. What is the minimum power, spent on channel probing and data transmission, to

support any achievable throughput vector?

3. How to design intelligent channel probing and data transmission strategies to sup-

port any feasible throughput vector with minimum power consumption?

1.1.2 Q2: Exploiting Channel Memory

Following up on the previous problem involving partially observable wireless channels,

we consider the next scenario. When instantaneous channel states are unavailable, it is

wise to recognize that channel states may be time-correlated, i.e., have memory. Channel

memory allows past channel observations to provide partial information of future states,

and can potentially be used to improve performance. Thus we ask, when instantaneous

current states are never known, what is the network capacity region assisted by channel

memory? What are the throughput-optimal policies?

3



1.1.3 Q3: Throughput Utility Maximization over Markovian Channels

In the previous problem, we denote by Λ the network capacity region assisted by channel

memory. Here, we consider solving throughput utility maximization problems over Λ.

Specifically, we want to solve

maximize: g(y), subject to: y ∈ Λ, (1.1)

where g(·) represents a concave utility function and y denotes a throughput vector.

The interest in throughput utility maximization over partially observable Markovian

channels comes from its many applications, such as in: (1) limited channel probing in

wireless networks; (2) improving spectrum efficiency in cognitive radio networks; (3) tar-

get tracking of unmanned aerial vehicles; (4) nonlinear optimization problems in restless

multi-armed bandit systems. See Chapter 4 for more details.

1.2 Multi-Class Queueing Systems

In the fourth problem, we deviate from the above wireless control problems and con-

sider a single-hop network with constant channels, i.e., a multi-class queueing system.

Among its wide applications in manufacturing systems [Buzacott and Shanthikumar

1993], semiconductor factories [Shanthikumar et al. 2007], and computer communication

networks [Kleinrock 1976], we are interested in control problems in modern computer

systems and cloud computing environments. We are motivated by the scenarios below.

It is a common practice to have computers share processing power over different ser-

vice flows. How to prioritize them to optimize a joint objective or provide differentiated

services is an important problem to look at. Power dissipation is another relevant is-

sue. Modern CPUs have increasingly dense transistor integration and can run at high

clock rates. It results in high power dissipation that may jeopardize hardware stabil-

ity and leads to massive electricity cost. The later problem is especially important in

4



large-scale systems such as server farms or data centers [U.S. Environmental Protection

Agency 2007]. We are thus concerned with jointly providing differentiated services and

performing power-efficient scheduling in computers.

In cloud computing, a current trend is that companies outsource computing power

to external providers such as Amazon (Elastic Compute Cloud; EC2), Google (App

Engine), Microsoft (Azure), and IBM, and stop maintaining their internal computing

facilities. This business model is mutually beneficial because service providers generate

revenue by lending excessive processing power to companies, who in turn do not need

to invest in local infrastructures that need regular maintenance and upgrade. From the

viewpoint of the subscribing companies, it is then crucial to learn to optimally purchase

computing power and distribute it intelligently to internal departments. Balancing the

provision of differentiated services against average service cost is our focus.

1.2.1 Q4: Delay-Optimal Control in a Multi-Class M/G/1 Queue with

Adjustable Service Rates

To model the above problems, we consider optimizing average service cost and per-class

average queueing delay in a multi-class M/G/1 queue with adjustable service rates.

Jobs that arrive randomly for service are categorized into N classes, and are served in a

nonpreemptive fashion. We consider four delay-aware and rate allocation problems:

1. Satisfying an average queueing delay constraint in each job class; here we assume

a constant service rate.

2. Minimizing a separable convex function of the average queueing delay vector sub-

ject to per-class delay constraints; assuming a constant service rate.

3. Under adjustable service rates, minimizing average service cost subject to per-class

delay constraints.

4. Under adjustable service rates, minimizing a separable convex function of the av-

erage queueing delay vector subject to an average service cost constraint.

5



In computer applications, the first problem guarantees mean queueing delay in each

job class. A motive for the second problem is to provide delay fairness across job classes.

This is in the same spirit as the well-known rate proportional fairness [Kelly 1997] or

utility proportional fairness [Wang et al. 2006], and we show in Section 5.4.1 that the

objective function for delay proportional fairness is quadratic (rather than logarithmic).

Since operating frequencies of modern CPUs are adjustable by dynamic power alloca-

tions [Kaxiras and Martonosi 2008], and power translates to electricity cost, the third

problem seeks to minimize electricity cost subject to performance guarantees. From a

different viewpoint, the fourth problem optimizes the system performance with a budget

on electricity.

Cloud computing applications have similar stochastic optimization problems. The

service cost there may be the price on computing power that service providers offer to

subscribing companies.

1.3 Methodology

Our analytical method that solves the four wireless scheduling and queue control prob-

lems is a combination of achievable region approaches and Lyapunov drift theory.

1.3.1 Achievable Region Approach

An achievable region approach studies the set of all achievable performance in a control

system (we only consider long-term average performance in this dissertation). It is a

preliminary step of using optimization methods to design optimal control algorithms.

A traditional wisdom, widely used in standard optimization theory, is to characterize a

performance region by linear/nonlinear constraints on the performance measure. Here

we take a new policy-based approach that facilitates the construction of network control

algorithms. The key is to identify a collection of base policies (or decisions), so that

every feasible performance vector can be attained by randomizing or time-sharing these

6



base policies. In other words, there is a direct mapping from the performance region to

the set of all randomizations of base policies. This way of characterizing a performance

region is used in all problems we study.

Chapter 2: Dynamic Wireless Channel Probing

The performance measures in the channel probing problem are throughput and power.

Here, we show that any feasible throughput vector can be supported with minimum power

expenditure by a stationary randomized policy of channel probing and user scheduling

that makes independently random decisions in every slot with a fixed probability distri-

bution (see Theorem 2.7). Due to the i.i.d. nature of the network model, this result is

proved by a sample-path analysis and the Law of Large Numbers.

Chapter 3 and 4: Scheduling over Partially Observable Markovian Channels

In Chapter 3 and 4, we are interested in the network capacity region Λ over a set

of Markov ON/OFF channels with unknown current states. The main difficulty here

is that the Markov ON/OFF channels do not seem to have enough structure for us to

characterize Λ exactly. Another way of seeing it is that we try to characterize the set of all

achievable time-average reward vectors in a restless multi-armed bandit system [Whittle

1988]. A direct approach to compute Λ is by locating all boundary points. Yet, this

is difficult because each boundary point requires solving a high-dimensional Markov

decision process [Bertsekas 2005] that suffers from the curse of dimensionality and a

countably infinite state space (see details in Chapter 3). To further illustrate the difficulty

of computing Λ, we consider a simple example of computing the boundary point in the

direction (1, 1, . . . , 1) over symmetric channels (i.e., the channels are independent and

share the same transition probability matrix). Equivalently, we seek to maximize the

network sum throughput over symmetric channels. Ahmad et al. [2009] shows that,

in this case, the optimal policy is a greedy round robin policy that, on each channel,

7



serves packets continuously until a failure occurs. The resulting sum throughput can be

represented as

µsum , lim
K→∞

∑K
k=1

∑N
n=1(Lkn − 1)

∑K
k=1

∑N
n=1 Lkn

,

where Lkn denotes the time interval in which channel n is served in the kth round (see

Section 3.2.1 or Zhao et al. [2008]). Yet, in this simple example, the sum throughput

µsum is still difficult to compute when N > 2. The reason is that the interval process

{L11, L12, . . . , L1N , L21, . . . , L2N , L31, . . .} forms a high-order Markov chain.

Since computing the network capacity region Λ is difficult, an alternative we use in

Chapter 3 and 4 is to construct an inner bound, denoted by Λint, on Λ. We want the inner

capacity region Λint to have these nice properties: (1) The region is intuitively large. (2)

It is easily achievable and scalable with the number of channels. (3) It has closed-form

performance that is easy to analyze. (4) It is asymptotically optimal in some special

cases. (5) Its structural properties provide insights on how channel memory improves

throughput.

In Chapter 3, we construct an inner capacity region Λint that has all of the above

properties. It is the achievable rate region of a well-designed class of randomized round

robin policies (introduced in Section 3.3). These policies are motivated by the greedy

round robin in Ahmad et al. [2009] that maximizes sum throughput over symmetric

channels. With the above properties, we may consider Λint as an operational network

capacity region, since achieving throughput vectors outside Λint may inevitably involve

solving a much more complicated partially observable Markov decision process. Another

attractive feature of constructing this inner bound Λint is that we can perform convex

utility maximization over Λint. This is addressed in Chapter 4.

8



Chapter 5: Delay-Optimal Control in a Multi-Class M/G/1 Queue with Ad-

justable Service Rates

In a nonpreemptive multi-class M/G/1 queue with a constant service rate, the perfor-

mance region of mean queueing delay is studied by Federgruen and Groenevelt [1988b],

Gelenbe and Mitrani [1980]. In particular, Federgruen and Groenevelt [1988b] shows that

the region is (a base of) a polymatroid [Welsh 1976], which is a special polytope with

vertices achieved by strict priority policies. A useful consequence is that every feasible

mean queueing delay vector is attainable by a stationary randomization of strict priority

policies. Such randomization can be implemented frame by frame, where a permutation

of {1, 2, . . . , N} is randomly chosen in every busy period to prioritize job classes accord-

ing to a fixed probability distribution. When the service rate of the M/G/1 queue is

adjustable, we assume gated service allocations. That is, the service rate is fixed in every

busy period, but may change across busy periods. The resulting performance region of

mean queueing delay and average service cost corresponds to the set of all frame-based

randomizations of strict priority policies with deterministic rate allocations.

1.3.2 Lyapunov Drift Theory

By associating a performance region with the set of all randomizations over a policy

space, a network control problem is solved by an optimal time-sharing of these policies.

We use Lyapunov drift theory to construct such a time-sharing that approximates the

optimal solution and is an optimal policy.

Lyapunov drift theory was shown to stabilize general queueing networks in the

landmark papers [Tassiulas and Ephremides 1992, 1993], and later used in Georgiadis

et al. [2006], Neely [2003] to optimize general performance objectives such as average

power [Neely 2006] or throughput utility [Eryilmaz and Srikant 2006, 2007, Georgiadis

et al. 2006, Neely 2003, Neely et al. 2008, Stolyar 2005] in wireless networks. It is recently

generalized to optimize frame-based systems that have policy-dependent random frame

sizes [Li and Neely 2011b, Neely 2010c].

9



The control policy developed using Lyapunov drift theory has many useful features.

1. The sequence of base policies are created in a greedy and dynamic fashion, de-

pending on the up-to-date network state information. In this regard, we may view

it as a learning algorithm over stochastic queueing networks.

2. The policy requires limited statistical knowledge, such as arrival rates and channel

statistics, of the network. In many applications, no statistical knowledge is needed.

3. The resulting policy has near-optimal performance, which can be proved without

the knowledge of optimal performance.

1.4 Contributions

Chapter 2: Dynamic Wireless Channel Probing

Considering that channel probing takes time and energy, we characterize the new net-

work capacity region. To support a feasible throughput vector, we show that a dynamic

channel probing strategy is typically required, and we characterize the associated mini-

mum power consumption. We propose a queue-dependent dynamic channel probing and

rate allocation policy that supports any achievable throughput vector and stabilizes the

network with minimum power consumption. Simulations are conducted to verify the

performance.

Chapter 3: Exploiting Wireless Channel Memory

Knowing that the network capacity region over a set of partially observable Markovian

channels is difficult to analyze, we construct a good inner capacity bound by random-

izing well-designed round robin policies. The throughput gain from channel memory in

this inner bound is discussed. In the case of symmetric channels, the tightness of the

inner capacity bound is characterized by comparing it with an outer capacity bound,

10



constructed using stochastic coupling methods and state aggregation to bound the per-

formance of a restless multi-armed bandit problem using a related multi-armed bandit

system. The bounds are tight when there are a large number of users and arrival traffic

is symmetric. A queue-dependent dynamic round robin policy is designed to support

every throughput vector within the inner capacity region and stabilize the network.

Chapter 4: Throughput Utility Maximization over Partially Observable

Markovian Channels

Over the same network model in Chapter 3, we consider solving the throughput utility

maximization problem (1.1). Since the full network capacity region Λ is difficult to

analyze, we propose an approximation solution by solving the problem over the inner

capacity bound Λint designed in Chapter 3. That is, we solve

maximize: g(y), subject to: y ∈ Λint. (1.2)

Equivalently, we provide an achievable-region method to optimize a nonlinear objec-

tive function and vector rewards over a restless multi-armed bandit system. We design a

queue-dependent admission control and dynamic round robin policy that yields through-

put utility that can be made arbitrarily close to the optimal solution of (1.2), at the

expense of increasing average backlogs. The construction and analysis of this policy can-

not be done using existing MaxWeight approaches. We propose a novel ratio MaxWeight

policy to solve this problem. This new ratio rule generalizes existing MaxWeight methods

from time-slotted networks to frame-based systems that have policy-dependent random

frame sizes.

11



Chapter 5: Delay-Optimal Control in a Multi-Class M/G/1 Queue with Ad-

justable Service Rates

We provide a new queue-based method to solve the four delay-aware and rate control

problems. This method uses the idea of virtual queues to transform the original problems

into a new set of queue stability problems; queue-stable policies solve the original prob-

lems. The resulting policies are variants of dynamic cµ rules, and implement weighted

priority policies in every busy period, where the weights are functions of past queueing

delays in all job classes.

1.5 Dissertation Outline

Chapter 2 addresses the dynamic wireless channel probing problem. Chapter 3 explores

the throughput gain by channel memory over partially observable Markovian channels.

Chapter 4 proposes an achievable-region method to solve throughput utility maximiza-

tion problems over partially observable Markovian channels. Chapter 5 addresses delay-

optimal control problems in a nonpreemptive multi-class M/G/1 queue with adjustable

service rates.

1.6 Bibliographic Notes

The results in Chapter 2 are published in Li and Neely [2007, 2010a]. The results in

Chapter 3 are published in Li and Neely [2010b, 2011a]. The results in Chapter 4 are

published in Li and Neely [2011b]. The results in Chapter 5 are under submission.

12



Chapter 2

Dynamic Wireless Channel

Probing

In modern protocols over wireless networks, in which channels are random and time-

varying, a common design is to persistently probe channels and use the channel state

information to improve network performance such as throughput. An often overlooked

issue is that channel probing in practice incurs a nonzero timing overhead. Since the

time used for probing cannot be re-used for data transmission, throughput is practically

degraded by probing delay. Therefore, channel probing creates a tradeoff in network

throughput, and this tradeoff shall be optimized.

Channel probing also consumes energy from network devices such as power-

constrained mobile phones. This is because probing requires information exchange be-

tween the server and users. In some cases, probing channels in every slot may be energy

inefficient and undesired. For example, when the data arrival rate is low, transmitting

data blindly (without channel state information) may suffice to support the rate. This

requires a retransmission whenever a packet is sent over a bad channel. However, the

energy incurred by retransmissions is, in some cases, less than the energy of constant

channel probing.

The above observations motivate us to investigate dynamic channel probing strate-

gies that are both throughput and energy optimal. This is the topic of this chapter.

Throughput and energy optimal policies in wireless networks are previously studied

in Neely [2006], which assumes instantaneous channel state information and no probing

13



overheads. We will extend the analytical framework in Neely [2006] to incorporate dy-

namic channel probing. For ease of demonstration, in the first part of the chapter we

assume that: (1) either all or none of the channels can be probed simultaneously; (2)

probing delay is negligible. These assumptions are relaxed in Section 2.6.

The remainder of this chapter is organized as follows: Section 2.1 describes the net-

work model. Motivating examples in Section 2.2 show the necessity of probing channels

dynamically to optimize energy. The minimum average power to support any feasible

throughput vector is characterized in Section 2.3. Our dynamic channel probing al-

gorithm is developed in Section 2.4 and shown to be throughput and energy optimal.

Simulation results are in Section 2.5. Section 2.6 presents generalized algorithms that

consider channel probing delay and partial channel probing, where the assumption that

all channels are probed is relaxed to allow any subset of the channels to be probed.

This chapter needs the following notations. For vectors a = (an)Nn=1 and b = (bn)Nn=1,

• Let a ≤ b denote an ≤ bn for all n; a ≥ b is defined similarly.

• Define the vector a⊗ b , (a1b1, . . . , aNbN ).

• Let Pr [A] denote the probability of event A. Define the vector Pr(a ≤ b) ,

(Pr [a1 ≤ b1] , . . . ,Pr [aN ≤ bN ]); Pr(a ≥ b) is defined similarly.

• Let 1[A] be the indicator function of event A; 1[A] = 1 if A is true and 0 otherwise.

Define the vector 1[a≤b] , (1[a1≤b1], . . . , 1[aN≤bN ]).

2.1 Network Model

We consider a wireless base station serving N users through N time-varying channels.

Time is slotted with normalized slots t = [t, t+ 1), t ∈ Z+. Data is measured in integer

units of packets. At the base station, we denote by an(t) the number of packet arrivals

destined for user n ∈ {1, . . . , N} in slot t. We assume that an(t) is i.i.d. over slots,

independent across users, and independent of channel state processes. The term an(t)

14



takes values in {0, 1, 2, . . . , Amax} with mean E [an(t)] = λn for all t, where Amax is

a finite integer. Let sn(t) denote the channel state of user n in slot t. The state of

every channel is fixed in every slot, and can only change at slot boundaries. We assume

that sn(t) is i.i.d. over slots and takes integer values in S = {0, 1, 2, . . . , µmax}, where

µmax < ∞. The value sn(t) represents the maximum number of packets that can be

reliably transferred over channel n in slot t. Channel statistics are assumed known and

fixed.

At the beginning of a slot, the base station either probes all channels with power

expenditure Pmeas (each channel measurement consumes Pmeas/N units of power), or

probes no channels (this assumption is relaxed in Section 2.6.2). We assume that chan-

nel probing is perfect and causes negligible delay (the later assumption is relaxed in

Section 2.6.1). After possible probing, the base station allocates a service rate µn(t) ∈ S

to user n ∈ {1, . . . , N} in slot t. If µn(t) > 0, a constant transmission power Ptran is

consumed over channel n. The rate vector µ(t) = (µn(t))Nn=1 in every slot is chosen from

a feasible set Ω, which includes the all-zero vector that corresponds to idling the system

for one slot with no transmissions. The feasible set Ω may reflect channel interference

constraints or other restrictions. For example, in a system that serves at most one user

in every slot, every rate vector in Ω has at most one nonzero component.

When channel states s(t) = (sn(t))Nn=1 are probed in slot t, a channel-aware rate

vector µ(t) is allocated according to s(t). Otherwise, a channel-blind rate vector µ(t)

is chosen oblivious of s(t). When µn(t) ≤ sn(t), indicating that the chosen service rate

is supported by the current channel state, at most µn(t) packets can be delivered over

channel n (limited by queue occupancy). Otherwise, we have µn(t) > sn(t), and all

transmissions over channel n fail in slot t. Such transmissions fail because the channel

state leads to a signal-to-noise ratio that is insufficient to support the attempted trans-

mission rate. For each feasible channel state vector s, we define Ω(s) , {µ ∈ Ω | µ ≤ s}.

Without loss of generality, we assume that if the channel state vector s is probed in a

slot, we allocate a channel-aware rate vector µ ∈ Ω(s) in that slot. At the end of each

15



slot, an ACK/NACK feedback is sent from every served user to the base station over

an independent error-free control channel. Absence of an ACK is regarded as a NACK.

Such feedback is used for retransmission control.

In slot t, we define µ̂(t) , (µ̂n(t))Nn=1 as the effective transmission rate vector, where

for each n,

µ̂n(t) ,





µn(t) = µn(t, sn(t)) if channel n is probed,

µn(t) 1[µn(t)≤sn(t)] otherwise.

(2.1)

We use the notation µn(t, sn(t)) (or µ(t, s(t)) in vector form) to emphasize that µ(t) is

aware of and supported by s(t). The indicator function 1[µn(t)≤sn(t)] is required because

of the possible blind transmission mode. Let Pn(t) denote the sum of probing and

transmission power consumed by user n in slot t. We have

Pn(t) =





Pmeas/N + Ptran 1[µn(t)>0] if channel n is probed,

Ptran 1[µn(t)>0] otherwise.

(2.2)

We suppose that a queue Qn(t) of infinite capacity is kept for each user n at the

base station; it stores user-n data that arrived but yet to be served for eventual service.

The value Qn(t) denotes the unfinished work of user n in slot t, and evolves across slots

according to the queueing dynamics:

Qn(t+ 1) = max [Qn(t)− µ̂n(t), 0] + an(t), (2.3)

where µ̂n(t) is defined in (2.1). Initially, we assume Qn(0) = 0 for all n. We say the

wireless downlink is (strongly) stable if

lim sup
t→∞

1

t

t−1∑

τ=0

N∑

n=1

E [Qn(τ)] <∞.

16



Remark 2.1. While the above network model focuses on a wireless downlink, the same

model can be directly applied to an uplink system, where a base station receives trans-

missions from N energy-aware wireless users. This can be seen as follows: A single queue

is kept by each user to hold data to be transmitted (rather than keeping all N queues

at the base station). On each slot, the base station coordinates by signaling different

users to either measure or not measure their channels, and then allocates uplink rates to

be used by the users. The goal for the base station is to support data rates within full

capacity, while the sum power expenditure due to transmission and channel acquisition

by the users is minimized.

2.2 Motivating Examples

First we give the following definitions:

Definition 2.2. A scheduling policy is called purely channel-aware if packets are sched-

uled for transmission in a slot only after channel states are acquired in that slot. A

scheduling policy is called purely channel-blind if it never probes channels and serves

packets without channel state information.1

Definition 2.3. Define the blind network capacity region Λblind as the closure of the set

of all throughput vectors that can be supported by purely channel-blind policies. Define

the network capacity region Λ as the closure of the set of all throughput vectors that can

be supported by purely channel-aware policies.

Since purely channel-aware policies can emulate any policy that mixes channel-aware

and channel-blind decisions, including purely channel-blind policies, the set Λ in Defini-

tion 2.3 is the exact network capacity region of the wireless downlink; i.e., it contains all

throughput vectors that are supported by any scheduling policies. Notice that Λblind ⊂ Λ.

1Both purely channel-aware and purely channel-blind policies may take advantage of queue backlog
information.

17



Next we compare the performance of purely channel-aware policies and that of purely

channel-blind policies to motivate dynamic channel probing.

A Single-Queue Example

We consider a single queue served by a Bernoulli ON/OFF channel. In every slot, we

have: (1) one packet arrives with probability λ and zero otherwise; (2) the channel is ON

with probability q and OFF otherwise; (3) one packet can be served if the channel is ON.

Over this queue, it is easy to see that purely channel-aware and purely channel-blind

scheduling share the same network capacity region Λ = Λblind = {0 ≤ λ ≤ q}, but their

power consumption to support a feasible data rate λ may differ. Purely channel-aware

scheduling consumes average power (Pmeas/q) + Ptran to deliver a packet (it probes the

channel 1/q times on average to see an ON state, and transmits a packet once). Thus,

the average power to support λ is λ(Pmeas/q+Ptran). On the other hand, purely channel-

blind scheduling consumes average power Ptran/q to deliver a packet (it blindly transmits

the same packet 1/q times on average for a successful transmission). Thus, it consumes

average power λPtran/q to support λ. To attain any data rate λ ∈ (0, q), we prefer purely

channel-aware scheduling than purely channel-blind scheduling if (Pmeas/q) + Ptran ≤

Ptran/q, i.e., Pmeas/Ptran ≤ 1−q, and we prefer purely channel-blind scheduling otherwise.

This simple threshold rule indicates that purely channel-blind scheduling, depending on

the power ratio and channel statistics, may outperform purely channel-aware scheduling.

A Multi-Queue Example

We consider allocating a server to N queues with independent Bernoulli ON/OFF chan-

nels. States of each channel are i.i.d. over slots. If a channel connects to the server

and is turned ON, it can serve at most one packet. In our network model, it is equiva-

lent to setting µmax = 1 and sn(t) ∈ {0, 1} for all n and t. The feasible set Ω consists

of all N -dimensional binary vectors that have at most one entry equal to 1. For each

n ∈ {1, 2, . . . , N}, define qn , Pr [sn(t) = 1] as the probability that channel n is ON. The

18



following lemmas characterize the network capacity region Λ, the blind network capacity

region Λblind, and the minimum power required to stabilize a data rate vector within Λ

and Λblind.

Lemma 2.4 (Proof in Section 2.9.1). The blind network capacity region Λblind is

Λblind =

{
λ = (λn)Nn=1

∣∣∣∣∣
N∑

n=1

λn
qn
≤ 1

}
.

Over the class of purely channel-blind policies and for each arrival rate vector λ interior

to Λblind, the minimum power to stabilize the network is equal to

(
N∑

n=1

λn
qn

)
Ptran.

Lemma 2.5 (Theorem 1, Tassiulas and Ephremides [1993]). The network capacity re-

gion Λ consists of data rate vectors λ = (λn)Nn=1 satisfying, for every nonempty subset

N of {1, 2, . . . , N},
∑

n∈N
λn ≤ 1−

∏

n∈N
(1− qn).

Lemma 2.6 (Proof in Section 2.9.2). Over the class of purely channel-aware policies

and for each nonzero arrival rate vector λ = (λn)Nn=1 interior to Λ, the minimum power

to stabilize the network is equal to

(
N∑

n=1

λn

)
Ptran + θ∗Pmeas, θ∗ , inf {θ ∈ (0, 1) | λ ∈ θΛ} .

Let us consider the special case N = 2 (see Fig. 2.1). Lemma 2.4 and 2.5 show that

there is a capacity region difference between Λ and Λblind. The region Λ consists of all

data rate vectors bounded by the outer thick solid line. The region Λblind consists of all

data rate vectors bounded by the inner thick dotted line representing λ1/q1 +λ2/q2 = 1.

Although data rate vectors within Λblind are supported by both purely channel-blind and

purely channel-aware policies, the shaded areas in Fig. 2.1 illustrate areas in which purely

19



λ1

λ2

q1

q2

Figure 2.1: The network capacity region Λ and the blind network capacity region Λblind

in a two-user network.

channel-blind scheduling is more energy efficient than purely channel-aware scheduling.2

Interestingly, as the power ratio Pmeas/Ptran decreases (indicating that channel probing

is getting cheaper), the shaded areas shrink in the specified directions. For arrival rate

vectors outside Λblind but within Λ, purely channel-blind scheduling cannot stabilize the

network, and we must use channel-aware transmissions.

In general, we show in the next section that an energy-optimal network-stable policy

may be neither purely channel-blind nor purely channel-aware. Rather, mixed strategies

with dynamic channel probing are typically required.

2.3 Optimal Power for Stability

For each arrival rate vector λ interior to the network capacity region Λ, we characterize

the minimum power to stabilize λ when dynamic channel probing is allowed. We use

sample-path arguments similar to the proof of Theorem 1 in Neely [2006]. In particular,

we show that the minimum power to stabilize λ can be obtained by minimizing average

power over a class of stationary randomized policies that yield time-average transmission

2The shaded areas are drawn under an additional assumption q1 ≤ q2.

20



rates µn ≥ λn for all users n. Each such stationary randomized policy makes decisions

independently of queue backlog information, and has the following structure:

In every slot, we probe all channels with some probability γ ∈ [0, 1]; oth-

erwise no channels are probed. If a channel state vector s is probed, we

randomly allocate a channel-aware transmission rate vector ω ∈ Ω(s) with

some probability α(ω, s). If channels are not probed, we blindly allocate a

rate vector ω ∈ Ω with some probability β(ω).

We recall that Ω denotes the set of all feasible rate allocation vectors, and Ω(s) ⊂ Ω

denotes the subset of rate vectors supported by the channel state vector s; Ω(s) = {µ ∈

Ω | µ ≤ s}, where ≤ is taken entrywise.

Theorem 2.7 (Proof in Section 2.9.3). For i.i.d. arrival and channel state processes

with a data rate vector λ interior to Λ, the minimum power to stabilize the network is

the optimal objective of the following optimization problem P(λ) (defined in terms of

21



auxiliary variables γ, α(ω, s) for each channel state vector s ∈ SN and each channel-

aware rate vector ω , (ωn)Nn=1 ∈ Ω(s), and β(ω) for each feasible rate vector ω ∈ Ω):

minimize: γ
∑

s∈SN
πs


 ∑

ω∈Ω(s)

α(ω, s)

(
Pmeas +

N∑

n=1

1[ωn>0]Ptran

)


+ (1− γ)
∑

ω∈Ω

β(ω)

(
N∑

n=1

1[ωn>0]Ptran

)
(average power)

subject to: λ ≤ γ
∑

s∈SN
πs


 ∑

ω∈Ω(s)

α(ω, s) ω




+ (1− γ)
∑

ω∈Ω

β(ω)
(
ω ⊗ Pr(S ≥ ω)

)
, (λ ≤ µ)

γ ∈ [0, 1] (probing probability)

β(ω) ≥ 0, ∀ω ∈ Ω (blind tx probability)

∑

ω∈Ω

β(ω) = 1

α(ω, s) ≥ 0, ∀ω ∈ Ω(s), ∀ s ∈ SN (channel-aware tx probability)

∑

ω∈Ω(s)

α(ω, s) = 1, ∀s ∈ SN

where πs denotes the steady state probability of channel state vector s, and S , (Sn)Nn=1

denotes a random channel state vector. The vector notation ω ⊗ Pr(S ≥ ω) is defined

before Section 2.1.

We denote by Popt(λ) the optimal objective of P(λ); Popt(λ) is the minimum power

to stabilize λ. The next corollary is useful in the analysis of our dynamic channel probing

policy proposed later.

Corollary 2.8. For i.i.d. arrival and channel state processes with an arrival rate vector

λ interior to Λ, the stationary randomized policy that supports λ with minimum power

22



allocates a service rate vector µ(t) and consumes power Pn(t) over channel n ∈ {1, . . . , N}

in every slot t such that

N∑

n=1

E [Pn(t)] = Popt(λ), E [µ̂(t)] ≥ λ, ∀ t ∈ Z+,

where µ̂(t) denotes the effective transmission rate vector, defined in (2.1).

2.3.1 Full and Blind Network Capacity Region

The network capacity region Λ and the blind network capacity region Λblind in Defini-

tion 2.3 can be characterized as corollaries of Theorem 2.7. Specifically, if we restrict

the policy space to the class of purely channel-aware policies and neglect power, the

proof of Theorem 2.7 characterizes Λ. Likewise, restricting the policy space to the class

of purely channel-blind policies and neglecting power in Theorem 2.7 give us the blind

region Λblind.

Corollary 2.9. For i.i.d. arrival and channel state processes, the network capacity

region Λ of the wireless downlink consists of rate vectors λ satisfying the following. For

each λ, there exists a probability distribution {α(ω, s)}ω∈Ω(s) for each channel state

vector s such that

λ ≤
∑

s∈SN
πs


 ∑

ω∈Ω(s)

α(ω, s)ω


 ,

where πs is the steady state probability of channel state vector s.

Corollary 2.9 is in the same spirit as [Neely et al. 2003, Theorem 1].

Corollary 2.10. For i.i.d. arrival and channel state processes, the blind network ca-

pacity region Λblind of the wireless downlink consists of rate vectors λ satisfying the

following. For each λ, there exists a probability distribution {β(ω)}ω∈Ω such that

λ ≤
∑

ω∈Ω

β(ω)
(
ω ⊗ Pr(S ≥ ω)

)
.

23



The blind capacity region in Lemma 2.4 is a special case of Corollary 2.10.

2.4 Dynamic Channel Acquisition (DCA) Algorithm

In Section 2.3, we established the minimum power required for network stability. Here,

we develop a unified dynamic channel acquisition (DCA) algorithm that supports any

throughput vector within the network capacity region Λ with average power that can

be made arbitrarily close to optimal, at the expense of increasing average delay. This

power-delay tradeoff is controlled by a predefined control parameter V > 0.

We define χ(t) , [m(t),µ(c)(t),µ(b)(t)] as the collection of control variables in slot t.

The variable m(t) takes values in {0, 1}. All channels are probed in slot t if m(t) = 1;

otherwise, no channels are probed. When channels are probed, channel-aware service

rate vector µ(c)(t) = (µ
(c)
n )Nn=1 is allocated; otherwise, channel-blind rate vector µ(b)(t) =

(µ
(b)
n )Nn=1 is allocated.

Dynamic Channel Acquisition (DCA) Algorithm:

In every slot t, we observe the current queue backlogs Q(t) = (Qn(t))Nn=1 and

choose the control χ(t) that maximizes a function f(Q(t),χ(t)) defined as

f(Q(t),χ(t))

, m(t)

{
− V Pmeas + Es

[
N∑

n=1

(
2Qn(t)µ(c)

n (t)− V Ptran 1
[µ

(c)
n (t)>0]

)
| Q(t)

]}

+m(t)

{
N∑

n=1

[
2Qn(t)µ(b)

n (t) Pr
[
Sn ≥ µ(b)

n (t)
]
− V Ptran 1

[µ
(b)
n (t)>0]

]}
,

(2.4)

where m(t) , 1 − m(t), V > 0 is a predefined control parameter, and the

expectation Es [·] is with respect to the randomness of the channel state

vector s.

24



The form of f(Q(t),χ(t)) comes naturally from the underlying Lyapunov drift anal-

ysis. The design principle is that, to stabilize the network, we want to create a negative

drift of queue backlogs whenever the backlogs are sufficiently large. Such negative drift

keeps all queues bounded and stabilizes the network. We show later in Theorem 2.11 and

its proof that maximizing (2.4) in every slot generates such a negative drift, balanced

with average power consumption. The constant factor of 2 in (2.4) is a by-product of the

analysis. It can be dropped by using a new constant Ṽ = V/2 because maximizing (2.4)

is equivalent to maximizing a positively scaled version of it.

Maximizing f(Q(t),χ(t)) is achieved as follows. We separately maximize the mul-

tiplicands of m(t) and m(t) in (2.4), and compare the maximum values. We choose

m(t) = 1 if the optimal multiplicand of m(t) is greater than that of m(t); otherwise,

m(t) = 0. When choosing m(t) = 1, we acquire the current channel state vector s(t)

and allocate a channel-aware rate vector µ(c)(t) that solves

maximize:
N∑

n=1

(
2Qn(t)µ(c)

n (t)− V Ptran 1
[µ

(c)
n (t)>0]

)
(2.5)

subject to: µ(c)(t) ∈ Ω(s(t)). (2.6)

When m(t) = 0, we blindly allocate a rate vector µ(b)(t) ∈ Ω that maximizes the

multiplicand of m(t) in (2.4). The option of idling the system for one slot is included in

taking m(t) = 1 and µ(b)(t) = 0.

Intuitively, the DCA algorithm estimates the expected gain of channel-aware and

channel-blind transmissions by optimizing the multiplicands of m(t) and m(t), and picks

the one with a better gain in every slot. These estimations require joint and marginal dis-

tributions of channel states, and are the most complicated part of the algorithm. In (2.4),

the multiplicand of m(t) is a conditional expectation with respect to the randomness of

channel states s(t). To maximize it, we need to solve (2.5)-(2.6) for each feasible channel

state vector s(t), and then compute a weighted sum of the optimal solutions to (2.5)-

(2.6) using the joint channel state distributions. Maximizing the multiplicand of m(t)

25



is simpler and needs the marginal distribution of channel states. In practice, channel

statistics may be estimated by taking samples of channel states. In Section 2.4.1, for the

special case that at most one user is served in every slot, we show that the DCA algorithm

can be performed in polynomial time, provided that channel statistics are known.

To analyze the performance of the DCA algorithm, it is useful to note that (2.4) can

be re-written as

f(Q(t),χ(t)) =

(
N∑

n=1

2Qn(t)Es [µ̂n(t) | Q(t)]

)
− V Es

[
N∑

n=1

Pn(t) | Q(t)

]
,

where µ̂n(t) and Pn(t) are the effective service rate and the power consumption for user

n in slot t, and

µ̂n(t) , m(t)µ(c)
n (t) +m(t)µ(b)

n (t) 1
[µ

(b)
n (t)≤sn(t)]

,

Pn(t) , m(t)

(
Pmeas

N
+ Ptran 1

[µ
(c)
n (t)>0]

)
+m(t)Ptran 1

[µ
(b)
n (t)>0]

.

Theorem 2.11. (Proof in Section 2.9.4) For any arrival rate vector λ interior to Λ and

a predefined control parameter V > 0, the DCA algorithm stabilizes the network with

average queue backlog and average power expenditure satisfying:

lim sup
τ→∞

1

τ

τ−1∑

t=0

N∑

n=1

E [Qn(t)] ≤ B + V (Pmeas +NPtran)

2 εmax
, (2.7)

lim sup
τ→∞

1

τ

τ−1∑

t=0

N∑

n=1

E [Pn(t)] ≤ B

V
+ Popt(λ), (2.8)

where B , (µ2
max + A2

max)N is a finite constant, εmax > 0 is the largest value such that

(λ+ εmax) ∈ Λ, where εmax is an all-εmax vector.

The upper bounds in (2.7) and (2.8) are controlled by V . Choosing a sufficiently

large V pushes the average power of the DCA algorithm arbitrarily close to the optimal

Popt(λ), at the expense of linearly increasing the average congestion bound (or an average

delay bound by Little’s Theorem).

26



2.4.1 Example of Server Allocation

Consider an example of the N -queue downlink given in Section 2.2, where at most

one queue serves at most one packet in every slot. The DCA algorithm, following the

explanation in Section 2.4, can be simplified as follows. In each slot, if channels are

probed, among all users with an ON channel state, we allocate the server to the user with

the largest positive f
(c)
n (t) , 2Qn(t)− V Ptran. If f

(c)
n (t) is nonpositive for all users that

have an ON state, we idle the server. Otherwise, channels are not probed, and we allocate

the server to the user with the largest positive f
(b)
n (t) , 2Qn(t) Pr [Sn = ON]− V Ptran.

If f
(b)
n (t) is nonpositive for all users, we idle the server.

Next, to decide whether or not to probe channels, we compare the optimal multipli-

cands of m(t) and m(t) in (2.4). Choosing the largest positive f
(b)
n (t) yields the optimal

multiplicand of m(t). The optimal multiplicand of m(t) can be computed as

− V Pmeas +

N∑

n=1

(2Qn(t)− V Ptran) 1[Qn(t)>V Ptran/2] Pr
[
sn(t) = 1,

sj(t) <
Qn(t)

Qj(t)
, ∀j < n, sk(t) ≤

Qn(t)

Qk(t)
, ∀k > n

]
. (2.9)

This is is because we assign the server to user n when channel n is ON, f
(c)
n (t) > 0, and

Qn(t)sn(t) = Qn(t) ≥ sj(t)Qj(t) for all j 6= n (we break ties by choosing the smallest

index), which occurs with probability

Pr

[
sn(t) = 1, sj(t) <

Qn(t)

Qj(t)
, ∀j < n, sk(t) ≤

Qn(t)

Qk(t)
, ∀k > n

]
.

We probe channels if the optimal multiplicand of m(t) is greater than that of m(t).

When channels are independent, we only need the marginal distribution of each

channel to compute (2.9) in polynomial time. When channels have spatial correlations,

(2.9) can also be easily computed in polynomial time, provided that the joint cumulative

probability distribution is known or estimated.

27



2.5 Simulations

2.5.1 Multi-Rate Channels

We simulate the DCA algorithm in a server allocation problem in a symmetric three-user

downlink defined as follows. Three users have independent Poisson arrivals with equal

rates λ = ρ(1, 1, 1), where ρ is a scaling factor. Each user is served over an independent

channel that is i.i.d. over slots and has three states {G,M,B}. In state G, M , and B, at

most 2, 1 and 0 packets can be served, respectively. Define qG = 0.5 as the probability

that channel n is in state G in slot t. Probabilities qM = 0.3 and qB = 0.2 are defined

similarly. In every slot, the controller picks at most one user to serve.

The maximum sum throughput of the downlink is

2 · Pr [at least one channel is G]

+ 1 · Pr [none of the channels is G, at least one is M ]

= 2[1− (1− qG)3] + (1− qG)3 − (1− qG − qM )3 = 1.867.

Thus, one face of the boundary of the network capacity region satisfies λ1 + λ2 + λ3 ≤

1.867, which intersects with the scaled vector ρ(1, 1, 1) at ρ ≈ 0.622. In blind transmission

mode, the maximum sum throughput of the downlink is equal to 2 · qG = 1. As a result,

one face of the boundary of Λblind is λ1 + λ2 + λ3 = 1, which intersects ρ(1, 1, 1) at

ρ ≈ 0.33. With this boundary information, we simulate the DCA algorithm for ρ from

0.05 to 0.6 with step size 0.05. Transmission power Ptran is 10 units, and each simulation

is run for 10 million slots.

Fig. 2.2 and 2.3 compare the power consumption of DCA with the theoretical min-

imum power under purely channel-aware and purely channel-blind policies for different

channel probing power Pmeas = {0, 10}. V is set to 100. The theoretical minimum power

of pure policies is computed by solving the optimization problem in Theorem 2.7. The

28



power curve under purely channel-blind scheduling is drawn up to ρ = 0.3, a point close

to the boundary of Λblind.

0.1 0.2 0.3 0.4 0.5 0.6
ρ

2

4

6

8
av

er
ag

e 
po

we
r

DCA algorithm
Purely channel-aware
Purely channel-blind

Figure 2.2: Average power of DCA and optimal pure policies for Pmeas = 0. The curves
of purely channel-aware and DCA overlap each other.

0.1 0.2 0.3 0.4 0.5 0.6
ρ

2
4
6
8

10
12
14
16
18
20

av
er

ag
e 

po
we

r

DCA algorithm
Purely channel-aware
Purely channel-blind

Figure 2.3: Average power of DCA and optimal pure policies for Pmeas = 10.

When Pmeas = 0, channel probing is cost-free, and it is always better to probe

channels before allocating service rates. Therefore, purely channel-aware is no worse

than any mixed strategies, and is optimal. Fig. 2.2 shows that the DCA algorithm

consumes the same average power as the optimal purely channel-aware policy for all

values of ρ. When Pmeas = 10, the probing power is sufficiently large so that channel-

blind transmissions are more energy efficient than channel-aware ones for λ ∈ Λblind. In

this case, Fig. 2.3 shows that the DCA algorithm performs as good as the optimal purely

channel-blind policy when λ ∈ Λblind (i.e., 0 < ρ < 0.33). When the arrival rates go

29



beyond Λblind (i.e., ρ ≥ 0.33), the DCA algorithm starts to incorporate channel-aware

transmissions to stabilize the network, but still yields a significant power gain over purely

channel-aware policies. These two cases show that, at extreme values of Pmeas, the DCA

algorithm is adaptive and energy optimal.

0.1 0.2 0.3 0.4 0.5 0.6
ρ

2
4
6
8

10
12
14

av
er

ag
e 

po
we

r

Purely channel-aware
Purely channel-blind
DCA algorithm

Figure 2.4: Average power of DCA and optimal pure policies for Pmeas = 5.

Fig. 2.4 shows the performance of DCA for an intermediate power level Pmeas = 5. In

this case, the DCA algorithm outperforms both types of pure policies. To take a closer

look, for a fixed arrival rate vector λ = (0.3, 0.3, 0.3), Fig. 2.5 shows the power gain of

DCA over pure policies as a function of Pmeas values. One important observation here is

that DCA has the largest power gain when purely channel-aware and purely channel-blind

have the same performance (around Pmeas = 4.5). This is counter intuitive because, when

the two types of pure policies perform the same, we expect mixing channel-aware and

channel-blind decisions do not help. Yet, Fig. 2.5 shows that we benefit more from mixing

strategies especially when one type of pure policy does not significantly outperform the

other. In this example, DCA has as much as 30% power gain over purely channel-aware

and purely channel-blind policies.

2.5.2 I.I.D. ON/OFF Channels

To have more insights on how DCA works, we perform another set of simulations. The

setup is the same as the previous one except for the channel model. We suppose each

30



0 2 4 6 8 10 12
Pm

4

6

8

10

12

14

16

av
er

ag
e 

po
we

r

DCA algorithm
Purely channel-aware
Purely channel-blind

Figure 2.5: Average power of DCA and optimal pure policies for different values of Pmeas.
The power curve of DCA overlaps with others at both ends of Pmeas values.

user is served by an independent i.i.d. Bernoulli ON/OFF channel. In every slot, channel

1, 2, and 3 is ON with probability 0.8, 0.5, and 0.2, respectively. When a channel is

ON, one packet can be served over a slot; none is served when the channel is OFF.

We simulate different arrival rate vectors of the form ρ(3, 2, 1). It is easy to show that

ρ ≈ 0.1533 and 0.0784 correspond to the boundary of Λ and Λblind, respectively. We let

Ptran = 10, and each simulation is run for 10 million slots.

User Backlogs

We first simulate the case V = Pmeas = 10 and ρ = 0.07. Fig. 2.6 shows sample backlog

processes of the three users in the last 105 slots of the simulation. We observe in (2.4)

that we serve user 3 in channel-blind mode only if U3(t) ≥ V Ptran/(2q3) = 250, and in

channel-aware mode if U3(t) ≥ V Ptran/2 = 50. Fig. 2.6 shows that most of the time user

3 maintains its backlog between 50 and 250. It is consistent with our observation that

31



user 3 operates mostly in channel-aware mode. In addition, the DCA algorithm generates

a negative Lyapunov drift pushing the backlog of user 3 back under 250 whenever it is

above 250. It explains why the user 3 backlog is kept around 250. Similar arguments can

be made for the other two users, where the reference backlog level for starting a negative

drift for user 1 and 2 are 62.5 and 100, respectively. We note that much of this backlog

under reference levels can be eliminated by using a place holder packet technique in Neely

and Urgaonkar [2008]. Indeed, from (2.4) we see that no packet is ever transmitted from

queue n if 2Qn(t) < V Ptran, and so place holder packets reduce average backlog by

roughly V Ptran/2 in each queue, without loss of energy optimality.

9.9x106 9.92x106 9.94x106 9.96x106 9.98x106 1x107

time slot t

0

50

100

150

200

250

ba
ck

lo
g 

pr
oc

es
s 

U(
t)

Backlog of user 1
Backlog of user 2
Backlog of user 3

Figure 2.6: Sample backlog processes in the last 105 slots of the DCA simulation.

Next, for different values of ρ, Fig. 2.7 shows the average backlog of each user and

the sum average backlog in the network. The DCA algorithm maintains roughly constant

average backlogs (around the reference levels V Ptran/(2 qn)) for all users, except when

data rates approach the boundary of the network capacity region; up to some point, the

negative drift can no longer withhold the rapid increase of average backlog.

32



0.02 0.04 0.06 0.08 0.1 0.12 0.14
ρ

0

200

400

600

800

1000

av
er

ag
e 

ba
ck

lo
g

user 1+user 2+user 3
user 1
user 2
user 3

Figure 2.7: Average backlogs of the three users under DCA.

Control Parameter V

For different values of control parameter V ∈ {1, 10, 100}, Fig. 2.8 and 2.9 show the aver-

age power consumption of DCA (under different Pmeas values) and the average sum back-

logs. As V increases, the power consumption improves (but the improvement is dimin-

ishing) at the expense of increasing network delays. This result is consistent with (2.7)

and (2.8).3 Fig. 2.8 and 2.9 also show that, in practice, a moderate V value shall be cho-

sen to maintain reasonable network delays without sacrificing much power consumption.4

3We note that performance bounds (2.7) and (2.8) are loose for Poisson arrivals because the associated
Amax =∞ (and thus B =∞). It is a minor concern because Amax is bounded with probability arbitrarily
close to one, and the bound (2.7) is known to be loose.

4We note that, in Fig. 2.8, the DCA algorithm does not outperform purely channel-aware policies
when V = 1 and Pmeas close to zero. It may be because smaller V values do not allow DCA to maintain
reasonable backlog levels in the queues. As a result, opportunistic scheduling gain cannot be fully
exploited in channel-aware mode. It is a minor concern, but still suggests that a moderate V value is
needed.

33



0 5 10 15 20
probing power Pm

4

6

8

10

12

av
er

ag
e 

po
we

r

Purely channel-aware
Purely channel-blind
DCA (V=1)
DCA (V=10)
DCA (V=100)

Figure 2.8: Average power of DCA and optimal pure policies for different values of V .
We set ρ = 0.07.

2.6 Generalization

2.6.1 Timing Overhead

We generalize the network model in Section 2.1 to incorporate delay induced by channel

probing. Specifically, we suppose that, in every slot, channel probing consumes (1 − β)

of a slot for some 0 < β < 1. If channels are probed and a service rate vector µ(t) is

allocated, the effective rate vector is βµ(t). It follows that the class of purely channel-

aware policies has a new scaled network capacity region βΛ, and it can no longer support

the original Λ. In particular, there may be data rate vectors supported by purely channel-

blind scheduling but not by purely channel-aware scheduling. The new network capacity

region Λnew under dynamic channel probing with timing overhead is the convex hull of

34



0.02 0.04 0.06 0.08 0.1 0.12 0.14
ρ

0

2000

4000

6000

8000

10000

12000

av
er

ag
e 

ba
ck

lo
g

DCA (V=1)
DCA (V=10)
DCA (V=100)

Figure 2.9: The average backlog of DCA under different values of V ; we set Pmeas = 10.

the union of βΛ and Λblind.5 In other words, Λnew consists of data rate vectors λ for

each of which there exists a scalar γ ∈ [0, 1] such that λ ∈ γ(βΛ) + (1− γ)Λblind.

λ1

λ2

Λ

Λnew
βΛ

Λblind

Figure 2.10: The new network capacity regions Λnew of a two-user network with channel
probing delay, Bernoulli ON/OFF channels, and a server allocation constraint.

As an example, we consider a two-user wireless downlink with the server allocation

constraint described in Section 2.2. Its various network capacity regions are shown in

5It can be proved by following the proof of Theorem 2.7, where we neglect power and substitute every
channel-aware rate vector µ(t) with βµ(t).

35



Fig. 2.10. Set Λ is the original network capacity region, scaled down to βΛ when we

consider channel probing delay. Set Λblind is the blind network capacity region, not

affected by probing delay. Throughput vectors within Λblind \ βΛ are supported by

purely channel-blind policies, but not by purely channel-aware policies.

Generalizing the DCA algorithm to incorporate channel probing delay is easy. We

only need to substitute every channel-aware rate allocation vector µ(t) with βµ(t). The

new DCA algorithm applied to the above two-user downlink example is given below.

The DCA Algorithm under Probing Delay:

1. (Channel Probing) On each slot, define f1 and f2 as

f1 , −V Pmeas + q1 q2 [2βmax(Q1(t), Q2(t))− V Ptran]+ ,

+ q1 q2 [2β Q1(t)− V Ptran]+ + q1 q2 [2β Q2(t)− V Ptran]+

f2 , [max(2 q1Q1(t), 2 q2Q2(t))− V Ptran]+ ,

where qn denotes the probability that channel n is ON in a slot, qn , 1− qn, and

[x]+ , max(x, 0). We probe all channels if and only if f1 > f2.

2. (Server Allocation) When channels are probed, among those whose state is ON,

serve the one with the largest positive (2β Qn(t) − V Ptran). If all channels are

OFF or (2β Qn(t) − V Ptran) ≤ 0 for all ON channels, serve no user for one slot.

When channels are not probed, blindly serve the channel with the largest positive

(2 qnQn(t)− V Ptran). Serve no user if (2 qnQn(t)− V Ptran) ≤ 0 for all n.

2.6.2 Partial Channel Probing

Next, we relax the channel probing constraint and assume that any nonempty subset of

channels can be probed in a slot. We denote by J(t) ⊂ {1, 2, . . . , N} the channel subset

probed on slot t. For example, J(t) = {3, 5} shows that the third and the fifth channel are

probed on slot t. After partial channel probing, a service rate vector µ(t) = (µn(t))Nn=1 is

36



allocated, such that µn(t) is channel-aware (i.e., µn(t) ≤ sn(t)) if n ∈ J(t), and is chosen

blindly otherwise. The effective service rate µ̂n(t) and the power expenditure Pn(t) over

channel n is written as

µ̂n(t) = 1[n∈J(t)]µn(t) + 1[n/∈J(t)]µn(t)1[µn(t)≤sn(t)], (2.10)

Pn(t) = 1[n∈J(t)]

(
Pmeas

N
+ Ptran1[µn(t)>0]

)
+ 1[n/∈J(t)]Ptran1[µn(t)>0]. (2.11)

We can use the same Lyapunov drift analysis in the proof of Theorem 2.11 to modify

the DCA algorithm to include partial channel probing. The main change is to substi-

tute (2.10) and (2.11) into the drift analysis. The modified algorithm is given below.

Generalized DCA Algorithm:

1. (Channel Probing) In every slot t, for each nonempty subset J(t) of {1, . . . , N}, we

define HJ(t) = {(sn(t))n∈J(t) | sn(t) ∈ S} as a collection of feasible channel state

subvectors with respect to J(t). We define HJ(t) = ∅ if J(t) = ∅. For each J(t) and

each hJ(t) ∈ HJ(t), we define g∗(J(t),Q(t), hJ(t)) as the maximum of

∑

n∈J(t)

[
2Qn(t)µn(t)− V

(
Pmeas

N
+ Ptran1[µn(t)>0]

)]

+
∑

n/∈J(t)

(
2Qn(t)µn(t) Pr

[
Sn ≥ µn(t) | hJ(t)

]
− V Ptran1[µn(t)>0]

)
. (2.12)

subject to (µn(t))Nn=1 ∈ Ω and µn(t) ≤ sn(t) if n ∈ J(t). Let µ∗(J(t),Q(t), hJ(t))

be the maximizer of (2.12). Define

g∗(J(t),Q(t)) , E{g∗(J(t),Q(t), hJ(t))},

where the expectation is with respect to the randomness of hJ(t) ∈ HJ(t). Define

g∗(Q(t)) , max
J(t)

g∗(J(t),Q(t)), J∗(t) , arg max
J(t)

g∗(J(t),Q(t)).

37



Then, if g∗(Q(t)) > 0, we probe channels in J∗(t) in slot t; none is probed if

J∗(t) = ∅. Otherwise, it is easy to show g∗(Q(t)) = 0, and we idle the system for

a slot (including skipping Step 2 for one slot).

2. (Rate Allocation) In slot t, we denote by hJ∗(t) the probed states over channels

in J∗(t). We allocate the service rate vector µ∗(J∗(t),Q(t), hJ∗(t)) computed in

Step 1.

In our original network model, feasible channel probing decision is binary: either

probe all or none of the channels. Allowing partial channel probing expands the number

of feasible decisions from 2 to 2N , where N is the number of channels. It is not hard

to show that, by generalizing Theorem 2.7, an energy-optimal policy to support a given

throughput vector λ is a convex combination of 2N stationary randomized policies, each

of which corresponds to a channel subset J(t). The generalized DCA algorithm evaluates

a metric for each of the 2N partial probing decisions, and uses one with the best metric

in a slot. The resulting complexity of the generalized DCA algorithm is exponential. A

compromise may be that we limit the decision space on partial channel probing to a

predefined collection of channel subsets, with cardinality smaller than 2N . This is still

more general than our original network model, but the resulting DCA algorithm is of less

complexity.

2.7 Chapter Summary and Discussions

Considering that channel probing consumes energy, we propose a Dynamic Channel

Acquisition (DCA) algorithm that provides network stability with minimum energy con-

sumption. This algorithm, developed via Lyapunov drift theory, is a unified treatment of

incorporating both channel-aware and channel-blind transmissions to achieve throughput

and energy optimality in wireless networks. Simulations show that the DCA algorithm

adapts optimally to system parameters such as data arrival rates, transmission power,

and channel probing power. Simulations also show that the DCA algorithm has the

38



largest power gain when purely channel-aware and purely channel-blind strategies have

the same performance, which is counter intuitive. We have discussed how to extend

the DCA algorithm to incorporate nonzero timing overhead, which degrades network

throughput. We have also discussed extensions that allow partial channel acquisition.

We show that the DCA algorithm is power and throughput optimal over channels with

i.i.d. states over slots. However, it may not be optimal for general ergodic channels. Such

channels have memory, in that past channel observations provide partial information of

future states. An optimal policy shall exploit channel memory. The DCA algorithm does

not base decisions on past channel observations, and therefore may not be optimal for

general ergodic channels.

Despite the above, the DCA algorithm may still be a good suboptimal policy for

general ergodic channels. It can be shown that the optimal power consumption Popt(λ)

over channels without memory (see Theorem 2.7) can also be achieved in case of ergodic

channels that have the same steady state distribution. Further, it can be shown that

DCA achieves within O(1/V ) of this average power in the general ergodic case. While

Popt(λ) is no longer optimal for channels with memory, the DCA algorithm can be viewed

as optimizing over the restricted class of policies that neglect past channel history. Such

restrictions simplify algorithm design when channel memory is complex to track.

In the next chapter, we show how to exploit channel memory to improve network

throughput in a partially observable wireless network.

2.8 Bibliographic Notes

In the literature, Giaccone et al. [2003], Lee et al. [2006], Neely [2006], Neely et al. [2003],

Yeh and Cohen [2004] focus on throughput/utility maximization with energy constraints

in wireless networks, assuming that channel states are always known with negligible

cost. Ji et al. [2004] and Sabharwal et al. [2007] show that measuring all channels regularly

may not be throughput optimal because of the tradeoff between multi-user diversity

39



gain and the associated timing overhead of channel probing. Kar et al. [2008] studies

throughput-achieving algorithms when channel states are only measured every T > 1

slots. Gopalan et al. [2007] develops a MaxWeight-type throughput-optimal policy in a

wireless downlink, assuming that only a subset of channels, chosen from a fixed collection

of subsets, can be observed at any time and only the channels with known states can

serve packets. Gesbert and Alouini [2004], Patil and de Veciana [2007], Tang and Heath

[2005] study the performance of a wireless downlink for which a channel state is only

sent from a user to the base station when the associated channel quality exceeds some

threshold. Chang and Liu [2007], Guha et al. [2006a,b] develop optimal/near-optimal

policies for joint partial channel probing and rate allocations to optimize a linear network

utility.

2.9 Proofs in Chapter 2

2.9.1 Proof of Lemma 2.4

Consider a data rate vector λ = (λn)Nn=1 that can be stabilized by some purely channel-

blind policy. A successful blind packet transmission over channel n ∈ {1, 2, . . . , N} takes

on average 1/qn attempts. By Little’s Theorem, the fraction of time the server is busy is

equal to
∑N

n=1 λn/qn, which must be less than or equal to 1 for stability. The necessary

average power to support λ is equal to (
∑N

n=1 λn/qn)Ptran.

Conversely, for each nonzero rate vector λ satisfying
∑N

n=1 λn/qn < 1, we define

ρ ,
∑N

n=1 λn/qn; there exists some ε > 0 such that ρ+ ε < 1. Consider the policy that,

in every slot, idles the system with probability (1− ρ− ε) or servers user n ∈ {1, . . . , N}

with probability (
ρ+ ε

ρ

)(
λn
qn

)
.

This policy yields a service rate (1+ε/ρ)λn > λn for each user n, and therefore stabilizes

the system. The average power consumption of this policy is equal to (ρ + ε)Ptran. By

40



passing ε → 0, the rate vector λ can stabilized with average power arbitrarily close to

ρPtran = (
∑N

n=1 λn/qn)Ptran. It completes the proof.

2.9.2 Proof of Lemma 2.6

Suppose the rate vector λ can be stabilized by a purely channel-aware policy Φ. For

simplicity, we assume Φ is ergodic with well-defined time averages (the general case can

be proven similarly, as in Neely [2006]). Define θ as the fraction of time Φ probes the

channels. The average power consumption of Φ is (
∑N

n=1 λn)Ptran + θPmeas. Suppose

θ satisfies 0 < θ < θ∗. A necessary condition to stabilize λ is that, for each nonempty

subset N ⊂ {1, 2, . . . , N} of channels, the partial sum
∑

n∈N λn must be less than or

equal to the fraction of time at least one channel in N can serve packets. In other words,

for each N , we have
∑

n∈N
λn ≤ θ(1−

∏

n∈N
(1− qn)).

In other words, λ ∈ θΛ. But this contradicts the definition of θ∗, finishing the proof of

necessity.

Conversely, since λ ∈ θ∗Λ, λ is an interior point of the set (θ∗ + ε)Λ for some ε > 0

satisfying θ∗ + ε < 1. We define a policy Φ as follows: On every slot, Φ probes the

channels with probability (θ∗ + ε). When channels are probed in a slot, we serve the

longest ON queue. Otherwise, we idle the system. It follows that applying policy Φ to

the original wireless downlink is equivalent to applying the Longest Connected Queue

(LCQ) policy [Tassiulas and Ephremides 1993] to a new wireless downlink in which a

channel is ON if and only if it is probed and known to be ON. The capacity region of

the new system is (θ∗ + ε)Λ. Although channels in the new system are correlated (they

are all OFF when probing is not performed), it is known that the LCQ policy is still

throughput optimal over the new system [Tassiulas and Ephremides 1993]. As a result,

if λ is interior to (θ∗+ ε)Λ, policy Φ stabilizes λ with average power consumption equal

41



to (
∑N

n=1 λn)Ptran + (θ∗ + ε)Pmeas. Passing ε → 0 finishes the sufficiency part of the

proof.

2.9.3 Proof of Theorem 2.7

Suppose λ is interior to Λ. We first show the necessity part of the proof saying that there

is no policy able to stabilize λ with average power strictly less than Popt(λ). Then we

finish the sufficiency part of the proof by showing that the rate vector λ can be stabilized

with average power arbitrarily close to Popt(λ).

(Necessity) Suppose the rate vector λ is stabilized by a policy Φ. This policy decides

in which slots channels are probed, and allocates a transmission rate vector µ(t) with

power consumption (Pn(t))Nn=1 in every slot t. In an interval [0,M) for some integer M ,

we define

µ̂av(M) , 1

M

M−1∑

τ=0

µ̂(τ) (2.13)

as the empirical service rate vector of policy Φ, where µ̂(τ) is defined in (2.1). We define

Pav(M) , 1

M

M−1∑

τ=0

N∑

n=1

Pn(τ) (2.14)

as the empirical average power of Φ. Define

P av , lim inf
M→∞

Pav(M) (2.15)

as a lower bound on the average power of Φ.6 The value of Pav(M) is bounded for all M

because it is nonnegative and at most (Pmeas +NPtran). It follows that {Pav(M)}M∈N is

a bounded sequence and has finite limit points by Weierstrass’s Theorem [Rudin 1976,

6When Φ is ergodic, limiting time averages are well-defined, and P av is the exact limiting average
power of Φ. If Φ is non-ergodic, limiting time averages may not exist, and P av is a lower bound on the
average power of Φ.

42



Theorem 2.42]. In addition, P av is a limit point of {Pav(M)}M∈N [Rudin 1976, Theorem

3.17], and there exists an integer subsequence {Mn}n such that

lim
n→∞

Pav(Mn) = lim inf
M→∞

Pav(M) = P av. (2.16)

Next, we show that, for any λ-stabilizing policy Φ (ergodic or non-ergodic), there

exists a stationary randomized policy Φ̂ that consumes average power P av and yields

an average service rate vector µ ≥ λ. The parameters of policy Φ̂ constitute a feasible

solution to the optimization problem P(λ). Thus, its average power P av, as well as the

average power of the original λ-stabilizing policy Φ, must be greater than or equal to the

optimal objective Popt(λ) of P(λ). Since this result holds for any λ-stabilizing policy,

the necessary power to stabilize λ is at least Popt(λ).

Let T
(c)
M and T

(b)
M be a subset of slots in [0,M) in which channels are probed and not

probed, respectively; we have |T (c)
M | + |T

(b)
M | = M for all M . Without loss of generality,

we assume T
(c)
M and T

(b)
M are nonempty. According to (2.1), we define

µ̂(c)
av (M) , 1

M

∑

τ∈T (c)
M

µ̂(τ) =
1

M

∑

τ∈T (c)
M

µ(τ, s(τ)), (2.17)

µ̂(b)
av (M) , 1

M

∑

τ∈T (b)
M

µ̂(τ) =
1

M

∑

τ∈T (b)
M

µ(τ)⊗ 1[µ(τ)≤s(τ)], (2.18)

where vector 1[µ(τ)≤s(τ)] is defined before Section 2.1. Combining (2.13)(2.17)(2.18)

yields

µ̂av(M) = µ̂(c)
av (M) + µ̂(b)

av (M). (2.19)

43



Define

P (c)
av (M) , 1

M

∑

τ∈T (c)
M

N∑

n=1

Pn(τ), (2.20)

P (b)
av (M) , 1

M

∑

τ∈T (b)
M

N∑

n=1

Pn(τ), (2.21)

and Pav(M) in (2.14) satisfies

Pav(M) = P (c)
av (M) + P (b)

av (M). (2.22)

Consider the rate-power vector (µ̂
(c)
av (M);P

(c)
av (M)) associated with channel-aware

transmissions. From (2.17)(2.20), we have

(µ̂(c)
av (M);P (c)

av (M)) =
1

M

∑

τ∈T (c)
M

(
µ(τ, s(τ));

N∑

n=1

Pn(τ)

)

(a)
=
|T (c)
M |
M

∑

s∈SN

|T (c)
M (s)|
|T (c)
M |

1

|T (c)
M (s)|

∑

τ∈T (c)
M (s)

(
µ(τ, s);

N∑

n=1

Pn(τ)

)

= γM
∑

s∈SN
σM (s) xM (s),

(2.23)

where (a) is from regrouping terms according to the observed channel states s, T
(c)
M (s) ⊂

T
(c)
M is the subset of slots in which channel states s are probed, and

γM , |T
(c)
M |
M

, σM (s) , |T
(c)
M (s)|
|T (c)
M |

, (2.24)

xM (s) , 1

|T (c)
M (s)|

∑

τ∈T (c)
M (s)

(
µ(τ, s);

N∑

n=1

Pn(τ)

)
. (2.25)

44



Observe that xM (s) is a convex combination of vectors of the form (µ(τ, s);
∑N

n=1 Pn(τ)).

By regrouping terms in (2.25) according to the value of µ(τ, s) and using (2.2), there

exist real numbers {αM (ω, s)}ω∈Ω(s), where αM (ω, s) ≥ 0 for all ω ∈ Ω(s) and
∑
ω∈Ω(s) αM (ω, s) = 1, such that xM (s) is rewritten as

xM (s) =
∑

ω∈Ω(s)

αM (ω, s)

(
ω;Pmeas +

N∑

n=1

1[ωn>0]Ptran

)
. (2.26)

We note that {αM (ω, s)}ω∈Ω(s) can be viewed as a probability distribution.

Likewise, from (2.18)(2.21), the rate-power vector (µ̂
(b)
av (M);P

(b)
av (M)) associated with

channel-blind transmissions satisfies

(µ̂(b)
av (M);P (b)

av (M)) =
1

M

∑

τ∈T (b)
M

(
µ(τ)⊗ 1[µ(τ)≤s(τ)];

N∑

n=1

Pn(τ)

)

(a)
=

1

M

∑

ω∈Ω

∑

τ∈T (b)
M (ω)

(
ω ⊗ 1[ω≤s(τ)];

N∑

n=1

Pn(τ)

)

(b)
= (1− γM )

∑

ω∈Ω

βM (ω) yM (ω), (2.27)

where (a) is from regrouping terms according to the value of µ(τ), T
(b)
M (ω) ⊂ T (b)

M denotes

the subset of slots in which µ(τ) = ω is allocated, and (b) follows

1− γM =
|T (b)
M |
M

, βM (ω) , |T
(b)
M (ω)|
|T (b)
M |

,

yM (ω) , 1

|T (b)
M (ω)|

∑

τ∈T (b)
M (ω)

(
ω ⊗ 1[ω≤s(τ)];

N∑

n=1

Pn(τ)

)
. (2.28)

Note that {βM (ω)}ω∈Ω can also be viewed as a probability distribution.

Combining (2.19) (2.22) (2.23) (2.27) yields

(µ̂av(M);Pav(M)) = γM
∑

s∈SN
σM (s) xM (s) + (1− γM )

∑

ω∈Ω

βM (ω) yM (ω), (2.29)

45



where xM (s) and yM (ω) are shown in (2.26) and (2.28), respectively. In (2.29), all

sequences {γM}M , {σM (s)}M , {αM (ω, s)}M , {βM (ω)}M , {yM (ω)}M are bounded. By

iteratively applying Weierstrass’s Theorem, there exists a subsequence {Mk}k ⊂ {Mn}n,

where {Mn}n is given in (2.16), such that all the above sequences have convergent sub-

sequences indexed by {Mk}k. It follows that there exists a scalar γ ∈ [0, 1], a probability

distribution {α(ω, s)}ω∈Ω(s) for each s ∈ SN , and a probability distribution {β(ω)}ω∈Ω,

such that, as k →∞,

γMk
→ γ,

αMk
(ω, s)→ α(ω, s), for all s ∈ SN and ω ∈ Ω(s),

βMk
(ω)→ β(ω), for all ω ∈ Ω.

Let πs be the steady state probability of channel state vector s. Because channel probing

in a slot is independent of channel states in that slot, we have σMk
(s) → πs as k → ∞

by the Law of Large Numbers (LLN). For each ω ∈ Ω, the vectors ω⊗1[ω≤s(τ)] are i.i.d.

over slots τ ∈ T (b)
Mk

(ω). Thus, by LLN,

yMk
(ω)→

(
ω ⊗ Pr(S ≥ ω);

N∑

n=1

1[ωn>0]Ptran

)
, as k →∞.

From the above analysis, as k → ∞, the subsequence {(µ̂av(Mk);Pav(Mk))} converges

to

γ
∑

s∈SN
πs


 ∑

ω∈Ω(s)

α(ω, s)

(
ω;Pmeas +

N∑

n=1

1[ωn>0]Ptran

)


+ (1− γ)
∑

ω∈Ω

β(ω)

(
ω ⊗ Pr(S ≥ ω);

N∑

n=1

1[ωn>0]Ptran

)
. (2.30)

46



Using the stability definition and Lemma 1 in Neely et al. [2003], necessarily we have

λ ≤ lim inft→∞ 1
t

∑t−1
τ=0 µ̂(τ) with probability 1. It yields that

λ
(a)

≤ lim
k→∞

1

Mk

Mk−1∑

τ=0

µ̂(τ)

= lim
k→∞

µ̂av(Mk)

= γ
∑

s∈SN
πs

( ∑

ω∈Ω(s)

α(ω, s)ω

)
+ (1− γ)

∑

ω∈Ω

β(ω) (ω ⊗ Pr(S ≥ ω)) , (2.31)

where (a) follows that lim inf of a sequence is the infimum of all limit points in that

sequence. Combining (2.16) and (2.30) yields

P av = γ
∑

s∈SN
πs


 ∑

ω∈Ω(s)

α(ω, s)

(
Pmeas +

N∑

n=1

1[ωn>0]Ptran

)


+ (1− γ)
∑

ω∈Ω

β(ω)

(
N∑

n=1

1[ωn>0]Ptran

)
. (2.32)

From (2.31) (2.32), if there is a λ-stabilizing policy Φ, there is a stationary randomized

policy Φ̂ operating as follows: In every slot, Φ̂ probes all channels with probability γ. If

the channel state vector s is acquired, Φ̂ allocates channel-aware rate vector ω ∈ Ω(s)

with probability α(ω, s). Otherwise, Φ̂ blindly allocates rate vector ω ∈ Ω with proba-

bility β(ω). Policy Φ̂ yields a service rate vector greater than or equal to λ entrywise,

and consumes average power P av. This finishes the necessity part of the proof.

(Sufficiency) Conversely, for each rate vector λ interior to Λ, there exists a scalar

ε > 0 such that λ + ε is interior to Λ, where ε is an all-ε vector. The optimal solution

to P(λ + ε) yields a stationary randomized policy Φ̂ whose average service rate vector

is greater than or equal to λ + ε entrywise. By [Georgiadis et al. 2006, Lemma 3.6],

policy Φ̂ stabilizes λ with average power Popt(λ+ ε). As ε→ 0, there exists a stationary

randomized policy supporting λ with average power arbitrarily close to Popt(λ).

47



2.9.4 Proof of Theorem 2.11

Taking the square of (2.3) for each n and using the facts that

(max(Qn(t)− µ̂n(t), 0))2 ≤ (Qn(t)− µ̂n(t))2,

Qn(t)− µ̂n(t) ≤ Qn(t), µ̂n(t) ≤ µmax, an(t) ≤ Amax,

we have
N∑

n=1

(
Q2
n(t+ 1)−Q2

n(t)
)
≤ B − 2

N∑

n=1

Qn(t)(µ̂n(t)− an(t)), (2.33)

where B , (µ2
max +A2

max)N . We define the Lyapunov function L(t) ,
∑N

n=1Q
2
n(t) and

the one-step Lyapunov drift ∆(Q(t)) , E [L(t+ 1)− L(t)|Q(t)]. By taking expectation

of (2.33) conditioning on current backlog Q(t) and noting that arrival processes are i.i.d.

over slots, we have

∆(Q(t)) ≤ B + 2
N∑

n=1

Qn(t)λn −
N∑

n=1

2Qn(t)E [µ̂n(t) | Q(t)] . (2.34)

Adding the weighted power cost V E
[∑N

n=1 Pn(t) | Q(t)
]

to both sides of (2.34) yields

∆(Q(t)) + V E

[
N∑

n=1

Pn(t) | Q(t)

]
≤ B + 2

N∑

n=1

Qn(t)λn

−
(

N∑

n=1

2Qn(t)E [µ̂n(t) | Q(t)]− V E

[
N∑

n=1

Pn(t) | Q(t)

])
. (2.35)

The DCA algorithm is designed to minimize the right side of (2.35), i.e., to maximize

f(Q(t),χ(t)) in (2.4), over all feasible controls χ(t) in every slot. The intuition is as

follows. Minimizing ∆(Q(t)), the expected growth of queue sizes over a slot, stabilizes

the network. At the same time, we want to decrease the power consumption. These two

goals create a tradeoff because queue sizes can be decreased by consuming more power,

such as probing channels and allocating channel-aware rates in every slot. Therefore, it

48



is natural to minimize a weighted sum of them, which is the left side of (2.35). The V

parameter in the weighted sum controls the tradeoff between queue stability and power.

The DCA algorithm seeks to minimize the weighted sum by minimizing its upper bound.

Next, we analyze the performance of DCA. By definition of DCA, the right side

of (2.35) under DCA is less than or equal to that under the optimal stationary randomized

policy, denoted by Φr, associated with the optimal solution to the problem P(λ+ ε) in

Theorem 2.7, where the vector ε > 0 is an all-ε vector such that λ + ε is interior to Λ.

Let µ̂r(t) = (µ̂rn(t))Nn=1 and (P r1 (t), . . . , P rN (t)) be the effective service rate vector and

power consumption of policy Φr in slot t. Consequently, (2.35) under DCA is further

upper bounded as

∆(Q(t)) + V E

[
N∑

n=1

Pn(t) | Q(t)

]
≤ B + 2

N∑

n=1

Qn(t)λn

−
(

N∑

n=1

2Qn(t)E [µ̂rn(t) | Q(t)]− V E

[
N∑

n=1

P rn(t) | Q(t)

])
. (2.36)

Since policy Φr does not use queue backlog information Q(t), Corollary 2.8 shows that

E [µ̂r(t) | Q(t)] ≥ λ+ ε, (2.37)

E

[
N∑

n=1

P rn(t) | Q(t)

]
= Popt(λ+ ε) (2.38)

in every slot t. Plugging (2.37) and (2.38) into (2.36) yields

∆(Q(t)) + V E

[
N∑

n=1

Pn(t) | Q(t)

]
≤ B − 2ε

N∑

n=1

Qn(t) + V Popt(λ+ ε). (2.39)

Taking expectation of (2.39) over Q(t), summing it from t = 0 to τ − 1, dividing the

sum by τ , and noting Q(0) = 0 and E [L(Q(τ))] ≥ 0, we have

2ε

τ

τ−1∑

t=0

N∑

n=1

E [Qn(t)] ≤ B + V Popt(λ+ ε)− V

τ
E

[
τ−1∑

t=0

N∑

n=1

Pn(t)

]
. (2.40)

49



Ignoring the last term of (2.40), dividing by 2ε, using Popt(λ+ ε) ≤ Pmeas +NPtran, and

taking a lim sup as τ →∞, we get

lim sup
τ→∞

1

τ

τ−1∑

t=0

N∑

n=1

E [Qn(t)] ≤ B + V (Pmeas +NPtran)

2ε
. (2.41)

Ignoring the first term of (2.40), dividing the result by V , and taking a lim sup as τ →∞,

we get

lim sup
τ→∞

1

τ

τ−1∑

t=0

N∑

n=1

E [Pn(t)] ≤ B

V
+ Popt(λ+ ε). (2.42)

(2.41) and (2.42) hold for any ε > 0 such that λ+ ε is interior to the network capacity

region Λ. We can tighten the bounds by: (1) setting ε = εmax in (2.41), where εmax > 0

is the largest real number satisfying λ+ εmax ∈ Λ; (2) setting ε = 0 in (2.42). It follows

that

lim sup
τ→∞

1

τ

τ−1∑

t=0

N∑

n=1

E [Qn(t)] ≤ B + V (Pmeas +NPtran)

2εmax
,

lim sup
τ→∞

1

τ

τ−1∑

t=0

N∑

n=1

E [Pn(t)] ≤ B

V
+ Popt(λ).

50



Chapter 3

Exploiting Wireless Channel

Memory

Much previous work on wireless opportunistic scheduling, including our work on dy-

namic channel probing in Chapter 2, assumes channels are i.i.d. over slots. Thus, the

channel memory associated with ergodic (non-i.i.d.) systems is often overlooked. The

main reasons are: (1) the i.i.d. channel assumption is easier to deal with analytically;

(2) under the assumption that channel states are instantaneously known, throughput-

optimal policies developed under the i.i.d. assumption can as well be shown optimal for

general ergodic channels [Neely et al. 2005, Tassiulas 1997]. This chapter explores how

to exploit channel memory in cases when channel states are not known in advance.

Specifically, we consider a time-slotted wireless base station that serves multiple

users over independent Markov ON/OFF channels.1 Every channel is assumed positively

correlated, so that an ON state is more likely followed by another ON state in the next

slot. We consider the scenario that channels are never probed, so that their instantaneous

states are never known. On each slot, the base station transmits a packet to a chosen user,

and receives an ACK/NACK feedback. The transmission succeeds if the channel is ON,

and fails otherwise. Since channels are ON/OFF, the ACK/NACK feedback uncovers the

state of the used channel in the previous slot, and provides partial information of future

states on that channel. The user selection decision on each slot may take advantage of

1It has been shown that wireless channels can be adequately modeled as Markov chains [Wang and
Chang 1996, Zorzi et al. 1996], especially in high-speed transmission regimes. Since each time slot
comprises a short period of time, channel states are likely correlated across slots.

51



this partial channel information. We study: (1) What is the network capacity region?

(2) What are the throughput-optimal policies?

As discussed in Section 1.3.1, the network capacity region in this problem is difficult

to compute because it is the same as characterizing the set of all achievable time average

reward vectors in a restless multi-armed bandit system. Our alternative approach in this

chapter is to explore the structure of the Markovian channels to construct a good inner

bound on the network capacity region by randomizing well-designed round robin policies.

We will construct an outer capacity bound to study the tightness of the inner capacity

region. Specifically, in the case of symmetric channels and a large number of users, we

show that, as data rates are more balanced, or in a geometric sense as the direction of the

data rate vector in the Euclidean space is closer to the 45-degree angle, the inner bound

converges geometrically fast to the outer bound as the number of channels increases,

and both bounds are tight. The outer bound comes from analyzing a fictitious channel

model in which every scheduling policy yields higher throughput than it does in the real

network.

This chapter is organized as follows. The network model is given in Section 3.1. Sec-

tion 3.2 presents a carefully designed round robin policy that is the fundamental building

block of our inner capacity bound. Our inner and outer capacity bounds are constructed

in Sections 3.3, and compared in Section 3.4 in the case of symmetric channels. Sec-

tion 3.5 constructs a simple queue-dependent round robin policy that is throughput-

optimal over the inner network capacity region. A novel frame-based Lyapunov drift

analysis is used to design the policy and analyze its performance.

3.1 Network Model

We consider a base station transmitting data to N users through N Markov ON/OFF

channels. Suppose time is slotted with normalized slots t ∈ Z+. Each channel n ∈

{1, . . . , N} is modeled as a two-state ON/OFF Markov chain (see Fig. 3.1). Let sn(t) ∈

52



2

in Section IV-A). These policies are simple and take advantage
of channel memory. In the case of symmetric channels (that
is, channels are i.i.d.) and when the network serves a large
number of users, we show that as data rates are more balanced,
or in a geometric sense as the direction of the data rate vector
in the Euclidean space is closer to the 45-degree angle, the
inner bound converges geometrically fast to the outer bound,
and the bounds are tight. This analysis uses results in [6], [7]
that derive an outer bound on the maximum sum throughput
for a symmetric system.

The inner capacity bound is indeed useful. First, the struc-
ture of the bound itself shows how channel memory improves
throughput. Second, we show analytically that a large class
of intuitively good heuristic policies achieve throughput that
is at least as good as this bound, and hence the bound acts
as a (non-trivial) performance guarantee. Finally, supporting
throughput outside this bound may inevitably involve solving
a much more complicated POMDP. Thus, for simplicity and
practicality, we may regard the inner bound as an operational
network capacity region.

In this paper we also derive a simple queue-dependent dy-
namic round robin policy that stabilizes the network whenever
the arrival rate vector is interior to our inner bound. This policy
has polynomial time complexity and is derived by a novel
variable-length frame-based Lyapunov analysis, first used
in [8] in a different context. This analysis is important because
the inner bound is based on a mixture of many different types
of round robin policies, and an offline computation of the
proper time average mixtures needed to achieve a given point
in this complex inner bound would require solving Θ(2N )
unknowns in a linear system, which is impractical when N
is large. The Lyapunov analysis overcomes this complexity
difficulty with online queue-dependent decisions.

The results of this paper apply to the emerging area of
opportunistic spectrum access in cognitive radio networks
(see [9] and references therein), where the channel occupancy
of a primary user acts as a Markov ON/OFF channel to the
secondary users. Specifically, our results apply to the important
case where each of the secondary users has a designated
channel and they cooperate via a centralized controller. This
paper is also a study on efficient scheduling over wireless
networks with delayed/uncertain channel state information
(CSI) (see [10]–[12] and references therein). The work on
delayed CSI that is most closely related to ours is [11], [12],
where the authors study the capacity region and throughput-
optimal policies of different wireless networks, assuming that
channel states are persistently probed but fed back with delay.
We note that our paper is significantly different. Here channels
are never probed, and new (delayed) CSI of a channel is only
acquired when the channel is served. Implicitly, acquiring the
delayed CSI of any channel is part of the control decisions in
this paper.

This paper is organized as follows. The network model is
given in Section II, inner and outer bounds are constructed in
Sections III and IV, and compared in Section V in the case
of symmetric channels. Section VI gives the queue-dependent
policy to achieve the inner bound.

II. NETWORK MODEL

Consider a base station transmitting data to N users through
N Markov ON/OFF channels. Suppose time is slotted with
normalized slots t in {0, 1, 2, . . .}. Each channel is modeled
as a two-state ON/OFF Markov chain (see Fig. 1). The state

ON(1) OFF(0)

Pn,10

Pn,11 Pn,00

Pn,01

Fig. 1. A two-state Markov ON/OFF chain for channel n ∈ {1, 2, . . . , N}.

evolution of channel n ∈ {1, 2, . . . , N} follows the transition
probability matrix

Pn =

�
Pn,00 Pn,01

Pn,10 Pn,11

�
,

where state ON is represented by 1 and OFF by 0, and Pn,ij

denotes the transition probability from state i to j. We assume
Pn,11 < 1 for all n so that no channel is constantly ON.
Incorporating constantly ON channels like wired links is easy
and thus omitted in this paper. We suppose channel states are
fixed in every slot and may only change at slot boundaries. We
assume all channels are positively correlated, which, in terms
of transition probabilities, is equivalent to assuming Pn,11 >
Pn,01 or Pn,01 + Pn,10 < 1 for all n.2 We suppose the base
station keeps N queues of infinite capacity to store exogenous
packet arrivals destined for the N users. At the beginning of
every slot, the base station attempts to transmit a packet (if
there is any) to a selected user. We suppose the base station has
no channel probing capability and must select users oblivious
of the current channel states. If a user is selected and its current
channel state is ON, one packet is successfully delivered to
that user. Otherwise, the transmission fails and zero packets
are served. At the end of a slot in which the base station
serves a user, an ACK/NACK message is fed back from the
selected user to the base station through an independent error-
free control channel, according to whether the transmission
succeeds. Failing to receive an ACK is regarded as a NACK.
Since channel states are either ON or OFF, such feedback
reveals the channel state of the selected user in the last slot.

Conditioning on all past channel observations, define the N -
dimensional information state vector ω(t) = (ωn(t) : 1 ≤ n ≤
N) where ωn(t) is the conditional probability that channel n
is ON in slot t. We assume initially ωn(0) = πn,ON for all
n, where πn,ON denotes the stationary probability that channel
n is ON. As discussed in [5, Chapter 5.4], vector ω(t) is a
sufficient statistic. That is, instead of tracking the whole system

2Assumption Pn,11 > Pn,01 yields that the state sn(t) of channel n
has auto-covariance E [(sn(t) − Esn(t))(sn(t + 1) − Esn(t + 1))] > 0.
In addition, we note that the case Pn,11 = Pn,01 corresponds to a channel
having i.i.d. states over slots. Although we can naturally incorporate i.i.d.
channels into our model and all our results still hold, we exclude them in this
paper because we shall show how throughput can be improved by channel
memory, which i.i.d. channels do not have. The degenerate case where all
channels are i.i.d. over slots is fully solved in [2].

Figure 3.1: A two-state Markov ON/OFF chain for channel n ∈ {1, 2, . . . , N}.

{OFF,ON} denote the state of channel n in slot t. The state sn(t) of channel n evolves

according to the transition probability matrix

Pn =


Pn,00 Pn,01

Pn,10 Pn,11


 ,

where state ON is represented by 1 and OFF by 0, and Pn,ij denotes the transition

probability from state i to j. We assume Pn,11 < 1 for all channels n so that no channel

is constantly ON (incorporating constantly ON channels like wired links is easy and

omitted). We suppose channel states are fixed in every slot and may only change at

slot boundaries. We assume all channels are positively correlated, which, in terms of

transition probabilities, is equivalent to assuming Pn,11 > Pn,01 or Pn,01 + Pn,10 < 1

for all channels n.2 We suppose the base station keeps N queues of infinite capacity

to store exogenous packet arrivals destined for the N users. At the beginning of every

slot, the base station attempts to transmit a packet (if there is any) to a selected user.

We suppose the base station has no channel probing capability and must select users

oblivious of the current channel states. If a user is selected and its current channel state

is ON, one packet is successfully delivered to that user. Otherwise, the transmission fails

and zero packets are served. At the end of a slot in which the base station serves a user,

2The assumption Pn,11 > Pn,01 yields that the state sn(t) of channel n has auto-covariance
E [(sn(t)− Esn(t))(sn(t+ 1)− Esn(t+ 1))] > 0. The case Pn,11 = Pn,01 corresponds to a channel having
i.i.d. states over slots. Although we can naturally incorporate i.i.d. channels into our model and all
our results still hold, we exclude that case because we shall show how throughput can be improved by
channel memory, which i.i.d. channels do not have. The degenerate case where all channels are i.i.d.
over slots is fully solved in Li and Neely [2010a] or in Chapter 2.

53



an ACK/NACK message is fed back from the selected user to the base station through an

independent error-free control channel, according to whether the transmission succeeds.

Failing to receive an ACK is regarded as a NACK. Since channel states are either ON or

OFF, such feedback reveals the channel state of the selected user in the last slot.

We define the N -dimensional information state vector ω(t) = (ωn(t))Nn=1 where ωn(t)

is the probability that channel n is ON in slot t conditioning on channel observation

history. In other words,

ωn(t) , Pr [sn(t) = ON | all past observations of channel n] .

We assume initially ωn(0) = πn,ON for all n, where πn,ON denotes the stationary probabil-

ity that channel n is ON. The vector ω(t) is known to be a sufficient statistic [Bertsekas

2005, Chapter 5.4]. That is, instead of tracking the whole system history, the base sta-

tion can act optimally based only on ω(t). The base station shall keep track of the

information state process {ω(t)}t∈Z+ .

Throughout the chapter, we assume that the transition probability matrices Pn of

all channels are known to the base station. In practice, the matrix Pn for channel n may

be learned in an initial training period, in which the base station continuously transmits

packets over channel n in every slot. In this period we compute a sample average Yn

of the durations (Yn,1, Yn,2, Yn,3, . . .) that channel n is continuously ON. It is easy to

see that Yn,k are i.i.d. over k with E [Yn.k] = 1/Pn,10. As a result, we may use 1/Yn as

an estimate of Pn,10. The transition probability Pn,01 can be estimated similarly. This

estimation method works when channels are stationary.

54



Next, let n(t) ∈ {1, 2, . . . , N} be the user served in slot t. Based on the ACK/NACK

feedback, the information state vector ω(t) is updated in every slot according to:

ωn(t+ 1) =





Pn,01, if n = n(t), sn(t) = OFF

Pn,11, if n = n(t), sn(t) = ON

ωn(t)Pn,11 + (1− ωn(t))Pn,01, if n 6= n(t)

, ∀ n ∈ {1, 2, . . . , N}. (3.1)

If in the most recent use of channel n, we observed (through feedback) that its state

was i ∈ {0, 1} in slot (t− k) for some k ≤ t, then ωn(t) is equal to the k-step transition

probability P
(k)
n,i1. In general, for any fixed n, the information state ωn(t) takes values

in the countably infinite set Wn = {P(k)
n,01,P

(k)
n,11 : k ∈ N} ∪ {πn,ON}. By eigenvalue

decomposition on Pn [Gallager 1996, Chapter 4], the k-step transition probability matrix

P
(k)
n is

P(k)
n ,


P

(k)
n,00 P

(k)
n,01

P
(k)
n,10 P

(k)
n,11




= (Pn)k

=
1

xn


Pn,10 + Pn,01(1− xn)k Pn,01 (1− (1− xn)k)

Pn,10(1− (1− xn)k) Pn,01 + Pn,10(1− xn)k


 , (3.2)

where we have defined xn , Pn,01 + Pn,10. Assuming that channels are positively corre-

lated, i.e., xn < 1, we have the following lemma as an immediate result from (3.2).

Lemma 3.1. For a positively correlated (Pn,11 > Pn,01) Markov ON/OFF channel with

transition probability matrix Pn, we have:

1. The stationary probability πn,ON = Pn,01/xn.

2. The k-step transition probability P
(k)
n,01 is nondecreasing in k and P

(k)
n,11 nonincreas-

ing in k. Both P
(k)
n,01 and P

(k)
n,11 converge to πn,ON as k →∞.

55



As a corollary of Lemma 3.1, we have

Pn,11 ≥ P
(k1)
n,11 ≥ P

(k2)
n,11 ≥ πn,ON ≥ P

(k3)
n,01 ≥ P

(k4)
n,01 ≥ Pn,01 (3.3)

for any integers k1 ≤ k2 and k3 ≥ k4 (see Fig. 3.2). To maximize network through-

put, (3.3) has some fundamental implications. First, noting that ωn(t) represents the

transmission success probability over channel n in slot t, we shall keep serving a channel

whenever its information state is Pn,11, because Pn,11 is the best state possible. Second,

given that a channel was OFF in its last use, its information state improves as long as the

channel remains idle. This shows that we shall wait as long as possible before reusing

such a channel. Indeed, when channels are symmetric (i.e., all channels are independent

and have the same statistics Pn = P for all n), Ahmad et al. [2009] shows that a myopic

round robin policy with these properties maximizes the sum throughput of the network.
3

history, the base station can act optimally only based on ω(t).
The base station shall keep track of the {ω(t)} process.

We assume transition probability matrices Pn for all n are
known to the base station. We denote by sn(t) ∈ {OFF, ON}
the state of channel n in slot t. Let n(t) ∈ {1, 2, . . . , N}
denote the user served in slot t. Based on the ACK/NACK
feedback, vector ω(t) is updated as follows. For 1 ≤ n ≤ N ,

ωn(t+1) =





Pn,01, if n = n(t), sn(t) = OFF

Pn,11, if n = n(t), sn(t) = ON

ωn(t)Pn,11 + (1 − ωn(t))Pn,01, if n �= n(t).
(1)

If in the most recent use of channel n, we observed (through
feedback) its state was i ∈ {0, 1} in slot (t−k) for some k ≤ t,
then ωn(t) is equal to the k-step transition probability P

(k)
n,i1. In

general, for any fixed n, probabilities ωn(t) take values in the
countably infinite set Wn = {P

(k)
n,01, P

(k)
n,11 : k ∈ N}∪{πn,ON}.

By eigenvalue decomposition on Pn [13, Chapter 4], we can
show the k-step transition probability matrix P(k)

n is

P(k)
n �

�
P

(k)
n,00 P

(k)
n,01

P
(k)
n,10 P

(k)
n,11

�
= (Pn)

k

=
1

xn

�
Pn,10 + Pn,01(1 − xn)k Pn,01 (1 − (1 − xn)k)
Pn,10(1 − (1 − xn)k) Pn,01 + Pn,10(1 − xn)k

�
,

(2)

where we have defined xn � Pn,01 + Pn,10. Assuming that
channels are positively correlated, i.e., xn < 1, by (2) we have
the following lemma.

Lemma 1. For a positively correlated (Pn,11 > Pn,01)
Markov ON/OFF channel with transition probability matrix
Pn, we have

1) The stationary probability πn,ON = Pn,01/xn.
2) The k-step transition probability P

(k)
n,01 is nondecreasing

in k and P
(k)
n,11 nonincreasing in k. Both P

(k)
n,01 and P

(k)
n,11

converge to πn,ON as k → ∞.

As a corollary of Lemma 1, it follows that

Pn,11 ≥ P
(k1)
n,11 ≥ P

(k2)
n,11 ≥ πn,ON ≥ P

(k3)
n,01 ≥ P

(k4)
n,01 ≥ Pn,01

(3)
for any integers k1 ≤ k2 and k3 ≥ k4 (see Fig. 2). To
maximize network throughput, (3) has some fundamental
implications. We note that ωn(t) represents the transmission
success probability over channel n in slot t. Thus we shall keep
serving a channel whenever its information state is Pn,11, for
it is the best state possible. Second, given that a channel was
OFF in its last use, its information state improves as long as the
channel remains idle. Thus we shall wait as long as possible
before reusing such a channel. Actually, when channels are
symmetric (Pn = P for all n), it is shown that a myopic
policy with this structure maximizes the sum throughput of
the network [7].

III. A ROUND ROBIN POLICY

For any integer M ∈ {1, 2, . . . , N}, we present a spe-
cial round robin policy RR(M) serving the first M users

k

ωn(t)

πn,ON

Pn,01

Pn,11 P
(k)
n,11

P
(k)
n,01

Fig. 2. Diagram of the k-step transition probabilities P
(k)
n,01 and P

(k)
n,11 of a

positively correlated Markov ON/OFF channel.

{1, 2, . . . , M} in the network. The M users are served in the
circular order 1→2→ · · ·→M →1→ · · · . In general, we can
use this policy to serve any subset of users. This policy is the
fundamental building block of all the results in this paper.

A. The Policy

Round Robin Policy RR(M) :

1) At time 0, the base station starts with channel 1. Suppose
initially ωn(0) = πn,ON for all n.

2) Suppose at time t, the base station switches to channel
n. Transmit a data packet to user n with probability
P

(M)
n,01/ωn(t) and a dummy packet otherwise. In both

cases, we receive ACK/NACK information at the end
of the slot.

3) At time (t + 1), if a dummy packet is sent at time t,
switch to channel (n mod M) + 1 and go to Step 2.
Otherwise, keep transmitting data packets over channel
n until we receive a NACK. Then switch to channel (n
mod M) + 1 and go to Step 2. We note that dummy
packets are only sent on the first slot every time the
base station switches to a new channel.

4) Update ω(t) according to (1) in every slot.

Step 2 of RR(M) only makes sense if ωn(t) ≥ P
(M)
n,01, which

we prove in the next lemma.

Lemma 2. Under RR(M), whenever the base station switches
to channel n ∈ {1, 2, . . . , M} for another round of transmis-
sion, its current information state satisfies ωn(t) ≥ P

(M)
n,01.

Proof of Lemma 2: See Appendix A.
We note that policy RR(M) is very conservative and not

throughput-optimal. For example, we can improve the through-
put by always sending data packets but no dummy ones. Also,
it does not follow the guidelines we provide at the end of
Section II for maximum throughput. Yet, we will see that, in
the case of symmetric channels, throughput under RR(M) is
close to optimal when M is large. Moreover, the underlying
analysis of RR(M) is tractable so that we can mix such
round robin policies over different subsets of users to form
a non-trivial inner capacity bound. The tractability of RR(M)
is because it is equivalent to the following fictitious round
robin policy (which can be proved as a corollary of Lemma 3
provided later).

Equivalent Fictitious Round Robin:

1) At time 0, start with channel 1.

Figure 3.2: The k-step transition probabilities P
(k)
n,01 and P

(k)
n,11 of a positively correlated

Markov ON/OFF channel.

3.2 Round Robin Policy RR(M)

For any integer M ∈ {1, 2, . . . , N}, we present a special round robin policy RR(M) that

serves a subset of M users. We label these users by {1, . . . ,M}, and serve them in the

circular order 1→ 2→ · · · →M → 1→ · · · . In general, the RR(M) policy can work on

56



any subset of M users with any pre-determined ordering within the subset. This RR(M)

policy is in the same spirit as the myopic round robin policy in Ahmad et al. [2009]

that maximizes sum throughput over symmetric channels, but is carefully designed to

have closed-form performance that is easy to compute.3 The RR(M) policy preserves the

same asymptotical throughput optimality as the optimal myopic policy in Ahmad et al.

[2009], and is a fundamental building block in later analysis.

Round Robin Policy RR(M):

1. At time 0, the base station starts with channel 1. Suppose initially ωn(0) = πn,ON

for all n.

2. Suppose at time t, the base station switches to channel n. Then, it transmits a

data packet to user n with probability P
(M)
n,01/ωn(t) and a dummy packet otherwise.

In both cases, we receive ACK/NACK information at the end of the slot.

3. At time (t + 1), if a dummy packet is sent at time t, the base station switches to

channel (n mod M) + 1 and go to Step 2. Otherwise, it keeps transmitting data

packets over channel n until a NACK is received; then, it switches to channel (n

mod M) + 1 and goes to Step 2.

4. Update ω(t) according to (3.1) in every slot.

We note that Step 2 of RR(M) only makes sense if ωn(t) ≥ P
(M)
n,01 for all slots t that are

the first slots after switching to a new channel. We prove that this inequality is always

true in the next lemma.

Lemma 3.2 (Proof in Section 3.8.1). Under RR(M), whenever the base station switches

to channel n ∈ {1, 2, . . . ,M} for another round of transmission, its current information

state satisfies ωn(t) ≥ P
(M)
n,01.

3Over symmetric Markov ON/OFF channels, the sum throughput of the optimal myopic policy in Ah-
mad et al. [2009] is difficult to compute when N is large because it involves a high-order Markov chain.

57



We note that policy RR(M) is conservative and not throughput-optimal. For example,

we can improve throughput by always sending data packets but no dummy ones. Also,

it does not follow the guidelines we provide at the end of Section 3.1 for maximum

throughput. Nonetheless, we will see later that, in the case of symmetric channels, the

sum throughput under RR(M) is close to optimal when M is large. More importantly, the

underlying analysis of RR(M) is tractable so that we can mix such round robin policies

over different subsets of users to form a non-trivial inner bound on the network capacity

region. The tractability of RR(M) is because it is equivalent to the following fictitious

round robin policy (which can be proved as a corollary of Lemma 3.3 provided later).

Equivalent Fictitious Round Robin:

1. At time 0, start with channel 1.

2. When the base station switches to channel n, set its current information state to

P
(M)
n,01.4 Keep transmitting data packets over channel n until a NACK is received.

Then switch to channel (n mod M) + 1 and repeat Step 2.

For any round robin policy that serves channels in the circular order 1→ 2→· · ·→

M→1→· · · , the technique of resetting the information state to P
(M)
n,01 creates a system

with an information state that is worse than the information state under the actual

system. To see this, since in the actual system channels are served in the circular order,

after we switch away from serving a particular channel n, we serve the other (M − 1)

channels for at least one slot each, and so we return to channel n after at least M slots.

Thus, its starting information state is always at least P
(M)
n,01 (the proof is similar to that

of Lemma 3.2). Intuitively, since information states represent the success probabilities

of packet transmissions, resetting them to lower values degrades throughput. This is

the reason why our inner capacity bound constructed later using RR(M) provides a

throughput lower bound for a large class of policies.

4In reality, we cannot set the information state of a channel, and therefore the policy is fictitious.

58



3.2.1 Throughput Analysis

We analyze the throughput vector achieved by RR(M). Under RR(M), let Lkn denote

the duration of the kth time the base station stays with channel n. A sample path of

the {Lkn} process is

(L11, L12, . . . , L1M︸ ︷︷ ︸
round k = 1

, L21, L22, . . . , L2M︸ ︷︷ ︸
round k = 2

, L31, . . .). (3.4)

The next lemma presents useful properties of Lkn, which serve as the foundation of the

throughput analysis in the rest of the chapter.

Lemma 3.3. For any integer k and n ∈ {1, 2, . . . ,M},

1. The probability mass function of Lkn is independent of k, and is

Lkn =





1, with prob. 1− P
(M)
n,01

j ≥ 2, with prob. P
(M)
n,01 (Pn,11)(j−2) Pn,10.

As a result, for all k ∈ N we have

E [Lkn] = 1 +
P

(M)
n,01

Pn,10
= 1 +

Pn,01(1− (1− xn)M )

xnPn,10
, xn = Pn,01 + Pn,10. (3.5)

2. The number of data packets served in Lkn is (Lkn − 1).

3. For every fixed channel n, Lkn are i.i.d. random variables over different k.

Proof (Lemma 3.3). 1. We have Lkn = 1 if, on the first slot of serving channel n,

either a dummy packet is transmitted or a data packet is transmitted but the

channel is OFF. This event occurs with probability

(
1−

P
(M)
n,01

ωn(t)

)
+

P
(M)
n,01

ωn(t)
(1− ωn(t)) = 1− P

(M)
n,01.

59



Next, Lkn = j ≥ 2 if in the first slot a data packet is successfully served, and

this is followed by (j − 2) consecutive ON slots and one OFF slot. This happens

with probability P
(M)
n,01 (Pn,11)(j−2) Pn,10. The expectation of Lkn can be directly

computed from the probability mass function.

2. We observe that one data packet is served in every slot of Lkn except for the last

one (when a dummy packet is sent over channel n, we have Lkn = 1 and zero data

packets are served).

3. At the beginning of every Lkn, we observe from the equivalent fictitious round robin

policy that RR(M) effectively fixes P
(M)
n,01 as the current information state, regardless

of the true current state ωn(t). Neglecting ωn(t) is to discard all system history,

including all past Lk′n values for all k′ < k. Thus Lkn are i.i.d.. Specifically, for

any k′ < k and integers lk′ and lk, we have

Pr [Lkn = lk | Lk′n = lk′ ] = Pr [Lkn = lk] .

Using Lemma 3.3, we derive the throughput vector rendered by RR(M). Fix an

integer K > 0. By Lemma 3.3, the time average throughput over channel n after all

channels finish their Kth rounds, which we denote by µn(K), is

µn(K) ,
∑K

k=1(Lkn − 1)
∑K

k=1

∑M
n=1 Lkn

.

60



Passing K →∞, we get

lim
K→∞

µn(K) = lim
K→∞

∑K
k=1(Lkn − 1)

∑K
k=1

∑M
n=1 Lkn

= lim
K→∞

(1/K)
∑K

k=1 (Lkn − 1)
∑M

n=1(1/K)
∑K

k=1 Lkn

(a)
=

E [L1n]− 1
∑M

n=1 E [L1n]

(b)
=

Pn,01(1− (1− xn)M )/(xnPn,10)

M +
∑M

n=1 Pn,01(1− (1− xn)M )/(xnPn,10)
, (3.6)

where (a) follows the Law of Large Numbers (noting that Lkn are i.i.d. over k) and (b)

uses (3.5).

3.2.2 Example of Symmetric Channels

We are particularly interested in the sum throughput under RR(M) when channels are

symmetric. In this case, by channel symmetry, every channel has the same throughput.

From (3.6), the sum throughput is

M∑

n=1

lim
K→∞

µn(K) =
P01(1− (1− x)M )

xP10 + P01(1− (1− x)M )
,

where, in the last term, the subscript n is dropped due to channel symmetry. It is handy

to define a function c(·) : N→ R as

cM , P01(1− (1− x)M )

xP10 + P01(1− (1− x)M )
, x , P01 + P10, (3.7)

and we define c∞ , limM→∞ cM = P01/(xP10 + P01) (noting that x < 1 because ev-

ery channel is assumed positively correlated over slots). The function c(·) will be used

extensively in this chapter. We summarize the above analysis in the next lemma.

61



Lemma 3.4. Policy RR(M) serves channel n ∈ {1, 2, . . . ,M} with throughput

Pn,01(1− (1− xn)M )/(xnPn,10)

M +
∑M

n=1 Pn,01(1− (1− xn)M )/(xnPn,10)
.

Particularly, in symmetric channels, the sum throughput under RR(M) is

cM =
P01(1− (1− x)M )

xP10 + P01(1− (1− x)M )
, x = P01 + P10,

and every channel has throughput cM/M .

We remark that the sum throughput cM of RR(M) in the symmetric case is non-

decreasing in M , and thus can be improved by serving more channels. When channel

memory is neglected, Li and Neely [2010a] shows that the maximum sum throughput

is equal to πON = c1, which is strictly less than the memory-assisted throughput cM

whenever M ≥ 2 and x < 1. Interestingly, here we see that the sum throughput is im-

proved by having multiuser diversity and channel memory in the network, even though

instantaneous channel states are never known.

3.2.3 Asymptotical Throughput Optimality

Next, in symmetric channels, we quantify how close the sum throughput cM is to optimal.

The following lemma presents a useful upper bound on the maximum sum throughput.

Lemma 3.5 (Ahmad et al. [2009], Zhao et al. [2008]). In symmetric channels, any

scheduling policy has sum throughput less than or equal to c∞.5

5We note that the throughput analysis in Zhao et al. [2008] makes a minor assumption on the existence
of some limiting time average. Using similar ideas of Zhao et al. [2008], in Theorem 3.12 of Section 3.3.2
we will construct an upper bound on the maximum sum throughput for general positively correlated
Markov ON/OFF channels. When restricted to the symmetric case, we get the same upper bound
without any assumption.

62



By Lemma 3.4 and 3.5, the loss of sum throughput of RR(M) is no larger than

c∞ − cM . Define c̃M as

c̃M , P01(1− (1− x)M )

xP10 + P01
= c∞(1− (1− x)M )

and note that c̃M ≤ cM ≤ c∞. Then, the throughput loss of RR(M) is bounded by

c∞ − cM ≤ c∞ − c̃M = c∞(1− x)M . (3.8)

The last term of (3.8) decreases to zero geometrically fast as M increases. This indicates

that RR(M) yields near-optimal sum throughput even when it only serves a moderately

large number of channels.

3.3 Randomized Round Robin Policy RandRR

Lemma 3.4 specifies the throughput vector achieved by RR(M) over a particular collection

of M channels. Generally, we are interested in the set of throughput vectors achieved

by randomly mixing RR(M)-like policies over different channel subsets and allowing a

different round-robin ordering on each subset. First, we need to generalize the RR(M)

policy. Let Φ denote the set of all N -dimensional binary vectors excluding the zero

vector (0, 0, . . . , 0). For any binary vector φ = (φn)Nn=1 in Φ, we say channel n is active

in φ if φn = 1. Each vector φ ∈ Φ represents a different subset of active channels. We

denote by M(φ) the number of active channels in φ.

For each φ ∈ Φ, consider the following round robin policy RR(φ) that serves active

channels in φ in every round.

Dynamic Round Robin Policy RR(φ):

1. Deciding the service order in each round:

63



At the beginning of each round, we denote by τn the time duration between the

last use of channel n and the beginning of the current round. Active channels in

φ are served in the decreasing order of τn in this round (in other words, the active

channel that is least recently used is served first).

2. On each active channel in a round:

(a) Suppose at time t the base station switches to channel n. Then, it transmits

a data packet to user n with probability P
(M(φ))
n,01 /ωn(t) and a dummy packet

otherwise. In both cases, ACK/NACK information is received at the end of

the slot.

(b) At time (t+ 1), if a dummy packet is sent at time t, the base station switches

to the next active channel following the order given in Step 1. Otherwise,

it keeps transmitting data packets over channel n until a NACK is received;

then, it switches to the next active channel and go to Step 2a.

3. Update ω(t) according to (3.1) in every slot.

Using RR(φ) as a building block, we consider the following class of randomized round

robin policies.

Randomized Round Robin Policy RandRR:

1. Pick φ ∈ Φ with probability αφ, where
∑
φ∈Φ αφ = 1.

2. Run policy RR(φ) for one round. Then go to Step 1.

Note that the RandRR policy may serve active channels in different order in different

rounds, according to the least-recently-used service order. This allows more time for

OFF channels to return to better information states (note that P
(k)
n,01 is nondecreasing in

k) and improves throughput. The next lemma guarantees the feasibility of executing a

RR(φ) policy in every round of RandRR. In particular, similar to Lemma 3.2, whenever

64



the base station switches to a new channel n, we need ωn(t) ≥ P
(M(φ))
n,01 in Step 2a of

RR(φ).

Lemma 3.6 (Proof in Section 3.8.2). When RR(φ) is chosen by RandRR for a new round

of transmission, every active channel n in φ starts with an information state no worse

than P
(M(φ))
n,01 .

Although RandRR randomly selects a subset of channels in every round and serves

them in an order that depends on previous choices, we can surprisingly analyze its

throughput. This is done by using the throughput analysis of RR(M), shown in the

following corollary of Lemma 3.3.

Corollary 3.7. For each policy RR(φ), φ ∈ Φ, within time periods in which RR(φ) is

executed by RandRR, we denote by Lφkn the duration of the kth time the base station

stays with active channel n. Then:

1. The probability mass function of Lφkn is independent of k, and is

Lφkn =





1 with prob. 1− P
(M(φ))
n,01

j ≥ 2 with prob. P
(M(φ))
n,01 (Pn,11)(j−2) Pn,10.

As a result, for all k ∈ N we have

E
[
Lφkn

]
= 1 +

P
(M(φ))
n,01

Pn,10
. (3.9)

2. The number of data packets served in Lφkn is (Lφkn − 1).

3. For every fixed φ and every fixed active channel n in φ, the time durations Lφkn

are i.i.d. random variables over different k.

65



3.3.1 Achievable Network Capacity: An Inner Bound

Using Corollary 3.7, we present the throughput region achieved by the class of RandRR

policies; this is our inner bound on the network capacity region. For each RR(φ) policy,

we define an N -dimensional vector ηφ = (ηφn )Nn=1 where

ηφn ,





E
[
Lφ

1n

]
−1

∑
n:φn=1 E

[
Lφ

1n

] if channel n is active in φ,

0 otherwise,

(3.10)

where E
[
Lφ1n

]
is given in (3.9). Intuitively, by the analysis prior to Lemma 3.4, policy

RR(φ) yields throughput ηφn over channel n ∈ {1, 2, . . . , N}. Incorporating all possible

random mixtures of RR(φ) policies for different channel subsets φ, RandRR shall support

any data rate vector that is entrywise dominated by a convex combination of vectors

{ηφ}φ∈Φ.

Theorem 3.8 (Generalized Inner Capacity Bound; proof in Section 3.8.3). The class of

RandRR policies supports all data rate vectors λ in the set Λint defined as

Λint ,
{
λ | 0 ≤ λ ≤ µ, µ ∈ conv

({
ηφ
}
φ∈Φ

)}
,

where ηφ is defined in (3.10), conv (A) denotes the convex hull of set A, and ≤ is taken

entrywise.

Applying Theorem 3.8 to symmetric channels yields the following corollary.

Corollary 3.9 (Inner Capacity Bound for Symmetric Channels). In symmetric channels,

the class of RandRR policies supports all rate vectors λ ∈ Λint where

Λint =

{
λ | 0 ≤ λ ≤ µ, µ ∈ conv

({
cM(φ)

M(φ)
φ

}

φ∈Φ

)}
,

where cM(φ) is defined in (3.7).

66



The inner capacity bound Λint in Theorem 3.8 comprises all rate vectors that can

be written as a convex combination of the zero vector and all throughput vectors ηφ

(see (3.10)) yielded by round robin policies RR(φ) that serve different subsets φ of

channels. This convex hull characterization shows that the inner bound Λint contains

a large class of policies and is intuitively near optimal because it is constructed by

randomizing the efficient round robin policies RR(M) over all subsets of channels. A

simple example of the inner bound Λint is provided later in Section 3.3.3.

We also remark that, although Λint is conceptually simple, supporting any given rate

vector λ within Λint could be difficult because finding the right convex combination of

round robin policies RR(φ) that supports λ is of exponential complexity. In Section 3.5,

we provide a simple queue-dependent round robin policy that supports all data rate

vectors within the inner bound Λint with polynomial complexity.

3.3.2 Outer Capacity Bound

To study the tightness of the inner capacity region we create in the previous section, we

construct an outer bound on the network capacity region Λ using several novel ideas.

First, by state aggregation, we transform the information state process {ωn(t)} for each

channel n into non-stationary two-state Markov chains (in Fig. 3.4 later). Second, we

create a set of bounding stationary Markov chains (in Fig. 3.5 later), which has the

structure of a multi-armed bandit system. Finally, we create an outer capacity bound by

relating the bounding model to the original non-stationary Markov chains using stochas-

tic coupling. We note that, since the control of the information state processes {ωn(t)}

over all channels n is a restless multi-armed bandit problem, it is interesting to see how

we bound the optimal performance of a restless bandit by a related multi-armed bandit

system.

We first map channel information states ωn(t) into modes for each n ∈ {1, 2, . . . , N}.

Inspired by (3.3), we observe that each channel n must be in one of the following two

modes:

67



M1 The last observed state is ON, and the channel has not been seen (through feedback)

to turn OFF. In this mode the information state ωn(t) ∈ [πn,ON,Pn,11].

M2 The last observed state is OFF, and the channel has not been seen to turned ON.

Here ωn(t) ∈ [Pn,01, πn,ON].

On channel n, we recall that Wn = {P(k)
n,01,P

(k)
n,11 : k ∈ N} ∪ {πn,ON} is the state space of

ωn(t). We define a map fn :Wn → {M1,M2} where

fn(ωn(t)) =





M1 if ωn(t) ∈ (πn,ON,Pn,11],

M2 if ωn(t) ∈ [Pn,01, πn,ON].

This mapping is illustrated in Fig. 3.3.

6

Corollary 1. For each policy RR(φ), φ ∈ Φ, within time
periods in which RR(φ) is executed by RandRR, denote by
Lφ

kn the duration of the kth time the base station stays with
active channel n. Then:

1) The probability mass function of Lφ
kn is independent of

k, and is

Lφ
kn =

�
1 with prob. 1 − P

(M(φ))
n,01

j ≥ 2 with prob. P
(M(φ))
n,01 (Pn,11)

(j−2) Pn,10.

As a result, for all k ∈ N we have

E
�
Lφ

kn

�
= 1 +

P
(M(φ))
n,01

Pn,10
. (8)

2) The number of data packets served in Lφ
kn is (Lφ

kn −1).
3) For every fixed φ and every fixed active channel n in φ,

the time durations Lφ
kn are i.i.d. random variables over

all k.

B. Achievable Network Capacity — An Inner Capacity Bound

Using Corollary 1, next we present the achievable rate
region of the class of RandRR policies. For each RR(φ) policy,
define an N -dimensional vector ηφ = (ηφ1 , ηφ2 , . . . , ηφN ) where

ηφn �





E[Lφ
1n]−1

�
n:φn=1 E[Lφ

1n]
if channel n is active in φ,

0 otherwise,
(9)

where E
�
Lφ

1n

�
is given in (8). Intuitively, by the analysis prior

to Lemma 4, round robin policy RR(φ) yields throughput ηφn
over channel n for each n ∈ {1, 2, . . . , N}. Incorporating all
possible random mixtures of RR(φ) policies for different φ,
RandRR can support any data rate vector that is entrywise
dominated by a convex combination of vectors {ηφ}φ∈Φ as
shown by the next theorem.

Theorem 1 (Generalized Inner Capacity Bound). The class of
RandRR policies supports all data rate vectors λ in the set
Λint defined as

Λint �
�
λ | 0 ≤ λ ≤ µ, µ ∈ conv

��
ηφ
�
φ∈Φ

��
,

where ηφ is defined in (9), conv (A) denotes the convex hull
of set A, and ≤ is taken entrywise.

Proof of Theorem 1: See Appendix C.
Applying Theorem 1 to symmetric channels yields the

following corollary.

Corollary 2 (Inner Capacity Bound for Symmetric Channels).
In symmetric channels, the class of RandRR policies supports
all rate vectors λ ∈ Λint where

Λint =

�
λ | 0 ≤ λ ≤ µ, µ ∈ conv

��
cM(φ)

M(φ)
φ

�

φ∈Φ

��
,

where cM(φ) is defined in (6).

An example of the inner capacity bound and a simple queue-
dependent dynamic policy that supports all data rates within
this nontrivial inner bound will be provided later.

C. Outer Capacity Bound

We construct an outer bound on Λ using several novel ideas.
First, by state aggregation, we transform the information state
process {ωn(t)} for each channel n into non-stationary two-
state Markov chains (in Fig. 4 provided later). Second, we
create a set of bounding stationary Markov chains (in Fig. 5
provided later), which has the structure of a multi-armed bandit
system. Finally, we create an outer capacity bound by relating
the bounding model to the original non-stationary Markov
chains using stochastic coupling. We note that since the control
of the set of information state processes {ωn(t)} for all n can
be viewed as a restless bandit problem [14], it is interesting
to see how we bound the optimal performance of a restless
bandit problem by a related multi-armed bandit system.

We first map channel information states ωn(t) into modes
for each n ∈ {1, 2, . . . , N}. Inspired by (3), we observe that
each channel n must be in one of the following two modes:
M1 The last observed state is ON, and the channel has not

been seen (through feedback) to turn OFF. In this mode
the information state ωn(t) ∈ [πn,ON, Pn,11].

M2 The last observed state is OFF, and the channel has not
been seen to turned ON. Here ωn(t) ∈ [Pn,01,πn,ON].

On channel n, recall that Wn is the state space of ωn(t), and
define a map fn : Wn → {M1, M2} where

fn(ωn(t)) =

�
M1 if ωn(t) ∈ (πn,ON, Pn,11],
M2 if ωn(t) ∈ [Pn,01,πn,ON].

This mapping is illustrated in Fig. 3.

k

ωn(t)

πn,ON

Pn,01

Pn,11 P
(k)
n,11

P
(k)
n,01

M1

M2

Fig. 3. The mapping fn from information states ωn(t) to modes {M1, M2}.

For any information state process {ωn(t)} (controlled by
some scheduling policy), the corresponding mode transition
process under fn can be represented by the Markov chains
shown in Fig. 4. Specifically, when channel n is served in
a slot, the associated mode transition follows the upper non-
stationary chain of Fig. 4. When channel n is idled in a slot, the
mode transition follows the lower stationary chain of Fig. 4. In
the upper chain of Fig. 4, regardless what the current mode is,
mode M1 is visited in the next slot if and only if channel n is
ON in the current slot, which occurs with probability ωn(t).
In the lower chain of Fig. 4, when channel n is idled, its
information state changes from a k-step transition probability
to the (k + 1)-step transition probability with the same most
recent observed channel state. Therefore, the next mode stays
the same as the current mode. We emphasize that, in the upper
chain of Fig. 4, at mode M1 we always have ωn(t) ≤ Pn,11,
and at mode M2 it is ωn(t) ≤ πn,ON. A packet is served if
and only if M1 is visited in the upper chain of Fig. 4.

Figure 3.3: The mapping fn from information states ωn(t) to modes {M1,M2}.

For any information state process {ωn(t)}t∈Z+ (controlled by some scheduling policy),

the corresponding mode transition process under fn can be represented by the Markov

chains shown in Fig. 3.4. Specifically, when channel n is served in a slot, the associated

mode transition follows the upper non-stationary chain of Fig. 3.4. When channel n is

idled in a slot, the mode transition follows the lower stationary chain of Fig. 3.4. In

the upper chain of Fig. 3.4, regardless what the current mode is, mode M1 is visited

in the next slot if and only if channel n is ON in the current slot, which occurs with

probability ωn(t). In the lower chain of Fig. 3.4, when channel n is idled, its information

state changes from a k-step transition probability to a (k+1)-step transition probability

68



with the same most recent observed channel state. Therefore, the next mode stays the

same as the current mode. We emphasize that, in the upper chain of Fig. 3.4, at mode

M1 we always have ωn(t) ≤ Pn,11, and at mode M2 it is always ωn(t) ≤ πn,ON. A packet

is served if and only if M1 is visited in the upper chain of Fig. 3.4.
7

M1 M2

1 − ωn(t)

ωn(t) 1 − ωn(t)

ωn(t)
When channel n is served in a slot.

M1 M21 1

When channel n is idled in a slot.

Fig. 4. Mode transition diagrams for the real channel n.

M1 M2

1 − Pn,11

Pn,11 1 − πn,ON

πn,ON

When channel n is served in a slot.

M1 M21 1

When channel n is idled in a slot.

Fig. 5. Mode transition diagrams for the fictitious channel n.

To upper bound throughput, we compare Fig. 4 to the mode
transition diagrams in Fig. 5 that corresponds to a fictitious
model for channel n. This fictitious channel has constant
information state ωn(t) = Pn,11 whenever it is in mode M1,
and ωn(t) = πn,ON whenever it is in M2. In other words,
when the fictitious channel n is in mode M1 (or M2), it sets its
current information state to be the best state possible when the
corresponding real channel n is in the same mode. It follows
that, when both the real and the fictitious channel n are served,
the probabilities of transitions M1 → M1 and M2 → M1 in
the upper chain of Fig. 5 are greater than or equal to those in
Fig. 4, respectively. In other words, the upper chain of Fig. 5
is more likely to go to mode M1 and serve packets than that
of Fig. 4. Therefore, intuitively, if we serve both the real and
the fictitious channel n in the same infinite sequence of time
slots, the fictitious channel n will yield higher throughput for
all n. This observation is made precise by the next lemma.

Lemma 7. Consider two discrete-time Markov chains {X(t)}
and {Y (t)} both with state space {0, 1}. Suppose {X(t)} is
stationary and ergodic with transition probability matrix

P =

�
P00 P01

P10 P11

�
,

and {Y (t)} is non-stationary with

Q(t) =

�
Q00(t) Q01(t)
Q10(t) Q11(t)

�
.

Assume P01 ≥ Q01(t) and P11 ≥ Q11(t) for all t. In {X(t)},
let πX(1) denote the stationary probability of state 1; πX(1) =

P01/(P01 + P10). In {Y (t)}, define

πY (1) � lim sup
T→∞

1

T

T−1�

t=0

Y (t)

as the limiting fraction of time {Y (t)} stays at state 1. Then
we have πX(1) ≥ πY (1).

Proof of Lemma 7: Given in Appendix E.

We note that executing a scheduling policy in the network
is to generate a sequence of channel selection decisions.
By Lemma 7, if we apply the same sequence of channel
selection decisions of some scheduling policy to the set of
fictitious channels, we will get higher throughput on every
channel. A direct consequence of this is that the maximum
sum throughput over the fictitious channels is greater than or
equal to that over the real channels.

Lemma 8. The maximum sum throughput over the set of
fictitious channels is no more than

max
n∈{1,2,...,N}

{cn,∞}, cn,∞ � Pn,01

xnPn,10 + Pn,01
.

Proof of Lemma 8: We note that finding the maximum
sum throughput over fictitious channels in Fig. 5 is equivalent
to solving a multi-armed bandit problem [15] with each
channel acting as an arm (see Fig. 5 and note that a channel can
change mode only when it is served), and one unit of reward
is earned if a packet is delivered (recall that a packet is served
if and only if mode M1 is visited in the upper chain of Fig. 5).
The optimal solution to the multi-armed bandit system is to
always play the arm (channel) with the largest average reward
(throughput). The average reward over channel n is equal to
the stationary probability of mode M1 in the upper chain of
Fig. 5, which is

πn,ON

Pn,10 + πn,ON
=

Pn,01

xnPn,10 + Pn,01
.

This finishes the proof.

Together with the fact that throughput over any real channel
n cannot exceed its stationary ON probability πn,ON, we have
constructed an outer bound on the network capacity region Λ
(the proof follows the above discussions and thus is omitted).

Theorem 2. (Generalized Outer Capacity Bound): Any sup-
portable throughput vector λ = (λ1,λ2, . . . ,λN ) necessarily
satisfies

λn ≤ πn,ON, for all n ∈ {1, 2, . . . , N},
N�

n=1

λn ≤ max
n∈{1,2,...,N}

{cn,∞}

= max
n∈{1,2,...,N}

�
Pn,01

xnPn,10 + Pn,01

�
.

These (N + 1) hyperplanes create an outer capacity bound
Λout on Λ.

Corollary 3 (Outer Capacity Bound for Symmetric Channels).
In symmetric channels with Pn = P, cn,∞ = c∞, and

Figure 3.4: Mode transition diagrams for the real channel n.

7

M1 M2

1 − ωn(t)

ωn(t) 1 − ωn(t)

ωn(t)
When channel n is served in a slot.

M1 M21 1

When channel n is idled in a slot.

Fig. 4. Mode transition diagrams for the real channel n.

M1 M2

1 − Pn,11

Pn,11 1 − πn,ON

πn,ON

When channel n is served in a slot.

M1 M21 1

When channel n is idled in a slot.

Fig. 5. Mode transition diagrams for the fictitious channel n.

To upper bound throughput, we compare Fig. 4 to the mode
transition diagrams in Fig. 5 that corresponds to a fictitious
model for channel n. This fictitious channel has constant
information state ωn(t) = Pn,11 whenever it is in mode M1,
and ωn(t) = πn,ON whenever it is in M2. In other words,
when the fictitious channel n is in mode M1 (or M2), it sets its
current information state to be the best state possible when the
corresponding real channel n is in the same mode. It follows
that, when both the real and the fictitious channel n are served,
the probabilities of transitions M1 → M1 and M2 → M1 in
the upper chain of Fig. 5 are greater than or equal to those in
Fig. 4, respectively. In other words, the upper chain of Fig. 5
is more likely to go to mode M1 and serve packets than that
of Fig. 4. Therefore, intuitively, if we serve both the real and
the fictitious channel n in the same infinite sequence of time
slots, the fictitious channel n will yield higher throughput for
all n. This observation is made precise by the next lemma.

Lemma 7. Consider two discrete-time Markov chains {X(t)}
and {Y (t)} both with state space {0, 1}. Suppose {X(t)} is
stationary and ergodic with transition probability matrix

P =

�
P00 P01

P10 P11

�
,

and {Y (t)} is non-stationary with

Q(t) =

�
Q00(t) Q01(t)
Q10(t) Q11(t)

�
.

Assume P01 ≥ Q01(t) and P11 ≥ Q11(t) for all t. In {X(t)},
let πX(1) denote the stationary probability of state 1; πX(1) =

P01/(P01 + P10). In {Y (t)}, define

πY (1) � lim sup
T→∞

1

T

T−1�

t=0

Y (t)

as the limiting fraction of time {Y (t)} stays at state 1. Then
we have πX(1) ≥ πY (1).

Proof of Lemma 7: Given in Appendix E.

We note that executing a scheduling policy in the network
is to generate a sequence of channel selection decisions.
By Lemma 7, if we apply the same sequence of channel
selection decisions of some scheduling policy to the set of
fictitious channels, we will get higher throughput on every
channel. A direct consequence of this is that the maximum
sum throughput over the fictitious channels is greater than or
equal to that over the real channels.

Lemma 8. The maximum sum throughput over the set of
fictitious channels is no more than

max
n∈{1,2,...,N}

{cn,∞}, cn,∞ � Pn,01

xnPn,10 + Pn,01
.

Proof of Lemma 8: We note that finding the maximum
sum throughput over fictitious channels in Fig. 5 is equivalent
to solving a multi-armed bandit problem [15] with each
channel acting as an arm (see Fig. 5 and note that a channel can
change mode only when it is served), and one unit of reward
is earned if a packet is delivered (recall that a packet is served
if and only if mode M1 is visited in the upper chain of Fig. 5).
The optimal solution to the multi-armed bandit system is to
always play the arm (channel) with the largest average reward
(throughput). The average reward over channel n is equal to
the stationary probability of mode M1 in the upper chain of
Fig. 5, which is

πn,ON

Pn,10 + πn,ON
=

Pn,01

xnPn,10 + Pn,01
.

This finishes the proof.

Together with the fact that throughput over any real channel
n cannot exceed its stationary ON probability πn,ON, we have
constructed an outer bound on the network capacity region Λ
(the proof follows the above discussions and thus is omitted).

Theorem 2. (Generalized Outer Capacity Bound): Any sup-
portable throughput vector λ = (λ1,λ2, . . . ,λN ) necessarily
satisfies

λn ≤ πn,ON, for all n ∈ {1, 2, . . . , N},
N�

n=1

λn ≤ max
n∈{1,2,...,N}

{cn,∞}

= max
n∈{1,2,...,N}

�
Pn,01

xnPn,10 + Pn,01

�
.

These (N + 1) hyperplanes create an outer capacity bound
Λout on Λ.

Corollary 3 (Outer Capacity Bound for Symmetric Channels).
In symmetric channels with Pn = P, cn,∞ = c∞, and

Figure 3.5: Mode transition diagrams for the fictitious channel n.

To upper bound throughput, we compare Fig. 3.4 to the mode transition diagrams in

Fig. 3.5 that correspond to a fictitious model for channel n. This fictitious channel has

constant information state ωn(t) = Pn,11 whenever it is in mode M1, and ωn(t) = πn,ON

whenever it is in M2. In other words, when the fictitious channel n is in either mode

M1 or M2, it sets its current information state to be the best state possible when the

corresponding real channel n is in the same mode. It follows that, when both the real

69



channel n and the fictitious channel n are served, the probabilities of the transitions

M1 → M1 and M2 → M1 in the upper chain of Fig. 3.5 are greater than or equal to

those in Fig. 3.4, respectively. In other words, the upper chain of Fig. 3.5 is more likely

to go to mode M1 and serve packets than that of Fig. 3.4. Therefore, intuitively, if we

serve both the real channel n and the fictitious channel n in the same infinite sequence

of time slots, the fictitious channel n yields higher throughput than the real channel n.

This observation is made precise by the next lemma.

Lemma 3.10 (Proof in Section 3.8.5). Consider two discrete-time Markov chains {X(t)}

and {Y (t)} both with state space {0, 1}. Suppose {X(t)} is stationary and ergodic with

transition probability matrix

P =


P00 P01

P10 P11


 ,

and {Y (t)} is non-stationary with

Q(t) =


Q00(t) Q01(t)

Q10(t) Q11(t)


 .

Assume P01 ≥ Q01(t) and P11 ≥ Q11(t) for all t. In {X(t)}, let πX(1) denote the

stationary probability of state 1; πX(1) = P01/(P01 + P10). In {Y (t)}, define

πY (1) , lim sup
T→∞

1

T

T−1∑

t=0

Y (t)

as the limiting fraction of time {Y (t)} stays at state 1. Then, we have πX(1) ≥ πY (1).

We note that executing a scheduling policy in the network is to generate a sequence

of channel selection decisions. By Lemma 3.10, if we apply the same sequence of channel

selection decisions of some scheduling policy to the set of fictitious channels, we get

higher throughput on every channel. A direct consequence of this is that the maximum

70



sum throughput over the fictitious channels is greater than or equal to that over the real

channels.

Lemma 3.11. The maximum sum throughput over the set of fictitious channels is no

more than

max
n∈{1,2,...,N}

{cn,∞}, cn,∞ , Pn,01

xnPn,10 + Pn,01
.

Proof (Lemma 3.11). We note that finding the maximum sum throughput over ficti-

tious channels in Fig. 3.5 is equivalent to solving a multi-armed bandit problem [Gittins

1989] with each channel acting as an arm (noting in Fig. 3.5 that a channel can change

mode only when it is served), and one unit of reward is earned if a packet is delivered

(recalling that a packet is served if and only if mode M1 is visited in the upper chain

of Fig. 3.5). The optimal solution to the multi-armed bandit system is to always play

the arm (channel) with the largest average reward (throughput). The average reward

over channel n is equal to the stationary probability of mode M1 in the upper chain of

Fig. 3.5, which is

πn,ON

Pn,10 + πn,ON
=

Pn,01

xnPn,10 + Pn,01
.

This finishes the proof.

Together with the fact that throughput over any real channel n cannot exceed its

stationary ON probability πn,ON, we have constructed an outer bound on the network

capacity region Λ, formalized in the next theorem (the proof follows the above discussions

and is omitted).

Theorem 3.12 (Generalized Outer Capacity Bound). Every supportable throughput

vector λ = (λn)Nn=1 necessarily satisfies

λn ≤ πn,ON, for all n ∈ {1, 2, . . . , N},
N∑

n=1

λn ≤ max
n∈{1,2,...,N}

{cn,∞} = max
n∈{1,2,...,N}

{
Pn,01

xnPn,10 + Pn,01

}
.

71



These (N + 1) hyperplanes create an outer capacity bound Λout on Λ.

Corollary 3.13 (Outer Capacity Bound for Symmetric Channels). In symmetric chan-

nels with Pn = P, cn,∞ = c∞, and πn,ON = πON for all n, we have

Λout =

{
λ ≥ 0 |

N∑

n=1

λn ≤ c∞, λn ≤ πON for 1 ≤ n ≤ N
}
, (3.11)

where ≥ is taken entrywise.

We note that Lemma 3.5 in Section 3.2.2 directly follows Corollary 3.13.

3.3.3 Example of Symmetric Channels

Here we consider a two-user example on symmetric channels. For simplicity, we drop

the subscript n in notations. From Corollary 3.13, we have the outer bound

Λout =





(λ1, λ2)

∣∣∣∣∣∣∣∣∣∣∣

0 ≤ λn ≤ P01/x, for 1 ≤ n ≤ 2,

λ1 + λ2 ≤ P01/(xP10 + P01),

x = P01 + P10





.

For the inner bound Λint, policy RandRR can execute three round robin policies RR(φ)

for φ ∈ Φ = {(1, 1), (0, 1), (1, 0)}. From Corollary 3.9, we have

Λint =





(λ1, λ2)

∣∣∣∣∣∣∣

0 ≤ λn ≤ µn, for 1 ≤ n ≤ 2,

(µ1, µ2) ∈ conv
({

(
c2

2
,
c2

2
), (c1, 0), (0, c1)

})




.

In the case of P01 = P10 = 0.2, the two bounds λint and Λout are shown in Fig. 3.6.

In Fig. 3.6, we also compare Λint and Λout with other rate regions. Set Λideal is

the ideal capacity region when instantaneous channel states are known without causing

any (timing) overhead [Tassiulas and Ephremides 1993]. Zhao et al. [2008] shows that

the maximum sum throughput in this network is achieved at point A = (0.325, 0.325).

The (unknown) network capacity region Λ is bounded between Λint and Λout, and has

72



8

πn,ON = πON for all n, we have

Λout =

�
λ ≥ 0 |

N�

n=1

λn ≤ c∞, λn ≤ πON for 1 ≤ n ≤ N

�
,

(10)
where ≥ is taken entrywise.

We note that Lemma 5 in Section III-C directly follows
Corollary 3.

D. A Two-User Example on Symmetric Channels
Here we consider a two-user example on symmetric chan-

nels. For simplicity we will drop the subscript n in notations.
From Corollary 3, we have the outer bound

Λout =





�
λ1

λ2

�
�������

0 ≤ λn ≤ P01/x, for 1 ≤ n ≤ 2,

λ1 + λ2 ≤ P01/(xP10 + P01),

x = P01 + P10





.

For the inner bound Λint, we note that policy RandRR can
execute three round robin policies RR(φ) for φ ∈ Φ =
{(1, 1), (0, 1), (1, 0)}. From Corollary 2, we have

Λint =





�
λ1

λ2

� ������

0 ≤ λn ≤ µn, for 1 ≤ n ≤ 2,�
µ1

µ2

�
∈ conv

���
c2/2
c2/2

�
,

�
c1

0

�
,

�
0
c1

���


 .

Under the special case P01 = P10 = 0.2, the two bounds λint
and Λout are shown in Fig. 6.

A

B

C

D

λ1

λ2

0.25 0.5

0.25

0.5
Λout

Λideal

Λblind

Λint

Λ (unknown)

Fig. 6. Comparison of rate regions under different assumptions.

In Fig. 6, we also compare Λint and Λout with other
rate regions. Set Λideal is the ideal capacity region when
instantaneous channel states are known without causing any
(timing) overhead [16]. Next, it is shown in [6] that the
maximum sum throughput in this network is achieved at point
A = (0.325, 0.325). The (unknown) network capacity region
Λ is bounded between Λint and Λout, and has boundary points
B, A, and C. Since the boundary of Λ is a concave curve
connecting B, A, and C, we envision that Λ shall contain but
be very close to Λint.

Finally, the rate region Λblind is rendered by completely
neglecting channel memory and treating the channels as i.i.d.

over slots [2]. We observe the throughput gain Λint \Λblind, as
much as 23% in this example, is achieved by incorporating
channel memory. In general, if channels are symmetric and
treated as i.i.d. over slots, the maximum sum throughput in the
network is πON = c1. Then the maximum throughput gain of
RandRR using channel memory is cN −c1, which as N → ∞
converges to

c∞ − c1 =
P01

xP10 + P01
− P01

P01 + P10
,

which is controlled by the factor x = P01 + P10.

E. A Heuristically Tighter Inner Bound
It is shown in [7] that the following policy maximizes the

sum throughput in a symmetric network:
Serve channels in a circular order, where on each
channel keep transmitting data packets until a NACK
is received.

In the above two-user example, this policy achieves throughput
vector A in Fig. 7. If we replace our round robin policy

A

B

C

D

λ1

λ2

0.25 0.5

0.25

0.5

Λint

Λ (unknown)

Λheuristic

Fig. 7. Comparison of our inner bound Λint, the unknown network capacity
region Λ, and a heuristically better inner bound Λheuristic.

RR(φ) by this one, heuristically we are able to construct a
tighter inner capacity bound. For example, we can support
the tighter inner bound Λheuristic in Fig. 7 by appropriate time
sharing among the above policy that serves different subsets
of channels. However, we note that this approach is difficult
to analyze because the {Lkn} process (see (4)) forms a high-
order Markov chain. Yet, our inner bound Λint provides a good
throughput guarantee for this class of heuristic policies.

V. PROXIMITY OF THE INNER BOUND TO THE TRUE
CAPACITY REGION — SYMMETRIC CASE

Next we bound the closeness of the boundaries of Λint
and Λ in the case of symmetric channels. In Section III-C,
by choosing M = N , we have provided such analysis for
the boundary point in the direction (1, 1, . . . , 1). Here we
generalize to all boundary points. Define

V �
�

(v1, v2, . . . , vN )

�����
vn ≥ 0 for 1 ≤ n ≤ N ,

vn > 0 for at least one n

�

Figure 3.6: Comparison of throughput regions under different assumptions.

boundary points B, A, and C. Since the boundary of Λ is a concave curve connecting

B, A, and C, we envision that Λ shall contain but be very close to Λint.

The throughput region Λblind in Fig. 3.6 is rendered by neglecting channel memory

and treating channels as i.i.d. over slots [Li and Neely 2010a]. The throughput gain

Λint \ Λblind, as much as 23% in this example, is achieved by using channel memory. In

general, if channels are symmetric and treated as i.i.d. over slots, the maximum sum

throughput is πON = c1. The maximum throughput gain of RandRR that uses channel

memory is cN − c1, which, as N →∞, converges to

c∞ − c1 =
P01

xP10 + P01
− P01

P01 + P10
,

which is controlled by the factor x = P01 + P10.

3.3.4 A Heuristically Tighter Inner Bound

Ahmad et al. [2009] shows that the following policy maximizes the sum throughput in

the special case of symmetric channels:

73



Serve channels in a fixed circular order, where on each channel keep trans-

mitting data packets until a NACK is received.

In the above two-user example, this policy achieves throughput vector A in Fig. 3.7. If we

8

πn,ON = πON for all n, we have

Λout =

�
λ ≥ 0 |

N�

n=1

λn ≤ c∞, λn ≤ πON for 1 ≤ n ≤ N

�
,

(10)
where ≥ is taken entrywise.

We note that Lemma 5 in Section III-C directly follows
Corollary 3.

D. A Two-User Example on Symmetric Channels
Here we consider a two-user example on symmetric chan-

nels. For simplicity we will drop the subscript n in notations.
From Corollary 3, we have the outer bound

Λout =





�
λ1

λ2

�
�������

0 ≤ λn ≤ P01/x, for 1 ≤ n ≤ 2,

λ1 + λ2 ≤ P01/(xP10 + P01),

x = P01 + P10





.

For the inner bound Λint, we note that policy RandRR can
execute three round robin policies RR(φ) for φ ∈ Φ =
{(1, 1), (0, 1), (1, 0)}. From Corollary 2, we have

Λint =





�
λ1

λ2

� ������

0 ≤ λn ≤ µn, for 1 ≤ n ≤ 2,�
µ1

µ2

�
∈ conv

���
c2/2
c2/2

�
,

�
c1

0

�
,

�
0
c1

���


 .

Under the special case P01 = P10 = 0.2, the two bounds λint
and Λout are shown in Fig. 6.

A

B

C

D

λ1

λ2

0.25 0.5

0.25

0.5
Λout

Λideal

Λblind

Λint

Λ (unknown)

Fig. 6. Comparison of rate regions under different assumptions.

In Fig. 6, we also compare Λint and Λout with other
rate regions. Set Λideal is the ideal capacity region when
instantaneous channel states are known without causing any
(timing) overhead [16]. Next, it is shown in [6] that the
maximum sum throughput in this network is achieved at point
A = (0.325, 0.325). The (unknown) network capacity region
Λ is bounded between Λint and Λout, and has boundary points
B, A, and C. Since the boundary of Λ is a concave curve
connecting B, A, and C, we envision that Λ shall contain but
be very close to Λint.

Finally, the rate region Λblind is rendered by completely
neglecting channel memory and treating the channels as i.i.d.

over slots [2]. We observe the throughput gain Λint \Λblind, as
much as 23% in this example, is achieved by incorporating
channel memory. In general, if channels are symmetric and
treated as i.i.d. over slots, the maximum sum throughput in the
network is πON = c1. Then the maximum throughput gain of
RandRR using channel memory is cN −c1, which as N → ∞
converges to

c∞ − c1 =
P01

xP10 + P01
− P01

P01 + P10
,

which is controlled by the factor x = P01 + P10.

E. A Heuristically Tighter Inner Bound
It is shown in [7] that the following policy maximizes the

sum throughput in a symmetric network:
Serve channels in a circular order, where on each
channel keep transmitting data packets until a NACK
is received.

In the above two-user example, this policy achieves throughput
vector A in Fig. 7. If we replace our round robin policy

A

B

C

D

λ1

λ2

0.25 0.5

0.25

0.5

Λint

Λ (unknown)

Λheuristic

Fig. 7. Comparison of our inner bound Λint, the unknown network capacity
region Λ, and a heuristically better inner bound Λheuristic.

RR(φ) by this one, heuristically we are able to construct a
tighter inner capacity bound. For example, we can support
the tighter inner bound Λheuristic in Fig. 7 by appropriate time
sharing among the above policy that serves different subsets
of channels. However, we note that this approach is difficult
to analyze because the {Lkn} process (see (4)) forms a high-
order Markov chain. Yet, our inner bound Λint provides a good
throughput guarantee for this class of heuristic policies.

V. PROXIMITY OF THE INNER BOUND TO THE TRUE
CAPACITY REGION — SYMMETRIC CASE

Next we bound the closeness of the boundaries of Λint
and Λ in the case of symmetric channels. In Section III-C,
by choosing M = N , we have provided such analysis for
the boundary point in the direction (1, 1, . . . , 1). Here we
generalize to all boundary points. Define

V �
�

(v1, v2, . . . , vN )

�����
vn ≥ 0 for 1 ≤ n ≤ N ,

vn > 0 for at least one n

�

Figure 3.7: Comparison of our inner capacity bound Λint, the unknown network capacity
region Λ, and a heuristically better inner capacity bound Λheuristic.

replace our round robin policy RR(φ) by this one, heuristically we are able to construct

a tighter inner capacity bound. For example, we can support the tighter inner bound

Λheuristic in Fig. 3.7 by appropriate time sharing of the above sum-throughput-optimal

policy applied to different subsets of channels. However, we note that this approach

is difficult to analyze because the {Lkn} process (see (3.4)) forms a high-order Markov

chain. Our inner bound Λint provides a good throughput guarantee for this class of

heuristic policies.

3.4 Tightness of Inner Capacity Bound: Symmetric Case

Next we bound the closeness of the boundaries of Λint and Λ in the case of symmetric

channels. In Section 3.2.2, by choosing M = N , we have provided such analysis for the

74



boundary point in the direction (1, 1, . . . , 1). Here we generalize to all boundary points.

Define

V ,





(vn)Nn=1

∣∣∣∣∣∣∣

vn ≥ 0 for 1 ≤ n ≤ N ,

vn > 0 for at least one n





as a set of directional vectors. For any v ∈ V, let λint = (λint
n )Nn=1 and λout = (λout

1 )Nn=1

be the boundary point of Λint and Λout in the direction of v, respectively. It is useful to

compute
∑N

n=1(λout
n − λint

n ), because it upper bounds the loss of the sum throughput of

Λint from Λ in the direction of v.6 Computing λint in an arbitrary direction is difficult.

Thus we find an upper bound on
∑N

n=1(λout
n − λint

n ).

3.4.1 Preliminary

To have more intuitions on Λint, we consider an example of N = 3 users. We are

interested in the boundary point of Λint in the direction of v = (1, 2, 1). Consider two

RandRR policies ψ1 and ψ2 defined as follows.

For ψ1, choose





φ1 = (1, 0, 0) with prob. 1/4

φ2 = (0, 1, 0) with prob. 1/2

φ3 = (0, 0, 1) with prob. 1/4

For ψ2, choose





φ4 = (1, 1, 0) with prob. 1/2

φ5 = (0, 1, 1) with prob. 1/2

6The sum
∑N
n=1(λout

n − λint
n ) also bounds the closeness between Λout and Λ.

75



Both ψ1 and ψ2 support data rate vectors in the direction of (1, 2, 1). However, using

the analysis for Lemma 3.4 and Theorem 3.8, we know ψ1 supports throughput vector

1

4




c1

0

0




+
1

2




0

c1

0




+
1

4




0

0

c1




=
c1

4




1

2

1



,

while ψ2 supports

1

2




c2/2

c2/2

0




+
1

2




0

c2/2

c2/2




=
c2

4




1

2

1



≥ c1

4




1

2

1



,

where c1 and c2 are defined in (3.7). We see that ψ2 achieves a rate vector closer to the

boundary of Λint than ψ1 does. It is because every sub-policy of ψ2, namely RR(φ4) and

RR(φ5), supports sum throughput c2 (by Lemma 3.4), where those of ψ1 only support

c1. In other words, policy ψ2 has better multiuser diversity gain than ψ1 does. This

example suggests that we can find a good lower bound on λint by exploring to what

extent the multiuser diversity can be exploited. We start with the following definition.

Definition 3.14. For any v ∈ V, we say v is d-user diverse if v can be written as a

positive combination of vectors in Φd, where Φd denotes the set of N -dimensional binary

vectors having d entries be 1. Define

d(v) , max
1≤d≤N

{d | v is d-user diverse},

and we shall say v is maximally d(v)-user diverse.

The notion of d(v) is well-defined because every v must be 1-user diverse.7 Defini-

tion 3.14 is the most useful to us through the next lemma.

7The set Φ1 = {e1, e2, . . . , eN} is the collection of unit coordinate vectors where en has its nth entry
be 1 and 0 otherwise. Any vector v ∈ V, v = (v1, v2, . . . , vN ), can be written as v =

∑
vn>0 vnen.

76



Lemma 3.15 (Proof in Section 3.8.7). The boundary point of Λint in the direction of

v ∈ V has sum throughput at least cd(v), where

cd(v) ,
P01(1− (1− x)d(v))

xP10 + P01(1− (1− x)d(v))
, x , P01 + P10.

We provide a sketch of proof here. If direction v can be written as a positive weighted

sum of vectors in Φd(v), we can normalize the weights and use them as probabilities to

randomly mix RR(φ) policies for all φ ∈ Φd(v). In this way, we achieve sum through-

put cd(v) in every transmission round, and overall the throughput vector will be in the

direction of v.

Fig. 3.8 provides an example of Lemma 3.15 in the two-user symmetric system in

Section 3.3.3. We observe that direction (1, 1), the one that passes point D in Fig. 3.8, is

9

as a set of directional vectors. For any v ∈ V , let λint =
(λint

1 ,λint
2 , . . . ,λint

N ) and λout = (λout
1 ,λout

2 , . . . ,λout
N ) be the

boundary point of Λint and Λout in the direction of v, respec-
tively. It is useful to compute

�N
n=1(λ

out
n − λint

n ), because it
upper bounds the loss of the sum throughput of Λint from Λ in
the direction of v.5 We note that computing λint in an arbitrary
direction is difficult. Thus we will find an upper bound on�N

n=1(λ
out
n − λint

n ).

A. Preliminary

To have more intuitions on Λint, we start with a toy example
of N = 3 users. We are interested in the boundary point of Λint
in the direction of v = (1, 2, 1). Consider two RandRR-type
policies ψ1 and ψ2 defined as follows.

For ψ1, choose





φ1 = (1, 0, 0) with prob. 1/4

φ2 = (0, 1, 0) with prob. 1/2

φ3 = (0, 0, 1) with prob. 1/4

For ψ2, choose

�
φ4 = (1, 1, 0) with prob. 1/2

φ5 = (0, 1, 1) with prob. 1/2

Both ψ1 and ψ2 support data rates in the direction of (1, 2, 1).
However, using the analysis of Lemma 4 and Theorem 1, we
know ψ1 supports throughput vector

1

4




c1

0
0


+

1

2




0
c1

0


+

1

4




0
0
c1


 =

c1

4




1
2
1


 ,

while ψ2 supports

1

2




c2/2
c2/2

0


+

1

2




0
c2/2
c2/2


 =

c2

4




1
2
1


 ≥ c1

4




1
2
1


 ,

where c1 and c2 are defined in (6). We see that ψ2 achieves
data rates closer than ψ1 does to the boundary of Λint. It is
because every sub-policy of ψ2, namely RR(φ4) and RR(φ5),
supports sum throughput c2 (by Lemma 4), where those of ψ1

only support c1. In other words, policy ψ2 has better multiuser
diversity gain than ψ1 does. This example suggests that we
can find a good lower bound on λint by exploring to what
extent the multiuser diversity can be exploited. We start with
the following definition.

Definition 1. For any v ∈ V , we say v is d-user diverse if
v can be written as a positive combination of vectors in Φd,
where Φd denotes the set of N -dimensional binary vectors
having d entries be 1. Define

d(v) � max
1≤d≤N

{d | v is d-user diverse},

and we shall say v is maximally d(v)-user diverse.

The notion of d(v) is well-defined because every v must be
1-user diverse.6 Definition 1 is the most useful to us through

5Note that
�N

n=1(λout
n −λint

n ) also bounds the closeness between Λout and
Λ.

6The set Φ1 = {e1, e2, . . . , eN} is the collection of unit coordinate
vectors where en has its nth entry be 1 and 0 otherwise. Any vector v ∈ V ,
v = (v1, v2, . . . , vN ), can be written as v =

�
vn>0 vnen.

the next lemma.

Lemma 9. The boundary point of Λint in the direction of v ∈
V has sum throughput at least cd(v), where

cd(v) �
P01(1 − (1 − x)d(v))

x P10 + P01(1 − (1 − x)d(v))
, x � P01 + P10.

Proof of Lemma 9: If direction v can be written as a
positive weighted sum of vectors in Φd(v), we can normalize
the weights, and use the new weights as probabilities to
randomly mix RR(φ) policies for all φ ∈ Φd(v). This way
we achieve sum throughput cd(v) in every transmission round,
and overall the throughput vector will be in the direction of
v. Therefore the result follows. For details, see Appendix G.

Fig. 8 provides an example of Lemma 9 in the two-
user symmetric system in Section IV-D. We observe that

B

C

D

λ1

λ2

0.25 0.5

0.25

0.5

λ1 + λ2 = c2

λ1 + λ2 = c1

Λint

Fig. 8. An example for Lemma 9 in the two-user symmetric network. Point
B and C achieve sum throughput c1 = πON = 0.5, and the sum throughput
at D is c2 ≈ 0.615. Any other boundary point of Λint has sum throughput
between c1 and c2.

direction (1, 1), the one that passes point D in Fig. 8, is
the only direction that is maximally 2-user diverse. The sum
throughput c2 is achieved at D. For all the other directions,
they are maximally 1-user diverse and, from Fig. 8, only
sum throughput c1 is guaranteed along those directions. In
general, geometrically we can show that a maximally d-user
diverse vector, say vd, forms a smaller angle with the all-1
vector (1, 1, . . . , 1) than a maximally d�-user diverse vector,
say vd� , does if d� < d. In other words, data rates along vd

are more balanced than those along vd� . Lemma 9 states that
we guarantee to support higher sum throughput if the user
traffic is more balanced.

B. Proximity Analysis

We use the notion of d(v) to upper bound
�N

n=1(λ
out
n −λint

n )
in any direction v ∈ V . Let λout = θλint (i.e., λout

n = θλint
n

for all n) for some θ ≥ 1. By (10), the boundary of Λout is
characterized by the interaction of the (N + 1) hyperplanes�N

n=1 λn = c∞ and λn = πON for each n ∈ {1, 2, . . . , N}.
Specifically, in any given direction, if we consider the cross
points on all the hyperplanes in that direction, the boundary

Figure 3.8: An example for Lemma 3.15 in the two-user symmetric network. Point B and
C achieve sum throughput c1 = πON = 0.5, and the sum throughput at D is c2 ≈ 0.615.
Any other boundary point of Λint has sum throughput between c1 and c2.

the only direction that is maximally 2-user diverse. The sum throughput c2 is achieved at

D. For all the other directions, they are maximally 1-user diverse and, from Fig. 3.8, only

sum throughput c1 is guaranteed along those directions. In general, geometrically we

can show that a maximally d-user diverse vector, say vd, forms a smaller angle with the

77



all-1 vector (1, 1, . . . , 1) than a maximally d′-user diverse vector, say vd′ , does if d′ < d.

In other words, data rates along vd are more balanced than those along vd′ . Lemma 3.15

states that we guarantee to support higher sum throughput if the user traffic is more

balanced.

3.4.2 Analysis

We use the notion of d(v) to upper bound
∑N

n=1(λout
n − λint

n ) in any direction v ∈ V.

Let λout = θλint (i.e., λout
n = θλint

n for all n) for some θ ≥ 1. By (3.11), the boundary of

Λout is characterized by the interaction of the (N + 1) hyperplanes
∑N

n=1 λn = c∞ and

λn = πON for each n ∈ {1, 2, . . . , N}. Specifically, in any given direction, if we consider

the cross points on all the hyperplanes in that direction, the boundary point λout is the

one closest to the origin. We do not know which hyperplane λout is on, and thus need to

consider all (N + 1) cases. If λout is on the plane
∑N

n=1 λn = c∞, i.e.,
∑N

n=1 λ
out
n = c∞,

we get
N∑

n=1

(λout
n − λint

n )
(a)

≤ c∞ − cd(v)

(b)

≤ c∞(1− x)d(v),

where (a) is by Lemma 3.15 and (b) is by (3.8). If λout is on the plane λn = πON for

some n, then θ = πON/λ
int
n . It follows

N∑

n=1

(λout
n − λint

n ) = (θ − 1)
N∑

n=1

λint
n ≤

(
πON

λint
n

− 1

)
c∞.

The above discussions lead to the next lemma.

Lemma 3.16. The loss of the sum throughput of Λint from Λ in the direction of v is

upper bounded by

min

[
c∞(1− x)d(v), min

1≤n≤N

{(
πON

λint
n

− 1

)
c∞

}]

= c∞min

[
(1− x)d(v),

πON

max1≤n≤N{λint
n }
− 1

]
. (3.12)

78



Lemma 3.16 shows that, if data rates of different users are more balanced, namely,

have a larger d(v), the loss of sum throughput is dominated by the first term in the

minimum of (3.12), and decreases to 0 geometrically fast with d(v). If data rates are

biased toward a particular user, the second term in the minimum of (3.12) captures the

throughput loss, which goes to 0 as the rate of the favored user goes to the single-user

capacity πON.

3.5 Queue-Dependent Round Robin Policy QRR

Over positively correlated Markov ON/OFF channels that are possibly asymmetric, we

present a queue-dependent dynamic round robin policy that supports any throughput

vector within the inner throughput region Λint that is presented in Theorem 3.8. First,

we set up additional notations. Let an(t), for 1 ≤ n ≤ N , be the number of exogenous

packet arrivals destined for user n in slot t. Suppose an(t) are independent across users,

i.i.d. over slots with mean E [an(t)] = λn, and an(t) is bounded with 0 ≤ an(t) ≤ Amax,

where Amax is a finite integer. Let Qn(t) be the backlog of user-n packets queued at the

base station at time t. Define Q(t) , (Qn(t))Nn=1 and suppose Qn(0) = 0 for all n. The

queue process {Qn(t)} evolves as

Qn(t+ 1) = max [Qn(t)− µn(sn(t), t), 0] + an(t), (3.13)

where µn(sn(t), t) ∈ {0, 1} is the service rate allocated to user n in slot t. We have

µn(sn(t), t) = 1 if user n is served and sn(t) = ON, and 0 otherwise. In the rest of the

chapter, we drop sn(t) in µn(sn(t), t) and use µn(t) for notational simplicity. We say the

network is (strongly) stable if

lim sup
t→∞

1

t

t−1∑

τ=0

N∑

n=1

E [Qn(τ)] <∞.

79



Consider a rate vector λ interior to the inner capacity region Λint in Theorem 3.8.

Namely, there exists an ε > 0 and a probability distribution {βφ}φ∈Φ such that

λn + ε <
∑

φ∈Φ

βφ η
φ
n , ∀n ∈ {1, . . . , N}, (3.14)

where ηφn is defined in (3.10). By Theorem 3.8, there exists a RandRR policy that yields

the service rate over channel n ∈ {1, . . . , N} equal to the right side of (3.14); thus, this

policy stabilizes the network with arrival rate vector λ [Georgiadis et al. 2006, Lemma

3.6]. The existence of this policy is useful, and we denote it by RandRR∗.

Recall from Section 3.3 that the RandRR∗ policy is defined by a probability dis-

tribution {αφ}φ∈Φ over all (2N − 1) nonempty subset of channels. We may compute

the RandRR∗ policy to support a given data rate vector λ. However, solving the optimal

probabilities {αφ}φ∈Φ associated with RandRR∗ is difficult when N is large. It is because

we need to find (2N −1) unknown probabilities {αφ}φ∈Φ, compute {βφ}φ∈Φ from (3.21),

and make (3.14) hold. This difficulty motivates us to construct the following simple

queue-dependent policy.

Queue-Dependent Round Robin Policy QRR:

1. Start with t = 0.

2. At time t, observe the current queue backlog vector Q(t) and find the binary vector

φ(t) ∈ Φ defined as 8

φ(t) , arg max
φ∈Φ

f(Q(t),RR(φ)), (3.15)

8The vector φ(t) is a queue-dependent decision. Thus we should write φ(Q(t), t) as a function of
Q(t). For notational simplicity, we use φ(t) instead.

80



where

f(Q(t),RR(φ)) ,
∑

n:φn=1

[
Qn(t)E

[
Lφ1n − 1

]
− E

[
Lφ1n

] N∑

n=1

Qn(t)λn

]

and E
[
Lφ1n

]
= 1 + P

(M(φ))
n,01 /Pn,10 from (3.9). We emphasize that the summation

in f(Q(t),RR(φ)) is only with respect to active channels in φ. Ties are broken

arbitrarily.9

3. Run RR(φ(t)) for one round of transmission. We emphasize that active channels

in φ(t) are served in the order of least recently used first. After the round ends,

go to Step 2.

The QRR policy is a frame-based algorithm similar to RandRR, except that, at the

beginning of every transmission round, the selection of a new subset of channels is no

longer random but based on a queue-dependent rule. The QRR policy is of low complexity

because we can compute φ(t) in (3.15) in polynomial time with the following divide-and-

conquer approach:

Solving Step 2 of QRR:

1. Partition the set Φ into subsets {Φ1, . . . ,ΦN}, where ΦM , M ∈ {1, . . . , N}, is the

set of N -dimensional binary vectors having exactly M entries be 1.

2. For each M ∈ {1, . . . , N}, find the maximizer of f(Q(t),RR(φ)) among vectors in

ΦM . Specifically, for each φ ∈ ΦM , we have

f(Q(t),RR(φ)) =
∑

n:φn=1

[
Qn(t)

P
(M)
n,01

Pn,10
−
(

1 +
P

(M)
n,01

Pn,10

)
N∑

n=1

Qn(t)λn

]
. (3.16)

9In (3.52), we show that as long as the queue backlog vector Q(t) is not identically zero and the arrival
rate vector λ is interior to the inner capacity bound Λint, we always have maxφ∈Φ f(Q(t),RR(φ)) > 0.

81



Then, the maximizer of f(Q(t),RR(φ)) activates the M channels that yield the M

largest summands at the right side of (3.16).

3. Obtain φ(t) by comparing the maximizers from Step 2 for different values of M ∈

{1, . . . , N}.

The detailed implementation is as follows.

Polynomial Time Implementation of Step 2 of QRR:

1. For each fixed M ∈ {1, . . . , N}, we compute

Qn(t)
P

(M)
n,01

Pn,10
−
(

1 +
P

(M)
n,01

Pn,10

)
N∑

n=1

Qn(t)λn (3.17)

for all n ∈ {1, . . . , N}. Sort these N numbers and define the binary vector φM =

(φM1 , . . . , φMN ) such that φMn = 1 if the value (3.17) of channel n is among the M

largest, otherwise φMn = 0. Ties are broken arbitrarily. Let f̂(Q(t),M) denote the

sum of the M largest values of (3.17).

2. Define M(t) , arg maxM∈{1,...,N} f̂(Q(t),M). Then, we assign φ(t) = φM(t).

Using a novel variable-length frame-based Lyapunov drift analysis, we show in the

next theorem that QRR stabilizes the network with any arrival rate vector λ strictly

within the inner capacity bound Λint. The idea is to compare QRR with the (unknown)

policy RandRR∗ that stabilizes λ. We show that, in every transmission round, QRR finds

a round robin policy RR(φ(t)) that yields a larger negative drift on queue backlogs than

RandRR∗ does. Therefore, QRR is stable.

Theorem 3.17 (Proof in Section 3.8.8). For any data rate vector λ interior to Λint,

policy QRR strongly stabilizes the network.

82



3.6 Chapter Summary and Discussions

To address how channel memory improves network throughput, in this chapter we study

the network capacity region over Markov ON/OFF channels without the knowledge of

current channel states. While solving the original problem is difficult because it is a

restless multi-armed bandit, we construct an inner and an outer bound on the network

capacity region, with the aid of channel memory. When channels are symmetric and

the network serves a large number of users, we show the inner and outer bound are

progressively tight when the data rates of different users are more balanced. We derive

a simple queue-dependent round robin policy, which depends on data arrival rates and

channel statistics, and show that this policy stabilizes the network for any data rate

vector strictly within the inner capacity bound.

Transmitting data without channel probing is one of the many options for commu-

nication over a wireless network. Practically, each option may have pros and cons on

criteria such as achievable throughput, power efficiency, implementation complexity, etc.

It will be interesting explore how to combine all possible options to push the practically

achievable network throughput to the limit. It will also be interesting to extend our

method to more general cases, such as allowing limited channel probing or incorporating

other performance measures such as energy consumption.

3.7 Bibliographic Notes

Scheduling over Markov ON/OFF channels with unknown current states is an analytical

model for opportunistic spectrum access in cognitive radio networks (see Zhao and Swami

[2007] and references therein), where the channel occupancy of a primary user acts as a

Markov ON/OFF channel to the secondary users. It is also known as a restless multi-

armed bandit problem [Whittle 1988]. In prior work, Ahmad and Liu [2009], Ahmad et al.

[2009], Guha et al. [2009], Liu and Zhao [2010], Niño-Mora [2008], Zhao et al. [2008] study

the maximization of sum of time average or discounted throughput (rewards). Ahmad

83



and Liu [2009], Ahmad et al. [2009], Zhao et al. [2008] use dynamic programming and

coupling methods, and show greedy round robin policies are optimal in some special

cases; both positively and negatively correlated channels are studied. Index policies

such Whittle’s index [Whittle 1988] are constructed in Liu and Zhao [2010], Niño-Mora

[2008], and are shown to have good performance by simulations. A (2 + ε)-approximate

algorithm is derived in Guha et al. [2009] based on duality methods.

This chapter focuses on an easy-to-use characterization of the network capacity region

over Markovian channels with unknown current states. Our results prepare us to study

more complicated nonlinear utility maximization problems, for which the first step is

to characterize the performance region. Utility maximization problems are addressed in

the next chapter.

Jagannathan et al. [2011] characterizes the network capacity region over Markov

ON/OFF channels with unknown current states as a limit of a sequence of linear pro-

grams, each of which solves a finite-state Markov decision process (MDP) truncated from

the ideal MDP, which has a countably infinite state space, that describes the full network

capacity region. A throughput-optimal frame-based policy is provided. Due to the curse

of dimensionality, this approach may not scale well with the number of channels.

This chapter is also a study on efficient scheduling over wireless networks with de-

layed/uncertain channel state information (CSI); see Pantelidou et al. [2007], Ying and

Shakkottai [2008, 2009] and references therein. The work on delayed CSI that is most

closely related to ours is Ying and Shakkottai [2008, 2009], where the authors study the

capacity region and throughput-optimal policies of different wireless networks, assuming

that channel states are persistently probed but fed back with delay. We note that our

results are significantly different. Here channels are never probed, and new (delayed)

channel state information is only acquired when the channel is served. In other words,

acquiring the delayed channel state information is part of the control decisions in this

chapter. Our results also apply to an important scenario in partial channel probing

(see Chaporkar et al. [2009], Li and Neely [2010a] and references therein) where at most

84



one channel is probed in every slot, and data can only be served over the probed channel

but not on unknown ones. As far as throughput is concerned and that we neglect prob-

ing overhead, this scenario is equivalent to blindly transmitting data over a channel in

every slot. Different from previous work which usually assumes channels are i.i.d. over

slots, here we show how channel memory improves throughput under a limited probing

regime.

3.8 Proofs in Chapter 3

3.8.1 Proof of Lemma 3.2

Initially, by (3.3) we have ωn(0) = πn,ON ≥ P
(M)
n,01 for all n. Suppose the base station

switches to channel n at time t, and the last previous use of channel n was at slot (t−k)

for some k < t. In slot (t− k), there are two possible cases:

1. Channel n turns OFF, and as a result the information state on slot t is ωn(t) =

P
(k)
n,01. Due to round robin, the other (M − 1) channels must have been used for

at least one slot before t after slot (t − k), and thus k ≥ M . By (3.3) we have

ωn(t) = P
(k)
n,01 ≥ P

(M)
n,01.

2. Channel n is ON and transmits a dummy packet. Thus ωn(t) = P
(k)
n,11. By (3.3) we

have ωn(t) = P
(k)
n,11 ≥ P

(M)
n,01.

3.8.2 Proof of Lemma 3.6

At the beginning of a new round, suppose round robin policy RR(φ) is selected. We

index the M(φ) active channels in φ as (n1, n2, . . . , nM(φ)), which is in the decreasing

order of the time duration between their last use and the beginning of the current round.

In other words, the last use of nk is earlier than that of nk′ only if k < k′. Fix an active

channel nk. Then it suffices to show that when this channel is served in the current

round, the time duration back to the end of its last service is at least (M(φ)− 1) slots

85



(that this channel has information state no worse than P
(M(φ))
nk,01 then follows the same

arguments in the proof of Lemma 3.2).

We partition the active channels in φ other than nk into two sets A =

{n1, n2, . . . , nk−1} and B = {nk+1, nk+2, . . . , nM(φ)}. Then the last use of every channel

in B occurs after the last use of nk, and so channel nk has been idled for at least |B|

slots at the start of the current round. However, the policy in this round will serve all

channels in A before serving nk, taking at least one slot per channel, and so we wait at

least additional |A| slots before serving channel nk. The total time that this channel has

been idled is thus at least |A|+ |B| = M(φ)− 1.

3.8.3 Proof of Theorem 3.8

Let Z(t) denote the number of times Step 1 of RandRR is executed in [0, t), in which we

suppose vector φ is selected Zφ(t) times. Define ti, where i ∈ Z+, as the (i+ 1)th time

instant a new vector φ is selected. Assume t0 = 0, and thus the first selection occurs at

time 0. It follows that Z(t−i ) = i, Z(ti) = i+1, and the ith round of packet transmissions

ends at time t−i .

Fix a vector φ. Within the time periods in which policy RR(φ) is executed, denote

by Lφkn the duration of the kth time the base station stays with channel n. The time

average throughput that policy RR(φ) yields on its active channel n over [0, ti) is

∑Zφ(ti)
k=1

(
Lφkn − 1

)

∑
φ∈Φ

∑Zφ(ti)
k=1

∑
n:φn=1 L

φ
kn

. (3.18)

For simplicity, we focus on discrete time instants {ti} large enough so that Zφ(ti) > 0

for all φ ∈ Φ (so that the sums in (3.18) make sense). The generalization to arbitrary

86



time t can be done by incorporating fractional transmission rounds, which are amortized

over time. Next, rewrite (3.18) as

∑Zφ(ti)
k=1

∑
n:φn=1 L

φ
kn

∑
φ∈Φ

∑Zφ(ti)
k=1

∑
n:φn=1 L

φ
kn

∑Zφ(ti)
k=1

(
Lφkn − 1

)

∑Zφ(ti)
k=1

∑
n:φn=1 L

φ
kn︸ ︷︷ ︸

(∗)

. (3.19)

As t→∞, the second term (∗) of (3.19) satisfies

(∗) =

1
Zφ(ti)

∑Zφ(ti)
k=1

(
Lφkn − 1

)

∑
n:φn=1

1
Zφ(ti)

∑Zφ(ti)
k=1 Lφkn

(a)→
E
[
Lφ1n − 1

]

∑
n:φn=1 E

[
Lφ1n

] (b)
= ηφn ,

where (a) is by the Law of Large Numbers (we have shown in Corollary 3.7 that Lφkn are

i.i.d. for different k) and (b) by (3.10).

Denote the first term of (3.19) by βφ(ti). We note that βφ(ti) ∈ [0, 1] for all φ ∈ Φ

and
∑
φ∈Φ βφ(ti) = 1. We rewrite βφ(ti) as

βφ(ti) =

[
Zφ(ti)
Z(ti)

]∑
n:φn=1

[
1

Zφ(ti)

∑Zφ(ti)
k=1 Lφkn

]

∑
φ∈Φ

[
Zφ(ti)
Z(ti)

]∑
n:φn=1

[
1

Zφ(ti)

∑Zφ(ti)
k=1 Lφkn

] .

As t→∞, we have

βφ , lim
i→∞

βφ(ti) =
αφ
∑

n:φn=1 E
[
Lφ1n

]

∑
φ∈Φ αφ

∑
n:φn=1 E

[
Lφ1n

] , (3.20)

which uses, by the Law of Large Numbers,

Zφ(ti)

Z(ti)
→ αφ,

1

Zφ(ti)

Zφ(ti)∑

k=1

Lφkn → E
[
Lφ1n

]
.

From (3.18)(3.19)(3.20), we have shown that the throughput contributed by policy RR(φ)

on its active channel n is βφ η
φ
n . Consequently, RandRR parameterized by {αφ}φ∈Φ

87



supports any data rate vector λ that is entrywise dominated by λ ≤∑φ∈Φ βφ η
φ, where

{βφ}φ∈Φ is defined in (3.20) and ηφ in (3.10).

The above analysis shows that every RandRR policy achieves a boundary point of

Λint defined in Theorem 3.8. Conversely, the next lemma, proved in Section 3.8.4, shows

that every boundary point of Λint is achievable by some RandRR policy, and the proof is

complete.

Lemma 3.18. For any probability distribution {βφ}φ∈Φ, there exists another probabil-

ity distribution {αφ}φ∈Φ that solves the linear system

βφ =
αφ
∑

n:φn=1 E
[
Lφ1n

]

∑
φ∈Φ αφ

∑
n:φn=1 E

[
Lφ1n

] , for all φ ∈ Φ. (3.21)

3.8.4 Proof of Lemma 3.18

For any probability distribution {βφ}φ∈Φ, we prove the lemma by inductively construct-

ing the solution {αφ}φ∈Φ to (3.21). The induction is on the cardinality of Φ. Without

loss of generality, we index elements in Φ by Φ = {φ1,φ2, . . .}, where φk = (φk1, . . . , φ
k
N ).

We define χk ,
∑

n:φkn=1 E
[
Lφ

k

1n

]
, βk , βφk , and αk , αφk . Then, we rewrite (3.21) as

βk =
αkχk∑

1≤k≤|Φ| αkχk,
, for all k ∈ {1, 2, . . . , |Φ|}. (3.22)

We first note that Φ = {φ1} is a degenerate case where β1 and α1 must both be 1.

When Φ = {φ1,φ2}, for any probability distribution {β1, β2} with positive elements,10

it is easy to show

α1 =
χ2β1

χ1β2 + χ2β1
, α2 = 1− α1.

10If one element of {β1, β2} is zero, say β2 = 0, we can show necessarily α2 = 0 and it degenerates to the
one-policy case Φ = {φ1}. Such degeneration also happens generally. Thus, without loss of generality,
in the rest of the proof we only consider probability distributions that only have positive elements.

88



Let Φ = {φk : 1 ≤ k ≤ K} for some K ≥ 2. Assume that, for any probability distribution

{βk > 0 : 1 ≤ k ≤ K}, we can find {αk : 1 ≤ k ≤ K} that solves (3.22).

For the case Φ = {φk : 1 ≤ k ≤ K + 1} and any {βk > 0 : 1 ≤ k ≤ K + 1}, we

construct the solution {αk : 1 ≤ k ≤ K + 1} to (3.22) as follows. Let {γ2, γ3, . . . , γK+1}

be the solution to the linear system

γkχk∑K+1
k=2 γkχk

=
βk∑K+1
k=2 βk

, 2 ≤ k ≤ K + 1. (3.23)

By the induction assumption, the set {γ2, γ3, . . . , γK+1} exists and satisfies γk ∈ [0, 1]

for 2 ≤ k ≤ K + 1 and
∑K+1

k=2 γk = 1. Define

α1 , β1
∑K+1

k=2 γkχk

χ1(1− β1) + β1
∑K+1

k=2 γkχk
(3.24)

αk , (1− α1)γk, 2 ≤ k ≤ K + 1. (3.25)

It remains to show (3.24) and (3.25) are the desired solution. It is easy to observe that

αk ∈ [0, 1] for 1 ≤ k ≤ K + 1, and

K+1∑

k=1

αk = α1 + (1− α1)

K+1∑

k=2

γk = α1 + (1− α1) = 1.

By rearranging terms in (3.24) and using (3.25), we have

β1 =
α1χ1

α1χ1 +
∑K+1

k=2 (1− α1)γkχk
=

α1χ1∑K+1
k=1 αkχk

. (3.26)

89



In addition, for 2 ≤ k ≤ K + 1, we have

αkχk∑K+1
k=1 αkχk

=

[
αkχk∑K+1
k=2 αkχk

][∑K+1
k=2 αkχk∑K+1
k=1 αkχk

]

(a)
=

[
(1− α1)γkχk∑K+1
k=2 (1− α1)γkχk

][
1− α1χ1∑K+1

k=1 αkχk

]

(b)
=

[
γkχk∑K+1
k=2 γkχk

]
(1− β1)

(c)
=

(
βk∑K+1
k=2 βk

)
(1− β1)

(d)
= βk,

where (a) is by plugging in (3.25), (b) uses (3.26), (c) uses (3.23), and (d) is by
∑K+1

k=1 βk = 1. The proof is complete.

3.8.5 Proof of Lemma 3.10

Let N1(T ) ⊆ {0, 1, . . . , T − 1} be the subset of time instants in which Y (t) = 1. Note

that
∑T−1

t=0 Y (t) = |N1(T )| . For each t ∈ N1(T ), let 1[1→0](t) be an indicator function

which is 1 if Y (t) transits from 1 to 0 at time t, and 0 otherwise. We define N0(T ) and

1[0→1](t) similarly.

In {0, 1, . . . , T − 1}, since state transitions of {Y (t)} from 1 to 0 and from 0 to 1

differ by at most 1, we have

∣∣∣∣∣∣
∑

t∈N1(T )

1[1→0](t)−
∑

t∈N0(T )

1[0→1](t)

∣∣∣∣∣∣
≤ 1, (3.27)

which is true for all T . Dividing (3.27) by T , we get

∣∣∣∣∣∣
1

T

∑

t∈N1(T )

1[1→0](t)−
1

T

∑

t∈N0(T )

1[0→1](t)

∣∣∣∣∣∣
≤ 1

T
. (3.28)

90



Consider the subsequence {Tk} such that

lim
k→∞

1

Tk

Tk−1∑

t=0

Y (t) = πY (1) = lim
k→∞

|N1(Tk)|
Tk

. (3.29)

Note that {Tk} exists because {(1/T )
∑T−1

t=0 Y (t)}T is a bounded sequence indexed by

integers T . Moreover, there exists a subsequence {Tn} of {Tk} so that each of the two

averages in (3.28) has a limit point with respect to {Tn}, because they are bounded

sequences, too. In the rest of the proof, we will work on {Tn}, but we drop subscript n

for notational simplicity. Passing T →∞, we get from (3.28) that

(
lim
T→∞

|N1(T )|
T

)

︸ ︷︷ ︸
(a)
= πY (1)


 lim
T→∞

1

|N1(T )|
∑

t∈N1(T )

1[1→0](t)




︸ ︷︷ ︸
,β

=

(
lim
T→∞

|N0(T )|
T

)

︸ ︷︷ ︸
(b)
= 1−πY (1)


 lim
T→∞

1

|N0(T )|
∑

t∈N0(T )

1[0→1](t)




︸ ︷︷ ︸
,γ

, (3.30)

where (a) is by (3.29) and (b) is by |N1(T )|+ |N0(T )| = T . From (3.30) we get

πY (1) =
γ

β + γ
.

The next lemma, proved in Section 3.8.6, helps to show γ ≤ P01.

Lemma 3.19 (Stochastic Coupling of Random Binary Sequences). Let {In}∞n=1 be an

infinite sequence of binary random variables. Suppose for all n ∈ {1, 2, . . .} we have

Pr [In = 1 | I1 = i1, . . . , In−1 = in−1] ≤ P01 (3.31)

91



for all possible values of i1, . . . , in−1. Then, we can construct a new sequence {În}∞n=1

of binary random variables that are i.i.d. with Pr
[
În = 1

]
= P01 for all n and satisfy

În ≥ In for all n. Consequently, we have

lim sup
N→∞

1

N

N∑

n=1

In ≤ lim sup
N→∞

1

N

N∑

n=1

În = P01.

To use Lemma 3.19 to prove γ ≤ P01, we let tn denote the nth time Y (t) = 0 and

let In = 1[0→1](tn). For simplicity, we assume {tn} is an infinite sequence so that state

0 is visited infinitely often in {Y (t)}. By the assumption that Q01(t) ≤ P01 for all t, we

know (3.31) holds. Therefore, Lemma 3.19 yields that

γ ≤ lim sup
N→∞

1

N

N∑

n=1

1[0→1](tn) ≤ P01.

Similarly as Lemma 3.19, we can show β ≥ P10 by stochastic coupling. Therefore

πY (1) =
γ

β + γ
≤ γ

P10 + γ
≤ P01

P01 + P10
= πX(1).

3.8.6 Proof of Lemma 3.19

For simplicity, we assume

Pr [In = 0 | I1 = i1, . . . , In−1 = in−1] > 0

for all n and all possible values of i1, . . . , in−1. For each n ∈ {1, 2, . . .}, define În as

follows: If In = 1, define În = 1. If In = 0, observe the history In−1
1 , (I1, . . . , In−1)

and independently choose În as follows:

În =





1 with prob.
P01−Pr[In=1|In−1

1 ]
Pr[In=0|In−1

1 ]

0 with prob. 1− P01−Pr[In=1|In−1
1 ]

Pr[In=0|In−1
1 ]

.

(3.32)

92



The probabilities in (3.32) are well-defined because P01 ≥ Pr
[
In = 1 | In−1

1

]
by (3.31),

and

P01 ≤ 1 = Pr
[
In = 1 | In−1

1

]
+ Pr

[
In = 0 | In−1

1

]
.

Therefore

P01 − Pr
[
In = 1 | In−1

1

]
≤ Pr

[
In = 0 | In−1

1

]
.

With the above definition of În, we have În = 1 whenever In = 1. Therefore În ≥ In
for all n. Furthermore, for any n and any binary vector in−1

1 , (i1, . . . , in−1), we have,

by definition of În,

Pr
[
În = 1 | In−1

1 = in−1
1

]

= Pr
[
In = 1 | In−1

1 = in−1
1

]
+ Pr

[
In = 0 | In−1

1 = in−1
1

]

× P01 − Pr
[
In = 1 | In−1

1 = in−1
1

]

Pr
[
In = 0 | In−1

1 = in−1
1

]

= P01. (3.33)

Therefore, for all n we have

Pr
[
În = 1

]
=
∑

in−1
1

Pr
[
În = 1 | In−1

1 = in−1
1

]
Pr
[
In−1

1 = in−1
1

]
= P01.

Thus, the În variables are identically distributed. It remains to prove that they are

independent.

Suppose components in În1 , (Î1, . . . , În) are independent. We prove that compo-

nents in În+1
1 = (Î1, . . . , În+1) are also independent. For any binary vector în+1

1 ,

(̂i1, . . . , în+1), since

Pr
[
În+1

1 = în+1
1

]
= Pr

[
În+1 = în+1 | În1 = în1

]
Pr
[
În1 = în1

]

= Pr
[
În+1 = în+1 | În1 = în1

] n∏

k=1

Pr
[
Îk = îk

]
,

93



it suffices to show

Pr
[
În+1 = 1 | În1 = în1

]
= Pr

[
În+1 = 1

]
= P01.

Indeed,

Pr
[
În+1 = 1 | În1 = în1

]
=
∑

in1

Pr
[
În+1 = 1 | In1 = in1 , Î

n
1 = în1

]
Pr
[
In1 = in1 | În1 = în1

]

=
∑

in1

Pr
[
În+1 = 1 | In1 = in1

]
Pr
[
In1 = in1 | În1 = în1

]

(a)
=
∑

in1

P01 Pr
[
In1 = in1 | În1 = în1

]

= P01,

where (a) is by (3.33). The proof is complete.

3.8.7 Proof of Lemma 3.15

By definition of d(v), there exists a nonempty subset A ⊆ Φd(v), and for every φ ∈ A

a positive real number β̂φ > 0, such that v =
∑
φ∈A β̂φφ. For each φ ∈ A, we have

M(φ) = d(v) and cM(φ) = cd(v). Define

βφ , β̂φ∑
φ∈A β̂φ

94



for each φ ∈ A; {βφ}φ∈A is a probability distribution. Consider a RandRR policy that,

in every round, selects φ ∈ A with probability βφ. By Lemma 3.4, this RandRR policy

achieves throughput vector λ = (λ1, . . . , λN ) that satisfies

λ =
∑

φ∈A
βφ

cM(φ)

M(φ)
φ =

cd(v)

d(v)

∑

φ∈A

β̂φ∑
φ∈A β̂φ

φ

=
cd(v)

d(v)
∑
φ∈A β̂φ

∑

φ∈A
β̂φφ

=

(
cd(v)

d(v)
∑
φ∈A β̂φ

)
v,

which is in the direction of v. In addition, the sum throughput is equal to

N∑

n=1

λn =
∑

φ∈A
βφ

cM(φ)

M(φ)

(
N∑

n=1

φn

)
=
∑

φ∈A
βφ cM(φ) = cd(v).

3.8.8 Proof of Theorem 3.17

(A Related RandRR Policy) For each randomized round robin policy RandRR, it is

useful to consider a renewal reward process where renewal epochs are defined as time

instants at which RandRR starts a new round of transmission.11 Let T denote the

renewal period. We say one unit of reward is earned by a user if RandRR serves a packet

to that user. Let Rn denote the sum reward earned by user n in one renewal period

T , representing the number of successful transmissions user n receives in one round of

11We note that the renewal reward process is defined solely with respect to RandRR, and is only used
to facilitate our analysis. At these renewal epochs, the state of the network, including the current queue
state Q(t), does not necessarily renew itself.

95



scheduling. Conditioning on the round robin policy RR(φ) chosen by RandRR for the

current round of transmission, we have from Corollary 3.7:

E [T ] =
∑

φ∈Φ

αφ E [T | RR(φ)] (3.34)

E [T | RR(φ)] =
∑

n:φn=1

E
[
Lφ1n

]
, (3.35)

and, for all n ∈ {1, 2, . . . , N},

E [Rn] =
∑

φ∈Φ

αφ E [Rn | RR(φ)] (3.36)

E [Rn | RR(φ)] =





E
[
Lφ1n − 1

]
if φn = 1

0 if φn = 0.

(3.37)

Consider the round robin policy RR((1, 1, . . . , 1)) that serves all N channels in one

round. We define Tmax as its renewal period. From Corollary 3.7, we know E [Tmax] <∞

and E
[
(Tmax)2

]
<∞. Further, for any RandRR, including the one that use a fixed RR(φ)

policy in every round as a special case, we can show that Tmax is stochastically larger

than the renewal period T , and (Tmax)2 is stochastically larger than T 2. It follows that

E [T ] ≤ E [Tmax] , E
[
T 2
]
≤ E

[
(Tmax)2

]
. (3.38)

We have denoted by RandRR∗ (in the discussion after (3.14)) the randomized round

robin policy that yields a service rate vector strictly larger than the target arrival rate

vector λ entrywise. Let T ∗ denote the renewal period of RandRR∗, and R∗n the sum

96



reward (the number of successful transmissions) received by user n over the renewal

period T ∗. Then, we have

E [R∗n]

E [T ∗]
(a)
=

∑
φ∈Φ αφ E [R∗n | RR(φ)]∑
φ∈Φ αφ E [T ∗ | RR(φ)]

(b)
=
∑

φ∈Φ

(
αφ∑

φ∈Φ αφ E [T ∗ | RR(φ)]

)
E [R∗n | RR(φ)]

=
∑

φ∈Φ

αφ E [T ∗ | RR(φ)]∑
φ∈Φ αφ E [T ∗ | RR(φ)]

︸ ︷︷ ︸
(c)=βn

E [R∗n | RR(φ)]

E [T ∗ | RR(φ)]︸ ︷︷ ︸
(d)=ηφn

=
∑

φ∈Φ

βφ η
φ
n

(e)
> λn + ε, (3.39)

where (a) is by (3.34)(3.36), (b) is by rearranging terms, (c) is by plugging (3.35)

into (3.21), (d) is by plugging (3.35) and (3.37) into (3.10) in Section 3.3.1, and (e)

is by (3.14). From (3.39), we get

E [R∗n] > (λn + ε)E [T ∗] , for all n ∈ {1, . . . , N}. (3.40)

(Lyapunov Drift) From (3.13), in a frame of size T (which is possibly random), we

can show that, for all n,

Qn(t+ T ) ≤ max

[
Qn(t)−

T−1∑

τ=0

µn(t+ τ), 0

]
+
T−1∑

τ=0

an(t+ τ). (3.41)

We define a Lyapunov function L(Q(t)) , (1/2)
∑N

n=1Q
2
n(t) and the T -slot Lyapunov

drift

∆T (Q(t)) , E [L(Q(t+ T )− L(Q(t)) | Q(t)] ,

97



where, in the last term, the expectation is with respect to the randomness of the whole

network in frame T , including the randomness of T . By taking the square of (3.41) and

then conditional expectation on Q(t), we can show

∆T (Q(t)) ≤ 1

2
N(1 +A2

max)E
[
T 2 | Q(t)

]

− E

[
N∑

n=1

Qn(t)

[
T−1∑

τ=0

(µn(t+ τ)− an(t+ τ))

]
| Q(t)

]
. (3.42)

Define f(Q(t), θ) as the last term of (3.42), where θ represents a scheduling policy that

controls the service rates µn(t + τ) and the frame size T . In the following analysis, we

only consider θ in the class of RandRR policies, and the frame size T is the renewal period

of a RandRR policy. By (3.38), the second term of (3.42) is less than or equal to the

constant B1 , (1/2)N(1 +A2
max)E

[
(Tmax)2

]
<∞. It follows that

∆T (Q(t)) ≤ B1 − f(Q(t), θ). (3.43)

In f(Q(t), θ), it is useful to consider θ = RandRR∗ and T is the renewal period T ∗

of RandRR∗. Assume t is the beginning of a renewal period. For each n ∈ {1, 2, . . . , N},

because R∗n is the number of successful transmissions user n receives in the renewal

period T ∗, we have

E

[
T ∗−1∑

τ=0

µn(t+ τ) | Q(t)

]
= E [R∗n] .

Combining it with (3.40), we get

E

[
T ∗−1∑

τ=0

µn(t+ τ) | Q(t)

]
> (λn + ε)E [T ∗] . (3.44)

By the assumption that packet arrivals are i.i.d. over slots and independent of the current

queue backlogs, we have for all n

E

[
T ∗−1∑

τ=0

an(t+ τ) | Q(t)

]
= λn E [T ∗] . (3.45)

98



Plugging (3.44) and (3.45) into f(Q(t),RandRR∗), we get

f(Q(t),RandRR∗) ≥ εE [T ∗]
N∑

n=1

Qn(t). (3.46)

It is also useful to consider θ as a round robin policy RR(φ) for some φ ∈ Φ. Note

that RR(φ) is a special case of RandRR, where we execute RR(φ) in every round. In this

case, the frame size T is the renewal period Tφ of RR(φ). From Corollary 3.7, we have

E
[
Tφ | Q(t)

]
= E

[
Tφ
]

=
∑

n:φn=1

E
[
Lφ1n

]
, (3.47)

where E
[
Lφ1n

]
is in (3.9). Let t be the beginning of a transmission round. If channel n

is active, we have

E



Tφ−1∑

τ=0

µn(t+ τ) | Q(t)


 = E

[
Lφ1n

]
− 1,

and 0 otherwise. It follows that

f(Q(t),RR(φ)) =


 ∑

n:φn=1

Qn(t)E
[
Lφ1n − 1

]

− E

[
Tφ
] N∑

n=1

Qn(t)λn

(a)
=

∑

n:φn=1

[
Qn(t)E

[
Lφ1n − 1

]
− E

[
Lφ1n

] N∑

n=1

Qn(t)λn

]
, (3.48)

where (a) is by (3.47) and rearranging terms.

(Design of QRR) Given the current queue backlogs Q(t), we are interested in the

policy that maximizes f(Q(t), θ) over all RandRR policies in one round of transmission.

Although the space of RandRR policies is uncountably large, next we show that the

desired policy is a round robin policy RR(φ) for some φ ∈ Φ, and can be found by

maximizing f(Q(t),RR(φ)) in (3.48) over φ ∈ Φ. To see this, we denote by φ(t) the

binary vector that maximizes f(Q(t),RR(φ)) over φ ∈ Φ. We have

f(Q(t),RR(φ(t))) ≥ f(Q(t),RR(φ)), for all φ ∈ Φ. (3.49)

99



For any RandRR policy, conditioning on the policy RR(φ) chosen for the current round

of scheduling, we have

f(Q(t),RandRR) =
∑

φ∈Φ

αφf(Q(t),RR(φ)), (3.50)

where {αφ}φ∈Φ is the probability distribution associated with RandRR. By (3.49)(3.50),

for any RandRR we get

f(Q(t),RR(φ(t))) ≥
∑

φ∈Φ

αφf(Q(t),RR(φ))

= f(Q(t),RandRR). (3.51)

We note that, as long as the queue backlog vector Q(t) is not identically zero and the

arrival rate vector λ is strictly within the inner capacity bound Λint, we get

max
φ∈Φ

f(Q(t),RR(φ))
(a)
= f(Q(t),RR(φ(t)))

(b)

≥ f(Q(t),RandRR∗)

(c)
> 0, (3.52)

where (a) is from the definition of φ(t), (b) from (3.51), and (c) from (3.46).

The policy QRR is designed to be a frame-based algorithm where, at the beginning of

each round, we observe the current queue backlog vectorQ(t), find the binary vector φ(t)

whose associated round robin policy RR(φ(t)) maximizes f(Q(t),RandRR) over RandRR

policies, and execute RR(φ(t)) for one round of transmission. We emphasize that, in

every transmission round of QRR, active channels are served in the order that the least

recently used channel is served first, and the ordering may change from one round to

another.

(Stability Analysis) Again, policy QRR comprises of a sequence of transmission

rounds, where, in each round, QRR finds and executes policy RR(φ(t)) for one round.

100



Different φ(t) may be used in different rounds. In the kth round, let TQRR
k denote its

time duration. Define tk =
∑k

i=1 T
QRR
i for all k ∈ N and note that tk − tk−1 = TQRR

k .

Let t0 = 0. Then, for each k ∈ N, from (3.43) we have

∆TQRR
k

(Q(tk−1))
(a)

≤ B1 − f(Q(tk−1),QRR)

(b)

≤ B1 − f(Q(tk−1),RandRR∗)

(c)

≤ B1 − εE [T ∗]
N∑

n=1

Qn(tk−1), (3.53)

where (a) is by (3.43), (b) is because QRR is the maximizer of f(Q(tk−1),RandRR) over

all RandRR policies, and (c) is by (3.46). By taking expectation over Q(tk−1) in (3.53)

and noting that E [T ∗] ≥ 1, for all k ∈ N we get

E [L(Q(tk))]− E [L(Q(tk−1))] ≤ B1 − εE [T ∗]
N∑

n=1

E [Qn(tk−1)]

≤ B1 − ε
N∑

n=1

E [Qn(tk−1)] . (3.54)

Summing (3.54) over k ∈ {1, 2, . . . ,K}, we have

E [L(Q(tK))]− E [L(Q(t0))] ≤ KB1 − ε
K∑

k=1

N∑

n=1

E [Qn(tk−1)] .

Since Q(tK) ≥ 0 entrywise and by assumption Q(t0) = Q(0) = 0, we have

ε
K∑

k=1

N∑

n=1

E [Qn(tk−1)] ≤ KB1. (3.55)

Dividing (3.55) by εK and passing K →∞, we get

lim sup
K→∞

1

K

K∑

k=1

N∑

n=1

E [Qn(tk−1)] ≤ B1

ε
<∞. (3.56)

101



Inequality (3.56) shows that the network is stable when sampled at renewal time instants

{tk}. Then, that it is also stable when sampled over all time follows because: (1) TQRR
k ,

the renewal period of the RR(φ) policy chosen in the kth round of QRR, has finite

first and second moments for all k (see (3.38)); (2) in every slot, the number of packet

arrivals to a user is bounded. These details are provided in the next Lemma 3.20, proved

in Section 3.8.9.

Lemma 3.20. Given that

E
[
TQRR
k

]
≤ E [Tmax] , E

[
(TQRR
k )2

]
≤ E

[
(Tmax)2

]
(3.57)

for all k ∈ {1, 2, . . .}, packets arrivals to a user is bounded by Amax in every slot, and

the network sampled at renewal epochs {tk} is stable from (3.56), we have

lim sup
K→∞

1

tK

tK−1∑

τ=0

N∑

n=1

E [Qn(τ)] <∞.

3.8.9 Proof of Lemma 3.20

In [tk−1, tk), it is easy to see that, for all n ∈ {1, . . . , N},

Qn(tk−1 + τ) ≤ Qn(tk−1) + τAmax, 0 ≤ τ < TQRR
k . (3.58)

Summing (3.58) over τ ∈ {0, 1, . . . , TQRR
k − 1}, we get

TQRR
k −1∑

τ=0

Qn(tk−1 + τ) ≤ TQRR
k Qn(tk−1) +

(TQRR
k )2Amax

2
. (3.59)

102



Summing (3.59) over k ∈ {1, 2, . . . ,K} and noting that tK =
∑K

k=1 T
QRR
k , we have

tK−1∑

τ=0

Qn(τ) =
K∑

k=1

TQRR
k −1∑

τ=0

Qn(tk−1 + τ)

(a)

≤
K∑

k=1

[
TQRR
k Qn(tk−1) +

(TQRR
k )2Amax

2

]
, (3.60)

where (a) is by (3.59). Taking expectation of (3.60) and dividing it by tK , we have

1

tK

tK−1∑

τ=0

E [Qn(τ)]
(a)

≤ 1

K

tK−1∑

τ=0

E [Qn(τ)]

(b)

≤ 1

K

K∑

k=1

E

[
TQRR
k Qn(tk−1) +

(TQRR
k )2Amax

2

]
, (3.61)

where (a) follows tK ≥ K and (b) is by (3.60). Next, we have

E
[
TQRR
k Qn(tk−1)

]
= E

[
E
[
TQRR
k Qn(tk−1) | Qn(tk−1)

]]

(a)

≤ E [E [TmaxQn(tk−1) | Qn(tk−1)]]

= E [E [Tmax]Qn(tk−1)]

= E [Tmax]E [Qn(tk−1)] , (3.62)

where (a) is because E
[
TQRR
k

]
≤ E [Tmax]. Using (3.57)(3.62) to upper bound the last

term of (3.61), we have

1

tK

tK−1∑

τ=0

E [Qn(τ)] ≤ B2 + E [Tmax]
1

K

K∑

k=1

E [Qn(tk−1)] , (3.63)

103



where B2 , 1
2 E
[
(Tmax)2

]
Amax < ∞. Summing (3.63) over n ∈ {1, . . . , N} and passing

K →∞, we get

lim sup
K→∞

1

tK

tK−1∑

τ=0

N∑

n=1

E [Qn(τ)] ≤ NB2 + E [Tmax]

(
lim sup
K→∞

1

K

K∑

k=1

N∑

n=1

E [Qn(tk−1)]

)

(a)

≤ NB2 + E [Tmax]B1/ε <∞,

where (a) is by (3.56). The proof is complete.

104



Chapter 4

Throughput Utility Maximization

over Markovian Channels

In Chapter 3, we seek to characterize the network capacity region Λ over a set of Markov

ON/OFF channels. We consider the scenario where instantaneous channel states are

never known, at most one user is blindly served per slot, and all scheduling decisions

are based on information provided by ACK/NACK feedback from past transmissions.

Computing Λ is difficult because it is a restless multi-armed bandit problem. We settle

for constructing a good inner bound Λint on the network capacity region by randomizing

round robin policies. This is motivated by that, in practice, we are interested in an easily

achievable throughput region with good properties.

This chapter addresses throughput utility maximization over the network model in

Chapter 3. Ideally, we consider the problem

maximize: g(y), subject to: y ∈ Λ, (4.1)

where g(·) is a utility function of the throughput vector y. We assume that g(·) is concave,

continuous, nonnegative, and nondecreasing. However, since the network capacity region

Λ is unknown, solving (4.1) is difficult. In this chapter, we instead solve

maximize: g(y), subject to: y ∈ Λint (4.2)

over the inner capacity region Λint as an approximation to (4.1). We focus on providing

the methodology to solve (4.2). The closeness of (4.2) to the original problem (4.1) relies

105



on the tightness of Λint. This is discussed in Chapter 3 in the special case of symmetric

channels, but the inner performance region Λint may be gradually improved by a deeper

investigation into the problem structure.

Scheduling over Markov ON/OFF channels with unknown states has many applica-

tions, such as in:

1. Utility maximization over wireless networks with limited channel probing capability

and partially observable channels is an interesting problem. For example, we note

that the network model is Chapter 3 is the same as one that explicitly probes and

serves one channel per slot; the only difference is how channels are probed: explicit

probing by signaling or implicit probing by ACK/NACK feedback.

2. In cognitive radio networks [Zhao and Sadler 2007, Zhao and Swami 2007], a sec-

ondary user has access to a collection of Markov ON/OFF channels. Every Marko-

vian channel reflects the occupancy of a spectrum by a primary user. The goal of

the secondary user is to opportunistically transmit data over unused spectrums for

better spectrum efficiency.

3. In target tracking of unmanned aerial vehicles (UAVs) [Ny et al. 2008], a UAV

detects one of the many targets in every slot. A Markovian channel here reflects

the movement of a target. A channel is ON if its associated target moves to a

hotspot, and OFF otherwise. Delivering a packet over a channel represents gaining

a reward by locating a target at its hotspot.

4. The problem (4.2) provides an achievable region approach to optimize nonlinear

objectives and average reward vectors in a restless multi-armed bandit system.

In these applications, we may be concerned with maximizing weighted sum rewards

or providing some notion of fairness across users, spectrums, or targets. In the former,

we can let g(y) =
∑N

n=1 cn yn, where cn are positive constants. In the latter, an example

106



is to provide a variant of rate proportional fairness [Kelly 1997, Neely et al. 2008] by

using

g(y) =
N∑

n=1

cn log (1 + yn).

The problem (4.2) cannot be solved using existing MaxWeight approaches. The

main contribution of this chapter is to provide a new ratio MaxWeight method that

solves (4.2). More generally, this new ratio rule is suitable to solve utility maximization

problems over frame-based systems that have policy-dependent random frame sizes (it

will be used in Chapter 5). The resulting network control policy that solves (4.2) has

two components. First, a dynamic queue-dependent round robin policy that schedules

users for data transmission is constructed. Second, to facilitate the solution to (4.2),

an admission control policy is designed. We assume that the network is overloaded by

excessive traffic, and the amount of data admitted in every slot is decided by solving a

simple convex program.1 We show that the admission control and channel scheduling

policy yields a throughput vector y satisfying

g(y) ≥ g(y∗)− B

V
, (4.3)

where g(y∗) is the optimal objective of problem (4.2), B > 0 is a finite constant, V > 0

is a predefined control parameter, and we temporarily assume that all limits exist. By

choosing V sufficiently large, the throughput utility g(y) can be made arbitrarily close

to the optimal g(y∗), at the expense of increasing average queue sizes. The proof of (4.3)

does not require the knowledge of the optimal utility g(y∗).

The rest of the chapter is organized as follows. The detailed network model is in Sec-

tion 4.1. Section 4.2 introduces useful properties of the randomized round robin policies

RandRR that are used to construct the inner performance region Λint in Chapter 3. Our

1The admission control decision decouples into separable one-dimensional convex programs that are
easily solved in real time when the throughput utility g(y) is a sum of one-dimensional utility functions.

107



dynamic control policy is motivated and given in Section 4.3, followed by performance

analysis in Section 4.4.

4.1 Network Model

We will use the network model in Chapter 3 with the following additional setup. We

suppose that every user has a higher-layer data source of unlimited packets at the base

station. The base station keeps a network-layer queue Qn(t) of infinite capacity for every

user n ∈ {1, . . . , N}, where Qn(t) denotes the backlog for user n in slot t. In every slot,

the base station admits rn(t) ∈ [0, 1] packets for user n from its data source into queue

Qn(t). For simplicity, we assume that rn(t) takes real values in [0, 1] for all n,2 and define

r(t) , (rn(t))Nn=1. Let µn(t) ∈ {0, 1} denote the service rate for user n in slot t. The

queueing process {Qn(t)}∞t=0 of user n evolves as

Qn(t+ 1) = max[Qn(t)− µn(t), 0] + rn(t). (4.4)

Initially Qn(0) = 0 for all n. All queues are (strongly) stable if

lim sup
t→∞

1

t

t−1∑

τ=0

N∑

n=1

E [Qn(τ)] <∞. (4.5)

4.2 Randomized Round Robin Policy RandRR

We summarize useful properties of the randomized round robin policies RandRR that are

used to construct the inner network capacity region Λint in Chapter 3.

2We can accommodate the integer-value assumption of rn(t) by introducing auxiliary queues; see Neely
et al. [2008] for an example.

108



Randomized Round Robin Policy RandRR:

1. In every round, pick a binary vector φ ∈ Φ∪ {0} with some probability αφ, where

α0 +
∑
φ∈Φ αφ = 1.

2. If a vector φ ∈ Φ is selected, run policy RR(φ) presented in Section 3.3 for one

round. Otherwise, φ = 0, idle the system for one slot. At the end of either case,

go to Step 1.

The above RandRR policy is slightly different than that in Chapter 3, because it

includes the option of idling the system. The feasibility of this RandRR policy can be

similarly proved using results in Chapter 3 and the monotonicity of the k-step transition

probabilities {P(k)
n,01,P

(k)
n,11}.

The following is a corollary of Corollary 3.7, and is useful in later analysis.

Corollary 4.1. 1. Let Tk denote the duration of the kth transmission round in a

RandRR policy. The random variables Tk are i.i.d. for different k with

E [Tk] = α0 +
∑

φ∈Φ

αφ


 ∑

n:φn=1

E
[
Lφn

]

 ,

which is computed by conditioning on the policy chosen in a round.

2. Let Nn,k denote the number of packets served for user n in round Tk. For each

fixed n, the random variables Nn,k are i.i.d. over different k with E [Nn,k] =
∑
φ:φn=1 αφ E

[
Lφn − 1

]
, which is computed by conditioning on the RR(φ) policy

that is chosen in a round.

3. Because Nn,k and Tk are i.i.d. over k, the throughput of user n under a RandRR

policy is equal to E [Nn,k] /E [Tk].

109



4.3 Network Utility Maximization

4.3.1 The QRRNUM policy

Recall that our inner throughput region Λint is a convex hull of of the zero vector and

the performance vectors of the subset of RandRR policies that includes those execute a

fixed RR(φ) policy in every round. Therefore, the problem (4.2) is a well-defined convex

program. Yet, solving (4.2) is difficult because the performance region Λint is represented

as a convex hull of 2N vectors. The following admission control and channel scheduling

policy solves (4.2) in a dynamic manner with low complexity.

Utility-Optimal Queue-Dependent Round Robin (QRRNUM):

• (Admission control) At the start of every round, observe the current queue backlog

Q(t) = (Q1(t), . . . , QN (t)) and solve the convex program

maximize: V g(r)−
N∑

n=1

Qn(t) rn (4.6)

subject to: rn ∈ [0, 1], ∀n ∈ {1, . . . , N}, (4.7)

where V > 0 is a predefined control parameter, and r , (rn)Nn=1. Let (rQRR
n )Nn=1 be

the solution to (4.6)-(4.7). In every slot of the current round, admit rQRR
n packets

for every user n ∈ {1, . . . , N} into queue Qn(t).

• (Channel scheduling) At the start of every round, over all nonzero binary vectors

φ ∈ Φ, let φQRR be the maximizer of the ratio

∑N
n=1Qn(t)E

[
Lφn − 1

]
φn

∑N
n=1 E

[
Lφn
]
φn

, E
[
Lφn

]
= 1 +

P
(M(φ))
n,01

Pn,10
, (4.8)

where M(φ) denotes the number of ones (i.e., active channels) in φ. If the maxi-

mum of (4.8) is positive, run policy RR(φQRR) in Section 3.3 for one round using

110



the channel ordering of least recently used first. Otherwise, idle the system for one

slot. At the end of either case, start a new round of admission control and channel

scheduling.

When the utility function g(·) is a sum of individual utilities, i.e., g(r(t)) =
∑N

n=1 gn(rn(t)), problem (4.6)-(4.7) decouples into N one-dimensional convex programs,

each of which maximizes [V gn(rn(t))−Qn(t)rn(t)] over rn(t) ∈ [0, 1], which can be solved

efficiently in real time.

The most complex part of the QRRNUM policy is to maximize the ratio (4.8). In the

following we present a bisection algorithm [Neely 2010c, Section 7.3.1] that searches for

the maximum of (4.8) with exponentially fast speed. This algorithm is motivated by the

next lemma.

Lemma 4.2. ([Neely 2010c, Lemma 7.5]) Let a(φ) and b(φ) denote the numerator and

denominator of (4.8), respectively. Define

θ∗ , max
φ∈Φ

{
a(φ)

b(φ)

}
, c(θ) , max

φ∈Φ
[a(φ)− θb(φ)] .

Then:

If θ < θ∗, then c(θ) > 0.

If θ > θ∗, then c(θ) < 0.

If θ = θ∗, then c(θ) = 0.

Intuition from Lemma 4.2: To search for the maximum ratio θ∗, suppose initially we

know θ∗ lies in a feasible region [θmin, θmax] for some θmin and θmax. Let us compute

the midpoint θmid = 1
2(θmin + θmax) and evaluate c(θmid). If c(θmid) > 0, Lemma 4.2

indicates that θmid < θ∗, and we know θ∗ lies in the new region [θmid, θmax], whose size

is half of the initial [θmin, θmax]. In other words, one such bisection operation reduces

the feasible region of the unknown θ∗ by half. By iterating the bisection process, we can

find θ∗ with exponential speed. The bisection algorithm is presented next.

111



Bisection Algorithm that Maximizes (4.8):

• Initially, define θmin , 0 and

θmax ,

(∑N
n=1Qn(t)

)
maxn∈{1,...,N}

{
πn,ON

Pn,10

}

1 + minn∈{1,...,N}
{

Pn,01

Pn,10

}

so that θmin ≤ a(φ)/b(φ) ≤ θmax for all φ ∈ Φ. It follows that θ∗ ∈ [θmin, θmax].

• Compute θmid = 1
2(θmin + θmax) and c(θmid). If c(θmid) = 0, we have θ∗ = θmid and

φQRR = argmaxφ∈Φ [a(φ)− θ∗b(φ)] .

When c(θmid) < 0, update the feasible region of θ∗ as [θmin, θmid]. If c(θmid) > 0,

update the region as [θmid, θmax]. In either case, repeat the bisection process.

The value c(θ) is easily computed by noticing

c(θ) = max
k∈{1,...,N}

{
max
φ∈Φk

[a(φ)− θb(φ)]

}
, (4.9)

where Φk ⊂ Φ denotes the set of binary vectors having k ones. For every k ∈ {1, . . . , N},

the inner maximum of (4.9) is equal to

max
φ∈Φk

{
N∑

n=1

[
P

(k)
n,01

Pn,10
(Qn(t)− θ)− θ

]
φn

}
,

which is solved by sorting

[
P

(k)
n,01

Pn,10
(Qn(t)− θ)− θ

]
and deciding the binary variables

(φ1, . . . , φN ) accordingly.

4.3.2 Lyapunov Drift Inequality

The construction of the QRRNUM policy follows a novel Lyapunov drift argument. We

start with constructing a frame-based Lyapunov drift inequality over a frame of size T ,

112



where T is possibly random but has a finite second moment bounded by a constant C

so that C ≥ E
[
T 2 | Q(t)

]
for all t and all possible Q(t). Intuition for the inequality is

provided later. By iteratively applying (4.4), it is not hard to show

Qn(t+ T ) ≤ max

[
Qn(t)−

T−1∑

τ=0

µn(t+ τ), 0

]
+
T−1∑

τ=0

rn(t+ τ) (4.10)

for every n ∈ {1, . . . , N}. We define the quadratic Lyapunov function L(Q(t)) ,
1
2

∑N
n=1Q

2
n(t) as a scalar measure of queue sizes Q(t). Define the T -slot Lyapunov

drift

∆T (Q(t)) , E [L(Q(t+ T ))− L(Q(t)) | Q(t)]

as a conditional expected change of queue sizes across T slots, where the expectation

is with respect to the randomness of the network within the T slots, including the

randomness of T . By taking the square of (4.10) for every n, using inequalities

max[a− b, 0] ≤ a ∀a ≥ 0,

(max[a− b, 0])2 ≤ (a− b)2, µn(t) ≤ 1, rn(t) ≤ 1,

to simplify terms, summing all resulting inequalities, and taking conditional expectation

on Q(t), we get

∆T (Q(t)) ≤ B − E

[
N∑

n=1

Qn(t)

[
T−1∑

τ=0

µn(t+ τ)− rn(t+ τ)

]
| Q(t)

]
(4.11)

where B , NC > 0 is a constant. Subtracting from both sides of (4.11) the weighted

sum V E
[∑T−1

τ=0 g(r(t+ τ)) | Q(t)
]
, where V > 0 is a predefined control parameter, we

get the Lyapunov drift inequality

∆T (Q(t))− V E

[
T−1∑

τ=0

g(r(t+ τ)) | Q(t)

]
≤ B − f(Q(t))− h(Q(t)), (4.12)

113



where

f(Q(t)) ,
N∑

n=1

Qn(t)E

[
T−1∑

τ=0

µn(t+ τ) | Q(t)

]
, (4.13)

h(Q(t)) , E

[
T−1∑

τ=0

[
V g(r(t+ τ))−

N∑

n=1

Qn(t) rn(t+ τ)

]
| Q(t)

]
. (4.14)

The inequality (4.12) holds for any scheduling policy over a frame of any size T .

4.3.3 Intuition

The desired network control policy shall stabilize all queues (Q1(t), . . . , QN (t)) and

maximize the throughput utility g(·). For queue stability, we want to minimize the

Lyapunov drift ∆T (Q(t)), because it captures the expected growth of queue sizes over

a duration of time. On the other hand, to increase throughput utility, we want to

admit more data into the system for service, and maximize the expected sum utility

E
[∑T−1

τ=0 g(r(t+ τ)) | Q(t)
]
. Minimizing Lyapunov drift and maximizing throughput

utility, however, conflict with each other, because queue sizes increase with more data

admitted into the system. To capture this tradeoff, it is natural to minimize a weighted

difference of Lyapunov drift and throughput utility, which is the left side of (4.12). The

tradeoff is controlled by the positive parameter V . Intuitively, a large V value puts more

weights on throughput utility, thus throughput utility is improved, at the expense of the

growth of queue sizes reflected in ∆T (Q(t)). The construction of the inequality (4.12)

provides a useful bound on the weighted difference of Lyapunov drift and throughput

utility.

The QRRNUM policy that we present earlier and construct in the next section uses

the above ideas with two modifications. First, it suffices to minimize a bound on the

weighted difference of Lyapunov drift and throughput utility, i.e., the right side of (4.12).

Second, since the weighted difference of Lyapunov drift and throughput utility in (4.12)

is made over a frame of T slots, where the value T is random and depends on the policy

114



implemented within the frame, it is natural to normalize the weighted difference by the

average frame size, and we minimize the resulting ratio (see (4.15)).

4.3.4 Construction of QRRNUM

We consider the policy that, at the start of every round, observes the current queue

backlog vector Q(t) and maximizes over all feasible policies the average

f(Q(t)) + h(Q(t))

E [T | Q(t)]
(4.15)

over a frame of size T . Every feasible policy consists of: (1) an admission control policy

that admits packets into queues Q(t) for all users in every slot; (2) a randomized round

robin policy RandRR for data delivery. The frame size T in (4.15) is the length of one

transmission round under the candidate RandRR policy, and its distribution depends on

the backlog vector Q(t) via the queue-dependent choice of RandRR. When the feasible

policy that maximizes (4.15) is chosen, it is executed for one round of transmission, after

which a new policy is chosen based on the updated ratio of (4.15), and so on.

Next, we simplify the maximization of (4.15); the result is the QRRNUM policy. In

h(Q(t)), the optimal admitted data vector r(t + τ) in every slot is independent of the

frame size T and of the rate allocations µn(t + τ) in f(Q(t)). In addition, it should be

the same for all τ ∈ {0, . . . , T − 1}, and is the solution to (4.6)-(4.7). These observations

lead to the admission control subroutine in the QRRNUM policy.

Let Ψ∗(Q(t)) denote the optimal objective of (4.6)-(4.7). Since the optimal admitted

data vector is independent of the frame size T , we get h(Q(t)) = E [T | Q(t)] Ψ∗(Q(t)),

and (4.15) is equal to

f(Q(t))

E [T | Q(t)]
+ Ψ∗(Q(t)). (4.16)

It indicates that finding the optimal admission control policy is independent of finding

the optimal channel scheduling policy that maximizes the first term of (4.16).

115



Next, we evaluate the first term of (4.16) under a fixed RandRR policy with param-

eters {αφ}φ∈Φ∪{0}. Conditioning on the choice of φ, i.e., the active channels chosen for

service in one round, we get

f(Q(t)) =
∑

φ∈Φ∪{0}
αφ f(Q(t),RR(φ)),

where f(Q(t),RR(φ)) denotes the term f(Q(t)) evaluated under policy RR(φ) with the

channel ordering of least recently used first. For convenience, we denote by RR(0) the

policy of idling the system for one slot. Similarly, by conditioning we have 3

E [T ] = E [T | Q(t)] =
∑

φ∈Φ∪{0}
αφ E

[
TRR(φ)

]
,

where TRR(φ) denotes the duration of one transmission round under the RR(φ) policy. It

follows that

f(Q(t))

E [T | Q(t)]
=

∑
φ∈Φ∪{0} αφ f(Q(t),RR(φ))
∑
φ∈Φ∪{0} αφ E

[
TRR(φ)

] . (4.17)

The next lemma shows that there exists a RR(φ) policy maximizing (4.17) over all

RandRR policies.4 Thus, it suffices to focus on the class of RR(φ) policies in every round.

Lemma 4.3 (Proof in Section 4.7.1). We index RR(φ) policies for all φ ∈ Φ ∪ {0}. For

the RR(φ) policy with index k, define

fk , f(Q(t),RR(φ)), Dk , E
[
TRR(φ)

]
.

Without loss of generality, assume

f1

D1
≥ fk
Dk

, ∀k ∈ {2, 3, . . . , 2N}.

3Given a fixed policy RandRR, the frame size T no longer depends on the backlog vector Q(t), and
E [T ] = E [T | Q(t)].

4Within one transmission round, a RR(φ) policy is a special case of a RandRR policy.

116



Then, for any probability distribution {αk}k∈{1,...,2N} with αk ≥ 0 and
∑2N

k=1 αk = 1, we

have

f1

D1
≥
∑2N

k=1 αk fk∑2N

k=1 αkDk

.

By Lemma 4.3, next we evaluate the first term of (4.16) under a given RR(φ) policy.

If φ = 0, we get f(Q(t))/E [T | Q(t)] = 0. Otherwise, a RR(φ) policy, φ ∈ Φ, yields

E [T ] = E [T | Q(t)] =
∑

n:φn=1

E
[
Lφn

]
,

E

[
T−1∑

τ=0

µn(t+ τ) | Q(t)

]
=





E
[
Lφn
]
− 1 if φn = 1

0 if φn = 0

As a result,

f(Q(t))

E [T | Q(t)]
=

∑N
n=1Qn(t)E

[
Lφn − 1

]
φn

∑N
n=1 E

[
Lφn
]
φn

. (4.18)

The above simplifications lead to the channel scheduling subroutine of the QRRNUM

policy.

4.4 Performance Analysis

Theorem 4.4 (Proof in Section 4.7.2). Let yn(t) = min[Qn(t), µn(t)] be the number

of packets delivered to user n in slot t; define y(t) , (yn(t))Nn=1. Define constant B ,

NE
[
T 2

max

]
. For any control parameter V > 0, the QRRNUM policy stabilizes all queues

{Q1(t), . . . , QN (t)} and yields throughput utility satisfying

lim inf
t→∞

g

(
1

t

t−1∑

τ=0

E [y(τ)]

)
≥ g(y∗)− B

V
, (4.19)

where g(y∗) is the solution to the constrained problem (4.2). By taking V sufficiently

large, the QRRNUM policy yields performance arbitrarily close to the optimal g(y∗),

117



and solves (4.2). The tradeoff of choosing large V values is the linear increase of average

queue sizes with V (cf. (4.40)).

4.5 Chapter Summary and Discussions

We provide a theoretical framework to solve throughput utility maximization over par-

tially observable Markov ON/OFF channels. The performance and control are con-

strained by limiting channel probing capability and delayed/uncertain channel state

information, but can be improved by exploiting channel memory. Overall, attacking

such problems requires solving (at least approximately) high-dimensional restless multi-

armed bandit problems with nonlinear objective functions of time average vector rewards,

which are difficult to solve by existing tools such as Whittle’s index or Markov decision

theory. This chapter provides a new achievable region method. With an inner perfor-

mance region constructed in Chapter 3, we provide a novel frame-based Lyapunov drift

argument that solves the problem with provably near-optimal performance in the inner

performance region. We generalize the existing MaxWeight policies to frame-based sys-

tems with random frame sizes, and show that a ratio MaxWeight policy is useful for

utility maximization problems.

This chapter provides a new mathematical programming method for optimizing non-

linear objective functions of time average reward vectors in restless multi-armed bandit

(RMAB) problems. In the literature, RMAB problems are mostly studied with linear

objective functions. The two popular methods for linear RMABs, namely Whittle’s in-

dex [Whittle 1988] and (partially observable) Markov decision theory [Bertsekas 2005],

seem difficult to apply to nonlinear RMABs because they are based on dynamic pro-

gramming ideas. Extensions of our new method to other RMAB problems are interesting

future research.

118



4.6 Bibliographic Notes

In the literature, stochastic utility maximization over queueing networks is solved in [Ery-

ilmaz and Srikant 2006, 2007, Neely 2003, Neely et al. 2008, Stolyar 2005], assuming that

channel (network) states are known perfectly and instantly. Limited channel probing in

wireless networks is studied in different contexts in Chang and Liu [2007], Chaporkar

and Proutiere [2008], Chaporkar et al. [2010, 2009], Guha et al. [2006b], Li and Neely

[2010a], where channels are assumed i.i.d. over slots. This chapter generalizes the utility

maximization framework in Neely et al. [2008] to wireless networks with limited channel

probing capability and time-correlated channels, and uses channel memory to improve

performance.

4.7 Proofs in Chapter 4

4.7.1 Proof of Lemma 4.3

Fact 1: Let {a1, a2, b1, b2} be four positive numbers, and suppose there is a bound z such

that a1/b1 ≤ z and a2/b2 ≤ z. Then for any probability θ (where 0 ≤ θ ≤ 1), we have:

θa1 + (1− θ)a2

θb1 + (1− θ)b2
≤ z. (4.20)

We prove Lemma 4.3 by induction and (4.20). Initially, for any α1, α2 ≥ 0, α1 +α2 =

1, from f1/D1 ≥ f2/D2 we get

f1

D1
≥ α1f1 + α2f2

α1D1 + α2D2
.

For some K > 2, assume

f1

D1
≥
∑K−1

k=1 αkfk∑K−1
k=1 αkDk

(4.21)

119



holds for any probability distribution {αk}K−1
k=1 . It follows that, for any probability

distribution {αk}Kk=1, we get

∑K
k=1 αkfk∑K
k=1 αkDk

=
(1− αK)

[∑K−1
k=1

αk
1−αK fk

]
+ αKfK

(1− αK)
[∑K−1

k=1
αk

1−αKDk

]
+ αKDK

(a)

≤ f1

D1

where (a) follows Fact 1 because f1/D1 ≥ fK/DK by definition and

f1

D1
≥
∑K−1

k=1
αk

1−αK fk∑K−1
k=1

αk
1−αKDk

by the induction assumption.

4.7.2 Proof of Theorem 4.4

In the QRRNUM policy, let tk−1 and Tk be the beginning and the duration of the kth

transmission round, respectively. We have Tk = tk− tk−1 and tk =
∑k

i=1 Ti for all k ∈ N.

Assume t0 = 0. Every Tk is the length of a transmission round of some RR(φ) policy.

Define Tmax as the length of a transmission round of the policy RR(1) that serves all

channels in every round. For each k ∈ N, we have that Tmax and T 2
max are stochastically

larger than Tk and T 2
k , respectively. As a result, we have for all k ∈ N

E [Tk] ≤ E [Tmax] <∞, E
[
T 2
k

]
≤ E

[
T 2

max

]
<∞. (4.22)

To analyze the performance of the QRRNUM policy, we compare it to a near-optimal

feasible solution. We will adopt the approach in Neely et al. [2008] but generalize it to a

frame-based analysis. For some ε > 0, consider the ε-constrained version of problem (4.2):

maximize: g(y), subject to: y ∈ Λint(ε), (4.23)

120



where Λint(ε) is the achievable region Λint stripping an “ε-layer” off the boundary:

Λint(ε) , {y | y + ε1 ∈ Λint},

where 1 is an all-one vector. Notice that Λint(ε)→ Λint as ε→ 0. Let y∗(ε) = (y∗n(ε))Nn=1

be the solution to (4.23), and y∗ = (y∗n)Nn=1 be the solution to problem (4.2). For

simplicity, we assume y∗(ε)→ y∗ as ε→ 0.5

Since the inner throughput region Λint corresponds to the set of RandRR policies,

there exists a randomized round robin policy RandRR∗ε that yields the throughput vector

y∗(ε) + ε1. Let T ∗ε denote the length of one transmission round under RandRR∗ε . From

Corollary 4.1, we have for every user n ∈ {1, . . . , N}:

E



T ∗ε −1∑

τ=0

µn(t+ τ) | Q(t)


 = E



T ∗ε −1∑

τ=0

µn(t+ τ)


 = (y∗n(ε) + ε)E [T ∗ε ] . (4.24)

Combining policy RandRR∗ε with the admission policy σ∗ that sets rn(t+ τ) = y∗n(ε) for

all users n and τ ∈ {0, . . . , T ∗ε − 1},6 we get

f∗ε (Q(t)) = E [T ∗ε ]

N∑

n=1

Qn(t)(y∗n(ε) + ε) (4.25)

h∗ε (Q(t)) = E [T ∗ε ]

[
V g(y∗(ε))−

N∑

n=1

Qn(t) y∗n(ε)

]
(4.26)

where (4.25) and (4.26) are f(Q(t)) and h(Q(t)) (see (4.13), (4.14)) evaluated under

policies RandRR∗ε and σ∗, respectively.

5This property is proved in a similar case in [Neely 2003, Section 5.5.2].

6The throughput y∗n(ε) is less than or equal to one. Thus it is a feasible choice of rn(t+ τ).

121



Since the QRRNUM policy maximizes (4.15), computing (4.15) under QRRNUM and

the joint policy (RandRR∗ε , σ
∗) yields

fQRRNUM(Q(tk)) + hQRRNUM(Q(tk))

≥ E [Tk+1 | Q(tk)]
f∗ε (Q(tk)) + h∗ε (Q(tk))

E [T ∗ε ]

(a)
= E [Tk+1 | Q(tk)]

[
V g(y∗(ε)) + ε

N∑

n=1

Qn(tk)

]

= E

[
Tk+1

(
V g(y∗(ε)) + ε

N∑

n=1

Qn(tk)

)
| Q(tk)

]
, (4.27)

where (a) is from (4.25) and (4.26). The inequality (4.12) under the QRRNUM policy in

the (k + 1)th round of transmission yields

∆Tk+1
(Q(tk))− V E



Tk+1−1∑

τ=0

g(r(tk + τ)) | Q(tk)




(a)

≤ B − fQRRNUM(Q(tk))− hQRRNUM(Q(tk))

(b)

≤ B − E

[
Tk+1

(
V g(y∗(ε)) + ε

N∑

n=1

Qn(tk)

)
| Q(tk)

]
, (4.28)

where (a) is the inequality (4.12) under policy QRRNUM, and (b) uses (4.27). Taking

expectation over Q(tk) in (4.28) and summing it over k ∈ {0, . . . ,K − 1}, we get

E [L(Q(tK))]− E [L(Q(t0))]− V E

[
tK−1∑

τ=0

g(r(τ))

]

≤ BK − V g(y∗(ε))E [tK ]− εE
[
K−1∑

k=0

(
Tk+1

N∑

n=1

Qn(tk)

)]
. (4.29)

122



Since queue backlogs (Q1(·), . . . , QN (·)) and L(Q(·)) are all nonnegative, and by assump-

tion Q(t0) = Q(0) = 0, ignoring all backlog-related terms in (4.29) yields

−V E

[
tK−1∑

τ=0

g(r(τ))

]
≤ BK − V g(y∗(ε))E [tK ]

(a)

≤ BE [tK ]− V g(y∗(ε))E [tK ] (4.30)

where (a) uses tK =
∑K

k=1 Tk ≥ K. Dividing (4.30) by V and rearranging terms, we get

E

[
tK−1∑

τ=0

g(r(τ))

]
≥
(
g(y∗(ε))− B

V

)
E [tK ] . (4.31)

Recall from Section 4.3.2 that B in (4.31) is an unspecified constant satisfying B ≥

NE
[
T 2
k | Q(t)

]
for all k ∈ N and all possible Q(t). From (4.22), it suffices to define

B , NE
[
T 2

max

]
.

Under the QRRNUM policy, let K(t) denote the number of transmission rounds

ending by time t; we have tK(t) ≤ t < tK(t)+1. It follows that 0 ≤ t − E
[
tK(t)

]
≤

E
[
tK(t)+1 − tK(t)

]
= E

[
TK(t)+1

]
. Dividing the above by t and passing t→∞, we get

lim
t→∞

t− E
[
tK(t)

]

t
= 0. (4.32)

Next, the expected sum utility over the first t slots satisfies

t−1∑

τ=0

E [g(r(τ))]
(a)

≥ E



tK(t)−1∑

τ=0

g(r(τ))




(b)

≥
[
g(y∗(ε))− B

V

]
E
[
tK(t)

]

=

[
g(y∗(ε))− B

V

]
t−

[
g(y∗(ε))− B

V

] (
t− E

[
tK(t)

])
, (4.33)

123



where (a) uses t ≥ tK(t) and that g(·) is nonnegative, and (b) follows (4.31). Divid-

ing (4.33) by t, taking a lim inf as t→∞, and using (4.32), we get

lim inf
t→∞

1

t

t−1∑

τ=0

E [g(r(τ))] ≥ g(y∗(ε))− B

V
. (4.34)

Using Jensen’s inequality and the concavity of g(·), we get

lim inf
t→∞

1

t

t−1∑

τ=0

E [g(r(τ))] ≤ lim inf
t→∞

g
(
r(t)
)
, (4.35)

where we define the average admission data vector:

r(t) , (r(t)
n )Nn=1, r(t)

n , 1

t

t−1∑

τ=0

E [rn(τ)] . (4.36)

Combining (4.34) and (4.35) yields

lim inf
t→∞

g
(
r(t)
)
≥ g(y∗(ε))− B

V
,

which holds for any sufficiently small ε. Passing ε→ 0 yields

lim inf
t→∞

g
(
r(t)
)
≥ g(y∗)− B

V
. (4.37)

Finally, we show the network is stable and the limiting throughput utility satisfies

lim inf
t→∞

g
(
y(t)
)
≥ lim inf

t→∞
g
(
r(t)
)
, (4.38)

124



where y(t) = (y
(t)
n )Nn=1 and y

(t)
n , 1

t

∑t−1
τ=0 E [yn(τ)]. Then, combining (4.37) and (4.38)

finishes the proof. To prove stability, ignoring the first, second, and fifth term in (4.29)

yields

εE

[
K−1∑

k=0

(
Tk+1

N∑

n=1

Qn(tk)

)]
≤ BK + V E

[
tK−1∑

τ=0

g(r(τ))

]

(a)

≤ K (B + V GmaxE [Tmax]) (4.39)

where we define Gmax , g(1) < ∞ as the maximum value of g(r(τ)) (since g(·) is

nondecreasing), and (a) uses

g(r(τ)) ≤ Gmax, E [tK ] =
K∑

k=1

E [Tk] ≤ KE [Tmax] .

Dividing (4.39) by Kε, taking a lim sup as K →∞, and using Tk+1 ≥ 1, we get

lim sup
K→∞

1

K
E

[
K−1∑

k=0

N∑

n=1

Qn(tk)

]
≤ B + V GmaxE [Tmax]

ε
<∞. (4.40)

Inequality (4.40) shows that the average backlog is bounded when sampled at time

instants {tk}∞k=0. This property is enough to conclude that the average backlog over the

whole time horizon is bounded, i.e., inequality (4.5) holds and the network is stable. It

is because the length of each transmission round Tk has a finite second moment and the

maximal amount of data admitted to each user in every slot is at most 1; see [Li and

Neely 2011a, Lemma 13] for a detailed proof.

It remains to show that network stability leads to (4.38). Recall that yn(τ) =

min[Qn(τ), µn(τ)] is the number of user-n packets served in slot τ ; (4.4) is re-written as

Qn(τ + 1) = Qn(τ)− yn(τ) + rn(τ). (4.41)

125



Summing (4.41) over τ ∈ {0, . . . , t− 1}, taking expectation and dividing it by t, we get

E [Qn(t)]

t
= r(t)

n − y(t)
n , (4.42)

where r
(t)
n is defined in (4.36) and y

(t)
n is defined similarly. From [Neely 2010b, Theorem

4(c)], the stability of Qn(t) and (4.42) yield that for all n ∈ {1, . . . , N}:

lim sup
t→∞

E [Qn(t)]

t
= lim sup

t→∞

(
r(t)
n − y(t)

n

)
= 0. (4.43)

Noting that g(y(t)) is bounded for all t, there exists a convergent subsequence

{g(y(ti))}∞i=1 of {g(y(t))}∞t=0 such that

lim
i→∞

g
(
y(ti)

)
= lim inf

t→∞
g
(
y(t)
)
. (4.44)

Since the time average r
(t)
n in (4.36) is bounded for all n and t, there exists a subsequence

{tk}k of {ti}i such that the sequence {r(tk)}∞k=1 converges. From (4.43), we get

lim
k→∞

(r(tk)
n − y(tk)

n ) ≤ lim sup
t→∞

(
r(t)
n − y(t)

n

)
= 0

and thus

lim
k→∞

r(tk)
n ≤ lim

k→∞
y(tk)
n , for all n ∈ {1, . . . , N}. (4.45)

It follows that

lim inf
t→∞

g
(
y(t)
)

(a)
= lim

k→∞
g
(
y(tk)

)

(b)

≥ lim
k→∞

g
(
r(tk)

)
≥ lim inf

t→∞
g
(
r(t)
)
,

where (a) is from (4.44), (b) uses (4.45) and that g(·) is continuous and nondecreasing.

126



Chapter 5

Delay-Optimal Control in a

Multi-Class M/G/1 Queue with

Adjustable Service Rates

In the previous three chapters, we use Lyapunov drift theory to develop throughput and

power-optimal control algorithms in wireless networks. We have considered convex util-

ity maximization problems, and implicitly incorporated time-average constraints: queue-

stable policies guarantee that the arrival rate to a queue must be less than or equal to

the service rate. Broadly, the analysis and the design of network control algorithms in

previous chapters provide a new toolset to solve stochastic convex optimization problems

with time-average constraints. For one such problem, we construct a virtual queueing

system tailored to it, so that queue-stable policies in the virtual system are online al-

gorithms that solve the original problem. This chapter is devoted to using this new

optimization method to study delay and rate-optimal control in multi-class queueing

systems that have applications in computer systems and cloud computing environments,

as introduced in Section 1.2.

Specifically, we consider a multi-class M/G/1 queue with adjustable service rates.

Jobs are categorized into N classes and served in a nonpreemptive fashion. The service

rate µ(P (t)) allocated at time t incurs a service cost P (t). We are concerned with the

following four delay-aware and rate allocation problems:

127



1. Designing a policy such that the average queueing delay in class n, denoted by Wn,

satisfies Wn ≤ dn for all n ∈ {1, . . . , N}, where dn > 0 are given constants. Here

we assume a constant service rate and no rate control.

2. Minimizing a separable convex function
∑N

n=1 fn(Wn) of the average queueing

delay vector (Wn)Nn=1 subject to delay constraints Wn ≤ dn for all classes n;

assuming a constant service rate.

3. With adjustable service rates, minimizing average service cost subject to delay

constraints Wn ≤ dn for all classes n.

4. With adjustable service rates, minimizing a separable convex delay function
∑N

n=1 fn(Wn) subject to an average service cost constraint.

These four problems have increasing complexity, and are presented in this order so that

the readers can familiarize themselves with the new methodology that is used.

In this chapter, we design frame-based policies that only update controls across busy

periods (i.e., over renewal periods) for the four control problems. The reason of consider-

ing these coarse-grained policies is to simplify the decision space of the queue to achieve

complex performance objectives. When the service rate is constant, frame-based policies

have no performance loss in mean queueing delay (see Lemma 5.4 later). Updating rate

allocations across busy periods, as specified later in Assumption 5.2, leads to tractable

analysis using renewal reward theory. We remark that although a simulation in Ansell

et al. [1999] suggests that frame-based policies may incur higher variance in performance

than policies that base control actions on job occupancy in the queue, it seems diffi-

cult to develop job-level scheduling policies for the problems considered in this chapter.

Job-level scheduling, often based on Markov decision theory, suffers from the curse of

dimensionality (multiple job classes lead to a multi-dimensional state space), and seems

difficult to handle nonlinear objective functions with time average constraints.

The rest of the chapter is organized as follows. The detailed queueing model is in

Section 5.1, followed by a summary of useful M/G/1 properties in Section 5.2. The

128



four delay-aware and rate control problems are solved in Section 5.3-5.6, followed by

simulation results in Section 5.7.

5.1 Queueing Model

We only consider queueing delay, not system delay (queueing plus service), in this chap-

ter. System delay can be easily incorporated because, in a nonpreemptive system, average

queueing and system delay differ by a constant: the average service time. We use delay

and queueing delay interchangeably in the rest of the chapter.

Consider a nonpreemptive M/G/1 queue serving jobs divided into N classes. Jobs

of class n ∈ {1, . . . , N} arrive as an independent Poisson process with rate λn. All job

sizes are independent across classes and independent and identically distributed (i.i.d.)

within each class. Let Sn be a random variable with distribution the same as the size of

a class n job, with E [Sn] being the mean job size for class n. As a technical detail, we

assume that the first four moments of Sn are finite in every class n; the distribution of

Sn is otherwise arbitrary. We assume that when a job arrives, we only know its class but

not its actual size.1 The server has instantaneous service rate µ(P (t)), where P (t) is the

associated service cost at time t. We assume that µ(P ) is increasing in P , and µ(0) = 0.

We consider a frame-based system, in which each frame consists of an idle period and

the following busy period. For every k ∈ Z+, let tk be the start of the kth frame; the

kth frame is [tk, tk+1). Let Tk , tk+1 − tk denote the size of frame k. Define t0 = 0 and

assume the system is initially empty. Let An,k be the set of class n arrivals in frame k.

For each job i ∈ An,k, let W
(i)
n,k be its queueing delay.

Assumption 5.1. We concentrate on the class of scheduling policies that are: (1) work-

conserving (the server is never idle when there is still work to do); (2) non-anticipative

1Applying results in this chapter to cases where job size information is available is discussed at the
end of Section 5.8.

129



(control decisions depend only on past and current system states/actions); (3) nonpre-

emptive (every job is served without interruption); (4) independent of actual job sizes

(we have assumed that job sizes are unknown upon their arrivals). In addition, jobs in

each class are served according to first-in-first-out (FIFO).2

Assumption 5.2. As for rate allocations, we assume that, in every busy period k ∈ Z+,

a fixed per-unit-time service cost Pk ∈ [Pmin, Pmax], i.e., a fixed service rate µ(Pk),

is allocated for the duration of the period; the decisions are possible random. Zero

service rates are allocated in idle periods with zero service cost. We assume that the

maximum cost Pmax is finite, but sufficiently large to ensure feasibility of the desired

delay constraints. The minimum cost Pmin is chosen to be large enough so that the

queue is stable even if Pmin is used for all time. In particular, for stability we need

N∑

n=1

λn
E [Sn]

µ(Pmin)
< 1⇒ µ(Pmin) >

N∑

n=1

λnE [Sn] .

5.1.1 Definition of Average Delay

The average delay under policies that we propose later may not have well-defined limits.

Thus, inspired by Neely [2010a], we define

Wn , lim sup
K→∞

E
[∑K−1

k=0

∑
i∈An,kW

(i)
n,k

]

E
[∑K−1

k=0 |An,k|
] (5.1)

2We note that, under a constant service rate, a given scheduling policy, and the assumption that job
sizes in each class are i.i.d. and unknown in advance, any other queueing discipline in a class yields the
same average queueing delay as FIFO in that class; hence, our results in this chapter apply to a much
broader policy space. In each class, since the average finished work in the system (queueing plus service)
and the average residue work in service are both independent of queueing disciplines, so is the average
unfinished work in the queue in that class. As a result, the average queueing delay in each class n under
two different queueing disciplines satisfies

λnE [Xn]W
1
n = λnE [Xn]W

2
n ⇒W

1
n = W

2
n,

where E [Xn] denotes the mean service time of class n jobs, and W
1
n and W

2
n are mean queueing delay

in class n under different queueing disciplines.

130



as the average queueing delay in class n ∈ {1, . . . , N}, where |An,k| is the number of class

n arrivals in frame k. We only consider average delays sampled at frame boundaries for

simplicity. To verify (5.1), the running average delay in class n at time tK is equal to

∑K−1
k=0

∑
i∈An,kW

(i)
n,k∑K−1

k=0 |An,k|
=

1
K

∑K−1
k=0

∑
i∈An,kW

(i)
n,k

1
K

∑K−1
k=0 |An,k|

.

We define two averages

wav
n , lim

K→∞
1

K

K−1∑

k=0

∑

i∈An,k
W

(i)
n,k, aav

n , lim
K→∞

1

K

K−1∑

k=0

|An,k| .

If both limits wav
n and aav

n exist, the ratio wav
n /a

av
n is the limiting average delay in class

n. In this case, we get

Wn =
limK→∞ E

[
1
K

∑K−1
k=0

∑
i∈An,kW

(i)
n,k

]

limK→∞ E
[

1
K

∑K−1
k=0 |An,k|

]

=
E
[
limK→∞ 1

K

∑K−1
k=0

∑
i∈An,kW

(i)
n,k

]

E
[
limK→∞ 1

K

∑K−1
k=0 |An,k|

] =
wav
n

aav
n

, (5.2)

which shows that Wn is indeed the limiting average delay. The definition in (5.1) replaces

the limit by lim sup to guarantee the term is well-defined.

Remark 5.3. The second equality in (5.2), where we pass the limits into the expecta-

tions, can be proved by a generalized Lebesgue’s dominated convergence theorem stated

as follows. Let {Xn}∞n=1 and {Yn}∞n=1 be two sequences of random variables such that:

(1) 0 ≤ |Xn| ≤ Yn with probability 1 for all n; (2) for some random variables X and Y ,

Xn → X and Yn → Y with probability 1; (3) limn→∞ E [Yn] = E [Y ] < ∞. Then E [X]

is finite and limn→∞ E [Xn] = E [X]. The details are omitted for brevity.

131



5.2 Preliminaries

This section summarizes useful properties of a nonpreemptive multi-class M/G/1 queue.

Here we assume a constant service rate µ(P ) with a fixed cost P (this is extended in

Section 5.5). Let Xn , Sn/µ(P ) be the service time of a class n job. Define ρn ,

λnE [Xn]. Fix an arrival rate vector (λn)Nn=1 satisfying
∑N

n=1 ρn < 1; the rate vector

(λn)Nn=1 is supportable in the queue.

For each k ∈ Z+, let Ik and Bk denote the kth idle and busy period, respectively;

the frame size Tk = Ik + Bk. The distributions of Bk and Tk are fixed under any work-

conserving policy when the service rate is constant. It is because the sample path of

unfinished work in the system always decreases at the rate of the server and has a jump

when a job arrives, regardless of the order jobs are served. Next, since Poisson arrivals are

memoryless, we have E [Ik] = 1/(
∑N

n=1 λn) for all k. For the same reason, the queueing

system renews itself at the start of every frame (i.e., at the start of every idle period).

As a result, the frame size Tk, busy period Bk, and the number of class n arrivals in a

frame, namely |An,k|, are all i.i.d. over k. Using renewal reward theory [Ross 1996] with

renewal epochs defined at frame boundaries {tk}∞k=0, we have for all k ∈ Z+:

E [Tk] =
E [Ik]

1−∑N
n=1 ρn

=
1

(1−∑N
n=1 ρn)

∑N
n=1 λn

, (5.3)

E [|An,k|] = λn E [Tk] , ∀n ∈ {1, . . . , N}. (5.4)

It is useful to consider a stationary randomized priority policy πrand that, in every

busy period, randomly chooses one strict priority policy for the duration of the busy

period according to a stationary distribution; jobs in each class are served according to

FIFO. The mean queueing delay Wn of class n under the πrand policy satisfies in every

frame k ∈ Z+:

E


 ∑

i∈An,k
W

(i)
n,k


 = E

[∫ tk+1

tk

Qn(t) dt

]
= λnWn E [Tk] , ∀n ∈ {1, . . . , N}, (5.5)

132



where we recall that W
(i)
n,k represents only the queueing delay (not including service time),

and Qn(t) denotes the number of class n jobs in the queue (not including that in the

server) at time t. The first equality of (5.5) is easily verified by a sample-path argument

(see Bertsekas and Gallager [1992, Figure 3.1]), and the second equality follows renewal

reward theory and Little’s Theorem.

Next we present useful properties of the performance region of mean queueing delay in

a nonpreemptive multi-class M/G/1 queue under scheduling policies defined in Assump-

tion 5.1. For these results we refer readers to Bertsekas and Gallager [1992], Federgruen

and Groenevelt [1988b], Yao [2002] for a detailed introduction. Define xn , ρnWn for ev-

ery class n ∈ {1, . . . , N}, and denote by Ω the performance region of the vector (xn)Nn=1.

The set Ω is (a base of) a polymatroid with properties: (1) every vertex of Ω is the

performance vector of a strict priority policy; (2) the performance vector of every strict

priority policy is a vertex of Ω. In other words, there is a one-to-one mapping between

vertices of Ω and strict priority policies. Consequently, every feasible vector (xn)Nn=1 ∈ Ω,

or equivalently every feasible mean queueing delay vector (Wn)Nn=1, is attained by a ran-

domization of strict priority policies. Such randomization can be implemented across

busy periods, since the M/G/1 queue renews itself at the end of busy periods. This is

formalized in the next lemma.

Lemma 5.4 (Proof in Section 5.10.1). In a multi-class M/G/1 queue with schedul-

ing policies defined in Assumption 5.1, we define W ,
{

(Wn)Nn=1 | (ρnWn)Nn=1 ∈ Ω
}

as

the performance region of the mean queueing delay vector [Federgruen and Groenevelt

1988b]. Let πrand be the policy that randomly chooses one strict priority policy in every

busy period according to a stationary distribution. Then we have:

1. The mean queueing delay vector under every πrand policy lies in W.

2. Conversely, every point in W is the performance vector of a πrand policy.

Optimizing a linear function over a polymatroid is useful in later analysis; the solution

is the well known cµ rule.

133



Lemma 5.5 (The cµ rule; Bertsekas and Gallager [1992], Federgruen and Groenevelt

[1988b]). In a multi-class M/G/1 queue with scheduling policies defined in Assump-

tion 5.1, we define xn , ρnWn and consider the linear program:

minimize:
N∑

n=1

cn xn (5.6)

subject to: (xn)Nn=1 ∈ Ω (5.7)

where cn are nonnegative constants. We assume
∑N

n=1 ρn < 1 for stability, and that the

service time of a class n job has a finite second moment E
[
X2
n

]
< ∞ for all classes n.

The optimal solution to (5.6)-(5.7) is a strict priority policy that prioritizes job classes

in the decreasing order of cn. That says, if c1 ≥ c2 ≥ . . . ≥ cN , then class 1 gets the

highest priority, class 2 gets the second highest priority, and so on. In this case, the

optimal average queueing delay W
∗
n of class n is equal to

W
∗
n =

R

(1−∑n−1
k=0 ρk)(1−

∑n
k=0 ρk)

, (5.8)

where ρ0 , 0 and R , 1
2

∑N
n=1 λnE

[
X2
n

]
.

5.3 Achieving Delay Constraints

In this section, we design a policy that yields mean queueing delay of class n satisfying

a constraint Wn ≤ dn for all classes n. We assume a constant service rate and that all

delay constraints are feasible.

Our method transforms this problem into a new queue stability problem. We define

a discrete-time virtual delay queue {Zn,k}∞k=0 for each class n ∈ {1, . . . , N}, where the

queue backlog Zn,k+1 is computed at time tk+1 by

Zn,k+1 = max


Zn,k +

∑

i∈An,k

(
W

(i)
n,k − dn

)
, 0


 , ∀ k ∈ Z+. (5.9)

134



In (5.9), the values W
(i)
n,k are queueing delays of class n jobs served in the previous frame

[tk, tk+1). We assume initially Zn,0 = 0 for all n. The values W
(i)
n,k and dn can be viewed

as arrivals and services of the queue Zn,k, respectively. If queue Zn,k is stable, we know

that the average arrival rate to the queue (being the per-frame average sum of class n

delays
∑

i∈An,kW
(i)
n,k) is less than or equal to the average service rate (being the value

dn multiplied by the average number of class n arrivals per frame), from which we infer

Wn ≤ dn. This is formalized below.

Definition 5.6. We say queue Zn,k is mean rate stable if limK→∞ E [Zn,K ] /K = 0.

Lemma 5.7. If queue Zn,k is mean rate stable, then Wn ≤ dn.

Proof (Lemma 5.7). From (5.9), we get

Zn,k+1 ≥ Zn,k − dn |An,k|+
∑

i∈An,k
W

(i)
n,k.

Summing the above over k ∈ {0, . . . ,K − 1}, using Zn,0 = 0, and taking expectation

yields

E [Zn,K ] ≥ −dnE
[
K−1∑

k=0

|An,k|
]

+ E



K−1∑

k=0

∑

i∈An,k
W

(i)
n,k


 .

Dividing the above by E
[∑K−1

k=0 |An,k|
]

yields

E [Zn,K ]

E
[∑K−1

k=0 |An,k|
] ≥

E
[∑K−1

k=0

∑
i∈An,kW

(i)
n,k

]

E
[∑K−1

k=0 |An,k|
] − dn.

Taking a lim sup as K →∞ and using definition (5.1) yields

Wn ≤ dn + lim sup
K→∞

E [Zn,K ]

K

K

E
[∑K−1

k=0 |An,k|
] .

135



Using E [|An,k|] = λnE [Tk] ≥ λnE [Ik] = λnE [I0] and mean rate stability of Zn,k, we get

Wn ≤ dn +
1

λnE [I0]
lim
K→∞

E [Zn,K ]

K
= dn.

5.3.1 Delay Feasible Policy DelayFeas

The next dynamic index policy, DelayFeas, stabilizes all Zn,k queues in the mean rate

stable sense and satisfies all delay constraints Wn ≤ dn (by Lemma 5.7).

Delay Feasible Policy DelayFeas:

In every frame k ∈ Z+, the queue updates Zn,k by (5.9) at the beginning of

the frame, and serves jobs using strict priorities assigned in the decreasing

order of Zn,k (the class with the largest Zn,k has the highest priority) for the

duration of the frame. Ties are broken arbitrarily.

Intuitively, the value Zn,k tracks the amount of past queueing delays in class n ex-

ceeding the desired delay bound dn (cf. (5.9)). In every frame, the DelayFeas policy gives

priorities to job classes that more severely violate their delay constraints. No statistical

knowledge of the queue is needed.

5.3.2 Construction of DelayFeas

The DelayFeas policy is designed using Lyapunov drift theory. For some finite constants

θn > 0, n ∈ {1, . . . , N}, we define the quadratic Lyapunov function

L(Zk) ,
1

2

N∑

n=1

θnZ
2
n,k

as a scalar measure of the queue size vector Zk , (Zn,k)
N
n=1. We define the one-frame

Lyapunov drift

∆(Zk) , E [L(Zk+1)− L(Zk) | Zk]

136



as the conditional expected growth of the queue size measure L(Zk) over frame k. The

intuition is that minimizing the expected queue growth ∆(Zk) over every frame suffices

to stabilize all Zn,k queues.

It actually suffices to minimize a bound on ∆(Zk) in every frame. Taking the square

of (5.9) and using (max[a, 0])2 ≤ a2 yields

Z2
n,k+1 ≤


Zn,k +

∑

i∈An,k

(
W

(i)
n,k − dn

)



2

. (5.10)

Multiplying (5.10) by θn/2, summing over n ∈ {1, . . . , N}, and taking conditional ex-

pectation on Zk, we get

∆(Zk) ≤
1

2

N∑

n=1

θn E




 ∑

i∈An,k

(
W

(i)
n,k − dn

)



2

| Zk




+
N∑

n=1

θn Zn,k E


 ∑

i∈An,k

(
W

(i)
n,k − dn

)
| Zk


 . (5.11)

Lemma 5.19 in Section 5.10.2 shows that the second term of (5.11) is bounded by a finite

constant C > 0. Therefore, we get

∆(Zk) ≤ C +
N∑

n=1

θn Zn,k E


 ∑

i∈An,k

(
W

(i)
n,k − dn

)
| Zk


 . (5.12)

Over all (possibly random) scheduling policies defined in Assumption 5.1, we are inter-

ested in the one that minimizes the right side of (5.12) in every frame k. To show that this

is the DelayFeas policy, we simplify (5.12). Under a scheduling policy in Assumption 5.1,

we have by renewal reward theory that

E


 ∑

i∈An,k
W

(i)
n,k | Zk


 = λnWn,k E [Tk] ,

137



where Wn,k denotes the average queueing delay in class n if the (random) control in

frame k is repeated in every frame. Together with E [|An,k|] = λn E [Tk] and the genie

decisions θn = E [Xn] for all classes n, (5.12) is re-written as

∆(Zk) ≤
(
C − E [Tk]

N∑

n=1

Zn,k ρn dn

)
+ E [Tk]

N∑

n=1

Zn,k ρnWn,k, (5.13)

where ρn = λnE [Xn]. Because the service rate is constant in this section, the second

term of (5.13) and E [Tk] are fixed under all work-conserving policies. It follows that our

desired policy minimizes
N∑

n=1

Zn,k ρnWn,k

over all feasible mean queueing delay vectors (Wn,k)
N
n=1; this is the DelayFeas policy from

the cµ rule in Lemma 5.5.

Remark 5.8. In the above analysis, the mean service time E [Xn] as a value of θn is

only needed in the arguments constructing the DelayFeas policy. The DelayFeas policy

itself does not need the knowledge of E [Xn].

Remark 5.9. The DelayFeas policy is equivalent to minimizing the ratio of the right

side of (5.12) over the expected frame size E [Tk] in every frame k. This is in the same

spirit of the ratio MaxWeight rule that we have used for stochastic optimization over

frame-based systems in Chapter 4. All control policies later in this chapter use similar

ratio MaxWeight policies. In this section, it reduces to minimize the right side of (5.12)

since E [Tk] is fixed. This ratio rule does not reduce in this way in the last two problems

when the service rate is adjustable.

5.3.3 Performance of DelayFeas

Theorem 5.10. For every collection of feasible delay bounds {d1, . . . , dN} under schedul-

ing policies defined in Assumption 5.1, the DelayFeas policy satisfies Wn ≤ dn for all

classes n ∈ {1, . . . , N}.

138



Proof (Theorem 5.10). By Lemma 5.7, it suffices to show that the DelayFeas policy

stabilizes all Zn,k queues in the mean rate stable sense. By Lemma 5.4, there exists a

stationary randomized priority policy π∗rand that yields mean queueing delay W
∗
n sat-

isfying W
∗
n ≤ dn for all classes n. Since the DelayFeas policy minimizes the last term

of (5.13) in every frame (under θn = E [Xn] for all n), comparing the DelayFeas policy

with the π∗rand policy yields, in every frame k,

N∑

n=1

θn Zn,k λnW
DelayFeas
n,k ≤

N∑

n=1

θn Zn,k λnW
∗
n. (5.14)

As a result, (5.13) under the DelayFeas policy satisfies

∆(Zk) ≤ C + E [Tk]
N∑

n=1

θn Zn,k λn(W
DelayFeas
n,k − dn)

≤ C + E [Tk]
N∑

n=1

θn Zn,k λn(W
∗
n − dn)

≤ C.

Taking expectation, summing over k ∈ {0, . . . ,K − 1}, and noting L(Z0) = 0, we get

E [L(ZK)] =
1

2

N∑

n=1

θnE
[
Z2
n,K

]
≤ KC.

It follows that E
[
Z2
n,K

]
≤ 2KC/θn for all classes n, and

0 ≤ E [Zn,K ] ≤
√
E
[
Z2
n,K

]
≤
√

2KC

θn
, ∀n ∈ {1, . . . , N}.

Dividing the above by K yields

0 ≤ E [Zn,K ]

K
≤
√

2C

Kθn
, ∀n ∈ {1, . . . , N}. (5.15)

Passing K →∞ proves mean rate stability for all Zn,k queues.

139



Remark 5.11. The convergence time of the DelayFeas policy reflects how soon the

running average delay in each class n is below the desired bound dn. From Lemma 5.7,

the speed of the ratio E [Zn,K ] /K approaching zero gives us a good intuition. According

to (5.15), we expect that the DelayFeas policy converges with speed O(1/
√
K), where

K is the number of passed busy periods. The control algorithms developed for the next

three problems have similar convergence time.

5.4 Convex Delay Optimization

Generalizing the above problem, next we solve the convex delay minimization problem:

minimize:
N∑

n=1

fn(Wn) (5.16)

subject to: Wn ≤ dn, ∀n ∈ {1, . . . , N} (5.17)

over the set of all scheduling policies defined in Assumption 5.1. The functions fn(·)

are assumed continuous, convex, nondecreasing, and nonnegative for all classes n. We

assume a constant service rate in this section, and that (5.17) are feasible constraints.

The goal is to construct a frame-based policy that solves (5.16)-(5.17). Let (W
∗
n)Nn=1 be

the optimal solution to (5.16)-(5.17), attained by a stationary randomized priority policy

π∗rand (from Lemma 5.4).

5.4.1 Delay Proportional Fairness

One interesting delay penalty function fn(·) is the one that attains proportional fairness.

We say a delay vector (W
∗
n)Nn=1 is delay proportional fair if it is optimal under quadratic

penalty functions fn(Wn) = 1
2 cn(Wn)2 for all classes n, where cn > 0 are given constants.

In this case, any feasible delay vector (Wn)Nn=1 necessarily satisfies [Bertsekas 1999]

N∑

n=1

f ′n(W
∗
n)(Wn −W ∗n) =

∑

n=1

cn(Wn −W ∗n)W
∗
n ≥ 0, (5.18)

140



which is in the same spirit as the rate proportional fair [Kelly 1997] criterion

N∑

n=1

cn
xn − x∗n
x∗n

≤ 0, (5.19)

where (xn)Nn=1 is a feasible rate vector and (x∗n)Nn=1 the optimal rate vector. Intuitively,

while we favor large rates in rate proportional fairness, small delays (i.e., large inverse of

delay) are favored in delay proportional fairness. This suggests that delay proportional

fairness shall have the product form (5.18) instead of the ratio form (5.19). To further

clarify, we give a two-user example showing that the two criteria (5.18) and (5.19) provide

the same proportional tradeoff. Assume c1 = c2 = 1. In rate proportional fairness,

consider two feasible rates x1 = 100 and x2 = 10; user 2 is 10 times worse than user

1. Then, if user 1 wants to increase x units of rate, it cannot cause user 2 more than

x/10 units of loss. In delay proportional fairness, we suppose W 1 = 10 and W 2 = 100;

user 2 is again 10 times worse than user 1. Then, according to (5.18), if user 1 wants to

decrease delay by x units, user 2 can only tolerate up to x/10 units of delay increase.

5.4.2 Delay Fairness Policy DelayFair

Next we present the dynamic index policy that solves (5.16)-(5.17). First we setup virtual

queues. In addition to having the Zn,k queues evolving as (5.9) for all classes n, we have

new discrete-time virtual queues {Yn,k}∞k=0 for all n, where Yn,k+1 is computed at time

tk+1 by

Yn,k+1 = max


Yn,k +

∑

i∈An,k

(
W

(i)
n,k − rn,k

)
, 0


 . (5.20)

The difference between the Zn,k and Yn,k queues is the new auxiliary variable rn,k ∈ [0, dn]

chosen at time tk independent of the frame size Tk and per-frame class n arrivals An,k.

Assume initially Yn,0 = 0 for all n. While the Zn,k queues help to attain delay constraints

Wn ≤ dn for all classes n (as seen in Section 5.3), the Yn,k queues are useful to achieve

the optimal delay vector (W
∗
n)Nn=1.

141



Delay Fairness Policy DelayFair:

1. In every frame k ∈ Z+, prioritize job classes in the decreasing order of

the ratio (Zn,k + Yn,k)/E [Sn], where E [Sn] is the mean size of a class n

job; ties are broken arbitrarily.

2. At the end of every frame k ∈ Z+, compute Zn,k+1 and Yn,k+1 for all

classes n by (5.9) and (5.20), respectively, where rn,k is the solution to

the one-variable convex program:

minimize: V fn(rn,k)− Yn,k λn rn,k (5.21)

subject to: 0 ≤ rn,k ≤ dn (5.22)

where V > 0 is a predefined control parameter.

The DelayFair policy needs the information of arrival rates λn and mean job sizes

E [Sn] in all job classes; higher moments are not required. If penalty functions fn(·) are

differentiable, the closed-form solution to (5.21)-(5.22) is easily computed. In the exam-

ple of delay proportional fairness with quadratic penalty functions fn(Wn) = 1
2 cn(Wn)2

for all n, the second step of the DelayFair policy solves:

minimize:
V cn

2
r2
n,k − Yn,k λn rn,k

subject to: 0 ≤ rn,k ≤ dn

with the solution being r∗n,k = min
[
dn,

Yn,k λn
V cn

]
.

5.4.3 Construction of DelayFair

We first construct a Lyapunov drift inequality leading to the DelayFair policy. Intuitions

are provided later. Define the Lyapunov function L(Zk,Yk) , 1
2

∑N
n=1(Z2

n,k + Y 2
n,k) and

142



one-frame Lyapunov drift ∆(Zk,Yk) , E [L(Zk+1,Yk+1)− L(Zk,Yk) | Zk,Yk]. Taking

the square of (5.20) yields

Y 2
n,k+1 ≤


Yn,k +

∑

i∈An,k

(
W

(i)
n,k − rn,k

)



2

. (5.23)

Summing (5.10) and (5.23) over n ∈ {1, . . . , N}, dividing the result by two, and taking

conditional expectation on Zk and Yk, we get

∆(Zk,Yk) ≤ C −
N∑

n=1

Zn,k dn E [|An,k| | Zk,Yk]−
N∑

n=1

Yn,k E [rn,k |An,k| | Zk,Yk]

+
N∑

n=1

(Zn,k + Yn,k)E


 ∑

i∈An,k
W

(i)
n,k | Zk,Yk


 , (5.24)

where C > 0 is a finite constant, different from that used in Section 5.3.2, that upper

bounds the sum of all (Zk,Yk)-independent terms in (5.24); the existence of C can be

proved similarly as Lemma 5.19 of Section 5.10.2.

Adding to both sides of (5.24) the term V
∑N

n=1 E [fn(rn,k)Tk | Zk,Yk], where V > 0

is a predefined control parameter, and evaluating the result under a scheduling policy

defined in Assumption 5.1 (similar to the analysis in Section 5.3.2), we have the Lyapunov

drift inequality:

∆(Zk,Yk) + V
N∑

n=1

E [fn(rn,k)Tk | Zk,Yk]

≤
(
C − E [Tk]

N∑

n=1

Zn,k λn dn

)

+ E [Tk]

N∑

n=1

E [V fn(rn,k)− Yn,k λn rn,k | Zk,Yk]

+ E [Tk]

N∑

n=1

(Zn,k + Yn,k)λnWn,k, (5.25)

143



where Wn,k denotes the mean queueing delay of class n if the (random) control in

frame k is repeated in every frame. Over all scheduling policies in Assumption 5.1 and

all (possibly random) choices of rn,k, we are interested in minimizing the right side

of (5.25) in every frame. The result is the DelayFair policy. Recall that in this section

we assume a constant service rate so that E [Tk] is fixed. The first and second step of

the DelayFair policy minimizes the last term (by cµ rule) and the second-to-last term

of (5.25), respectively.

5.4.4 Intuition on DelayFair

An intuition on minimizing an upper bound on the left side of (5.25), i.e., the DelayFair

policy, is provided as follows. The first term ∆(Zk,Yk) of (5.25) is the expected growth

of a queue size measure over virtual queues Zn,k and Yn,k over a frame. Similar to the last

problem, minimizing ∆(Zk,Yk) in every frame shall stabilize all Zn,k and Yn,k queues,

and all delay constraints Wn ≤ dn are satisfied.

If all Yn,k queues are mean rate stable, similar to Lemma 5.7, we can show from (5.20)

that Wn ≤ rn for all n, where

rn , lim sup
K→∞

E
[∑K−1

k=0 rn,k |An,k|
]

E
[∑K−1

k=0 |An,k|
] ,

defined similarly as Wn in (5.1). It follows that
∑N

n=1 fn(Wn) ≤∑N
n=1 fn(rn), because

all fn(·) functions are nondecreasing. The last inequality suggests that, provided all

Yn,k queues are mean rate stable, we can minimize the objective function
∑N

n=1 fn(Wn)

by indirectly minimizing
∑N

n=1 fn(rn). The subtlety is that minimizing
∑N

n=1 fn(rn) is

closely related to minimizing
∑N

n=1 E [fn(rn,k)Tk | Zk,Yk] in every frame.

Minimizing both ∆(Zk,Yk) and
∑N

n=1 E [fn(rn,k)Tk | Zk,Yk] in a frame, however,

creates a tradeoff. Minimizing the former term needs large rn,k values because they are

services of the Yn,k queues (see (5.20)). Yet, minimizing the later term needs small rn,k

values since fn(·) is nondecreasing. It is then natural to consider minimizing a weighted

144



sum of them, which is the left side of (5.25), where the tradeoff is controlled by the V

parameter. As we will see in the next section, having a large V value puts more weights

on minimizing
∑N

n=1 E [fn(rn,k)Tk | Zk,Yk], resulting in a convex delay penalty closer

to optimal. The resulting tradeoff is that the Zn,k queues take longer to approach mean

rate stability (see (5.28) later), resulting in a longer time to meeting the time average

constraints Wn ≤ dn.

5.4.5 Performance of DelayFair

Theorem 5.12. Given any feasible delay bounds {d1, . . . , dN} under scheduling policies

defined in Assumption 5.1, the DelayFair policy satisfies all constraints Wn ≤ dn and

yields convex delay cost satisfying

lim sup
K→∞

N∑

n=1

fn



E
[∑K−1

k=0

∑
i∈An,kW

(i)
n,k

]

E
[∑K−1

k=0 |An,k|
]


 ≤ C

∑N
n=1 λn
V

+
N∑

n=1

fn(W
∗
n),

where V > 0 is a predefined control parameter and C > 0 a finite constant. The convex

delay cost can be made arbitrarily close to the optimal value
∑N

n=1 fn(W
∗
n) by choosing

V sufficiently large.

Remark 5.13. The DelayFair policy can be viewed as a learning algorithm over the

multi-class M/G/1 queue. It updates controls by observing past queueing delays in each

job class, and requires limited statistical knowledge of the queue. The effectiveness of

the learning algorithm is controlled by the V parameter: A large V yields performance

(average delay penalty) closer to optimal, as seen in Theorem 5.12, at the expense of

increasing the time to learn to meet the time-average constraints. Specifically, (5.28)

shows that the convergence speed of the DelayFair policy is related to
√

2(C + V D)/K,

where C and D are positive constants, and K is the number of passed busy periods.

Similarly, our control policies for the two rate allocation problems presented later in

Section 5.5 and 5.6 can also be viewed as learning algorithms that have a similar tradeoff

between performance and learning time, controlled by the V parameter.

145



Proof (Theorem 5.12). Consider the optimal stationary randomized priority policy π∗rand

that yields optimal average delays W
∗
n ≤ dn for all classes n. Since the DelayFair policy

minimizes the right side of (5.25) in every frame, if we compare DelayFair with policy

π∗rand and the genie decisions r∗n,k = W
∗
n for all n and k, (5.25) under DelayFair is further

upper bounded by

∆(Zk,Yk) + V

N∑

n=1

E [fn(rn,k)Tk | Zk,Yk]

≤ C − E [Tk]
N∑

n=1

Zn,k λn dn + E [Tk]
N∑

n=1

(Zn,k + Yn,k)λnW
∗
n

+ E [Tk]
N∑

n=1

(
V fn(W

∗
n)− Yn,k λnW ∗n

)

≤ C + V E [Tk]
N∑

n=1

fn(W
∗
n). (5.26)

Removing the second term of (5.26) yields

∆(Zk,Yk) ≤ C + V E [Tk]
N∑

n=1

fn(W
∗
n) ≤ C + V D, (5.27)

where D , E [Tk]
∑N

n=1 fn(W
∗
n) is a finite constant. Taking expectation of (5.27), sum-

ming over k ∈ {0, . . . ,K − 1}, and noting L(Z0,Y0) = 0, we get E [L(ZK ,YK)] ≤

K(C + V D). It follows that, for every Zn,k queue, we have

0 ≤ E [Zn,K ]

K
≤

√√√√E
[
Z2
n,K

]

K2
≤
√

2E [L(Zk,YK)]

K2
≤
√

2C

K
+

2V D

K
, ∀n ∈ {1, . . . , N}.

(5.28)

Passing K →∞ proves mean rate stability for all Zn,k queues; therefore, all constraints

Wn ≤ dn are satisfied by Lemma 5.7. Likewise, all Yn,k queues are mean rate stable.

146



Next, taking expectation of (5.26), summing over k ∈ {0, . . . ,K − 1}, dividing by V ,

and noting L(Z0,Y0) = 0, we get

E [L(ZK ,YK)]

V
+

N∑

n=1

E

[
K−1∑

k=0

fn(rn,k)Tk

]
≤ KC

V
+ E

[
K−1∑

k=0

Tk

]
N∑

n=1

fn(W
∗
n).

Removing the first term and dividing the rest by E
[∑K−1

k=0 Tk

]
yields

N∑

n=1

E
[∑K−1

k=0 fn(rn,k)Tk

]

E
[∑K−1

k=0 Tk

] ≤ KC

V E
[∑K−1

k=0 Tk

]+
N∑

n=1

fn(W
∗
n)

(a)

≤ C
∑N

n=1 λn
V

+
N∑

n=1

fn(W
∗
n),

(5.29)

where (a) follows E [Tk] ≥ E [Ik] = 1/(
∑N

n=1 λn) for all k. By a generalized Jensen’s

inequality [Neely 2010c, Lemma 7.6] and convexity of fn(·), we get

N∑

n=1

E
[∑K−1

k=0 fn(rn,k)Tk

]

E
[∑K−1

k=0 Tk

] ≥
N∑

n=1

fn



E
[∑K−1

k=0 rn,k Tk

]

E
[∑K−1

k=0 Tk

]


 . (5.30)

Combining (5.29) and (5.30), and taking a lim sup as K →∞, we get

lim sup
K→∞

N∑

n=1

fn



E
[∑K−1

k=0 rn,k Tk

]

E
[∑K−1

k=0 Tk

]


 ≤ C

∑N
n=1 λn
V

+
N∑

n=1

fn(W
∗
n).

The next lemma completes the proof.

Lemma 5.14 (Proof in Section 5.10.3). If all Yn,k queues are mean rate stable, then

lim sup
K→∞

N∑

n=1

fn



E
[∑K−1

k=0

∑
i∈An,kW

(i)
n,k

]

E
[∑K−1

k=0 |An,k|
]


 ≤ lim sup

K→∞

N∑

n=1

fn



E
[∑K−1

k=0 rn,k Tk

]

E
[∑K−1

k=0 Tk

]


 .

5.5 Delay-Constrained Optimal Rate Control

In this section we incorporate dynamic allocations of the service rate into the queueing

system. As specified in Assumption 5.2, we focus on frame-based policies that allocate

147



a fixed service rate µ(Pk) with a per-unit-time service cost Pk ∈ [Pmin, Pmax] in the kth

busy period. No service rates are allocated when the system is idle. Here, the frame size

Tk, busy period Bk, per-frame class n arrivals An,k, and queueing delays W
(i)
n,k, are all

functions of Pk. Similar to the definition of average queueing delay in (5.1), we define

the average service cost

P , lim sup
K→∞

E
[∑K−1

k=0 Pk Bk(Pk)
]

E
[∑K−1

k=0 Tk(Pk)
] , (5.31)

where Bk(Pk) and Tk(Pk) emphasize the dependence of Bk and Tk on Pk. It is easy

to show that Bk(Pk) and Tk(Pk) are decreasing in Pk. The goal is to solve the delay-

constrained optimal rate control problem:

minimize: P (5.32)

subject to: Wn ≤ dn, ∀n ∈ {1, . . . , N} (5.33)

over scheduling and rate allocation policies defined in Assumption 5.1 and 5.2.

From Lemma 5.4 and Assumption 5.2, every feasible performance vector of average

service cost and mean queue delay in all job classes is achieved by a stationary randomized

policy that randomly chooses a strict priority policy and a fixed rate allocation in every

busy period according to a stationary distribution. Therefore, without loss of generality,

it suffices to solve (5.32)-(5.33) over the class of frame-based policies that choose a strict

priority policy and a fixed rate allocation in every busy period; the decisions are possibly

random. A stationary randomized policy is a special case in this class of policies. Let

π∗ denote the optimal stationary randomized policy that yields optimal average service

cost P ∗ and feasible mean queueing delay W
∗
n ≤ dn in every class n ∈ {1, . . . , N}.

148



5.5.1 Dynamic Rate Control Policy DynRate

We present the policy that solves (5.32)-(5.33). We setup the same virtual queues Zn,k

as in (5.9) to tackle delay constraints Wn ≤ dn; we assume initially Zn,0 = 0 for all n.

Dynamic Rate Control (DynRate) Policy:

1. In frame k ∈ Z+, use the strict priority policy, denoted by πk, that

prioritizes job classes in the decreasing order of Zn,k/E [Sn], where E [Sn]

is the mean job size of class n; ties are broken arbitrarily.

2. In the busy period of frame k ∈ Z+, allocate service rate µ(Pk) that

minimizes the weighted sum of service cost and rate-dependent average

queueing delays:

minimize:

(
V

N∑

n=1

λnE [Sn]

)
Pk

µ(Pk)
+

N∑

n=1

Zn,k λnWn(πk, Pk) (5.34)

subject to: Pk ∈ [Pmin, Pmax] (5.35)

where Wn(πk, Pk) is the mean queueing delay of class n when service

rate µ(Pk) and strict priority policy πk are used in all busy periods.

The value of Wn(πk, Pk) is given in (5.8) after proper re-ordering of job

classes according to policy πk.

3. Update all Zn,k queues by (5.9) at every frame boundary.

The DynRate policy requires the knowledge of arrival rates and the first two moments of

job sizes. We can remove its dependence on the second moments of job sizes so that the

policy depends only on first-order statistics; see Section 5.10.4 for details.

149



5.5.2 Intuition on DynRate

We construct a Lyapunov drift inequality first, and provide intuitions later. Define

the Lyapunov function L(Zk) = 1
2

∑N
n=1 Z

2
n,k and one-frame Lyapunov drift ∆(Zk) =

E [L(Zk+1)− L(Zk) | Zk]. Following the analysis in Section 5.3.2, we have

∆(Zk) ≤ C +

N∑

n=1

Zn,k E


 ∑

i∈An,k

(
W

(i)
n,k − dn

)
| Zk


 . (5.36)

Adding V E [Pk Bk(Pk) | Zk] to both sides of (5.36), where V > 0 is a control parameter,

we get

∆(Zk) + V E [Pk Bk(Pk) | Zk] ≤ C + Φ(Zk), (5.37)

where

Φ(Zk) , E


V Pk Bk(Pk) +

N∑

n=1

Zn,k
∑

i∈An,k
(W

(i)
n,k − dn) | Zk


 .

We are interested in the scheduling and rate control policy that minimizes the ratio

Φ(Zk)

E [Tk(Pk) | Zk]
. (5.38)

over frame-based policies in every frame k. In the denominator of (5.38), the frame size

Tk(Pk) depends on Zk because the assignment of service cost Pk that affects Tk(Pk) may

be Zk-dependent; for a given Pk, Tk(Pk) is independent of Zk.

The intuition on minimizing (5.38) is as follows. Similar to previous problems, min-

imizing the Lyapunov drift ∆(Zk) in every frame helps to achieve delay constraints

Wn ≤ dn in all classes. An added component here is that we can increase service rate

(and service cost) to improve queueing delay which decreases ∆(Zk). Thus, there is a

tradeoff between service cost and stability of the Zn,k queues, captured by the left side

of (5.37). If we follow what we have done in previous problems, we shall minimize the

150



right size of (5.37), i.e., Φ(Zk), in every frame. That is not enough here, however, be-

cause the frame size depends on the chosen service cost. The modification is to instead

minimize the ratio of Φ(Zk) over the mean frame size, namely (5.38).

5.5.3 Construction of DynRate

We simplify (5.38) to show that the DynRate policy is the desired policy. Lemma 5.15,

given next, shows that the minimizer of (5.38) is a deterministic rate allocation and

strict priority policy. Specifically, we may consider every p ∈ P in Lemma 5.15 as one

such deterministic policy, and the random variable P is a frame-based policy making

possibly random control decisions in every frame.

Lemma 5.15. Let P be a continuous random variable with state space P. Let G and H

be two random variables that depend on the realization of P such that, for each p ∈ P,

G(p) and H(p) are well-defined random variables. Define

p∗ , argminp∈P
E [G(p)]

E [H(p)]
, U∗ , E [G(p∗)]

E [H(p∗)]
.

Then E[G]
E[H] ≥ U∗ regardless of the distribution of P .

Proof (Lemma 5.15). For each p ∈ P, we have E[G(p)]
E[H(p)] ≥ U∗. Then

E [G]

E [H]
=

EP [E [G(p)]]

EP [E [H(p)]]
≥ EP [U∗E [H(p)]]

EP [E [H(p)]]
= U∗,

which is independent of the distribution of P .

Under a fixed service rate µ(Pk) and a strict priority rule, (5.38) is equal to

Φ(Zk)

E [Tk(Pk) | Zk]
=
V E [PkBk(Pk)] +

∑N
n=1 Zn,k λn(Wn,k(Pk)− dn)E [Tk(Pk)]

E [Tk(Pk)]

= V Pk

∑N
n=1 λnE [Sn]

µ(Pk)
+

N∑

n=1

Zn,k λn(Wn,k(Pk)− dn), (5.39)

151



where we have used, by renewal theory,

E [Bk(Pk)]

E [Tk(Pk)]
=

N∑

n=1

ρn(Pk) =

N∑

n=1

λn
E [Sn]

µ(Pk)
.

It follows that our desired policy minimizes

(
V

N∑

n=1

λnE [Sn]

)
Pk

µ(Pk)
+

N∑

n=1

Zn,k λnWn,k(Pk) (5.40)

in every frame k over Pk ∈ [Pmin, Pmax] and strict priority policies.

To further simplify, under a fixed service rate µ(Pk), the second term of (5.40) is

minimized by assigning priorities in the decreasing order of Zn,k/E [Sn] according to the

cµ rule (noting that minimizing a linear function over strict priority policies is equivalent

to minimizing over all stationary randomized priority policies, because a vertex of the

delay polymatroid attains the minimum). This strict priority policy, denoted by πk, is

optimal regardless of the value of Pk, and thus is overall optimal. Interestingly, priority

assignment is decoupled from optimal rate allocation. Under policy πk, solving (5.34)-

(5.35) reveals the optimal rate allocation in frame k. These discussions lead to the

DynRate policy.

5.5.4 Performance of DynRate

Theorem 5.16. Let P ∗ be the optimal average service cost for the problem (5.32)-

(5.33). The DynRate policy satisfies all delay constraints Wn ≤ dn and attains average

service cost P satisfying

P ≤ C
∑N

n=1 λn
V

+ P ∗,

where C > 0 is a finite constant and V > 0 a predefined control parameter. The gap

between P and the optimal P ∗ can be made arbitrarily small by a sufficiently large V .

Proof (Theorem 5.16). Consider the optimal stationary randomized policy π∗ that yields

optimal average cost P ∗ and feasible mean queueing delay W
∗
n ≤ dn in all classes. Let

152



P ∗k denote its service cost allocation in frame k. Since policy π∗ makes i.i.d. decisions

over frames, by renewal reward theory we have

P ∗ =
E [P ∗kB(P ∗k )]

E
[
T (P ∗k )

] .

The ratio (5.38) under policy π∗ is equal to (cf. (5.39))

V
E [P ∗kB(P ∗k )]

E
[
T (P ∗k )

] +

N∑

n=1

Zn,k λn

(
W
∗
n − dn

)
≤ V P ∗.

Since the DynRate policy minimizes (5.38) over frame-based policies that update controls

over busy periods, including the optimal π∗, (5.38) under the DynRate policy satisfies

Φ(Zk)

E [Tk(Pk) | Zk]
≤ V P ∗, ∀ k ∈ Z+.

Using this bound, (5.37) under the DynRate policy satisfies

∆(Zk) + V E [Pk Bk(Pk) | Zk] ≤ C + V P ∗ E [Tk(Pk) | Zk] .

Taking expectation, summing over k ∈ {0, . . . ,K − 1}, and noting L(Z0) = 0 yields

E [L(ZK)] + V
K−1∑

k=0

E [Pk Bk(Pk)] ≤ KC + V P ∗ E

[
K−1∑

k=0

Tk(Pk)

]
. (5.41)

Since E [Tk(Pk)] is decreasing in Pk and independent of scheduling policies under a fixed

rate allocation, we get E [Tk(Pk)] ≤ E [T0(Pmin)] for all k. It follows that

E [L(ZK)] + V

K−1∑

k=0

E [Pk Bk(Pk)] ≤ K(C + V P ∗ E [T0(Pmin)]).

Removing the second term and dividing by K2 yields

E [L(ZK)]

K2
≤ C + V P ∗ E [T0(Pmin)]

K
.

153



Combining it with

0 ≤ E [Zn,K ]

K
≤

√√√√E
[
Z2
n,K

]

K2
≤
√

2E [L(ZK)]

K2
, ∀n ∈ {1, . . . , N}

and passing K →∞ prove that all Zn,k queues are mean rate stable; all delay constraints

Wn ≤ dn are satisfied (by Lemma 5.7).

Next, removing the first term in (5.41) and dividing the result by V E
[∑K−1

k=0 Tk(Pk)
]

yields

E
[∑K−1

k=0 Pk Bk(Pk)
]

E
[∑K−1

k=0 Tk(Pk)
] ≤ C

V

K

E
[∑K−1

k=0 Tk(Pk)
] + P ∗

(a)

≤ C
∑N

n=1 λn
V

+ P ∗,

where (a) uses E [Tk(Pk)] ≥ E [Ik] = 1/(
∑N

n=1 λn). Passing K → ∞ finishes the proof.

5.6 Cost-Constrained Convex Delay Optimization

In the fourth problem, we minimize a separable convex function of the mean queueing

delay vector subject to an average service cost constraint:

minimize:

N∑

n=1

fn(Wn) (5.42)

subject to: P ≤ Pconst (5.43)

over scheduling and rate allocation policies defined in Assumption 5.1 and 5.2. Without

loss of generality, we shall focus on solving (5.42)-(5.43) over frame-based policies. This

is similar to the previous rate control problem. The term P is defined in (5.31), and

Pconst > 0 is a given feasible bound. We assume all fn(·) functions are nondecreasing,

nonnegative, continuous, and convex.

154



Here, the set of feasible performance vectors of average service cost and average

queueing delay in all job classes is complicated because feasible mean delays are indi-

rectly decided by the service cost constraint (5.43). Yet, knowing that there exists an

optimal stationary randomized policy, similar to the previous rate control problem, we

can construct a frame-based policy that solves (5.42)-(5.43).

We setup the same virtual queues {Yn,k}∞k=0 for all classes n ∈ {1, . . . , N} as in (5.20),

except that the auxiliary variables rn,k take values in a new region [0, Rmax,n], for some

Rmax,n > 0 sufficiently large. Specifically, we need Rmax,n to be greater than the optimal

delay W
∗
n in (5.42)-(5.43) in each class n; we may define Rmax,n as the maximum average

delay over all classes under the minimum rate allocation µ(Pmin).

We define a virtual cost queue {Xk}∞k=0 that evolves at frame boundaries {tk}∞k=0 as

Xk+1 = max [Xk + PkBk(Pk)− PconstTk(Pk), 0] . (5.44)

Assume X0 = 0. The virtual cost queue Xk helps to achieve the average cost constraint

P ≤ Pconst.

Lemma 5.17 (Proof in Section 5.10.5). If the virtual cost queue Xk is mean rate stable,

then P ≤ Pconst.

5.6.1 Cost-Constrained Delay Fairness Policy CostDelayFair

The next policy solves (5.42)-(5.43); it has similar steps as those in the DelayFair and

the DynRate policy.

Cost-Constrained Delay Fairness (CostDelayFair) Policy:

1. In every frame k ∈ Z+, observe Xk and Yn,k for all n at the beginning

the frame, and use the strict priority policy πk that assigns priorities in

155



the decreasing order of Yn,k/E [Sn]; ties are broken arbitrarily. Further,

in the busy period of frame k, allocate service rate µ(Pk) that solves:

minimize:
Pk

µ(Pk)

[
Xk

N∑

n=1

λnE [Sn]

]
+

N∑

n=1

Yn,k λnWn(πk, Pk)

subject to: Pk ∈ [Pmin, Pmax],

where Wn(πk, Pk) is the mean queueing delay of class n when policy πk

and service rate µ(Pk) are used in all busy periods. The termWn(πk, Pk)

is defined in (5.8) after proper re-ordering of job classes according to πk.

2. At frame boundaries, update Yn,k for all classes n and Xk by (5.20)

and (5.44), respectively. In (5.20), the auxiliary variable rn,k is the

solution to the one-variable convex program

minimize: V fn(rn,k)− Yn,k λn rn,k

subject to: 0 ≤ rn,k ≤ Rmax,n

which is easily solved if fn(·) are differentiable.

5.6.2 Construction of CostDelayFair

The construction of the CostDelayFair policy follows closely with those in previous prob-

lems; details are omitted for brevity. Define the vector χk = [Xk;Y1,k, . . . , YN,k], the

Lyapunov function L(χk) , 1
2(X2

k +
∑N

n=1 Y
2
n,k), and the one-frame Lyapunov drift

∆(χk) , E [L(χk+1)− L(χk) | χk]. There exists a finite constant C > 0 such that

∆(χk) ≤ C +XkE [PkBk(Pk)− Pconst Tk(Pk) | χk]

+

N∑

n=1

Yn,k E


 ∑

i∈An,k

(
W

(i)
n,k − rn,k

)
| χk


 . (5.45)

156



Adding V
∑N

n=1 E [fn(rn,k)Tk(Pk) | χk] to both sides of (5.45), where V > 0 is a control

parameter, and evaluating the result under a frame-based policy yields

∆(χk) + V
N∑

n=1

E [fn(rn,k)Tk(Pk) | χk] ≤ C + Ψ(χk), (5.46)

where

Ψ(χk) , E [Tk(Pk) | χk]
N∑

n=1

Yn,k λnWn,k(Pk)

+XkE [PkBk(Pk) | χk]−XkPconst E [Tk(Pk) | χk]

+ E [Tk(Pk) | χk]
N∑

n=1

E [V fn(rn,k)− Yn,k λn rn,k | χk] ,

where Wn,k(Pk) is the mean queueing delay of class n when the control in frame k is

repeated in every frame.

We consider the policy that minimizes the ratio

Ψ(χk)

E [Tk(Pk) | χk]
(5.47)

over frame-based policies in every frame k. Lemma 5.15 shows that the minimizer is a

strict priority policy with a fixed rate allocation, under which the ratio (5.47) is equal to

N∑

n=1

Yn,k λnWn,k(Pk) +Xk (Pk ρsum(Pk)− Pconst) +

N∑

n=1

(V fn(rn,k)− Yn,k λn rn,k) ,

where ρsum(Pk) ,
∑N

n=1 λnE [Sn] /µ(Pk). Under similar simplifications as those for the

DynRate policy in Section 5.5, the CostDelayFair policy is the desired policy.

157



5.6.3 Performance of CostDelayFair

Theorem 5.18 (Proof in Section 5.10.6). For any feasible average service cost constraint

P ≤ Pconst in (5.42)-(5.43), let (W
∗
n)Nn=1 be the optimal mean queueing delay vector. The

CostDelayFair policy satisfies P ≤ Pconst and yields average delay penalty satisfying

lim sup
K→∞

N∑

n=1

fn



E
[∑K−1

k=0

∑
i∈An,kW

(i)
n,k

]

E
[∑K−1

k=0 |An,k|
]


 ≤ C

∑N
n=1 λn
V

+
N∑

n=1

fn(W
∗
n), (5.48)

where V > 0 is a predefined control parameter.

5.7 Simulations

We simulate all four control policies in a two-class nonpreemptive M/G/1 queue. We

denote byW(P ) the performance region of mean queueing delay under a constant service

rate µ(P ). Define ρn , λnE [Xn] and R , 1
2

∑2
n=1 λnE

[
X2
n

]
, where Xn = Sn/µ(P ) is

the random service time of a class n job. We have [Bertsekas and Gallager 1992]

W(P ) =





(W 1,W 2)

∣∣∣∣∣∣∣∣

W 1 ≥
R

1− ρ1
, W 2 ≥

R

1− ρ2
,

ρ1W 1 + ρ2W 2 =
(ρ1 + ρ2)R

1− ρ1 − ρ2




. (5.49)

In (5.49), the two inequalities capture that the mean queueing delay in one class is mini-

mized when it has priority over the other class. The equality is the M/G/1 conservation

law [Kleinrock 1976].

Every simulation result in this section is a sample average over 10 runs, each of which

lasts for 106 frames.

5.7.1 DelayFeas and DelayFair Policy

To simulate the first two DelayFeas and DelayFair policy, we consider a two-class M/M/1

queue with arrival rates (λ1, λ2) = (1, 2) and mean service times (E [X1] ,E [X2]) =

158



(0.4, 0.2); we consider service time directly instead of job sizes because there is no rate

control. The performance region of mean queueing delay, using (5.49), is

W =
{

(W 1,W 2)
∣∣W 1 +W 2 = 2.4, W 1 ≥ 0.4, W 2 ≥ 0.4

}
. (5.50)

DelayFeas Policy

In DelayFeas policy, we consider five sets of delay constraints (d1, d2) = (0.45, 2.05),

(0.85, 1.65), (1.25, 1.25), (1.65, 0.85), and (2.05, 0.45); they are all (0.05, 0.05) entrywise

larger than a feasible point on W. The simulation results in Fig. 5.1 show that the

DelayFeas policy adaptively yields feasible average delays in response to different con-

straints. Over the 10 simulation runs in each of the five cases, the sample standard

deviation of the average delay in each job class is at most 0.017. Therefore, different

simulation runs produce consistent results.

0.4 0.8 1.2 1.6 2
Class 1 average delay

0.4

0.8

1.2

1.6

2

C
la

ss
 2

 a
ve

ra
ge

 d
el

ay

Delay region W
Delay bounds (d1, d2)
Simulation results

Figure 5.1: Simulation for the DelayFeas policy under different delay constraints (d1, d2).

159



DelayFair Policy

For the DelayFair policy, we consider the delay proportional fairness problem:

minimize:
1

2
(W 1)2 + 2 (W 2)2 (5.51)

subject to: (W 1,W 2) ∈ W (5.52)

W 1 ≤ 1.95,W 2 ≤ 1 (5.53)

where W is given in (5.50). The optimal solution to (5.51)-(5.53) is (W
∗
1,W

∗
2) =

(1.92, 0.48), and the optimal delay penalty is 1
2(W

∗
1)2 + 2(W

∗
2)2 = 2.304. We simu-

late the DelayFair policy for different values of control parameter V , and the results are

in Table 5.1. The values in parentheses in Table 5.1 are sample standard deviations over

the 10 simulation runs. As V increases, the DelayFair policy yields mean delay penalty

approaching optimal.

V W 1 W 2
1
2 (W 1)2 + 2 (W 2)2

100 1.6607 (0.0055) 0.7424 (0.0052) 2.4814 (0.0239)
1000 1.7977 (0.0057) 0.5984 (0.0043) 2.3321 (0.0199)
2000 1.8339 (0.0056) 0.5639 (0.0053) 2.3176 (0.0217)
5000 1.8679 (0.0073) 0.5276 (0.0050) 2.3014 (0.0222)

Optimal: 1.92 0.48 2.304

Table 5.1: Simulation for the DelayFair policy under different values of V .

5.7.2 DynRate and CostDelayFair Policy

In the two rate control problems, we consider a two-class M/G/1 queue with arrival rates

(λ1, λ2) = (1, 2). The size of a class 1 job is 0.5 with probability 0.8 and 3 otherwise.

The size of a class 2 job is always one. The feasible expenditure of service cost in every

busy period is in the discrete set P ∈ {16, 25}. We consider the service rate µ(P ) =
√
P .

160



Using (5.49), the full performance region of mean queueing delay, denoted by W, is the

convex hull of the two individual regions (see Fig. 5.2):

W(16) =

{
(W 1,W 2)

∣∣∣∣W 1 + 2W 2 =
3

2
, W 1 ≥

1

6
, W 2 ≥

1

4

}
,

W(25) =

{
(W 1,W 2)

∣∣∣∣W 1 + 2W 2 =
3

5
, W 1 ≥

1

10
, W 2 ≥

2

15

}
,

where W(16) and W(25) are the mean queueing delay regions under a constant service

cost of P = 16 and P = 25, respectively.

P = 13.5

W 2

W 1

(0.4, 0.325)

W(16)

W(25)

(0.525, 0.2625)

A

B

Figure 5.2: The performance region W of mean queueing delay in the simulations for
the DynRate and the CostDelayFair policy.

DynRate Policy

For the DynRate policy, we solve

minimize: P (5.54)

subject to: (W 1,W 2) ∈ W (5.55)

W 1 ≤ 0.4, W 2 ≤ 0.325 (5.56)

161



whereW is the full queueing delay region in Fig. 5.2. The minimum average service cost

is achieved by satisfying the constraints (5.56) with equality. By finding the stationary

randomized policy that yields (W 1,W 2) = (0.4, 0.325), we know the optimal average

service cost is 13.5. Table 5.2 presents results under the DynRate policy for different

values of parameter V ; sample standard deviations are in parentheses. We observe

that average service cost as well as the resulting mean queueing delay in each job class

approaches optimal with the increase of V .

V W 1 W 2 P

1 0.3562 (0.00078) 0.3029 (0.00032) 13.8018 (0.01806)
10 0.3984 (0.00022) 0.3247 (0.00005) 13.5101 (0.02626)
100 0.4003 (0.00013) 0.3252 (0.00010) 13.5044 (0.02197)

Optimal: 0.4 0.325 13.5

Table 5.2: Simulation for the DynRate policy under different values of V .

CostDelayFair Policy

For the CostDelayFair policy, we solve

minimize:
1

2
(W 1)2 + 2(W 2)2 (5.57)

subject to: P ≤ 13.5. (5.58)

The optimal policy must satisfy (5.58) with equality. In Fig. 5.2, the set of all achievable

mean queueing delay vectors with P = 13.5 forms a line segment AB that is parallel

to both delay regions W(16) and W(25), and passes (0.4, 0.325). This can be shown

geometrically in Fig. 5.3 by observing that any randomized policy that achieves some

point on AB must have the same convex combination of one point on W(25) and one on

W(16), and therefore incurs the same average service cost P = 13.5.

162



P = 13.5

W 2

W 1

W(16)

W(25)

A

B
C

Figure 5.3: The two dotted lines passing point C on AB represent two arbitrary ran-
domized policies that achieve C. Geometrically, they have the same mixture of one point
on W(25) and one on W(16). Therefore, they incur the same average service cost.

Consequently, (5.57)-(5.58) is equivalent to

minimize: 0.5(W 1)2 + 2(W 2)2 (5.59)

subject to: W 1 +W 2 = 1.05 (5.60)

W 1 ≥
2

15
, W 2 ≥

23

120
, (5.61)

where the constraints (5.60)-(5.61) represent the line segment AB in Fig. 5.2. The

optimal average delay vector that solves (5.59)-(5.61) is (W
∗
1,W

∗
2) = (0.525, 0.2625).

Table 5.3 presents the simulation results with sample standard deviations in parentheses.

Again, the performance approaches optimal as V increases.

V W 1 W 2
1
2 (W 1)2 + 2 (W 2)2 P

100 0.5657 (0.0031) 0.3037 (0.0013) 0.3445 (0.0032) 13.0818 (0.0030)
200 0.5421 (0.0017) 0.2855 (0.0009) 0.3100 (0.0017) 13.2738 (0.0029)
500 0.5245 (0.0023) 0.2705 (0.0011) 0.2839 (0.0022) 13.4543 (0.0014)
1000 0.5195 (0.0022) 0.2651 (0.0010) 0.2755 (0.0022) 13.4963 (0.0006)

Optimal: 0.525 0.2625 0.2756 13.5

Table 5.3: Simulation for the CostDelayFair policy under different values of V .

163



5.8 Chapter Summary and Discussions

A multi-class queueing system is a useful analytical model to study how to share a com-

mon resource to different types of service requests to optimize a joint objective or provide

differentiated services. Motivated by modern computer and cloud computing applica-

tions, we consider a nonpreemptive multi-class M/G/1 queue with adjustable service

rates, and study several convex delay penalty and average service cost minimization

problems with time-average constraints. After characterizing the performance region of

queueing delay vectors and average service cost in the M/G/1 queue as a convex hull of

performance vectors of a collection of frame-based policies, we use Lyapunov drift theory

to construct dynamic cµ rules that have near-optimal performance. The time-varying

parameters in the dynamic cµ rules capture the running delay performance in each job

class. Intuitively, our approach turns objective functions and time average constraints

into virtual queues that need to be stabilized. To develop queue-stable policies, we use

the ratio MaxWeight method developed in Chapter 4 in every busy period. Our policies

require limited statistical knowledge, and may be viewed as learning algorithms over

queueing systems. These learning algorithms have a tradeoff between performance and

learning time, controlled by a parameter V > 0.

Lyapunov drift theory is a new stochastic optimization toolset that has been de-

veloped over the years in the context of wireless networks and packet switches. We

suspect that this toolset shall have wide applications in queueing systems, especially

those satisfying conservation laws and having polymatroidal (or more generally, convex)

performance regions. Different metrics such as throughput (together with admission con-

trol), delay, power, and functions of them may be mixed to serve as objective functions

or time average constraints. It is of our interest to explore these directions.

In this chapter, we assume that job sizes are unknown upon their arrival. If job sizes

are known in advance, the analysis developed in this chapter applies as well. The key

is to define subclasses in each class so that every subclass consists of jobs having the

164



same actual known service time, and we schedule job services across all subclasses. An

important consequence is that, when job size information is available, the cµ rule over

the original parent classes is no longer optimal for linear optimization problems such as

minimizing a weighted sum of average queue sizes. In addition, in each original class,

FIFO is no longer optimal; instead, we shall serve jobs using shortest job size first.

5.9 Bibliographic Notes

The analysis and control of queueing systems dates back to 1950s; see Niño-Mora [2009],

Stidham [2002] for detailed surveys. The use of the achievable region approach for queue

control, in contrast to the traditional use of Markov decision theory [Walrand 1988],

starts in 1980s; see Bertsimas and Niño-Mora [1996] for a survey. In the achievable re-

gion method, many results consider unconstrained linear optimization problems, such as

minimizing a weighted sum of average queue sizes across job classes. They generalize the

idea that if the performance region satisfies conservation laws, which result in different

notions of polymatroidal regions, linear problems are solved by simple index policies such

as the cµ rule or an adaptive greedy policy. Unfortunately, these results seem difficult to

apply to nonlinear optimization problems, even to linear ones with side constraints. Our

analysis in this chapter takes advantage of the strong conservation law [Shanthikumar

and Yao 1992] and the cµ rule in a nonpreemptive multi-class M/G/1 queue [Federgruen

and Groenevelt 1988b], and uses them to develop dynamic cµ rules that solve convex

delay minimization and optimal rate control problems with time-average constraints. We

note that the strong conservation law does not hold for all time for the rate allocation

problems we study. However, it holds locally over distinct busy periods, which we show

is sufficient for our purposes.

The control of service rates in single-server single-class queues is previously studied

by Ata and Shneorson [2006], George and Harrison [2001], Mitchell [1973], Rosberg et al.

[1982], Stidham and Weber [1989], Weber and Stidham [1987]. The optimal allocation

165



of state-dependent service rates is analyzed by Markov decision processes (MDP), and

is shown to have monotone structures; namely, the service rate increases with the queue

size. We note that applying state-dependent service rate control and MDP analysis in our

multi-class queue control problems seems difficult. It involves a multi-dimensional state

space and hence would suffer from the curse of dimensionality. We avoid this complexity

explosion by exploiting the strong conservation law for unfinished work, which gives rise

to our dynamic cµ policies that only update controls across busy periods. Furthermore,

MDP analysis seems complicated to incorporate time-average delay and service cost

constraints. It also requires full statistical knowledge of the queues, where our policies

require no or limited statistics.

In prior work on convex optimization over queues, minimizing convex holding costs is

treated as a restless bandit problem by Ansell et al. [2003] and Glazebrook et al. [2003], in

which Whittle’s index heuristics are constructed. A generalized cµ rule is shown asymp-

totically optimal for convex holding costs under heavy traffic by Gurvich and Whitt

[2009], Mandelbaum and Stolyar [2004], van Mieghem [1995]. For the minimization of a

separable convex function of the mean delay vector, Federgruen and Groenevelt [1988a]

provides two numerical methods, but it is unclear how to control the system to achieve

the optimal solution. Federgruen and Groenevelt [1988b] provides a synthesis algorithm

to achieve a given feasible mean delay vector in a multi-class M/G/c queue; this algo-

rithm is complicated and requires second-order statistics of the queue. Bhattacharya

et al. [1995] introduces a dynamic priority policy in which priorities are updated over in-

tervals using the running performance in all job classes. This policy, based on stochastic

approximation, has design philosophy similar to ours. But our policies are conceptually

simpler and incorporate time average constraints and adjustable service rates.

Power-aware scheduling of computers is widely studied in different contexts in the

literature, where two main analytical tools are competitive analysis [Andrew et al. 2010]

and M/G/1-type queueing theory (see Wierman et al. [2009] and references therein),

both used to optimize popular metrics such as a weighted sum of average power and

166



average delay. This chapter presents a fundamentally different approach to study these

problems. Our policies provide more directed control over average power cost and average

delay, and consider a multi-class setup with time average constraints.

5.10 Additional Results in Chapter 5

5.10.1 Proof of Lemma 5.4

We index all N ! nonpreemptive strict priority policies by {πj}j∈J , J = {1, . . . , N !}.

Consider a stationary randomized priority policy πrand, defined by a probability distri-

bution {αj}j∈J , that randomly chooses the jth priority policy πj with probability αj

in every frame. Let W sum
n (πj) denote the sum of queueing delays in class n during a

frame in which policy πj is used; we define W sum
n (πrand) similarly for policy πrand. By

conditional expectation, we get E [W sum
n (πrand)] =

∑
j∈J αj E [W sum

n (πj)]. Next, define

Wn(πj) as the average queueing delay for class n if policy πj is used in every frame;

define Wn(πrand) similarly under πrand. It follows that

Wn(πrand)
(a)
=

E [W sum
n (πrand)]

λnE [T ]
=
∑

j∈J
αj

E [W sum
n (πj)]

λnE [T ]

(b)
=
∑

j∈J
αjWn(πj). (5.62)

where (a) and (b) follow renewal reward theory (cf. (5.5)), and E [T ] denotes the mean

frame size, independent of scheduling policies when the service rate is constant. Define

xn(πj) , ρnWn(πj) for all strict priority policies πj , and define xn(πrand) similarly.

Multiplying (5.62) by ρn for all classes n yields (xn(πrand))Nn=1 =
∑

j∈J αj (xn(πj))
N
n=1,

which shows that the performance vector under policy πrand is a convex combination of

those under strict priority policies {πj}j∈J . It proves the first part of the lemma.

Conversely, for any given vector (Wn)Nn=1 in the delay region W, there exists a

probability distribution {βj}j∈J such that ρnWn =
∑

j∈J βj xn(πj) for all classes n,

i.e., Wn =
∑

j∈J βjWn(πj) for all n. From (5.62), the stationary randomized policy

167



πrand defined by the probability distribution {βj}j∈J achieves the average delay vector

(Wn)Nn=1.

5.10.2 Lemma 5.19

Lemma 5.19. In a nonpreemptive N -class M/G/1 queue with a constant service rate,

if the first four moments of service times Xn are finite for all classes n ∈ {1, . . . , N}, and

the system is stable with
∑N

n=1 λnE [Xn] < 1, then, in every frame k ∈ Z+, the term

E
[(∑

i∈An,k

(
W

(i)
n,k − dn

))2
]

is finite for all classes n under any work-conserving policy.

Proof (Lemma 5.19). For brevity, we only give a sketch of proof. Using E
[
(a− b)2

]
≤

2E
[
a2 + b2

]
, it suffices to show that E

[(∑
i∈An,kW

(i)
n,k

)2
]

and E
[
|An,k|2

]
are both finite.

We only show the first expectation is finite; the finiteness of the second expectation

then follows. Define Nk ,
∑N

n=1 |An,k| as the number of jobs (over all classes) served

in frame k; we have |An,k| ≤ Nk for all n and k. In frame k, the queueing delay

W
(i)
n,k of a class n job i ∈ An,k is less than or equal to the busy period size Bk. Then

we get E
[(∑

i∈An,kW
(i)
n,k

)2
]
≤ E

[
B2
kN

2
k

]
. By Cauchy-Schwarz inequality, we have

E
[
B2
kN

2
k

]
≤
√
E
[
B4
k

]
E
[
N4
k

]
. It suffices to show that both E

[
B4
k

]
and E

[
N4
k

]
are finite.

First we argue E
[
B4
k

]
< ∞. In the following we drop the index k for notational

convenience. Since the busy period size B is the same under any work-conserving policy,

it is convenient to consider LIFO scheduling with preemptive priority, and that jobs of

all classes are treated equally likely. In this scheme, let a0 denote the arrival that starts

the current busy period. Arrival a0 can be of any class, and the duration it stays in the

system is equal to the busy period B. Next, let {a1, . . . , aM} denote the M jobs that

arrive during the service of job a0. Let B(1), . . . , B(M) denote the duration they stay

in the system. Under LIFO with preemptive priority, we observe that B(1), . . . , B(M)

are independent and identically distributed as the starting busy period B, since any new

168



arrival never sees any previous arrivals and starts a new busy period (by the memoryless

property of Poisson arrivals). Consequently, we have

B = X +

M∑

m=1

B(m), (5.63)

where X denote the service time of a0. Notice also that each duration B(m) for all

m ∈ {1, . . . ,M} is independent of M . By taking the square and expectation of (5.63),

we can compute E
[
B2
]

in closed form and show that it is finite if the first two moments

of service times Xn are finite for all n. Likewise, by raising (5.63) to the third and

fourth power and taking expectation, we can compute E
[
B3
]

and E
[
B4
]

and show they

are finite if the first four moments of Xn are finite (showing E
[
B4
]
< ∞ requires the

finiteness of the first three moments of B).

Likewise, to show E
[
N4
]

is finite, under LIFO with preemptive priority we observe

N = 1 +
M∑

m=1

N(m), (5.64)

where N(m) denotes the number of arrivals, including am, served during the stay of

arrival am in the system; N(m) are i.i.d. and independent of M . By raising (5.64) to

the second, third, and fourth power and taking expectation, we can compute E
[
N4
]

in

closed form and show it is finite.

5.10.3 Proof of Lemma 5.14

From (5.20), we get

Yn,k+1 ≥ Yn,k − rn,k |An,k|+
∑

i∈An,k
W

(i)
n,k.

169



Summing over k ∈ {0, . . . ,K − 1} and using Yn,0 = 0 yield

K−1∑

k=0

∑

i∈An,k
W

(i)
n,k − Yn,K ≤

K−1∑

k=0

rn,k |An,k| .

Taking expectation and dividing by λn E
[∑K−1

k=0 Tk

]
yield

E
[∑K−1

k=0

∑
i∈An,kW

(i)
n,k

]

λnE
[∑K−1

k=0 Tk

] − E [Yn,K ]

λnKE [T0]
≤

E
[∑K−1

k=0 rn,k |An,k|
]

λnE
[∑K−1

k=0 Tk

] . (5.65)

where in the second term we have used E [Tk] = E [T0] for all k. In the last term of (5.65),

since the value rn,k is chosen independent of |An,k| and Tk, we use E [|An,k|] = λnE [Tk]

and get

E
[∑K−1

k=0 rn,k |An,k|
]

λnE
[∑K−1

k=0 Tk

] =
E
[∑K−1

k=0 rn,k Tk

]

E
[∑K−1

k=0 Tk

] .

Define θ
(n)
K as the left side of (5.65). It follows

θ
(n)
K ≤

E
[∑K−1

k=0 rn,k Tk

]

E
[∑K−1

k=0 Tk

] .

Since fn(·) is nondecreasing for all classes n, we get

lim sup
K→∞

N∑

n=1

fn

(
θ

(n)
K

)
≤ lim sup

K→∞

N∑

n=1

fn



E
[∑K−1

k=0 rn,k Tk

]

E
[∑K−1

k=0 Tk

]


 . (5.66)

Using (5.65), define the value

η
(n)
K ,

E
[∑K−1

k=0

∑
i∈An,kW

(i)
n,k

]

E
[∑K−1

k=0 |An,k|
] = θ

(n)
K +

E [Yn,K ]

λnKE [T0]
. (5.67)

170



To complete the proof, using (5.66) it suffices to show

lim sup
K→∞

N∑

n=1

fn(η
(n)
K ) = lim sup

K→∞

N∑

n=1

fn(θ
(n)
K ). (5.68)

We show that inequality ≤ holds in (5.68); the other direction is proved similarly. Let

the left side of (5.68) attains its lim sup in the subsequence {Km}∞m=1. It follows

lim sup
K→∞

N∑

n=1

fn(η
(n)
K ) = lim

m→∞

N∑

n=1

fn(η
(n)
Km

)
(a)
=

N∑

n=1

fn

(
lim
m→∞

η
(n)
Km

)

(b)
=

N∑

n=1

fn

(
lim
m→∞

θ
(n)
Km

)
≤ lim sup

K→∞

N∑

n=1

fn(θ
(n)
K ),

where (a) follows the continuity of fn(·) for all classes n, and (b) follows (5.67) and mean

rate stability of the Yn,k queues.

5.10.4 Independence of Second-Order Statistics in DynRate

We show how to remove the dependence on the second moments of job sizes Sn in the

DynRate policy in Section 5.5.1. For simplicity, we assume that job classes are properly re-

ordered so that class n has the nth highest priority for n ∈ {1, . . . , N}. We rewrite (5.34)

using (5.8) as

R̂

[(
V

R̂

N∑

n=1

λnE [Sn]

)
Pk

µ(Pk)
+

N∑

n=1

Zn,k λn

(µ(Pk)−
∑n−1

m=0 ρ̂m)(µ(Pk)−
∑n

m=0 ρ̂m)

]
(5.69)

where

R̂ , 1

2

N∑

n=1

λnE
[
S2
n

]
, ρ̂m ,





λmE [Sm] , 1 ≤ m ≤ N

0, m = 0

171



By ignoring constant R̂ and redefining Ṽ , V/R̂ in (5.69), in the kth frame of policy

DynRate, it is equivalent to allocate service rate µ(Pk) that minimizes

(
Ṽ

N∑

n=1

λnE [Sn]

)
Pk

µ(Pk)
+

N∑

n=1

Zn,k λn

(µ(Pk)−
∑n−1

m=0 ρ̂m)(µ(Pk)−
∑n

m=0 ρ̂m)
, (5.70)

The sum (5.70) is independent of second moments of job sizes. From Theorem 5.16 and

using V = Ṽ R̂, this alternative policy yields average service cost P satisfying

P ≤ C
∑N

n=1 λn

Ṽ R̂
+ P ∗,

and we preserve the property that the average service cost P is O(1/Ṽ ) away from the

optimal P ∗.

5.10.5 Proof of Lemma 5.17

From (5.44), we have Xk+1 ≥ Xk + PkBk(Pk) − Pconst Tk(Pk). Summing over k ∈

{0, . . . ,K − 1}, taking expectation, and using X0 = 0, we get

E [XK ] ≥ E

[
K−1∑

k=0

PkBk(Pk)

]
− Pconst E

[
K−1∑

k=0

Tk(Pk)

]
.

Dividing by E
[∑K−1

k=0 Tk(Pk)
]

and passing K →∞ yields

P ≤ Pconst +lim sup
K→∞

E [XK ]

K

K

E
[∑K−1

k=0 Tk(Pk)
]

(a)

≤ Pconst +lim sup
K→∞

E [XK ]

K

N∑

n=1

λn
(b)
= Pconst

where (a) uses E [Tk(Pk)] ≥ E [Ik] = 1/(
∑N

n=1 λn), and (b) follows mean rate stability of

the virtual cost queue Xk.

172



5.10.6 Proof of Theorem 5.18

Let π∗ be the stationary randomized policy of rate allocation and priority assignment

that solves (5.42)-(5.43). Let (W
∗
n)Nn=1 be the optimal mean delay vector, and P

∗
the

associated average service cost; we have P
∗ ≤ Pconst. In frame k, the ratio Ψ(χk)

E[Tk(Pk)|χk]

under policy π∗ and the genie decisions r∗n,k = W
∗
n for all n and k is equal to

N∑

n=1

Yn,k λnW
∗
n +XkP

∗ −XkPconst +
N∑

n=1

(
V fn(W

∗
n)− Yn,k λnW ∗n

)
≤ V

N∑

n=1

fn(W
∗
n).

(5.71)

Since the CostDelayFair policy minimizes Ψ(χk)
E[Tk(Pk)|χk] in every frame k, this ratio under

the CostDelayFair policy satisfies

Ψ(χk)

E [Tk(Pk) | χk]
≤ V

N∑

n=1

fn(W
∗
n).

Then (5.46) under the CostDelayFair policy satisfies

∆(χk) + V E

[
N∑

n=1

fn(rn,k)Tk(Pk) | χk
]
≤ C + V E [Tk(Pk) | χk]

N∑

n=1

fn(W
∗
n). (5.72)

Removing the second term in (5.72) and taking expectation, we get

E [L(χk+1)]− E [L(χk)] ≤ C + V E [Tk(Pk)]
N∑

n=1

fn(W
∗
n).

Summing over k ∈ {0, . . . ,K − 1}, and using L(χ0) = 0 yields

E [L(χK)] ≤ KC + V E

[
K−1∑

k=0

Tk(Pk)

]
N∑

n=1

fn(W
∗
n) ≤ KC1 (5.73)

where C1 , C+V E [T0(Pmin)]
∑N

n=1 fn(W
∗
n), and we have used E [Tk(Pk)] ≤ E [T0(Pmin)]

for all k. Inequality (5.73) suffices to conclude that the virtual cost queue Xk and all

173



Yn,k queues are mean rate stable. From Lemma 5.17 we have P ≤ Pconst. The proof

of (5.48) follows that of Theorem 5.12.

174



Chapter 6

Conclusions

This dissertation addresses single-hop network control problems in wireless networks and

queueing systems. In wireless, we optimize channel probing considering its energy and

timing overhead, and build dynamic strategies that are both throughput and energy

optimal. We explore efficient exploitation of channel memory over Markov ON/OFF

channels with unknown current states by studying the associated network capacity re-

gion. Computing the full region is difficult, and we construct a good inner capacity

bound with easily achievable closed-form performance and asymptotical optimality in

special cases. Queue-dependent throughput-optimal policies are provided within the in-

ner bound. We also solve throughput utility maximization over the inner bound, because

of its wide applications, with the use of a novel ratio MaxWeight policy. In queueing sys-

tems, motivated by computer and cloud computing applications, we solve several convex

delay penalty and service cost minimization problems with time-average constraints in a

multi-class M/G/1 queue with adjustable service rates. We build dynamic priority poli-

cies that greedily update controls over busy periods based on running delay performance,

and prove that they are near-optimal.

We use and develop a dynamic optimization method throughout. First we character-

ize the performance region. We explore the problem structure to identify a policy space,

as simple as we could possibly get, so that each feasible performance vector is supported

by a stationary randomization over it. For this step, sample-path analysis and the strong

conversation law in multi-class queues are used in Chapter 2 and Chapter 5, respectively.

When the performance region is hard to compute, we use the problem structure to de-

sign a policy space, and settle for a good achievable region by randomizing policies in

that space; this is what we have done in Chapter 3 and Chapter 4. Overall, a simple

175



policy-based representation of a performance region facilitates us to develop good control

policies that scale with the dimension of the problem.

Having a policy space corresponding to the performance region, we use Lyapunov

drift theory to construct provably optimal network control algorithms. At every decision

epoch, one policy in that policy space is greedily chosen for use until the next decision

epoch, based on the running system performance summarized in the queueing informa-

tion. The definition of decision epochs depends on how the policy space is structured,

and the duration between two consecutive decision epochs may cross one slot, one busy

period, or a policy-dependent random frame size. The resulting control algorithms re-

quire limited or no a-priori statistical knowledge of the system, implying that they adapt

nicely to unknown system parameters, and can be treated as learning algorithms over

stochastic queueing networks.

Perhaps the most important lesson we have learned is the ability to use the analytical

framework we have generalized to solve open stochastic convex optimization problems

with time-average constraints. Chapter 5 is committed to such an attempt with applica-

tion to the control of multi-class queues. We transform convex objective functions and

time-average constraints into virtual queues that need to be stabilized. Guided by the

dynamics in the virtual queues, we construct queue-stable policies that solve the original

problems.

176



Bibliography

Ahmad, S. H. A. and Liu, M. (2009). Multi-channel opportunistic access: A case of restless
bandits with multiple plays. In Allerton Conf. Communication, Control, and Computing,
pages 1361–1368. 83

Ahmad, S. H. A., Liu, M., Javidi, T., Zhao, Q., and Krishnamachari, B. (2009). Optimality of
myopic sensing in multichannel opportunistic access. IEEE Trans. Inf. Theory, 55(9):4040–
4050. 7, 8, 56, 57, 62, 73, 83, 84

Andrew, L. L. H., Lin, M., and Wierman, A. (2010). Optimality, fairness, and robustness in
speed scaling designs. In ACM SIGMETRICS. 166

Ansell, P. S., Glazebrook, K. D., Mitrani, I., and Nino-Mora, J. (1999). A semidefinite pro-
gramming approach to the optimal control of a single server queueing system with imposed
second moment constraints. Journal of the Oper. Res., 50(7):765–773. 128

Ansell, P. S., Glazebrook, K. D., Niño-Mora, J., and O’Keeffe, M. (2003). Whittle’s index policy
for a multi-class queueing system with convex holding costs. Math. Methods of Oper. Res.,
57:21–39. 166

Ata, B. and Shneorson, S. (2006). Dynamic control of an M/M/1 service system with adjustable
arrival and service rates. Manage. Sci., 52(11):1778–1791. 165

Bertsekas, D. P. (1999). Nonlinear Programming. Athena Scientific, 2nd edition. 140

Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control, volume I. Athena Scientific,
3rd edition. 7, 54, 118

Bertsekas, D. P. and Gallager, R. G. (1992). Data Networks. Prentice Hall, 2nd edition. 133,
134, 158

Bertsimas, D. and Niño-Mora, J. (1996). Conservation laws, extended polymatroids, and multi-
armed bandit problems; a polyhedral approach to indexable systems. Math. of Oper. Res.,
21(2):257–306. 165

Bhattacharya, P. P., Georgiadis, L., and Tsoucas, P. (1995). Problems of adaptive optimization
in multiclass M/GI/1 queues with bernoulli feedback. Math. of Oper. Res., 20(2):355–380.
166

Buzacott, J. A. and Shanthikumar, J. G. (1993). Stochastic Models of Manufacturing Systems.
Prentice Hall. 4

177



Chang, N. B. and Liu, M. (2007). Optimal channel probing and transmission scheduling for
opportunistic spectrum access. In ACM Int. Conf. Mobile Computing and Networking
(MobiCom), pages 27–38, New York, NY. 40, 119

Chaporkar, P. and Proutiere, A. (2008). Optimal joint probing and transmission strategy for
maximizing throughput in wireless systems. IEEE J. Sel. Areas Commun., 26(8):1546–
1555. 119

Chaporkar, P., Proutiere, A., and Asnani, H. (2010). Learning to optimally exploit multi-channel
diversity in wireless systems. In IEEE Proc. INFOCOM. 119

Chaporkar, P., Proutiere, A., Asnani, H., and Karandikar, A. (2009). Scheduling with lim-
ited information in wireless systems. In ACM Int. Symp. Mobile Ad Hoc Networking and
Computing (MobiHoc), New Orleans, LA. 84, 119

Eryilmaz, A. and Srikant, R. (2006). Joint congestion control, routing, and mac for stability and
fairness in wireless networks. IEEE J. Sel. Areas Commun., 24(8):1514–1524. 9, 119

Eryilmaz, A. and Srikant, R. (2007). Fair resource allocation in wireless networks using queue-
length-based scheduling and congestion control. IEEE/ACM Trans. Netw., 15(6):1333–
1344. 9, 119

Federgruen, A. and Groenevelt, H. (1988a). Characterization and optimization of achievable
performance in general queueing systems. Oper. Res., 36(5):733–741. 166

Federgruen, A. and Groenevelt, H. (1988b). M/G/c queueing systems with multiple customer
classes: Characterization and control of achievable performance under nonpreemptive pri-
ority rules. Manage. Sci., 34(9):1121–1138. 9, 133, 134, 165, 166

Gallager, R. G. (1996). Discrete Stochastic Processes. Kluwer Academic Publishers. 55

Gelenbe, E. and Mitrani, I. (1980). Analysis and Synthesis of Computer Systems. Academic
Press, London, UK. 9

George, J. M. and Harrison, J. M. (2001). Dynamic control of a queue with adjustable service
rate. Oper. Res., 49(5):720–731. 165

Georgiadis, L., Neely, M. J., and Tassiulas, L. (2006). Resource allocation and cross-layer control
in wireless networks. Foundations and Trends in Networking, 1(1). 9, 47, 80

Gesbert, D. and Alouini, M.-S. (2004). How much feedback is multi-user diversity really worth?
In IEEE Int. Conf. Communications (ICC), pages 234–238. 40

Giaccone, P., Prabhakar, B., and Shah, D. (2003). Energy constrained wireless switching. In
Allerton Conf. Communication, Control, and Computing, Urbana, IL. 39

Gittins, J. C. (1989). Multi-Armed Bandit Allocation Indices. Wiley, New York, NY. 71

Glazebrook, K. D., Lumley, R. R., and Ansell, P. S. (2003). Index heuristics for multiclass
M/G/1 systems with nonpreemptive service and convex holding costs. Queueing Syst.,
45(2):81–111. 166

178



Gopalan, A., Caramanis, C., and Shakkottai, S. (2007). On wireless scheduling with partial
channel-state information. In Allerton Conf. Communication, Control, and Computing. 40

Guha, S., Munagala, K., and Sarkar, S. (2006a). Approximation schemes for information acquisi-
tion and exploitation in multichannel wireless networks. In Allerton Conf. Communication,
Control, and Computing. 40

Guha, S., Munagala, K., and Sarkar, S. (2006b). Jointly optimal transmission and probing
strategies for multichannel wireless systems. In Conf. Information Sciences and Systems.
40, 119

Guha, S., Munagala, K., and Shi, P. (2009). Approximation algorithms for restless bandit
problems. Technical report. 83, 84

Gurvich, I. and Whitt, W. (2009). Scheduling flexible servers with convex delay costs in many-
server service systems. Manufacturing Service Operations Management, 11(2):237–253. 166

Jagannathan, K., Menache, I., Modiano, E., and Mannor, S. (2011). A state action frequency
approach to throughput maximization over uncertain wireless channels. In IEEE INFOCOM
(Mini Conference), Shanghai, China. 84

Ji, Z., Yang, Y., Zhou, J., Takai, M., and Bagrodia, R. (2004). Exploiting medium acess diversity
in rate adaptive wireless lans. In ACM Int. Conf. Mobile Computing and Networking
(MobiCom), pages 345–359, Philadelphia, PA. 39

Kar, K., Luo, X., and Sarkar, S. (2008). Throughput-optimal scheduling in multichannel access
point networks under infrequent channel measurements. IEEE Trans. Wireless Commun.,
7(7):2619–2629. 40

Kaxiras, S. and Martonosi, M. (2008). Computer Architecture Techniques for Power-Efficiency.
Synthesis Lectures on Computer Architecture. Morgan & Claypool. 6

Kelly, F. P. (1997). Charging and rate control for elastic traffic. European Trans. Telecommuni-
cations, 8:33–37. 6, 107, 141

Kleinrock, L. (1976). Queueing Systems, volume II: Computer Applications. Wiley Interscience.
4, 158

Lee, J.-W., Mazumdar, R. R., and Shroff, N. B. (2006). Opportunistic power scheduling for
dynamic multi-server wireless systems. IEEE Trans. Wireless Commun., 5(6):1506–1515.
39

Li, C.-P. and Neely, M. J. (2007). Energy-optimal scheduling with dynamic channel acquisition
in wireless downlinks. In IEEE Conf. Decision and Control (CDC), pages 1140–1147, New
Orleans, LA. 12

Li, C.-P. and Neely, M. J. (2010a). Energy-optimal scheduling with dynamic channel acquisition
in wireless downlinks. IEEE Trans. Mobile Comput., 9(4):527 –539. 12, 53, 62, 73, 84, 119

Li, C.-P. and Neely, M. J. (2010b). Exploiting channel memory for multi-user wireless scheduling
without channel measurement: Capacity regions and algorithms. In IEEE Proc. Int. Symp.
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Avignon,

179



France. 12

Li, C.-P. and Neely, M. J. (2011a). Exploiting channel memory for multiuser wireless scheduling
without channel measurement: Capacity regions and algorithms. Performance Evaluation.
accepted for publication. 12, 125

Li, C.-P. and Neely, M. J. (2011b). Network utility maximization over partially observable
Markovian channels. In IEEE Proc. Int. Symp. Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks (WiOpt), Princeton, NJ, USA. 9, 12

Liu, K. and Zhao, Q. (2010). Indexability of restless bandit problems and optimality of whittle’s
index for dynamic multichannel access. IEEE Trans. Inf. Theory, 56(11):5547–5567. 83, 84

Mandelbaum, A. and Stolyar, A. L. (2004). Scheduling flexible servers with convex delay costs:
Heavy-traffic optimality of the generalized cµ-rule. Oper. Res., 52(6):836–855. 166

Mitchell, B. (1973). Optimal service-rate selection in an M/G/1̂ queue. SIAM J. Applied Math-
ematics, 24(1):19–35. 165

Neely, M. J. (2003). Dynamic Power Allocation and Routing for Satellite and Wireless Networks
with Time Varying Channels. PhD thesis, Massachusetts Institute of Technology. 9, 119,
121

Neely, M. J. (2006). Energy optimal control for time varying wireless networks. IEEE Trans.
Inf. Theory, 52(7):2915–2934. 9, 13, 14, 20, 39, 41

Neely, M. J. (2010a). Dynamic optimization and learning for renewal systems. In Asilomar Conf.
Signals, Systems, and Computers. 130

Neely, M. J. (2010b). Stability and capacity regions for discrete time queueing networks. arxiv
report. 126

Neely, M. J. (2010c). Stochastic Network Optimization with Application to Communication and
Queueing Systems. Morgan & Claypool. 9, 111, 147

Neely, M. J., Modiano, E., and Li, C.-P. (2008). Fairness and optimal stochastic control for
heterogeneous networks. IEEE/ACM Trans. Netw., 16(2):396–409. 9, 107, 108, 119, 120

Neely, M. J., Modiano, E., and Rohrs, C. E. (2003). Power allocation and routing in multibeam
satellites with time-varying channels. IEEE/ACM Trans. Netw., 11(1):138–152. 23, 39, 47

Neely, M. J., Modiano, E., and Rohrs, C. E. (2005). Dynamic power allocation and routing for
time-varying wireless networks. IEEE J. Sel. Areas Commun., 23(1):89–103. 2, 51

Neely, M. J. and Urgaonkar, R. (2008). Opportunism, backpressure, and stochastic optimization
with the wireless broadcast advantage. In Asilomar Conf. Signals, Systems, and Computers,
Pacific Grove, CA. 32

Niño-Mora, J. (2008). An index policy for dynamic fading-channel allocation to heterogeneous
mobile users with partial observations. In Next Generation Internet Networks, pages 231–
238. 83, 84

180



Niño-Mora, J. (2009). Stochastic scheduling. In Floudas, C. A. and Pardalos, P. M., editors,
Encyclopedia of Optimization, pages 3818–3824. Springer, 2nd edition. 165

Ny, J. L., Dahleh, M., and Feron, E. (2008). Multi-uav dynamic routing with partial observations
using restless bandit allocation indices. In American Control Conference, Seattle, WA, USA.
106

Pantelidou, A., Ephremides, A., and Tits, A. L. (2007). Joint scheduling and routing for ad-
hoc networks under channel state uncertainty. In IEEE Proc. Int. Symp. Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). 84

Patil, S. and de Veciana, G. (2007). Reducing feedback for opportunistic scheduling in wireless
systems. IEEE Trans. Wireless Commun., 6(12):4227–4232. 40

Rosberg, Z., Varaiya, P. P., and Walrand, J. C. (1982). Optimal control of service in tandem
queues. IEEE Trans. Autom. Control, ac-27(3):600–610. 165

Ross, S. M. (1996). Stochastic Processes. Wiley, 2 edition. 132

Rudin, W. (1976). Principles of Mathematical Analysis. McGraw-Hill, 3rd edition. 42, 43

Sabharwal, A., Khoshnevis, A., and Knightly, E. (2007). Opportunistic spectral usage: Bounds
and a multi-band CSMA-CA protocol. IEEE/ACM Trans. Netw., 15(3):533–545. 39

Shanthikumar, J. G., Ding, S., and Zhang, M. T. (2007). Queueing theory for semiconductor
manufacturing systems: A survey and open problems. IEEE Trans. Autom. Sci. Eng.,
4(4):513–522. 4

Shanthikumar, J. G. and Yao, D. D. (1992). Multiclass queueing systems: Polymatroidal struc-
ture and optimal scheduling control. Oper. Res., 40(2):S293–S299. 165

Stidham, S. (2002). Analysis, design, and control of queueing systems. Oper. Res., 50(1):197–216.
165

Stidham, S. and Weber, R. (1989). Monotonic and insensitive optimal policies for contorl of
queues with undiscounted costs. Oper. Res., 37(4):611–625. 165

Stolyar, A. L. (2005). Maximizing queueing network utility subject to stability: Greedy primal-
dual algorithm. Queueing Syst., 50(4):401–457. 9, 119

Tang, T. and Heath, Jr., R. W. (2005). Opportunistic feedback for downlink multiuser diversity.
IEEE Commun. Lett., 9(10):948–950. 40

Tassiulas, L. (1997). Scheduling and performance limits of networks with constantly changing
topology. IEEE Trans. Inf. Theory, 43(3):1067–1073. 2, 51

Tassiulas, L. and Ephremides, A. (1992). Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans.
Autom. Control, 37(12):1936–1948. 9

Tassiulas, L. and Ephremides, A. (1993). Dynamic server allocation to parallel queues with
randomly varying connectivity. IEEE Trans. Inf. Theory, 39(2):466–478. 2, 9, 19, 41, 72

181



U.S. Environmental Protection Agency (2007). Report to congress on server and data center
energy efficiency public law 109-431. 5

van Mieghem, J. A. (1995). Dynamic scheduling with convex delay costs: The generalized cmu
rule. Ann. Appl. Probab., 5(3):809–833. 166

Walrand, J. (1988). An Introduction to Queueing Networks. Prentice Hall. 165

Wang, H. S. and Chang, P.-C. (1996). On verifying the first-order markovian assumption for a
rayleigh fading channel model. IEEE Trans. Veh. Technol., 45(2):353–357. 51

Wang, W.-H., Palaniswami, M., and Low, S. H. (2006). Application-oriented flow control: Fun-
damentals, algorithms, and fairness. IEEE/ACM Trans. Netw., 14(6):1282–1291. 6

Weber, R. and Stidham, S. (1987). Optimal control of service rates in networks of queues. Adv.
Appl. Probab., 19(1):202–218. 165

Welsh, D. J. A. (1976). Matroid Theory. Academic Press, London, UK. 9

Whittle, P. (1988). Restless bandits: Activity allocation in a changing world. J. Appl. Probab.,
25:287–298. 7, 83, 84, 118

Wierman, A., Andrew, L. L. H., and Tang, A. (2009). Power-aware speed scaling in processor
sharing systems. In IEEE Proc. INFOCOM, pages 2007–2015, Rio de Janeiro, Brazil. 166

Yao, D. D. (2002). Dynamic scheduling via polymatroid optimization. In Performance Evaluation
of Complex Systems: Techniques and Tools, Performance 2002, Tutorial Lectures, pages
89–113, London, UK. Springer-Verlag. 133

Yeh, E. M. and Cohen, A. S. (2004). Throughput optimal power and rate control for queued mul-
tiaccess and broadcast communications. In IEEE Int. Symp. Information Theory (ISIT),
page 112, Chicago, IL. 39

Ying, L. and Shakkottai, S. (2008). On throughput optimality with delayed network-state infor-
mation. In Information Theory and Application Workshop (ITA), pages 339–344. 84

Ying, L. and Shakkottai, S. (2009). Scheduling in mobile ad hoc networks with topology and
channel-state uncertainty. In IEEE Proc. INFOCOM, Rio de Janeiro, Brazil. 84

Zhao, Q., Krishnamachari, B., and Liu, K. (2008). On myopic sensing for multi-channel oppor-
tunistic access: Structure, optimality, and preformance. IEEE Trans. Wireless Commun.,
7(12):5431–5440. 8, 62, 72, 83, 84

Zhao, Q. and Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Process.
Mag., 24(3):79–89. 106

Zhao, Q. and Swami, A. (2007). A decision-theoretic framework for opportunistic spectrum
access. IEEE Wireless Commun. Mag., 14(4):14–20. 83, 106

Zorzi, M., Rao, R. R., and Milstein, L. B. (1996). A Markov model for block errors on fading
channels. In IEEE Personal, Indoor and Mobile Radio Communications Symp. (PIMRC).
51

182


	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Abstract
	Chapter Introduction to Single-Hop Network Control
	Partially Observable Wireless Networks
	Q1: Dynamic Channel Probing
	Q2: Exploiting Channel Memory
	Q3: Throughput Utility Maximization over Markovian Channels

	Multi-Class Queueing Systems
	Q4: Delay-Optimal Control in a Multi-Class M/G/1 Queue with Adjustable Service Rates

	Methodology
	Achievable Region Approach
	Lyapunov Drift Theory

	Contributions
	Dissertation Outline
	Bibliographic Notes

	Chapter Dynamic Wireless Channel Probing
	Network Model
	Motivating Examples
	Optimal Power for Stability
	Full and Blind Network Capacity Region

	Dynamic Channel Acquisition (DCA) Algorithm
	Example of Server Allocation

	Simulations
	Multi-Rate Channels
	I.I.D. ON/OFF Channels

	Generalization
	Timing Overhead
	Partial Channel Probing

	Chapter Summary and Discussions
	Bibliographic Notes
	Proofs in Chapter 2
	Proof of Lemma 2.4
	Proof of Lemma 2.6
	Proof of Theorem 2.7
	Proof of Theorem 2.11


	Chapter Exploiting Wireless Channel Memory
	Network Model
	Round Robin Policy RR(M)
	Throughput Analysis
	Example of Symmetric Channels
	Asymptotical Throughput Optimality

	Randomized Round Robin Policy RandRR
	Achievable Network Capacity: An Inner Bound
	Outer Capacity Bound
	Example of Symmetric Channels
	A Heuristically Tighter Inner Bound

	Tightness of Inner Capacity Bound: Symmetric Case
	Preliminary
	Analysis

	Queue-Dependent Round Robin Policy QRR
	Chapter Summary and Discussions
	Bibliographic Notes
	Proofs in Chapter 3
	Proof of Lemma 3.2
	Proof of Lemma 3.6
	Proof of Theorem 3.8
	Proof of Lemma 3.18
	Proof of Lemma 3.10
	Proof of Lemma 3.19
	Proof of Lemma 3.15
	Proof of Theorem 3.17
	Proof of Lemma 3.20


	Chapter Throughput Utility Maximization over Markovian Channels
	Network Model
	Randomized Round Robin Policy RandRR
	Network Utility Maximization
	The QRRNUM policy
	Lyapunov Drift Inequality
	Intuition
	Construction of QRRNUM

	Performance Analysis
	Chapter Summary and Discussions
	Bibliographic Notes
	Proofs in Chapter 4
	Proof of Lemma 4.3
	Proof of Theorem 4.4


	Chapter Delay-Optimal Control in a Multi-Class M/G/1 Queue with Adjustable Service Rates
	Queueing Model
	Definition of Average Delay

	Preliminaries
	Achieving Delay Constraints
	Delay Feasible Policy DelayFeas
	Construction of DelayFeas
	Performance of DelayFeas

	Convex Delay Optimization
	Delay Proportional Fairness
	Delay Fairness Policy DelayFair
	Construction of DelayFair
	Intuition on DelayFair
	Performance of DelayFair

	Delay-Constrained Optimal Rate Control
	Dynamic Rate Control Policy DynRate
	Intuition on DynRate
	Construction of DynRate
	Performance of DynRate

	Cost-Constrained Convex Delay Optimization
	Cost-Constrained Delay Fairness Policy CostDelayFair
	Construction of CostDelayFair
	Performance of CostDelayFair

	Simulations
	DelayFeas and DelayFair Policy
	DynRate and CostDelayFair Policy

	Chapter Summary and Discussions
	Bibliographic Notes
	Additional Results in Chapter 5
	Proof of Lemma 5.4
	Lemma 5.19
	Proof of Lemma 5.14
	Independence of Second-Order Statistics in DynRate
	Proof of Lemma 5.17
	Proof of Theorem 5.18


	Chapter Conclusions
	Bibliography

