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Abstract—Estimating link capacity in a wireless network is a complex
task because the available capacity at a link is a function ofnot
only the current arrival rate at that link, but also of the arr ival rate
at links which interfere with that link as well as of the nature of
interference between these links. Models which accuratelyharacterize
this dependence are either too computationally complex to é useful or
lack accuracy. Further, they have a high implementation ovehead and
make restrictive assumptions, which makes them inapplicade to real
networks.

In this paper, we propose CapEst, a general, simple yet accate,
measurement-based approach to estimating link capacity ira wireless
network. To be computationally light, CapEst allows inaccuacy in
estimation; however, using measurements, it can correct th inaccuracy in
an iterative fashion and converge to the correct estimate. Quevaluation
shows that CapEst always converged to withirs% of the correct value in
less than18 iterations. CapEst is model-independent, hence, is apphble
to any MAC/PHY layer and works with auto-rate adaptation. Moreover,
it has a low implementation overhead, can be used with any apigation
which requires an estimate of residual capacity on a wireles link and
can be implemented completely at the network layer without ay support
from the underlying chipset.
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In this paper, we propose CapEst, a general, simple yet accurate
and model-independent, measurement-based approach to estimating
link capacity in a wireless network. CapEst is an iterative mechanism.
During each iteration, each link maintains an estimate of the expected
service time per packet on that link, and uses this estimate to predict
the residual capacity on that link. This residual capacity estimate
may be inaccurate. However, CapEst will progressively improve its
estimate with each iteration, and eventually converge to the correct
capacity value. Our evaluation of CapEst in Sections Ill and IV
shows that, first, CapEst converges, and secondly, CapEst gesver
to within 5% the correct estimate in less thaa iterations. Note that
one iteration involves the exchange of rougBB0 packets on each
link. (See Section IV for more details.)

Based on the residual capacity estimate, CapEst predicts the
constraints imposed by the network on the rate changes at other links.
CapEst can be used with any application because the application
can use it to predict the residual capacity estimate at each link, and
behave accordingly. By a similar argument, CapEst can be used by
any network operation to properly allocate resources. As a show-case
in this paper, we use CapEst for online optimization of wireless mesh

The capacity of a wireless link is defined to be the maximumetworks using centralized rate control.

sustainable data arrival rate at that link. Estimating the residualThe properties which makes CapEst unique, general and useful in
capacity of a wireless link is an important problem because knowhany scenarios are as follows. (i) It is simple and requires no complex
edge of available capacity is needed by several different tools ageimputations, and yet yields accurate estimates. (i) It is model-
applications, including predicting safe sending rates of various flowslependent, hence, can be applied to any MAC/PHY layer. (iii) The
based on policy and path capacity [1], online optimization of wirelegsly topology information it requires is which node interferes with
mesh networks using centralized rate control [2], distributed raghom, which can be easily collected locally with low overhead [2].
control mechanisms which provide explicit and precise rate feedba@k) It works with auto-rate adaptation. (v) It can be completely
to sources [3], admission control, interference-aware routing [4mplemented at the network layer and requires no additional support
network management tools to predict the impact of configuratidrom the chipset. (vi) CapEst can be used with any application which
changes [1] etc. requires an estimate of wireless link capacity, and on any wireless
However, estimating residual link capacity in a wireless networketwork, whether single-hop or multi-hop.
especially a multi-hop network, is a hard problem because the
available capacity is a function of not only the current arrival rate
at the link under consideration, but also of the arrival rates at links CapEst is an iterative mechanism. During each iteration, each link
which interfere with that link and the underlying topology. Modelsneasures the expected service time per packet on that link, and
which accurately represent this dependence are very complex ases this measurement to estimate the residual capacity on that link.
computationally heavy and, as input, require the complete topolo@ie application, which for this section is centralized rate allocation
information including which pair of links interfere with each otherto get max-min fairness, uses the estimated residual capacity to
the capture and deferral probabilities between each pair of links, takocate flow-rates. The estimate may be inaccurate, however, it will
loss probability at each link, etc [1], [4]-[7]. Simpler models mak@rogressively improve with each iteration, and eventually converge to
simplifying assumptions [2], [8]-[10] which diminish their accuracythe correct value. This section describes each component of CapEst
in real networks. Moreover, model-based capacity estimation tedh-detail and the max-min fair centralized rate allocator.
niques [1], [2] work only for the specific MAC/PHY layer for which We first define our notations. Lét" denote the set of wireless
they were designed and extending them to a new MAC/PHY layrodes. A linki — j is described by the transmitter-receiver pair
requires building a new model from scratch. Finally, none of thesd nodesi,j € V,i # j. Let £ denote the set of active links. Let
methods work with auto-rate adaptation at the MAC layer, which;_.; denote the packet arrival rate at link— j. Let N;_.; denote
makes them inapplicable to any real network. the set of links which interfere withh — j, where a linkk — [ is

Il. CAPEST DESCRIPTION



defined to interfere with link — 5 if and only if either: interferes the capacity estimate in the next iteration and converge to the correct
with nodek or [, or j interferes with nodé: or [. For convenience, capacity value iteratively.

i — j € Ni—j. (N;—; is also referred to as the neighborhood of We refer to the duration of one iteration as fleration duration.

i — 5 [3]) At the start of the iteration, both the variablés_.; and K;_.;

In this description, we make the following assumptions. (i) Thare initialized to0. We start estimating the expected service time
retransmit limit at the MAC layer is very large, so no packet iafresh at each iteration because the residual capacity distribution in
dropped by the MAC layer. (ii) The size of all packets is the same atite previous iteration may change the link rates at linksvin.;,
the data rate at all links is the same. Note that these assumptionsaaré hence change the valuef ;. Thus, retainingS;_.; from the
being made for ease of presentation, and in Sections II-C and II-@rgvious iteration is inaccurate. We next discuss how to set the value
we present modifications to CapEst to incorporate finite retransmit the iteration duration. Note that CapEst has no overhead,; it only

limits and different packet sizes and data rates respectively. requires each link to determing;_.; which does not require any
o ) message exchange between links. This however does not imply that
A. Estimating Capacity there is no constraint on the choice of the iteration duration. Each

We first describe how each link estimates its expected servitek ¢ — j has to measure;_.; afresh. Thus, an iteration duration
time. For each successful packet transmission, CapEst measared@s to be long enough so as to accurately meaSurg. However,
time elapsed between the MAC layer receiving the packet from thié cannot make the iteration duration too long as it directly impacts
network layer, and the MAC layer informing the network layer thahe convergence time of CapEst. Moreover, the application which
the packet has been successfully transmitted. This denotes the semidledistribute capacity will have overhead as it will need message
time of that packet. Thus, CapEst is completely implemented in te¥changes to ensure Equation (3) holds. The choice of the value of
network layer. CapEst maintains the value of two variabfes,; the iteration duration is further discussed in Section IV.
and K,-ﬁjl, which denote the estimated expected service time and.a
counter to indicate the number of packets over which the averaging
is being done respectively, at each link— j. For each successful ~ To illustrate how CapEst will be used with a real application, we
packet transmission, 5%t denotes the service time of the mosnow describe a centralized mechanism to allocate max-min fair rates

Distributing Capacity to Obtain Max-Min Fairness

recently transmitted packet, then the values of these two variabtesflows.
are updated as follows. Each link determines its residual capacity through CapEst and con-
_ last veys this information to a centralized rate allocator. This centralized
S, e Sizg X Kimj + 5,25 (1) allocator is also aware of which pair of links fhinterfere with each
Kij+1 other as well as the routing path of each flow. [Ztdenote the set
Kioj — Kinj + 1. (2)  of end-to-end flows characterized by their source-destination pairs.

Let r; denote the new flow-rate determined by the centralized rate

1/S,—, gives the MAC service rate at link — j. Thus, the .
./ i 9 ; L .. — J allocator, and let#'*9°2*¢ denote the maximum flow rate allowed on
residual capacity on link — ;5 is equal to(l/SHj) — Ai—j. Now, = "% ) J . -
- L . T : link ¢« — j for any flow passing through this link.
since transmissions on neighboring links will also eat up the capacity . 7 h . . s .
Consider a linki — j. Let I(f,i — j) be an indicator variable

at link ¢ — 7, this residual capacity will be distributed amongst all hich i l tol onlv if i r th h a link
the links in N;_.;. Note that the application using CapEst, based ovr\{ Ich 15 equal fol only It flow f € F passes rougn a fink—
€ L, otherwise it is equal t@. Based on the residual capacity

this residual capacity estimate, will either re-allocate rates or cha setimates the centralized allocator undates the value: o P
the routing or admit/remove flows etc, which will change the rate Oa'?ccordin ’to the following set of e uaFt)ions uer of €
the links in the network. However, this rate change will have to obey 9 9 q )

the following constraint at each link to keep the new rates feasible. mas allocate _ 1/8imj — Xiey
Tisi < T4 [0
o . . ! ! ZkHZGN» .Zfe}-l(ﬁk_’l)
Z Skt < (1/Sij) — Xy, Vi — j € L, 3) i
k—lEN;_,; T?ﬁ(;-cate — minkﬁzENHj Theol
. . . HE allocate 4
where §;_,; denotes the rate increase at likk— [ in packets per T M jepTing 4

un?t time: Hoyv exactly is this residual c_ape_lcity divided amongst ”Whereo < a < 1is a parameter which controls the proportion of
nelghborlng links erends on th,e application at hand. I.=or. examqj,gsidual capacity distributed;”?7 denotes the maximum flow-rate
Section 1I-B describes a centralized methodology to distribute t%owed by linki — j on any link in N;_., and the sefP; contains
estimated residual capacity amongst interfering links so as to obtgin, i s lying on the routing path cl)F]zlovy‘ Thus a{nongst the
max-min falrne_ss amo_ngsF all f_Iows. links a flow traverses, its rate is updated according to the link with
Note that all interfering links inV;_.; do not have the same effecty, o minimum residual capacity in its neighborhood. Note that the

on the linki — j. Some of these |nterfer|.ng links can be SChedu""‘r(?esidual capacity estimate may be negative, which will merely result
simultaneously, and some do not always interfere and packets ma}'irg?educing the value of

through due to capture affect (non-binary interference [6]). H@Ke  rpis mechanism will allocate equal rates to flows which pass

the linear constraint of Equation (3) treats the linksNi.; as a through the neighborhood of the same bottleneck link. According

clique with binary interference. Hence, there may be some remaini(bgthe proof presented in [11], for CSMA-CA based MAC protocols,
capacity on linki — j after utilizing Equation (3) to ensure that they ;¢ property ensures max-min faimess

data arrival rates remain feasible. CapEst will automatically improve
C. Finite Retransmit Limits
1We could have used an exponentially weighted moving averagstimate .
S;_.;j too. However, since each packet is served by the same serdicess, A pacll<et. may be dropped at the MAC layer 'T the. number Of.
giving equal weight to each packet in determinifig_.; should yield better r€transmissions exceeds the maximum retransmit limit. Since this

estimates, which we verify through simulations. packet was dropped without being serviced, what is its service time?



Should we ignore this packet and not change the current estimate o
of the expected service time, or, should we merely take the duratior \_/

for which the packet was in the MAC layer and use it as a measure
of its service time? Note that these lost packets may indicate tha
the link is suffering from severe interference, and hence, imply thateg

flows passing through the neighborhood of this link should reduce
their rates. Ignoring lost packets is thus not the correct approach
Moreover, merely using the duration the lost packet spent in the MACU e

layer as the packet’s service time is not sufficient to increase the value @ ®)
of the expected service time by an amount which leads to a negative
residual capacity. Fig. 1. (a) Flow in the Middle Topology. (b) Chain-cross Témyy.

We use the following approach. We define the service time of a
lost packet to be equal to the sum of the duration spent by the paci#ecator under a WLAN topology, where all nodes can hear each
in the MAC layer and the expected additional duration required ggher, all nodes are homogeneous, and each link has the same packet
the MAC layer to service the packet if it was not dropped. Assumirgrival rate. Let\ y;,, denote the arrival rate at each edge such that the
independent lossésthe latter term is equal t&2/2:T= wherelV,, expected service time at each edge is equal/tofin. If A < Agin,

1—ploss . 4 .
is the largest back-off window valu@, is the tra#s?ﬁission time of a then the system is stable and the input arrival rate can be supported.

packet angs°*¢ is the probability that a DATA transmission on link Hence. the service rate/S is larger than the arrival rate and the
i — j is not successful. This value can be directly monitored at t@érlval rate is increased |n the next iteration. On_the oth_er hand,
network layer by keeping a running ratio of the number of packeé> Arin, then the system is unstable and the service rate is smaller

lost to the number of packets sent to the MAC layer for transmiésioﬁhan the arrival rate. This leads to a reduction in the arrival rate in the
next iteration. Thus, there is always a push to mavwewards ¢;,,.

D. Differing Packet Szes and Data Rates However, it is not obvious whether this process would converge to

The methodology to estimate the expected service time (Equatiohss Arin OF keep oscillating.
(1) and (2)) remains the same. What changes is how to distribute thig he following theorem states a sufficient condition for the process
residual capacity amongst neighboring links, which is governed &g converge for a homogeneous WLAN topology. Please refer to [12]
the constraint of Equation (3). The objective of this constraint is f@r the proof.
ensure that the sum of the increase in the proportion of time a linkTheorem 1: For a WLAN topology where all nodes can hear each
k — 1 € N,_; transmits should be less than the proportion of timether, with homogeneous nodes having small buffers, and with each
the channel arountland;j is empty. Thus, if each link has a differentlink having the same packet arrival ratg;;, always exists and is
transmission time, then the increase in rateskos> | € N;_; as Unique, and CapEst, with the max-min fair centralized rate allocator
well as the residual capacity an— ;j has to be scaled so as towith @ < 5, under the following assumptions: @b >> 1, (ii)
represent the increase in airtime being consumed and the idle airtisge>> 1, (iii) bo > 4, (iv) n > 3 and (v)by < ((’:;21)?;, wheren is
aroundi and j respectively. Hence, iT’;_.; represents the averagethe number of nodes is the first average backoff window value,
packet transmission time at link— j, then the capacity estimation T is the packet transmission time amadis the slot duration, with
mechanism will impose the following constraint. the initial rate chosen to be larger thaﬁm, always
T B _ ‘ converges to\ ¢;,.
Z JIHZT - < (1/Si=;) = Ximj,Vi—je L. (5) Note that the choice ofx and the initial rate stated in the
k—lEN;_.; Lne) theorem only vyield sufficient conditions for the WLAN topology.

Equation (5) merely normalizes rates to airtime. Note that Equatib@ter through simulations, we observe that, with general multi-hop
(3) is a special case of Equation (5) if the packet sizes and data ratfggologles, _W'th fading and shadowmg, _heterogene_ous nod_es and
at all links are the same. different arrival rates for each link, even with= 1 and irrespective
Finally, the following equation states how the value®f_.; is of the intial arrival rate, CapEst always converged to the correct
estimated. value. And this convergence exhibits the following property which is
Tioj x Kij + % also observed in the proof of Theoremuith each itgration, at the
i3 ©) congested edge i — 7, |ﬁ — i | keeps on reducing.
Ki—»j + 1 ’ v

Tij —

last last . IV. PERFORMANCE
whereP;%’; andD;27; denote the packet size of the last packet trans-

mitted and the data rate used to transmit the last packet respectivel this _section, we demonstrate.through extensive simulations
for link i — ;. that CapEst not only converges quickly but also converges to the

correct rate allocation. Thus, we verify both the correctness and the
I1l. CONVERGENCE OFCAPEST convergence of CapEst.
In this section, we attempt to analytically understand the conver-We evaluate CapEst with the max-min fair centralized rate allocator
gence properties of CapEst with the max-min fair centralized ratéth o =1 over a number of different topologies, for different MAC
protocols, with finite retransmit values at the MAC layer and with
2A more complex model accounting for correlated losses can bity easauto-rate adaptation. We observe that Capdbsys converges to

incorporated, however, our simulation results presenteseition IV-G show  \ithin 5% of the optimal rate allocation in less thas iterations.
that this simple independent loss model yields accuratetsesul
SActually, the correct approach is to use the probability assl seen at A Methodol ogy
the PHY layer, but measuring this quantity requires supporhfthe chipset . . .
firmware. If the firmware supports measuring this loss protgbili should We use Qualnet version 4.0 as the simulation platform. All our
be used. simulations are conducted using an unmodified IEEE 802.11(b) MAC



allocator. We observe that the mechanism converges to withimof
the optimal max-min rate allocation in less thah iterations.

2) Chain-Cross Topology: Figure 1(b) shows the topology. This
topology was proposed by [3] to understand the performance of rate
control protocols in mesh networks. This topology has a flow in the
middle which goes over multiple hops  7) as well as a smaller
flow in the middle { — 2). Figure 3(b) plots the evolution of the
rate assigned to each flow by the centralized rate allocator. We see
that the mechanism converges to withift of the optimal in less
than5 iterations.

Fig. 2. Deployment at Houston.
C. Randomly Generated Topologies

(DCF). RTS/CTS is not used unless explicitly stated. We use thewe generate two topologies by distributing nodes in a square area
default parameters of IEEE 802.11(b) in Qualnet. Unless explcithhiformly at random. The source-destination pairs are also randomly
stated, auto-rate adaptation is turned off, the link rate is set g@enerated. The first random topology I3@snodes and flows, while
11 Mbps, the packet size is set w24 bytes and the maximum the second has00 nodes and 0 flows. We use the two-ray path loss
retransmit limits are set to a very large value. This setting allows usfgodel with Rayleigh fading and log-normal shadowing as the channel
first evaluate the performance of the basic CapEst mechanism withgiéidel in simulations. The carrier-sense threshold, the noise level and
the modifications for auto-rate adaptation and finite retransmit |Imﬂqe fadmg and Shadowing parameters are set to their default values in
Later, we include both to evaluate the mechanisms to account ®galnet. We use AODV to set up the routes. Figures 3(c) and 3(d) plot
them. We run bulk transfer flows tilll0,000 packets per flow the evolution of the rate assigned to each flow by the centralized rate
have been delivered. Finally, to determine the actual max-min raffocator. For the smaller random topology, the mechanism converges
allocation, we use the methodology proposed by [3]. to within 5% of the optimal within18 iterations.

The implementation of CapEst and the max-min fair centralized For the larger topology, the mechanism converges to a rate smaller
rate allocator closely follows their description in Section Il WQhan the optimaL The reason is as follows. In this ’[op0|ogy’ the link
choose the iteration duration to @90 packets, that is, each link which is getting congested first, or in other words, has the least
resets its estimate of expected service time after transmifily residual capacity remaining at all iterations of the algorithm, is a
packets. Finally, to be able to correctly distribute capacity, the centraigh-loss link (loss rate> 40%). Hence, the iteration duration has
ized rate allocator also needs to be aware of which links interfere wigh be larger thar200 packets to obtain an accurate estimate. If we
each other. We use the binary LIR interference model described in [Btrease the iteration duration%60 packets, as shown in Figure 5(b),
to determine which links interfere. The link interference ratio (LIRjhe mechanism converges to withii% of the optimal within15
is defined asLIR = % whereciy, ca2 andes, cs2 are UDP  jterations. Note that, in general, routing schemes like ETX [14] will
throughputs when the links are backlogged and transmit individuallyoid the use of such high-loss links for routing, and hence, for most

and simultaneouly respectively./R = 1 implies no interference, cases, an iteration duration 60 packet suffices.

with lower LIR’s indicating a higher degree of interference. Similar

to the mechanism in [2], links WittLIR > 0.95 are classified as D- A Real Topology: Deployment at Houston

non-interfering. The next topology is derived from an outdoor residential deploy-

ment in a Houston neighborhood [15]. The node locations (shown in

Figure 2) are derived from the deployment and fed into the simulator.

The physical channel that we use in the simulator is a two-ray path

loss model with log-normal shadowing and Rayleigh fading. The

ETX routing metric (based on data loss in absence of collisions)

is used to set up the routes. Nodesand 2 are connected to the

oz & wired world and serve as gateways for this deployment. All other
] nodes route their packets toward one of these nodes (whichever is

R closer in terms of the ETX metric). The resulting topology as well

R as the routing tree is also shown in Figure 2.

termionvalve ® Figure 4 plots the evolution of the rate assigned to each flow by the

centralized rate allocator. Again, the mechanism converges to within

5% of the optimal in less thai? iterations.

Rate (in Mbps)

7-2,

Fig. 4. Performance of CapEst: Deployment at Houston.
B. Commonly Used Multi-hop Topologies . .
y P lopoiog E. Impact of a Smaller Iteration Duration

In this section, we evaluate CapEst with two different, commonly . . . . . .

, . . X In this section, we evaluate the impact of using a smaller iteration

used topologies. Simulations on these two topologies are conduct - . )

. .. duration on performance. We plot the evolution of the rate assigned to

with zero channel losses, although packet losses due to collisions L . - .
. ) ach flow in Figure 5(a) for the flow in the middle topology with one

do occur. We adjusted the carrier sense threshold to reduce fhe_.. .

. . iteration duration= 75 packets. We observe that the rate converges

interference range to be able to generate these topologies.

1) Flow in the Middle Topology: Figure 1(a) shows the topology. to a value smaller than the optimal. (Note that we had made a similar

. . observation for thel00 node random topology in Section IV-C.)
This topology has been studied and used by several researCherFnt%eneral for all topologies we studied, we observed that using
understand the performance of different rate control and schedulin ' '

protocols in mesh networks [3], [5], [13]. Figure 3(a) plots the 4a |ink which suffers from a large number of physical layer lessvithout
evolution of the rate assigned to each flow by the centralized rateluding losses due to collisions is referred to as higislbnk.
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Fig. 3. Performance of CapEst. (a) Flow in the Middle. (b) @h@ross. (c) Random topolog®$0 nodes,5 flows. (d) Random topologyl00 nodes,10
flows.
14 00 1) With RTSCTS We first evaluate the performance of CapEst
008 o 56333 with IEEE 802.11 DCF with RTS/CTS. Figures 6(a) and 6(b) plot
ot N e e T Oa" the evolution of the assigned flow rates for the flow in the middle
] ; £ o . .
A 2o vy topology and the chaln_-cross topology res_pectlvely. For poth the
£ 4 5 NaxMin Flow1 - 3 £ go'g topologies, the mechanism converges to with#id of the optimal
K =% Max-Min: Flow 4 — 6 . K s . .
M & Macunsiou - 9 &° within 6 iterations.
"l remmit] S0 g
-+- CapEst Flow 7 ~ 9 -©- CapEst: All Flows
o " 20 00355 CR = 20 2) Back-pressure MAC: We next evaluate the performance of
@ ®) CapEst with a back-pressure-based random-access protodel [16

Fig. 5.

Performance of CapEst with a different iteration diora (a) Flow
in the Middle with iteration duration ¥5 packets. (b) Random topology00

nodes,10 flows with iteration duration 500 packets.
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Performance of CapEst with IEEE 802.11 with RTS/CES.Hlow

in the Middle. (b) Chain-cross.

an iteration duration not sufficiently large to allow the estimate@
expected service time to converge leads to the mechanism conver
to a rate smaller than the optimal, however, the mechanism

lteration Value

(b)

always converged and did not suffer from oscillations.

F. Different MAC layers

S

[18]. The fundamental idea behind back-pressure based medium
access is to use queue sizes as weights to determine which link gets
scheduled. Solving a max-weight formulation, even in a centralized
manner, is NP-hard [19]. So, multiple researchers have suggested
using a random access protocol whose channel access probabilities
inversely depend on the queue size [16]-[18]. This ensures that the
probability of scheduling a packet from a larger queue is higher. The
most recent of these schemeDigfQ [16]. DiffQ comprises of both

a MAC protocol as well as a rate control protocol. We refer to them
as DiffQ-MAC and DiffQ-Transport respectively. The priority of &ac
head of line packet in a queue is determined by using a step-wise
linear function of the queue size, and each priority is mapped to a
different AIFS, CWMin and CWMax parameter in IEEE 802.11(e).

Back-pressure medium access is very different from the tradi-
tional IEEE 802.11 DCF in conception. However, CapEst can still
ccurately measure the capacity at each edge. Figure 7(a) plots the
volution of the assigned flow rates for the flow in the middle
EI{ﬂ%logy with DiffQ-MAC. The different priority levels as well as

he AIFS, CWMin and CWMax values being used are the same as
the ones used in [16]. Again, the mechanism converges to the optimal
values within5% of the optimal within12 iterations.

An attractive feature of CapEst is that it does not depend on theThis set-up also demonstrates the advantage of having a rate control
MAC/PHY layer being used. Hence, in future, if one decides to Usiechanism which does not depend on the MAC/PHY layers. Optimal
a different medium access or physical layer, CapEst can be retaingg-control protocols for a scheduling mechanism which solves the
without any changes. In this section, we evaluate the performancen@ix-weight problem at each step are known. However, if we use
CapEst with two different medium access layers. a distributed randomized scheduling mechanism like DiffQ-MAC,
these rate control protocols are no longer optimal. But, using a rate
allocation mechanism based on CapEst, which makes no assumption
on the MAC layer, ensures convergence to a rate point close to the
optimal. For example, Figure 7(b) plots the achievable rate region (or
the feasible rate region) for DiffQ-MAC for the flow in the middle
topology. We plot the rate of the middle flow against the rate of the

Achievable Rate Region
© CapEst
) O _DiffQ-Transport

@e 58 ERBEDDS

Rate (in Mbps)
Rate of flow 4 — 6 (in Mbps)

0 ISP ! 2 outer two flows. Figure 7(b) also plots the throughput achieved by
o4 > Canet Fin1 3 o5 . CapEst afterl 5 iterations of the algorithm as well as the throughput
- & Capbowriom? 6 achieved by DiffQ-Transport (originally proposed by [20] and show
o 5 10 15 20 0

05 1 15 2
Iteration Value Rate of flows 1 ~ 3and 7 — 9 (in Mbps)
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Fig. 7. (a) Performance of CapEst with DiffQ-MAC: Flow in theiddle.
(b) CapEst vs DiffQ-Transport over DiffQ-MAC.

to be optimal with centralized max-weight scheduling). The figure
shows that CapEst allocates throughput withl§ of the optimal
while DiffQ-Transport achieves only5% of the optimal throughput.



. o being very easy to implement and does not require any complex

W computations. CapEst is measurement-based and model-independent,
o3 ﬁ'“ hence, works for any MAC/PHY layer. CapEst can be easily modified
B A ’,” to work with any application which requires an estimate of link
£ g o § capacity. Also, the implementation overhead of CapEst is small and it
04 1 does not lose accuracy when used with auto-rate adaptation and finite

MAC retransmit limits. Finally, CapEst requires no support from the
underlying chipset and can be completely implemented at the network
layer.
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