
Understanding Congestion Control in Multi-hop Wireless
Mesh Networks

Sumit Rangwala Apoorva Jindal Ki-Young Jang Konstantinos Psounis
Ramesh Govindan

University of Southern California
{srangwal, apoorvaj, kjang, kpsounis, ramesh}@usc.edu

ABSTRACT
Complex interference in static multi-hop wireless mesh networks
can adversely affect transport protocol performance. Since TCP
does not explicitly account for this, starvation and unfairness can
result from the use of TCP over such networks. In this paper,
we explore mechanisms for achieving fair and efficient congestion
control for multi-hop wireless mesh networks. First, we design an
AIMD-based rate-control protocol called Wireless Control Proto-
col (WCP) which recognizes that wireless congestion is a neighbor-
hood phenomenon, not a node-local one, and appropriately reacts
to such congestion. Second, we design a distributed rate controller
that estimates the available capacity within each neighborhood, and
divides this capacity to contending flows, a scheme we call Wire-
less Control Protocol with Capacity estimation (WCPCap). Using
analysis, simulations, and real deployments, we find that our de-
signs yield rates that are both fair and efficient, and achieve near op-
timal goodputs for all the topologies that we study. WCP achieves
this level of performance while being extremely easy to implement.
Moreover, WCPCap achieves the max-min rates for our topologies,
while still being distributed and amenable to real implementation.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Wireless commu-
nication

General Terms
Design, Experimentation

Keywords
Congestion Control, Multi-hop, Mesh, Wireless, WCP, WCPCap

1. INTRODUCTION
Static multi-hop wireless mesh networks, constructed using off-

the-shelf omnidirectional 802.11 radios, promise flexible edge con-
nectivity to the Internet, enabling low-cost community networking
in densely populated urban settings [2]. They can also be rapidly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’08, September 14–19, 2008, San Francisco, California, USA.
Copyright 2008 ACM 978-1-60558-096-8/08/09 ...$5.00.

deployed to provide a communications backbone where none ex-
ists, such as in a disaster recovery scenario.

However, their widespread adoption has been limited by sig-
nificant technical challenges. Finding high-quality routing paths
was an early challenge addressed by the research community [13].
However, that alone is not sufficient to ensure good performance
in mesh networks, where transport protocols like TCP can perform
poorly because of complex interference among neighboring nodes.
In particular, TCP does not explicitly account for the fact that con-
gestion in a mesh network is a neighborhood phenomenon. Con-
sider the topology of Figure1, in which links connect nodes which
can exchange packets with each other, perhaps with asymmetric
reception rates. In this topology, it is easy to show in simulation
and actual experiments that the TCP connection in the middle is
almost completely starved (gets extremely low throughput), since
it reacts more aggressively to congestion than the two outer flows.
As an aside, we note that research on TCP for last-hop wireless
networks [8,7] does not address this problem.

1

2

3

4 5 6

8

7

8

9

Figure 1: Stack
topology

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a

te
 o

f
M

id
d

le
 F

lo
w

 (
M

b
p

s)

Capacity Region with Optimal

Scheduling

Achievable Rate Region with

802.11

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

R
a

te
 o

f
M

id
d

le
 F

lo
w

 (
M

b
p

s)

Rate of Outer Flows (Mbps)

Optimal
WCPCap

WCP

TCP

Figure 2: The achievable rate region

To understand the properties of a desirable solution to this prob-
lem, consider Figure2. The y-axis plots the rate achieved by the
middle flow, and the x-axis for the outer two flows (by symme-
try, these flows will achieve approximately the same rate for any
scheme) of Figure1. Now, with a perfect MAC scheduler that has
the same overhead as 802.11, it is intuitively clear that the rates
achievable lie on or below the straight line shown in the figure
(since an optimal scheduler would either schedule the two outer
flows simultaneously or the flow in the middle). With 802.11, there
is some loss of throughput due to contention, and the corresponding
achievable-rate region bounds the rates achievable by the flows on
this topology (in Section4.1, we describe a methodology to com-
pute the achievable-rate region). TCP achieves rates that lie at one
corner of this plot. We contend that, for this topology, a desirable
solution is one that gets us close to the max-min fair rate allocation

point, which corresponds to the intersection of the 45◦ line and the
802.11 achievable-rate curve.

In this paper, we explore mechanisms for achieving such a so-
lution in wireless mesh networks. Three considerations inform our
choice of mechanisms. First, we do not make any changes to the
widely-used 802.11 MAC. It may well be that such changes can
improve the performance of our mechanisms, but we have deliber-
ately limited the scope of our work to enable a clearer understand-
ing of congestion control. Second, our approach isclean-slate. We
conduct our explorations in the context of arate-based protocol
that incorporates some of TCP’s essential features (such as ECN,
and SACK), yet allows us to explore more natural implementations
of the mechanisms for improving fairness and efficiency that we
study in this paper. However, our work makes no value judgement
on whether a clean-slate transport protocol isnecessary for mesh
networks; it may be possible to retrofit our mechanisms into TCP.
Finally, we restrict our explorations to plausibly implementable
mechanisms, in contrast to other work that has explored theoret-
ical methods for optimizing (separately or jointly) scheduling and
rate assignment in wireless networks [16,35,46,39].
Contributions. We make two contributions in this paper. First, we
design an AIMD-based rate-control protocol called WCP which ex-
plicitly reacts to congestion within a wireless neighborhood (Sec-
tion 3.1). Specifically, we correctly identify the precise set of nodes
within the vicinity of a congested node that needs to reduce its rates.
Signaling these nodes can be implemented using a lightweightcon-
gestion sharing mechanism. More interestingly, we find that con-
gestion sharing alone is not enough, and that, to achieve fairness,
sources also need to clock their rate adaptations at the time-scale
of the highest RTTs of flows going through the congested region.
This can be implemented using a local mechanism forRTT shar-
ing. Figure2 shows that, for the topology of Figure1, WCP avoids
starving the middle flow (we discuss methodology and more de-
tailed experimental results in Sections4 and5).

Our second contribution is the design of a distributed rate con-
troller that estimates the available capacity within each neighbor-
hood, and apportions this capacity to contending flows. This scheme,
which we call WCPCap (Section3.2), has the property that it uses
local information and canplausibly be implemented in a distributed
fashion. Techniques that perform congestion control by estimating
capacity in wired networks have been proposed before,e.g., [29],
but wireless capacity estimation is significantly harder. WCPCap
is the first attempt in that direction that does not rely on heuristics,
but instead uses a precise analytical methodology to accurately es-
timate the available capacity. Figure2 shows that, for the topology
of Figure1, WCPCap achieves a max-min fair rate.

Using analysis, simulations, and real deployments, we find that
our designs yield rates that are both fair and efficient. WCP is fairer
than TCP, while WCPCap is max-min fair in all the topologies we
study and achieves goodputs within 15% of the optimal. WCP
achieves consistently good performance in the topologies we study
while being extremely easy to implement. In fact, our experiments
using five flows in a 14-node testbed show that, while TCP starves
one or two of these flows in each run, WCP assigns fair rates to
all the flows. Finally, in addition to good throughput performance,
WCPCap exhibits low end-to-end delay and fast convergence.

2. RELATED WORK
Extensive research has been done to understand the shortcoming

and to improve the performance of TCP in wireless networks [48,
19, 10, 23, 52, 30, 36, 51]. We briefly discuss broad classes of re-
search pertinent to our work while referring interested reader to [37]
for a more comprehensive survey of congestion control in wireless

networks.
Early work on improving TCP performance in wireless networks

focused on distinguishing between packet loss due to wireless cor-
ruption from loss due to congestion, in the context of last-hop wire-
less [8,7] or wireless wide-area networks [45]. In contrast, we ad-
dress congestion control for multi-hop wireless networks.

More recent work, however, has addressed congestion control for
mobile ad-hoc wireless networks. One class of work, exemplified
by TCP-F [10], TCP-ELFN [23], TCP-BuS [30], ATCP [36], and
EPLN/BEAD [52], concentrates on improving TCP’sthroughput
by freezing TCP’s congestion control algorithm during link-failure
induced losses, especially when route changes occur. Individual
pieces of work differ in the manner in which these losses are iden-
tified and notified to the sender and in their details of freezing TCP.
For example, TCP-ELFN [23] explicitly notifies the TCP sender of
routing failure causing the sender to enter a standby mode. The
sender re-enters the normal TCP mode on route restoration, iden-
tified using periodic probe messages. Unlike WCP, these propos-
als do not explicitly recognize and account for congestion within a
neighborhood. As a result, they would exhibit the same shortcom-
ings of TCP as discussed in Section1.

Another class of work related to WCP includes schemes like CO-
PAS [12], LRED [19], and ATP [48], which discuss TCP perfor-
mance issues even in ad-hoc networks with no link-failure induced
losses. COPAS [12] proposes a route selection scheme that at-
tempts to find disjoint paths for different flows by assigning weights
to links proportional to the average number of backoffs on the link.
LRED [19] uses a exponential weighted moving average of the
number of retransmissions at the MAC layer as a measure of con-
gestion while marking packets in a manner similar to RED [18].
ATP [48], like WCP, is a rate-based congestion control scheme that
involves explicit rate feedback to the sources from the network. In
ATP, a flow receives the maximum of the weighted average of the
sum of the queueing and transmission delay at any node traversed
by the flow. ATP uses the inverse of this delay as the sending rate of
a sender. Even though these schemes do not recognize the need of
congestion detection and signaling over a neighborhood, their con-
gestion metricimplicitly takes some degree of neighborhood con-
gestion into account. However, congestion in wireless networks
exhibits strong location dependency [51] i.e., different nodes in a
congested neighborhoodlocally perceive different degrees of con-
gestion. In the above schemes, flows traversing different nodes in
a single congested neighborhood would receive varying levels of
congestion notification. In contrast, WCP explicitly shares con-
gestion within a neighborhood, ensuring that each flow in a single
congested neighborhood gets its fair share of the bottleneck band-
width.

Three other pieces of work, however, have recognized the impor-
tance of explicitly detecting and signaling congestion over a neigh-
borhood. NRED [51] identifies a subset of flows which share chan-
nel capacity with flows passing through a congested node. But, it
identifies only a subset of contending flows: it misses flows that
traverse two hop neighbors of a node without traversing its one hop
neighbors (for example, the flow traversing 7→ 9 in Fig. 3, Sec-
tion 3). Moreover, the mechanism to regulate the traffic rates on
these flows is quite a bit more complex than ours (it involves esti-
mating a neighborhood queue size, and using RED [18]-style mark-
ing on packets in this queue). Finally, unlike WCP, NRED requires
RTS/CTS, is intimately tied to a particular queue management tech-
nique (RED), might require special hardware for channel monitor-
ing, and has not been tested in a real implementation. EWCCP [49]
correctly identifies the set of flows which share channel capac-
ity with flows passing through a congested node. EWCCP is de-

signed to be proportionally-fair, and its design as well as its proof
of correctness assumes that the achievable rate region of 802.11 is
convex. As Figure2 shows, however, this is not necessarily true.
Moreover, EWCCP [49] has also not been tested in a real imple-
mentation. Finally, our own IFRC [43] is an interference-aware
fair rate control scheme designed for many-to-one communication,
e.g. when a number of sensors send measurements towards a com-
mon sink. IFRC’s design takes advantage of the tree-structured
topology and many-to-one traffic pattern and cannot be used in a
general, many-to-many communication setting.

As a final note, our AIMD-based scheme WCP borrows heavily
from TCP’s essential features such as ECN, SACK, and round-trip
time estimation [25,17], and uses some well established approaches
from the active queue management literature [18,33] to detect con-
gestion at a node.

An alternative to AIMD based schemes are schemes in which in-
termediate routers send explicit and precise feedback to the sources.
XCP [29] and RCP [15] are examples of such schemes for wired
networks. Such schemes cannot be directly extended to multi-hop
wireless networks, since the available capacity at a wireless link
depends on the link rates at the neighboring edges, and ignoring
this dependence will overestimate the available capacity and lead
to performance degradation [40] and eventually to instability. Vari-
ants of XCP for wireless multi-hop networks, like WXCP [47] and
XCP-b [4], use heuristics based on measuring indirect quantities
like queue sizes and the number of link layer retransmissions, to
reduce the overestimation in the available capacity. If, instead, one
can directly estimate the exact capacity of a link as a function of
the link rates at the neighboring edges, then an accurate XCP-like
scheme can be implemented for wireless multi-hop networks.

In 802.11-scheduled multi-hop networks, the complex interfer-
ence among nodes makes it very hard to estimate the capacity of
a link. Results have been known either for multi-hop networks
that use perfect MAC schedulers [26,32], or for single-hop 802.11-
scheduled networks under saturation traffic conditions [9,44]. We
have recently developed an analytical methodology which charac-
terizes the achievable rate region of 802.11-scheduled multi-hop
networks [28, 27]. Our second scheme, WCPCap, uses this prior
work of ours to find the supportable per-flow rate in a neighbor-
hood. Further, it uses a novel, decentralized mechanism that relies
on message exchanges within local neighborhoods only, to calcu-
late the end-to-end flow rates.

Related to WCPCap is an interesting line of work that has ex-
plored theoretical methods for jointly optimizing scheduling and
rate assignment in wireless networks [16, 35, 46, 39]. Unlike this
body of work, we restrict the scheduler to be 802.11. Moreover,
we restrict our explorations to plausibly implementable rate-control
mechanisms, whereas this line of research yields schemes that re-
quire a centralized implementation to optimize both scheduling and
rate assignment. While optimized rate assignment (congestion con-
trol) can be done in a distributed fashion by using back-pressure
techniques [50], it still requires every node in the network to main-
tain separate queues for each possible network destination. More
recent practical studies of the problem have not been able to re-
lax [5] this requirement. Recently, Liet al. [34] have explored
theoretical methods to set up centralized optimization problems
for 802.11-scheduled multi-hop networks to find rate allocations
achieving a given objective, like max-min fairness. However, they
do not discuss how to achieve these allocations through distributed
rate control schemes.

Finally, there has been a growing interest in industry [6] and
academia [31] in using multiple radios per node, in an effort to mit-
igate or nullify the complex interference found in multi-hop wire-

less networks. This line of work is orthogonal to our efforts. We
believe that in dense deployments our work will be relevant even
if multiple radios are used, since the large number of channels re-
quired to completely avoid interference, as well as the complexity
associated with their scheduling, would be prohibitively expensive.

3. DESIGN
In this section, we first discuss the design and implementation

of WCP, an AIMD-based rate-control protocol that incorporates
many of the features of TCP, but differs significantly in its con-
gestion control algorithms. We then describe WCPCap which in-
corporates wireless capacity estimation in order to assign fair and
efficient rates to flows.

3.1 WCP
WCP is a rate-based congestion control protocol for static multi-

hop wireless mesh networks which use the 802.11 MAC. In WCP,
for every flow, the source maintains a rater which represents the
long term sending rate for the flow. WCP is AIMD-based, so that
the source additively increasesr on every ack reception and mul-
tiplicatively decreasesr upon receiving a congestion notification
from routers (intermediate forwarding nodes). Routers signal con-
gestion by setting a congestion bit in the packet header of ongoing
packets. Unlike existing congestion control techniques, WCP has
novel algorithms for detecting and signaling congestion at the inter-
mediate routers, as well as for adapting rates at sources in response
to congestion signals.

6

7

9

8

5

2

4

1

3 10

Figure 3: Congestion neighborhood

Congestion in Multi-hop Wireless Networks. The central ob-
servation underlying the design of WCP is that the nature of con-
gestion in a wireless network is qualitatively different from that in
a wired network. In a wireless network, since neighboring nodes
share the wireless channel, the available transmission capacity at a
node can depend on traffic between its neighbors.

More precisely, congestion in wireless networks is defined not
with respect to a node, but with respect to transmissions from a
node to its neighbor. In what follows, we use the termlink to de-
note a one-hop sender-receiver pair. (We use the terms sender and
receiver to denote one-hop transmissions, and source and destina-
tion to denote the endpoints of a flow). Thus, in Figure3, we say
that a transmission from 5 to 6 is along the link 5→ 6. Consider the
following example. When 5 is transmitting to node 6 it shares the
wireless channel with any transmission from node 7, say a trans-
mission from node 7 to node 9, as that transmission can collide
with a transmission from node 5 to node 6. However, when node
5 is transmitting to node 2 itdoes not share capacity with, for ex-
ample, a transmission from node 7 to node 9. Thus, congestion in
wireless networks is defined not with respect to a nodei, but with
respect to a linki→ j.

What, then, are the set of links (Li→ j) that share capacity with
a given link (i→ j)? Consider link 5→ 6 in Figure3. Clearly,

all outgoing links from node 5 and node 6 share capacity with link
5→ 6. Moreover, every outgoing link from a one-hop neighbor of
node 5 shares capacity with link 5→ 6 because any transmission
from a neighbor of 5, say node 2, can be sensed by node 5 and
would prevent node 5 from capturing the channel while node 2 is
transmitting. Additionally, any incoming link to any neighbor of
node 5, say 1→ 2, also shares capacity with link 5→ 6 as the link-
layer acknowledgement from node 2 to node 1 would also prevent
node 5 from capturing the channel for transmission. Similarly, any
outgoing link from a neighbor of node 6 shares capacity with link
5→ 6 as any transmission along the outgoing link of neighbor of 6
can collide with transmission along 5→ 6. Finally, any incoming
link into a neighbor of node 6, say 8→ 7, also shares capacity with
5→ 6 as the link-layer acknowledgement from node 7 to node 8
can collide with transmissions along 5→ 6.

Thus,Li→ j, for a mesh network using an 802.11 MAC is defined
as:

the set of all incoming and outgoing links ofi, j, all
neighbors ofi, and all neighbors ofj.

Note thatLi→ j includesi→ j. Moreover, this relationship is sym-
metric. If a link i→ j belongs toLk→l , k→ l also belongs toLi→ j.
Furthermore, this definition is valid even when RTS-CTS is used.
However, there is an important limitation in our definition. If a
node is outside another node’s transmission range, but within its
interference range, WCP cannot account for the reduction in chan-
nel capacity as a result of the latter’s transmissions.

Congestion detection and sharing.In WCP, one key idea iscon-
gestion sharing: if link i→ j is congested, it shares this information
with all links in Li→ j. Packets traversing those links (as well as link
i→ j itself) are marked with an explicit congestion notification, so
that sources can appropriately adapt the rates of the corresponding
flows. We now describe how routers detect congestion, and how
they share their congestion state.

Congestion detection in WCP is deliberately simple. A router
detects congestion on its outgoing link using a simple threshold-
ing scheme. It maintains an exponentially weighted moving aver-
age (EWMA) of the queue size for everyoutgoing link. A link is
congested when its average queue size is greater than a congestion
thresholdK. Various other congestion detection techniques have
been explored in wireless networks: channel utilization [51], aver-
age number of retransmissions [20], mean time to recover loss [42],
among others. We choose queue size as a measure of congestion for
two reasons: it has been shown to work sufficiently well in wireless
networks [43,24]; and is a more natural choice for detecting con-
gestion per link compared to, say, channel utilization which mea-
sures the level of traffic around a node. Also, more sophisticated
queue management schemes are possible (e.g., RED or AVQ), but
they are beyond the scope of this paper.

When a routeri detects thati→ j is congested, it needs to share
this information with nodes at the transmitting ends of links inLi→ j
(henceforth referred to as nodes inLi→ j). These nodes are within
two hops of the congested link. We omit a detailed description of
the protocol that implements this congestion sharing. However, we
will note that this protocol can be implemented efficiently. Con-
gestion state information can be piggybacked on outgoing packets,
which neighbors can snoop. Furthermore, this information needs
to be transmitted only when a link is congested; moreover, if more
than one incoming link at a node is congested, it suffices for the
node to select (and inform its neighbors) of only one of these.

Finally, when a node inLi→ j detects that linki→ j is congested,
it marks all outgoing packets on that link with an explicit conges-
tion indicator (a single bit).

Rate Adaptation. In WCP sources perform rate adaptation. While
the principles behind our AIMD rate adaptation algorithms are rela-
tively standard, our contribution is to correctly determine the timescales
at which these operations are performed. The novel aspect of our
contribution is that these timescales are determined by the RTTs
of flows traversing a congested neighborhood; without our innova-
tions (described below), flows do not get a fair share of the channel,
and sometimes react too aggressively to congestion.

A sourceS in WCP maintains a raterm for every flow fm origi-
nating atS. It linearly increases the raterm everytai seconds, where
tai is the control interval for additive increase:

rm = rm +α

whereα is a constant. The choice oftai is an important design
parameter in WCP. In the above equation the rate of change ofrm,
drm/dt is α/tai. Intuitively, for stable operation,drm/dt should be
dependent on feedback delay of the network. Using the weighted
average round-trip time,rttavg

m , of the flow seems an obvious choice
for tai as it satisfies the above requirement. But consider three flows
1→ 3, 4→ 6, and 7→ 9 in Figure1. Packets of flow 1→ 3 share
the wireless channel with nodes 1 through 6 while packets from
flow 4→ 6 share wireless channel with all the nodes in the figure.
As the rate of all the flows in the network increases, flow 4→ 6
experiences more contention as compared to flow 1→ 3 and the
average RTT of flow 4→ 6 increases much faster than the average
RTT of flow 1→ 3. Thus, even if these flows were to begin with the
same rate, their rates would diverge with the choice oftai = rttavg

m .
For fairness, all flows sharing a congested neighborhood should
have similardrm/dt.

To enable fairness, WCP introduces the notion of ashared RTT.
Denote byrttavg

i→ j the average RTT of all the flows traversing the link
i→ j (the average RTT of each flow is computed by the source, and
included in the packet header)i.e.,

rttavg
i→ j = ∑

∀m∈Fi→ j

rttavg
m

|Fi→ j|

whereFi→ j is the set of flows traversing linki→ j. These “link
RTTs” are disseminated to all nodes inLi→ j in a manner similar to
congestion sharing (as described above), and can also be efficiently
implemented (details of which we omit). For linki→ j, node i
computes the shared RTTrttSmax_avg

i→ j as the maximum RTT among
all links in Li→ j i.e.,

rttSmax_avg
i→ j = max

∀k→l∈Li→ j

(rttavg
k→l)

In words, this quantity measures the largest average RTT across the
set of links thati→ j shares the channel with. Why this particular
choice of timescale? Previous work has shown that the average
RTT of flows is a reasonable control interval for making congestion
control decisions [29]. Our definition conservatively chooses the
largest control interval in the neighborhood.

For all flows traversing linki→ j, the router includesrttSmax_avg
i→ j

in every packet header only if it exceeds the current value of that
field in the header. The source uses this value fortai: thus,tai is the
largest shared RTT across all the links that the flow traverses. This
value of control intervaltai ensures that all flows going through the
same congested region increase their rates at the same timescale.
If a flow traverses multiple congested regions, its rate increase is
clocked by the neighborhood with the largest shared RTT.

Upon receiving a packet with a congestion notification bit set, a
source reduces the raterm asrm = rm/2 and waits for a control in-
tervaltmd before reacting again to any congestion notification from

the routers.tmd must be long enough so that the source has had time
to observe the effect of its rate reduction. Moreover, for fairness,
flows that traverse the congested region must all react at roughly
the same timescale. To ensure this, WCP also computes a quantity
for each link that we term theshared instantaneous RTT, denoted
by rttSmax_inst

i→ j . This is computed in exactly the same way as the
shared RTT, described above, except that the instantaneous RTT is
used, rather than the average RTT. The former is a more accurate
indicator of the current level of congestion in the network and is a
more conservative choice of the timescale required to observe the
effect of a rate change. As before, routers insert this shared instan-
taneous RTT into the packet header only if it exceeds the current
value. Sources settmd to be the value of this field in the packet
header that triggered the multiplicative decrease. If a flow traverses
multiple congested regions, its multiplicative decreases are clocked
by the neighborhood with the largest shared instantaneous RTT.

Finally, we describe how the source uses the valuerm. WCP
aims to assign fairgoodputs. Naively sending packets at the rate
rm assigns fair throughputs, but packet losses due to channel er-
ror or interference can result in unequal goodputs. Instead, WCP
sends packets at a raterm/pm, when pm is the empirically ob-
served packet loss rate over the connection. Intuitively, thisgood-
put correction heuristic sends more packets for flows traversing
lossy paths, equalizing flow goodputs. Other rate-based protocols [41]
use more sophisticated loss rate computation techniques to perform
similar goodput correction. As we show in Section4, our approach
works extremely well for WCP. In that section, we also quantify
the impact of turning off this “correction”.

Implementation. We could have retrofitted congestion and RTT
sharing in TCP. But, the complexity of current TCP implementa-
tions, and the fact that TCP performs error recovery, congestion
control and flow control using a single window-based mechanism,
made this retrofit conceptually more complex. Given that our goal
was to understand the issues underlying congestion in mesh net-
works, incremental deployability was not paramount. So, at the
cost of some additional packet header overhead, we decided to ex-
plore a clean-slate approach. Our implementation uses a rate-based
protocol for congestion control (as described above), but uses an
implementation of TCP SACK for error recovery, a window-based
flow control mechanism exactly like TCP, and the same RTO esti-
mation as in TCP. In a later section, we show that our implemen-
tation does not bias the results in any way: if we remove our shar-
ing innovations from WCP, its performance is comparable to TCP.
There is no fundamental reason to consider a clean-slate design of
TCP: our choice was dictated by convenience.

3.2 WCPCap
An alternative to WCP is a protocol in which the network sends

explicit and precise feedback to the sources. In order to do this,
it is important to be able to estimate the available capacity within
a congested region, a non-trivial task. In this section, we describe
WCPCap, a protocol that provides explicit feedback (in much the
same way that XCP [29] and RCP [15] do for wired networks). An
important goal in designing WCPCap is to explore the feasibility of
capacity estimation using only local information, thereby making it
amenable to distributed implementation.

Determining the Achievable Link-Rate Region. At the core of
WCPCap is a technique to determine whether a given set of rates
is achievable in an 802.11 network; using this technique, WCPCap
estimates the available capacity and distributes this fairly among
relevant flows. This technique is presented in detail in our prior
work [28, 27]. For completeness, we describe the main idea of

the analytical methodology here, assuming IEEE 802.11 schedul-
ing with RTS/CTS in the network.

The precise goal of the technique is as follows. Given a link
i→ j, and a set of candidate aggregate ratesrl→m over linksl→ m
belonging toLi→ j (link i→ j belongs to this set), we seek a deci-
sion procedure that will enable us to determine if these rates are
achievable. The decision process assumes that the channel loss
rates (losses not due to collisions) of links inLi→ j, and the inter-
ference graph between links inLi→ j are known. Channel losses
are assumed to be independent Bernoulli random variables. The
interference model neglects some physical layer phenomena like
the capture effect [11] (where a receiver can correctly decode data
despite of interference), situations where transmitters send data de-
spite of interference and carrier sensing, and situations where re-
mote links in isolation do not interfere with the link under study,
but their aggregate effect may cause loses on the link [14]. The in-
terested reader is referred to [27] for a detailed description of all the
assumptions, an extensive evaluation of their effect on the accuracy
of the model, and a discussion on how to remove them.

The decision process first determines, for each link, the expected
service time in terms of (a) the collision probability at the receiver
and (b) the idle time perceived by the transmitter of that link. It does
this by solving an absorbing Markov Chain which tracks the evolu-
tion of the state of the transmitter during a packet service [28,27].
Given these service times, the given set of link-rates is achievable
only if

∑
e∈Ov

λeE[Se]≤U,∀v ∈V

whereV is the set of all nodes,Ov is the set of outgoing links from
a nodev ∈ V , λe is the packet arrival rate at linke, E[Se] is the
expected service time of a packet at linke, and theutilization factor
U is a fraction between 0 and 1 and reflects the desired utilization
of the channel. In practice,U is usually set to less than 1 to keep
the system stable. Otherwise, small non-idealities can drive the
network beyond the capacity region. Furthermore, this summation
is taken over all outgoing links because these links share the same
queue. This incorporates the following head of line blocking effect.
Consider the queue at node 5 in Figure3. A packet destined for
link 5→ 2 can get trapped behind a packet destined for link 5→ 6
which is not scheduled due to a simultaneous transmission at link
7→ 9.

The key challenge then, is to determine the collision and the idle
time probabilities, made difficult because these values for a link
depend on the rates at the neighboring links. We use the follow-
ing procedure: the sub-graph formed by the set of links inLi→ j is
decomposed into a number of two-link topologies and the collision
and idle probabilities for each two-link topology is derived. The
net probabilitity is found by appropriatelycombining the individ-
ual probabilities from each two-link topology. We now describe
these steps.

Two-link topologies. There can exist four types of two-link topolo-
gies in an 802.11 network [22, 21]. To describe these, we use the
following notation: letl1 and l2 denote the two links under con-
sideration and letTl j

andRl j
, j = 1,2, denote the transmitter and

the receiver of the respective links We use the Stack topology in-
troduced in Figure1 to give examples of each category.

Coordinated Stations: in which Tl1 andTl2 can hear each other.
For example, links 4→ 5 and 5→ 6 in the Stack topology form
a coordinated station.Near Hidden Links: in which Tl1 and Tl2
cannot hear each other, but there is a link betweenTl1 andRl2 as
well as one betweenTl2 and Rl1. For example, links 4→ 5 and
6→ 5 in the Stack topology form near hidden links.Asymmetric

Topology: in which Tl1 andTl2 as well asTl1 andRl2 cannot hear
each other, butTl2 andRl1 are within each other’s range. ThusTl2 is
aware of the channel state as it can hear the CTS fromRl1, butTl1 is
unaware of the channel state as it can hear neither the RTS nor the
CTS from the transmission onl2. For example, link 4→ 5 forms an
asymmetric topology with link 2→ 3. Far Hidden Links: in which
only Rl1 andRl2 are within each others’ range. For example, links
4→ 5 and 1→ 2 form a far hidden link topology.

The first step in our procedure is to decompose a general topol-
ogy into its constituent two-link topologies. This is easily achieved
by evaluating how each link inLi→ j interferes withi→ j, based on
the definitions stated in the previous paragraph.

Finding collision and idle probabilities for two-link topologies. The
next step is to find the collision and the idle probabilities for each
two-link topology.

In multi-hop topologies with RTS/CTS enabled, both RTS and
DATA packets can be lost due to collision. For coordinated sta-
tions and near hidden links, an RTS collision takes place if the two
links start transmitting at the same time. For near hidden links,
an RTS collision can also take place if a node starts transmitting
an RTS while an RTS transmission is ongoing on the other link.
For asymmetric topologies where transmitters have an incomplete
view of the channel, and for far hidden links, the receiver of the link
will not send back a CTS whenever there is a transmission ongoing
at the other link. By similar arguments, it is easy to see that, for
DATA packets, collisions cannot happen in coordinated stations or
near hidden links, but can happen for asymmetric topologies and
far hidden links.

Finally, the idle probability for each link can be derived based on
the following observation. The channel around the transmitter of a
link is busy if there is a transmission ongoing at any one of the fol-
lowing links: links which form a coordinated station, a near hidden
link or an asymmetric topology with the link under consideration
having a complete view of the channel.

We will describe the basic derivation steps for these probabilities
when we discuss how to combine the individual probabilities from
each two-edge topology. However, for brevity, we will omit the
analytical formulas and their complete derivations. The interested
reader is referred to [28,27] for details.

Combining collision and idle probabilities. The final step is to
combine the probabilities obtained from each two-link topology.
This step must account for the dependence between the neighbor-
ing links. For example, in the Stack topology links 2→ 3 and
2→ 1 which are both inL4→5, cannot be scheduled simultaneously
because they have the same transmitter, and hence the individual
probabilities from these two two-link topologies cannot be com-
bined independently. To understand when individual probabilities
can be combined independently and when they cannot, we consider
two cases.

The first case corresponds to the situations where probabilities
can be independently combined. The RTS collision probability due
to coordinated station and near hidden links, and the DATA colli-
sion probability due to asymmetric topologies and far hidden links
belong to this case. In all these situations, the corresponding com-
putation depends on the probability of two (or more) transmitters
starting transmission at the same time. The probability of this event
in turn depends on the probability of the backoff counters at these
links being equal to a specific value. Letpe

w0
denote the probability

that the backoff counter at linke is equal to 0. And letλe andE[Se]
denote the packet arrival rate and expected packet service time at

link e. Then, one can show that

λeE[Se]
2

Wm +1
≤ pe

w0
≤ λeE[Se]

2
W0 +1

,

whereW0 is the minimum backoff window value andWm is the
maximum backoff window value. These two bounds can be used
to compute the required probabilities with high accuracy.

The second case is more involved. The corresponding compu-
tation depends on the probability of the event that there is no on-
going transmission among a set of links. The RTS collision prob-
ability due to asymmetric and far hidden links and the idle proba-
bility belong to this category. For example, for link 4→ 5 in the
Stack topology, to find the RTS collision probability, one needs to
find the probability that there is no ongoing transmission on links
1→ 2,2→ 3,3→ 2,2→ 1,7→ 8,8→ 9,9→ 8 and 8→ 7. These
probabilities cannot be independently combined. Here are two ex-
amples of dependencies between these links which require careful
handling. If two links interfere with each other, like links 1→ 2
and 2→ 3, then they cannot be simultaneously scheduled. If two
links do not interfere with each other, like 2→ 3 and 8→ 9, then
they can be indepedently scheduled given that none of the links
which interfere with both (links 4→ 5,5→ 6,6→ 5 and 5→ 4)
are transmitting. In general, letXe denote the event that there is a
transmission going on at edgee, N denote a set of edges,Ns denote
a subset ofN, andSNs denote the set of edges which interfere with
all the edges inNs. Then, basic probability dictates that

P(∪en∈NXen) = ∑
ei∈N

P(Xei)− ∑
ei,e j∈N

P(Xei ∩Xe j)

+ . . .+(−1)|N|−1 P(∩ei∈NXei),

and to compute the individual terms in this expression note that
P(∩ei∈Ns Xei) = 0 if any two edges inNs interfere with each other,
and it equals

(

∏
ei∈Ns

P(Xei)

)

/

(

1− ∑
ek∈SNs

P(Xek)

)|Ns|−1

otherwise. Finally, note thatP(Xe) = KeλeTs whereKe is the aver-
age number of times a packet is transmitted (including retransmis-
sions) andTs is the average packet transmission time.

We have briefly summarized the intuition behind the derivation
of the collision and idle probabilities of each link when RTS/CTS
is used. We omit a discussion of the derivation in the absence of
RTS/CTS: a similar reasoning applies, but we only need to consider
DATA packet collisions.

As we have said before, once the collision and idle probabili-
ties are known at each link, we can compute the service times and
determine whether a given set of rates is achievable.

Estimating available bandwidth. WCPCap uses the achievable
rate computation technique to estimate achievable bandwidth and
give precise rate feedback to sources. Conceptually, each router
maintains, for each outgoing linki→ j, a rateRi→ j which denotes
the maximum rate allowable for a flow passing through the link.
However, a flow traversingi→ j is actually only allowed to trans-
mit at the minimum (denotedRmin

i→ j) of all ratesRk→l such thatk→ l
belongs toLi→ j (intuitively, at the most constraining rate over all
links that share channel capacity withi→ j). The rate feedback is
carried in the packet header. When a packet traversesi→ j, the
router sets the feedback field toRmin

i→ j if Rmin
i→ j is lower than the cur-

rent value of the field. This feedback rate is eventually delivered
to the source in an end-to-end acknowledgement packet, and the

source uses this value to set its rate. Thus the source sets its rate
to the smallest allowable rate in the wireless neighborhoods that it
traverses.

Ri→ j for each link is updated everyk ·rttSmax_avg
i→ j , whererttSmax_avg

i→ j
is the shared RTT defined in Section3.1andk is a parameter which
trades-off the response time to dynamics for lower overhead. The
duration between two successive updates ofRi→ j is referred to as
an epoch. During each epoch, transmitteri measuresxi→ j, the ac-
tual data rate over linki→ j andni→ j, the number of flows travers-
ing link i→ j. Usingxk→l andnk→l for all k→ l in Li→ j transmitter
i computes the new value ofRi→ j (denoted byRnew

i→ j) to be used in
the next time epoch, and broadcastsxi→ j, ni→ j, andRnew

i→ j to all
nodes inLi→ j.

We now describe howRnew
i→ j is determined (Figure4). Note that

the transmitteri has xk→l andnk→l for all links k→ l in Li→ j. It
uses this information, and the methodology described above, to de-
termine the maximum value ofδ such that the rate vector~x shown
in Figure4 is achievable . (δ can have a negative value if the cur-
rent rates in the neighborhood are not achievable.) Then, nodei sets
Rnew

i→ j to Ri→ j +ρδ if δ is positive, elseRnew
i→ j is set toRi→ j +δ . We

use a scaling factorρ while increasing the rate to avoid big jumps,
analogous to similar scaling factors in XCP and RCP. On the other
hand, we remain conservative while decreasing the rate. Each
node independently computesRk→l for its links. These computa-
tions do not need to be synchronized, and nodes use the most recent
information from their neighbors for the computation.

The computational overhead of the WCPCap algorithm is very
low. To determineRnew

i→ j, we perform a binary search to find the
maximum value ofδ such that the rate vector~x is achievable. Each
iteration decomposesLi→ j into two-link topologies, computes col-
lision and idle probabilities for each two-link topology, and com-
bines the results. Overall, the algorithm requires a logarithmic
number of iterations whose complexity is polynomial in|Li→ j|. In
practical topologies the cardinality ofLi→ j is small. For exam-
ple, in our experiments (run on 3.06GHz Linux boxes) determining
Rnew

i→ j takes as much time as it takes to send a data packet. Since
each epoch consists of about 30 data packet transmissions and a
singleRnew

i→ j computation, the computational overhead per epoch is
very low.

Finally, we note that, if naively designed, WCPCap can impose
significant communication overhead. For each linki→ j, the fol-
lowing information needs to be transmitted to all nodes inLi→ j
once every epoch: the maximum RTT across the flows passing
through the link, the actual data rate at the link, the number of flows
passing through the link andRi→ j. There are ways to optimize this,
by quantizing the information or reducing the frequency of updates,
but we have left these to future work. Instead, in our simulations,
we assume that all the relevant information is available at each node
without cost, since our goal has been to understand whether avail-
able bandwidth estimation using only local information is plausibly
implementable in wireless networks.

4. SIMULATION RESULTS
In this section we evaluate the performance of WCP and WCP-

Cap in simulation, and in the next we report on results from real-
world experiments of WCP.

4.1 Methodology
We have implemented WCP and WCPCap using the Qualnet

simulator [3] version 3.9.5. Our WCP implementation closely fol-
lows the description of the protocol in Section3.1. Our WCPCap
implementation, on the other hand, does not simulate the exchange

Every k · rttSmax_avg
i→ j sec

Find max δ such that
~x← (xk→l +nk→lδ for k→ l ∈ Li→ j)
is achievable

Rnew
i→ j←

{

Ri→ j +ρδ δ > 0
Ri→ j +δ δ ≤ 0

Broadcast Rnew
i→ j, xi→ j and ni→ j
to all links in Li→ j

Figure 4: Pseudo-code for rate controller at linki→ j

of control messages at the end of each epoch; rather, this control in-
formation is made available to the relevant simulated nodes through
a central repository. This ignores the control message overhead in
WCPCap, so our simulation results overestimate WCPCap perfor-
mance. This is consistent with our goal, which has been to explore
the feasibility of a wireless capacity estimation technique.

All our simulations are conducted using an unmodified 802.11b
MAC (DCF). We use default parameters for 802.11b in Qualnet
unless stated otherwise. Auto-rate adaption at the MAC layer is
turned-off and the rate is fixed at 11Mbps. Most of our simulations
are conducted with zero channel losses (we report on one set of
simulations with non-zero channel losses), although packet losses
due to collisions do occur. However, we adjusted the carrier sensing
threshold to reduce interference range to equal transmission range
in order to generate interesting topologies to study.

On this set of topologies (described below), we run bulk trans-
fer flows for 200 seconds for WCP, WCPCap, and TCP. Our TCP
uses SACK with ECN, but with Nagle’s algorithm and the delayed
ACK mechanism turned off; WCP implements this feature set. (We
have also evaluated TCP-Reno on our topologies. The results are
qualitatively similar.) Congestion detection for all three schemes
uses the average queue size thresholding technique discussed in
Section3.1. Other parameters used during the runs are given in
Table1. We discuss the choice of parameterU later, but our choice
of α is conservative, ensuring small rate increases over the range of
timescales we see in our topologies. This choice ofα also works
in our real-world experiments, but more experimentation is neces-
sary to determine a robust choice ofα . For each topology we show
results averaged over 10 runs.

Parameter Value
Congestion Threshold(K) 4

EWMA Weight (wq) 0.02
Router Buffer size 64 packets

Packet Size 512 bytes
Additive Increase Factor (α) 0.1

Utilization Factor (U) 0.7
WCPCap epoch duration constant (k) 10

WCPCap scale factor (ρ) 0.1

Table 1: Parameters used in simulations

We measure the goodput achieved by each flow in a given topol-
ogy by TCP, WCP, and WCPCap, and compare these goodputs with
the optimal max-min rate allocations for each topology. To com-
pute these allocations, we observe that the methodology in Sec-
tion 3.2 can be applied to a complete topology to characterize the
achievable rate region for a collection of flows. Intuitively, we can
view the service times and arrival rates on links, together with flow
conservation constraints, as implicitly defining the achievable rate
region for the topology. (Essentially, this is how we derive the
achievable rate region in Figure2). The max-min allocations can

then be found by searching along the boundary of the achievable
rate region. Using this methodology, we are also able to find the
congested links in a given topology: we simply simulate the opti-
mal max-min rate allocations, and identify congested links as those
whose queues are nearly fully utilized.

To understand the performance of WCP and WCPCap, we ex-
amine four topologies, with associated flows, as shown in Fig-
ures1, 5, 6, and7. Nodes connected by a solid line can hear each
others’ transmissions. (Since, in our simulations, we equalize in-
terference range and transmission range, only nodes that can hear
each others’ transmissions share channel capacity with each other.)
Arrows represent flows in the network. Congested links (deter-
mined using the methodology described above) are indicated with
a symbol depicting a queue. Each of these four topologies has qual-
itatively different congestion characteristics, as we discuss below.

Stack (Figure1) consists of a single congested region. 4→ 5
is the congested link, and all other links in the topology belong to
L4→5. Diamond (Figure5) contains two intersecting congested
regions. 1→ 2 and 7→ 8 are both congested links.L1→2 includes
all outgoing links from nodes 1 to 6 andL7→8 includes all outgoing
link from node 4 to 9. Half-Diamond (Figure 6) contains two
overlapping congested regions. 4→ 5 and 7→ 8 are congested,
andL7→8 is a subset ofL4→5. Chain-Cross (Figure7) contains
two congested regions, with four flows traversing one region, and
two flows the other. 1→ 2 is a congested link, but 6→ 7 does not
belong toL1→2. 4→ 5 and 4→ 3 are also congested, andL4→5
does include 6→ 7.

Finally, since WCP uses a rate-based implementation, it is im-
portant to ensure that itsbaseline performance is comparable to
that of TCP. To validate this, we ran TCP and WCP on a chain
of 15 nodes. WCP gets 20%less throughput on this topology; it
is less aggressive than TCP. We also disabled RTT and congestion
sharing in WCP, and ran this on all our topologies. In general, this
stripped-down version of WCP gets qualitatively the same perfor-
mance as TCP. For example, Figure8 shows the goodputs achieved
by each flow for the Stack topology. As expected, WCP without
congestion and RTT sharing starves the middle flow, just as TCP
does, although to a lesser extent since its rate increases are less
aggressive than that of TCP.

4.2 Performance of WCP and WCPCap
We now discuss the performance of WCP and WCPCap for each

of our topologies. In what follows, we use the notationfi→ j to
denote a flow from nodei to nodej.

Stack (Figure9). The optimal (max-min) achievable rates for this
topology are 300 kbps for all the flows. TCP, as described earlier,
starves the middle flows (f4→6). Intuitively, in TCP, flows travers-
ing links that experience more congestion (4→ 5) react more ag-
gressively to congestion, leading to lower throughput. WCP identi-
fies the single congestion region in this topology (L4→5) and shares
the rate equally among all the flows assigning about 250 kbps to
all the flows. WCPCap, with its more precise rate feedback, as-
signs slightly higher rates to all the flows while still being max-min
fair. Intuitively, one would expect the performance difference be-
tween WCPCap and WCP to be higher than what it is, since the
latter’s AIMD mechanism is more conservative than one which can
directly estimate capacity. However, as we discuss below, WCP-
Cap also needs to be conservative, setting its utilization factorU to
0.7. Finally, WCP is within 20% and WCPCap is within 15% of
the optimal achievable rate for this topology.

Diamond (Figure10). The optimal achievable rates for this topol-
ogy are 325 kbps for all the flows. TCP starves flows traversing the
congested links in this topology. By contrast, WCPCap, assigns

300 kbps to all the flows achieving max-min fairness. WCP, how-
ever, assignsf4→6 approximately half the rate assigned to the other
flows. This topology consists of two congested regions (L1→2 and
L7→8) and f4→6 traverses both congested regions while the other
two flows traverse only one. Roughly speaking,f4→6 receives con-
gestion notification twice as often as the other flows, and therefore
reacts more aggressively. Thus, WCP isnot max-min fair. WCP
appears to assign rates to flows in inverse proportion to the number
of congested regions traversed.

Half-Diamond (Figure11). The optimal max-min rates for this
topology are 315 kbps forf4→6 and f7→9, and 335 kbps forf1→3;
the asymmetry in this topology permitsf1→3 to achieve a slightly
higher rate. Relative to other topologies, TCP performs fairly well
for this topology. WCPCap assigns max-min fair rates to all the
flows, and is within 14% of the optimal. WCP assigns compara-
ble rates tof4→6 and f7→9 as they traverse both congested regions
L4→5 andL7→8. f1→3 achieves a higher rate as it traverses only
one congested region (L4→5) but its rate is not twice the rate of
the other flow . We conjecture that WCP achieves a form of fair-
ness in which the rate allocations depend not only on the number
of congested regions a flow passes through, but also the “intensity”
of congestion in those regions. Understanding the exact nature of
fairness achieved by WCP is left to future work.

Chain-Cross (Figure12). The optimal rates for this topology are
420 kbps forf6→7 and 255 kbps for all other flows. TCP starves the
flows traversing the most congested link 1→ 2. WCPCap achieves
a max-min allocation which is within 15% of the optimal. WCP
achieves rates that depend inversely on the number of congested
regions traversed, withf1→7 achieving lower goodput andf1→2,
f10→11, f8→9 achieving equal rates. WCP is able to utilize avail-
able network capacity efficiently;f6→7 does not traverseL1→2 and
gets higher goodput.

4.3 Discussion

Impact of physical losses. Thus far, we have assumed perfect
wireless links in our simulations (losses do occur in our simula-
tions due to collisions, however). Figure13shows the performance
of WCP and WCPCap for the Stack with a loss rate of 10% on each
link. The results are qualitatively similar to Figure9. As expected,
the goodputs drop by about 10% for WCP and WCPCap, as do
the optimal rates. We have conducted similar experiments for the
other topologies, but omit their results for brevity. We also illus-
trate the efficacy of goodput correction in dealing with packet loss
(Section3.1). Figure14 shows the goodputs achieved in the Stack
topology with 10% loss on all links, when goodput correction is
disabled. Goodputs are no longer fair.

In-Network Rate Adaptation. The WCP AIMD rate control al-
gorithms described in Section3.1 are implemented at the source.
These algorithms can also be implemented per flow within the net-
work. Although this approach has scaling implications, it is still
interesting to consider. It can reduce the feedback delay in control
decisions, and a router can avoid reacting to congestion when the
rate of a flow traversing it is lower than the rates of flows travers-
ing the congested link. Indeed, in our simulations, such a scheme
performs uniformly better than WCP implemented at the source.
For example, for Chain-Cross (Figure15) f1→7 gets the same rate
as other flows inL1→2 improving overall fairness while preserving
the higher goodput allocated tof6→7.

Choice ofU in WCPCap . Recall thatU denotes the maximum al-
lowed utilization per queue in WCPCap. In simulations, we set its
value to 0.7. We now justify this choice. The analysis described in

1

2

3

4 5 6

8

7

8

9

Figure 5: Diamond topology

1

2

3

4 5 6

8

7

8

9

Figure 6: Half-Diamond topology

9

8

41 2 3

10

5 6 7

11

10

Figure 7: Chain-Cross topology

400

500

600

700

800

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

1→3

4→6

7→9

0

100

200

300

TCP WCP-strip

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

Figure 8: WCP without congestion and
RTT sharing, Stack

400

500

600

700

800

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

1→3

4→6

7→9

0

100

200

300

TCP WCP WCPCap Optimal

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

Figure 9: WCP and WCPCap, Stack

400

500

600

700

800

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

1→3

4→6

7→9

0

100

200

300

TCP WCP WCPCap Optimal

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

Figure 10: WCP and WCPCap, Dia-
mond

Section3.2 derives the achievable rate region without losses and
hence assumes infinite buffer sizes and infinite MAC retransmit
limits. Assuming no losses, operating very close to the capacity
region will result in a large delays. However, in practice both the
buffer sizes and MAC retransmit limits are finite. Hence, these
large delays can result in significant losses. For this reason, we op-
erate the network well within the capacity region; the parameterU
controls how far the network is from the boundary of the capacity
region. To understand how to set its value, we plot the end-to-end
delay of the middle flow,f4→6, in the Stack topology (which passes
through the congested link 4→ 5) (Figure16). We varyU from 0
to 1 and assume very large buffer sizes and MAC retransmit limits.
Ideally one would setU near the knee of the curve, which is around
0.8. We choose a conservative estimate and set it to 0.7.

RTS/CTS and WCP.Our simulation results have used RTS/CTS
so far. In Section3.1, we asserted that our definition of congestion
in a wireless network is insensitive to the use of RTS/CTS. Indeed,
WCP without RTS/CTS (Figure17) performs just as well as (and
gets higher goodputs than) WCP with it (Figure9). Other topolo-
gies show similar results, except for Half-Diamond (Figure18).
Without RTS/CTS, 1→ 2 and 7→ 8 become the most congested
links in Half-Diamond, changing the dynamics of congestion in this
topology. Qualitatively, this topology starts to resemble the Dia-
mond, with two overlapping congested regions. A lower goodput
for f7→9 than f1→3 results from additional links 4→ 8 and 6→ 8
in L7→8 which reduces the capacity in the region.

RTS/CTS and WCPCap. Disabling RTS/CTS has deeper impli-
cations for WCPCap. Consider the chain-cross topology of Fig-
ure 7. Without RTS/CTS, increasing the rate of flow 6→ 7 will
cause more DATA collisions on link 4→ 5 as 4 is unaware of an
ongoing transmission on link 6→ 7. As a result, more retrans-
missions occur on the link 4→ 5, and the total data rate (includ-
ing retransmissions) on this link increases. Note that an increase

in data rate on link 4→ 5 will cause more DATA collisions on
link 2→ 3 as 2 is unaware of any ongoing transmission on link
4→ 5. This will reduce the capacity of link 2→ 3. Hence, the
effective capacity of edge 2→ 3 decreases even though none of
the flows passing through its neighborhood has changed its rate.
Hence, finding the residual capacity at a link without rate informa-
tion from non-neighboring links will overestimate the residual ca-
pacity. (By contrast, when RTS/CTS is used, the much smaller RTS
packets collide, resulting in a less pronounced overestimation.) We
can avoid overestimating the residual capacity by using a smaller
value ofU (Section3.2). For example, reducing it to 0.6 from 0.7
avoids any overestimation of capacity for the chain-cross topology.
We use this value ofU for generating results for WCPCap with-
out RTS/CTS (Figure17 and18). However, the choice ofU now
depends to a greater extent on topology, and complete topology in-
formation is needed to compute it.

Delay and Convergence.Since WCPCap keeps the network within
the achievable rate region, it is able to maintain smaller queues than
WCP. Hence, WCPCap has smaller average end-to-end delay than
WCP (Figure19). The one exception is the Chain-Cross: since the
throughput of flows 1→ 7 and 6→ 7 is much higher in WCPCap
than WCP, the total traffic over 6→ 7 is much higher for WCP-
Cap (Figure12). This results in a higher delay for these two flows.
Finally, WCPCap converges quickly; for all our topologies, it con-
verges to within 10% of the final rate in less than 10 seconds. We
have omitted these results for brevity.

WCP performance under network dynamics.In the simulations
above, all flows start and end at the same time. Figure20 shows
the instantaneous sending raterm (Section3) of all the flows in the
Chain-Cross topology for a simulation where this is not the case.
All flows start at 0s and end at 200s except for f1→7 which starts
at 25s and ends at 100s. In addition to being fair while all flows
are active, WCP assigns fair rates to all the flows before the ar-

300

400

500

600
G

o
o

d
p

u
t

(k
b

it
s/

se
c)

1→3

4→6

7→9

0

100

200

TCP WCP WCPCap Optimal

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

Figure 11: WCP and WCPCap, Half-
Diamond

800

1000

1200

1400

1600

1800

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

1→2

1→7

6→7

8→9

10→11

0

200

400

600

800

TCP WCP WCPCap Optimal

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

Figure 12: WCP and WCPCap, Chain-
Cross

300

400

500

600

700

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

1→3

4→6

7→9

0

100

200

300

TCP WCP WCPCap Optimal

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

Figure 13: WCP and WCPCap over
lossy links, Stack

150

200

250

300

350

400

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

1→3

4→6

7→9

0

50

100

150

WCP WCP w/o Goodput

Correction

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

Figure 14: WCP without goodput cor-
rection, Stack

300

400

500

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

1→2

1→7

6→7

8→9

10→11

0

100

200

At-source In-network

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

Figure 15: WCP with in-network rate
adaptation, Chain-Cross

60

80

100

120

-t
o

-E
n

d
 D

e
la

y
 (

m
s)

0

20

40

0 0.2 0.4 0.6 0.8 1

A
v

e
ra

g
e

 E
n

d
-

Utilization Factor (U)

Figure 16: Delay as a function ofU for
f4→6, Stack

rival and after the departure off1→7. A more extensive evalua-
tion of WCP dynamics, such as its robustness to routing changes,
is left to future work. Also left to future work is an evaluation of
WCPCap’s performance under network dynamics: our current sim-
ulation of WCPCap does not simulate control message exchange
(Section4.1) and it would be premature at this stage to understand
its dynamics.

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200

In
st

an
ta

n
eo

u
s

R
at

e
o
f

F
lo

w
s

(p
k
ts

/s
ec

)

Time (sec)

1->2
1->7
6->7
8->9

10->11

Figure 20: WCP with delayed flow arrival

4.4 Summary
WCPCap achieves max-min fair rate allocation for all topolo-

gies we study, while WCP allocates rates that appear to depend
inversely on the number of congested neighborhoods traversed by
a flow and the intensity of congestion in those regions. WCPCap
is within 15% of the optimal for all topologies. For the Stack topol-
ogy (where the max-min rate coincides with the proportionally fair
rate), WCP is within 20% of the optimal. In addition, WCPCap

exhibits low delay and fast convergence.
However, while WCP is implementable (indeed, we describe re-

sults from an implementation in the next section), some challenges
need to be addressed before the same can be said of WCPCap: the
potentially high overhead of control information exchange, the sen-
sitivity of the choice ofU to the topology, and the ability to estimate
the amount of interference from external wireless networks so that
the collision probabilities can be correctly computed. None of these
challenges are insurmountable, and we plan to address these as part
of future work.

5. EXPERIMENTS
We have implemented WCP, and, in this section, report its per-

formance on a real-world testbed. We first validate our simulations
by recreating the Stack topology and showing that our experimen-
tal results are qualitatively similar to those obtained in simulation.
We then demonstrate that WCP performs as expected on a 14 node
topology running five flows in a real-world setting.

Our experiments use an ICOP eBox-3854, a mini-PC running
Click [38] and Linux 2.6.20. Each node is equipped with a Senao
NMP-8602 wireless card running the madwifi driver [1] and an
omni-directional antenna. Wireless cards are operated in 802.11b
monitor (promiscuous) mode at a fixed transmission rate of 11Mbps
with 18dBm transmission power. RTS/CTS is disabled for the ex-
periments. We empirically determined, at the beginning of each
experiment, that the packet loss rate on each link was less than
10%.

On these nodes, we runexactly the same code as in our simula-
tor by wrapping it within appropriate user-level elements in Click.
Furthermore, all experimental parameters are exactly the same as in
the simulation (Table1), with one exception: we use receiver buffer

400

500

600

700

800

900
G

o
o

d
p

u
t

(k
b

it
s/

se
c)

1→3

4→6

7→9

0

100

200

300

400

TCP WCP WCPCap Optimal

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

Figure 17: WCP and WCPCap with no
RTS/CTS, Stack

300

400

500

600

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

1→3

4→6

7→9

0

100

200

TCP WCP WCPCap Optimal

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

Figure 18: WCP and WCPCap with no
RTS/CTS, Half-Diamond

10

15

20

25

30

35

40

45

D
e

la
y

 (
m

s)

WCP

WCPCap

0

5

10

1
→

3

4
→

6

7
→

9

1
→

3

4
→

6

7
→

9

1
→

3

4
→

6

7
→

9

1
→

2

1
→

7

6
→

7

8
→

9

1
0

→
1

1

Stack Diamond Half-

Diamond

Chain-Cross

Figure 19: Average end-to-end delay
with WCP and WCPCap

300

400

500

600

700

800

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

1→3

4→6

7→9

0

100

200

TCP WCP Max-Min

Achievable

Rate

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

Figure 21: Results from Stack experi-
mental topology

10

26

12

1315

22

24

23

16

18

10

26

12

1315

22

24

23

16

18

26

14

1315

11

20

19

26

14

1315

11

20

19

Figure 22: Arbitrary experimental
topology

300

400

500

600

700

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

10→14

12→23

15→26

22→20

18→11

0

100

200

300

TCP WCP

G
o

o
d

p
u

t
(k

b
it

s/
se

c)

Figure 23: Results from arbitrary
topology

sizes of 2048 packets so that flows are not receiver-limited. For re-
peatability, all experiments were performed between midnight and
8am. All our experiments ran for 500 seconds and we show results
averaged over five runs.

We re-created the Stack topology by carefully placing nine nodes
across three floors, and by removing the antennas on some nodes.
Figure 21 shows that the experimental results are similar to the
simulation results (Figure9). Furthermore, WCP achieves good-
puts within 20% of an empirically determined maximum achiev-
able rate. (We do not use our theory for determining optimal rates,
because we cannot accurately estimate the amount of interference
from external wireless networks.) We determine this by sending
CBR flows at increasing rate till the goodput of flowf4→6 is less
than 90% of the goodput of the other two flows.

Finally, to examine the performance of WCP in a real-world set-
ting, we created an arbitrary topology of 14 nodes by placing them
on one floor of our office building (Figure22). To create a multi-
hop topology, we covered antennas of nodes with aluminium foil.
On this topology, we ran five flows as shown. Figure23 shows the
end-to-end goodput achieved by the flows. TCP starvesf15→26,
f22→20 or f18→11 during different runs. By contrast, WCP is able
to consistently assign fair goodputs to all five flows in each run of
the experiment!

6. CONCLUSIONS AND FUTURE WORK
Congestion control has vexed networking researchers for nearly

three decades. Congestion control in wireless mesh networks is,
if anything, harder than in wired networks. In this paper, we have
taken significant steps towards understanding congestion control
for mesh networks. Our main contributions include: the first near-

optimal implementation of fair and efficient rate control for mesh
networks; a plausibly implementable available capacity estimation
technique that gives near-optimal max-min fair rates for the topolo-
gies we study; and, insights into the impact of various factors (e.g.,
RTS/CTS, whether rate control is implemented within the network
or at the source) on performance.

Much work remains. First, we plan to understand the kind of fair-
ness achieved by WCP. Second, we intend to investigate efficient
implementations of WCPCap. Finally, we intend to explore how to
account for the loss of capacity caused by interference, the impact
of mobility on WCP and WCPCap’s performance, how to support
short-lived flows, and whether modifications to the 802.11 MAC
layer can improve performance. We are also interested in the more
general question of whether there exists a family of rate control
schemes that can operate closer to the boundary of the achievable
rate region than either WCP or WCPCap.

7. ACKNOWLEDGEMENTS
We would like to thank our shepherd Lili Qiu and the anonymous

reviewers for their suggestions. Our thanks to Horia Vlad Balan for
his help with real-world experiments.

8. REFERENCES
[1] MadWifi. http://madwifi.org/.
[2] MIT Roofnet. http://pdos.csail.mit.edu/roofnet/.
[3] Qualnet. http://www.scalable-networks.com/products/.
[4] F. Abrantes and M. Ricardo. A simulation study of xcp-b performance

in wireless multi-hop networks. InProc. of Q2SWinet, 2007.
[5] U. Akyol, M. Andrews, P. Gupta, J. Hobby, I. Saniee, and A.Stolyar.

Joint scheduling and congestion control in mobile ad hoc networks. In
Proc. of IEEE INFOCOM, 2008.

[6] P. Bahl, A. Adya, J. Padhye, and A. Wolman. Reconsidering Wireless
Systems with Multiple Radios.ACM SIGCOMM Computer Commu-
nications Review, 2004.

[7] A. Bakre and B. Badrinath. I-TCP: indirect TCP for mobile hosts. In
Proc. of IEEE ICDCS, 1995.

[8] H. Balakrishnan, S. Seshan, and R. H. Katz. Improving reliable trans-
port and handoff performance in cellular wireless networks.Wireless
Networks, 1995.

[9] G. Bianchi. Performance Analysis of the IEEE 802.11 Distributed Co-
ordination Function.IEEE Journal on Selected Areas in Communica-
tions, 2000.

[10] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash. A feed-
back based scheme for improving tcp performance in ad-hoc wireless
networks. InProc. of IEEE ICDCS, 1998.

[11] H. Chang, V. Misra, and D. Rubenstein. A general model andanalysis
of physical layer capture in 802.11 networks. InProceedings of IEEE
INFOCOM, 2006.

[12] C. Cordeiro, S. Das, and D. Agrawal. Copas: dynamic contention-
balancing to enhance the performance of tcp over multi-hop wireless
networks. InProc. of IEEE ICCCN, 2002.

[13] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-
throughput path metric for multi-hop wireless routing. InProc. of
ACM MobiCom, 2003.

[14] S. M. Das, D. Koutsonikolas, Y. C. Hu, and D. Peroulis. Characteriz-
ing multi-way interference in wireless mesh networks. InProceedings
of ACM WinTECH Workshop, 2006.

[15] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown. Pro-
cessor Sharing Flows in the Internet. InProc. of IWQoS, 2005.

[16] A. Eryilmaz and R. Srikant. Fair Resource Allocation in Wireless Net-
works using Queue-length based Scheduling and Congestion Control.
In Proc. of IEEE INFOCOM, 2005.

[17] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno
and SACK TCP.ACM SIGCOMM Comput. Commun. Rev., 1996.

[18] S. Floyd and V. Jacobson. Random Early Detection gateways for Con-
gestion Avoidance.IEEE/ACM Transactions on Networking, 1993.

[19] Z. Fu, H. Luo, P. Zerfos, S. Lu, L. Zhang, and M. Gerla. Theimpact of
multihop wireless channel on tcp performance. InIEEE Transactions
on Mobile Computing, 2005.

[20] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. Theimpact of
multihop wireless channel on TCP throughput and loss.Proc. of IEEE
INFOCOM, 2003.

[21] M. Garetto, T. Salonidis, and E. Knightly. Modeling Per-flow
Throughput and Capturing Starvation in CSMA Multi-hop Wireless
Networks. InProc. of IEEE INFOCOM, 2006.

[22] M. Garetto, J. Shi, and E. Knightly. Modeling Media Access in Em-
bedded Two-Flow Topologies of Multi-hop Wireless Networks. In
Proc. of ACM MobiHoc, 2005.

[23] G. Holland and N. Vaidya. Analysis of TCP performance over mobile
ad hoc networks. InProc. of ACM MobiCom, 1999.

[24] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating congestion in
wireless sensor networks. InProc. of ACM SenSys, 2004.

[25] V. Jacobson. Congestion avoidance and control. InProc. of ACM SIG-
COMM, 1988.

[26] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact ofinter-
ference on multi-hop wireless network performance. InProc. of ACM
MobiCom, 2003.

[27] A. Jindal and K. Psounis. Characterizing the Achievable Rate Region
of Wireless Multi-hop Networks with 802.11 Scheduling.USC Tech-
nical Report CENG-2007-12, submitted to IEEE/ACM Transactions
on Networking, 2007.http://tinyurl.com/5heujd.

[28] A. Jindal and K. Psounis. Achievable Rate Region and Optimality of
Multi-hop Wireless 802.11-Scheduled Networks. InProc. of the In-
formation Theory and Applications Workshop (ITA), 2008.

[29] D. Katabi, M. Handley, and C. Rohrs. Congestion controlfor high
bandwidth-delay product networks. InProc. of ACM SIGCOMM,
2002.

[30] D. Kim, C.-K. Toh, and Y. Choi. TCP-BuS: improving TCP perfor-
mance in wireless ad hoc networks.IEEE International Conference
on Communications, 2000.

[31] M. Kodialam and T. Nandagopal. Characterizing the capacity region
in multi-radio multi-channel wireless mesh networks. InProc. of ACM

MobiCom, 2005.
[32] V. Kumar, M. M.V, S. Parthasarathy, and A. Srinivasan. Algorithmic

Aspects of Capacity in Wireless Networks. InProc. of ACM SIGMET-
RICS, 2005.

[33] S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive Vir-
tual Queue (AVQ) Algorithm for Active Queue Management. InProc.
of ACM SIGCOMM, 2001.

[34] Y. Li, L. Qiu, Y. Zhang, R. Mahajan, and E. Rozner. Predictable Per-
formance Optimization for Wireless Networks. InProc. of ACM SIG-
COMM, 2008.

[35] X. Lin and N. B. Shroff. Joint Rate Control and Scheduling in Multi-
hop Wireless Networks. InProc. of IEEE Conference on Decision and
Control, 2004.

[36] J. Liu and S. Singh. Atcp: Tcp for mobile ad hoc networks.IEEE
Journal on Selected Areas in Communications, 2001.

[37] C. Lochert, B. Scheuermann, and M. Mauve. A survey on congestion
control for mobile ad hoc networks: Research Articles.Wirel. Com-
mun. Mob. Comput., 2007.

[38] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The Click mod-
ular router.SIGOPS Oper. Syst. Rev., 1999.

[39] M. Neely and E. Modiano. Capacity and Delay Tradeoffs for Ad-Hoc
Mobile Networks.IEEE Transactions on Information Theory, 2005.

[40] G. Nychis, Sardesai, and S. Seshan. Analysis of XCP in a Wireless
Environment.Carnegie Mellon University, 2006.

[41] J. Padhye, J. Kurose, D. Towsley, and R. Koodli. A model based TCP-
friendly rate control protocol. InProc. of NOSSDAV, 1999.

[42] J. Paek and R. Govindan. RCRT: rate-controlled reliable transport for
wireless sensor networks. InProc. of ACM SenSys, 2007.

[43] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis.
Interference-aware fair rate control in wireless sensor networks. In
Proc. of ACM SIGCOMM, 2006.

[44] G. Sharma, A. Ganesh, and P. Key. Performance Analysis of Con-
tention Based Medium Access Control Protocols. InProc. of IEEE
INFOCOM, 2006.

[45] P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivakumar, and
V. Bharghavan. WTCP: a reliable transport protocol for wireless wide-
area networks.Wireless Networks, 2002.

[46] A. L. Stolyar. Maximizing queueing network utility subject to stabil-
ity: greedy primal-dual algorithm.Queueing Systems, 2005.

[47] Y. Su and T. Gross. WXCP: Explicit Congestion Control forWireless
Multi-Hop Networks. InProc. of IWQoS, 2005.

[48] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and R. Sivakumar.
ATP: A Reliable Transport Protocol for Ad Hoc Networks.IEEE
Transactions on Mobile Computing, 2005.

[49] K. Tan, F. Jiang, Q. Zhang, and X. Shen. Congestion Control in Multi-
hop Wireless Networks.IEEE Transactions on Vehicular Technology,
2006.

[50] L. Tassiulas and A. Ephremides. Stability properties ofconstrained
queueing systems and scheduling policies for maximum throughput
in multihop radio networks.IEEE Transactions on Automatic Control,
1992.

[51] K. Xu, M. Gerla, L. Qi, and Y. Shu. Enhancing TCP fairnessin ad
hoc wireless networks using neighborhood RED. InProc. of ACM
MobiCom, 2003.

[52] X. Yu. Improving TCP performance over mobile ad hoc networks by
exploiting cross-layer information awareness. InProc. of ACM Mobi-
Com, 2004.

	1 Introduction
	2 Related Work
	3 Design
	3.1 WCP
	3.2 WCPCap

	4 Simulation Results
	4.1 Methodology
	4.2 Performance of WCP and WCPCap
	4.3 Discussion
	4.4 Summary

	5 Experiments
	6 Conclusions and Future Work
	7 Acknowledgements
	8 References

