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t |A randomized algorithm is proposed for approxi-mating the Least Re
ently Used (LRU) s
heme forpage repla
ement in 
a
hes. In its basi
 version theproposed algorithm performs as follows: When a newpage is to be evi
ted from the 
a
he, the algorithmrandomly samples N pages from the 
a
he and re-pla
es the least re
ently used page from the sample.We then study the following enhan
ement of the basi
version: After repla
ing the least re
ently used pagefrom the sample, the next M < N least re
ently usedpages are retained for the next iteration. And whenthe next repla
ement is to be performed, the algo-rithm obtains N�M new samples from the 
a
he, andrepla
es the least re
ently used page from the N �Mnew samples and the M previously retained. Boththe basi
 and enhan
ed versions perform very well
ompared to existing random repla
ement s
hemes.Rather surprisingly, we �nd that the enhan
ed s
heme
an be exponentially better 
ompared to the basi
s
heme for very small values of M � 1. As may beexpe
ted, we �nd that as M be
omes large the per-forman
e be
omes worse. This suggests that, for agiven N , there is an optimal value of M 1.I. Introdu
tionThe page repla
ement problem in 
a
hes pertains to theevi
tion rule for de
iding whi
h page 
urrently in the 
a
heshould be evi
ted to make room for a new page. If all thepage requests are known in advan
e, the best strategy is toevi
t that item whose next request o

urs furthest in the fu-ture. This o�ine strategy is known as the MIN algorithm[5℄. Typi
ally, it is not possible to know future requests. Al-gorithms that assume no knowledge of future requests andbase their de
isions only on past requests are 
alled onlinealgorithms. The optimum online algorithm is known to bethe Least Re
ently Used (LRU) algorithm [5℄. LRU works byrepla
ing that page in the 
a
he whose most re
ent requesto

urred furthest in the past. We shall refer to this distin-guished page as the oldest page. Heuristi
ally, LRU's strategyis based on the assumption that the probability a given pagewill be a

essed in the future is proportional to how re
entlyit was a

essed for the last time in the past.The implementation of LRU requires keeping tra
k of theage of all pages. Usually, this is done by a linked list or a sta
k.However, this entails a large amount of work sin
e, wheneverthere is a 
a
he a

ess, up to six pointers need to be updated[7℄. Due to its 
omplexity and need for hardware support LRU1This resear
h is supported in part by a Stanford Graduate Fel-lowship, a TERMAN Fellowship, and a DARPA grant.

is not implemented in most of today's systems [7℄. Instead,in pra
ti
e, heuristi
 algorithms that approximate LRU areused. But simpli
ity has 
ome at the 
ost of performan
e.A 
lass of algorithms known for their simpli
ity and goodperforman
e are the so-
alled randomized algorithms. For
a
he repla
ement a parti
ularly simple algorithm is the Ran-dom Repla
ement (RR) algorithm. The RR algorithm drawsone page at random from the 
a
he and repla
es it [5℄. Amore 
ompli
ated algorithm that performs better than RR isthe Marker algorithm [2℄. This algorithm asso
iates a markerbit to ea
h item of the 
a
he and initializes its value to zero.When an item from the 
a
he is a

essed, the marker bit isset to one. The repla
ement strategy randomly 
hooses onepage from among those whose marker is zero and evi
ts it. Afurther improvement of the marker algorithm is proposed in[4℄.We propose to 
ombine the bene�ts of both the LRU andthe RR s
hemes. To this end the basi
 version of our s
hemedraws N pages from the 
a
he and evi
ts the oldest page inthe sample. We then re�ne this s
heme by observing that by
arrying the M next oldest samples from one iteration to thenext, tilts the distribution of the age of the sample towardsthe older side and thus one expe
ts the re�nement to performbetter. More pre
isely, the re�nement works as follows: Afterrepla
ing the least re
ently used page from the sample, thenextM < N least re
ently used pages are retained for the nextiteration. And when the next repla
ement is to be performed,the algorithm obtains N �M new samples from the 
a
he,and repla
es the least re
ently used page from the N�M newsamples and the M previously retained.Taking the probability that the page being repla
ed is notfrom the oldest nth per
entile of the pages in the 
a
he as ameasure of performan
e, we �nd through analysis and sim-ulation that there is indeed an improvement when M > 0.Rather surprisingly, the improvement 
an be exponential forvalues of M as small as 1, 2 or 3. Further, for typi
al valuesof N and n, the performan
e hardly improves as M in
reasesfrom 3. In fa
t, as M grows beyond N=2, we observe thatthe performan
e degrades linearly. This suggests that thereis an optimal value of M for whi
h the above probability isminimized and thus the performan
e is best.The rest of the paper is organized as follows. Se
tion IIpresents the details of the algorithm, and Se
tion III presentssimulation results of its performan
e. In Se
tion IV an analyt-i
al model is derived, its solution is 
omputed and 
omparedwith the results of simulation. Se
tion V investigates the ques-tion of how many samples one should keep at ea
h iteration ofthe algorithm in order to get the optimum performan
e, andSe
tion VI outlines a proof of the argument that there alwaysexists su
h an optimum. Finally, Se
tion VII 
on
ludes thepaper.



II. A dis
ussion of the algorithmThe basi
 version of the algorithm performs as follows.Whenever a page is to be evi
ted, N samples are drawn atrandom from the population and the oldest (least re
entlyused) of these is evi
ted. An error is said to have o

ured ifthe evi
ted page does not belong to the oldest nth per
entileof all the pages in the 
a
he, for some desirable values of n.Thus, the goal of the algorithms we 
onsider is to minimize theprobability of error. With a slight abuse of language we shallsay that a page is old if it belongs to the oldest nth per
entile.It is useful to 
ondu
t a qui
k analysis of the basi
 versionof the algorithm des
ribed above so as to have a ben
hmarkfor 
omparison. A

ordingly, suppose that all the pages aredivided into 100=n bins a

ording to age and N pages aresampled uniformly and independently from the 
a
he. Thenthe probability of error equals (1�n=100)N , 2 whi
h approxi-mately equals e�nN=100. By in
reasing N this probability 
anbe made to approa
h 0 exponentially fast.For example, when n = 5% by 
hoosing N to equal 60the probability of error is around 0.05. One asks whether itis possible to get the same or better performan
e by draw-ing fewer samples. We �nd that it is indeed possible to dothis by 
arrying good samples from one iteration to the next;rather surprisingly, the improvement in performan
e 
an beexponentially better.We now des
ribe the general pro
edure for 
arrying samplesfrom one iteration to the next. As before, we begin by ran-domly 
hoosing N samples. After repla
ing the least re
entlyused page from the sample, the next M < N least re
entlyused pages are retained for the next iteration. And when thenext repla
ement is to be performed, the algorithm obtainsN �M new samples from the 
a
he, and repla
es the leastre
ently used page from the N �M new samples and the Mpreviously retained. This pro
edure is repeated whenever apage needs to be evi
ted. In pseudo-
ode we have:if (evi
tion) {If (first_iteration) {sample(N);evi
t_oldest;keep_oldest(M);} else {sample(N-M);evi
t_oldest;keep_oldest(M);}} One potential drawba
k of the enhan
ed version (M > 0)as 
ompared to the basi
 version (M = 0) is that it is possiblefor a page that is retained to be a

essed between iterations.Su
h a page would no longer be old and the quality of the pagesretained degrades. However, we have observed that the 
han
eof this event o

uring are very small 3, and hen
e assume thatpages whi
h are retained are not a

essed between iterations.Our assumption is also supported by the general philosophy2Although the algorithm samples without repla
ement, the val-ues of N are so small 
ompared to the overall size of the 
a
hethat (1�n=100)N almost exa
tly equals the probability of error. Atypi
al 
a
he has 32K pages and the samples a
quired are usuallyaround 60.3Simulations with real page request tra
es show that our s
hemeis very 
lose to LRU, whi
h supports our observation.
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Fig. 1: Evi
tion takes pla
e prior to resampling.of any eÆ
ient repla
ement poli
y: The older a page is, theless likely it is to be a

essed. Sin
e, by design, the samplesretained between iterations are the oldest possible, we expe
tthat this issue will not signi�
antly a�e
t the performan
e ofthe algorithm or our 
al
ulations.III. SimulationsThis se
tion presents the results of various simulations thatindi
ate how the randomized algorithm performs.Re
all that a page is said to be old if it belongs to the oldestnth per
entile of all pages in the 
a
he. We will work with atotal sample size of N , of whi
hM(0 �M < N) were retainedfrom the previous iteration. Of all the N samples some willbe old, belonging either to the M retained from the previousiteration or to the N �M fresh samples. We are interested inestimating (through simulation and analysis) the probabilityof error, whi
h is the probability that none of the N pages inthe sample is old.We pro
eed by introdu
ing some helpful notation. Of theM samples retained at the end of the (m� 1)th iteration, letYm�1 (0 � Ym�1 � M) be the number of old pages. At thebeginning of the mth iteration, the algorithm 
hooses N �Mfresh samples. Let Am, 0 � Am � N �M be the numberof old pages 
oming from the N �M fresh samples. In themth iteration, the algorithm repla
es one page out of the totalYm�1 +Am available (so long as Ym�1 +Am > 0) and retainsM pages for the next iteration. Note that it is possible for thealgorithm to dis
ard some old pages be
ause of the memorylimit of M that we have imposed.De�ne Xm = max(M + 1; Ym�1 + Am) to be number of\useful" old pages; that is, these are pre
isely the old pagesthat the algorithm would ever repla
e at evi
tion times. IfXm = 0, then the algorithm 
ommits an error at the mthevi
tion. It is easy to see that Xm is a Markov 
hain andsatis�es the re
ursionXm = max(M + 1; Xm�1 � 1(Xm�1>0) +Am);and that Am is binomially distributed with parameters N�Mand n=100. Figure 1 is a s
hemati
 of the above embeddedMarkov 
hain.In the rest of this se
tion we present plots showing how theerror, P0 = P (Xm = 0), varies with M . The probabilities aretaken after the Markov 
hain has equilibirated. In order forthe s
heme to have reasonably good performan
e, the numberof samples should be at least equal to the number of bins.Thus, we have 
hosen N � 100=n.Figure 2 shows a 
olle
tion of plots of P0 versus M for dif-ferent values of N and n. The minimum value of P0 is alsowritten on top of ea
h �gure. We note that given N and nthere are values of M > 0 for whi
h the error probability isvery small 
ompared to its value at M = 0. We also observethat by in
reasing the number of samples, N , the error proba-bility 
an be made to be as 
lose to zero as desired. And there
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Fig. 2: Probability of error (P0=probability not an old pageis repla
ed) versus number of pages retained (M).
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rease of P0 as M in
reasesis no need for N to be a lot bigger than the number of bins100=n, sin
e even for N = 2 � 100=n the minimum probabilityof error is extremely small.Figure 3 zooms in on P0 for small values of M . We noti
ethat for small values ofM there is a huge redu
tion in the errorprobability and that the minimum is a
hieved for a small M .As M in
reases further the performan
e deteriorates linearly.In this parti
ular example, the optimum appears for M = 5and there is no signi�
ant improvement for M > 3, while forM > 6 the performan
e deteriorates.The exponential improvement for small M 
an be intu-itively explained as follows. For 
on
reteness, suppose thatM = 1 and that the Markov 
hain Xm has been runningfrom time �1 onwards (hen
e it is in equlibrium at any timem � 0). The relationshipfXm = 0g � fAm = 0;Am�1 � 1gimmediately gives that P (Xm = 0) � P (Am = 0)[P (Am�1 =0) + P (Am�1 = 1)℄. Supposing that N � 3 � 100=n, P (Am =0) � e�3 and P (Am = 1) � 3e�3. Therefore P (Xm = 0) �4e�6.
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Fig. 4: Average value of Xm as a fun
tion of MCompare this number with the 
aseM = 0, where P (Xm =0) = P (Am = 0) � e�3, and the 
laimed exponential improve-ment is apparent.Figure 4 is a plot of the average value of Xm as a fun
tionof M . This information 
ould be used to avoid sampling atevery time page repla
ement. For example, if for a parti
ularvalue of M , E(Xm) is pretty high, then one 
ould take freshsamples every other iteration.A key point to be dedu
ed from the above plots is thatan a

eptable performan
e 
an be a
hieved with very smallvalues of M and reasonably small values of N . From an im-plementation point of view, this is important sin
e it showsthat it is not ne
essary to sample a lot and it is enough toremember very little. IV. AnalysisIn this se
tion we derive and solve a model that des
ribesthe behavior of the algorithm pre
isely. We also 
ompare theresults of the model with the simulation results.The system is modeled by the Markov 
hain, Xm, whi
htra
ks the number of old pages in the sample just priorto the mth page repla
ement. For a �xed N and n, letpk(M) = P (Am = k), k = 0; : : : ; N �M , denote the probabil-ity that k old pages are a
quired during a sampling. When itis 
lear from the 
ontext we will abbreviate pk(M) to pk. Amis binomially distributed with parameters N �M and n=100:pk = � N �Mk � � (n=100)k � (1� n=100)N�M�kLet TM denote the transition matrix of the 
hain Xm for agiven value ofM . The form of the matrix depends on whetherM is smaller or larger than N=2. Sin
e we are interested insmall values of M , we shall suppose that M � N=24. It is4The plots in Se
tion III suggest that the M at whi
h P0 is aminimum is less than N=2.
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Fig. 5: A plot of the probability of error versus M , simu-lation (dotted 
urve, P0) and analysis (solid 
urve,�0).immediate that TM is irredu
ible and has the general formTM = 0BBBBBBBB� p0 p1 p2 : : : pM 1�PMi=0 pip0 p1 p2 : : : pM 1�PMi=0 pi0 p0 p1 : : : pM�1 1�PM�1i=0 pi0 0 p0 : : : pM�2 1�PM�2i=0 pi... . . . ...0 0 0 : : : p0 1� p0
1CCCCCCCCA (1)As may be inferred from the transition matrix, the Markov
hain models a system with one deterministi
 server, bino-mial arrivals, and a �nite queue size equal to M (the system'soverall size is M + 1). An interesting feature of the systemis that as M in
reases, the average arrival rate, E(Am) =(N �M)n=100, de
reases linearly and the maximum queuesize in
reases linearly.Let � = (�0; : : : ; �M+1) denote the stationary distributionof the 
hainXm. Let A = (aij) be an (M+2)�(M+2)matrix,with aij = 1 for all i; j. Let a = (ai) be a 1� (M + 2) matrixwith ai = 1 for all i. Sin
e TM is irredu
ible, I � TM + A isinvertible [6℄ and � = a � (I � TM +A)�1: (2)Figure 5 
ompares the probability of error obtained fromsimulation, P0, to that obtained by analysis, �0, for variousvalues ofM . The slight di�eren
e between the two lines in the�gure are due to simulation error, sin
e the simulation resultsdepend slightly on the seed used in the random number gener-ator. Additionally, due to the nature of the s
heme, no matterhow many iterations we run, the 
onvergen
e of the simulationis os
illatory and not monotone. Figure (6) presents anotherexample. Here, we 
hoose N = 40 and 100=5 = 20 and thusexpe
t the s
heme to work very well. Indeed, for a wide rangeof values of M the probability of error is very 
lose to zero.The minimum �0 a
hieved is 1:6763�5 .A further improvement on the s
heme may result by vary-ingM on the 
y, based on how good samples we happen to getat ea
h iteration. If the samples are very good (old) it makessense to keep all of them while if they are bad (young) it makessense not to keep any of them. To this end, it is interesting to
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Fig. 6: Comparison between simulation and analysis for rel-atively large N and n.investigate how far we are from the best possible poli
y. Ide-ally, one 
ould sample until one gets an old page that belongsto the oldest bin, use it, and stop sampling. This is impossiblein pra
ti
e sin
e it is not possible to know if a page belongsto the bin with the oldest pages. However, one 
ould usethis ideal s
heme to 
ompare the average number of samples,N 0 , it requires, to the number of samples, N , required by ours
heme. It is easy to see that N 0 is the mean of a geometri
distribution and equals 1=(n=100) = 100=n. To 
ompensatefor the fa
t that the ideal s
heme a
hieves zero probabilityof error, one might 
ompare N to N 00 = N 0 � min(P0). Forexample, in Figure 2, N = 30, 40, 60, 70; N 0 = 25, 33.3, 50,50; and N 00 = 23.2,31.5,48.3, and 49.9.V. On the optimal value of MIn this se
tion we investigate optimal values of M for givenN and n. That su
h an M always exists follows from the
onvexity of �0(M), whi
h is established in the next se
tion.Formally, the optimal value of M is de�ned asM� = argminf�0(M)g:We note that even though the form of the transition matrix,TM , allows one to write down an expression for �0(M), thereis no 
losed form solution from whi
h one might 
al
ulateM�.Thus, we numeri
ally solve Equation (2), 
ompute �0(M) forall M � N=2, and read o� M� for various values of N and n,as done in Table 1. This table is to be read as follows: Forexample, suppose N=30 and n = 4%, the minimum value of�0 is 0.073172 and it is a
hieved at M� = 4.From Table 1 it 
an be 
on
luded that �0(M�) is extremelysmall in 
ertain 
ases, but it is a
hieved at relatively largevalues of M�. Pra
ti
ally, in these 
ases it makes sense to usea value of M =M+ < M� su
h that �0(M+) is very 
lose to�0(M�). Table 2 presents suitable values of M+ by requiringthat M+ = minfM �M� : j�0(M)� �0(M�)j < 10�3g:The above dis
ussion presents results regarding the opti-mum value of M given N and n. We now give some insightsas to why there always exists su
h a value and motivate thenext se
tion.



N min(�0) M�n=5 n=10 - n=5 n=10 -20 0.19456 0.00129 - 2 5 -n=4 n=8 - n=4 n=8 -30 0.073172 2:4454�6 - 4 9 -n=3 n=6 n=9 n=3 n=6 n=940 0.055794 8:0595�8 4:6629�15 5 12 16n=2 n=4 n=6 n=2 n=4 n=650 0.13538 1:8678�6 9:5368�14 4 13 1860 0.035002 8:3933�11 - 7 19 -70 0.0025402 - - 11 - -80 3:1553�5 - - 16 - -Tab. 1: Optimum values of �0 and M for various N and nN minpra
ti
al(�0) M+n=5 n=10 - n=5 n=10 -20 0.19456 0.0016899 - 2 4 -n=4 n=8 - n=4 n=8 -30 0.073172 0.0003229 - 4 3 -n=3 n=6 n=9 n=3 n=6 n=940 0.055794 0.00026642 0.00070757 5 3 1n=2 n=4 n=6 n=2 n=4 n=650 0.13538 0.00045789 0.00019338 4 4 260 0.035002 0.00036471 - 7 3 -70 0.0035109 - - 8 - -80 0.00090908 - - 6 - -Tab. 2: Pra
ti
ally optimum values of �0 and M for variousN and nGiven an arbitrary N and n, let A and B be two instanti-ations of the s
heme proposed, for M and M +1 respe
tively.Let �A be the average arrival rate of old pages from resam-pling in system A and �B be the arrival rate of old pages fromresampling in system B. Obviously, (N �M)n=100 = �A >(N �M � 1)n=100 = �B and thus system A on average getsmore old pages from resampling than system B. However, thequeue size of system A is smaller than that of B by one pla
e.In other words, there will be some 
ases where QA will be fulland old pages will be dropped, whereas QB will be able toa

ommodate an extra old page from a previous iteration orfrom resampling. When M in
reases from 0 to 1, the positivee�e
t from the in
rease in the queue size is greater than thenegative e�e
t from the de
rease in the arrival rate (for typi
alvalues of N and n). As M in
reases it is less likely that over-
ows o

ur and the dominating phenomenon is the de
rease ofthe arrival rate. This trade-o� between high arrival rate andhigh queue size 
auses �0 to be a 
onvex fun
tion of M , andthus there is an optimal value of M at whi
h �0 is minimized.Figure 7 demonstrates the 
onvexity of �0 as a fun
tion ofM for di�erent values of n and a �xed value of N . We alreadyestablished in Se
tion III the exponential de
rease of �0 forsmall M , when the samples are good. The linear in
rease of�0 for large M , evident from Figure 7, is explained as follows:As M in
reases, the average arrival rate de
reases and thequeue size in
reases. As a result, the queue never over
owsand the only phenomenon into play is the linear de
rease ofthe arrival rate. For a queue that never over
ows, �0 = 1��=�and thus �0 in
reases linearly as a fun
tion of M .Heuristi
ally, one 
an make the following observation re-garding the value of M� for typi
al values of N and n. Asthe ratio N=(100=n) in
reases, �0(M�) de
reases and M� in-
reases. In other words, the more samples there are 
omparedto the bins, the smaller the minimum is and the older thesamples tend to be. Thus, it makes sense to retain more ofthem for future iterations, resulting in a larger M�.
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tion of M .VI. On the 
onvexityIn this se
tion we outline a proof of the fa
t that �0(M)is a 
onvex fun
tion of M , from whi
h the existen
e of anoptimum value of M follows.As remarked earlier, �0(M) 
annot be expressed as a fun
-tion of the elements of TM in a 
losed form. Thus, it is notpossible to establish its 
onvexity dire
tly. We shall thereforerelate �0(M) to the quantity, D(t;M), whi
h 
ounts the num-ber of over
ows in the time interval [0; t℄ from a bu�er of sizeM . We shall establish the 
onvexity of �0(M) by establishingthat D(t;M) for our system is 
onvex in M for ea
h t > 0.The 
onvexity of D(t;M) follows from two lemmas presentedbelow. Due to limitations of spa
e we 
an neither present theproofs of the lemmas nor elaborate the exa
t nature of the
onne
tion between �0(M) and D(t;M) in this paper.Consider a queueing system with a bu�er of size M . Sup-pose that the bu�er is empty at time 0. Let D(t;M) be thenumber of over
ows from the bu�er in the interval [0; t℄. Wewant to examine the behavior of D(t;M) for di�erent bu�ersizes. Note that D(t;M) is obviously a de
reasing fun
tion ofM sin
e the larger the queue, the less the number of over
ows.Lemma 1 D(t;M) is a 
onvex fun
tion of M .Re
all that our system is modelled as a queueing systemwith one deterministi
 server and binomial arrivals. The av-erage arrival rate �(M) = (N � M)n=100. Therefore, thearrival pro
ess depends on M . As we vary the bu�er size M ,the arrivals also vary. However, in Lemma 1 the arrival anddeparture pro
esses of the queueing system are assumed toremain un
hanged for the various values of M . Thus, Lemma1 does not imply the 
onvexity of D(t;M) dire
tly.Lemma 2 D(t;M) is a 
onvex fun
tion of M when the av-erage arrival rate �(M) = �a �M + b for a; b > 0.Lemma 2 establishes the 
onvexity of D(t;M) for our sys-tem. Finally, from Lemma 2 the 
onvexity of �0(M) is estab-lished:Theorem 1 The probability of error �0(M) is 
onvex in M .



VII. Con
lusionsIn this work we have introdu
ed a randomized algorithmfor approximating LRU. Two versions of the algorithm arestudied through simulation and analysis. We �nd that 
ar-rying a small amount of information regarding good samplesfrom one iteration to the next, leads to a dramati
 improve-ment in performan
e. By a judi
ious of parameters (the totalnumber of samples, N , and the number of good samples, M ,retained from one iteration to the next) we �nd that LRU 
anbe approximated as 
losely as desired.We are 
urrently implementing versions of the s
hemesmentioned here in real 
a
hes. Both versions of the algo-rithm assume that ea
h item of the 
a
he is time stampedwith the last time that was a

essed. For page 
a
hes, updat-ing time stamps 
an be very expensive. Thus, approximationssimilar to the 
lo
k algorithm [7℄ may be needed for a pra
-ti
al implementation. For web 
a
hes updating time stampsis 
heap. Exa
t LRU is possible in this 
ase either by usinga sta
k and updating pointers, or by using the time stampsdire
tly. Thus, an approximation of LRU is not 
ru
ial inthe web 
a
hes 
ase. However, it has re
ently been shownthat web 
a
hes s
hemes whi
h take into a

ount the size and
ost of a do
ument outperform LRU [1℄. These algorithms(e.g. the greedy dual-size algorithm [1℄) require extra datastru
tures to be maintained that in
rease their 
ost a lot in
omparison to LRU. The s
heme introdu
ed in this paper 
anapproximate these algorithms without the need for 
omplexdata stru
tures.In general, our s
heme 
an be used eÆ
iently wheneverthere is a large population of obje
ts from whi
h the \best"is to be 
hosen a

ording to some 
riterion.Referen
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