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Abstract— The physical phenomena monitored by sensor net-
works, e.g. forest temperature, usually yield sensed data that
are strongly correlated in space. We have recently introduced
a mathematical model for such data, and used it to generate
synthetic traces and study the performance of algorithms whose
behavior depends on this spatial correlation [1]. That work
studied sensor networks with grid topologies.

This work extends our modeling methodology to sensor
networks with irregular topologies. We describe a rigorous
mathematical procedure and a simple practical method to extract
the model parameters from real traces. We also show how to
efficiently generate synthetic traces that correspond to sensor
networks with arbitrary topologies using the proposed model.
The correctness of the model is verified by statistically com-
paring synthetic and real data. Further, the model is validated
by comparing the performance of algorithms whose behavior
depends on the degree of spatial correlation in data, under real
and synthetic traces. The real traces are obtained from both
publically available sensor data, and sensor networks that we
deploy. Finally, we augment our existing trace-generation tool
with new functionality suited for sensor networks with irregular
topologies.

I. INTRODUCTION

The wireless sensor networks of the near future are envi-
sioned to consist of a large number of inexpensive wireless
nodes. These nodes will operate under significant power con-
straints, which precludes them from using large transmission
ranges. This, together with the low cost of individual sensors,
implies that sensors will be densely deployed. As a result, it is
expected that a high degree of spatial correlation will exist in
the sensor network data. Many algorithms have been proposed
that exploit this correlation. For example, spatial correlation
has been used in data aggregation and routing algorithms [2]-
[5], data storage and querying [6], [7], [8], mac protocol design
[9], data compression and encoding [10], and calibration [11].

The evaluation of protocols that are sensitive to the spatial
features of input data requires data representing a wide range
of realistic conditions. However, since very few real systems
have been deployed, there is hardly any experimental data
available to test the proposed algorithms. As a result, sensor
network researchers make different assumptions when gener-
ating data inputs to evaluate systems; some assume the data
to be jointly Gaussian with the correlation being a function
of the distance [9], some assume that the data follows the
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diffusion property [8], and some assume a function for the joint
entropy of the data [3]. Other researchers propose the use of
environmental monitoring data obtained from remote sensing
[6], however the granularity of these data sets do not match
the expected granularity of sensor networks’ data. With this
in mind, the authors in [12] proposed a method to interpolate
existing experimental data to support irregular topologies and
increase granularity.

The goal of this paper and its predecessor [1] is to come
up with a parsimonious mathematical model that can capture
spatial correlation of any degree irrespective of the granular-
ity, density, number of source nodes or topology. There are
many benefits from such an endeavor. First, the model will
provide a procedure to synthetically generate sensor networks
data exhibiting various degrees of correlation, enabling a
meticulous study of the performance of proposed algorithms.
Second, it will enable different researchers to evaluate dif-
ferent algorithms using a common trace generation method,
which, in turn, will make comparisons between different
algorithms meaningful. In other words, the model can serve as
a benchmark. Third, it will provide guidelines for designing
algorithms that exploit correlations in an optimal manner.

In [1] we introduced such a model and used it to generate
synthetic traces. We established the validity of the model by
comparing the statistical properties of original (environmental)
and synthetic data, and the performance of sensor network
algorithms, whose behavior depends on the spatial correlation,
under original and synthetic data.

The main drawback of this first attempt is that it requires
the sensor network to have a grid topology. Unfortunately,
fixing this problem is not straightforward. The simple approach
of generating a huge number of grid-based data and then
keeping only the values that correspond to sensor locations
is computationally very wasteful. Further, when this approach
is used, the model parameters depend on the specific node
locations; different locations would yield different parameters
to describe the same correlation structure. Hence, the current
model is unsuitable for irregular topologies.

The main contribution of this work is the introduction of
a new, more general flavor of the model in [1] that can be
efficiently used for arbitrary topologies. The model comes
with a rigorous mathematical procedure and a simple practical
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method to extract the model parameters from real traces. It also
comes with an efficient method to generate synthetic traces
that correspond to irregular topologies. Further, it is shown that
prior approaches to model spatial correlations, e.g. assuming
that data are jointly Gaussian, are subcases of our more general
model. Finally, publicly available trace-generation tools are
created as part of this work.

The paper is organized as follows. Section II introduces
the variogram, which is a handy metric to characterize spatial
correlation in data. Section III summarizes our model for
sensor networks with grid topologies and motivates the need
for a new version. The new model is presented in Section 1V,
followed by a mathematically rigorous procedure and a simple,
practical method to infer the model parameters in Section
V. In Section VI we verify the correctness of the model by
statistically comparing synthetic and real data, and validate
it by comparing the performance of a well know algorithm,
CMAC [9], under the experimental and the synthetic data.
The real traces are obtained from both publically available
structural health monitoring data, and sensor networks that
we deploy. Finally, Section VII describes the trace-generation
tools and Section VIII concludes the work.

II. VARIOGRAM: A STATISTIC TO MEASURE
CORRELATION IN DATA

A statistic often used to characterize spatial correlation in
data is the variogram [12]-[14]. Given a two dimensional
stationary process V (z,y), the variogram (also called semi-
variance) is defined as

Vdsyda) = FEIV (2,9) = Vo +dyy+ o)),

For isotropic random processes [15] the variogram depends
only on the distance d = \/d + d? between two nodes. ' In
this case, if (z4,yq) denotes a point which is d distance away
from (z,y),

2d) = GBIV ()~ Viaw)?) ()

where (7 — 24)? + (y — ya)? = d°.
For a set of samples v(z;,y;), 1 = 1,2,...
grid, y(d) can be estimated as follows,

on a regular

N 1 m(d)

v (d) = m Z [U(xivyi) - U(xﬁyj)]Q’

where m(d) is the number of points at a distance d within
each other, i.e. the sum is over all points for which (z; —
25)? + (yi — ;) = d%.

A straightforward method to estimate the variogram for a set
of samples on an irregular grid consists of the following steps:
(1) for every pair of samples, compute the distance between
them and the squared difference between their data values,
(i) make a scatter plot of the variogram values against the

'We will use the Euclidean distance to measure distances between two
points.

distance, and (iii) curve fit the scatter plot to obtain an estimate
of the variogram.

A more statistically robust method, traditionally used in
Geostatistics [15], [16], consists of the following steps: (i) as
before, for every pair of samples compute the distance between
them and the squared difference between their data values,
(i1) divide the entire range of distance into discrete intervals
with an interval size being equal to the average distance to the
nearest neighbor, (iii) assign each of the pair of samples to one
of the distance intervals and compute the average variance in
each interval by dividing the sum of the squared-differences
between data-values by the total number of pairs lying in that
distance interval, and (iv) assign the average variance to the
mid point of each interval and curve fit these points to one of
the standard variogram models [15], [16].

In this paper, we will use the second method to estimate
the variogram from the experimental traces.

A. Relationship between the variogram and the covariance

Another very commonly used statistic to measure correla-
tion in data is the covariance. For a two dimensional isotropic
stationary process V' (x,y), the covariance is defined as

Cd) = E[(V(z,y) — w)(V(za,ya) — p)],

where (x4, yq) is denotes a point d distance away from (z,y)
and = E[V(z,y)].

Since both the variogram and the covariance are measures
of the correlation in data, we derive the relationship between
them and verify that both of them can be used interchangeably.
From Equation (1),

1(d) = 5B [(V(e,) ~ V(za pa))]

= %E {((V(m,y) =) — (V(za,ya) — N))z}

= 7(d) = oy — C(d), )

where 02, = E [(V (z,y) — p)?] is the variance of the process
Viz,y).

Equation (2) implies that a lower (higher) value of the
variogram implies a higher (lower) value of the covariance and
correlation. Figure 1 plots the variogram and the covariance
for a trace generated by assuming a jointly Gaussian model
for the spatial data [17].

A characteristic of the variogram which can be inferred from
the plot is that it levels off (becomes parallel to the x-axis)
at a distance beyond which the covariance or the correlation
between the samples go to zero. Further, the constant value to
which the variogram saturates is equal to the variance of the
process.

Since both metrics can be interchangeably used, in this
paper we will only present variogram plots.
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Fig. 1. Variogram and Covariance plots for a trace generated by assuming
jointly Gaussian model for the spatial data.

III. MODEL FOR SPATIALLY CORRELATED DATA FOR A
NETWORK WITH GRID TOPOLOGY

In this section, we summarize the model proposed in [1].
Consider a sensor network whose nodes reside on a grid
topology. Let V(x,y) be the data value at node (x,y). It is
assumed that V' (z,y) is a stationary process that has a unique
first order distribution whose probability density function (pdf)
is denoted by fy (v). (This is referred to as the long term
distribution of the data.)

Let N(d) denote the number of nodes at a distance d from
(z,y). Let Vy denote the data value at a node which is d
distance away from (z,y), and V. denote the data value at
the k' node (1 < k < N(d)) at a distance d from (z,y).
Following is the model for generating the data values,

Vi+2Z with probability %
vV 4z W.P. 7
V47 W.D. N5y
V=9 W2+2  wegg O
Vit z W.P- Rk
N(h') =
v, +Z W.P- Ny
y w.p. B

where Z and Y are random variables independent of each
other as well as V, and their pdf’s are denoted by fz(z)
and fy(y) respectively. Both Y and Z determine the long
term distribution of V, and Z captures the small differences
between neighboring data values. The above equation simply
says that the probability that V(z,y) is derived from the
value of any node which is d distance away from (z,y) is
aq. Further, the probability that V(x,y) is derived from the

>4~ The parameters of the

value of a particular such node is N
model are h, the «;’s, 58, fy(y) and fz(z). Since the sum of

h
probabilities should equal one, 8+ > «; = 1.

Remark: For a grid, the L1 or Znilzllnhattan distance is a
meaningful way to measure distances between two nodes. (The
L1 distance between two nodes (z1,y1) and (x2,y2) is given
by d =| x1 — 22 | + | y1 — y2 |.) Thus, the distances between
nodes on a grid are in multiples of the minimum inter-sensor
distance which is equal to the size of the grid. This simplifies
the model structure as both the variogram and the a’s can be
viewed as a discrete function of distance.

A. Motivation for a new model

One way to extend the model in [1] to an irregular topology
is to convert the irregular topology to a grid topology by
adding more nodes, generate data at all these nodes, and
then discard the additional nodes. The problem with this
approach is that it is computationally very expensive. We
perform a simple calculation to obtain at how many ad-
ditional nodes we have to generate data. Let us randomly
distribute n nodes in a square of side 1. Let the locations
of each node (z;,y;), be chosen uniformly and indepen-
dently of each other. Let p denote the minimum coordinate
[min [| z; —z; |,| ys —y; |]]. It is easy to see that we need
to generate data for at least 4 nodes.

The probability that £ out of n nodes distributed randomly

in an interval of size 1 lie in an interval of size d equals Z
(d)*(1 — d)"~* which is Binomial (n, d). For a very large n,
Binomial(n, d) can be approximated by Poisson(nd). So, the
inter sensor distance is distributed as Exponential(nd). The
minimum inter sensor distance in one dimension will be the
minimum of n exponentials, and hence is distributed as Expo-
nential (n?d). Since the x coordinate and the y coordinate of
each node is chosen independently of each other, the minimum
coordinate distance p is distributed as Exponential(2n2d).
Hence, on average, we will have to generate at least O(n4)
additional nodes to get the data values on n nodes. This simple
calculation shows that it is computationally very expensive to
populate data on an irregular topology by converting it to a
grid topology first.

Even if we have the capability to perform these calculations,
a change in the node locations will change the model param-
eters as the value of p depends on the actual node locations.
This is problematic, since the model parameters should only
depend on the physical phenomenon being monitored, and not
on the actual node locations. Hence, modeling data on an
irregular topology by converting the irregular topology to a
grid topology is not appropriate, which motivates the need to
explore more well-suited models.

IV. MODEL FOR AN IRREGULAR GRID

In this section we introduce our model for capturing the
statistical properties of sensor networks data. For ease of
notation, we use polar coordinates to define node locations. We
assume that nodes are distributed in a circle of unit radius. Let
V (r,0) be the data value at node (r,6), where 0 < r < 1 and
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0 < 6 < 2w. We assume that V(r,0) is a stationary isotropic
process that has a unique first order distribution denoted by
fv(v).

Without loss of generality and to simplify exposition, we
assume that we want to generate the data value at the origin.
We propose the following model to do so:

V(0,0) = Ly—nyY + I /9 / (V(r,0) + 2)
S(R=r)dré(©@ =0 | R=r)rdd, 4)

where:

a) U represents a coin that when it lands heads (H), with
probability 1 — (3, the origin’s data value is obtained
from neighboring nodes, and when it lands tails (T), with
probability (3, it is obtained from a random variable Y.
(I 4 denotes an indicator function that equals one when
event A occurs and equals zero otherwise.)

b) Similarly to the regular topology model, Y and Z are
random variables independent of each other as well as
V, with pdf’s fy(y) and fz(z) respectively. ¥ models
the situation where the origin’s data value is not obtained
from neighboring nodes, Z captures the small differences
between neighboring data values, and both of them de-
termine the long term distribution of V.

¢) R is arandom variable with pdf fr(r). When R = r, the
origin’s data value is obtained from locations at distance
r from the origin. (6(R = r) denotes a d-function of R
that is non-zero when R = r.) fr(r)dr is the probability
of this event. fr(r) is a parameter of our model and from
now on we refer to it as «(r), since it corresponds to the
a;’s of the grid topology model.

d) O is a random variable with pdf fg(6). When © = 6 |
R = r, the origin’s data value is obtained from locations
at angle 6 given that their distance from the origin is 7.
Jo|r(0 | 7)rdf is the probability of this event. We assume
that 6 is uniformly distributed between angles 6, and 65.

Thus,
1
——— 01 <0 <0y
o1r) =J @ar U1
feir(0]r) { 0 otherwise
(0,0)
r
de

dr

A
Area A =rdrdo

Fig. 2.

in region A is q

The probability that the data value at (0,0) is derived from a node
a(r)
02—601)r

rdrdf.

Given the above, the cdf of V(0,0) can be expressed as
follows,

P(V(0,0) < v) = BP(Y < v) + (1 — B)
a(r)
/9 / P(V(r.0)+ 2 < 0) v )

Equation (4) and (5) simply say that the the probability that
the data value at a node is directly derived from a node lying
in the shaded region A in Figure 2 is (00‘( ) —rdrdf. oa(r)dr
is the probability that a node’s data value is derlved from any
node at a distance r away from it. The number of nodes r
distance away and lying in an arc of (62 — 6) is proportional
to (02 —61)r. Now, given that the node’s data value is derived
from a node r distance away, the probability that it is derived
from a node in an arc of df is 02Tflgl o

The parameters of the model are a(r), 3, fv (y) and fz(z).
The values of 61 and 65 depend on the method used to populate
data. We will explain their role in more detail in Section I'V-A.

a(r) will be a decreasing function of r as the correlation
between nodes decreases as their distance increases. Through-
out this paper, we assume that «(r) is zero for r > 7,4, for
some value of 7,,44.

Now, since the pdf’s should integrate out to 1, we get the
following equation,

Tmaz a(r)
————pdrdf =1
/ /9 91)7
= / o a(r) =1. (6)
0

A. Instantiation of the model

In a real life scenario, the exact node locations determined
through some location distribution will be given as an input
and the user should be able to generate data values at these
nodes using the model. In this section we describe how to
generate the data using an instantiation of the model.

@ (b)
0,0)

Fig. 3. Two methods to populate data. (a) Semi Circular Dependence: The
data value at node (0,0) can be directly derived from any node lying in
the semi circular region. (b) Quarter Circular Dependence: The data value at
node (0, 0) can be directly derived from any node lying in the quarter circular
region.

Before we proceed, we look at how the values of #; and 65
effect the population of data. A couple of examples are given
in Figure 3. The first method corresponds to population of
data using a semi circular data dependence while the second
method corresponds to a quarter circular data dependence.
Quarter circular data dependence implies that a node’s data
value can be directly derived from only those nodes which lie
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in the shaded region R which is quarter of a circle centered
at the node. The values of 6#; and 6, are w and 37” for
quarter circular dependence and 7 and 27 respectively for semi
circular dependence. Which method to choose will depend
on the physical phenomenon being modeled. The default data
population method in the rest of the paper is going to be the
quarter circular data dependence (6; = 7 and 65 = 37”).

Fig. 4. An example topology.

As an example, consider the node locations given by Figure
4. Let the node location of node i be (r;,6;),0 <14 < 11, and
let the data values at these nodes be denoted by V' (r;,6;). The
instantiation of the model for node (0, 0) for a quarter circular
data dependence is as follows:

V(r1,601) + Z  with probability ca(”’l)
V(re,62) + w.p. ¢ %
V(0,0) =14 V(rs,03) + w.p. c% (N
V(ra, 64) +7 w.p. cai’;i“)
w.p. ¢

Equation (7) is very similar to the model for grid topologies
in spirit. Both Equations (7) and (3) are instantiations of the
model described by Equation (4). However, there are some
differences that it is worth mentioning: First, a(r) in Equation
(7) is no longer a discrete function of distance. Second, since
the number of nodes at a distance r is proportional to , instead
of N(r) (see Equation (3)) we have r in the denominator of the
terms of Equation (7). Third, note the presence of the scaling
constant ¢ in Equation (7) which is present to make the sum
of probabilities go to one. (¢ will depend on the exact node
locations and will change when these change, but the model
parameters remain the same.)

Equation 7 assumes that the data values at nodes lying
in the data dependence region of V(0,0) have already been
populated. Thus, an order of populating data has implicitly
been assumed. A valid ordering to populate data will ensure
that when a data value at a node is populated, the data value
at all the nodes lying in its data dependence region have
already been populated. Also, before starting to populate the
data we randomly initalize the values that are within the data
dependence region of the first node we populate.

B. How the model parameters affect correlation

The presence of many parameters in the model gives us
great flexibility to model processes having different correlation
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properties. In this section, we study how different parameters
affect the correlation properties of the generated data.

We use the simple linear topology shown in Figure 5.
Synthetic traces are generated using the model under a 20000
node scenario. We assume Y ~ N(0,10) and Z ~ N(0,0,).

Fig. 5. Simple linear topology used to study the effect of model parameters
on the correlation in data.

1) Effect of B: Since (3 governs the probability with which a
node will choose a random value independent of every other
node, it is expected that a lower value of [ will lead to a
higher value of correlation. Also, a variation in 3 will change
the distribution of V. The exact relationship between the two
will be derived in Section V-A.

140
120
[ — == =
8or ©

60

Variogram Values

40|
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Fig. 6. Effect on the correlation structure of the data when 3 is varied
keeping all the other parameters constant.

Figure 6 plots the variogram for traces generated using
different values of (3. The other parameters are: 7,4, = 2,
a(r) = A27" for 0 < 7 < Ty, and O otherwise, and o, = 3.
The plots show that as the value of 3 decreases, not only does
the distance at which the variogram levels off (the distance
beyond which the nodes are uncorrelated) increase, but also
the y-value to which it levels off increases.

2) Effect of rma.: If the distance between the nodes is more
than 7,4, then they cannot be directly derived from each
other. Hence, we expect that increasing 7,4, Will increase the
distance at which the variogram levels off.

Figure 7 plots the variogram for traces generated using
different values of r,,,,. The other parameters are: a(r) =
A277 for 0 < r < Tymae and O otherwise, 3 = 0.4 and o, = 4.
A look at the variograms tells us that correlation between the
data values is independent of the value of 7,4,.-

This observation is contrary to our initial intuition and hence
requires a more detailed explanation. We take this opportunity
to highlight a key characteristic of our model. If node 2 is
derived from node 1, and node 3 is derived from node 2,
then node 1 and node 3 will show a strong correlation too.
So, even if 7,4, is small, when ( is small, nodes having
distances much larger than r,,,, will have high correlation.
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Fig. 7. Effect on the correlation structure of the data when 7,4z is varied
keeping all the other parameters constant.

Thus, we infer that the distance at which the variogram levels
off depends primarily on £3.

3) Effect of o,: Finally, we study whether changing fz(z)
will effect the correlation in data. We had assumed f(z) to be
N(0,0.). Traces for different values of o, are generated and
their variograms are plotted in Figure 8. The other parameters
are: Tmar = 2,a(r) = X277 for 0 < r < Tpee and 0
otherwise, and 3 = 0.4.
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Fig. 8. Effect on the correlation structure of the data when o is varied
keeping all the other parameters constant.

It can be easily seen from the plots that the o, does not

effect the correlation structure of the data, though it has
a significant effect on the distribution of V. The value at
which the variogram saturates to, which is the variance of
V', increases as o, increases.
Remark: While evaluating the performance of algorithms
for different correlation structures, it is useful to have a
single tunable parameter whose value determines the level of
correlation in data. For our model, this tunable parameter is 3.
Traces with different correlation structures can be generated
by tuning [ from 0 to 1 and the performance of the algorithm
can be plotted against /3.

V. INFERRING MODEL PARAMETERS

In this section, we present techniques for inferring model
parameters from real traces.

The model parameters to be inferred are a(r), 8, fyv(y),
Tmaz and fz(z). Without loss of generality, from now onwards
we will assume that Z is a normal random variable with zero
mean and standard deviation o = o. Note that the distribution

of Z need not necessarily be Gaussian; any other distribution
will not effect the model, though the analysis presented in this
section will be modified.

First, in Section V-A we derive the relationship between
fv (W), fy(y) and 0. Note that fi-(v) can be easily estimated
by its empirical distribution. Then, in Section V-B we present a
rigorous procedure to infer a(r), B, rma. and o, from a real
trace. But this procedure involves solving integral equations
[18], [19] and hence, it is not always possible to obtain a closed
form expression for the model parameters. So, in Section V-
C, we present a simple, practical method that uses both the
discrete and the continuous models.

A. Relationship between the distributions of V, Y and Z

In this section, we derive the relationship between the
distributions of V', Y and Z.
From Equation (5) we get,

fv() = QA =B)fviz(v) + Bfy(v). ®

Using characteristic functions and since V and Z are
independent, Equation (8) can be rewritten as,

Oy (jw) = (1= )Py (jw)Pz(jw) + Ly (jw).  (9)

Since Z is a zero mean normal random variable, its char-

acteristic function is given by el="= |, Equation (9) finally
reduces to
L 3 .
Dy (jw) — Py (jw). (10)

- (- el

For mathematical convenience, we define a new random
variable having a characteristic function given by

5 .
L= (1= B)el =]

Equation (10) can now be rewritten as

Py (jw) =

V=Y+L. (11)

B. A rigorous procedure to infer the model parameters

In this section, we present a rigorous method to infer the
model parameters. First we compute the variogram +(r) using

the model and then equate it with its estimate ¥ () obtained
from the real trace.
Using Equation (1),
11

~y(r) = 5/0 %E [(V(0,0) = V(r,6))?] do

1 27 1 Tmax 02
a2
2( ) 0 27T 0 01

E[(V(,0) + 2~ V(r,0))?] L(_Tg dr'dg' do

02
1 27 5 )
+§ —FE[(Y =V (r,0))%]d6. (12)
0

310



The term E [(V(r',0') + Z — V(r,0))?] in the above equa-
tion can be expanded as,

E[(V(@',0)+Z-V(re) ] =E[V('0)—V(r0)]
+E[Z%] =2y (\/r2 + 72 = 2rr'cos(6 — 9’)) + 02

The second term in Equation (12) E[(Y — V(r,0))?] is
equal to E[L2]. Using Equation (11), E[L?] is evaluated to
be (1 5)0

Substltutmg all of the above in Equation (12),

() = (1= B)o? +( 1_@/“"(u /:2/27r 1

a(r') ( P = 2rrcos(8 = 9/)) dodg’dr’.
6, — 0,

Equation (13) gives the relationship between the variogram
and the model parameters «(r), 3, o, and 7,,4,. Substituting

(13)

~(r) with its estimation 9 (r) in Equation (13) gives us an
integral equation of the first kind [18], [19], which along with
the conditions [, """ a(r)dr = 1 and a(rmq,) = 0 form a
system of equations with one unknown function a(r) and three
unknown constants 3,0, and 7,,4,. Solving these equations
will give us the model parameters. After obtaining o, and (3,
fv (y) is obtained through Equation (10).

In Equation (13), the unknown function «(r) is inside
an integral. In general, it is not possible to find closed
form solutions for a(r) for every variogram function. In the
next section, we assume a specific variogram function that
corresponds to a covariance function commonly used in the
sensor networks literature, and solve for a(r).

1) Case Study: In this section, we will the find model
parameters for a trace having the following variogram,

c1—e™) 0<r<05. (14)

V() =
The corresponding covariance is C(r) = ce™"" which is a
very commonly assumed correlation structure for spatially
correlated data in the sensor networks literature, see, for
example, [17], [20]. Note that these papers also assume the
data to be jointly Gaussian, whereas we don’t make any such
assumption here. Actually, the jointly Gaussian scenario is a
subcase of our model, as discussed in Section VIII.
To find the model parameters, we have to solve the follow-
ing integral equation:

Tmae 723 27r1 Oé
A
01 27’(92—01

. (1 P 2 cos(0-0 ))) d9de'dr’ + (1 — B)o?

c(l—e” TZ =

. (15)

Before venturing into the solution of the above equation,
we first integrate out 6 and 6,

92 27T 1
/91 / 271' 92 — 91

(1 _ e—r2e 2rr cos(0—06' ))) dedo’. (16)

Since 0 < r, 7" < 0.5 = 2rr'cos(0—0") < 1, by neglecting the
square terms and beyond, the last term in the above equation
can be approximated by,

eer’cos(e—O’)) =1+ 27“7"’608(0 . 9/)

Note that the assumption on the size of the sample area 0 <
r < 0.5 has been made to enable the above approximation,
otherwise it is not possible to find a closed form solution for
a(r).

We assume the semi circular data dependence to populate
data, hence 6; = 7 and 6, = 27. With the above approxima-
2 2

tion, Equation (16) reduces to ¢ (1 —e "

Substituting in Equation (15),
-y =ct-p) [ al)
0
<1 - e*Tze*m) dr' + (1 = B)o.2.

Using the method described in [18] to solve for in-
tegral equations, we determine that «(r) has the form
a + be™™ where a and b are constants to be de-
termined by the boundary conditions for’"“" alr)dr =

a7

1 and a(rmez) = 0. Solving them yields b =
-1

7‘/;&];(““”) — Trag€ Tmas and @ = —be "mas, where

Erf(x) is the error function defined as FErf(z) =

2 [ et dt

7= Jo .

_1,>2

Now substituting «(r) = a + be~" in Equation (17) gives

B =1- L (20Erf(rmas) + V2b Erf(v/2rma))”" and

o2 = B

We 1still need to determine the value of r,,,,. Any value of
Tmaz Would do, as long as the resulting 3 is between 0 and
1 -since it is a probability-, and the resulting «/(r) is positive
for all r -since it is a pdf-. In this example, we choose the
largest 7,4, value that satisfies both constraints. In particular,
we start with 7,4, = 0.5, and keep on reducing its value till
we obtain a positive value of . («(r) is positive for all r
for this value of r,,4,.) The model parameters turn out to be,
Tmaz = 1 X 1075, 8 =2.3 x 1076 and 02 = 0.0023.
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@
3
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Fig. 9. The given variogram (r) = 1000(1 — e="").

Lets see if these values make sense. To do so, first we plot
the variogram of Equation (14) in Figure 9. Drawing from the
discussion in Section IV-B, we can easily argue that for the
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given correlation structure, the values of 3 and 7,4, should
be very small which is consistent with the values we obtain.

C. A simple method to infer the model parameters

In this section we present a simpler procedure to infer
the model parameters. Several numerical techniques to solve
integral equations exist in the literature. But integral equations
of the first kind are inherently ill posed problems [21] and
hence, their solutions are generally unstable. This ill-posedness
makes numerical solutions very difficult, as a small error can
lead to an unbounded error.

So, we present a practical simpler method which uses the
discrete model [1] to infer the model parameters and the
continuous model to populate the data and generate traces.

The first step is to use the method described in Section
IT to obtain a discretized variogram, which corresponds to
the continuous variogram sampled at multiples of the average
nearest neighbor distance. The second step is to use the method
described in [1] to obtain a discrete version «[r] of c(r), which
corresponds to the continuous «(r) sampled at multiples of
the average neighbor distance. Note that the method in [1] is
similar to the method described in Section V-B. Except now,
instead of integrating over infinitesimally small areas each
having at most one node in them, like area A in Figure 2,
we sum over square regions as shown in Figure 10, assuming
one node resides in the center of each square.

Avg. nearest neighbor distance

(0,0)
fe) o o
o o) o
o o o

Fig. 10. In the approximate method, instead of integrating over the region
A, we sum over the square regions.

Since the square area is no longer infinitesimally small, the
integrals in Equation (13) are replaced by sums. The resultant
system of linear equations can be easily solved to obtain the
model parameters, 3, o, and ar].

Finally, the «[r]’s are interpolated or curve fitted to obtain
the continuous «(r). After obtaining the model parameters, we
use the model described in Section IV to generate synthetic
traces.

This procedure formulates the problem in continuous do-
main, converts it to the discrete domain by sampling, solves it
in the discrete domain and transforms the solution back to the
continuous domain by interpolation. Intuitively, this procedure
is very similar to several signal processing techniques, for

example using the FFT to find the fourier transform of a
continuous signal. Obviously, as in the signal processing
techniques, the distance between the two neighboring samples
(which is the average nearest neighbor distance for the given
procedure) has an important role to play. The larger the number
of samples in an area, the smaller the average nearest-neighbor
distance, and the more accurate is the estimation of the model
parameters.

VI. MODEL VERIFICATION AND VALIDATION

In this section, the model parameters for experimental traces
are inferred using the method described in Section V-C. Then
these model parameters are used to generate synthetic traces.
We verify our model by comparing the variograms of the
original experimental traces and the corresponding synthetic
traces, and then we validate it by comparing the performance
of an algorithm which exploits spatial correlation, against both
the traces.

A. Data Set Description

We need actual sensor network traces to be able to verify
and validate our model. In this section, we describe the traces
which we have used for verification and validation purposes.

1) SHM Trace: One of the real world experiments where
real sensor network traces have been collected after deploying
a sensor network is reported in [22]. A 14 MicaZ node sensor
network was deployed in a large seismic test structure used by
civil engineers to study structural health monitoring (SHM).
Accelerometers on the sensors collected vibration samples
from the structure and send them to a base station using a data
acquisition system called Wisden. We use a time snapshot of
this trace to verify and validate our model.

We are not aware of other similar sensor network traces.
So, we collected our own traces using MICA2 motes with
MTS310CA sensor boards attached to them. We used the light
sensors on the sensor board to take light intensity measure-
ments. Two traces in two differently lighted environments were
collected using these motes.

2) Trace 1: 44 sensor nodes are deployed in a 34 x 64 feet
square area. The location of each node is randomly chosen
according to a uniform location distribution. We use a master
mote to send a message to every mote. When a sensor node
receives the message, it samples the light intensity of the
environment. Thus all sensors take the readings at the same
time. Thus, we get a spatially correlated trace of 44 samples.

The experiment is performed in an outdoor environment
under strong sunlight with a few nodes in a shaded area caused
by the presence of trees in the environment. Thus, the readings
of the sensors will be close to each other, but the readings from
the sensors in the shaded area will be lower than those in direct
sunlight.

3) Trace 2: 30 sensor nodes are deployed in a 4 x 21 feet
square area. The location of each node is randomly chosen
according to a uniform location distribution. As before, all
sensors take readings at the same time when they receive a
message from the master mote.
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The experiment is performed in an indoor environment with
just one light source. This corresponds to a single source
scenario where the readings go on decreasing as the distance
from the light source increases. So, the sensors far away from
the light source have much lower readings than the sensors
closer to the light source. This generates a strongly correlated
data trace.

Note that all the above traces are not very big, which is a
result of the difficulty in deploying very large sensor networks.
Due to statistical considerations, we want to verify and validate
our model against a trace having thousands of spatial samples.
So, we use the S-Pol Radar Data Trace 2, which was obtained
from remote sensing studies and has been used in the sensor
networks literature as an experimental trace, see, for example
[12]. Though the distance between the sensing nodes for this
trace is hundreds of metres which is not representative of
actual sensor networks in which the inter sensor distance is a
few metres, we use it for verification because of the absence
of large sensor network traces.

4) S-Pol Radar Data Set: The resampled S-Pol radar data,
provided by NCAR, records the intensity of reflectivity of
atmosphere in dBZ, where Z is proportional to the returned
power for a particular radar and a particular range. The
original data were recorded in the polar coordinate system.
Samples were taken at every 0.7 degrees in azimuth and
1008 sample locations (approximately 150 meters between
neighboring samples) in range, resulting in a total of 500 X
1008 samples for each 360 degree azimuthal sweep. They were
converted to the cartesian grid using the nearest neighboring
resampling method [23]. In this paper, we have selected a 64
X 64 spatial subset of the original data (4096 spatial samples)
and 259 time snapshots across 2 days in May 2002.

B. Model Verification

1) Trace 1: The method described in Section V-C is used to
infer the model parameters. But before, applying the method,
we have to estimate the variogram from the given trace. We
use the second method described in Section II to estimate the
variogram. We fitted several standard variograms on to it [15],
[16] and retained the one which had the minimum square error.

For the first trace, the spherical variogram given by Equation
(18) was the best fit amongst all of them. For the given trace,
co =90,c=170 and a = 9.

3r _ 1(ry3
fy(r)—{ cote(35—5(5)°) ,0<r<a

co+ ¢ ,a<r (18)

After inferring the model parameters from the estimated var-
iogram, we generate a synthetic trace on the same sensor node
locations as the original trace. We compare the distribution of
the traces in Figure 11 and their variograms in Figure 12. Both
the distribution and the variograms match closely.

2S-Pol radar data were collected during the THOP 2002 project (http:
//www.atd.ucar.edu/rtf/projects/ihop 2002/spol/). S-Pol
is fielded by the Atmospheric Technology division of the National Center for
Atmospheric Research. We acknowledge NCAR and its sponsor, the National
Science Foundation, for provision of the S-Pol data set.
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- - Original Trace
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Fig. 11. Trace 1: Comparison of the distribution of the original and the
synthetic traces.

— Synthetic Trace
-~ Original Trace
300) Fitted Variogram (spherical model)

Variogram Values
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Fig. 12.  Trace 1: Comparison of the variogram of the original and the
synthetic traces.

2) Trace 2: The variogram of the second trace is best
estimated by the power semi variogram model (Equation (19))
with parameters ¢y = 14500 and ¢ = 450.

(1) = ¢ + cr?. (19)

We use the estimated variogram to obtain the model param-
eters and then generate a synthetic trace on the same sensor
node locations as the original trace. We plot the variograms
of both the traces in Figure 13. Once again, the variograms
match closely.

—__ Synthefic Trace
__ Original Trace
Fitted Variogram (14500 + 450°F)

Variogram Values

Fig. 13.  Trace 2: Comparison of the variogram of the original and the
synthetic traces.

3) SHM Trace: The variogram of the SHM trace is best
estimated by the spherical semi variogram model (Equation
(18)) with parameters ¢y = 6000, c = 10000 and a = 2.7. We
use the estimated variogram to obtain the model parameters
and then generate a synthetic trace on the same sensor node
locations as the original trace. We plot the variograms of both

313



the traces in Figure 14. Once again, the variograms match
closely.

Variogram Values

— Synthetic Trace
02| - - Original Trace
Fitted Variogram (Spherical Model)

1 2 3 4 5

r

Fig. 14. SHM Trace: Comparison of the variogram of the original and the
synthetic traces.

4) S-Pol Radar data set: We choose a snapshot in time of
the S-Pol Radar data as the experimental data trace. Figure
15 shows the comparison of the distribution of the synthetic
and original traces and Figure 16 shows their respective
variograms. Both the distribution and the variogram of the
two traces match closely.

— distribution of the synthetic trace
0.045) - - distribution of the original trace

0.005)

-300 -200 -100 200 300

Fig. 15. S-Pol Radar data trace: Comparison of the distribution of the original
and the synthetic traces.

== variogram of the original trace
— variogram of the synthetic trace

Variogram Values

Fig. 16. S-Pol Radar data trace: Comparison of the variogram of the original
and the synthetic traces.

C. Model Validation

The proposed model will be used to compare and evaluate
different algorithms which exploit the presence of spatial
correlation in data. To validate that our model can be used
to evaluate the performance of different algorithms, we run

one of these algorithms on both the original and the synthetic
traces and compare its performance.

Amongst the many such algorithms mentioned in the intro-
duction, we selected CMAC [9] to evaluate our model. The
underlying idea behind CMAC is that due to the presence
of spatial correlation between sensor observations, it is not
necessary for every node to transmit its data. Amongst a cluster
of sensor nodes, one of them can act as a representative of all
other nodes. We refer to the node that sends information to the
sink as the representative node of the cluster. Thus, a smaller
number of sensor measurements are adequate to communicate
the event features to the sink within a certain acceptable error.

average error
)
N
&

0.05;" —— Synthetic Trace
- - Original Trace

1 15 2 25 3 35 4 45 5

d

Fig. 17. Trace 1: Comparison of the performance of CMAC on original and
synthetic trace: Variation of error with d.

average error

— Synthetic Trace
- - Original Trace
05 1 15 2 25 3 35 4 45 5

Fig. 18. Trace 2: Comparison of the performance of CMAC on original and
synthetic trace: Variation of error with d.

average error

0.005] —— Synthetic Trace
- Original Trace
05 1 15 2 25 3 35 4 45 5

Fig. 19. SHM Trace: Comparison of the performance of CMAC on original
and synthetic trace: Variation of error with d.

In our simulations, we assumed the cluster structure to be
a square of side d. Amongst all the nodes within this square,
the representative node is selected randomly. Only one node
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Fig. 20. S-Pol Radar Data Trace: Comparison of the performance of CMAC
on original and synthetic trace: Variation of error with d.

in the cluster (the representative node) will transmit its data to
the sink. The larger the value of d, the smaller is the number
of nodes transmitting data to the sink, and hence larger is the
error. We plot the average error against the value of d for the
original as well as the synthetic trace for Trace 1, Trace 2,
the SHM trace and the S-Pol Radar Data Trace in Figures 17,
18, 19 20 respectively. It is easy to see from the plots that the
performance of the algorithm for both the traces is similar as
the plots match closely.

From the above plots, we conclude that the proposed model
is able to capture the spatial correlation in sensor network
data.

VII. TOOLS TO GENERATE LARGE SYNTHETIC TRACES

In this section we describe two tools which we have created
to help researchers generate synthetic traces of any size and
degree of correlation. These tools can be downloaded from
http://www-scf.usc.edu/~apoorvaj.

o generateLargeTraceFromlrregular will create large syn-
thetic traces having the same correlation structure as the
input real data trace. It takes the estimated variogram
of the real trace as its input. It also requires the user to
specify the data dependence pattern. The user can choose
either of the methods described in Section IV-A.

o generateSyntheticTracesOnlrregular will create large
synthetic traces representing a wide range of conditions
by tweaking the model parameters. It takes the model
parameters, 'q., @(1), 3, 0, and fy (v), the location of
the nodes and the data dependence pattern as its input.

Data collected from a testbed having a few sensor nodes is
not sufficient to evaluate protocols. The first tool can generate
a large trace having similar correlation properties as the real
trace, and hence, help researchers to evaluate protocols with
real data. The second tool will enable researchers to evaluate
their protocols with data having varied correlation structures.
Hence, these two tools will help researchers to evaluate
their protocols with data representing wide range of realistic
conditions without the need of actual dense deployment of
sensor nodes.

VIII. CONCLUSIONS AND DISCUSSION

In this paper, we proposed a mathematical model to capture
spatial correlation in the data of sensor networks with irregular

topologies. The model can generate synthetic traces represent-
ing a wide range of conditions and exhibiting any degree
of correlation for any arbitrary topology. We also described
a rigorous mathematical procedure and a simple, practical
method to infer the model parameters from a real trace. Finally,
we verified the correctness of the model, and validated its
ability to accurately capture correlations by comparing the
performance of CMAC, an algorithm whose behavior depends
on the degree of spatial correlation in data, under real and
synthetic traces.

To model spatial correlation in data, most researchers as-
sume the data to be jointly Gaussian [9], [17], [20], [24]. The
primary reasons for this choice is ease of use and analytical
tractability, rather than accuracy [25].

Our model is more general and more realistic and hence
more complex than the jointly Gaussian model. Actually, it is
easy to argue that the jointly Gaussian model is a special case
of the proposed model. The pdf of jointly Gaussian random
variables is completely defined by the covariance matrix. Each
covariance matrix corresponds to a unique variogram and each
variogram corresponds to a unique (1), Tmaz, 0, and (.
fv(v) is Gaussian and fy (y) can be inferred from Equation
(10).

The chief limitation of the jointly Gaussian model is that it
forces the joint pdf’s of the data values to be jointly Gaussian,
while in most of the experimental traces, even the first order
distribution is not Gaussian. The proposed model has no such
restriction and through a proper choice of fy(y) and fz(z2),
any distribution function of data values can be modeled.

To summarize, the jointly Gaussian model should be used to
predict trends and get some quick intuition into the behavior
of an algorithm. But to do a more thorough study, through
analysis or simulations, a more realistic model such as the
proposed model should be used. It is important to point out
that trace-driven simulations are the best choice for simulating
an algorithm, but in the absence of large sensor network data
traces, this model can act as a close substitute.
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