
CapEst: Estimating wireless link capacity in multi-hop
networks

Apoorva Jindal
Juniper Networks

Sunnyvale, CA 94089
Email: ajindal@juniper.net

Konstantinos Psounis
University of Southern California

Los Angeles, CA, 90089
Email: kpsounis@usc.edu

Mingyan Liu
University of Michigan
Ann Arbor, MI 48109

Email: mingyan@eecs.umich.edu

Abstract—Estimating link capacity in a wireless network is a complex
task because the available capacity at a link is a function ofnot
only the current arrival rate at that link, but also of the arr ival rate
at links which interfere with that link as well as of the nature of
interference between these links. Models which accurately characterize
this dependence are either too computationally complex to be useful or
lack accuracy. Further, they have a high implementation overhead and
make restrictive assumptions, which makes them inapplicable to real
networks.

In this paper, we propose CapEst, a general, simple yet accurate,
measurement-based approach to estimating link capacity ina wireless
network. To be computationally light, CapEst allows inaccuracy in
estimation; however, using measurements, it can correct this inaccuracy in
an iterative fashion and converge to the correct estimate. Our evaluation
shows that CapEst always converged to within5% of the correct value in
less than18 iterations. CapEst is model-independent, hence, is applicable
to any MAC/PHY layer and works with auto-rate adaptation. Moreover,
it has a low implementation overhead, can be used with any application
which requires an estimate of residual capacity on a wireless link and
can be implemented completely at the network layer without any support
from the underlying chipset.

I. I NTRODUCTION

The capacity of a wireless link is defined to be the maximum
sustainable data arrival rate at that link. Estimating the residual
capacity of a wireless link is an important problem because knowl-
edge of available capacity is needed by several different tools and
applications, including predicting safe sending rates of various flows
based on policy and path capacity [1], online optimization of wireless
mesh networks using centralized rate control [2], distributed rate
control mechanisms which provide explicit and precise rate feedback
to sources [3], admission control, interference-aware routing [4],
network management tools to predict the impact of configuration
changes [1] etc.

However, estimating residual link capacity in a wireless network,
especially a multi-hop network, is a hard problem because the
available capacity is a function of not only the current arrival rate
at the link under consideration, but also of the arrival rates at links
which interfere with that link and the underlying topology. Models
which accurately represent this dependence are very complex and
computationally heavy and, as input, require the complete topology
information including which pair of links interfere with each other,
the capture and deferral probabilities between each pair of links, the
loss probability at each link, etc [1], [4]–[7]. Simpler models make
simplifying assumptions [2], [8]–[10] which diminish their accuracy
in real networks. Moreover, model-based capacity estimation tech-
niques [1], [2] work only for the specific MAC/PHY layer for which
they were designed and extending them to a new MAC/PHY layer
requires building a new model from scratch. Finally, none of these
methods work with auto-rate adaptation at the MAC layer, which
makes them inapplicable to any real network.

In this paper, we propose CapEst, a general, simple yet accurate
and model-independent, measurement-based approach to estimating
link capacity in a wireless network. CapEst is an iterative mechanism.
During each iteration, each link maintains an estimate of the expected
service time per packet on that link, and uses this estimate to predict
the residual capacity on that link. This residual capacity estimate
may be inaccurate. However, CapEst will progressively improve its
estimate with each iteration, and eventually converge to the correct
capacity value. Our evaluation of CapEst in Sections III and IV
shows that, first, CapEst converges, and secondly, CapEst converges
to within 5% the correct estimate in less than18 iterations. Note that
one iteration involves the exchange of roughly200 packets on each
link. (See Section IV for more details.)

Based on the residual capacity estimate, CapEst predicts the
constraints imposed by the network on the rate changes at other links.
CapEst can be used with any application because the application
can use it to predict the residual capacity estimate at each link, and
behave accordingly. By a similar argument, CapEst can be used by
any network operation to properly allocate resources. As a show-case,
in this paper, we use CapEst for online optimization of wireless mesh
networks using centralized rate control.

The properties which makes CapEst unique, general and useful in
many scenarios are as follows. (i) It is simple and requires no complex
computations, and yet yields accurate estimates. (ii) It is model-
independent, hence, can be applied to any MAC/PHY layer. (iii) The
only topology information it requires is which node interferes with
whom, which can be easily collected locally with low overhead [2].
(iv) It works with auto-rate adaptation. (v) It can be completely
implemented at the network layer and requires no additional support
from the chipset. (vi) CapEst can be used with any application which
requires an estimate of wireless link capacity, and on any wireless
network, whether single-hop or multi-hop.

II. CAPEST DESCRIPTION

CapEst is an iterative mechanism. During each iteration, each link
measures the expected service time per packet on that link, and
uses this measurement to estimate the residual capacity on that link.
The application, which for this section is centralized rate allocation
to get max-min fairness, uses the estimated residual capacity to
allocate flow-rates. The estimate may be inaccurate, however, it will
progressively improve with each iteration, and eventually converge to
the correct value. This section describes each component of CapEst
in detail and the max-min fair centralized rate allocator.

We first define our notations. LetV denote the set of wireless
nodes. A link i → j is described by the transmitter-receiver pair
of nodesi, j ∈ V, i 6= j. Let L denote the set of active links. Let
λi→j denote the packet arrival rate at linki→ j. Let Ni→j denote
the set of links which interfere withi → j, where a linkk → l is
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defined to interfere with linki→ j if and only if eitheri interferes
with nodek or l, or j interferes with nodek or l. For convenience,
i → j ∈ Ni→j . (Ni→j is also referred to as the neighborhood of
i→ j [3].)

In this description, we make the following assumptions. (i) The
retransmit limit at the MAC layer is very large, so no packet is
dropped by the MAC layer. (ii) The size of all packets is the same and
the data rate at all links is the same. Note that these assumptions are
being made for ease of presentation, and in Sections II-C and II-D,
we present modifications to CapEst to incorporate finite retransmit
limits and different packet sizes and data rates respectively.

A. Estimating Capacity

We first describe how each link estimates its expected service
time. For each successful packet transmission, CapEst measures the
time elapsed between the MAC layer receiving the packet from the
network layer, and the MAC layer informing the network layer that
the packet has been successfully transmitted. This denotes the service
time of that packet. Thus, CapEst is completely implemented in the
network layer. CapEst maintains the value of two variablesSi→j

andKi→j
1, which denote the estimated expected service time and a

counter to indicate the number of packets over which the averaging
is being done respectively, at each linki → j. For each successful
packet transmission, ifSlast

i→j denotes the service time of the most
recently transmitted packet, then the values of these two variables
are updated as follows.

Si→j ←
Si→j ×Ki→j + Slast

i→j

Ki→j + 1
(1)

Ki→j ← Ki→j + 1. (2)

1/Si→j gives the MAC service rate at linki → j. Thus, the
residual capacity on linki→ j is equal to

`

1/Si→j

´

− λi→j . Now,
since transmissions on neighboring links will also eat up the capacity
at link i → j, this residual capacity will be distributed amongst all
the links inNi→j . Note that the application using CapEst, based on
this residual capacity estimate, will either re-allocate rates or change
the routing or admit/remove flows etc, which will change the rate on
the links in the network. However, this rate change will have to obey
the following constraint at each link to keep the new rates feasible.

X

k→l∈Ni→j

δk→l ≤
`

1/Si→j

´

− λi→j , ∀i→ j ∈ L, (3)

whereδk→l denotes the rate increase at linkk → l in packets per
unit time. How exactly is this residual capacity divided amongst the
neighboring links depends on the application at hand. For example,
Section II-B describes a centralized methodology to distribute this
estimated residual capacity amongst interfering links so as to obtain
max-min fairness amongst all flows.

Note that all interfering links inNi→j do not have the same effect
on the link i→ j. Some of these interfering links can be scheduled
simultaneously, and some do not always interfere and packets may go
through due to capture affect (non-binary interference [6]). However,
the linear constraint of Equation (3) treats the links inNi→j as a
clique with binary interference. Hence, there may be some remaining
capacity on linki→ j after utilizing Equation (3) to ensure that the
data arrival rates remain feasible. CapEst will automatically improve

1We could have used an exponentially weighted moving average to estimate
Si→j too. However, since each packet is served by the same service process,
giving equal weight to each packet in determiningSi→j should yield better
estimates, which we verify through simulations.

the capacity estimate in the next iteration and converge to the correct
capacity value iteratively.

We refer to the duration of one iteration as theiteration duration.
At the start of the iteration, both the variablesSi→j and Ki→j

are initialized to0. We start estimating the expected service time
afresh at each iteration because the residual capacity distribution in
the previous iteration may change the link rates at links inNi→j ,
and hence change the value ofSi→j . Thus, retainingSi→j from the
previous iteration is inaccurate. We next discuss how to set the value
of the iteration duration. Note that CapEst has no overhead; it only
requires each link to determineSi→j which does not require any
message exchange between links. This however does not imply that
there is no constraint on the choice of the iteration duration. Each
link i → j has to measureSi→j afresh. Thus, an iteration duration
has to be long enough so as to accurately measureSi→j . However,
we cannot make the iteration duration too long as it directly impacts
the convergence time of CapEst. Moreover, the application which
will distribute capacity will have overhead as it will need message
exchanges to ensure Equation (3) holds. The choice of the value of
the iteration duration is further discussed in Section IV.

B. Distributing Capacity to Obtain Max-Min Fairness

To illustrate how CapEst will be used with a real application, we
now describe a centralized mechanism to allocate max-min fair rates
to flows.

Each link determines its residual capacity through CapEst and con-
veys this information to a centralized rate allocator. This centralized
allocator is also aware of which pair of links inL interfere with each
other as well as the routing path of each flow. LetF denote the set
of end-to-end flows characterized by their source-destination pairs.
Let rf denote the new flow-rate determined by the centralized rate
allocator, and letrallocate

i→j denote the maximum flow rate allowed on
link i→ j for any flow passing through this link.

Consider a linki → j. Let I(f, i → j) be an indicator variable
which is equal to1 only if flow f ∈ F passes through a linki →
j ∈ L, otherwise it is equal to0. Based on the residual capacity
estimates, the centralized allocator updates the value ofrf , f ∈ F
according to the following set of equations.

rmax
i→j ← rallocate

i→j + α
1/Si→j − λi→j

P

k→l∈Ni→j

P

f∈F
I(f, k → l)

rallocate
i→j ← mink→l∈Ni→j

rmax
k→l

rf ← mini→j∈Pf
rallocate

i→j , (4)

where0 < α ≤ 1 is a parameter which controls the proportion of
residual capacity distributed,rmax

i→j denotes the maximum flow-rate
allowed by link i→ j on any link inNi→j and the setPf contains
the links lying on the routing path of flowf . Thus, amongst the
links a flow traverses, its rate is updated according to the link with
the minimum residual capacity in its neighborhood. Note that the
residual capacity estimate may be negative, which will merely result
in reducing the value ofrf .

This mechanism will allocate equal rates to flows which pass
through the neighborhood of the same bottleneck link. According
to the proof presented in [11], for CSMA-CA based MAC protocols,
this property ensures max-min fairness.

C. Finite Retransmit Limits

A packet may be dropped at the MAC layer if the number of
retransmissions exceeds the maximum retransmit limit. Since this
packet was dropped without being serviced, what is its service time?
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Should we ignore this packet and not change the current estimate
of the expected service time, or, should we merely take the duration
for which the packet was in the MAC layer and use it as a measure
of its service time? Note that these lost packets may indicate that
the link is suffering from severe interference, and hence, imply that
flows passing through the neighborhood of this link should reduce
their rates. Ignoring lost packets is thus not the correct approach.
Moreover, merely using the duration the lost packet spent in the MAC
layer as the packet’s service time is not sufficient to increase the value
of the expected service time by an amount which leads to a negative
residual capacity.

We use the following approach. We define the service time of a
lost packet to be equal to the sum of the duration spent by the packet
in the MAC layer and the expected additional duration required by
the MAC layer to service the packet if it was not dropped. Assuming
independent losses2, the latter term is equal toWm/2+Ts

1−ploss
i→j

, whereWm

is the largest back-off window value,Ts is the transmission time of a
packet andploss

i→j is the probability that a DATA transmission on link
i→ j is not successful. This value can be directly monitored at the
network layer by keeping a running ratio of the number of packets
lost to the number of packets sent to the MAC layer for transmission3.

D. Differing Packet Sizes and Data Rates

The methodology to estimate the expected service time (Equations
(1) and (2)) remains the same. What changes is how to distribute this
residual capacity amongst neighboring links, which is governed by
the constraint of Equation (3). The objective of this constraint is to
ensure that the sum of the increase in the proportion of time a link
k → l ∈ Ni→j transmits should be less than the proportion of time
the channel aroundi andj is empty. Thus, if each link has a different
transmission time, then the increase in rates onk → l ∈ Ni→j as
well as the residual capacity oni → j has to be scaled so as to
represent the increase in airtime being consumed and the idle airtime
aroundi and j respectively. Hence, ifT i→j represents the average
packet transmission time at linki→ j, then the capacity estimation
mechanism will impose the following constraint.

X

k→l∈Ni→j

δk→l
T k→l

T i→j

≤
`

1/Si→j

´

− λi→j , ∀i→ j ∈ L. (5)

Equation (5) merely normalizes rates to airtime. Note that Equation
(3) is a special case of Equation (5) if the packet sizes and data rates
at all links are the same.

Finally, the following equation states how the value ofT i→j is
estimated.

T i→j ←
T i→j ×Ki→j +

P last
i→j

Dlast
i→j

Ki→j + 1
, (6)

whereP last
i→j andDlast

i→j denote the packet size of the last packet trans-
mitted and the data rate used to transmit the last packet respectively
for link i→ j.

III. C ONVERGENCE OFCAPEST

In this section, we attempt to analytically understand the conver-
gence properties of CapEst with the max-min fair centralized rate

2A more complex model accounting for correlated losses can be easily
incorporated, however, our simulation results presented inSection IV-G show
that this simple independent loss model yields accurate results.

3Actually, the correct approach is to use the probability of loss seen at
the PHY layer, but measuring this quantity requires support from the chipset
firmware. If the firmware supports measuring this loss probability, it should
be used.

(a) (b)

Fig. 1. (a) Flow in the Middle Topology. (b) Chain-cross Topology.

allocator under a WLAN topology, where all nodes can hear each
other, all nodes are homogeneous, and each link has the same packet
arrival rate. Letλfin denote the arrival rate at each edge such that the
expected service time at each edge is equal to1/λfin. If λ < λfin,
then the system is stable and the input arrival rate can be supported.
Hence, the service rate1/S is larger than the arrival rate and the
arrival rate is increased in the next iteration. On the other hand,
λ > λfin, then the system is unstable and the service rate is smaller
than the arrival rate. This leads to a reduction in the arrival rate in the
next iteration. Thus, there is always a push to moveλ towardsλfin.
However, it is not obvious whether this process would converge to
λ = λfin or keep oscillating.

The following theorem states a sufficient condition for the process
to converge for a homogeneous WLAN topology. Please refer to [12]
for the proof.

Theorem 1: For a WLAN topology where all nodes can hear each
other, with homogeneous nodes having small buffers, and with each
link having the same packet arrival rate,λfin always exists and is
unique, and CapEst, with the max-min fair centralized rate allocator
with α < 1

2b0
, under the following assumptions: (i)nb0 >> 1, (ii)

b2
0 >> 1, (iii) b0 > 4, (iv) n > 3 and (v)b0 ≤

(n−2)Ts

(n−1)σ
, wheren is

the number of nodes,b0 is the first average backoff window value,
Ts is the packet transmission time andσ is the slot duration, with
the initial rate chosen to be larger than 1

nb0σ+(n−1)σ+nTs
, always

converges toλfin.
Note that the choice ofα and the initial rate stated in the

theorem only yield sufficient conditions for the WLAN topology.
Later, through simulations, we observe that, with general multi-hop
topologies, with fading and shadowing, heterogeneous nodes and
different arrival rates for each link, even withα = 1 and irrespective
of the intial arrival rate, CapEst always converged to the correct
value. And this convergence exhibits the following property which is
also observed in the proof of Theorem 1:with each iteration, at the
congested edge i→ j, | 1

Si→j
− λi→j | keeps on reducing.

IV. PERFORMANCE

In this section, we demonstrate through extensive simulations
that CapEst not only converges quickly but also converges to the
correct rate allocation. Thus, we verify both the correctness and the
convergence of CapEst.

We evaluate CapEst with the max-min fair centralized rate allocator
with α = 1 over a number of different topologies, for different MAC
protocols, with finite retransmit values at the MAC layer and with
auto-rate adaptation. We observe that CapEstalways converges to
within 5% of the optimal rate allocation in less than18 iterations.

A. Methodology

We use Qualnet version 4.0 as the simulation platform. All our
simulations are conducted using an unmodified IEEE 802.11(b) MAC
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Fig. 2. Deployment at Houston.

(DCF). RTS/CTS is not used unless explicitly stated. We use the
default parameters of IEEE 802.11(b) in Qualnet. Unless explcitly
stated, auto-rate adaptation is turned off, the link rate is set to
11 Mbps, the packet size is set to1024 bytes and the maximum
retransmit limits are set to a very large value. This setting allows us to
first evaluate the performance of the basic CapEst mechanism without
the modifications for auto-rate adaptation and finite retransmit limit.
Later, we include both to evaluate the mechanisms to account for
them. We run bulk transfer flows till10, 000 packets per flow
have been delivered. Finally, to determine the actual max-min rate
allocation, we use the methodology proposed by [3].

The implementation of CapEst and the max-min fair centralized
rate allocator closely follows their description in Section II. We
choose the iteration duration to be200 packets, that is, each link
resets its estimate of expected service time after transmitting200
packets. Finally, to be able to correctly distribute capacity, the central-
ized rate allocator also needs to be aware of which links interfere with
each other. We use the binary LIR interference model described in [2]
to determine which links interfere. The link interference ratio (LIR)
is defined asLIR = c31+c32

c11+c22
wherec11, c22 and c31, c32 are UDP

throughputs when the links are backlogged and transmit individually
and simultaneouly respectively.LIR = 1 implies no interference,
with lower LIR’s indicating a higher degree of interference. Similar
to the mechanism in [2], links withLIR > 0.95 are classified as
non-interfering.
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Fig. 4. Performance of CapEst: Deployment at Houston.

B. Commonly Used Multi-hop Topologies

In this section, we evaluate CapEst with two different, commonly
used topologies. Simulations on these two topologies are conducted
with zero channel losses, although packet losses due to collisions
do occur. We adjusted the carrier sense threshold to reduce the
interference range to be able to generate these topologies.

1) Flow in the Middle Topology: Figure 1(a) shows the topology.
This topology has been studied and used by several researchers to
understand the performance of different rate control and scheduling
protocols in mesh networks [3], [5], [13]. Figure 3(a) plots the
evolution of the rate assigned to each flow by the centralized rate

allocator. We observe that the mechanism converges to within5% of
the optimal max-min rate allocation in less than16 iterations.

2) Chain-Cross Topology: Figure 1(b) shows the topology. This
topology was proposed by [3] to understand the performance of rate
control protocols in mesh networks. This topology has a flow in the
middle which goes over multiple hops (1→ 7) as well as a smaller
flow in the middle (1 → 2). Figure 3(b) plots the evolution of the
rate assigned to each flow by the centralized rate allocator. We see
that the mechanism converges to within5% of the optimal in less
than5 iterations.

C. Randomly Generated Topologies

We generate two topologies by distributing nodes in a square area
uniformly at random. The source-destination pairs are also randomly
generated. The first random topology has30 nodes and5 flows, while
the second has100 nodes and10 flows. We use the two-ray path loss
model with Rayleigh fading and log-normal shadowing as the channel
model in simulations. The carrier-sense threshold, the noise level and
the fading and shadowing parameters are set to their default values in
Qualnet. We use AODV to set up the routes. Figures 3(c) and 3(d) plot
the evolution of the rate assigned to each flow by the centralized rate
allocator. For the smaller random topology, the mechanism converges
to within 5% of the optimal within18 iterations.

For the larger topology, the mechanism converges to a rate smaller
than the optimal. The reason is as follows. In this topology, the link
which is getting congested first, or in other words, has the least
residual capacity remaining at all iterations of the algorithm, is a
high-loss link4 (loss rate> 40%). Hence, the iteration duration has
to be larger than200 packets to obtain an accurate estimate. If we
increase the iteration duration to500 packets, as shown in Figure 5(b),
the mechanism converges to within5% of the optimal within15
iterations. Note that, in general, routing schemes like ETX [14] will
avoid the use of such high-loss links for routing, and hence, for most
cases, an iteration duration of200 packet suffices.

D. A Real Topology: Deployment at Houston

The next topology is derived from an outdoor residential deploy-
ment in a Houston neighborhood [15]. The node locations (shown in
Figure 2) are derived from the deployment and fed into the simulator.
The physical channel that we use in the simulator is a two-ray path
loss model with log-normal shadowing and Rayleigh fading. The
ETX routing metric (based on data loss in absence of collisions)
is used to set up the routes. Nodes1 and 2 are connected to the
wired world and serve as gateways for this deployment. All other
nodes route their packets toward one of these nodes (whichever is
closer in terms of the ETX metric). The resulting topology as well
as the routing tree is also shown in Figure 2.

Figure 4 plots the evolution of the rate assigned to each flow by the
centralized rate allocator. Again, the mechanism converges to within
5% of the optimal in less than12 iterations.

E. Impact of a Smaller Iteration Duration

In this section, we evaluate the impact of using a smaller iteration
duration on performance. We plot the evolution of the rate assigned to
each flow in Figure 5(a) for the flow in the middle topology with one
iteration duration= 75 packets. We observe that the rate converges
to a value smaller than the optimal. (Note that we had made a similar
observation for the100 node random topology in Section IV-C.)
In general, for all topologies we studied, we observed that using

4A link which suffers from a large number of physical layer losses without
including losses due to collisions is referred to as high-loss link.
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Fig. 3. Performance of CapEst. (a) Flow in the Middle. (b) Chain-Cross. (c) Random topology:30 nodes,5 flows. (d) Random topology:100 nodes,10
flows.
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Fig. 5. Performance of CapEst with a different iteration duration. (a) Flow
in the Middle with iteration duration =75 packets. (b) Random topology:100

nodes,10 flows with iteration duration =500 packets.
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Fig. 6. Performance of CapEst with IEEE 802.11 with RTS/CTS. (a) Flow
in the Middle. (b) Chain-cross.

an iteration duration not sufficiently large to allow the estimated
expected service time to converge leads to the mechanism converging
to a rate smaller than the optimal, however, the mechanism still
always converged and did not suffer from oscillations.

F. Different MAC layers

An attractive feature of CapEst is that it does not depend on the
MAC/PHY layer being used. Hence, in future, if one decides to use
a different medium access or physical layer, CapEst can be retained
without any changes. In this section, we evaluate the performance of
CapEst with two different medium access layers.
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Fig. 7. (a) Performance of CapEst with DiffQ-MAC: Flow in the Middle.
(b) CapEst vs DiffQ-Transport over DiffQ-MAC.

1) With RTS/CTS: We first evaluate the performance of CapEst
with IEEE 802.11 DCF with RTS/CTS. Figures 6(a) and 6(b) plot
the evolution of the assigned flow rates for the flow in the middle
topology and the chain-cross topology respectively. For both the
topologies, the mechanism converges to within5% of the optimal
within 6 iterations.

2) Back-pressure MAC: We next evaluate the performance of
CapEst with a back-pressure-based random-access protocol [16]–
[18]. The fundamental idea behind back-pressure based medium
access is to use queue sizes as weights to determine which link gets
scheduled. Solving a max-weight formulation, even in a centralized
manner, is NP-hard [19]. So, multiple researchers have suggested
using a random access protocol whose channel access probabilities
inversely depend on the queue size [16]–[18]. This ensures that the
probability of scheduling a packet from a larger queue is higher. The
most recent of these schemes isDiffQ [16]. DiffQ comprises of both
a MAC protocol as well as a rate control protocol. We refer to them
as DiffQ-MAC and DiffQ-Transport respectively. The priority of each
head of line packet in a queue is determined by using a step-wise
linear function of the queue size, and each priority is mapped to a
different AIFS, CWMin and CWMax parameter in IEEE 802.11(e).

Back-pressure medium access is very different from the tradi-
tional IEEE 802.11 DCF in conception. However, CapEst can still
accurately measure the capacity at each edge. Figure 7(a) plots the
evolution of the assigned flow rates for the flow in the middle
topology with DiffQ-MAC. The different priority levels as well as
the AIFS, CWMin and CWMax values being used are the same as
the ones used in [16]. Again, the mechanism converges to the optimal
values within5% of the optimal within12 iterations.

This set-up also demonstrates the advantage of having a rate control
mechanism which does not depend on the MAC/PHY layers. Optimal
rate-control protocols for a scheduling mechanism which solves the
max-weight problem at each step are known. However, if we use
a distributed randomized scheduling mechanism like DiffQ-MAC,
these rate control protocols are no longer optimal. But, using a rate
allocation mechanism based on CapEst, which makes no assumption
on the MAC layer, ensures convergence to a rate point close to the
optimal. For example, Figure 7(b) plots the achievable rate region (or
the feasible rate region) for DiffQ-MAC for the flow in the middle
topology. We plot the rate of the middle flow against the rate of the
outer two flows. Figure 7(b) also plots the throughput achieved by
CapEst after15 iterations of the algorithm as well as the throughput
achieved by DiffQ-Transport (originally proposed by [20] and shown
to be optimal with centralized max-weight scheduling). The figure
shows that CapEst allocates throughput within5% of the optimal
while DiffQ-Transport achieves only55% of the optimal throughput.
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Fig. 8. Performance of CapEst with finite MAC retransmit limits.(a) Flow
in the Middle. (b) Deployment at Houston.
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Fig. 9. Performance of CapEst with auto-rate adaptation. (a)Flow in the
Middle. (b) Deployment at Houston.

G. Finite Retransmit Limits

In this section, we set the IEEE 802.11 retransmit limits to their
default values. Thus, packets may be dropped at the MAC layer.
We use the methodology proposed in Section II-C to update the
estimate of the expected service time for lost packets. Figures 8(a),
and 8(b) show the evolution of allocated rates for the flow in the
middle topology and the deployment at Houston respectively. There
is slightly more variation in the allocated rates, however, not only
does CapEst converge but also the convergence time remains the same
as before. We evaluate CapEst for all the other scenarios described
above with the default retransmit values for IEEE 802.11, and our
observations remain the same as before.

H. Auto-Rate Adaptation

In this section, we switch on the default auto-rate fallback mecha-
nism of Qualnet. We use the methodology proposed in Section II-D to
constrain the rate updates. Figures 9(a) and 9(b) show the evolution of
allocated rates for the flow in the middle topology and the deployment
at Houston respectively. Again, not only does CapEst converge to
the correct rate allocation but also the convergence time remains the
same as before. However, the variation in the rates being assigned
is larger than before. This is due to the fact that at lower rates,
fewer collisions are observed, hence the data rate at each link is
higher. Thus, the residual capacity estimate observed will be larger
and hence, the variation in rates allocated will be larger. In other
words, the larger variation in rates is due to a larger variation in data
rates caused by auto-rate fallback and not CapEst. Also, this variation
is less prominent in the real scenario, the deployment at Houston,
where due to fading, there is significant channel losses in absence of
collisions and the expected service time estimate varies less due to
collisions. We evaluate CapEst for all the other scenarios described
above with the default auto-rate fallback mechanism of Qualnet, and
our observation remains the same.

V. CONCLUSIONS

In this paper, we propose CapEst, a mechanism to estimate link
capacity in a wireless network. CapEst yields accurate estimates while

being very easy to implement and does not require any complex
computations. CapEst is measurement-based and model-independent,
hence, works for any MAC/PHY layer. CapEst can be easily modified
to work with any application which requires an estimate of link
capacity. Also, the implementation overhead of CapEst is small and it
does not lose accuracy when used with auto-rate adaptation and finite
MAC retransmit limits. Finally, CapEst requires no support from the
underlying chipset and can be completely implemented at the network
layer.
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