
2000 Conferene on Information Sienes and Systems, Prineton University, Marh 15-17, 2000A randomized ahe replaement sheme approximating LRUKonstantinos PsounisDept. of Eletrial Eng.Stanford UniversityStanford, CA 94305email:kpsounis�leland.stanford.edu Balaji PrabhakarDept. of Eletrial Eng. andComputer SieneStanford UniversityStanford, CA 94305email: balaji�isl.stanford.edu Dawson EnglerDept. of Eletrial Eng. andComputer SieneStanford UniversityStanford, CA 94305email: engler�sl.stanford.eduAbstrat |A randomized algorithm is proposed for approxi-mating the Least Reently Used (LRU) sheme forpage replaement in ahes. In its basi version theproposed algorithm performs as follows: When a newpage is to be evited from the ahe, the algorithmrandomly samples N pages from the ahe and re-plaes the least reently used page from the sample.We then study the following enhanement of the basiversion: After replaing the least reently used pagefrom the sample, the next M < N least reently usedpages are retained for the next iteration. And whenthe next replaement is to be performed, the algo-rithm obtains N�M new samples from the ahe, andreplaes the least reently used page from the N �Mnew samples and the M previously retained. Boththe basi and enhaned versions perform very wellompared to existing random replaement shemes.Rather surprisingly, we �nd that the enhaned shemean be exponentially better ompared to the basisheme for very small values of M � 1. As may beexpeted, we �nd that as M beomes large the per-formane beomes worse. This suggests that, for agiven N , there is an optimal value of M 1.I. IntrodutionThe page replaement problem in ahes pertains to theevition rule for deiding whih page urrently in the aheshould be evited to make room for a new page. If all thepage requests are known in advane, the best strategy is toevit that item whose next request ours furthest in the fu-ture. This o�ine strategy is known as the MIN algorithm[5℄. Typially, it is not possible to know future requests. Al-gorithms that assume no knowledge of future requests andbase their deisions only on past requests are alled onlinealgorithms. The optimum online algorithm is known to bethe Least Reently Used (LRU) algorithm [5℄. LRU works byreplaing that page in the ahe whose most reent requestourred furthest in the past. We shall refer to this distin-guished page as the oldest page. Heuristially, LRU's strategyis based on the assumption that the probability a given pagewill be aessed in the future is proportional to how reentlyit was aessed for the last time in the past.The implementation of LRU requires keeping trak of theage of all pages. Usually, this is done by a linked list or a stak.However, this entails a large amount of work sine, wheneverthere is a ahe aess, up to six pointers need to be updated[7℄. Due to its omplexity and need for hardware support LRU1This researh is supported in part by a Stanford Graduate Fel-lowship, a TERMAN Fellowship, and a DARPA grant.

is not implemented in most of today's systems [7℄. Instead,in pratie, heuristi algorithms that approximate LRU areused. But simpliity has ome at the ost of performane.A lass of algorithms known for their simpliity and goodperformane are the so-alled randomized algorithms. Forahe replaement a partiularly simple algorithm is the Ran-dom Replaement (RR) algorithm. The RR algorithm drawsone page at random from the ahe and replaes it [5℄. Amore ompliated algorithm that performs better than RR isthe Marker algorithm [2℄. This algorithm assoiates a markerbit to eah item of the ahe and initializes its value to zero.When an item from the ahe is aessed, the marker bit isset to one. The replaement strategy randomly hooses onepage from among those whose marker is zero and evits it. Afurther improvement of the marker algorithm is proposed in[4℄.We propose to ombine the bene�ts of both the LRU andthe RR shemes. To this end the basi version of our shemedraws N pages from the ahe and evits the oldest page inthe sample. We then re�ne this sheme by observing that byarrying the M next oldest samples from one iteration to thenext, tilts the distribution of the age of the sample towardsthe older side and thus one expets the re�nement to performbetter. More preisely, the re�nement works as follows: Afterreplaing the least reently used page from the sample, thenextM < N least reently used pages are retained for the nextiteration. And when the next replaement is to be performed,the algorithm obtains N �M new samples from the ahe,and replaes the least reently used page from the N�M newsamples and the M previously retained.Taking the probability that the page being replaed is notfrom the oldest nth perentile of the pages in the ahe as ameasure of performane, we �nd through analysis and sim-ulation that there is indeed an improvement when M > 0.Rather surprisingly, the improvement an be exponential forvalues of M as small as 1, 2 or 3. Further, for typial valuesof N and n, the performane hardly improves as M inreasesfrom 3. In fat, as M grows beyond N=2, we observe thatthe performane degrades linearly. This suggests that thereis an optimal value of M for whih the above probability isminimized and thus the performane is best.The rest of the paper is organized as follows. Setion IIpresents the details of the algorithm, and Setion III presentssimulation results of its performane. In Setion IV an analyt-ial model is derived, its solution is omputed and omparedwith the results of simulation. Setion V investigates the ques-tion of how many samples one should keep at eah iteration ofthe algorithm in order to get the optimum performane, andSetion VI outlines a proof of the argument that there alwaysexists suh an optimum. Finally, Setion VII onludes thepaper.



II. A disussion of the algorithmThe basi version of the algorithm performs as follows.Whenever a page is to be evited, N samples are drawn atrandom from the population and the oldest (least reentlyused) of these is evited. An error is said to have oured ifthe evited page does not belong to the oldest nth perentileof all the pages in the ahe, for some desirable values of n.Thus, the goal of the algorithms we onsider is to minimize theprobability of error. With a slight abuse of language we shallsay that a page is old if it belongs to the oldest nth perentile.It is useful to ondut a quik analysis of the basi versionof the algorithm desribed above so as to have a benhmarkfor omparison. Aordingly, suppose that all the pages aredivided into 100=n bins aording to age and N pages aresampled uniformly and independently from the ahe. Thenthe probability of error equals (1�n=100)N , 2 whih approxi-mately equals e�nN=100. By inreasing N this probability anbe made to approah 0 exponentially fast.For example, when n = 5% by hoosing N to equal 60the probability of error is around 0.05. One asks whether itis possible to get the same or better performane by draw-ing fewer samples. We �nd that it is indeed possible to dothis by arrying good samples from one iteration to the next;rather surprisingly, the improvement in performane an beexponentially better.We now desribe the general proedure for arrying samplesfrom one iteration to the next. As before, we begin by ran-domly hoosing N samples. After replaing the least reentlyused page from the sample, the next M < N least reentlyused pages are retained for the next iteration. And when thenext replaement is to be performed, the algorithm obtainsN �M new samples from the ahe, and replaes the leastreently used page from the N �M new samples and the Mpreviously retained. This proedure is repeated whenever apage needs to be evited. In pseudo-ode we have:if (evition) {If (first_iteration) {sample(N);evit_oldest;keep_oldest(M);} else {sample(N-M);evit_oldest;keep_oldest(M);}} One potential drawbak of the enhaned version (M > 0)as ompared to the basi version (M = 0) is that it is possiblefor a page that is retained to be aessed between iterations.Suh a page would no longer be old and the quality of the pagesretained degrades. However, we have observed that the haneof this event ouring are very small 3, and hene assume thatpages whih are retained are not aessed between iterations.Our assumption is also supported by the general philosophy2Although the algorithm samples without replaement, the val-ues of N are so small ompared to the overall size of the ahethat (1�n=100)N almost exatly equals the probability of error. Atypial ahe has 32K pages and the samples aquired are usuallyaround 60.3Simulations with real page request traes show that our shemeis very lose to LRU, whih supports our observation.
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Fig. 1: Evition takes plae prior to resampling.of any eÆient replaement poliy: The older a page is, theless likely it is to be aessed. Sine, by design, the samplesretained between iterations are the oldest possible, we expetthat this issue will not signi�antly a�et the performane ofthe algorithm or our alulations.III. SimulationsThis setion presents the results of various simulations thatindiate how the randomized algorithm performs.Reall that a page is said to be old if it belongs to the oldestnth perentile of all pages in the ahe. We will work with atotal sample size of N , of whihM(0 �M < N) were retainedfrom the previous iteration. Of all the N samples some willbe old, belonging either to the M retained from the previousiteration or to the N �M fresh samples. We are interested inestimating (through simulation and analysis) the probabilityof error, whih is the probability that none of the N pages inthe sample is old.We proeed by introduing some helpful notation. Of theM samples retained at the end of the (m� 1)th iteration, letYm�1 (0 � Ym�1 � M) be the number of old pages. At thebeginning of the mth iteration, the algorithm hooses N �Mfresh samples. Let Am, 0 � Am � N �M be the numberof old pages oming from the N �M fresh samples. In themth iteration, the algorithm replaes one page out of the totalYm�1 +Am available (so long as Ym�1 +Am > 0) and retainsM pages for the next iteration. Note that it is possible for thealgorithm to disard some old pages beause of the memorylimit of M that we have imposed.De�ne Xm = max(M + 1; Ym�1 + Am) to be number of\useful" old pages; that is, these are preisely the old pagesthat the algorithm would ever replae at evition times. IfXm = 0, then the algorithm ommits an error at the mthevition. It is easy to see that Xm is a Markov hain andsatis�es the reursionXm = max(M + 1; Xm�1 � 1(Xm�1>0) +Am);and that Am is binomially distributed with parameters N�Mand n=100. Figure 1 is a shemati of the above embeddedMarkov hain.In the rest of this setion we present plots showing how theerror, P0 = P (Xm = 0), varies with M . The probabilities aretaken after the Markov hain has equilibirated. In order forthe sheme to have reasonably good performane, the numberof samples should be at least equal to the number of bins.Thus, we have hosen N � 100=n.Figure 2 shows a olletion of plots of P0 versus M for dif-ferent values of N and n. The minimum value of P0 is alsowritten on top of eah �gure. We note that given N and nthere are values of M > 0 for whih the error probability isvery small ompared to its value at M = 0. We also observethat by inreasing the number of samples, N , the error proba-bility an be made to be as lose to zero as desired. And there



0 10 20 30
0

0.2

0.4

0.6

0.8

1

M

P
0

N=30,n=4%,min(P
0
)=0.0732

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

M

P
0

N=40,n=3%,min(P
0
)=0.0558

0 20 40 60
0

0.2

0.4

0.6

0.8

1

M

P
0

N=60,n=2%,min(P
0
)=0.0350

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

M

P
0

N=70,n=2%,min(P
0
)=0.0025

Fig. 2: Probability of error (P0=probability not an old pageis replaed) versus number of pages retained (M).
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MFig. 3: Rate of derease of P0 as M inreasesis no need for N to be a lot bigger than the number of bins100=n, sine even for N = 2 � 100=n the minimum probabilityof error is extremely small.Figure 3 zooms in on P0 for small values of M . We notiethat for small values ofM there is a huge redution in the errorprobability and that the minimum is ahieved for a small M .As M inreases further the performane deteriorates linearly.In this partiular example, the optimum appears for M = 5and there is no signi�ant improvement for M > 3, while forM > 6 the performane deteriorates.The exponential improvement for small M an be intu-itively explained as follows. For onreteness, suppose thatM = 1 and that the Markov hain Xm has been runningfrom time �1 onwards (hene it is in equlibrium at any timem � 0). The relationshipfXm = 0g � fAm = 0;Am�1 � 1gimmediately gives that P (Xm = 0) � P (Am = 0)[P (Am�1 =0) + P (Am�1 = 1)℄. Supposing that N � 3 � 100=n, P (Am =0) � e�3 and P (Am = 1) � 3e�3. Therefore P (Xm = 0) �4e�6.
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Fig. 4: Average value of Xm as a funtion of MCompare this number with the aseM = 0, where P (Xm =0) = P (Am = 0) � e�3, and the laimed exponential improve-ment is apparent.Figure 4 is a plot of the average value of Xm as a funtionof M . This information ould be used to avoid sampling atevery time page replaement. For example, if for a partiularvalue of M , E(Xm) is pretty high, then one ould take freshsamples every other iteration.A key point to be dedued from the above plots is thatan aeptable performane an be ahieved with very smallvalues of M and reasonably small values of N . From an im-plementation point of view, this is important sine it showsthat it is not neessary to sample a lot and it is enough toremember very little. IV. AnalysisIn this setion we derive and solve a model that desribesthe behavior of the algorithm preisely. We also ompare theresults of the model with the simulation results.The system is modeled by the Markov hain, Xm, whihtraks the number of old pages in the sample just priorto the mth page replaement. For a �xed N and n, letpk(M) = P (Am = k), k = 0; : : : ; N �M , denote the probabil-ity that k old pages are aquired during a sampling. When itis lear from the ontext we will abbreviate pk(M) to pk. Amis binomially distributed with parameters N �M and n=100:pk = � N �Mk � � (n=100)k � (1� n=100)N�M�kLet TM denote the transition matrix of the hain Xm for agiven value ofM . The form of the matrix depends on whetherM is smaller or larger than N=2. Sine we are interested insmall values of M , we shall suppose that M � N=24. It is4The plots in Setion III suggest that the M at whih P0 is aminimum is less than N=2.
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Fig. 5: A plot of the probability of error versus M , simu-lation (dotted urve, P0) and analysis (solid urve,�0).immediate that TM is irreduible and has the general formTM = 0BBBBBBBB� p0 p1 p2 : : : pM 1�PMi=0 pip0 p1 p2 : : : pM 1�PMi=0 pi0 p0 p1 : : : pM�1 1�PM�1i=0 pi0 0 p0 : : : pM�2 1�PM�2i=0 pi... . . . ...0 0 0 : : : p0 1� p0
1CCCCCCCCA (1)As may be inferred from the transition matrix, the Markovhain models a system with one deterministi server, bino-mial arrivals, and a �nite queue size equal to M (the system'soverall size is M + 1). An interesting feature of the systemis that as M inreases, the average arrival rate, E(Am) =(N �M)n=100, dereases linearly and the maximum queuesize inreases linearly.Let � = (�0; : : : ; �M+1) denote the stationary distributionof the hainXm. Let A = (aij) be an (M+2)�(M+2)matrix,with aij = 1 for all i; j. Let a = (ai) be a 1� (M + 2) matrixwith ai = 1 for all i. Sine TM is irreduible, I � TM + A isinvertible [6℄ and � = a � (I � TM +A)�1: (2)Figure 5 ompares the probability of error obtained fromsimulation, P0, to that obtained by analysis, �0, for variousvalues ofM . The slight di�erene between the two lines in the�gure are due to simulation error, sine the simulation resultsdepend slightly on the seed used in the random number gener-ator. Additionally, due to the nature of the sheme, no matterhow many iterations we run, the onvergene of the simulationis osillatory and not monotone. Figure (6) presents anotherexample. Here, we hoose N = 40 and 100=5 = 20 and thusexpet the sheme to work very well. Indeed, for a wide rangeof values of M the probability of error is very lose to zero.The minimum �0 ahieved is 1:6763�5 .A further improvement on the sheme may result by vary-ingM on the y, based on how good samples we happen to getat eah iteration. If the samples are very good (old) it makessense to keep all of them while if they are bad (young) it makessense not to keep any of them. To this end, it is interesting to
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Fig. 6: Comparison between simulation and analysis for rel-atively large N and n.investigate how far we are from the best possible poliy. Ide-ally, one ould sample until one gets an old page that belongsto the oldest bin, use it, and stop sampling. This is impossiblein pratie sine it is not possible to know if a page belongsto the bin with the oldest pages. However, one ould usethis ideal sheme to ompare the average number of samples,N 0 , it requires, to the number of samples, N , required by oursheme. It is easy to see that N 0 is the mean of a geometridistribution and equals 1=(n=100) = 100=n. To ompensatefor the fat that the ideal sheme ahieves zero probabilityof error, one might ompare N to N 00 = N 0 � min(P0). Forexample, in Figure 2, N = 30, 40, 60, 70; N 0 = 25, 33.3, 50,50; and N 00 = 23.2,31.5,48.3, and 49.9.V. On the optimal value of MIn this setion we investigate optimal values of M for givenN and n. That suh an M always exists follows from theonvexity of �0(M), whih is established in the next setion.Formally, the optimal value of M is de�ned asM� = argminf�0(M)g:We note that even though the form of the transition matrix,TM , allows one to write down an expression for �0(M), thereis no losed form solution from whih one might alulateM�.Thus, we numerially solve Equation (2), ompute �0(M) forall M � N=2, and read o� M� for various values of N and n,as done in Table 1. This table is to be read as follows: Forexample, suppose N=30 and n = 4%, the minimum value of�0 is 0.073172 and it is ahieved at M� = 4.From Table 1 it an be onluded that �0(M�) is extremelysmall in ertain ases, but it is ahieved at relatively largevalues of M�. Pratially, in these ases it makes sense to usea value of M =M+ < M� suh that �0(M+) is very lose to�0(M�). Table 2 presents suitable values of M+ by requiringthat M+ = minfM �M� : j�0(M)� �0(M�)j < 10�3g:The above disussion presents results regarding the opti-mum value of M given N and n. We now give some insightsas to why there always exists suh a value and motivate thenext setion.



N min(�0) M�n=5 n=10 - n=5 n=10 -20 0.19456 0.00129 - 2 5 -n=4 n=8 - n=4 n=8 -30 0.073172 2:4454�6 - 4 9 -n=3 n=6 n=9 n=3 n=6 n=940 0.055794 8:0595�8 4:6629�15 5 12 16n=2 n=4 n=6 n=2 n=4 n=650 0.13538 1:8678�6 9:5368�14 4 13 1860 0.035002 8:3933�11 - 7 19 -70 0.0025402 - - 11 - -80 3:1553�5 - - 16 - -Tab. 1: Optimum values of �0 and M for various N and nN minpratial(�0) M+n=5 n=10 - n=5 n=10 -20 0.19456 0.0016899 - 2 4 -n=4 n=8 - n=4 n=8 -30 0.073172 0.0003229 - 4 3 -n=3 n=6 n=9 n=3 n=6 n=940 0.055794 0.00026642 0.00070757 5 3 1n=2 n=4 n=6 n=2 n=4 n=650 0.13538 0.00045789 0.00019338 4 4 260 0.035002 0.00036471 - 7 3 -70 0.0035109 - - 8 - -80 0.00090908 - - 6 - -Tab. 2: Pratially optimum values of �0 and M for variousN and nGiven an arbitrary N and n, let A and B be two instanti-ations of the sheme proposed, for M and M +1 respetively.Let �A be the average arrival rate of old pages from resam-pling in system A and �B be the arrival rate of old pages fromresampling in system B. Obviously, (N �M)n=100 = �A >(N �M � 1)n=100 = �B and thus system A on average getsmore old pages from resampling than system B. However, thequeue size of system A is smaller than that of B by one plae.In other words, there will be some ases where QA will be fulland old pages will be dropped, whereas QB will be able toaommodate an extra old page from a previous iteration orfrom resampling. When M inreases from 0 to 1, the positivee�et from the inrease in the queue size is greater than thenegative e�et from the derease in the arrival rate (for typialvalues of N and n). As M inreases it is less likely that over-ows our and the dominating phenomenon is the derease ofthe arrival rate. This trade-o� between high arrival rate andhigh queue size auses �0 to be a onvex funtion of M , andthus there is an optimal value of M at whih �0 is minimized.Figure 7 demonstrates the onvexity of �0 as a funtion ofM for di�erent values of n and a �xed value of N . We alreadyestablished in Setion III the exponential derease of �0 forsmall M , when the samples are good. The linear inrease of�0 for large M , evident from Figure 7, is explained as follows:As M inreases, the average arrival rate dereases and thequeue size inreases. As a result, the queue never overowsand the only phenomenon into play is the linear derease ofthe arrival rate. For a queue that never overows, �0 = 1��=�and thus �0 inreases linearly as a funtion of M .Heuristially, one an make the following observation re-garding the value of M� for typial values of N and n. Asthe ratio N=(100=n) inreases, �0(M�) dereases and M� in-reases. In other words, the more samples there are omparedto the bins, the smaller the minimum is and the older thesamples tend to be. Thus, it makes sense to retain more ofthem for future iterations, resulting in a larger M�.
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| Fig. 7: Convexity of �0 as a funtion of M .VI. On the onvexityIn this setion we outline a proof of the fat that �0(M)is a onvex funtion of M , from whih the existene of anoptimum value of M follows.As remarked earlier, �0(M) annot be expressed as a fun-tion of the elements of TM in a losed form. Thus, it is notpossible to establish its onvexity diretly. We shall thereforerelate �0(M) to the quantity, D(t;M), whih ounts the num-ber of overows in the time interval [0; t℄ from a bu�er of sizeM . We shall establish the onvexity of �0(M) by establishingthat D(t;M) for our system is onvex in M for eah t > 0.The onvexity of D(t;M) follows from two lemmas presentedbelow. Due to limitations of spae we an neither present theproofs of the lemmas nor elaborate the exat nature of theonnetion between �0(M) and D(t;M) in this paper.Consider a queueing system with a bu�er of size M . Sup-pose that the bu�er is empty at time 0. Let D(t;M) be thenumber of overows from the bu�er in the interval [0; t℄. Wewant to examine the behavior of D(t;M) for di�erent bu�ersizes. Note that D(t;M) is obviously a dereasing funtion ofM sine the larger the queue, the less the number of overows.Lemma 1 D(t;M) is a onvex funtion of M .Reall that our system is modelled as a queueing systemwith one deterministi server and binomial arrivals. The av-erage arrival rate �(M) = (N � M)n=100. Therefore, thearrival proess depends on M . As we vary the bu�er size M ,the arrivals also vary. However, in Lemma 1 the arrival anddeparture proesses of the queueing system are assumed toremain unhanged for the various values of M . Thus, Lemma1 does not imply the onvexity of D(t;M) diretly.Lemma 2 D(t;M) is a onvex funtion of M when the av-erage arrival rate �(M) = �a �M + b for a; b > 0.Lemma 2 establishes the onvexity of D(t;M) for our sys-tem. Finally, from Lemma 2 the onvexity of �0(M) is estab-lished:Theorem 1 The probability of error �0(M) is onvex in M .



VII. ConlusionsIn this work we have introdued a randomized algorithmfor approximating LRU. Two versions of the algorithm arestudied through simulation and analysis. We �nd that ar-rying a small amount of information regarding good samplesfrom one iteration to the next, leads to a dramati improve-ment in performane. By a judiious of parameters (the totalnumber of samples, N , and the number of good samples, M ,retained from one iteration to the next) we �nd that LRU anbe approximated as losely as desired.We are urrently implementing versions of the shemesmentioned here in real ahes. Both versions of the algo-rithm assume that eah item of the ahe is time stampedwith the last time that was aessed. For page ahes, updat-ing time stamps an be very expensive. Thus, approximationssimilar to the lok algorithm [7℄ may be needed for a pra-tial implementation. For web ahes updating time stampsis heap. Exat LRU is possible in this ase either by usinga stak and updating pointers, or by using the time stampsdiretly. Thus, an approximation of LRU is not ruial inthe web ahes ase. However, it has reently been shownthat web ahes shemes whih take into aount the size andost of a doument outperform LRU [1℄. These algorithms(e.g. the greedy dual-size algorithm [1℄) require extra datastrutures to be maintained that inrease their ost a lot inomparison to LRU. The sheme introdued in this paper anapproximate these algorithms without the need for omplexdata strutures.In general, our sheme an be used eÆiently wheneverthere is a large population of objets from whih the \best"is to be hosen aording to some riterion.Referenes[1℄ P.Cao and S.Irani, Cost-aware WWW proxy ahing algo-rithms, In proeedings of the USENIX Symposium on InternetTehnologies and Systems, Monterey, CA, De. 1997.[2℄ A.Fiat, R.Karp, M.Luby, L.MGeoh, D.Sleator and N.Youmg,Competitive paging algorithms, Journal of Algorithms, 12:685-699, 1991.[3℄ Donald Gross and Carl M. Harris, Fundamentals of QueuingTheory, Wiley Intersiene, 1998.[4℄ L.MGeoh and D.Sleator, A strongly ompetitive randomizedpaging algorithm., Algorithmia, 6:816-825, 1991.[5℄ R. Motwani and P. Raghavan, Randomized Algorithms, Cam-bridge University Press, 1995.[6℄ J. Norris, Markov Chains, Cambridge University Press, 1997.[7℄ A. Silbershatz and P. Galvin, Operating System Conepts(Fifth Edition), Addison Wesley Longman, 1997.


