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Abstract—Complex interference in static multi-hop wireless
mesh networks can adversely affect transport protocol perfor-
mance. Since TCP does not explicitly account for this, starvation
and unfairness can result from the use of TCP over such
networks. In this paper, we explore mechanisms for achieving
fair and efficient congestion control for multi-hop wireless mesh
networks. First, we design an AIMD-based rate-control proto-
col called Wireless Control Protocol (WCP) which recognizes
that wireless congestion is a neighborhood phenomenon, not
a node-local one, and appropriately reacts to such congestion.
Second, we design a distributed rate controller that estimates
the available capacity within each neighborhood, and divides
this capacity to contending flows, a scheme we call Wireless
Control Protocol with Capacity estimation (WCPCap). Using
analysis, simulations, and real deployments, we find that our
designs yield rates that are both fair and efficient. WCP assigns
rates inversely proportional to the number of bottlenecks a flow
passes through while remaining extremely easy to implement.
And, an idealized version of WCPCap is max-min fair, whereas
a practical implementation of the scheme achieves rates within
15% of the max-min optimal rates, while still being distributed
and amenable to real implementation.

Index Terms—Congestion Control, Multi-hop, Mesh, Wireless,
WCP, WCPCap.

I. I NTRODUCTION

Static multi-hop wireless mesh networks, constructed using
off-the-shelf omnidirectional 802.11 radios, promise flexible
edge connectivity to the Internet, enabling low-cost community
networking in densely populated urban settings [2]. They
can also be rapidly deployed to provide a communications
backbone where none exists, such as in a disaster recovery
scenario.

However, their widespread adoption has been limited by
significant technical challenges. Finding high-quality routing
paths was an early challenge addressed by the research
community [14]. However, that alone is not sufficient to
ensure good performance in mesh networks, where transport
protocols like TCP can perform poorly because of complex
interference among neighboring nodes.(We formally define a
wireless neighborhood in SectionIII-A ) In particular, TCP
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does not explicitly account for the fact that congestion in
a mesh network is a neighborhood phenomenon. Consider
the topology of Figure1, in which links connect nodes
which can exchange packets with each other, perhaps with
asymmetric reception rates. In this topology, it is easy to show
in simulation and actual experiments that the TCP connection
in the middle is almost completely starved (gets extremely low
throughput), since it reacts more aggressively to congestion
than the two outer flows. As an aside, we note that research
on TCP for last-hop wireless networks [7], [8] does not address
this problem.1 2 34 5 67 8 9
Fig. 1. Stack topol-
ogy
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Fig. 2. The achievable rate region

To understand the properties of a desirable solution to this
problem, consider Figure2. The y-axis plots the rate achieved
by the middle flow, and the x-axis for the outer two flows (by
symmetry, these flows will achieve approximately the same
rate for any scheme) of Figure1. Now, with a perfect MAC
scheduler that has the same overhead as 802.11, it is intuitively
clear that the rates achievable lie on or below the straight line
shown in the figure (since an optimal scheduler would either
schedule the two outer flows simultaneously or the flow in the
middle). With 802.11, there is some loss of throughput due
to contention, and the correspondingachievable-rate region
bounds the rates achievable by the flows on this topology
(in SectionIV-A , we describe a methodology to compute the
achievable-rate region). TCP achieves rates that lie at one
corner of this plot. We contend that, for this topology, a
desirable solution is one that gets us close to the max-min fair
rate allocation point, which corresponds to the intersection of
the 45◦ line and the 802.11 achievable-rate curve.

In this paper, we explore mechanisms for achieving such
a solution in wireless mesh networks. Three considerations
inform our choice of mechanisms. First, we do not make
any changes to the widely-used 802.11 MAC. It may well
be that such changes can improve the performance of our



mechanisms, but we have deliberately limited the scope of
our work to enable a clearer understanding of congestion
control. Second, our approach isclean-slate. We conduct
our explorations in the context of arate-based protocol that
incorporates some of TCP’s essential features (such as ECN,
and SACK), yet allows us to explore more natural implementa-
tions of the mechanisms for improving fairness and efficiency
that we study in this paper. However, our work makes no
value judgement on whether a clean-slate transport protocol
is necessary for mesh networks; it may be possible to retrofit
our mechanisms into TCP. Finally, we restrict our explorations
to plausibly implementable mechanisms, in contrast to other
work that has explored theoretical methods for optimizing
(separately or jointly) scheduling and rate assignment in
wireless networks [17], [34].
Contributions. We make two contributions in this paper.
First, we design an AIMD-based rate-control protocol called
WCP which explicitly reacts to congestion within a wireless
neighborhood (SectionIII-A ). We start by correctly identifying
the precise set of nodes within the vicinity of a congested
node that needs to reduce its rates under the assumption that
interference range equals transmission range.Signaling these
nodes is implemented using a lightweightcongestion sharing
mechanism. Interestingly, we find that congestion sharing
alone is not enough, and that, to achieve fairness, sources also
need to clock their rate adaptations at the time-scale of the
highest RTTs of flows going through the congested region.
This is implemented using a local mechanism forRTT sharing.
Figure2 shows that, for the topology of Figure1, WCP avoids
starving the middle flow (we discuss methodology and more
detailed experimental results in SectionsIV andV).

Our second contribution is the design of a distributed rate
controller that estimates the available capacity within each
neighborhood, and apportions this capacity to contending
flows. This scheme, which we call WCPCap (SectionIII-B ),
has the property that it uses local information and canplausibly
be implemented in a distributed fashion. Techniques that
perform congestion control by estimating capacity in wired
networks have been proposed before,e.g., [29], but wireless
capacity estimation is significantly harder. WCPCap is the first
attempt in that direction that does not rely on heuristics, but
instead uses a precise analytical methodology to accurately
estimate the available capacity.

Using analysis, simulations, and real deployments, we find
that our designs yield rates that are both fair and efficient.
Analogous to TCP, WCP assigns rates inversely proportional
to the number of bottlenecks, which, in our case, is the number
of congested neighorhoods (defined in SectionIII-B ) a flow
passes through, while an idealized version of WCPCap is
max-min fair, and a practical implementation of the scheme
allocates to each flow a rate within 15% of the rate allocated
to it by the max-min fair rate allocation. WCP achieves con-
sistently good performance in the topologies we study while
being extremely easy to implement. In fact, our experiments
using five flows in a 14-node testbed show that, while TCP
starves one or two of these flows in each run, WCP assigns fair
rates to all the flows. Finally, in addition to good throughput
performance, WCPCap exhibits low end-to-end delay and fast

convergence.

II. RELATED WORK

Extensive research has been done to understand the short-
coming and to improve the performance of TCP in wireless
networks [10], [21], [23], [30], [35], [47], [51], [54]. We
briefly discuss broad classes of research pertinent to our work
while referring the interested reader to [36] for a more com-
prehensive survey of congestion control in wireless networks.

Early work on improving TCP performance in wireless
networks focused on distinguishing between packet loss due
to wireless corruption from loss due to congestion, in the
context of last-hop wireless [7], [8] or wireless wide-area
networks [45]. More recent work, however, has addressed
congestion control for mobile ad-hoc wireless networks. One
class of work concentrates on improving TCP’sthroughput
by freezing TCP’s congestion control algorithm during link-
failure induced losses, especially during route changes [10],
[23], [30], [35], [54]. However, unlike WCP, these proposals
do not explicitly recognize and account for congestion within
a neighborhood. As a result, they would exhibit the same
shortcomings of TCP as discussed in SectionI.

Another class of work related to WCP address TCP perfor-
mance issues for ad-hoc networks with no link-failure induced
losses using congestion metrics that includes average number
of backoffs on a link [13], average number of retransmis-
sions at the MAC layer [21] and the sum of the queuing
and transmission delay at each intermediate node [47]. Even
though these schemes do not recognize the need of congestion
detection and signaling over a neighborhood, their congestion
metric implicitly takes some degree of neighborhood conges-
tion into account. However, congestion in wireless networks
exhibits strong location dependency [51],i.e., different nodes
in a congested neighborhoodlocally perceive different degrees
of congestion. In the above schemes, flows traversing different
nodes in a single congested neighborhood would receive
varying levels of congestion notification. In contrast, WCP
explicitly shares congestion within a neighborhood, ensuring
that each flow in a single congested neighborhood gets its fair
share of the bottleneck bandwidth.

Three other pieces of work, however, have recognized the
importance of explicitly detecting and signaling congestion
over a neighborhood. NRED [51] identifies a set of flows
which share channel capacity with flows passing through a
congested node. But, it identifies only a subset of the contend-
ing flows: it misses flows that traverse two hop neighbors of
a node without traversing its one hop neighbors (for example,
the flow traversing 7→ 9 in Fig. 3, SectionIII ). Moreover,
the mechanism to regulate the traffic rates on these flows is
quite a bit more complex than ours (it involves estimating a
neighborhood queue size, and using RED [20]-style marking
on packets in this queue). Finally, unlike WCP, NRED requires
RTS/CTS, is intimately tied to a particular queue management
technique (RED), might require special hardware for channel
monitoring, and has not been tested in a real implementation.
EWCCP [48] correctly identifies the set of flows that share
channel capacity with flows passing through a congested node.



EWCCP is designed to be proportionally-fair, and its design as
well as its proof of correctness assumes that the achievablerate
region of 802.11 is convex. As Figure2 shows, however, this is
not necessarily true. Moreover, EWCCP [48] has also not been
tested in a real implementation. Finally, COMUT [28] and our
own work IFRC [42] propose rate control schemes designed
for many-to-one communication. These designs take advantage
of the tree-structured topology and many-to-one traffic pattern
and cannot be trivially extended for general, many-to-many
traffic settings.

As a final note, our AIMD-based scheme WCP borrows
heavily from TCP’s essential features such as ECN, SACK,
and round-trip time estimation [18], [25], and uses some well
established approaches from the active queue management
literature [20], [32] to detect congestion at a node.

An alternative to AIMD-based schemes are schemes in
which intermediate routers send explicit and precise feedback
to the sources. XCP [29] and RCP [16] are examples of
such schemes for wired networks. Such schemes cannot be
directly extended to multi-hop wireless networks, since the
available capacity at a wireless link depends on the link
rates at the neighboring edges, and ignoring this dependence
will overestimate the available capacity and lead to perfor-
mance degradation [38] and eventually to instability. Prior
schemes for wireless networks that involve sending precise
rate feedback to the sources use heuristics based on indirect
quantities like queue sizes and the number of link layer
retransmissions [4], [46] to limit capacity overestimation. If,
instead, one can directly estimate the exact capacity of a link
as a function of the link rates at the neighboring edges usinga
distributed algorithm, then an accurate XCP-like scheme can
be implemented for wireless multi-hop networks.

In 802.11-scheduled multi-hop networks, the complex in-
terference among nodes makes it very hard to estimate the
capacity of a link. Results have been known either for multi-
hop networks that use perfect MAC schedulers [26], or for
single-hop 802.11-scheduled networks under saturation traffic
conditions [9]. We have recently developed an analytical
methodology which characterizes the achievable rate region
of 802.11-scheduled multi-hop networks [27]. Our second
scheme, WCPCap, uses this prior work of ours to find the
supportable per-flow rate in a neighborhood. Further, it uses
a novel, decentralized mechanism that relies on message
exchanges within local neighborhoods only, to calculate the
end-to-end flow rates.

Related to WCPCap are interesting line of works that either
explore theoretical methods for jointly optimizing scheduling
and rate assignment in wireless networks [17], [34] or reply
on a non-standardize MAC [52], [53]. Unlike this body
of work, we restrict the scheduler to be 802.11. Explicit
rate assignments for 802.11-scheduled MAC always use a
centralized computation [33], [44], while our work explores
distributed rate-control mechanisms. While optimized rate
assignment through a distributed realization of back-pressure
techniques [49] have been proposed, it still requires everynode
in the network to maintain separate queues for each possible
network destination. More recent practical studies of the
problem have not been able to relax this requirement [5], [50].

Horizon [41], another distributed realization of backpressure
techniques, addresses the challenge of load balancing in multi-
hop networks withmulti-path routing, and unlike WCP and
WCPCap, does not study congestion control.

Finally, there has been a growing interest in industry [6] and
academia [31] in using multiple radios per node, in an effort
to mitigate or nullify the complex interference found in multi-
hop wireless networks. This line of work is orthogonal to our
efforts. We believe that in dense deployments our work will
be relevant even if multiple radios are used, since the large
number of channels required to completely avoid interference,
as well as the complexity associated with their scheduling,
would be prohibitively expensive.

III. D ESIGN

In this section, we first discuss the design and implementa-
tion of WCP, an AIMD-based rate-control protocol that incor-
porates many of the features of TCP, but differs significantly in
its congestion control algorithms. We then describe WCPCap
which incorporates wireless capacity estimation in order to
assign fair and efficient rates to flows.

A. WCP

WCP is a rate-based congestion control protocol for static
multi-hop wireless mesh networks which use the 802.11 MAC.
In this section, we assume that the link rates of all the linksare
equal and auto-rate adaptation is turned off. In SectionIV-C,
we discuss the impact of relaxing this assumption on our
design. In WCP, for every flow, the source maintains a rate
r which represents the long term sending rate for the flow.
WCP is AIMD-based, so that the source additively increases
r on every ACK reception and multiplicatively decreasesr
upon receiving a congestion notification from routers (in-
termediate forwarding nodes). Routers signal congestion by
setting a congestion bit in the packet header of ongoing
packets. Unlike existing congestion control techniques, WCP
has novel algorithms for detecting and signaling congestion
at the intermediate routers, as well as for adapting rates at
sources in response to congestion signals.
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Fig. 3. Congestion neighborhood

Congestion in Multi-hop Wireless Networks. The central
observation underlying the design of WCP is that the nature
of congestion in a wireless network is qualitatively different
from that in a wired network. In a wireless network, since
neighboring nodes share the wireless channel, the available
transmission capacity at a node can depend on traffic between
its neighbors.



More precisely, congestion in wireless networks is defined
not with respect to a node, but with respect to transmissions
from a node to its neighbor. In what follows, we use the term
link to denote a one-hop sender-receiver pair. (We use the
terms sender and receiver to denote one-hop transmissions,
and source and destination to denote the endpoints of a flow).
Thus, in Figure3, we say that a transmission from 5 to 6 is
along the link 5→ 6. Consider the following example. When
5 is transmitting to node 6 it shares the wireless channel
with any transmission from node 7, say a transmission from
node 7 to node 9, as that transmission can collide with a
transmission from node 5 to node 6. However, when node
5 is transmitting to node 2 itdoes not share capacity with,
for example, a transmission from node 7 to node 9. Thus,
congestion in wireless networks is defined not with respect to
a nodei, but with respect to a linki→ j.

What, then, are the set of links (Li→ j) that share capacity
with a given link (i→ j)? Consider link 5→ 6 in Figure 3.
Clearly, all outgoing links from node 5 and node 6 share
capacity with link 5→ 6. Moreover, every outgoing link from
a one-hop neighbor of node 5 shares capacity with link 5→ 6
because any transmission from a neighbor of 5, say node 2, can
be sensed by node 5 and would prevent node 5 from capturing
the channel while node 2 is transmitting. Additionally, any
incoming link to any neighbor of node 5, say 1→ 2, also shares
capacity with link 5→ 6 as the link-layer acknowledgement
from node 2 to node 1 would also prevent node 5 from
capturing the channel for transmission. Similarly, any outgoing
link from a neighbor of node 6 shares capacity with link
5→ 6 as any transmission along the outgoing link of neighbor
of 6 can collide with transmission along 5→ 6. Finally, any
incoming link into a neighbor of node 6, say 8→ 7, also shares
capacity with 5→ 6 as the link-layer acknowledgement from
node 7 to node 8 can collide with transmissions along 5→ 6.

Thus, Li→ j, for a mesh network using an 802.11 MAC is
defined as:

the set of all incoming and outgoing links ofi, j, all
neighbors ofi, and all neighbors ofj.

Note thatLi→ j includesi→ j. Moreover, this relationship is
symmetric. If a linki→ j belongs toLk→l , k→ l also belongs
to Li→ j. Furthermore, this definition is valid even when RTS-
CTS is used. However, there is an important limitation in our
definition. If a node is outside another node’s transmission
range, but within its interference range, WCP cannot account
for the reduction in channel capacity as a result of the latter’s
transmissions.

Congestion Detection and Sharing.In WCP, one key idea
is congestion sharing: if link i→ j is congested, it shares this
information with all links in Li→ j. Packets traversing those
links (as well as linki→ j itself) are marked with an explicit
congestion notification, so that sources can appropriatelyadapt
the rates of the corresponding flows. We now describe how
routers detect congestion, and how they share their congestion
state.

Congestion detection in WCP is deliberately simple. A
router detects congestion on its outgoing link using a simple
thresholding scheme. It maintains an exponentially weighted

moving average (EWMA) of the queue size,qavg
i→ j, for every

outgoing link i→ j as

qavg
i→ j = (1−wq)∗qavg

i→ j +wq ∗qinst
i→ j

whereqinst
i→ j is the instantaneous queue size for linki→ j and

wq is the EWMA weight. A link is congested when its average
queue size is greater than a congestion thresholdK. Various
other congestion detection techniques have been explored in
wireless networks: channel utilization [51], average number of
retransmissions [22], mean time to recover loss [40], among
others. We choose queue size as a measure of congestion for
two reasons: it has been shown to work sufficiently well in
wireless networks [24], [42]; and is a more natural choice
for detecting congestion per link compared to, say, channel
utilization which measures the level of traffic around a node.
Also, more sophisticated queue management schemes are
possible (e.g., RED or AVQ), but they are beyond the scope
of this paper.

When a routeri detects thati→ j is congested, it needs
to share this information with nodes at the transmitting ends
of links in Li→ j (henceforth referred to as nodes inLi→ j).
This is achieved by piggybacking congestion information on
each outgoing packets which neighbors snoop. Specifically,
each node maintains the congestion state of all its outgoing
and incoming links. Nodes can locally determine (from queue
size) the congestion state of their outgoing links. For nodes
to obtain congestion state on their incoming links, every node
during an outgoing packet transmission along a link includes
congestion state ofthat link in the outgoing packet. In addition,
every node also includes the following information in each
outgoing packet: a bit indicating if any outgoing or incoming
link from the node is congested and the identity of the link
(sender and receiver of the link); and a bit indicating if any
outgoing or incoming link from any of the node’s neighbors
is congested and the identity of the link. This latter bit is
calculated from information obtained by snooping the former
bit from neighbors and requires no additional information
exchange. In the event of more than one link being congested
at a node, it is sufficient for the node to select (and inform
its neighbors) of only one of these links. Information shared
in this manner is sufficient for any node inLi→ j to receive
congestion notification when linki→ j is congested

Finally, when a node inLi→ j detects that linki → j is
congested, it marks all outgoing packets on that link with an
explicit congestion indicator (a single bit).

Rate Adaptation. In WCP sources perform rate adaptation.
While the principles behind our AIMD rate adaptation algo-
rithms are relatively standard, our contribution is to correctly
determine the timescales at which these operations are per-
formed. The novel aspect of our contribution is that these
timescales are determined by the RTTs of flows traversing a
congested neighborhood; without our innovations (described
below), flows do not get a fair share of the channel, and
sometimes react too aggressively to congestion.

A source S in WCP maintains a rater f for every flow
f originating atS. It linearly increases the rater f every tai



seconds, wheretai is the control interval for additive increase:

r f = r f +α

whereα is a constant. The choice oftai is an important design
parameter in WCP. In the above equation the rate of change
of r f , dr f /dt is α/tai. Intuitively, for stable operation,dr f /dt
should be dependent on feedback delay of the network. Using
the weighted average round-trip time of flowf , rttavg

f , of the
flow seems an obvious choice fortai as it satisfies the above
requirement. But consider three flows 1→ 3, 4→ 6, and 7→ 9
in Figure1. Packets of flow 1→ 3 share the wireless channel
with nodes 1 through 6 while packets from flow 4→ 6 share
wireless channel with all the nodes in the figure. As the rate of
all the flows in the network increases, flow 4→ 6 experiences
more contention as compared to flow 1→ 3 and the average
RTT of flow 4→ 6 increases much faster than the average
RTT of flow 1→ 3. Thus, even if these flows were to begin
with the same rate, their rates would diverge with the choiceof
tai = rttavg

f . This happens because a fair allocation of capacity
using a AIMD scheme requires similardr f /dt for all the flows
sharing the capacity [12].

To enable fairness, WCP introduces the notion of ashared
RTT. Denote by rttavg

i→ j the average RTT of all the flows
traversing the linki→ j (the average RTT of each flow is
computed by the source, and included in the packet header)
i.e.,

rttavg
i→ j = ∑

∀ f∈Fi→ j

rttavg
f

|Fi→ j|

whereFi→ j is the set of flows traversing linki→ j. For each
link i→ j, nodei computes the shared RTT,rttSmax avg

i→ j , as the
maximum RTT among all links inLi→ j i.e.,

rttSmax avg
i→ j = max

∀k→l∈Li→ j

(rttavg
k→l)

In words, this quantity measures the largest average flow RTT
across the set of links thati → j shares the channel with.
Why this particular choice of timescale? Previous work has
shown that the average RTT of flows is a reasonable control
interval for making congestion control decisions [29]. Our
definition conservatively chooses the largest control interval
in the neighborhood.

For all flows traversing linki → j, the router includes
rttSmax avg

i→ j in every packet header only if it exceeds the current
value of that field in the header. The source uses this value for
tai: thus,tai is the largest shared RTT across all the links that
the flow traverses. This ensures that the value of the control
interval tai for a flow is no less than the highest RTT of any
flow with which it shares a wireless neighborhood. Intuitively,
with this choice of the control interval, all flows in the Stack
topology will increase their rates at the same timescale.

Upon receiving a packet with a congestion notification bit
set, a source reduces the rater f by half and waits for the
control interval for multiplicative decreasetmd before reacting
again to any congestion notification from the routers.tmd must
be long enough so that the source has had time to observe
the effect of its rate reduction. Moreover, for fairness, flows

that traverse the congested region1 must all react at roughly
the same timescale. To ensure this, WCP also computes a
quantity for each link that we term theshared instantaneous
RTT, denoted byrttSmax inst

i→ j . This is computed in exactly the
same way as the shared RTT, described above, except that
the instantaneous RTT is used, rather than the average RTT.
The former is a more accurate indicator of the current level
of congestion in the network and is a more conservative
choice of the timescale required to observe the effect of a
rate change. As before, routers insert this shared instantaneous
RTT into the packet header only if it exceeds the current
value. Sources settmd to be the value of this field in the
packet header that triggered the multiplicative decrease.If a
flow traverses multiple congested regions, its multiplicative
decreases are clocked by the neighborhood with the largest
shared instantaneous RTT.

Similar to congestion sharing, computation ofrttSmax avg
i→ j

(rttSmax inst
i→ j ) requires sharing “link RTTs”,rttavg

i→ j (rtt inst
i→ j),

among all nodes inLi→ j requiring significant overhead. How-
ever, its definition permits a natural optimization. Similar to
congestion sharing discussed above, every node includes in
each outgoing packet only the maximum ofrttavg

i→ j (rtt inst
i→ j) over

all incoming and outgoing links of the node and the maximum
of rttavg

i→ j (rtt inst
i→ j) over all incoming and outgoing links of all

the neighbors of the node. This allows for a low-overhead
distributed calculation of shared RTT over all the nodes in
Li→ j.

Finally, we describe how the source uses the valuer f .
WCP aims to assign fairgoodputs. Naively sending packets at
the rater f assigns fair throughputs, but packet losses due to
channel error or interference can result in unequal goodputs.
Instead, WCP sends packets at a rater f /p, when p is the
empirically observed packet loss rate over the connection.
Intuitively, this goodput correction heuristic sends more pack-
ets for flows traversing lossy paths, equalizing flow good-
puts. Other rate-based protocols [39] use more sophisticated
loss rate computation techniques to perform similar goodput
correction. As we show in SectionIV, our approach works
extremely well for WCP. In that section, we also quantify the
impact of turning off this “correction”.

Implementation. We could have retrofitted congestion and
RTT sharing in TCP. But, the complexity of current TCP
implementations, and the fact that TCP performs error re-
covery, congestion control and flow control using a single
window-based mechanism, made this retrofit conceptually
more complex. Given that our goal was to understand the
issues underlying congestion in mesh networks, incremental
deployability was not paramount. So, at the cost of some
additional packet header overhead, we decided to explore a
clean-slate approach. Our implementation uses a rate-based
protocol for congestion control (as described above), but
uses an implementation of TCP SACK for error recovery, a
window-based flow control mechanism exactly like TCP, and
the same RTO estimation as in TCP. In a later section, we
show that our implementation does not bias the results in any

1We use the terms congested region and congested neighborhoodinter-
changeably in this paper.



way: if we remove our sharing innovations from WCP, its
performance is comparable to TCP.

B. WCPCap

An alternative to WCP is a protocol in which the network
sends explicit and precise feedback to the sources. In orderto
do this, it is important to be able to estimate the available
capacity within a neighborhood, a non-trivial task. In this
section, we describe WCPCap, a protocol that provides explicit
feedback (in much the same way that XCP [29] and RCP [16]
do for wired networks). An important goal in designing
WCPCap is to explore the feasibility of capacity estimation
using only local information, thereby making it amenable to
distributed implementation.

Determining the Achievable Link-Rate Region.At the core
of WCPCap is a technique to determine whether a given set of
rates isachievable in an 802.11 network; using this technique,
WCPCap estimates the available capacity and distributes this
fairly among relevant flows. This technique is presented in
detail in our prior work [27]. For completeness, we describe
the main idea of the analytical methodology here, assuming
IEEE 802.11 scheduling with RTS/CTS in the network.

The precise goal of the technique is as follows. Given a
link i→ j, and a set of candidate aggregate ratesrl→m over
links l→ m belonging toLi→ j (link i→ j belongs to this set),
we seek a decision procedure that will enable us to determine
if these rates are achievable. The decision process assumes
that the channel loss rates (losses not due to collisions) of
links in Li→ j, and the interference graph between links in
Li→ j are known. Channel losses are assumed to be independent
Bernoulli random variables. The interference model neglects
some physical layer phenomena like the capture effect [11]
(where a receiver can correctly decode data despite of in-
terference), situations where transmitters send data despite of
interference and carrier sensing, and situations where remote
links in isolation do not interfere with the link under study, but
their aggregate effect may cause loses on the link [15]. The
interested reader is referred to [27] for a detailed description
of all the assumptions, an extensive evaluation of their effect
on the accuracy of the model, and a discussion on how to
remove them.

The decision process first determines, for each link, the
expected service time in terms of (a) the collision probability
at the receiver and (b) the idle time perceived by the transmitter
of that link. Given these service times, the given set of link-
rates is achievable only if

∑
e∈Ov

λeE[Se]≤U,∀v ∈V

where V is the set of all nodes,Ov is the set of outgoing
links from a nodev ∈ V , λe is the packet arrival rate at link
e, E[Se] is the expected service time of a packet at linke,
and theutilization factor U is a fraction between 0 and 1 and
reflects the desired utilization of the channel. In practice, U is
usually set to less than 1 to keep the system stable. Otherwise,
small non-idealities can drive the network beyond the capacity
region.

The key challenge then, is to determine the collision and
the idle time probabilities, made difficult because these values
for a link depend on the rates at its neighboring links, which,
in turn, depend on the rates at their neighboring links and so
on. We use the following procedure: the sub-graph formed
by the set of links inLi→ j is decomposed into a number
of two-link topologies and the collision and idle probabilities
for each two-link topology is derived. The net probability is
found by appropriatelycombining the individual probabilities
from each two-link topology. Combining these probabilities
is quite complicated due to the interdependence among links.
For brevity, we will omit the analytical formulas and their
complete derivations. The interested reader is referred to[27]
for details.

Estimating Available Bandwidth. WCPCap uses the achiev-
able rate computation technique to estimate achievable band-
width and give precise rate feedback to sources. Conceptually,
each router maintains, for each outgoing linki→ j, a rateRi→ j

which denotes the maximum rate allowable for a flow passing
through the link. However, a flow traversingi→ j is actually
only allowed to transmit at the minimum (denotedRmin

i→ j) of
all ratesRk→l such thatk→ l belongs toLi→ j (intuitively, at
the most constraining rate over all links that share channel
capacity with i → j). The rate feedback is carried in the
packet header. When a packet traversesi→ j, the router sets
the feedback field toRmin

i→ j if Rmin
i→ j is lower than the current

value of the field. This feedback rate is eventually delivered
to the source in an end-to-end acknowledgement packet, and
the source uses this value to set its rate. Thus the source
sets its rate to the smallest allowable rate in the wireless
neighborhoods that it traverses.

Ri→ j for each link is updated everyk · rttSmax avg
i→ j , where

rttSmax avg
i→ j is the shared RTT defined in SectionIII-A andk is

a parameter which trades-off the response time to dynamics for
lower overhead. The duration between two successive updates
of Ri→ j is referred to as an epoch. During each epoch,
transmitteri measuresxi→ j, the actual data rate over linki→ j
andni→ j, the number of flows traversing linki→ j. Usingxk→l

andnk→l for all k→ l in Li→ j transmitteri computes the new
value of Ri→ j (denoted byRnew

i→ j) to be used in the next time
epoch, and broadcastsxi→ j, ni→ j, and Rnew

i→ j to all nodes in
Li→ j. (If the measuredxi→ j in the previous epoch equals zero
at a link i→ j, it does not broadcast its current value ofRnew

i→ j.
Thus links which become inactive due to network dynamics
will not contribute in determining the largest achievable flow-
rate in a neighborhood.)

We now describe howRnew
i→ j is determined (Figure4).

Note that the transmitteri has xk→l and nk→l for all links
k→ l in Li→ j. It uses this information, and the methodology
described above, to determine the maximum value ofδ
such that the rate vector~x shown in Figure4 is achievable.
(δ can have a negative value if the current rates in the
neighborhood are not achievable.) Then, nodei setsRnew

i→ j to

Ri→ j + ρδ − βqinst
i→ j/rttSmax avg

i→ j if δ is positive, elseRnew
i→ j is

set toRi→ j + δ −βqinst
i→ j/rttSmax avg

i→ j . We use a scaling factor
ρ while increasing the rate to avoid big jumps, analogous to
similar scaling factors in XCP and RCP. On the other hand,



we remain conservative while decreasing the rate.qinst
i→ j denotes

the instantaneous queue at linki→ j, rttSmax avg
i→ j is the shared

RTT defined in SectionIII-A , and β is a scaling parameter.
To ensure that the rate goes down when the queue builds up,
we subtract a fraction of the bandwidth required to drain the
queue within one shared RTT (qinst

i→ j/rttSmax avg
i→ j ). Each node

independently computesRk→l for its links. These computations
do not need to be synchronized, and nodes use the most recent
information from their neighbors for the computation.

Next, we describe how the value of the parameterU (the
maximum allowed utilization per queue) is determined. The
analysis described at the start of this section to derive the
achievable rate region does not incorporate losses at higher
layers (that is, it incorporates only channel losses and colli-
sions), and hence, assumes infinite buffer sizes and infinite
MAC retransmit limits. Assuming no losses, operating very
close to the capacity region will result in large delays and
huge queues. However, in practice both the buffer sizes and
MAC retransmit limits are finite. Hence, these huge queues
can result in significant losses. Additionally, note that the
procedure presented in [27] assumes global knowledge, while
the information exchange in WCPCap is only between neigh-
bors. Hence, the computation itself is approximate which can
potentially lead to an overestimation of available capacity. For
these two reasons, we operate the network well within the
capacity region; the parameterU controls how far the network
is from the boundary of the capacity region. How close to
the boundary of the capacity region can we operate without
overflowing buffers and without overestimating available ca-
pacity depends on the topology at hand. Hence, the value of
U depends on the topology. Choosing a conservative value for
U is inefficient as it leads to a low channel utilization in most
topologies. So we use the following algorithm to set the value
of U . If qavg

i→ j (the average queue size) is greater than 1, the
value ofU is reduced; and ifqavg

i→ j remains less than 1 for 5
iterations of the algorithm described in Figure4, the value of
U is increased. Binary search is used to converge to the correct
value ofU . For example, in the Stack topology (Figure1), this
approach yields a value ofU = 0.85.

The computational overhead of the WCPCap algorithm is
very low. To determineRnew

i→ j, we perform a binary search
to find the maximum value ofδ such that the rate vector
~x is achievable. Each iteration decomposesLi→ j into two-
link topologies, computes collision and idle probabilities for
each two-link topology, and combines the results. Overall,the
algorithm requires a logarithmic number of iterations whose
complexity is polynomial in|Li→ j|. In practical topologies the
cardinality of Li→ j is small. For example, in our experiments
(run on 3.06GHz Linux boxes) determiningRnew

i→ j takes as
much time as it takes to send a data packet. Since each epoch
consists of about 30 data packet transmissions and a single
Rnew

i→ j computation, the computational overhead per epoch is
very low.

Finally, we note that, if naively designed, WCPCap can
impose significant communication overhead. For each link
i→ j, the following information needs to be transmitted to
all nodes in Li→ j once every epoch: the maximum RTT

Every k · rttSmax_avg
i→ j sec

Find max δ such that
~x←

(

xk→l +nk→lδ for k→ l ∈ Li→ j
)

is achievable

Rnew
i→ j ←

{

Ri→ j +ρδ −βqinst
i→ j/rttSmax_avg

i→ j δ > 0

Ri→ j +δ −βqinst
i→ j/rttSmax_avg

i→ j δ ≤ 0
Broadcast Rnew

i→ j, xi→ j and ni→ j

to all links in Li→ j

Fig. 4. Pseudo-code for rate controller at linki→ j

across the flows passing through the link, the actual data rate
at the link, the number of flows passing through the link
and Ri→ j. Assuming one byte to represent each variable, the
overhead is equal to 4Li→ j bytes. For practical topologies,
where neighborhood sizes are expected to be less than 20, this
overhead consumes less than 15% of the actual throughput.
However, the overhead does increase linearly withLi→ j. There
are ways to optimize this, by quantizing the information or
reducing the frequency of updates, but we have left these
to future work. Instead, in our simulations, we assume that
all the relevant information is available at each node without
cost, since our goal has been to understand whether available
bandwidth estimation using only local information is plausibly
implementable in wireless networks.

Properties.To understand the design rationale of the WCPCap
algorithm, we characterize the fairness properties of an ideal-
ized WCPCap algorithm. The idealized WCPCap algorithm
assumes that all control message broadcasts are exchanged
instantaneously and without loss, and each node has complete
information about the entire network instead of just its neigh-
borhood. Specifically, each node is aware of the data rate at
each link in the network and the global network topology.
The last assumption is needed because residual capacity at
a link depends on the global topology and not merely the
local neighborhood topology [27]. Hence WCPCap obtains
an approximate value of the residual capacity while idealized
WCPCap will obtain an exact value of the residual capacity.
We prove fairness properties for idealized WCPCap here,
and evaluate how the non-idealities impact the performance
of WCPCap (without the additional assumptions of idealized
WCPCap) through simulations in SectionIV.

We will prove that the rates assigned by idealized WCP-
Cap converge to the max-min rate allocation. The proof is
constructed using two lemmas. The first lemma looks at the
properties of the max-min allocation in wireless multi-hop
networks while the second lemma studies the rates assigned
by idealized WCPCap. Before presenting the lemmas, we
define three concepts which will be extensively used in the
proofs. At the max-min allocation, let the links whose queues
are fully utilized (arrival rate = service rate) be referredto
as congested links, and the neighborhood of congested links
be referred to as congested neighborhoods. Note that each
flow may pass through several congested neighborhoods. We
define the most congested neighborhood a flow passes through
to be the neighborhood which gets congested at the lowest
throughput amongst the congested neighborhoods that flow
traverses. Thus, there is a unique most congested neighborhood
associated with each flow. The throughput achieved by a flow
is dictated by the most congested neighborhood it passes



through.
Lemma 1: A rate allocation which assigns the largest

achievable equal rate to the flows which share the most
congested neighborhood is the max-min rate allocation.

Proof: Let there ben flows passing through the congested
neighborhoodCR. Additionally, let k of thesen flows have
CR as the most congested neighborhood they pass through.
Consider the following rate allocation. Fix the rate of the other
n− k flows as dictated by the most congested neighborhood
they pass through, and then assign the maximum possible
equal rate to thek flows. Label this ratereq. Then, by definition
of the most congested neighborhood a flow passes through, the
othern− k flows have a rate smaller thanreq.

Let i→ j denote the congested link in the congested neigh-
borhoodCR. (That is, link i→ j is fully utilized.) Increasing
the rate of any of thek flows will either increase the busy
probability or the collision probability at linki→ j, making
its queue unstable [27]. To keep the rate allocation feasible,
the rates of one of the other flows (which have either smaller
or equal rates) will have to be reduced. Hence, by definition,
allocating the maximum possible equal rate to thek flows
sharing the same most congested neighborhood is the max-
min rate allocation.

Let f1 and f2 be two flows which share the most congested
neighborhood they traverse. The next lemma relates the rates
allocated tof1 and f2 by idealized WCPCap.

Lemma 2: The rates allocated by idealized WCPCap tof1
and f2 converge to the largest achievable equal rate.

Proof: By design, f1 and f2 are allocated equal rates by
idealized WCPCap. So, to prove this lemma, we will prove
that this equal rate converges to the largest achievable equal
rate. We first assume that the rate of flowsf1 and f2 is
initialized to 0. WCPCap calculates the maximum rate increase
per flow which keeps the system stable. (Since, by assumption,
idealized WCPCap calculates the exact residual capacity at
each link, the flow-rate updates will not cause any link-rate
to exceed its capacity,and hence, the flow rates will always
increase.) This maximum rate increase is labelledδ . Then,
the rate allocated tof1 and f2 is increased byρδ . Since
the system remains within the stable region, the queue size
remains negligible. Hence, withinlog(1−θ)

log(1−ρ) iterations of the
algorithm, the rate allocated tof1 and f2 is more thanθ < 1
of the largest achievable equal rate. Thus, the rates allocated
by idealized WCPCap converge to the largest achievable equal
rate.

Finally, now we comment on convergence of the algorithm
if the rate of flowsf1 and f2 is initialized to a non-zero value.
Then, if the initialization is to a value such that the arrival rate
on the bottleneck link is less than its service rate, by the same
argument as before, withinlog(1−θ)

log(1−ρ) iterations of the algorithm,
the rate allocated tof1 and f2 is more thanθ < 1 of the largest
achievable equal rate. Now, if the initialization is to a value
such that the arrival rate on the bottleneck link exceeds its
service rate, in the next iteration, WCPCap will reduce the
rate of the flows to a value such that the arrival rate reduces
below the service rate as the reduction will not only be due
to a lower estimated capacity but also due to non-negligible
queue sizes. After this first iteration, the same argument for

convergence applies.
Theorem 1: The rates assigned by idealized WCPCap con-

verge to the max-min rate allocation.
Proof: Since Lemma2 holds for all flows which share

the most congested neighborhood they traverse, in conjuntion
with Lemma1, it implies that the rates allocated by idealized
WCPCap converge to the max-min rate allocation.

IV. SIMULATION RESULTS

In this section we evaluate the performance of WCP and
WCPCap in simulation, and in the next we report on results
from real-world experiments of WCP.

A. Methodology

We have implemented WCP and WCPCap using the Qualnet
simulator [3] version 3.9.5. Our WCP implementation closely
follows the description of the protocol in SectionIII-A . Our
WCPCap implementation, on the other hand, does not simulate
the exchange of control messages at the end of each epoch;
rather, this control information is made available to the relevant
simulated nodes through a central repository. This ignores
the control message overhead in WCPCap, so our simulation
results overestimate WCPCap performance. This is consistent
with our goal, which has been to explore the feasibility of a
wireless capacity estimation technique.

All our simulations are conducted using an unmodified
802.11b MAC (DCF). We use default parameters for 802.11b
in Qualnet unless stated otherwise. Auto-rate adaption at the
MAC layer is turned-off and the rate is fixed at 11Mbps.
Most of our simulations are conducted with zero channel
losses (we report on one set of simulations with non-zero
channel losses), although packet losses due to collisions do
occur. However, we adjusted the carrier sensing threshold to
reduce interference range to equal transmission range. This
prevented MAC backoffs at a node due to transmissions from
other nodes outside the transmission range but within the
interference range, thus helping us create topologies on which
performance of our schemes could be clearly studied.

On this set of topologies (described below), we run bulk
transfer flows for 200 seconds for WCP, WCPCap, and TCP.
Our TCP uses SACK with ECN, but with Nagle’s algorithm
and the delayed ACK mechanism turned off; WCP implements
this feature set. (We have also evaluated TCP-Reno on our
topologies. The results are qualitatively similar.) Congestion
detection for TCP uses the average queue size thresholding
technique discussed in SectionIII-A . Other parameters used
during the runs are given in TableI. Note that our choice
of α is conservative, ensuring small rate increases over the
range of timescales we see in our topologies. This choice
of α also works in our real-world experiments, but more
experimentation is necessary to determine a robust choice of
α. For each topology we show results averaged over 10 runs.

We measure the goodput achieved by each flow in a
given topology by TCP, WCP, and WCPCap, and compare
these goodputs with the optimal max-min rate allocations for
each topology. To compute the max-min rate allocations, we



Parameter Value
Congestion Threshold(K) 4

EWMA Weight (wq) 0.02
Router Buffer size 64 packets

Packet Size 512 bytes
Additive Increase Factor (α) 0.1

WCPCap epoch duration constant (k) 10
WCPCap scale factors (ρ andβ ) 0.3 and 0.1

TABLE I
PARAMETERS USED IN SIMULATIONS

observe that the methodology in SectionIII-B , with U = 1, can
be applied to the global network topology to characterize the
achievable rate region for a collection of flows. Intuitively, we
can view the service times and arrival rates on links, together
with flow conservation constraints, as implicitly defining the
achievable rate region for the topology [27]. (Essentially, this
is how we derive the achievable rate region in Figure2.2)
The max-min allocations can then be found by searching
along the boundary of the achievable rate region.3 Using this
methodology, we are also able to identify the links in a given
topology that tend to be congested: we simply simulate the
optimal max-min rate allocations, and identify congested links
as those whose queues are nearly fully utilized (utilization of
the queue is> 0.95). Note that we use this information in our
intuitive discussion about the dynamics of each topology; this
information is obviously not used in any way by neither WCP
nor WCPCap.

To understand the performance of WCP and WCPCap, we
examine four topologies,with associated flows, as shown in
Figures1, 5, 6, and 7. Nodes connected by a solid line can
hear each others’ transmissions. (Since, in our simulations, we
equalize interference range and transmission range, only nodes
that can hear each others’ transmissions share channel capacity
with each other.) Arrows represent flows in the network.
Congested links (determined using the methodology described
above) are indicated with a symbol depicting a queue. Each
of these four topologies has qualitatively different congestion
characteristics, as we discuss below.

Stack (Figure 1) consists of a single congested region.
4→ 5 is the congested link, and all other links in the topology
belong toL4→5. Diamond (Figure5) contains two intersecting
congested regions. 1→ 2 and 7→ 8 are both congested links.
L1→2 includes all outgoing links from nodes 1 to 6 andL7→8

includes all outgoing link from node 4 to 9.Half-Diamond
(Figure6) contains two overlapping congested regions. 4→ 5
and 7→ 8 are congested, andL7→8 is a subset ofL4→5. Chain-
Cross (Figure 7) contains two congested regions, with four
flows traversing one region, and two flows the other. 1→ 2 is
a congested link, but 6→ 7 does not belong toL1→2. 4→ 5
and 4→ 3 are also congested, andL4→5 does include 6→ 7.

Finally, since WCP uses a rate-based implementation, it
is important to ensure that itsbaseline performance is com-
parable to that of TCP. To validate this, we ran TCP and

2In this section, we will assume the transport overhead to be equal to the
overhead of WCP while Figure2 assumes the transport overhead to be the
same as that of TCP.

3We verified through simulations that the rates determined through this
analytical methodology are achievable while these rates scaled up by 10%
are not.

WCP on a chain of 15 nodes. WCP gets 20%less throughput
on this topology; it is less aggressive than TCP. We also
disabled RTT and congestion sharing in WCP, and ran this
on all our topologies. In general, this stripped-down version
of WCP gets qualitatively the same performance as TCP. For
example, Figure8 shows the goodputs achieved by each flow
for the Stack topology. As expected, WCP without congestion
and RTT sharing starves the middle flow, just as TCP does,
although to a lesser extent since its rate increases are less
aggressive than that of TCP.

B. Performance of WCP and WCPCap

We now discuss the performance of WCP and WCPCap for
each of our topologies. In what follows, we use the notation
fi→ j to denote a flow from nodei to node j.

Stack (Figure 9). The optimal (max-min) achievable rates
for this topology are 300 kbps for all the flows. TCP, as
described earlier, starves the middle flows (f4→6). Intuitively,
in TCP, flows traversing links that experience more congestion
(4→ 5) react more aggressively to congestion, leading to lower
throughput. WCP identifies the single congestion region in
this topology (L4→5) and shares the rate equally among all
the flows assigning about 250 kbps to all the flows which is
within 20% of the optimal achievable rate for this topology.
WCPCap, with a more precise rate feedback, assigns slightly
higher rates to all the flows and these allocated rates for each
flow is within 15% of the rate allocated to it by the max-min
fair rate allocation.

Diamond (Figure 10). The optimal achievable rates for this
topology are 325 kbps for all the flows. TCP starves flows
traversing the congested links in this topology. By contrast,
WCPCap, assigns 300 kbps to all the flows. Hence, it achieves
rates within 10% of the max-min optimal rates. WCP,
however, assignsf4→6 approximately half the rate assigned
to the other flows. This topology consists of two congested
regions (L1→2 and L7→8) and f4→6 traverses both congested
regions while the other two flows traverse only one. Roughly
speaking,f4→6 receives congestion notification twice as often
as the other flows, and therefore reacts more aggressively.
Thus, WCP isnot max-min fair. WCP appears to assign rates
to flows in inverse proportion to the number of congested
regions traversed.

Half-Diamond (Figure 11). The optimal max-min rates for
this topology are 315 kbps forf4→6 and f7→9, and 335 kbps
for f1→3; the asymmetry in this topology permitsf1→3 to
achieve a slightly higher rate. Relative to other topologies,
TCP performs fairly well for this topology. WCPCap achieves
rates within 14% of the max-min optimal rates. WCP assigns
comparable rates tof4→6 and f7→9 as they traverse both
congested regionsL4→5 andL7→8. f1→3 achieves a higher rate
as it traverses only one congested region (L4→5) but its rate is
not twice the rate of the other flow. Thus WCP achieves a
form of fairness in which the rate allocations depend not only
on the number of congested regions a flow passes through, but
also the intensity of congestion in those regions.

Chain-Cross (Figure12). The optimal rates for this topology
are 420 kbps forf6→7 and 255 kbps for all other flows. TCP



1 2 34 5 67 8 9
Fig. 5. Diamond topology

1 2 34 5 67 8 9
Fig. 6. Half-Diamond topology

98 41 2 30 5 6 71 11 0
Fig. 7. Chain-Cross topology

4 0 05 0 06 0 07 0 08 0 0
ut(kbi t s/ sec) 1 → 34 → 67 → 9

01 0 02 0 03 0 0 T C P W C P - s t r i pG ood pu
Fig. 8. WCP without congestion and RTT
sharing, Stack

4 0 05 0 06 0 07 0 08 0 0
ut(kbi t s/ sec) 1 → 34 → 67 → 9

01 0 02 0 03 0 0 T C P W C P W C P C a p O p t i m a lG ood pu
Fig. 9. WCP and WCPCap, Stack

4 0 05 0 06 0 07 0 08 0 0
ut(kbi t s/ sec) 1 → 34 → 67 → 9

01 0 02 0 03 0 0 T C P W C P W C P C a p O p t i m a lG ood pu
Fig. 10. WCP and WCPCap, Diamond

3 0 04 0 05 0 06 0 0
ut(kbi t s/ sec) 1 → 34 → 67 → 9

01 0 02 0 0 T C P W C P W C P C a p O p t i m a lG ood pu
Fig. 11. WCP and WCPCap, Half-Diamond

8 0 01 0 0 01 2 0 01 4 0 01 6 0 01 8 0 0
ut(kbi t s/ sec) 1 → 21 → 76 → 78 → 91 0 → 1 1

02 0 04 0 06 0 08 0 0
T C P W C P W C P C a p O p t i m a lG ood pu

Fig. 12. WCP and WCPCap, Chain-Cross

3 0 04 0 05 0 06 0 07 0 0
ut(kbi t s/ sec) 1 → 34 → 67 → 9

01 0 02 0 03 0 0
T C P W C P W C P C a p O p t i m a lG ood pu

Fig. 13. WCP and WCPCap over lossy links,
Stack

starves the flows traversing the most congested link 1→ 2.
WCPCap achieves rates within 15% of the optimal max-min
rates. WCP achieves rates that depend inversely on the number
of congested regions traversed, withf1→7 achieving lower
goodput andf1→2, f10→11, f8→9 achieving equal rates. WCP
is able to utilize available network capacity efficiently;f6→7

does not traverseL1→2 and gets higher goodput.

Fairness Achieved with WCP. WCP assigns rates inversely
proportional to the number of congested regions a flow passes
through and the intensity of congestion in these regions. More
the number of congested regions a flow passes through and
higher the intensity of congestion in these regions, the more
will be the congestion notifications received at the source,
and lower will be the throughput. Note that the intensity of
congestion depends on the local topology of the region and the
number of flows passing through the region. As an example,
consider Figure14 where we plot the evolution of flow rates
with WCP in the Chain-Cross topology. When the queue at
1→ 2 gets congested, the rate of flowsf1→2, f1→7, f8→9 and
f10→11 is cut by half (for example, at 10s, the rate of all these

flows is reduced); and when the queue at 4→ 5 gets congested,
the rate of flowsf1→7 and f6→7 is cut by half (for example, at
30s, the rate of both the flows is reduced). Flow 1→ 7 receives
congestion notifications from both congested regions, hence
it receives a lower throughput than others. Since there are
more flows passing throughL1→2, it has a higher congestion
intensity. So, we see more notifications fromL1→2, and hence
a lower throughput forf1→2, f8→9 and f10→11.

The property of assigning rates inversely proportional to the
number of bottlenecks a flow passes through is not unique to
WCP. In wired networks, the AIMD algorithm of TCP was
observed to assign rates inversely proportional to the number
of congested links a flow passes through [19]. TCP does not
retain this property in wireless networks as we observe in the
simulation results presented for TCP. By making the AIMD
algorithm neighborhood-centric, WCP achieves this property
in wireless networks also.
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Fig. 14. Evolution of flow rates with WCP in
Chain-Cross

1 5 02 0 02 5 03 0 03 5 04 0 0
put(kbi t s/ sec) 1 → 34 → 67 → 9

05 01 0 01 5 0 W C P W C P w / o G o o d p u tC o r r e c t i o nG ood p
Fig. 15. WCP without goodput correction,
Stack

Fig. 16. Stability region of WCPCap. For the
parameter values lying below the curve shown
in the figure, WCPCap is stable.

4 0 05 0 06 0 07 0 08 0 09 0 0
ut(kbi t s/ sec) 1 → 34 → 67 → 9

01 0 02 0 03 0 0 T C P W C P W C P C a p O p t i m a lG ood pu
Fig. 17. WCP and WCPCap with no
RTS/CTS, Stack

3 0 04 0 05 0 06 0 0
ut(kbi t s/ sec) 1 → 34 → 67 → 9

01 0 02 0 0 T C P W C P W C P C a p O p t i m a lG ood pu
Fig. 18. WCP and WCPCap with no
RTS/CTS, Half-Diamond

1 01 52 02 53 03 54 04 5D el ay( ms) WCP

WCPCap

05 1→3 4→6 7→9 1→3 4→6 7→9 1→3 4→6 7→9 1→2 1→7 6→7 8→9 10→11S t a c k D i a m o n d H a l f -D i a m o n d C h a i n - C r o s s
Fig. 19. Average end-to-end delay with WCP
and WCPCap

C. Discussion

Impact of Physical Losses.Thus far, we have assumed perfect
wireless links in our simulations (losses do occur in our
simulations due to collisions, however). Figure13 shows the
performance of WCP and WCPCap for the Stack with a loss
rate of 10% on each link. The results are qualitatively similar
to Figure 9. As expected, the goodputs drop by about 10%
for WCP and WCPCap, as do the optimal rates. We have
conducted similar experiments for the other topologies, but
omit their results for brevity. We also illustrate the efficacy of
goodput correction in dealing with packet loss (SectionIII-A ).
Figure15 shows the goodputs achieved in the Stack topology
with 10% loss on all links, when goodput correction is
disabled. Goodputs are no longer fair.

Choice of ρ and β in WCPCap . The stability of WCPCap
depends on the values ofρ and β . Similar to the stability
studies of XCP and RCP in wired networks [16], [29], we
consider a network with a single bottleneck. Since a bottleneck
in wireless networks corresponds to a congested region, we use
the Stack topology which has only one congested region to
understand the stability of WCPCap. We run WCPCap for the
Stack topology for varying values ofρ and β and determine
the values for which it remains stable. Figure16 shows the
stability region of WCPCap. For the parameter values lying
below the curve shown in the figure, WCPCap is stable. For
all the topologies studied in this paper, any value ofρ andβ
within the stability region yields nearly similar performance
as WCPCap converges quickly. We verify using extensive
simulations that a higher and lower value ofρ and β does
not impact our results. We omit these results due to space

limitations.

Without RTS/CTS Our simulation results have used
RTS/CTS so far. Note that the design of both WCP and
WCPCap is insensitive to the use of RTS/CTS. Both WCP and
WCPCap without RTS/CTS (Figure17) perform just as well as
(and get higher goodputs than) with RTS/CTS (Figure9). The
goodputs increase as the overhead of exchanging RTS/CTS
is removed. Other topologies show similar results, except for
Half-Diamond (Figure18). Without RTS/CTS, 1→ 2 and 7→
8 become the most congested links in Half-Diamond, changing
the dynamics of congestion in this topology. Qualitatively, this
topology starts to resemble the Diamond, with two overlapping
congested regions. A lower goodput forf7→9 than f1→3 results
from additional links 4→ 8 and 6→ 8 in L7→8 which reduces
the capacity in the region.
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Fig. 20. WCP with delayed flow
arrival
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Fig. 21. WCPCap with delayed flow
arrival

Performance under Network Dynamics.In the simulations
above, all flows start and end at the same time. Figures20
and 21 show the instantaneous sending rater f (Section III )
of all the flows in the Chain-Cross topology for WCP and
WCPCap respectively, when flows do not start and stop at
the same time. Specifically,f1→7 starts at 25s and ends at



100s, while the rest of the flows start at 0s and end at 200s.
It is evident from the plot that both WCP and WCPCap are
fair not only when all flows are active, but also before the
arrival and after the departure off1→7. Note that the rate of
f6→7 decreases and then increases between 30s and 100s. This
variation occurs to clear the queue and adaptively set the value
of U at edge 4→ 5.

Delay and Convergence.Since WCPCap keeps the network
within the achievable rate region, it is able to maintain smaller
queues than WCP. Hence, WCPCap has smaller average end-
to-end delay than WCP (Figure19). The one exception is the
Chain-Cross: since the throughput of flows 1→ 7 and 6→ 7
is higher in WCPCap than WCP, the total traffic over 6→ 7
is much higher for WCPCap (Figure12). This results in a
higher delay for these two flows.

WCPCap converges quickly as can be seen in Figure21.
It converges toθ < 1 of the final rate within withinlog(1−θ)

log(1−ρ)
iterations of the algorithm (see the proof of Lemma2); which
implies that for ρ = 0.3, it will converge to 90% of the
final rate in 7 iterations of the algorithm, which, for all
our topologies, takes less than 10s. Also, as is evident from
Figure 20, WCP’s convergence is slower as the rate per flow
is additively increased by a constantα per RTT. Finally, the
evolution of flow rates exhibit a sawtooth pattern which is
expected from an AIMD algorithm.

Performance with Larger Interference Range. If the
interference range is larger than the transmission range, then
all nodes sharing a wireless channel (and thus the capacity)
may not be able to communicate control information (like
congestion status) amongst themselves. In the absence of this
control information exchange, WCP’s design principle that all
flows which contribute to congestion on a link should reduce
rates may break which may lead to an unfair rate allocation.
Thus, we need extra mechanisms (like exchanging control
information exchange between two-hop neighbors or sending
control information at a lower rate/better modulation scheme)
to ensure successful control message exchange between nodes
which share the same wireless channel. We refer interested
readers to our technical report [43] for further details as well
as results on the performance of WCP for different topologies
when interference range is greater than the transmission range.
Finally, note that since the methodology of [27] is applicable
when the interference range is greater than the transmission
range as this only modifies the definition of neighborhood
and not any of the analysis, and since WCPCap assumes
a complete knowledge of the neighborhood topology, its
performance will not suffer. However, it will also need extra
mechanisms to ensure the successful exchange of control mes-
sages between all nodes sharing the same wireless channel.

Performance with Auto-Rate Adaptation. Auto-rate adap-
tation affects two characteristics of a topology: Link rates
of individual links, and the transmission range of each link.
With nodes continuously adapting their link rates, the snapshot
of the network at any given instance consists of links with
different rate. Since WCP implements fairness at the transport
layer, it is able to adapt to different physical rates at the link
layer.

However, with change in the link layer rate, the transmission
range of a node changes leading to change in the number of
nodes that can successfully receive a packet from a node. This
causes the topology of the network and, therefore, the neigh-
borhood of each node to change. Since the resulting changes in
topology occur at a time scale faster than the convergence time
of WCP, WCP is unable to converge to a fair rate. We refer
interested readers to our technical report [43] for simulation
results and a further discussion. Finally, note that WCPCap
assumes that each edge knows the data rate at its neighboring
edges, hence, assuming that this information is also passed
to neighboring nodes as the rest of the control parameters,
the issue is again that of time scales. Even though WCPCap
converges faster than WCP, it usually does not converge fast
enough to adapt to neighborhood topology changes due to auto
rate adaptation in time.

D. Summary

We summarize the throughput properties of WCP and
WCPCap observed via simulations in this section. (i) WCP
allocates rates that depend inversely on the number of
congested neighborhoods traversed by a flow and the intensity
of congestion in those regions. (ii) WCPCap allocates to each
flow a rate within 15% of the rate allocated to it by the max-
min fair rate allocation. The main reason for the difference
in throughput achieved with WCPCap and the optimal is the
use ofU < 1 with WCPCap to account for finite buffer sizes
and retransmit limits, and the approximation of using only
local neighborhood to estimate available capacity. WCP is less
efficient that WCPCap because it is an AIMD algorithm. For
the Stack topology where the rate vector achieved by WCP
has fairness properties similar to the max-min rate allocation,
it is within 20% of the optimal. (iii) Finally, WCPCap exhibits
low delays and fast convergence.

However, while WCP is implementable (indeed, we describe
results from an implementation in the next section), some
challenges need to be addressed before the same can be
said of WCPCap: the potentially high overhead of control
information exchange, and the ability to estimate the amount
of interference from external wireless networks so that the
collision probabilities can be correctly computed. None of
these challenges are insurmountable, and we plan to address
these as part of future work.

V. EXPERIMENTS

We have implemented WCP, and, in this section, report its
performance on a real-world testbed. We first validate our sim-
ulations by recreating the Stack topology and showing that our
experimental results are qualitatively similar to those obtained
in simulation. We then demonstrate WCP’s performance on a
14 node topology running five flows in a real-world setting.

Our experiments use an ICOP eBox-3854, a mini-PC run-
ning Click [37] and Linux 2.6.20. Each node is equipped
with a Senao NMP-8602 wireless card running the madwifi
driver [1] and an omni-directional antenna. Wireless cardsare
operated in 802.11b monitor (promiscuous) mode at a fixed
transmission rate of 11Mbps with 18dBm transmission power.
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RTS/CTS is disabled for the experiments. We empirically
determined, at the beginning of each experiment, that the
packet loss rate on each link was less than 10%.

On these nodes, we runexactly the same code as in our sim-
ulator by wrapping it within appropriate user-level elements
in Click. Furthermore, all experimental parameters are exactly
the same as in the simulation (TableI), with one exception:
we use receiver buffer sizes of 2048 packets so that flows are
not receiver-limited. For repeatability, all experimentswere
performed between midnight and 8am. All our experiments
ran for 500 seconds and we show results averaged over five
runs.

We re-created the Stack topology by carefully placing nine
nodes across three floors, and by removing the antennas on
some nodes. Figure22 shows that the experimental results are
similar to the simulation results (Figure9). Furthermore, WCP
achieves goodputs within 20% of an empirically determined
maximum achievable rate. (We do not use our theory for deter-
mining optimal rates, because we cannot accurately estimate
the amount of interference from external wireless networks.)
We determine this using CBR flows at pre-configured rates
while increasing the rates as long as the goodput of the flow
f4→6 is within 10% of the goodput of the other two flows.

Finally, to examine the performance of WCP in a real-
world setting, we created an arbitrary topology of 14 nodes by
placing them on one floor of our office building (Figure23).
To create a multi-hop topology, we covered antennas of nodes
with aluminium foil. On this topology, we ran five flows
as shown. Figure24 shows the end-to-end goodput achieved
by the flows. TCP starvesf15→26, f22→20 or f18→11 during
different runs. By contrast, WCP is able to consistently assign
fair goodputs to all five flows in each run of the experiment!

VI. CONCLUSIONS ANDFUTURE WORK

Congestion control has vexed networking researchers for
nearly three decades. Congestion control in wireless mesh
networks is, if anything, harder than in wired networks. In this
paper, we have taken significant steps towards understanding
congestion control for mesh networks. Our main contributions
include: the first implementation of fair and efficient rate con-
trol for mesh networks which yields nearly-optimal through-
puts; a plausibly implementable available capacity estimation
technique that gives near-optimal max-min fair rates for the
topologies we study; and, insights into the impact of various
factors on performance.

Much work remains. First, we plan to further investigate the
kind of fairness achieved by WCP by rigorously defining the
intuitive concept of congestion intensity. Second, we intend to
investigate efficient implementations of WCPCap. Finally, we
intend to explore the impact of short-lived flows and mobility
on the performance of WCP and WCPCap.
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