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Abstract—Caching static HTTP traffic in proxy-caches has reduced band-
width consumption and download latency. However, web-caching perfor-
mance is hard to increase further due to the growing number of non-
cachable dynamic web-documents. Delta-encoding is a promising technique
that exploits temporal correlation among different snapshots of a dynamic
document, and renders dynamic traffic cachable. It achieves this by com-
bining a cachable, previous snapshot of a document, called base-file, with a
small difference-file, called delta, to generate the current snapshot of the
document. However, it has not yet been deployed due to the significant
scalability concerns related to the storage requirements for base-files on the
server-side.

In this paper we introduce class-based delta-encoding, a scalable scheme
to perform delta-encoding on dynamic web-traffic. The idea is to group doc-
uments into classes, and store one document per class on the server-side.
Thus, the proposed scheme exploits both temporal correlation in a dynami-
cally evolving document, and spatial correlation among different documents.
Finally, we present an architecture to deploy the scheme, that is transparent
to clients, proxy-caches, and web-servers. Experimental results report that
class-based delta-encoding combined with compression reduces the band-
width consumption by a factor of 30, and the latency perceived by most
users by a factor of 10 on average, without suffering from enormous stor-
age requirements on the server-side.

Keywords—web-caching, dynamic document, delta-encoding, delta, base-
file, grouping, privacy.

I. INTRODUCTION

The use of web-caches for reducing bandwidth consumption
and download latency has been quite successful in the past. How-
ever, traditional web-caching is applicable only to static docu-
ments, or to documents that change in large timescales. Since
the proportion of dynamic versus static documents is increasing
day by day, current caching solutions have reached a point where
their performance cannot be significantly improved unless they
incorporate a mechanism to “cache” dynamic documents.

In particular, no matter the replacement scheme, the cache size
and the user population serviced by the cache, proxy-cache hit
rates are usually around 40% [18]. However, if proxy-caches
were equipped with mechanisms that exploit redundancy from
all documents, static and dynamic, hit rates could have been up
to 80% [18]. Another study [17] reports that after proxy-caching
has been applied, an additional 40% of web-traffic is found to be
redundant.

Recently, various methods to exploit the redundancy of dy-
namic traffic have been proposed. Delta-encoding was intro-
duced by Banga et al. [1], and independently in a more restricted
context in [8]. The idea is that both ends of a slow link store
the same snapshot of a web-document, to be called base-file on-
wards, and upon a request for that document: (i) the end towards
the server gets the current snapshot of the document from the

This work has been done while working part time at FineGround Networks,

web-server, (ii) it computes the difference, to be called delta on-
wards, between the current and the stored snapshot, (iii) it sends
the delta over the slow link to the other end towards the client,
and (iv) the end towards the client reconstructs the current snap-
shot by combining the delta and the stored snapshot, and (v) it
sends the response to the client. Mogul et al. [13] use dynamic
traces and show that delta-encoding can provide remarkable im-
provements in response size and response delay for an important
subset of HTTP content types.

Douglis et al. [6] take an application-specific view, in which
they separate the static and dynamic portions of a document.
Static parts are cached as usual, while dynamic parts are obtained
on each access from the server. They also provide an HTML ex-
tension to support this scheme. According to their simulations,
the size of network transfers are typically 2 to 8 times smaller
than the original sizes. This idea is simpler than delta-encoding,
but it is less efficient. Clearly, delta-encoding exploits more re-
dundancy than this scheme. Also, it is feasible to deploy delta-
encoding without requiring HTML or other support from the ex-
isting infrastructure.

Another interesting work, by Cao et al., is Active Cache [4].
The Active Cache scheme allows servers to supply cache applets
to be attached with documents, and requires proxies to invoke
cache applets upon cache hits to furnish the necessary process-
ing without contacting the server. Even though this approach is
efficient for tasks like rotating advertisements, it is not efficient
as a general mechanism that fully exploits temporal correlation
in dynamic traffic. There are situations where one cannot avoid
direct communication with the server that hosts the current snap-
shot of a document. Similar ideas with [4] are also used in [14]
where caches dynamically generate content for clients by run-
ning code provided by publishers.

Finally, Smith at al. [16] propose a new protocol to allow
individual content-generating applications exploit query seman-
tics and specify how their results should be cached and deliv-
ered. Applications may declare a dynamic request to be iden-
tical, equivalent, or partially equivalent. In the first two cases
cached results are up to date, while in the third case content can
be immediately delivered as an approximate solution while ac-
tual content is generated and delivered. This is not a complete
solution to the problem of exploiting temporal correlation in dy-
namic traffic; there exist dynamic documents that share many
data, yet their redundancy cannot be exploited with this simple
scheme.

In another direction, there has been a lot of research activity

Inc. in the area of precomputing and handling dynamic traff
Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02) CSFK/[PUQTER
0-7695-1588-6/02 $17.00 © 2002 IEEE SOCIETY



client
server

request

 delta base-files

client
client

base-files

Fig. 1. Using delta-encoding for web-documents.

server-side [5], [7], [10], [19]. The idea is to offload servers
from computing dynamic documents on the fly. These schemes
reduce user latency only when the bottleneck is server’s CPU,
and do not reduce bandwidth consumption. However, they can
be deployed in conjunction to delta-encoding mechanisms, since
they are orthogonal to the previous schemes.

Delta-encoding could provide an efficient solution to the prob-
lem of exploiting temporal correlation in dynamic traffic. How-
ever, the basic delta-encoding scheme suffers from scalability
problems at the server-side. In particular, the storage require-
ments at the server-side grow enormously due to the increas-
ing number of dynamic documents. This problem becomes
even more intense due to personalized web-documents, since the
scheme requires to store many personalized versions of each dy-
namic document.

In this paper we introduce class-based delta-encoding, a scal-
able scheme to perform delta-encoding on dynamic web-traffic.
The idea is to group documents into classes, and store one doc-
ument per class on the server-side. In essence, in addition to
exploiting temporal correlation in a dynamically evolving docu-
ment, we also exploit spatial correlation among different docu-
ments.

The outline of the paper is as follows: in the next section we
describe the class-based delta-encoding scheme. In Section III
we elaborate on how to group requests into classes. In Section
IV we propose an online algorithm to choose a base-file for each
class. In Section V we address the security issues raised by asso-
ciating with every class a shared base-file. Finally, in Section VI
we present simulation results to evaluate the efficiency of class-
based delta-encoding, and comment on implementation issues.

II. CLASS-BASED DELTA-ENCODING

Delta-encoding is the process of generating a difference file,
called delta, between two files with the following two proper-
ties: (i) the combination of the delta and one of the files, called
base-file, suffices to reproduce the other file, and (ii) the size of
the delta is as small as possible. The delta-generation and the
file-reconstruction phases should also require as less computa-
tion time as possible to execute. For a thorough discussion on
delta-encoding algorithms, see [9].

In the context of HTTP, delta-encoding can be used to ex-

ploit temporal correlations between consecutive snapshots of a
dynamic web-document. As shown in Figure 1, the client and
the server, for example an end-user and a content-provider re-
spectively, share a common base-file which is a snapshot of the
dynamic document at some point in time. Whenever the client
requests the document from the server, the server computes the
delta between the current snapshot of the document and the base-
file, and sends the delta to the client. Upon receipt of the delta,
the client computes the current snapshot of the document by
combining the delta and the locally stored base-file.

In section VI we show that this scheme is very efficient in re-
ducing bandwidth consumption and user latency. We also show
that the computation requirements to calculate the deltas on the
server side are reasonable. However, this simple approach is
not scalable due to the enormous storage requirements on the
server-side, since some web-servers have too many dynamic doc-
uments. The problem becomes even more intense with person-
alized web-documents. When documents are personalized (ex:
my.yahoo.com) the server must store for each document many
base-files corresponding to each user.

The solution to the scalability problem is to exploit spatial
correlation, i.e. correlation between different documents, in ad-
dition to temporal correlation, i.e. correlation between differ-
ent snapshots of the same document. This leads us to introduce
class-based delta-encoding. Under class-based delta-encoding,
dynamic documents are grouped into classes, and a single base-
file is stored at the server per class.

There are three issues related to class-based delta-encoding
that we address in this paper:

o How to design an automated mechanism that groups docu-
ments into classes, based on the proximity of their content.

« How to design an efficient online algorithm that identifies a
good base-file for each class.

« How to design a mechanism that removes private information
from the base-file of each class. This is important since the base-
file of a class is stored locally by many clients.

ITII. GROUPING DOCUMENTS INTO CLASSES

In this section we describe a mechanism to group documents
into classes. The mechanism aims to quickly identify a good
class for each document. A class is good if the size, in bytes, of
the delta between the base-file of the class and the document is
small.

Call a delta-server, an engine that implements class-based
delta-encoding and services the contents of some web-servers.
Since every document corresponds to a URL-request, we group
documents by grouping their corresponding URL-requests.

All requests are processed by the delta-server before they are
forwarded to the web-servers. Initially, there are no classes
formed in the delta-server. Whenever an ungrouped URL-request
arrives at the delta-server, the scheme groups it into an existing
class, or creates a new class. As the number of classes grows, it is
not practicable to perform an exhaustive search among all exist-
ing classes to identify a good class. We shall use as a search-hint
the observation that a similarity between two URLs is an indi-
cation of a similarity between their corresponding contents, and
perform a search over a small and appropriate subset of the ex-
isting classes.
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I URL | hint-part rest ||
www.foo.com/laptops?id=100 laptops id=100
www.foo.com/?dept=laptops&id=100 | dept=laptops  id=100
www.foo.com/laptops/100 laptops 100

TABLEI
URL-PARTS FOR DIFFERENTLY ORGANIZED WEB-SITES.

Partition the URLSs in three parts, the server-part, the hint-part,
and the rest. The server-part is the string from the beginning of
the URL till the first slash, as usual. The portion of the URL
that is used as the hint-part differs among web-servers and de-
pends on how the web-server organizes its content. For exam-
ple, let www.foo.com be a web site that sells computers, laptops
and desktops. Assume that documents corresponding to laptops
are similar, while they differ from documents corresponding to
desktops. Table I shows the hint-part for three different cases.
Depending on the web-site, the administrator describes to the
grouping mechanism how to partition URLS into parts using reg-
ular expressions. Then, the mechanism uses these parts to expe-
dite the grouping process.

We now describe the grouping mechanism. A matching is said
to occur if the delta between the requested document and the
base-file of the class is smaller than a threshold. Since it is very
unlikely that two documents originating from different servers
will be close enough to join the same class, a new class is created
in case there are no classes with members whose server-part is
the same with the request’s server-part. Else, some heuristics are
used to tradeoff between search-time and matching-quality:

o If some classes have members whose hint-parts are the same
with the request’s hint-part, the mechanism only considers those
as potential classes to group the request.

¢ The mechanism never considers more than /V existing classes
as potential classes to group a request. If no matching is found
after NV tries, a new class is created.

o The mechanism first attempts to group the request into classes
with many members, and then into less popular classes. In par-
ticular, the first a - NV tries consist of the most popular classes,
and the last (1 — a) - N consist of random selections among the
rest of the eligible classes .

« Since for grouping purposes it is not required to generate a
precise delta between the requested document and the base-file of
a candidate class, but rather to estimate how close they are, a light
version of the delta algorithm? is used to reduce computation
cost.

We described an automated mechanism to group documents
into classes. Sometimes, this mechanism is not efficient, for ex-
ample, for web-sites that are organized in a completely ad-hoc

IHere it is implied that the procedure stops as soon as there is one matching.
Another option is to always consider IV classes and choose the best matching.
The former is preferable since in practice it is more critical to reduce search-
time. Typical N values are less than 10.

2 A specific implementation of a delta-encoding algorithm is Vdelta[9]. Vdelta
uses a hash table approach with enough indexes into the base-file for fast string
matching. Each index is a position which is keyed by the four bytes starting at
that position. Thus, the file is partitioned in four-byte-chunks. Further, in order
to identify the maximally long matching prefix, the algorithm traverses the file
both forwards and backwards. We use a light version of this algorithm that uses
larger byte-chunks and only traverses the file in the forward direction.

manner. In this case, the administrator has the option to manu-
ally group URLs into classes.

IV. CHOOSING A BASE-FILE

Once classes are formed, it is required to identify a good base-
file for each one of them. The simplest scheme would set as a
base-file the document corresponding to the request creating the
class. From a performance point of view, the best scheme would
construct an artificial base-file consisting of all those document-
parts that are popular among the members of each class. How-
ever, this is too expensive. A reasonable compromise is to only
consider entire documents as potential base-file candidates, and
choose the best among those. Despite its relative simplicity, this
choice performs well in practice.

Ideally, if all future requests r1, 72, . . ., ¥, Where known in ad-
vance, an offline algorithm would choose as a base-file the doc-
ument that minimizes the sum of deltas between itself and every
other document. The exhaustive online algorithm that considers
all documents seen so far as base-file candidates is not practica-
ble due to memory and computational constraints. Instead, we
propose the following scheme:

1. Sample each request with probability p i.e. consider the corre-
sponding document a base-file candidate and store it in the mem-
ory.

2. Use as a base-file the best of the stored documents i.e. the
document that minimizes the sum of deltas between itself and all
the other stored documents.

3. Store up to K documents. Thus, after acquiring K samples,
whenever a new sample is drawn evict the document that maxi-
mizes the sum of deltas 3.

By design, the algorithm stores good base-file candidates and
uses the best out of those as a base-file. Call a rebase the process
of changing a base-file. After a rebase, the new base-file should
be distributed to all clients before they can benefit from delta-
encoding. To control the number of rebases, a rebase takes place
if both a better base-file candidate exists, and a rebase-timeout,
since the previous rebase, has expired.

Rebases caused by this algorithm are called group-rebases to
distinguish them from basic-rebases that are triggered when the
generated deltas are relatively large. When a basic-rebase takes
place, all K stored documents are flushed. Group-rebase and
basic-rebase are orthogonal operations.

The computational requirements of this algorithm are reason-
able. Indeed, whenever a new sample is acquired, the algorithm
calculates only the deltas between the corresponding document
and the rest of the stored documents, and this calculation can be
done offline. The memory requirements are also low since values
of K around 10 are enough.

In Section VI we evaluate the performance of the algorithm
in practice. Here, we perform some simple analytic calculations.

3To avoid storing K documents that are very close to each other but not close to
most of the members of the class, at periodic intervals we evict a random sample
among the stored documents excluding the current base-file, instead of evicting
the document that maximizes the sum of deltas (worst document). Another option
is to maintain two sets of K documents: one holding the base-file candidates
and one holding K random samples against which deltas are calculated for each
base-file candidate. At eviction times, the worst document is evicted from the
candidates’ set, and a random sample is evicted from the other set. Beth antiane
work well in practice.
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Assume there is a sequence of requests for distinct documents
that are members of a class. We shall calculate the probability
that the proposed scheme will discard the best base-file candi-
date. Let R be the total number of requests. Then, the expected
number of base-file candidates is N = R - p. Let Sy denote
the set of all base-file candidates, and Sk denote the set of all K
stored documents at some point in time. Finally, let d;; denote
the delta between documents ¢ and j.

Associate with every base-file candidate ¢ a global utility
value, equal to ) jESn d;;. Index the documents in increasing
order of their global utility value, i.e. document 1 minimizes
> d;j. Associate with every stored document ¢ a local utility
value, equal to ) jesk d;j.

Let 71, i» be two documents such that 7; < 1o, i.e.
2 jesy dini < 2 jesy disj- Suppose that the probability of the
event {3 g, dinj > D jes, dinj} equals ¢/[iy — ia| where
¢ is a normalizing constant such that ¢ - Zfi;l 1 = 1. This
event corresponds to the situation where document i; is a better
base-file candidate than document 5, but the algorithm believes
the opposite *. The best candidate, document 1, can only be
evicted if 3_;cq, dij > > icq, dij for all other stored docu-
ments ¢ € Sg. In this case the algorithm will make an error.

The probability of error at an eviction time is at most
cX=1/(K —1)!. This probability corresponds to the event where
the K best base-file candidates are stored and jese g >
EjeSK di; for i = 2...K. Thus, the probability of keep-
ing the best base-file candidate throughout the process is at

K—1 - K—-1 .
least (1 — "=y ~1- (N - K)h, and since
¢~ 1/In(N —1) = 1/In N, the probability of error is bounded
above by

(V - K)
Perror < (lnN)Kfl(K — 1),:

which is very small for all practical cases. For example, for R =
10°,p=1072,and K = 10, N = 1000 and Pep.or < 8-10711,

V. PRIVACY CONCERNS

Class-based delta-encoding raises privacy concerns since
many clients share the same base-files. In particular, each base-
file is stored locally at more than one client. It is therefore critical
to remove private information, for example credit card numbers,
from shared base-files.

Before we present a mechanism that removes private informa-
tion from base-files, it is useful to elaborate on a specific im-
plementation of delta-encoding called Vdelta [9]. Vdelta uses a
hash table approach with enough indices into the base-file for
fast string matching. Each index is a position which is keyed by
the four bytes starting at that position. The algorithm compares
four-byte-chunks from the base-file and the requested document
and finds maximally long matchings between the two documents.
Some byte-chunks are common, while others are not present in
both documents.

A simple but efficient mechanism to identify and remove pri-
vate information from base-files is the following: (i) execute
delta-encoding between the base-file and N other documents that

4The probability expression ¢/|i1 — i2| is used as an example. Its rationale is
thatif 2; < 22 (21 > i2), the smaller the distance between the indices of the two
documents, the more probable for the algorithm to believe ¢1 > @2 (41 < %2).

are members of the class, (ii) record for each four-byte chunk of
the base-file how many times it was common between the base-
file and another document, and (iii) remove from the base-file
byte-chunks that were not common between the base-file and
any of the N other documents. We call this the anonymization
process. The rationale behind this scheme is that private infor-
mation is unique among users. Thus, by making sure that during
the anonymization process the base-file is compared against doc-
uments corresponding to different users, any private information
will be removed. Also, by doing the comparison with more than
one document, the process does not remove potentially useful
information from the base-file.

Note that until the base-file is properly anonymized, it should
not be distributed to clients. Thus, delta-encoding should not
be used until the anonymization process terminates. However,
if there is already an anonymized base-file and a rebase is trig-
gered, the previous base-file can be used until the new one is
properly anonymized. Therefore, the performance penalty is not
significant. Finally, the anonymization process can take place
concurrently with the mechanism for finding a base-file, since
both require the computation of deltas between some documents
that are members of the same class.

A point of concern is that the same user may be falsely re-
garded by the server as a different user. Indeed, the standard way
to distinguish users is by distributing to them user identifications
through cookies. However, for example, Netscape and Internet
Explorer do not share cookies and thus user identifications. As
a result, if a user opens one Netscape and one Internet Explorer
session at the same time and uses his/her credit card to make
two transactions, the system will interpret these transactions as
originating from different users.

Another point of concern is that sometimes private informa-
tion is shared among a small set of different users, for example
corporate credit card numbers. If two employees use a shared
corporate credit card to make a transaction at the same web-
site, while base-file anonymization is in progress for the class
in which the corresponding requests belong to, the credit card
number is at risk.

Even though the odds of these situations occurring are small,
we wish to protect private data from such cases. To solve this
problem, we introduce a second parameter M, and only in-
clude in the anonymized based-file byte-chunks that are com-
mon between the base-file and at least M/ documents. M = 0
corresponds to no privacy, M = 1 corresponds to the basic
anonymization scheme, and larger values of M < N increase
privacy. Values of M close to NN significantly reduce the size of
the base-file and thus compromise performance since deltas tend
to be large. A rule of thumb is that N should be at least twice as
large as M.

The steps of the algorithm are as follows:

1. Choose a base-file.

2. Associate with each byte-chunk of the base-file one counter
to record the number of times that each byte-chunk is common
between the base-file and another document.

3. For the next N requests that belong to the specific class and
originate from distinct users’, increment the counters of the byte-

5These users should also be different from the user that correspende #n tha
base-file.
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chunks that are common between the base-file and the requested
document.
4. Remove all byte-chunks with counter values less than M.

We perform some elementary calculations to estimate how
probable it is to accidentally include in an anonymized based-
file private information. The exercise consists of starting with a
non-anonymized base-file, drawing N documents out of which
X may share private information with the base-file, and calculat-
ing the probability of the event {X > M}. Let X;,i=1...N,
be a random variable equal to 1 if the i*" sample shares pri-
vate information with the base-file, and zero otherwise. Then,
X = Efil X;. Assume the X;’s are i.i.d random variables equal
to one with probability p and zero otherwise. Then, X is bino-
mially distributed with parameters N and p, and the probability
of error, P(X > M), equals ZiVM TN Z),p i(1—p)Ni As-
suming P(X > M) ~ P(X = M) ®and (1 — p)N =M ~ 1, the
probability of error is bounded above by

Perror S

(Ne/M)MpM.

For p = 0.01, N = 10 and M = 5, the upper bound equals
4.7 - 1077 while the exact probability of error equals 2.4 - 1078,

In the preceding analysis we assumed that the X;’s are i.i.d.
However, it is more likely that P(Xs = 1|X; = 1) < P(X, =
1|X; = 0). In particular, if p; is the probability of the j'*
occurrence of a document sharing private information with the
base-file, p; is expected to be a decreasing function of j. As an
example of a decreasing function of j, suppose p; = p’. Re-
call that for an error to occur, there should be at least M out
of N documents sharing private data with the base-file. Since
the probability of getting the (M + 1)* such document is very
low, we can ignore the cases where X > M and only compute
the probability of the event {X=M } Since P(X = M) <
W']\/[)'pp M- (1=pM)N=M, and (1~ p)NMNl
the probability of error is bounded above by

Perror S (Ne/M)MpM(M+1)/2

VI. SIMULATION RESULTS AND DEPLOYMENT ISSUES

In this section we present simulation results to evaluate the
performance of class-based delta-encoding. First, we report
bandwidth savings achieved by delta-encoding using real traces,
and convert bandwidth into latency savings. Second, we evaluate
the performance of the class-related operations, namely group-
ing, choosing base-files, and anonymizing base-files. Finally,
we propose an architecture to deploy class-based delta-encoding,
and report experimental results from a specific implementation of
that architecture.

A. Delta-Encoding Performance

Delta-encoding is very efficient in reducing bandwidth con-
sumption. Using traces from commercial web-sites, we calculate
the total outbound traffic when delta-encoding and compression
of the generated deltas is used, and compare it to the total di-
rect outbound traffic. Notice that the access-logs of web-sites

6p? decreases a lot faster than Lll), increases as a function of ¢ < N/2,

[[ Websites | Total requests  Direct KB Delta KB Savings ||
1 16407 736495 38308 94.8%
1476 49536 2474 95.0%
3 7460 230840 6640 97.1%
TABLE 1T

BANDWIDTH SAVINGS USING ACCESS-LOGS FROM THREE COMMERCIAL
WEB-SITES.

represent HTTP requests after any proxy-caches, and thus cor-
respond to traditionally uncachable traffic. Table II shows the
results obtained by three commercial web-sites’. From this ta-
ble we can see that delta-encoding combined with compression®,
reduces bandwidth consumption by at least a factor of 20, and
sometimes by a factor of 30 or more. In these numbers a factor
of 2 on average is thanks to compression. These result are in
accordance with the previous studies [13] and [15]. Notice that
the experimental results reported here correspond to actual sav-
ings when using an implementation of the architecture presented
in Section VI-C. In contrast, the previous studies assume the
existence of a delta-encoding mechanism and report projected
savings by applying delta-encoding on the server-documents.

Bandwidth savings are important because they offload the net-
work, save money, and decrease the delay perceived by users.
However, since delay is what matters most to end-users, it is in-
teresting to investigate the relationship between bandwidth and
latency savings.

Web-documents that benefit significantly from delta-encoding
have an average size around 30 to 50KB, as observed from
access-logs-driven simulations. Gzipped deltas tend to be 1 to
3KB. Without loss of generality, suppose that two documents of
size S; = 30K B and Sy = 1K B are sent from a server to a
client using TCP. Let L; and L, be the user-latency correspond-
ing to document 1 and 2 respectively. Given that S1/S> = 30,
we wish to estimate L; /L.

Assume the transmission takes place over a high-bandwidth
connection. Due to TCP slow-start the number of round-trip
times (RTTs) required to send document 1 is roughly log S1/S>
times the number of RTTs to send document 2. This can be eas-
ily verified by taking into account the additive increase of the
TCP-window when counting RTTs in both cases. Thus, L; /L,
is roughly equal to 5. The latency gain from delta-encoding is
further increased when the client is connected through a low-
bandwidth connection. Without loss of generality assume the
connection is through a 56Kb/s modem with 100ms RTT. The
transmission time of a single packet is roughly equal to twice
RTT, thus the advantage of larger TCP-windows is reduced since
transmission time is now the bottleneck. In this case Ly /Ly is
a linear function of Sy /S5. Due to the cost associated with set-
ting up a TCP connection, the queueing delay, the timeouts and
the retransmissions caused by packet losses, Ly /L, is estimated
to be around 10. More information on how to derive such esti-
mations can be found in [2]. Using measurement tools [22], we
measured Ly and L, and verified the estimated values for Ly /Lo
in case of high- and low-bandwidth connections.

"Due to privacy concerns, we are unable to provide the URLS of the three sitec

(N
for typical values of p and V. 8Deltas are compressed using gzip.
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[[ Permutations | First Response  Randomized  Online Optimal ||
1 1704 1559 1206
2 774 1636 1540
3 1785 1599 1515
4 1876 1626 1542
5 2025 1679 1575
TABLE III

AVERAGE DELTA SIZES, IN BYTES, RESULTING FROM VARIOUS
ALGORITHMS THAT IDENTIFY BASE-FILES FOR CLASSES.

Delta-encoding is a CPU-intensive process since it involves
compressing one file using the contents of another file. However,
there are quite efficient algorithms, like Vdelta [9], to perform
this task. In Section VI-C we report experimental results which
show that the CPU overhead associated with delta-encoding is
reasonable.

B. Performance of Class-Based Operations

We have implemented the grouping, choosing-a-base-file, and
anonymization functionalities, and integrated them with the
delta-encoding routines to evaluate their performance.

The grouping mechanism aims to find a good class for all doc-
uments as fast as possible. The automated mechanism intro-
duced in Section III, when used against a well-structured web-
site, groups requests in classes after a couple of tries, provided
that proper regular expressions are given to the scheme to parti-
tion the URLs into classes. Further, for the traces used in Table
II, the number of produced groups are between 10 and 100 times
less than the number of dynamic documents. No noticeable re-
duction on the bandwidth and latency savings is observed.

To evaluate the performance of the proposed algorithm for
choosing base-files, we use various algorithms to choose a base-
file, and calculate the average delta-size obtained over the same
sequence of requests for each of the algorithms. In particular, we
compare the scheme that uses the first response as a base-file, to
the randomized online algorithm proposed in Section IV, and to
the online optimal algorithm that uses as a base-file the one that
minimizes the average delta so far. In Table III we present these
results for five different random permutations of our sequence.
The randomized algorithm uses a total of 8 samples, and a prob-
ability of choosing a sample as a base-file candidate equal to 0.2.
It performs close to the optimal, and both of them are better than
the scheme that uses the first response as a base-file. In general,
depending on the web-site and the request sequence, the perfor-
mance of the scheme that uses the first response as a base-file
can be very bad, which is never the case for the randomized al-
gorithm, since the later adapts to the characteristics of the request
sequence.

Anonymization is required to provide privacy. The down-
side is that base-files tend to decrease in size and produce larger
deltas. In Table IV we present the size of base-files before and
after anonymization for various anonymization levels. Average
sizes of the corresponding deltas with and without anonymaza-
tion are also presented. Even when high anonymization levels
are used, deltas tend to increase by a very small amount. Thus,
anonymization is achieved at a minimal cost.

[[M N  Base(plain) Base(anon) Delta (plain)  Delta (anon) ||
2 5 84213 73434 5224 6520
4 12 84213 72714 5224 6097
4 8 84213 71090 5224 6505
TABLE IV

BASE-FILE AND DELTA SIZES, IN BYTES, FOR VARIOUS ANONYMIZATION
(ANON) LEVELS. DELTAS REPRESENT AVERAGE VALUES AMONG A LARGE
POOL OF DOCUMENTS.

Even though anonymization increases delta sizes, class-based
delta-encoding with anonymization may improve bandwidth
savings in comparison to classless delta-encoding. Indeed,
anonymized based files are cachable, and thus many different
users will download the same base-files from a proxy-cache.
Since base-files are a lot larger than deltas, the gain from
cachable base-files is expected to be larger than the loss from
slightly larger deltas.

C. Architecture and Deployment

We have established that class-based delta-encoding is a scal-
able scheme that significantly reduces bandwidth consumption
and user latency. However, in order to be widely deployed, it
should require no changes to the current web-architecture. Web-
servers, proxy-caches, and clients’ browsers should be able to
interoperate with the class-based delta-encoding functionality
without any changes. We present here one architecture that sat-
isfies this requirement. More information about this architecture
can be found at [20].

On the server side, there should be a delta-server responsible
to generate the deltas and store all base-files. The delta-server
should be as close to the web-server as possible, to minimize
delays due to the transmission of current document snapshots
from the web-server to the delta-server. The obvious choice is to
place the delta-server next to the web-server. Recall that class-
based delta-encoding groups similar documents and personalized
versions of the same document in one class, and uses a single
base-file per class. Thus, the storage requirements on the delta-
server are reasonable.

On the client-side, one may use the browser’s cache to store
base-files, and rely on Java-scripts, enabled at the browser, to
combine deltas and locally stored base-files in order to compute
the current document snapshot. Another option is to use spe-
cialized plug-ins. Notice that base-file anonymization guaran-
tees that shared base-files do not contain private information and
cannot be associated with any particular user.

Base-files can be marked cachable. Thus, proxy-caches can
cache them as usual, resulting in the known benefits of proxy-
caching.

Therefore, class-based delta-encoding can be deployed trans-
parently to clients, proxy-caches, and web-servers, with the only
necessary addition being a delta-server on the server-side, as
shown in Figure 2.

A specific realization of the architecture shown in Figure 2
has been implemented and tested. We use this implementation
to comment on the CPU overhead of such a mechanism. The
numbers reported correspond to a PC configured with a Pentium

III at 866MHz and 512MB of RAM, where the delta-s¢
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Fig. 2. Transparent deployment of class-based delta-encoding.

been integrated to an Apache 1.3.17 [21] web-server, running
under Linux 2.2.19.

A plain Apache web-server is measured to have a capacity of
175 to 180 requests per second, with a maximum number of con-
current connections equal to 255. We will compare these num-
bers to the respective numbers achieved by the system of the
delta- and web-server.

For a base-file of around 50 to 60KB, and a generated delta
of around 8KB (uncompressed) or 3KB (compressed), the delta
generation process requires 6 to 8ms. This latency is insignificant
for a client’. However, the delta generation is a CPU-intensive
process. As a result, the capacity of the system of the delta-
server together with the web-server is around 130 requests per
second. Even though the system of the delta- and web-server

and performance of the class-related operations.
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