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tDi�erential equations and 
uid models have been in-
reasingly used with signi�
ant su

ess to model net-work behavior and the intera
tion of TCP-
ows withA
tive Queue Management (AQM) s
hemes. A 
ru
ialassumption for these limiting approximations to workis that pa
ket drops be distributed as a Poisson pro-
ess. It has also been demonstrated [2℄ that in a widevariety of settings networks satisfy a s
aling behavior,in that many important performan
e metri
s remaininvariant when the network is suitably s
aled. In thispaper we present the results of our study on how the
hoi
e of parameters of AQM s
hemes in
uen
e the va-lidity of the s
aling hypothesis and the ability of 
uidmodels to predi
t network dynami
s. We �nd that the�delity of an approximation method is dire
tly relatedto how 
lumped the pa
ket drops it indu
es are, whi
hin turn is related to the deviation of the pa
ket-droppro
ess from that of a Poisson pro
ess.1 Introdu
tionThe 
omplexity and size of the Internet presents aproblem to those attempting to model traÆ
 behaviorand design s
hemes to ensure a fair and eÆ
ient use ofthe network. A lot of re
ent work has fo
used on us-ing di�erential equations to model network dynami
s,in parti
ular the intera
tion between TCP-
ows andAQM s
hemes [1, 3, 4, 5℄. This approa
h has met withremarkable su

ess and has provided a handle by whi
hthe behavior of the Internet 
an be better understood.A by-produ
t of this framework is that it allows oneto view the network from a 
ontrol systems perspe
-tive and analyze the stability/performan
e of various
ongestion 
ontrol me
hanisms.Re
ently, a s
aling hypothesis has been proposed in [2℄whi
h states that if a network 
ontrolled by a varietyof AQM s
hemes is suitably s
aled, then performan
emeasures su
h as queueing delay and drop probabilityare left virtually un
hanged. In that 
ontext too, thedi�erential equation model for a network with TCP-like 
ows and standard AQM s
hemes is used to ex-

plain why su
h a s
aling behavior is exhibited.Di�erential equation models developed in [1℄ rely onthe assumption that pa
ket losses for ea
h 
ow are de-s
ribed by a Poisson pro
ess of some rate. This as-sumption is 
ru
ial to establishing the validity of thesedeterministi
 models. For example, the DropTail AQMs
heme, whi
h simply drops pa
kets that arrive at a fullbu�er, 
auses a number of 
onse
utive pa
kets to belost. This makes the pa
ket-drop pro
ess bursty and
orrelated. Separately, we observe in this paper thatif DropTail is used as the AQM s
heme, then indeedboth the di�erential equation model and the s
alingbehavior fail. It is therefore a worthwhile exer
ise tostudy whether or not 
onventional AQM s
hemes droppa
kets a

ording to a Poisson-like distribution.While obtaining the exa
t distribution for the pa
ket-loss pro
ess is an intra
table problem, we 
an 
hara
-terize it as being 
lose or far from Poisson in nature byutilizing properties of the Poisson pro
ess. It is wellknown that a Poisson pro
ess tends to avoid 
lumps;i.e the probability that the number of points in a �xedinterval is large is exponentially small. Thus one wouldexpe
t that if an AQM s
heme were to drop pa
ketsin 
lumps, thus indu
ing 
orrelations between su

es-sive pa
ket drops, then the pa
ket-drop pro
ess will befar from Poisson. For su
h an AQM s
heme we willexpe
t both the di�erential equation model and thes
aling hypothesis to be ina

urate. A way to a
hievethis obje
tive is to gradually in
rease the rate at whi
hthe AQM s
heme drops pa
ket as a fun
tion of someparameter until a point are lost faster than the rate atwhi
h they leave the router. when su

essive pa
ketsget dropped with high probability leading to 
lumps inthe pa
ket-drop pro
ess.Our simulations have shown that this is indeed the 
aseand, in fa
t, there is a 
ut-o� point beyond whi
h if we
hange the parameters of the AQM s
heme, the �delityof these methods in approximating the behavior of thereal network is lost. We will de�ne two parameterizedvariants of the Random Early Dete
tion (RED) AQMs
heme in Se
tion 2 and present our �ndings in Se
tion3. In Se
tion 4 we will perform some analysis to explainwhy after the variation of parameters have pushed an



AQM s
heme into the regime where it starts droppingpa
kets 
lumpily, the previously mentioned models failto predi
t network behavior. Finally we will 
on
ludein Se
tion 5. 2 AQM s
hemesA signi�
ant number of routers in the Internet todayuse RED for the purpose of 
ongestion 
ontrol. Thefollowing two equations de�ne how RED works, andtogether they spe
ify the drop (or marking) probabil-ity. RED maintains a moving average qa of the instan-taneous queue size q; and qa is updated whenever apa
ket arrives, a

ording to the ruleqa := (1� w)qa + wq;where the parameter w determines the size of the aver-aging window. The average queue size determines thedrop probability p(qa), a

ording to the equationp(qa) = 8<: 0 : qa < minthpmax� qa�minthmaxth�minth � : minth � qa < maxth1 : qa > maxth (1)where pmax; minth and maxth are design parameters
hosen to meet some performan
e guidelines.As the 
urrent design of RED stands, pa
ket dropsare relatively well spa
ed out. For our experiments,we wish to modify the drop probability fun
tion usedin RED in a way so as to 
ause it to drop pa
ketsmore and more burstily, with the burstiness of dropsin
reasing as a fun
tion of some parameter. We willa
hieve this end by altering RED so as to in
rease therate of pa
ket drops.Spe
i�
ally, we use the following two variants of RED:1. SlopeRED : We �x maxth and vary minth fromsome nominal value up tomaxth in steps of size Æ.Changing minth in this manner has the e�e
t ofin
reasing the slope of the drop probability fun
-tion thus indu
ing a larger number of drops. Theparameter in SlopeRED is the slope of the dropfun
tion. When minth = maxth, SlopeRED be-
omes DropTail (if we identify maxth with thephysi
al bu�er size).2. PowerRED : We de�ne the drop fun
tion as:p(qa) =( 0 : qa < minthpmax� qa�minthmaxth�minth �n : minth � qa < maxth1 : qa � maxth (2)where n is an exponential parameter. Note thathere again, as n grows larger, PowerRED tendsto DropTail.For the s
aling experiments, the parameters pmax,minth, maxth and w will be s
aled in a way as spe
i�ed

in [2℄. We will multiply minth and maxth by �. Re-
all that we are multiplying the bu�er size by �: thusminth and maxth are �xed to be a 
onstant fra
tion ofthe bu�er size. We will keep pmax �xed at 10%, so thatthe drop probability is kept under 10% as long as thebu�er is slightly 
ongested. The averaging parameterw will be multiplied by ��1.3 Simulations3.1 The Basi
 Setup
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)Figure 2: TraÆ
 PatternsWe 
onsider two 
ongested links in tandem, as shownin Figure 1. There are three routers, R1, R2 and R3;and three groups of 
ows, grp1, grp2, and grp3, withgroup i 
onne
ting sour
es in sr
i to re
eivers in r
vi.The link speeds are 100Mbps and the bu�ers 
an hold8000 pa
kets. The RED parameters are minth = 1000,maxth = 3000 and w = 0:000005. For the 
ows: grp0
onsists of 1200 TCP 
ows ea
h having a propagationdelay of 150ms, grp1 
onsists of 1200 TCP 
ows ea
hhaving a propagation delay of 200ms, and grp2 
onsistsof 600 TCP 
ows ea
h having a propagation delay of250ms. The 
ows swit
h on and o� as shown in thetiming diagram of Figure 2. Note that 75% of grp0




ows swit
h o� at time 150s.This network is s
aled-down by a fa
tor � = 0:1 andthe parameters are modi�ed as des
ribed above. Fig-ures 3 and 4 depi
t the ex
ellent mat
h between theaverage queueing delays experien
ed at queues 1 and2 respe
tively, before and after s
aling.
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Figure 3: Basi
 Setup: Average Queuing Delay at Q1
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Figure 4: Basi
 Setup: Average Queuing Delay at Q23.2 Experiment 1: SlopeREDFor this experiment we kept maxth = 3000 and in-
reased minth from 1000 in steps of Æ = 250 up tomaxth. Figures 5 and 6 show us that the behavior ofthe s
aled system mat
hes well with that of the orig-inal network when minth = 1500. Thus the s
alinghypothesis appears to hold for that value of minth.But we noti
e in Figures 7 and 8 that forminth = 2750,the s
aled system has queueing delays that di�er sub-stantially from those experien
ed in the original net-work. This we 
laim is eviden
e of the fa
t that asthe slope of SlopeRED in
reases and the pa
ket dropsbe
ome more 
lumpy, the s
aling behavior no longerholds.
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Figure 5: minth = 1500: Average Queuing Delay at Q1
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Figure 6: minth = 1500: Average Queuing Delay at Q23.3 Experiment 2: PowerREDHere we �x the values of maxth and minth at 3000 and1000 respe
tively. As in SlopeRED, we noti
e heretoo (Figures 9-12) that the s
aled system's behaviordeviates signi�
antly from that of the original one asthe exponent is in
reased, in fa
t, for as low an n as 2.Thus we do not even need to take n ! 1 to observethe degradation in �delity that DropTail displayed.4 Di�erential Equation Models4.1 S
aling of solutionsIn [2℄, the re
ently proposed theoreti
al 
uid modelof TCP/RED [1℄ and the asso
iated di�erential equa-tions have been used to explain the observed s
alingbehavior. We reprodu
e the key 
on
epts here.Consider N 
ows sharing a link of 
apa
ity C. LetWi(t) and Ri(t) be the window size and round-trip timeof 
ow i at time t. Here Ri(t) = Ti+ q(t)=C, where Tiis the propagation delay and q(t) is the queue size attime t. Let p(t) be the drop probability at time t, andqa(t) the average queue size used by RED.
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Figure 7: minth = 2750: Average Queuing Delay at Q1
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Figure 8: minth = 2750: Average Queuing Delay at Q2The 
uid model des
ribes how these quantities evolve;or rather, sin
e these quantities are random, the 
uidmodel des
ribes how their expe
ted values evolve. Let�X be the expe
ted value of random variable X . Thenthe 
uid model equations are these:d �Wi(t)dt = 1Ri(�q(t)) � �Wi(t) �Wi(t��i)1:5Ri(�q(t��i)) �p(t� �i)d�q(t)dt =PNi=1 �Wi(t)Ri(�q(t��i)) � Cd�qa(t)dt = log(1�w)Æ �qa(t)� log(1�w)Æ �q(t)�p(t) = pRED(�qa(t))where �i = �i(t) solves �i(t) = Ri(�q(t� �i(t))), Æ is theaverage pa
ket inter-arrival time, and pRED is as inEquation (1). The a

ura
y of the 
uid model is shownin Figure 13 were we 
ompare the numeri
al solution ofthe 
uid model equations with the simulation results1.Remarks. While the appli
ability of these equationsis not yet fully understood [6℄, [1℄ indi
ates that em-piri
ally they are reasonably a

urate. Also, note that1The small dis
repan
ies are due to the fa
t the 
uid modelassumes the physi
al bu�er size to be in�nite. If we in
rease thephysi
al bu�er size in the simulation, without altering the valueof the maxth, the two lines 
oin
ide exa
tly.
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Figure 9: n = 2: Average Queuing Delay at Q1
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Figure 10: n = 2: Average Queuing Delay at Q2we have the 
onstant 1:5 in Equation (3), not 2 as in[1℄. This 
hange improves the a

ura
y of the 
uidmodel, for reasons elaborated on in [2℄. Finally, notethat while these equations des
ribe a single link, theextension to networks is straightforward, and is givenin [1℄.Returning to the di�erential equations, suppose wehave a solution to these equations� �Wi(�); �q(�); �qa(�); �p(�)�:Now, suppose the network is s
aled and denote byC 0, N 0, et
 the parameters of the s
aled system.When the network is s
aled, the 
uid model equa-tions 
hange, and so the solution 
hanges. Let� �W 0i (�); �q0(�); �q0a(�); �p0(�)� be the solution of the s
aledsystem. It is shown in [2℄ that, in fa
t,� �W 0i (�); �q0(�); �q0a(�); �p0(�)� = � �Wi(�); ��q(�); ��qa(�); �p(�)�:Thus the queueing delay �q0=C 0 = ��q=�C is identi
al tothat in the uns
aled system. Also the drop probabilityis the same in ea
h 
ase (�p(t) = �p0(t)). We thereforehave theoreti
al support for the s
aling hypothesis.Now 
onsider PowerRED: we will show that �p0(t) s
alesin the desired fashion (a similar argument applies
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Figure 11: n = 3: Average Queuing Delay at Q1
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Figure 12: n = 3: Average Queuing Delay at Q2to SlopeRED). Re
all that p0max = pmax, and thatmin0th = �minth and max0th = �maxth. It is then 
learthat �p0(t) = p0max� �q0a(t)�min0thmax0th �min0th�n:Sin
e the other di�erential equations remain un-
hanged, all other quantities s
ale in exa
tly the sameway as in [2℄, and thus the solutions to the originaland s
aled di�erential equations are identi
al for themodi�ed AQM s
hemes we use.4.2 Simulation resultsFrom Figure 13 it is 
lear that the 
uid model does apretty good job of 
apturing the dynami
s of the orig-inal network. But in Figures 14 and 15 we observethat the solution of the 
uid model doesn't mat
h thebehavior of the network when the parameters for Slop-eRED (minth = 2750) and PowerRED (n = 2) are
hosen so that drops o

ur in 
lumps. This demon-strates the fa
t that be
ause of the 
lumpy nature ofthe pa
ket-drop pro
ess, the di�erential equations nolonger model the network dynami
s faithfully. Also,sin
e the solutions to the original and the s
aled dif-ferential equations are identi
al, the ina

ura
y of the
uid model will 
arry over to a s
aled network. This in
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 Setup: Fluid Model vs. Ns Simulationitself should give us reason to suspe
t that the s
alinghypothesis will breakdown when the pa
ket-drop pro-
ess is 
lumpy; a fa
t already demonstrated in Se
tion3.
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Figure 14: minth = 2750 : Fluid Model vs. Ns Simula-tion 5 Con
lusionIn the regime where the di�erential equation modelfor an IP network with TCP 
ows is a

urate, it hasbeen argued in [2℄ that this model provides a possi-ble explanation for why the s
aling hypothesis holds.Spe
i�
ally, it is shown there that for a large 
lass ofAQM s
hemes, the solutions of the di�erential equa-tions that govern the dynami
s of both the originaland the s
aled network are identi
al. But, we have ob-served in this paper that the ability of the 
uid modeland the s
aled system to predi
t the behavior of theoriginal network is seriously degraded when the pa
ketdrops o

ur in 
lumps. This is be
ause an underlyingassumption while applying these models is that thepa
ket-drop pro
ess should be Poisson. If an AQMs
heme drops 
onse
utive pa
kets then drops will o
-
ur in bursts, making the pa
ket-drop pro
ess 
orre-lated and far from Poisson. Under su
h a s
enario,these models will fail to a

urately emulate the origi-nal network's dynami
s. It is 
lear that the di�erential
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Figure 15: n = 2: Fluid Model vs. Ns Simulationequation model and the s
aling hypothesis have signif-i
ant impli
ations for network performan
e predi
tionand design. Hen
e, further work is required in identi-fying the regime of appli
ability of these models; andrigorously establishing their validity in that regime.A
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