
A Study of the Appliability of a Saling HypothesisRong Pan�, Balaji Prabhakary, Konstantinos Psounis� and Mayank Sharma�� Department of Eletrial Engineering, Stanford Universityemail: frong,kpsounis,msharmag�stanford.eduy Departments of Computer Siene and Eletrial Engineering, Stanford Universitye-mail: balaji�stanford.eduAbstratDi�erential equations and uid models have been in-reasingly used with signi�ant suess to model net-work behavior and the interation of TCP-ows withAtive Queue Management (AQM) shemes. A ruialassumption for these limiting approximations to workis that paket drops be distributed as a Poisson pro-ess. It has also been demonstrated [2℄ that in a widevariety of settings networks satisfy a saling behavior,in that many important performane metris remaininvariant when the network is suitably saled. In thispaper we present the results of our study on how thehoie of parameters of AQM shemes inuene the va-lidity of the saling hypothesis and the ability of uidmodels to predit network dynamis. We �nd that the�delity of an approximation method is diretly relatedto how lumped the paket drops it indues are, whihin turn is related to the deviation of the paket-dropproess from that of a Poisson proess.1 IntrodutionThe omplexity and size of the Internet presents aproblem to those attempting to model traÆ behaviorand design shemes to ensure a fair and eÆient use ofthe network. A lot of reent work has foused on us-ing di�erential equations to model network dynamis,in partiular the interation between TCP-ows andAQM shemes [1, 3, 4, 5℄. This approah has met withremarkable suess and has provided a handle by whihthe behavior of the Internet an be better understood.A by-produt of this framework is that it allows oneto view the network from a ontrol systems perspe-tive and analyze the stability/performane of variousongestion ontrol mehanisms.Reently, a saling hypothesis has been proposed in [2℄whih states that if a network ontrolled by a varietyof AQM shemes is suitably saled, then performanemeasures suh as queueing delay and drop probabilityare left virtually unhanged. In that ontext too, thedi�erential equation model for a network with TCP-like ows and standard AQM shemes is used to ex-

plain why suh a saling behavior is exhibited.Di�erential equation models developed in [1℄ rely onthe assumption that paket losses for eah ow are de-sribed by a Poisson proess of some rate. This as-sumption is ruial to establishing the validity of thesedeterministi models. For example, the DropTail AQMsheme, whih simply drops pakets that arrive at a fullbu�er, auses a number of onseutive pakets to belost. This makes the paket-drop proess bursty andorrelated. Separately, we observe in this paper thatif DropTail is used as the AQM sheme, then indeedboth the di�erential equation model and the salingbehavior fail. It is therefore a worthwhile exerise tostudy whether or not onventional AQM shemes droppakets aording to a Poisson-like distribution.While obtaining the exat distribution for the paket-loss proess is an intratable problem, we an hara-terize it as being lose or far from Poisson in nature byutilizing properties of the Poisson proess. It is wellknown that a Poisson proess tends to avoid lumps;i.e the probability that the number of points in a �xedinterval is large is exponentially small. Thus one wouldexpet that if an AQM sheme were to drop paketsin lumps, thus induing orrelations between sues-sive paket drops, then the paket-drop proess will befar from Poisson. For suh an AQM sheme we willexpet both the di�erential equation model and thesaling hypothesis to be inaurate. A way to ahievethis objetive is to gradually inrease the rate at whihthe AQM sheme drops paket as a funtion of someparameter until a point are lost faster than the rate atwhih they leave the router. when suessive paketsget dropped with high probability leading to lumps inthe paket-drop proess.Our simulations have shown that this is indeed the aseand, in fat, there is a ut-o� point beyond whih if wehange the parameters of the AQM sheme, the �delityof these methods in approximating the behavior of thereal network is lost. We will de�ne two parameterizedvariants of the Random Early Detetion (RED) AQMsheme in Setion 2 and present our �ndings in Setion3. In Setion 4 we will perform some analysis to explainwhy after the variation of parameters have pushed an



AQM sheme into the regime where it starts droppingpakets lumpily, the previously mentioned models failto predit network behavior. Finally we will onludein Setion 5. 2 AQM shemesA signi�ant number of routers in the Internet todayuse RED for the purpose of ongestion ontrol. Thefollowing two equations de�ne how RED works, andtogether they speify the drop (or marking) probabil-ity. RED maintains a moving average qa of the instan-taneous queue size q; and qa is updated whenever apaket arrives, aording to the ruleqa := (1� w)qa + wq;where the parameter w determines the size of the aver-aging window. The average queue size determines thedrop probability p(qa), aording to the equationp(qa) = 8<: 0 : qa < minthpmax� qa�minthmaxth�minth � : minth � qa < maxth1 : qa > maxth (1)where pmax; minth and maxth are design parametershosen to meet some performane guidelines.As the urrent design of RED stands, paket dropsare relatively well spaed out. For our experiments,we wish to modify the drop probability funtion usedin RED in a way so as to ause it to drop paketsmore and more burstily, with the burstiness of dropsinreasing as a funtion of some parameter. We willahieve this end by altering RED so as to inrease therate of paket drops.Spei�ally, we use the following two variants of RED:1. SlopeRED : We �x maxth and vary minth fromsome nominal value up tomaxth in steps of size Æ.Changing minth in this manner has the e�et ofinreasing the slope of the drop probability fun-tion thus induing a larger number of drops. Theparameter in SlopeRED is the slope of the dropfuntion. When minth = maxth, SlopeRED be-omes DropTail (if we identify maxth with thephysial bu�er size).2. PowerRED : We de�ne the drop funtion as:p(qa) =( 0 : qa < minthpmax� qa�minthmaxth�minth �n : minth � qa < maxth1 : qa � maxth (2)where n is an exponential parameter. Note thathere again, as n grows larger, PowerRED tendsto DropTail.For the saling experiments, the parameters pmax,minth, maxth and w will be saled in a way as spei�ed

in [2℄. We will multiply minth and maxth by �. Re-all that we are multiplying the bu�er size by �: thusminth and maxth are �xed to be a onstant fration ofthe bu�er size. We will keep pmax �xed at 10%, so thatthe drop probability is kept under 10% as long as thebu�er is slightly ongested. The averaging parameterw will be multiplied by ��1.3 Simulations3.1 The Basi Setup
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PSfrag replaements grp1grp2grp3No.ofows Simulation time (se)Figure 2: TraÆ PatternsWe onsider two ongested links in tandem, as shownin Figure 1. There are three routers, R1, R2 and R3;and three groups of ows, grp1, grp2, and grp3, withgroup i onneting soures in sri to reeivers in rvi.The link speeds are 100Mbps and the bu�ers an hold8000 pakets. The RED parameters are minth = 1000,maxth = 3000 and w = 0:000005. For the ows: grp0onsists of 1200 TCP ows eah having a propagationdelay of 150ms, grp1 onsists of 1200 TCP ows eahhaving a propagation delay of 200ms, and grp2 onsistsof 600 TCP ows eah having a propagation delay of250ms. The ows swith on and o� as shown in thetiming diagram of Figure 2. Note that 75% of grp0



ows swith o� at time 150s.This network is saled-down by a fator � = 0:1 andthe parameters are modi�ed as desribed above. Fig-ures 3 and 4 depit the exellent math between theaverage queueing delays experiened at queues 1 and2 respetively, before and after saling.
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Figure 3: Basi Setup: Average Queuing Delay at Q1
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Figure 4: Basi Setup: Average Queuing Delay at Q23.2 Experiment 1: SlopeREDFor this experiment we kept maxth = 3000 and in-reased minth from 1000 in steps of Æ = 250 up tomaxth. Figures 5 and 6 show us that the behavior ofthe saled system mathes well with that of the orig-inal network when minth = 1500. Thus the salinghypothesis appears to hold for that value of minth.But we notie in Figures 7 and 8 that forminth = 2750,the saled system has queueing delays that di�er sub-stantially from those experiened in the original net-work. This we laim is evidene of the fat that asthe slope of SlopeRED inreases and the paket dropsbeome more lumpy, the saling behavior no longerholds.
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Figure 5: minth = 1500: Average Queuing Delay at Q1
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Figure 6: minth = 1500: Average Queuing Delay at Q23.3 Experiment 2: PowerREDHere we �x the values of maxth and minth at 3000 and1000 respetively. As in SlopeRED, we notie heretoo (Figures 9-12) that the saled system's behaviordeviates signi�antly from that of the original one asthe exponent is inreased, in fat, for as low an n as 2.Thus we do not even need to take n ! 1 to observethe degradation in �delity that DropTail displayed.4 Di�erential Equation Models4.1 Saling of solutionsIn [2℄, the reently proposed theoretial uid modelof TCP/RED [1℄ and the assoiated di�erential equa-tions have been used to explain the observed salingbehavior. We reprodue the key onepts here.Consider N ows sharing a link of apaity C. LetWi(t) and Ri(t) be the window size and round-trip timeof ow i at time t. Here Ri(t) = Ti+ q(t)=C, where Tiis the propagation delay and q(t) is the queue size attime t. Let p(t) be the drop probability at time t, andqa(t) the average queue size used by RED.
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Figure 7: minth = 2750: Average Queuing Delay at Q1
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Figure 8: minth = 2750: Average Queuing Delay at Q2The uid model desribes how these quantities evolve;or rather, sine these quantities are random, the uidmodel desribes how their expeted values evolve. Let�X be the expeted value of random variable X . Thenthe uid model equations are these:d �Wi(t)dt = 1Ri(�q(t)) � �Wi(t) �Wi(t��i)1:5Ri(�q(t��i)) �p(t� �i)d�q(t)dt =PNi=1 �Wi(t)Ri(�q(t��i)) � Cd�qa(t)dt = log(1�w)Æ �qa(t)� log(1�w)Æ �q(t)�p(t) = pRED(�qa(t))where �i = �i(t) solves �i(t) = Ri(�q(t� �i(t))), Æ is theaverage paket inter-arrival time, and pRED is as inEquation (1). The auray of the uid model is shownin Figure 13 were we ompare the numerial solution ofthe uid model equations with the simulation results1.Remarks. While the appliability of these equationsis not yet fully understood [6℄, [1℄ indiates that em-pirially they are reasonably aurate. Also, note that1The small disrepanies are due to the fat the uid modelassumes the physial bu�er size to be in�nite. If we inrease thephysial bu�er size in the simulation, without altering the valueof the maxth, the two lines oinide exatly.
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Figure 9: n = 2: Average Queuing Delay at Q1
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Figure 10: n = 2: Average Queuing Delay at Q2we have the onstant 1:5 in Equation (3), not 2 as in[1℄. This hange improves the auray of the uidmodel, for reasons elaborated on in [2℄. Finally, notethat while these equations desribe a single link, theextension to networks is straightforward, and is givenin [1℄.Returning to the di�erential equations, suppose wehave a solution to these equations� �Wi(�); �q(�); �qa(�); �p(�)�:Now, suppose the network is saled and denote byC 0, N 0, et the parameters of the saled system.When the network is saled, the uid model equa-tions hange, and so the solution hanges. Let� �W 0i (�); �q0(�); �q0a(�); �p0(�)� be the solution of the saledsystem. It is shown in [2℄ that, in fat,� �W 0i (�); �q0(�); �q0a(�); �p0(�)� = � �Wi(�); ��q(�); ��qa(�); �p(�)�:Thus the queueing delay �q0=C 0 = ��q=�C is idential tothat in the unsaled system. Also the drop probabilityis the same in eah ase (�p(t) = �p0(t)). We thereforehave theoretial support for the saling hypothesis.Now onsider PowerRED: we will show that �p0(t) salesin the desired fashion (a similar argument applies
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Figure 11: n = 3: Average Queuing Delay at Q1
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Figure 12: n = 3: Average Queuing Delay at Q2to SlopeRED). Reall that p0max = pmax, and thatmin0th = �minth and max0th = �maxth. It is then learthat �p0(t) = p0max� �q0a(t)�min0thmax0th �min0th�n:Sine the other di�erential equations remain un-hanged, all other quantities sale in exatly the sameway as in [2℄, and thus the solutions to the originaland saled di�erential equations are idential for themodi�ed AQM shemes we use.4.2 Simulation resultsFrom Figure 13 it is lear that the uid model does apretty good job of apturing the dynamis of the orig-inal network. But in Figures 14 and 15 we observethat the solution of the uid model doesn't math thebehavior of the network when the parameters for Slop-eRED (minth = 2750) and PowerRED (n = 2) arehosen so that drops our in lumps. This demon-strates the fat that beause of the lumpy nature ofthe paket-drop proess, the di�erential equations nolonger model the network dynamis faithfully. Also,sine the solutions to the original and the saled dif-ferential equations are idential, the inauray of theuid model will arry over to a saled network. This in
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Figure 14: minth = 2750 : Fluid Model vs. Ns Simula-tion 5 ConlusionIn the regime where the di�erential equation modelfor an IP network with TCP ows is aurate, it hasbeen argued in [2℄ that this model provides a possi-ble explanation for why the saling hypothesis holds.Spei�ally, it is shown there that for a large lass ofAQM shemes, the solutions of the di�erential equa-tions that govern the dynamis of both the originaland the saled network are idential. But, we have ob-served in this paper that the ability of the uid modeland the saled system to predit the behavior of theoriginal network is seriously degraded when the paketdrops our in lumps. This is beause an underlyingassumption while applying these models is that thepaket-drop proess should be Poisson. If an AQMsheme drops onseutive pakets then drops will o-ur in bursts, making the paket-drop proess orre-lated and far from Poisson. Under suh a senario,these models will fail to aurately emulate the origi-nal network's dynamis. It is lear that the di�erential
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