SIFT: A simple algorithm for tracking elephant flows,
and taking advantage of power laws

Konstantinos PsouriisArpita Ghosh, Balaji Prabhakdr Gang Wang
fUniversity of Southern Californig,Stanford University
kpsounis@usc.edu, arpitag,balaji@stanford.edu, gang@aisc.edu

Abstract

The past ten years have seen the discovery of a number of fdaws” in networking. When
applied to network trafic, these laws imply the following 80+ule: 80% of the work is brought by
20% of the flows; in particular, 80% of Internet packets areegated by 20% of the flows. Heavy
advantage could be taken of such a statigitize could identify the packets of these dominant
flows with minimal overhead. This motivates us to developT$Si simple randomized algorithm
for indentifying the packets of large flows. SIFT is based b inspection paradox: A low-bias
coin will quite likely choose a packet from a large flow whilensilitaneously missing the packets
of small flows.

We describe the basic algorithm and some variations. We ltsiesome uses of SIFT that we
are currently exploring, and focus on one particular uséhis paper—a mechanism for allowing
a router to differentially allocate link bandwidth and harffspace to large and small flows. We
compare SIFT’s performance with the current practice ierimét routers via ns simulations. The
advantages from using SIFT are a significant reduction interehd flow delay, a sizeable reduction
in the total buffer size and an increase in goodput. We commerthe implementability of SIFT
and argue that it is feasible to deploy it in today’s Internet

|. INTRODUCTION

Scheduling policies significantly affect the performanderesource allocation systems.
When applied to situations where job sizes follow a heaugdgor power law) distribution,
the benefits can be particularly large. Consider the prepamte of heavy-tailed distributions
in network traffic: Internet flow sizes [19] and web traffic [@hve both been demonstrated
to be heavy-tailed. The distribution of web traffic has besten advantage of for reducing
download latencies by scheduling web sessions using thieshoemaining processing time
(SRPT) algorithm. The benefit over the FIFO and the procesisaring (PS) disciplines is
several orders of magnitude reduction in mean delay [12]eGthe heavy-tailed nature of
Internet flow-size distribution, one expects that incogpioig flow size information in router,
switch and caching algorithms will lead to similar improvemts in performance.

Before investigating the potential improvements in perfance, we must address the
following question: How can a router tell if a given packetism a large flow? The SIFT
algorithm gives a practical answer to this question, by s#jpay (or sifting) the packets of
long and short flows. SIFT randomly samples each arrivingkgtaasing a coin of small
bias p. For example, withp = 0.01, a flow with 15 packets is going to have at least one of
its packets sampled with a probability of just 0.15, while aflwith 100 packets is going
to have at least one of its packets sampled with probabiitighly equal to 1. Thus, most
long flows will be sampled sooner or later; whereas most sitm#ts will not be sampled.
Being randomized, the SIFT algorithm will, of course, cormmmirors: it will likely miss
some largish flows and sample some smallish flows. We lataridessome simple ways of
drastically reducing these errors.

Once a packet is sampled, all further packets from that flow lwa processed in ways
which can be beneficial. We describe one use of SIFT in thigpdpcheduling packets of
long and short flows differentially. In [18], [14], anothesaiof SIFT is discussed: caching
heavy-tail distributed flows and requests at routers and eeelhes, respectively.

There is a large literature dedicated to servicing the packé short and long flows
differentially; see, for example, [17], [20], [11]. The papoy Gong and Matta [11] provides
a detailed background and motivation for preferentiallywisgy the packets of short flows.
We summarize. Since most flows are short (“mice”) and use T&@Rrénsferring packets,
dropping their packets tends to lower their effective segdiate to such a small value
that they do not obtain bandwidth comparable to long (“etept) flows. Thus, treating the
packets of short flows preferentially would lead to a dramatiprovement in theaverage
flow delay. The question, however, is whether such a prefiatetneatment of mice flows
comes at the expense of significantly increased delays &phaht flows. The simulation
results of [11] indicate that this is not the case. Furthakdhmikantha et al. [13] showed
via fluid-models that the benefits obtained by the short floars loe arbitrarily large while
the additional delay suffered by the long flows is small andrated. In the context of web
server scheduling, [3], [5] show very similar results. Amge arrive at a similar conclusion
in this paper when using SIFT.

We now consider some methods suggested in the literaturesdiing mice packets
preferentially. There are two main approaches: classifiyslas mice and elephants at the
network edge and convey this to the core [11], or detect miephant packets at each
router locally. The first leads to different designs of edgd eore routers and requires extra
signalling fields in packet headers. A canonical approactihénsecond category advocates
scheduling packets according to the least attained sefi/&8) policy [17], [20]. According
to this policy, the router would track the work it hatready performed on each flow and
serve the next packet from that flow which has had the smalégsice till now. The logic is
that when flow sizes are heavy-tailed, a small attained eeifigistrongly indicative of a small
remainingservice due to heavy-tailed distributions being of the dasing-hazard-rate type.
Hence, mice flows will get priority. However, the LAS policgquires routers to maintain
per-flow state, and to potentially maintain per-flow queddse sheer number of flows on a
high speed link [7], [10] makes this impractical.

In this paper we propose a simpler approach based on SIFTe GHeET identifies the
packets of a large flow, they are enqueued in a low prioritydoufvhile the packets of short
flows are preferentially served from a high priority buffendre details later). If a packet
has been put into the low priority buffer, to avoid mis-seagirg, further packets from its
flow will also be put into the low priority queute.

We use ns to understand how well SIFT performs in reducingyselWe find that,
depending on the load, SIFT reduces the average delay of 8bes between one and
two orders of magnitude, and the overall average delay letweo and ten times. The
delays of the very large flows are worsened by a factor less 2hd&o avoid starvation of
the long flows, we change the basic scheme and guaranteewvihgrilarity buffer a small
bandwidth. We find that this does not affect the performangeificantly (although, as we
shall see, it introduces a resequencing problem).

An interesting finding of our study is that SIFT ceeduce total buffer requirementsy a
factor of two without any performance degradation. Thabath the goodput and flow delays
can be competitive or slightly improved using the two-buf¢FT system as compared with
a single FIFO of twice the total size. In the paper we expleasons for this gain.

The organization of the paper is as follows: In Section Il wesaibe SIFT in detail.
Section 1l presents the simulations results with TCP flowsg ns-2 [15] and Section IV
deals with implementation and deployment issues. Fingigtion V describes further work.

1This is reminiscent of the “sample and hold” strategy adeanin [6] for identifying and counting the packets of high
bandwidth flows. Indeed, the SIFT algorithm can be consiie® a “dual” of the sample and hold algorithm in that it
discriminates flows on the basis of their size, while the damapd hold algorithm does this on the basis of rate. We see
later how both can be used in conjunction.

1. THE SIFT ALGORITHM

For each arriving packet we toss a coin with hia®r heads: Coin tosses are independent
of all else. We say that a flow is “sampled” if one of its packgéss a heads on it. Thus, a
flow of size X is sampled with probability’s(X) = 1 — (1 — p)*. Suppose thap = 0.01.
Then, this scheme is a randomized version of a determirsistieme which does not sample
any flowwith fewer than 100 packets and samp#dkflows with more than 100 packets.
The deterministic scheme would require counters for eaat flarge and small), making it
expensive at core routers. By contrast, SIFT mostly trabkslarge flows. However, being
randomized, SIFT commits errors. That is, a flow with sizes l¢san 100 is sampled with
positive probability whereas a flow with size larger than 1Mot sampled with positive
probability.

To compensate for the errors, we consider the following eefient, called SIFT-2Toss: Say
that a flow is sampled ifwo of its packets get heads on them when we use a coin of2bias
Thus, the probability that a flow of siz€ is sampled equals— (1—2p)* —2pX (1—2p)* 1.

It is easy to see that this reduces the errors significantle @ a lack of space we omit
this calculation here; it can be found in [16].

Let us determine precisely what the error is for SIFT whpen 0.01 and we are sampling
flows with a bounded Pareto distribution on the number of ptckRecall that under the
bounded Pareto distribution, the flow size variallas distributed as:

PX=2)=cr !, form<az<M

wherec is a normalization constant ande (1,2). Takinga = 1.1, m = 1 and M = 10°,
the probability of error given by

P.=> Ps(X)P(X =z)+)» (1-Ps(X))P(X =)

1 1
<= r>=
<3 22

evaluates to 2.6%. That is, the fraction of flows that are lassified is only 2.6%. This
small error is not a real surprise and is a consequence ofdheykailed distribution: the
short flows are really short and the long ones are really |digrefore, we see that the
basic SIFT algorithm is already good enough, we don’t neecbtwsider SIFT-2TosS.

Having described the SIFT sampling algorithm, we use it ferving the packets of
short flows preferentially as described in the Introductidhat is, we maintain two queues,
separately queue the packets of sampled and unsampled #odsserve the queues with
different priority. If the original queue has size, we do not let the combined size of the
high and low priority queues to excedtl Figure 1 presents SIFT schematically. In the next
section we evaluate the performance of SIFT using extersimelations. For a queueing
theoretic analysis of SIFT, we refer the interested reaol¢i).

Remark: SIFT-based buffering of packets leads to a flow schedulinghaeism; hence,
clearly, it has implications for congestion control. To ghis more sharply, consider the
deterministic version of SIFT applied to the router buffigrproblem. Such a scheme would
use a size thresholfi, and forward up to the firsf—1 packets ofll flows to the high priority
queue, and the rest of the packets to the low priority qdelieen, depending on the value
of T, this scheme would treat flows during their slow-start phasderentially compared to
when they enter the congestion-avoidance phase. (Of comnise flows predominantly do
not enter congestion-avoidance.) The connection with estign control is now clear.

2Note that we toss coins on packets, not bytes. It is easy tdfyntied scheme, but difficult to describe it, when taking
into account the variable nature of packet sizes. We omnst thriation here.

3We mention SIFT-2Toss because it allows the possibility fwinging the bias on each toss. For example, instead of

tossing a coin with biagp twice, we could toss coins with biasps andp. so thatﬁ + % = %

“We note that the deterministic scheme has been previouslsidered; see, for example, the Size-aware TCP Scheduler
(SaTS) web-page 4dttt p: / / ww. cs. bu. edu/ f ac/ mat t a/ and the references therein.

By

classification
and sampling

B B=B-B,

_— all packets }—O—' ——————pkts of long flows
(i) (i)

Fig. 1. (i) The original FIFO queue, (ii) SIFT-based queues.

pkts of short flows high priority

low priority

(ii)

Fig. 2. (i) Simple network topology, and (ii) network topglowith multiple congested links.

[1l. SIMULATIONS

This section evaluates the performance of SIFT in an Intdike environment using ns-2
simulations [15]. We shall consider various senarios, axmleed below.

A. Single congested link

Consider a single congested link topology as shown in Fi@de There aren source
nodes,m destination nodes, and two internal nod&s,and R,. The link capacity and the
propagation delay between the source/destination nodisnéernal nodes will vary from
experiment to experiment. The capacity of the link betweedess R, and R, is 10Mbits/s
and the propagation delay of this link is set to 0.1ms. SIFd@ieployed on this link.

The two queues of SIFT and the strict priority mechanism betwthem is implemented
using the CBQ functionality of ns-2. We also run simulatievizere the low priority queue
is guaranteed a proportion of the link capacity. We call sutkeme SIFIzy,. Each of the
two queues use either DropTail or RED. Their size is set to ddéxkets. When SIFT is not
used, the corresponding single queue has size equal to 286tpa(Later we study the case
where the two queues have different sizes that might add wgoneething less than 200.)
Throughout the experiments we use a sampling probabiliaketp 0.01.

The traffic is generated using the built-in sessions in n&-ttal of 300,000 web sessions
are generated at random times in each experiment, eacbrsessisisting of a single object.
This object is called a flow in the discussion below. All flows &ransfered using TCP. Each
flow consists of a Pareto-distributed number of packets Wit sizes varying between 1
and 10®, and shape parameter equal to 1.1. (This is motivated by &hlekwown result that
the size distribution of Internet flows is heavy-tailed,,dee example, [2], [19].) The packet
size is set to 1000 bytes.

By varying the rate at which sources generate flows, we stuglypérformance of SIFT at
various levels of congestion. In the rest of the section waratterize the congestion level
of each experiment by the traffic intensity in the bottlenéok, defined asp = AE(S)/C,
where \ is the aggregate average arrival raig,S) is the average flow size, ard is the

link capacity. The percentage of drops in the experimenteydrom 0 to 9% depending on
the load.

1) Basic setupMWe start with the simplest setup, where we have just one salestination
pair (n = m = 1). The link capacities between the source/destination hadnternal nodes
are 100Mbits/s and the propagation delay of these linkslsdiras®

We first present results when RED is used. In this experinveatfind that approximately
95% of all flows are “short”, i.e., they are never sampled, &f@ of all flows are “long”.
(This fraction is, of course, a function of the sampling abitity as well as the job size
distribution; we have not attempted to optimize the sangppirobability for the best average
delays.) Figure 3 compares the short-flow and long-flow aemelay with and without
SIFT for p = 0.6, 0.7, 0.9, 1.2, and 151t is evident from the plot that with SIFT, the
short flows can have a delay close to two orders of magnitustetlean without SIFT. This
gain does not significantly increase the delay of the reshefflows: the average delay of
long flows is at worst doubled under SIFT. Finally, note that bverall average delay of
flows exhibits a 2x to 4x improvement, depending on the lo&e (Bigure 5). The results
are nearly identical when DropTail is used instead of RED.

1 2
T T T T T T T
—e— SIFT

10

- SIFT

GBW SIFT g 1

—+— Original —+— Original

Average delay for small flows (~95%) (sec)
Average delay for large flows (~5%) (sec)

0.6 0.7 0.8 0.9 1 11 1.2 13 14 15 0.6 0.7 0.8 0.9 1 11 12 13 1.4 15
Load (p) Load (p)

Fig. 3. Small-flow and large-flow delay under SIFT.

2) Guaranteeing bandwidth for long flowsVe also run simulations where a fraction of
the total link bandwidth (10% in this particular experimeist dedicated to the low priority
gueues containing the long flows. This ensures that long feoesi0t starved. Figure 3 shows
that the performance of SIkyy is very similar to that of SIFT which uses strict priority.
As expected, the average delays for long flows are smallenwhadwidth is guaranteed to
the low priority queue, and the average delays for short flaveslarger. It is evident that
the difference between the delays is small enough to begibklgli So, at least on average,
we need not fear starvation for long flows with SIFT. Alteinalty, if it is a concern, we
could implement SIF& gy .

Note that under this scenario packet reordering is possitiés occurs when the last
packet to join the high priority queue from a long flow, leatke router after subsequent
packets of the flow. However, this is very unlikely to occunca subsequent packets join

®In order to better observe the effect of SIFT on queueingydela choose a small propagation delay here. This makes
queueing delay the dominant component of total delay . Liatéris section we also present results corresponding getar
propagation delays.

®Having p exceed 1 is deliberate. We want to observe the system unttenly high loads so as to see the effectiveness
of SIFT in helping small flows. In this case the average dekdyes are taken to correspond to those flows which complete
transfer. We note here that the number of flows not compldtamgsfer (i.e. timed-out) are comparable under the SIFT and
FIFO schemes.

the low priority queue, and this queue is not only larger oerage, but also is serviced by
a very small fraction of the total link capacity.

3) Other scenarios:We investigate how SIFT performs in a variety of situatioBsice
the results are very similar to those of Figure 3, and duentitdtions of space, we do not
present the corresponding plots. The plots can be foundéh [1

First, we investigate how SIFT behaves towafdst and slow flowsSuppose that the
following two kinds of flows share a linkKTurtles with low bit rates, andCheetahswith
high bit rates. Note that it is possible to have a long turtld a short cheetah; the former is
a large-sized flow from which packets arrive at a low rate,levthe latter is a small-sized
high rate flow. A worrisome thought in this case is that SIFTuldofurther slow down
the already slow and long turtles, since the sampling mashahere is packet based, and
hence responds only to flow sizes without taking flow rates mtcount. (Arate-based
(rather than a size-based) sampling scheme, such as theiggessed in [6], could be used
if differentiation based on rate is also desirable.) We ussnaulation scenario with two
source-destination pairs, both passing through the bettle link. One link, on which turtle
flows arrive, has a speed of 5Mbits/s and a propagation ddladyms, and the other, on
which cheetah flows arrive, runs at 495Mbits/s and has ppay delay equal to 0.1ms.
The speed and the propagation delay of the bottleneck Iskeéore, is 10Mbits/s and 0.1ms
respectively. The simulations show that the overall averdglay for turtles with SIFT is less
than that without SIFT. Also, the average delay for longlégrtis similar to the previous
cases; that is, long turtles are not hurt by SIFT.

Second, we study how SIFT behaves towatiderent propagation delayd he worry here
is that large flows with long RTTs might be excessively persali We run simulations with
three source destination pairs & m = 3). For the first source-destination pair, we use
a propagation delay of 0.1ms on the links from source/datin to the internal nodes; 1
ms on each link for the second, and 5 ms for the third pair. Tdeeds of these links are
all 100Mbits/s. The simulations indicate that while theaysl are higher for the flows with
large RTTs than for the ones with small RTTs, SIFT consi$tgarovides gains for all three
classes of flows.

Third, we consider the case where we havdarge number of slow links feeding the
bottleneck link This is meant to capture the case, for example, when a lang@er of users
connect to the Internet through slow modem links. We sineutlais scenario using 10 source
destination pairs, with each input and output link havingpeesl of 3Mbits/s. The bottleneck
link has a speed of 10Mbits/s, as usual. In this case alsqygbeef SIFT leads to significant
improvements in performance for most flows, at the expensmiyfa small increase in the
delay of long flows.

B. Multiple congested links

So far simulations were conducted in a topology with a sitgi#leneck link. However, it
is well documented that Internet flows often go through rplétbottlenecks. This raises the
following natural question: Should SIFT be employed at ohéhe congested links along
the path of a flow or at all of them? And if it is deployed at mohart one link, would
long flows be significantly delayed? To answer these questime perform simulations in
the setup shown in Figure 2(ii) that consists of two bottténknks.

In this setup there are three groups of flows. The first goeagir the first congested link,
the second goes through the second congested link, andittigdes through both links. We
run simulations where SIFT is employed in the first link oryK T;) or in both links (SIFT).
Figure 4 shows the short-flow and long-flow delay for the tlgrdup which is the group of
interest. As expected, SIEyields lower short-flow delays than SlETinterestingly enough,

this occurs without excessively penalizing the long flovirg long-flow delay is quite similar
under all schemes. For completeness, in Figure 5 we also si@wverall average delay
for both the basic single congested link scenario and theipheillcongested link scenario.
As expected from the short-flow and long-flow delays alreashsg@nted, SIFT improves the
overall average delay sizeably in both scenarios.

1.0E+01

1.0E+00

‘ s
——SIFT_1 —+-SIFT_1

s
— Q
X &
$ —=—SIFT_2 g —=SIFT_2
2 Original T Original
; [
S 1.0E-01 g
£ S
a3 2 1.0E+00 4
= 0 <
s~ 5
z e 2
& 1.0E-02 4 - . >
° o)
Q k]
g 3
g g
< [
1.0E-03 2 1.0E-01
0.6 0.7 0.9 1.2 15 0.6 0.7 0.9 12 15

Load (p) Load (p)

F

g. 4. Small-flow and large-flow average delay under SlBnd SIFT.

10"

-o- SIKZT 1.0E+00 L
SIFT e ——SIFT_1

—=—SIFT_2
Original

—+— Original

10° }

1.0E-01 -

Overall average delay (sec)
Overall average delay (sec)

1.0E-02
0.6 0.7 0.9 12 15

1 11 1.2 13 1.4 15 Load (p)
Load (p)

Fig. 5. Overall average delay in basic single congesteddg#nario and multiple congested link scenario.

A comment on what constitutes a long flow in the multiple lertdck case is in order.
Clearly, the flows sampled under SIFa&re not the same as the flows sampled under SIFT
For this reason, we define a flow as “long” if it exceeds a sizestold, which in our case
is equal to the inverse of the sampling probability; thatli@). As we explain in [16] this
is not an arbitrary choice. It equals the expected numberokgts until a flow is sampled.

C. Buffer savings

Unequal partitioning of the total buffer space between the gueues might yield better
performance than settin, = B, = B/2. For example, since the high priority queue has
strict priority, one expects its buffer space requiremenbe relatively low, and there is no
need to allocatd3/2 buffer space to it.

Figure 6 plots the instantaneous queue sizes when DropsTaiséd ang = 0.9. It is
evident that if the high priority queue had a size of 50 indtef100, the results would have
been identical. This is true not because the system is nerggested; the original queue
does get full at some point in time. For largerthis is even more pronounced. For example,
for p = 1.2, the original and the low priority queues are nearly alwayl§ fvhile the high
priority queue has never more than 60 packets. Interegtitigis is a general trend in all

50 %
high-priority 100-packet buffer '+ low-priority 100-packet buffer | +

80

70
60
50

40 §

Inst. Queue Size
Inst. Queue Size
Inst. Queue Size

30 |y
20

10

o I o : 3
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600 600 800 1000 1200 1400 1600
Simulation Time (Sec) Simulation Time (Sec) Simulation Time (Sec)

Fig. 6. Instantaneous sizes of the original 200-packetebufhe high-priority 100-packet buffer, and the low-pitipr
100-packet buffer.

1.0E+01

1.0E+02

— SIFT(lbO,lOO)
—— SIFT(60,140)
—=— SIFT(60,100)
SIFT(30,70)
Original(200)
—x— Original(100)

—+— SIFT(100,100)
—=— SIFT(60,140)
SIFT(60,100)
SIFT(30,70) /;
—*— Original(200) .
—e— Original(100)

1.0E+00 -

1.0E+01 4

1.0E-01 4

Average delay for small flows (sec)
Average delay for large flows (sec)

1.0E-02 1.0E+00
0.6 0.7 0.9 1.2 15 0.6 0.7 0.9 1.2 1.5
Load((p) Load((p)

F

g. 7. Small-flow and large-flow average delay under SIFTvlmious buffer allocations.

experiments: the original 200-packet and the low priorld@-ppacket queue face similar levels
of congestion, while the high priority 100-packet queuesfasignificantly lower congestion
or no congestion at all. (Due to limitations of space we dprésent more plots with queue
dynamics.)

Based on the above observations, it is evident that in aafdio significantly reducing av-
erage flow delays, SIFT also leads to sizable buffer savintsegoacket level. To investigate
this further, we run simulations in the simple topology a¢gd in Figure 2(i) using versions
of SIFT for which B, + B, < B = 200. (We denote such a version by SIF,,, B;).) As
evident from Figure 7, SIFT's performance remains virtpalhchanged for a total buffer
space equal to 160 and it is slightly worse for a total buffeace as low as 100.

One way to explain SIFT’s lower buffer requirement is thddweing. Intuitively, short
flows enter a fast lane and their service is completed vety sl it is only the packets of
long flows that have to be buffered. Now buffer sizes shouldédg® large enough to ensure
high utilization: This is the well-known bandwidth-delayinciple, according to which the
buffer size should equdl x RTT. " However, this ruleonly applies to the long flows. SIFT
separates the packets of short flows from those of the long flétve arrival rate of the latter
is a fraction of the total capacity, call & < C. Hence, a buffer size equal 6 x RTT
is enough. In our basic scenario, the proportion of traffriveng to the low-priority buffer
equals 56% (it is important to keep in mind that the initiatkets of the long flows do not
arrive to this buffer, else the percentage would be largan t56).

The only metric considered so far is the average delay. We pr@sent results for two
more metrics. First, we show histograms of delays to betteletstand how SIFT alters the
delays of flows. Second, we show the total number of packeigpéd from the congested
link of Figure 2(i). Figure 8(i) shows the delay histogranmdenvarious schemes far= 1.2.

"Recently, this rule-of-thumb has been correctedﬁéf# wheren is the number of long flows going through the
router [1].

1.2E+05
1223” —e— SIFT(100,100) [sFraoo00
o

—=— SIFT(80,120) =~ SIFT(60,140)
80% - SIFT(60,140) 1.0E+05 SIFT(60,100)

70% SIFT(60,100) +z‘:;(n3;(27§;)
60% - . ™ SlFT(40,80) —e— Original(100)
50% - —e— Original(200)
40%
30% 1
20%
10% A
0%

8.0E+04

6.0E+04

Proportion of Flows

Number of Packet Drops

4.0E+04

\-é.L_\-‘\ T T T T T T T
2.0E+04 -
S L FFd LSS E P
& & & & LS
RO LU N SN N O OIS SN ~—
> N v > 0.0E+00 | — —
Flow Delay (sec) oo .

(i) (i)

Fig. 8. (i) Histogram of flow delays fop = 1.2, and (iii) total packet drops in the congested link.

0.9 1.2 15
Load (p)

(The leftmost point in the plot corresponds to flows with tatalay between 0 and 2ms.
The second to flows with delay between 2 and 4ms, the thirddeztwt and 8ms, the fourth
between 8 and 16ms and so on.) As it is evident from the plethistogram under SIFT

remains virtually unchanged for the majority of flows, as ceduces the total available buffer
from 200 down to 120. Notice that the large difference betwie peaks of the histograms
under SIFT and the original scheme is due to the large queguwtatay that all flows face

under the latter scheme. Figure 8(iii) shows the total nunabalrops as a function of the
traffic intensity. For traffic intensities larger than 0.9 evl the drop probability is sizable
(larger than 1%), SIFT incurs significantly lower drops thia original scheme.

V. |MPLEMENTATION AND DEPLOYMENT

In this section we asess the implementation requiremen®FF and comment on its de-
ployability. Compared to a traditional linecard, a SIFabled linecard requires the following
additions: (i) maintaining two queues instead of one in thespcal buffer, (i) implementing
strict priority between the two queues, (iii) sampling patskat the time of their arrival, (iv)
maintaining the flow id of the sampled packets, (v) identifyithe flow to which a packet
belongs to, and (v) evaluating whether a flow is sampled or not

The first two requirements are clearly very simple. Maintagntwo queues only requires
a second linked list, and strict priority only requires dkiag whether the head of the list
corresponding to the high priority queue is null or not. Alsote that circular buffers may
be used to make it possible to “lend” unused buffer space ¢oatier queue. The last
two requirements are also very easy to fulfill. There are lyidgailable mechanisms today
in commercial routers which identify the flow to which a patckelongs. (Notice that in
accordance with usual practice [7], [9], [10], packets a®l 40 belong to the same flow
if they have the same source and destination IP address,amdesand destination port
number.) And, standard hashing schemes can be used to tevidladlow is sampled or not
at a very low cost.

Sampling packets is very inexpensive. A pseudo-random euménerator can be used to
decide whether to sample or not, or one may choose to “sanepiery, say,100"" packet.
The later is a common practice to avoid random sampling; Xanmple, it is used in Cisco’s
Netflow monitoring tool [4].

Finally, keeping the id of every sampled flow might be prokd¢imif the number of sam-
pled flows is too large. However, the heavy-tailed natureaf 8izes is directly helpful here:
the number of large flows (and hence the number of sampled fflewsmnall. Additionally,
aging the entries removes them from the table and helps keepumber of active sampled

flows small. In all our simulations this number was not morantti,500 and usually much
smaller, even though the number of active flows was aboutri®stias large.

V. FURTHER WORK

We have described the SIFT algorithm and its use in diffeaéiptserving the packets
of short flows. There are many interesting questions to mursuther; notably, that of
understanding the interaction of SIFT-based bufferinghvahd-to-end congestion control,
and the buffer size reduction phenomenon.

It is our view that the SIFT sampling mechanism is of intefesttaking advantage of the
80-20 rule induced by power law distributions. As such, it balp network systems improve
their performance significantly and might apply in severhleo situations. It is, therefore,
worth investigating these situations in some detail. At ghhievel, network systems such
as routers, switches and web caches treat packets and tedqudisidually, regardlessof
whether a particular packet (or request) belongs to a large small flow. In the presence
of an 80-20 rule, taking advantage of flow information cout\ery beneficial to system
performance.

REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing eubuffers. InProceedings of the ACM SIGCOMM
Conference 2004.

[2] Sprint ATL. Sprint network traffic flow traces. http://ww. sprintlabs. con Department/

I P- 1 nt erwor ki ng/ Moni t or/, accessed 2002.

[3] Nikhil Bansal and Mor Harchol-Balter. Analysis of SRPTheduling: investigating unfairness. ACM SIGMET-
RICS/Performancepages 279-290, 2001.

[4] Cisco. NetFlow services and applications. White pagéno.
http://cisco.com warp/public/cc/pd/ioswioft/
nefl ct/tech/ napps_wp. ht m accessed January 2002.

[5] M. Crovella, R. Frangioso, and M. Harchol-Balter. Cootien scheduling in web servers. Rroceedings of USITS
1999.

[6] C. Estan and G. Varghese. New directions in traffic mezm@nt and accounting. Proceedings of ACM SIGCOMM
2002.

[7] W. Fang and L. Peterson. Inter-as traffic patterns and th@lications. InProceedings of the 4th Global Internet
SymposiumbDecember 1999.

[8] A. Feldmann. Characteristics of TCP connection arsvéh Self-Similar Network Traffic and Performance Evaluation
K.Park and W.Willinger, editors, Wiley, 2000.

[9] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski, apRgiannaki, and F. Tobagi. Design and deployment of a
passive monitoring infrastructure. Proceedings of the Workshop on Passive and Active MeasatenfeAM April
2001.

[10] C. Fraleigh, S. Moon, C. Diot, B. Lyles, and F. Tobagi.cket-level traffic measurements from a tier-1 IP backbone.
Technical Report TR01-ATL-110101, Sprint ATL Technical®et, November 2001.

[11] L. Guo and I. Matta. The war between mice and elepham$rbceedings of the ICNFR2001.

[12] M. Harchol-Balter, N. Bansal, B. Schroeder, and M. Agah Implementation of srpt scheduling in web servers.
Technical Report CMU-CS-00-170, Carnegie Mellon UnivieraD00.

[13] A. Lakshmikantha, R. Srikant, and C. L. Beck. Processwring versus priority schemes for TCP flows in Internet
routers. InProceedings of Conference on Decision and Cont2605.

[14] Y. Lu, D. Mosk-Aoyama, and B. Prabhakar. An analyticdstwof the seive cache. In Preparation, 2004.

[15] Network simulator.htt p: // www. i si . edu/ nsnani ns, accessed June 2003.

[16] K. Psounis, A. Ghosh, and B. Prabhakar. Sift: A low-céerjty scheduler for reducing flow delays in the internet.
Technical Report CENG-2004-01, University of SouthernifGalia, 2004.

[17] 1. A. Rai, G. Urvoy-Keller, and E. W. Biersack. Analysif LAS scheduling for job size distributions with high
variance. InProceedings of the ACM SIGMETRICS Conferer@03.

[18] M. Wang, X. Zou, F. Bonomi, and B. Prabhakar. The seivesélective cache for heavy-tailed packet traces. In
Preparation, 2004.

[19] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilsorelfssimilarity through high-variability: Statistical atysis
of ethernet lan traffic at the source levéEEE/ACM Transactions on Networking(1):71-86, 1997.

[20] U. Madhow Z. Shao. Scheduling heavy-tailed traffic otre wireless internet. IRroc. IEEE Vehicular Technology
Conference September 2002.

