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Abstract

Differential equations and fluid models have been in-
creasingly used with significant success to model net-
work behavior and the interaction of TCP-flows with
Active Queue Management (AQM) schemes. A crucial
assumption for these limiting approximations to work
is that packet drops be distributed as a Poisson pro-
cess. It has also been demonstrated [2] that in a wide
variety of settings networks satisfy a scaling behavior,
in that many important performance metrics remain
invariant when the network is suitably scaled. In this
paper we present the results of our study on how the
choice of parameters of AQM schemes influence the va-
lidity of the scaling hypothesis and the ability of fluid
models to predict network dynamics. We find that the
fidelity of an approximation method is directly related
to how clumped the packet drops it induces are, which
in turn is related to the deviation of the packet-drop
process from that of a Poisson process.

1 Introduction

The complexity and size of the Internet presents a
problem to those attempting to model traffic behavior
and design schemes to ensure a fair and efficient use of
the network. A lot of recent work has focused on us-
ing differential equations to model network dynamics,
in particular the interaction between TCP-flows and
AQM schemes [1, 3, 4, 5]. This approach has met with
remarkable success and has provided a handle by which
the behavior of the Internet can be better understood.
A by-product of this framework is that it allows one
to view the network from a control systems perspec-
tive and analyze the stability/performance of various
congestion control mechanisms.

Recently, a scaling hypothesis has been proposed in [2]
which states that if a network controlled by a variety
of AQM schemes is suitably scaled, then performance
measures such as queueing delay and drop probability
are left virtually unchanged. In that context too, the
differential equation model for a network with TCP-
like flows and standard AQM schemes is used to ex-

plain why such a scaling behavior is exhibited.

Differential equation models developed in [1] rely on
the assumption that packet losses for each flow are de-
scribed by a Poisson process of some rate. This as-
sumption is crucial to establishing the validity of these
deterministic models. For example, the Drop Tail AQM
scheme, which simply drops packets that arrive at a full
buffer, causes a number of consecutive packets to be
lost. This makes the packet-drop process bursty and
correlated. Separately, we observe in this paper that
if DropTail is used as the AQM scheme, then indeed
both the differential equation model and the scaling
behavior fail. It is therefore a worthwhile exercise to
study whether or not conventional AQM schemes drop
packets according to a Poisson-like distribution.

While obtaining the exact distribution for the packet-
loss process is an intractable problem, we can charac-
terize it as being close or far from Poisson in nature by
utilizing properties of the Poisson process. It is well
known that a Poisson process tends to avoid clumps;
i.e the probability that the number of points in a fixed
interval is large is exponentially small. Thus one would
expect that if an AQM scheme were to drop packets
in clumps, thus inducing correlations between succes-
sive packet drops, then the packet-drop process will be
far from Poisson. For such an AQM scheme we will
expect both the differential equation model and the
scaling hypothesis to be inaccurate. A way to achieve
this objective is to gradually increase the rate at which
the AQM scheme drops packet as a function of some
parameter until a point are lost faster than the rate at
which they leave the router. when successive packets
get dropped with high probability leading to clumps in
the packet-drop process.

Our simulations have shown that this is indeed the case
and, in fact, there is a cut-off point beyond which if we
change the parameters of the AQM scheme, the fidelity
of these methods in approximating the behavior of the
real network is lost. We will define two parameterized
variants of the Random Early Detection (RED) AQM
scheme in Section 2 and present our findings in Section
3. In Section 4 we will perform some analysis to explain
why after the variation of parameters have pushed an



AQM scheme into the regime where it starts dropping
packets clumpily, the previously mentioned models fail
to predict network behavior. Finally we will conclude
in Section 5.

2 AQM schemes

A significant number of routers in the Internet today
use RED for the purpose of congestion control. The
following two equations define how RED works, and
together they specify the drop (or marking) probabil-
ity. RED maintains a moving average g, of the instan-
taneous queue size ¢; and ¢, is updated whenever a
packet arrives, according to the rule

¢a = (1 — w)qa +wg,

where the parameter w determines the size of the aver-
aging window. The average queue size determines the
drop probability p(q,), according to the equation

0 : qo <ming,
Qo —MiNp )

p(qa) = pmam(mamthfminth

1 qu > maxy,
(1)
where pmaz, ming, and max, are design parameters
chosen to meet some performance guidelines.

As the current design of RED stands, packet drops
are relatively well spaced out. For our experiments,
we wish to modify the drop probability function used
in RED in a way so as to cause it to drop packets
more and more burstily, with the burstiness of drops
increasing as a function of some parameter. We will
achieve this end by altering RED so as to increase the
rate of packet drops.

Specifically, we use the following two variants of RED:

1. SlopeRED: We fix maz;, and vary ming, from
some nominal value up to max;y, in steps of size 4.
Changing minyy, in this manner has the effect of
increasing the slope of the drop probability func-
tion thus inducing a larger number of drops. The
parameter in SlopeRED is the slope of the drop
function. When ming, = max;p, SlopeRED be-
comes DropTail (if we identify maz;, with the
physical buffer size).

2. PowerRED: We define the drop function as:
) 0 a < minth

p(¢a) = { Pmaz(%)
1 : ga > mamy,

(2)
where n is an exponential parameter. Note that
here again, as n grows larger, PowerRED tends
to Drop Tail.

For the scaling experiments, the parameters pmaz,
minyp,, mazy, and w will be scaled in a way as specified

ming, < ¢ < MaTip

ming, < ga < Maxgp

in [2]. We will multiply miny, and mazy, by a. Re-
call that we are multiplying the buffer size by a: thus
miny, and max,y, are fixed to be a constant fraction of
the buffer size. We will keep pmaz fixed at 10%, so that
the drop probability is kept under 10% as long as the
buffer is slightly congested. The averaging parameter
w will be multiplied by a~!.

3 Simulations

3.1 THE BASIC SETUP
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Figure 1: Basic network topology (i) physical view and
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Figure 2: Traffic Patterns

We consider two congested links in tandem, as shown
in Figure 1. There are three routers, R1, R2 and R3;
and three groups of flows, grpl, ¢grp2, and grp3, with
group ¢ connecting sources in srci to receivers in rcvi.
The link speeds are 100Mbps and the buffers can hold
8000 packets. The RED parameters are miny, = 1000,
mazyy, = 3000 and w = 0.000005. For the flows: grp0
consists of 1200 TCP flows each having a propagation
delay of 150ms, grpl consists of 1200 TCP flows each
having a propagation delay of 200ms, and grp2 consists
of 600 TCP flows each having a propagation delay of
250ms. The flows switch on and off as shown in the
timing diagram of Figure 2. Note that 75% of grp0



flows switch off at time 150s.

This network is scaled-down by a factor a = 0.1 and
the parameters are modified as described above. Fig-
ures 3 and 4 depict the excellent match between the
average queueing delays experienced at queues 1 and
2 respectively, before and after scaling.
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Figure 3: Basic Setup: Average Queuing Delay at Q1
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Figure 4: Basic Setup: Average Queuing Delay at Q2

3.2 Experiment 1: SlopeRED

For this experiment we kept mazy, = 3000 and in-
creased miny, from 1000 in steps of § = 250 up to
mazyy,. Figures 5 and 6 show us that the behavior of
the scaled system matches well with that of the orig-
inal network when ming, = 1500. Thus the scaling
hypothesis appears to hold for that value of minyy,.

But we notice in Figures 7 and 8 that for min,, = 2750,
the scaled system has queueing delays that differ sub-
stantially from those experienced in the original net-
work. This we claim is evidence of the fact that as
the slope of SlopeRED increases and the packet drops
become more clumpy, the scaling behavior no longer
holds.
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Figure 5: miny, = 1500: Average Queuing Delay at Q1
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Figure 6: miny, = 1500: Average Queuing Delay at Q2

3.3 Experiment 2: PowerRED

Here we fix the values of mazy;, and miny, at 3000 and
1000 respectively. As in SlopeRED, we notice here
too (Figures 9-12) that the scaled system’s behavior
deviates significantly from that of the original one as
the exponent is increased, in fact, for as low an n as 2.
Thus we do not even need to take n — oo to observe
the degradation in fidelity that DropTail displayed.

4 Differential Equation Models

4.1 Scaling of solutions

In [2], the recently proposed theoretical fluid model
of TCP/RED [1] and the associated differential equa-
tions have been used to explain the observed scaling
behavior. We reproduce the key concepts here.

Consider N flows sharing a link of capacity C. Let
W;(t) and R;(t) be the window size and round-trip time
of flow i at time ¢. Here R;(t) = T; + q(t)/C, where T;
is the propagation delay and ¢(t) is the queue size at
time ¢. Let p(t) be the drop probability at time ¢, and
¢a(t) the average queue size used by RED.
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Figure 7: miny, = 2750: Average Queuning Delay at Q1
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Figure 8: min;, = 2750: Average Queuing Delay at Q2

The fluid model describes how these quantities evolve;
or rather, since these quantities are random, the fluid
model describes how their expected values evolve. Let
X be the expected value of random variable X. Then
the fluid model equations are these:

dW(t) Vi (W (t—13) =
dlt - Ri<z17(t)) o1 5%3(a(f—n)))p(t — i)
da(t) N AU R
dt T 4ei=1 Ri(q(t—mi))
dq, (t ) - )
th( ) _ log(_w) 5 (1) — loBlL_w) 7y
P(t) = preD(a(t))

where 7; = 7;(t) solves 7;(t) = R;(q(t — 7;(t))), d is the
average packet inter-arrival time, and prgp is as in
Equation (1). The accuracy of the fluid model is shown
in Figure 13 were we compare the numerical solution of
the fluid model equations with the simulation results’.

Remarks. While the applicability of these equations
is not yet fully understood [6], [1] indicates that em-

Y

pirically they are reasonably accurate. Also, note that

1The small discrepancies are due to the fact the fluid model
assumes the physical buffer size to be infinite. If we increase the
physical buffer size in the simulation, without altering the value
of the mazyy,, the two lines coincide exactly.
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Figure 9: n = 2: Average Queuing Delay at Q1
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Figure 10: n = 2: Average Queuing Delay at Q2

we have the constant 1.5 in Equation (3), not 2 as in
[1]. This change improves the accuracy of the fluid
model, for reasons elaborated on in [2]. Finally, note
that while these equations describe a single link, the
extension to networks is straightforward, and is given
in [1].

Returning to the differential equations, suppose we
have a solution to these equations

(W), (), @a (), B()).-

Now, suppose the network is scaled and denote by
C', N', etc the parameters of the scaled system.
When the network is scaled, the fluid model equa-
tions change, and so the solution changes. Let
(W!(),@'(-).q,(-),p'(-)) be the solution of the scaled
system. It is shown in [2] that, in fact,

(Wz’l(')a ql(')a qla()aﬁl()) = (Wl()a a(I(')a aqa()/p())

Thus the queueing delay ¢§'/C' = ag/aC is identical to
that in the unscaled system. Also the drop probability
is the same in each case (p(t) = p'(t)). We therefore
have theoretical support for the scaling hypothesis.

Now consider PowerRED: we will show that §'(¢) scales
in the desired fashion (a similar argument applies
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Figure 11: n = 3: Average Queuing Delay at Q1
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Figure 12: n = 3: Average Queuing Delay at Q2

to SlopeRED). Recall that pi,ez = Pmaz, and that
min'th = aminy, and max’th = amazyy,. It is then clear
that /
- .
50 :p;m(%(t)‘—m%,h)",
maz’th — miny,
Since the other differential equations remain un-
changed, all other quantities scale in exactly the same
way as in [2], and thus the solutions to the original
and scaled differential equations are identical for the
modified AQM schemes we use.

4.2 Simulation results

From Figure 13 it is clear that the fluid model does a
pretty good job of capturing the dynamics of the orig-
inal network. But in Figures 14 and 15 we observe
that the solution of the fluid model doesn’t match the
behavior of the network when the parameters for Slop-
eRED (miny, = 2750) and PowerRED (n = 2) are
chosen so that drops occur in clumps. This demon-
strates the fact that because of the clumpy nature of
the packet-drop process, the differential equations no
longer model the network dynamics faithfully. Also,
since the solutions to the original and the scaled dif-
ferential equations are identical, the inaccuracy of the
fluid model will carry over to a scaled network. This in
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Figure 13: Basic Setup: Fluid Model vs. Ns Simulation

itself should give us reason to suspect that the scaling
hypothesis will breakdown when the packet-drop pro-
cess is clumpy; a fact already demonstrated in Section
3.
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5 Conclusion

In the regime where the differential equation model
for an IP network with TCP flows is accurate, it has
been argued in [2] that this model provides a possi-
ble explanation for why the scaling hypothesis holds.
Specifically, it is shown there that for a large class of
AQM schemes, the solutions of the differential equa-
tions that govern the dynamics of both the original
and the scaled network are identical. But, we have ob-
served in this paper that the ability of the fluid model
and the scaled system to predict the behavior of the
original network is seriously degraded when the packet
drops occur in clumps. This is because an underlying
assumption while applying these models is that the
packet-drop process should be Poisson. If an AQM
scheme drops consecutive packets then drops will oc-
cur in bursts, making the packet-drop process corre-
lated and far from Poisson. Under such a scenario,
these models will fail to accurately emulate the origi-
nal network’s dynamics. It is clear that the differential



— scale = 1 (model)
scale = 1 (ns)

Queueing Delay (msec)

N
S
T

N
=]
T

0 ; ; ; ; ; ; ; ;
20 40 60 80 100 120 140 160 180 200
Simulation Time (Sec)

Figure 15: n = 2: Fluid Model vs. Ns Simulation

equation model and the scaling hypothesis have signif-
icant implications for network performance prediction
and design. Hence, further work is required in identi-
fying the regime of applicability of these models; and
rigorously establishing their validity in that regime.
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