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Abstract— The physical phenomena monitored by sensor
networks, e.g. forest temperature, water contamination,
usually yield sensed data that are strongly correlated in
space. With this in mind, researchers have designed a large
number of sensor network protocols and algorithms that
attempt to exploit such correlations.

To carefully study the performance of these algorithms,
there is an increasing need to synthetically generate large
traces of spatially correlated data representing a wide
range of conditions. Further, a mathematical model for
generating synthetic traces would provide guidelines for
designing more efficient algorithms. These reasons moti-
vate us to obtain a simple and accurate model of spatially
correlated sensor network data.

The model can capture correlation in data irrespective of
the node density, the number of source nodes or the topol-
ogy. We describe a mathematical procedure to extract the
model parameters from real traces and generate synthetic
traces using these parameters. Then, we validate our model
by statistically comparing synthetic data and experimental
data, as well as by comparing the performance of various
algorithms whose performance depends on the degree of
spatial correlation. Finally, we create a tool that can be
easily used by researchers to synthetically generate traces
of any size and degree of correlation.

I. INTRODUCTION

The wireless sensor networks of the near future are
envisioned to consist of hundreds to thousands of inex-
pensive wireless nodes, each with some computational
power and sensing capability, operating in an unattended
mode. Since these sensors will be densely deployed and
they detect common phenomena, it is expected that a
high degree of spatial correlation will exist in the sensor
network data. The presence of spatial correlation in
data has been exploited by different algorithms solving
different problems. Spatial correlation has been used in
data aggregation and routing algorithms [1], [2], [3], [4].
[5], data storage and querying [6], [7], [8], mac protocol
design [9], [10], localization [11], data compression and
encoding [12], and calibration [13].
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The evaluation of protocols that are sensitive to the
spatial features of input data requires data representing a
wide range of realistic conditions. However, since very
few real systems have been deployed, there is hardly
any experimental data available to test the proposed
algorithms. Further, no effort has been made to propose
a model which captures the spatial correlation in sensor
network data. As a result, sensor network researchers
make different assumptions when generating data inputs
to evaluate systems; some assume the data to be jointly
gaussian with the correlation being a function of the
distance [10], some assume that the data follows the
diffusion property [8], and some assume a function
for the joint entropy of the data [2]. Finally, some
researchers propose the use of environmental monitoring
data obtained from remote sensing [6], however the
granularity of these data sets do not match the expected
granularity of sensor networks’ data.

The need of a proper mathematical model which can
capture spatial correlation of any degree irrespective of
the granularity, density, number of source nodes or topol-
ogy is evident. Yan Yu et al [14] proposed a method to
interpolate existing experimental data to support irregular
topologies. However, they do not propose a model which
can generate synthetic data traces of any granularity and
density without the need of experimental data traces.
On a different context, Psounis et al [15] proposed a
markovian model to capture temporal correlation in web
traces.

In this paper we propose a mathematical model that
is similar in flavor to that in [15], in order to capture the
spatial correlation in sensor network data. We present a
method to generate large synthetic traces from a small
experimental trace while preserving the correlation pat-
tern, and a method to generate synthetic traces exhibiting
arbitrary correlation patterns. We show that synthetic
traces are very close to real traces using statistics, and by
running algorithms which exploit the presence of spatial
correlation, against both types of traces. We use two well
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known algorithms, DIMENSIONS [6] and CMAC [10],
for this purpose.

The remainder of the paper is organized as follows.
Section II presents a statistical analysis of experimental
data to motivate our model. The model is formally
presented in Section III. We show through variogram'
plots how spatial correlation properties depend on the
model parameters, and then present a mathematical
method to infer the model parameters from a real trace.
The correctness of the model is verified by comparing
the statistics of the original and the synthetic traces in
Section I'V-A. In Section I'V-B, the accuracy of the model
is validated by comparing the performance of various
algorithms against real and the corresponding synthetic
traces. Finally, Section V presents two tools which we
have created to enable researchers generate large traces
from a small input trace, or create traces having varied
correlation properties by tweaking the model parameters.

II. STATISTICAL ANALYSIS OF EXPERIMENTAL DATA

A. Data Set Description

Since there are no sensor network data sets available
to date, we base our study on environment monitoring
data. This paper makes use of two data sets, the S-Pol
Radar Data Set ? and the Precipitation Data Set [16].
These data sets have been extensively used in the sensor
networks literature over the last couple of years, e.g. [2],
(6], [14].

1) S-Pol Radar Data Set: The resampled S-Pol radar
data, provided by NCAR, records the intensity of reflec-
tivity of atmosphere in dBZ, where Z is proportional to
the returned power for a particular radar and a particular
range. The original data were recorded in the polar
coordinate system. Samples were taken at every 0.7
degrees in azimuth and 1008 sample locations (approx-
imately 150 meters between neighboring samples) in
range, resulting in a total of 500 x 1008 samples for each
360 degree azimuthal sweep. They were converted to the
cartesian grid using the nearest neighboring resampling
method [17]. In this paper, we have selected a 64 x 64
spatial subset of the original data and 259 time snapshots
across 2 days in May 2002.

'a measure of correlation introduced in Section II-B

2S-Pol radar data were collected during the THOP 2002 project
(http://www.atd.ucar.edu/rtf/projects/ihop
2002/spol/). S-Pol is fielded by the Atmospheric Technology
Division of the National Center for Atmospheric Research.
We acknowledge NCAR and its sponsor, the National Science
Foundation, for provision of the S-Pol data set.

2) Precipitation Data Set: This data set consists of
the daily rainfall precipitation for the Pacific Northwest
from 1949-1994. The final measurement points in the
data set formed a regular grid of 50 km x50 km regions
over the region under study. We select a subset of data
that has no missing values. Specifically, each snapshot of
data is a 8 x 8 spatial grid data with a 50 km resolution.

B. Statistics used to Measure Correlation in Data

To study the correlation properties of data, researchers
usually use the autocorrelation function. Given a two
dimensional stationary process X (z,y), the autocorrela-
tion function is defined as

Another statistic often used to characterize spatial
correlation in data is the variogram. The variogram (also
called semivariance) is defined as

Vi, da) = SEIX(@,9) = X (o di,y + )P @)

For isotropic random processes [18] the variogram
depends only on the distance d = d; + d2 between two
nodes. 3 In this case, if (z4,74) denotes a point which
is d distance away from (z,y),

1
(d) = S E[(X(z,y) — X (xd,va))?]; 3)
where |z — 4| + |y — y4| = d.

For a set of samples z(x;,v;), i = 1,2,..., v(d) can

be estimated as follows,
N 1 m(d)

7 (d) = mZ[»’U(wi,yi) —a(zg,y)?, @
1

where m(d) is the number of points at a distance d within
each other, i.e. the sum is over all points for which |z; —
il 4y — y5] = d.

We experimented with both metrics and found that
the results were similar. Since the variogram gives a
better visual representation of the variation of data with
distance, in this paper we will only present variogram
results.

C. Analysis of Data using Variograms

If a process is independent and identically distributed
(iid), its variance will not change with distance and the
variogram should be a straight line parallel to the x-axis.
Figure 1 shows the variogram for an iid process with the
underlying random variable being Gaussian with mean
0 and standard deviation equal to 10.

3 We are using the L1 (Manhattan) distance here because we will
later assume that points reside in a grid, but one may define distance
in any meaningful manner.
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Fig. 1. Variogram for an iid process.
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Fig. 2.
(a=1).

Variogram for a process which follows the diffusion law

When the phenomenon under observation is being
emitted from a single source it usually follows the
diffusion property with distance, i.e. f(d) d% where
f(d) is the magnitude of the event’s effect at a distance
d from the source and « is the diffusion parameter that
depends on the type of the effect. Figure 2 shows the
variogram for a process following the diffusion law.

But the process under observation seldom has a single
source and the presence of multiple sources will require
us to calculate a phasor sum of data values at a node.
For atmospheric data such as temperature, precipitation
and humidity, it is not even possible to define a source.
The data values at nodes close to each other will be
correlated, while for large d the process will start looking
like an iid process. As an example, the variogram at a
time snapshot of the S-Pol radar data is shown in Figure
3. As it is evident from the plot, as the distance grows
from zero the spatial correlation decreases fast. Also, for
distances larger than 20 correlation is quite small.
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Fig. 3. Variogram of the experimental data at a time snapshot.

III. THE MODEL

In this section we introduce our model for capturing
the statistical properties of sensor networks data. Let
X(x,y) be the data value at a node (z,y). We assume
that X (z,y) is a stationary process that has a unique
first order distribution whose probability density function
(pdf) is denoted by fx(x). (We call this the long term
distribution of the data.) For simplicity, we also assume
that the nodes are located on a regular rectangular grid.
(In section III-A, we comment on how to use the model
with irregular topologies.)

Let N(d) denote the number of nodes at a distance
d from (z,y). Let X4 denote the data value at a node
which is d distance away from (z,y), and X* denote
the data value at the k" node (1 < k < N(d)) at a
distance d from (z,y). We propose the following model
for generating data values:

(X1 +Z  with probability 37y
N 1'
X! Wy 7 w.p. Na(ll)
X3+ 7 WP N
Xy =1 3@ +2  wp 2 ®
X4z WP Nk

where Z and Y are random variables independent of
each other as well as X, and their pdf’s are denoted by
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fz(z) and fy(y) respectively. Both Y and Z determine
the long term distribution of X, and Z captures the small
differences between neighboring data values. The above
equation simply says that the probability that X (x,y) is
derived from the value of a node which is d distance
away from (z,y) is «a4. Further, the probability that
X(x,y) is derived from the value of a particular such
node is +>4-. The parameters of the model are h, the

N
a;’s, B, fy(y) and fz(z). Obviously [ + Z a; = 1.

We now derive the relationship between the distribu-
tions of X, Y and Z. For mathematical convenience, we
define the following three random variables:

« A=XI+7,

e T which indicates the outcome of the toss of an
h + 1 sided, biased coin with P(T = j) = «; for
1<j<hand P(T=h+1)=p, and

e Uy which is a discrete uniform random variable
taking values between 1 and N(d).

Using this notation, we can find the probability density
function fx(z) as follows:

P(X<:1c)—

5 Z P(AL < a|T = j,U; =

Jj=11i=

)P(U; = i|T = j)P(T =

+ P(Y<z|T=h+1)P(T=h+1)

h N(j)
= Fx(a) = 3.3 Fas(2)P(T = j)P(U; = i)
j=1 i=1
+ Fy(z)P(T=h+1)
h N(j)
= fx(@)=> Y fa(@)P(T = j)PU; = i)
j=1 i=1
+ fy(@)P(T =h+1). (6)
In stationarity, Xll, - va(l) . X}]Lv(h) have the same
distribution, that is fx = fx1 = ... = fXN(l) = .=

fxp=..= fXN(h) Similarly, f4 = qu for all i R
Usmg the above and Equation (6) the characteristic
function of fx(z) can be written as

Oy (jw) = (1 = B)Pa(jw) + By (jw). (D

Hence, given any two distribution functions, we can find
the third one using Equation (7).

Without loss of generality, from now onwards we will
assume that Z is a normal random variable with mean
© = 0 and standard deviation ¢ = o,. We use the S-
Pol radar data to justify our assumption. Figure 4 shows
the distribution of X — X;, where X; represents the
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Fig. 4. Distribution of X — X for samples from a time snapshot
of the S-Pol radar data where X; are the sample values at nodes at
a unit distance away from X.

sample values at nodes at a unit distance away from
X. As it is evident from the plot, this distribution can
be very closely approximated by a gaussian distribution.
Note that the distribution of Z need not necessarily
be gaussian; any other distribution will not change any
equations upto this point, though the succeeding analysis

4) will be modified.

Since X and Z are independent the characteristic
function of f4 can be written as

az2u2}

D 4(jw) = Ox (jw)Pz(jw) = Px (jw)el =2
Hence, Equation (7) reduces to
@ (jw) = b av(e). ®
1—(1- B)el=5

Equation (8) describes the relationship between the char-
acteristic functions, and hence the distribution functions,
of the random variables X, Y and Z.

For mathematical convenience, we define a new ran-
dom variable L having a characteristic function given by

ﬂ .
- (1= el

(The random variable L will be used in the calculations
in Section III-B.) Equation (8) can now be rewritten as

X=Y+L. (10)

®p(jw) = ©))

A. Parameters of the Model and Correlation

The presence of many parameters in the model gives
us great flexibility to model processes having different
correlation properties. In this section, we study how the
tweaking of different parameters effect the correlation
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Fig. 5. Dependence of the spatial correlation properties of the data
generated by the model on the model parameters: Variogram plots
for different values of «;’s, 8 and h with fy(y) ~ N(0,10) and

fz(2) ~ N(0,2).

properties of the generated data. For example, it is easy
to see that the values of 3 and h are going to play
a major role in determining the correlation properties.
Also, Equation (8) shows that fy(y), fz(z) and 3 are
sufficient to determine the long term distribution of X.

We will now plot a few variograms for different values
of a;’s, f and h, assuming fy(y) ~ N(0,10) and
fz(z) ~ N(0,2). Figure 5 confirms that synthetic traces
representing wide range of conditions can be generated
from the same model by varying the model parameters.
For example, for large (3 the process is very close to
an iid process and the variogram is close to a straight
line, while for smaller values of 3, spatial correlation is
strong for small distances.

The procedure we described can be also used to
generate data on random and irregular topologies as
follows. Since the granularity of the data is in our hands,
we generate a data set on a regular grid but at a much
higher granularity. Then, we keep random or irregularly
distributed nodes as required, and throw away the rest to
create a synthetic trace on an irregular topology.

B. Inferring Model Parameters

In this section we present techniques for inferring the
parameters of the model from real traces.

We infer fx(x) from its empirical distribution. Infer-
ring o, o;’s and § is more involved. Suppose for now
that a suitable value of h has been chosen. (We present
a procedure for determining h at the end of this section.)
We will compute the semivariance (i), = 1,..., i/z\—i— 1,

using the model, and equate it with its estimate 7 (7)

(a) (b)

10 {13 |15 (16 (|13 |14 |15 |16
((2,3) /(2,3)

6 |9 |12 14 ||9 |10 |11 12

3 /5|8 11||5 6 |7 |8

112 /4 7 |12 |3 |4

Fig. 6. Two methods to populate data. Note that the marked nodes
correspond to the nodes contributing to the model in Equation (5)
when node (2,3) is being visited for h = 2. The numbers indicate
the order in which the nodes are being visited. (a) Method 1 : Data
dependence in a quarter circular fashion (N (i) =i + 1) (b) Method
2 : Data dependence in a semi circular fashion (N (i) = 21).

as obtained from the real trace. This will give h + 1
equations with unknowns o, 3 and «;’s.
Using Equation (3),

V@)= E[X - X;)?
= (i) = FE[E[(X — XF)?]|K]
S (i) = g [BIX — X1 + B[(X — X2)?]
e BI(X - X)),
(1)
Let dj,;, denote the distance between the points X ! and

X 1 Then, each of the terms in Equation (11) can be
expanded as follows:

BIX = X)) = IO + 7 - X))
o %E[(X{V(l) v Z - XY+
i 2 _ w12
N EZ0 et BEIY = XD?)
where E[(X1 —|—Z XH?2 = [(X1 XH+E[Z%) =
29(dji,) + 02 and E[(Y — X})2] = E[(Y - X)?] =

E[L?]. Hence,

BIX = X1)?) = 201 = 9)02 + 250 (di,) +
+2-2L y(diy) + oo+ BEILY.

N(1)

Using Equation (9), E[L?] is evaluated to be %

To find the value of N (i), the nodes contributing to the
model in Equation 5 have to be specified. Also, the order
in which the nodes are visited during the generation of
synthetic data has to be specified.
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Two methods of doing so are presented in Figure 6.
As shown in the figure, the first method corresponds to
a data dependence of a quarter circular fashion while
the second method corresponds to a data dependence of
a semi circular fashion. Which method to choose will
depend on the physical phenomenon being modeled. We
ran simulations for both the methods and the results were
similar. So, from now on, we will use the first method to
determine the order in which nodes are visited. In this
case, it can be easily shown that N (i) equals 7 + 1.

Substituting all of the above in Equation (11) leads to

the following:
V(@)= (1-75)
k

o2
i+1 h
ok 3 S i (d)
2(i+1) £~ £ k+1 viRL) "
j=1k=11=1

+
—_

12)

A
Equating 7 (i) = (i) for 1 < ¢ < h + 1 gives
h+1 equations. These equations along with the equation

h
B+ > a; = 1 form a system of h + 2 non linear
i=1
equations with h-+2 unknowns, the ;’s, 3 and o2. After
solving the above system, fy (y) can be obtained through
Equation (8).

What remains is a procedure for determining h. In
theory, overestimating h, which results in a larger matrix,
would still find the correct parameters. However, in
practice, larger h values leads to more rounding and
statistical errors, hence to small negative a;’s in the
solution of the non linear system. A solution to this is to
start from an overestimated h, and lower its value until
all the «a;’s are positive.

IV. MODEL VERIFICATION AND VALIDATION

In this section, the model parameters are inferred from
the traces described in Section II-A and then used to
generate synthetic traces. First, we verify our model by
comparing the statistics of the original experimental data
trace and the corresponding synthetic trace. Then, we
validate our model by comparing the performance of
algorithms which exploit spatial correlation, against real
traces and their synthetic counterparts.

A. Model Verification

1) S-Pol Radar data set: We choose a snapshot in
time of the S-Pol Radar data as the experimental data
trace. The S-Pol radar data set is a 64 x 64 spatial subset
of the original data. The parameters of the model for
the trace are inferred using the method described in
Section III-B. Figure 7 presents the values of «;’s, 3
and o, inferred from the trace. Using these parameters,

0.251

0.2f

0.151

0.1p

0.051

Fig. 7. a;’s for the S-Pol Radar data trace (h = 7, § = 0.1 and
o, = 1.25).
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Fig. 8. S-Pol Radar data : Comparison of the distribution of the

original and synthetic traces.

we generate a synthetic counterpart of the original trace.
Then, we compare the statistics of both the traces. Figure
8 shows the long term distribution of the two traces
and Figure 9 shows their respective variograms. Note
the presence of edge effects due to insufficient number
of samples for d > 80. As expected, the long term
distribution of the two traces match closely. A look
at the variograms tell us that the model is slightly
underestimating the degree of spatial correlation in the
data, though the exhibited correlation pattern is similar.

2) Precipitation data set: We choose a snapshot in
time of the precipitation data as the experimental data
trace. The precipitation data set is a 8 x 8 spatial subset
of the original data. The parameters inferred for the trace
are h =1, oy = 0.72, 8 = 0.28 and o, = 2.61. Using
these parameters we generate a synthetic counterpart of
the original trace. Then we compare the statistics of both
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Fig. 10. Precipitation data : Comparison of the distribution of the
original and synthetic traces.

the traces. Figure 10 shows the long term distribution
of the two traces and Figure 11 shows their respective
variograms. Both the distribution and variograms match
closely.

B. Model Validation

There are several algorithms which try to exploit the
presence of spatial correlation in sensor network data. A
few of these algorithms were mentioned in the introduc-
tion. We selected two amongst them (DIMENSIONS [6]
and CMAC [10]) to evaluate our model by comparing
their performance for the original and the corresponding
synthetic traces. We did not choose any of the algorithms
which use entropies because we did not have enough
time snapshots of sensor data traces to calculate the joint
entropies. Though we have enough time snapshots of the
precipitation data, the number of samples in space are

6500
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3000 : : : ‘
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Fig. 11. Precipitation data : Comparison of the variogram of the

original and synthetic traces.

not sufficient to be able to evaluate any algorithm. We
went for algorithms which clearly defined how to process
the sensor data and provided a meaningful metric for
comparison. The algorithms along with the comparisons
are discussed below.

1) DIMENSIONS: This is a data storage and query-
ing algorithm. DIMENSIONS proposes wavelet based
multi-resolution summarization and drill down querying.
Summaries are generated in a multi-resolution man-
ner, corresponding to different spatial scales. Queries
on such data are posed in a drill down manner, that
is, they are first processed on coarse, highly com-
pressed summaries corresponding to larger spatial vol-
umes, and the approximate results obtained are used to
focus on regions in the network that are most likely
to contain relevant information. A variety of queries
can be posed on the data set; we present the perfor-
mance results for the query average(X). The evaluation
metric used is the query error which is defined as
QueryError = (QueryResponseOver Dimensions —
ActualValue) /ActualV alue. In the DIMENSIONS hi-
erarchy, each lower level stores twice the amount of data
as the higher level. Therefore, as the query processing
proceeds down the hierarchy gaining access to more
detailed information, the query error should drop down
gradually.

We only use the S-Pol radar data trace for evaluating
algorithms because the precipitation data does not have
sufficient spatial samples. We first choose a snapshot in
time of the S-Pol radar data as the experimental data
trace. After inferring the parameters of the model for
the original trace, we generate a synthetic counterpart of
the original trace. Figure 12 shows the result of running
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Fig. 12.  Error vs Query Termination Level : Comparison of the
performance of DIMENSIONS on original and synthetic trace.
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Fig. 13.  Error at query termination level 1 at different snapshots
: Comparison of the performance of DIMENSIONS on original and
synthetic trace.
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Fig. 14.  Error at query termination level 2 at different snapshots
: Comparison of the performance of DIMENSIONS on original and
synthetic trace.
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Fig. 15. Error at query termination level 3 at different snapshots

: Comparison of the performance of DIMENSIONS on original and
synthetic trace.
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Fig. 16. Error at query termination level 4 at different snapshots

: Comparison of the performance of DIMENSIONS on original and
synthetic trace.

DIMENSIONS on both the traces. It is evident that the
two plots match very well, thus we can infer that the
synthetic data is able to capture the spatial correlation in
the original data. To confirm the observation, we then
infer the model parameters for different snapshots in
time and run DIMENSIONS on both the original and
synthetic traces. Figures 13-16 show the comparison
for different query termination levels. It is obvious that
the performance of the algorithm for both the traces is
similar.

2) Spatial Correlation based Collaborative Medium
Access Control (CMAC): Vuran et al [10] have argued
that due to the presence of spatial correlation between
sensor observations, it is not necessary for every node
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Fig. 17. Variation of error with d : Comparison of the performance
of CMAC on original and synthetic trace.

to transmit its data. Amongst a cluster of sensor nodes,
one of them can act as a representative of all other
nodes. We refer to the node that sends information to
the sink as the representative node of the cluster. Thus,
a smaller number of sensor measurements are adequate
to communicate the event features to the sink within a
certain acceptable error.

Our simulation scenario has a 64 x 64 rectangular grid
of sensor nodes. We present the performance results for
the query average(X). Since only a few of these sensor
nodes will be transmitting data, the query result at the
sink will not be accurate. So, as before the evaluation
metric we use is the query error.

The cluster structure is assumed to be a square having
a side d. Amongst all the nodes within this square, the
representative node is selected randomly. Only one node
in the cluster (the representative node) will transmit its
data to the sink. The larger the value of d, the smaller is
the number of nodes transmitting data to the sink, and
hence larger is the error. For a given snapshot in time,
Figure 17 plots the variation of error as a function of d
for both traces. Then, we fix the value of d to 8 and run
CMAC for traces at different snapshots in time and plot
the error in Figure 18. It is obvious that the performance
of the algorithm for both the traces is similar as the plots
match closely. From the above plots, we claim that the
model captures spatial correlation in the data.

V. TOOLS TO GENERATE LARGE SYNTHETIC TRACES

In this section we describe two tools which we
have created to help researchers generate synthetic
traces of any size and degree of correlation. The tools
are freely available at http://www-scf.usc.edu/
“apoorvaj.

T
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- - original data

1k 4

query error
o o
(=) [
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Fig. 18. Error for d = 8 : Comparison of the performance of CMAC
on original and synthetic trace.

o generateLargeTraceFromSmall will create large
synthetic traces having the same correlation struc-
ture as the input real data trace. It takes the real
data trace and the dimensions of the output synthetic
trace as its input. It also requires the user to specify
the data dependence pattern. The user can choose
either of the methods described in Section III-B.

o generateSyntheticTraces will create large synthetic
traces representing a wide range of conditions by
tweaking the model parameters. It takes the model
parameters, h, «;’s, 3, 0, and fx(z) as its input
in addition to the dimensions of the synthetic trace
and the data dependence pattern.

Data collected from a testbed having a few sensor
nodes is not sufficient to evaluate protocols. The first
tool can generate a large trace having similar correlation
properties as the real trace, and hence, help researchers
to evaluate protocols with real data. The second tool will
enable researchers to evaluate their protocols with data
having varied correlation structures. Hence, these two
tools will help researchers to evaluate their protocols
with data representing wide range of realistic conditions
without the need of actual dense deployment of sensor
nodes.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a model to capture the
spatial correlation in sensor network data. This model
can generate synthetic traces representing a wide range
of conditions and exhibiting any degree of correlation.
We also described a mathematical procedure to extract
the parameters of the model from a real data set. These
model parameters are then used to generate synthetic
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traces having similar correlation properties as the real
data trace.

We verified our model by showing that the statistics
of the synthetic trace is similar to the real data trace. We
validated our model by showing that the performance
of sensor network algorithms exploiting spatial corre-
lation is similar for both the traces. For this purpose,
we used the sensor network data storage and querying
algorithm DIMENSIONS and the Spatial Correlation
based Collaborative Medium Access Control algorithm
CMAC. Finally, we have created two freely available
tools to enable researchers to generate data representing
real world scenarios and wide range of conditions.

This work assumes that the sensor nodes reside on
a grid. This is a somewhat unrealistic assumption used
to simplify the analysis. We are currently working on
extending the model to cases where the nodes’ placement
follows a more natural pattern, e.g. a two dimensional
poisson process. Finally we plan to evaluate our method-
ology with real sensor networks data as soon as such data
becomes available.
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