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Efficient Randomized Web-Cache Replacement
Schemes Using Samples From
Past Eviction Times

Konstantinos Psouni§tudent Member, IEEEBNd Balaji PrabhakaMember, IEEE

Abstract—The problem of document replacement in web caches make room for a new page. A particularly popular rule for page
has received much attention in recent research, and it has been replacement replaces the least recently used (LRU) page. This is
shown that the eviction rule “replace the least recently used docu- due to a number of reasons. As an online algorithm, it is known

ment” performs poorly in web caches. Instead, it has been shown toh the best titi tidt onl . linked list t
that using a combination of several criteria, such as the recentness 0 have the best competitive ratigt.only requires a linked list to

and frequency of use, the size, and the cost of fetching a document, Pe efficiently implemented as opposed to more complicated data
leads to a sizable improvement in hit rate and latency reduction. structures required for other schemes, and it takes advantage of
However, in order to implement these novel schemes, one needs tdemporal correlations in the request sequence.

maintain complicated data structures. We propose randomized al- Suppose that we associate with any replacement scheme a

gorithms for approximating any existing web-cache replacement .. - . . . o
scheme and thereby avoid the need for any data structures. utility function, which sorts pages according to their suitability

At document-replacement times, the randomized algorithm for eviction. For example, the utility function for LRU assigns
samples N documents from the cache and replaces the least to each page a value which is the time since the page’s last use.

useful document from the sample, where usefulness is determined The replacement scheme would then replace that page which is
according to the criteria mentioned above. The nexiM < N least most suitable for eviction.

useful documents are retained for the succeeding iteration. When Wh f hes LRU and it iants h
the next replacement is to be performed, the algorithm obtains ereas for processor cacnes and Its variants have

N — M new samples from the cache and replaces the least usefulWorked very well [16], it has recently been found [4] that LRU

document from the N' — M new samples and theM previously  is not suitable for web caches. This is because some important
retained. Using theory and simulations, we analyze the algorithm differences distinguish a web cache from a processor cache:
and find that it matches the performance of existing document 1) the size of web documents are not the same; 2) the cost

replacement schemes for values aN and M as low as 8 and 2 f fetching diff t d t . ianificantly- and 3
respectively. Interestingly, we find that retaining a small number ©f fétching different documents varies significantly; and 3)

of samples from one iteration to the next leads to an exponential SOrt term temporal correlations in web request sequences are
improvement in performance as compared to retaining no samples not as strong. Thus, a utility function that takes into account

atall. not only the recency of use of a web document, but also its
Index Terms—Cache replacement scheme, past samples, ran-Size, cost of fetching, and frequency of use can be expected
domized algorithm, Web caching. to perform significantly better. Recent work proposes many

new cache replacement schemes that exploit this point (e.g.,
LRU-Threshold [1], GD-Size [4], GD* [7], LRV [13], SIZE
[18], and Hybrid [19]).
HE ENORMOUS popularity of the World Wide Web in  However, the data structures that are needed forimplementing
recent years has caused a tremendous increase in netwhgse new utility functions turn out to be complicated. Most of
traffic due to HTTP requests. Since the majority of wekhem require a priority queue in order to reduce the time to find
documents are static, caching them at various network poiatgeplacement from(K) to O(log K ), whereK is the number
provides a natural way of reducing traffic. At the same tim@f documents in the cache. Further, these data structures need
caching reduces download latency and the load on web servesshe constantly updated.e., even when there is no eviction),
A key component of a cache is its replacement policy, whicdithough they are solely used for eviction.
is a decision rule for evicting a page currently in the cache to This prompts us to consider randomized algorithms which do
not need any data structures to support the eviction decisions.
For example, the particularly simple random replacement (RR)
Manuscript received December 13, 2000; revised February 19, 20@lgorithm evicts a document drawn at random from the cache
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of a document is determined by the utility function. Although if (eviction) {

this basic scheme performs better than RR for small values of if (first_iteration) {

N, we find a big improvement in performance by refining it sample (N);

as follows. After replacing the least useful &f samples, the evict_least_useful;

identity of the nextAM < N least useful documents is retained keep_least_useful (M) ;

in memory. At the next eviction timey — M new samples are } else {

drawn from the cache and the least useful of thi¥se A and sample (N-M) ;

M previously retained is evicted, the identity of thé least evict_least_useful;

useful of the remaining is stored in memory, and so on. keep_least_useful (M);
Intuitively, the performance of an algorithm that works on }

a few randomly chosen samples depends on the quality of the }

samples. Therefore, by deliberately tilting the distribution of the
samples toward the good side, which is precisely what the fég. 1. The randomized algorithm.
finement achieves, one expects animprovement in performance.

Rather surprisingly, we find that the performance improvemejt o\icted. Then, the next/ < N least useful documents are

can beexponentiafor small values ofV/ (e.9., 1, 2 or 3). AS retained for the next iteration. Also, when the next replacement
the value ofM increases, one expects a degradation in perfQg-t, pe performed, the algorithm obtaifs— M new samples

mance because bad samples are being retained and not engUgh the cache and replaces the least useful document from the

new samples are being chosen. This suggests there is an optigial s qew samples and thel previously retained. This pro-

value of M. We analytically demonstrate the above observatiopg qre js repeated whenever a document needs to be evicted. In
and obtain an approximate formula for the optimal valuébf pseudo-code the algorithm is shown in Fig. 1.
as a function ofv. . ) _ Anerror is said to have occurred if the evicted docunuees

The rest of the paper is organized to reflect the three maigpejong to the least usefuth percentile of all the documents
parts of the paper: 1) a description of the proposed randomizgdhe cache, for some desirable valuesiofhus, the goal of
algorithm for document replacement (Section I1); 2) an analysi§e aigorithm we consider is to minimize the probability of error.

of its general features (Sections Ill and IV); and 3) a simulgye shall say that a documentiselessf it belongs to the least
tion comparison, using web traces, of its performance relatigefy1th percentile

to the deterministic algorithms it approximates (Section V). Fi- | is interesting to conduct a quick analysis of the algorithm

nally, Section VI discusses implementation issues and furthffs.rined above in the case whéfe= 0 so as to have a bench-

motiyates the use of the randomized algorithm in practice, apg, ik for comparison. Accordingly, suppose that all the docu-

Section VII concludes the paper. ments are divided int@00/» bins according to usefulness and
We conclude the introduction with & few remarks about thg qocuments are sampled uniformly and independently from

theoretical contributions of the paper. A preliminary version _%e cache. Then the probability of error equdls- n/100)" 3

the paper, presented at the IEEE INFOCOM'01 [12], containgpich approximately equals~/19° By increasingV, this

many of the algorithmic ideas and theoretical statements p obability can be made to approach 0 exponentially fast. (For
sented here. The present paper contains the complete detai fmple whem = 8 and N = 30, the probability of error is

the analytical steps (e.g., complete proofs of theoretical Staé‘ffproximately 0.08. By increasiny to 60, the probability of
ments). The main algorithmic contribution of the paper is th&or can be made as low as 0.0067.)

demonstration that carrying information between iterations will g+ it is possible to do much better without doublifg That
greatly improve the performance of iterative randomized alggs oven withNV = 30 by choosingl = 9, the probability
rithms. While this has been applied to web-cache replacemgpta ror can be brought down @4 x 10-. In the next few

policies in this paper, it is equally applicable to other iterativgactions, we obtain models to further understand the effect of
randomized algorithms of interest in networking (e.g., load bal; 5, performance.

ancing [15], switch scheduling [17], [14]). Thus, the theoretical \ye end this section with the following remark. Whereas it is
methods used here may have wider applicability. In particulfyssiple for a document whose id is retained in memory to be
the coupling method used to establish that there is a right amoyptassed between iterations, making it a “recently used docu-
of information to carry between iterations (see Section l11-A an,c}'em,u we find that in practice the odds of this happening are
the Appendix), and then approximately determining this righfegligibly small+ Hence, in all our analyses, we shall assume

amount of information using an exponential martingale argy;at documents which are retained in memory are not accessed
ment (Section IV) seem to be of interest in their own righfyatween iterations.

Finally, other additions to [12] are more extensive simulations
using weekly NLANR traces [21], and a section devoted to im-
plementation issues and to the practical motivation for this work.

2Note that samples that are good eviction candidates will be called “useless”
samples since they are useless for the cache.
Il. THE ALGORITHM 3Although the algorithm samples without replacement, the value¥ afe
. . . . so small compared to the overall size of the cache(that »/100)"™ almost
The first time a document is to be evictell, samples are exactly equals the probability of error.

drawn at random from the cache and the least useful of theséfrace driven simulations in Section V support our observation.



PSOUNIS AND PRABHAKAR: EFFICIENT RANDOMIZED WEB-CACHE REPLACEMENT SCHEMES USING SAMPLES FROM PAST EVICTION TIMES 443

I1l. M ODEL AND PRELIMINARY ANALYSIS (m—1)th

I '
I |

In this section, we derive and solve a model that describes the ' Amn !
behavior of the algorithm precisely. We are interested in com- Xm-1 : :
puting the probability of error, which is the probability that none | I [ >
of the N documents in the sample is useless for the cache, for ! # ! ¢
any givenN andn and for allM (0 < M < N).

We proceed by introducing some helpful notation. Of Mfe 1(Xm—1>0) ]_(Xm>0)
samples retained at the end of the — 1)th iteration, letY,,,_;
(() <Y,_1 < M) be the number of useless documents. At tHgo. 2. _Sequence of events per iteration. Note that eviction takes place prior to
beginning of themth iteration, the algorithm choos@é — A7 esampiing.
fresh samples. Leti,,,, 0 < A,, < N — M be the number of
useless documents coming from tie— M fresh samples. In sjze isM +1). An interesting feature of the system is thatjds
the mth iteration, the algorithm replaces one document out fffcreases, the average arrival ra A,,) = (N — M)n/100,
the totalY,,,_; + A,,, available (so long a¥;,,_; + A,, > 0) decreases linearly and the maximum queue size increases
and retainsM/ documents for the next iteration. Note that it iginearly.
possible for the algorithm to discard some useless documentget 7+ = (7o, ..., mar41) denote the stationary distribution
because of the memory limit @ that we have imposed. of the chainX,,,. Clearlyr is the probability of error as defined

Define X,,, = min(M +1, Y;,—1 + A,,) to be precisely the above. Letd = (a;;) be an(M + 2) x (M + 2) matrix, with
number of useless documents in the sample just prior toithe a;; = 1foralli, j. Leta = (a;) be al x (M + 2) matrix
document replacement, that the algorithm would ever replaceth , = 1 for all <. SinceTy; is irreducible,] — Ty + A is
eviction times. IfX,,, = 0, then the algorithm commits an errorinvertible [10] and
at themth eviction. It is easy to see that,, is a Markov chain
and satisfies the recursion r=a-(I-Ty+A)" 1)

X = min(M +1, Xpny = Lix,,_150) + Am) Fig. 3 shows a collection of plots af, versusiM for different

and thatd,,, is binomially distributed with parameterg — A values of N andn. The minimum value ofrq is written on top
andn/100. For a fixedN andn, let pu(M) = P(An = k), of each figure. We note that gives andn there are values of

k=0,..., N — M, denote the probability thdt useless doc- M > 0 for which the error probability is very small compared

uments for the cache, and thus good eviction candidates, {d!S value atM = 0. We also observe that there is no need

acquired during a sampling. When it is clear from the contef@" £V to be alot bigger than the number of bir0/» for the

we will abbreviatep (M) to px. Fig. 2 is a schematic of the probability of error to t.:e. as close to zero as des[red, since even

above Markov chain. for N = 2-100/» the minimum probability of error is extremely
Let T), denote the transition matrix of the chaiy, for a small. Finally, we notice that for small values &f the.re' isa .

given value oM. The form of the matrix depends on whethepug_e reduction in the error probablllty and that the minimum is

M is smaller or larger thai¥/2. Since we are interested in smalchieved forasmallf. As M increases further the performance

values ofM, we shall suppose thatl < N/25 Itis immediate deteriorates linearly. o
thatT’, is irreducible and has the general form The exponential improvement for small can be intuitively
explained as follows. For concreteness, supposefthat 1

and that the Markov chaiX,,, has been running from timeco

M
po p1 p2 oo pm 1- ZPZ‘ onwards (hence, it is in equilibrium at any time > 0). The
=0 relationship{X,, = 0} ¢ {4,, = 0;4,,-1 < 1} imme-
M diately gives that’(X,,, = 0) < P(A,, = 0O)[P(An_1 =
po p op2 - pu 11— sz‘ 0) + P(A,,—1 = 1)]. Supposing thav > 2-100/n, P(A,, =
=0 0) ~ e andP(A,, = 1) ~ 3e~%. ThereforeP(X,, =
M—-1 0) < 4¢=%. Compare this number with the casd¢ = 0, where
Ty=10 po p1 ... pyv—1 1-— pr, . P(X,, =0) = P(A,, =0) = ¢~3, and the claimed exponen-
i=0 tial improvement is apparent.
M-2 The linear increase af, for large, evident from Fig. 3, can
0 0 po ... pm_2 1-— Zpi be seen from the following argument. A increases, the av-
i=0 erage arrival rate decreases and the queue size increases. Thus,
for large M, the queue virtually never overflows and good evic-
tion candidates are not discarded due to a lack of storage. The

0 0 0 ... po 1—po problem is that the smaller arrival rate brings fewer good evic-

) » ) tion candidates, making the linear decrease of the arrival rate the
As may be inferred from the transition matrix, the Markoysminant phenomenon in performance degradation. Recall that,

chain models a system with one deterministic server, binomgg| 5 queue with arrival ratd and service rate when the over-

arrivals, and a finite queue size equalitb(the system’s overall 4, probability is negligible, the probability that it is empty,

5Fig. 3 suggests that thiel at which the probability of error is minimized is 770+ equa|51 - )‘/N-. In our caserg = 1 — (N — M)n/100,
less thanV'/2. showing the linear increase ity with M.
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05 N=12, n=10% 08 N=80, n=4% SinceA(M) = (N — M)n/100 is linear inM, and D(M)
o v , is convex in, (2) implies thatPe,ror (M) = Pempty (M) is
04 / ' convex ini. [
3 .:°0'3 To complete the proof, it remains to show th&{)/) is
02 , convex inM. The proof of the convexity oD(A) is carried
02 : ot out in Lemmas 1-3 below. In the following, we abbreviate
~ D(t, M, \(M)) to D(¢, M) when the arrival process does
g 2 g 6 % 5 10 15 not depend oM/, and toD(¢, A(M)) when the buffer size is
N=60Mn=2% N_soMn_zo/ constant, regardless of the value f. Lemma 1 shows that
05 : 025 — 7 D(t, M) is convex inM for all ¢ > 0. Lemma 2 shows the
0a 0s convexity oflim, ... D(¢, A(M))/t. Finally, Lemma 3 shows
the convexity ofD(M).

o o ‘ : For now, we only give a sketch of the somewhat combina-
02 f 0.1 : torially involved proofs of these results. The full proofs can be
04 v 005 found in the Appendix.

. . Lemma 1: D(¢, M) is a convex function ofZ, for eacht >
(o} 10 M 20 30 o} 10 i/(l) 30 40 0

Sketch of Proof: To prove convexity it suffices to show that
Fig. 3. Probability of errorf, = probability not a useless document for thethe second order derivative of the number of drops is nonnega-

cache is replaced) versus number of documents retaingd ( tive: i.e., that(D(t, M— 1) —D(t, M)) _ (D(t, M) —D(t, M+
1)) > 0. This can be done by comparing the number of drops
A. A Closer Look at the Performance Curves D(t, M — 1), D(t, M), andD(¢, M + 1) from systems with

From the above discussion and Fig. 3, we may deduce thaffer sizesM — 1, M, andM + 1, respectively, under identical
the error probability as a function @/ and for givenN and arrival processes.
n has the following features. A& increases from 0, the error Essentially, the comparison entails considering four situa-
probability decreases exponentially, flattens out, and then fiens for buffer occupancies in the three systems, as illustrated
creases linearly. In particular, it appears that error probability Fig. 17 in the Appendix. u
is a convex function of\f. The rest of this section shows that Let D(\(M)) 2 limyoe D(t, A(M))/t.
this convexity is a general feature of the algorithm and holds forLemma 2: D(A(M)) is a convex function ofA when
arbitrary values ofV andn. AM) = (N — M)n/100.

To establish convexity directly it would have helped greatly ~ Sketch of Proof:We need to showD(A(M — 1)) —
if mo(M) could be expressed as a function of the elements BD(A(M)) + D(A(M + 1)) > 0 by considering three systems
T in closed form. Unfortunately, this is not the case and with the same buffer sizes and binomially distributed arrival
must use an indirect method, which seems interesting in its oprocesses with average ratgsy — 1), A(M), andA(M + 1).
right. Our method consists of relating (M) to the quantity Thus, there will be common arrivals and exclusive arrivals as
D(t, M, A\(M)), which is the number of overflows in the timecategorized below.
interval [0, 7] from a buffer of sizel/ with average arrival rate 1) An arrival occurs at all three systems.

A(M). 2) An arrival occurs only at the system with buffer size—
Let D(M) 2 lim,_..o D(¢, M, N(M))/t. 1.
Theorem 1: The probability of error is convex ifd. 3) An arrival occurs at the two systems with buffer sizes
Proof: Let AM]0, ¢] be the number of arrivals ifo, #. M — 1 andM and there is no arrival at the system with
Then the probability the system is full as observed by arrivals,  buffer sizeM + 1.
or equivalent the probability of drops, equals Due to the arrival rates being as in the hypothesis of the lemma,
. D, M, \M)) category 2) and 3) arrivals are identically distributed. Using this
Parop = thjgg T AM[of] and combinatorial arguments, one can then showZ{at M ))
is convex. [ |
— lim D(t, M, \(M)) ¢ . Lemma 3: D(M) is a convex function o/ whenA(M) =
t—o0 t AMI0, 1] (N — M)n/100.
Lemma 3 below implies thaD (A1) is convex inM. Pro- Sketch of Proof:We consider three systems of buffer sizes
ceeding, equating effective arrival and departure rates, we é§-— 1, M, andM + 1, whose arrival processes are binomially
tain distributed with rates.(M — 1), A(M), andA(M +1). Thisis

a combination of Lemma 1 and 2. [ ]
)‘(M) : (1 - PdrOP(M)) = (1 - Pempty(M))

or IV. ON THE OPTIMAL VALUE OF M

Penpy (M) =1 = A(M) - (1 = Parop(M)) The objective of this section is to derive an approximate
or closed-form expression for the optimal valueidffor a given

Peppty (M) =1 — AMM) + D(M). (2) N andn. This expression [see (6)] is simple and, as Table I
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TABLE | sample and thak,,, ;1 = ((X,, — 14+ A,,) A(M +1)) V0.8
OPTIMUM VALUES OF 7o AND M FORVARIOUS N AND n The boundaries at 0 and + 1 complicate the analysis of this
— = Markov chain (MC). The idea is to work with a MC that has no
[V min(mo) l M i ; : . )
=10 =50 =10 n=20 boundaries and then use tBptional Stopping Time Theorem
§ ]| 03643 0.0593 1 2 to take into account the boundaries at 0 &fdfl + 1).
ey 220 . 2 Since we want to operate away from the eveit,, = 0},
L we assume that the MC will have a positive drift toward the
n=>5 n=10 Tn=5 n=10 1) boundary atM + 1). Let Z/, = (M + 1) — X,,,. ThenZ,,
([20]] 01946 00013 [ 2 5 I will have a negative drift toward the boundary at 0.
L1 = = = Let Z,,, be the corresponding unreflected MC which follows
o ia=" s the equatiornZ,,.;1 = Zm + 1 — A,,.. Consider the exponential
C 1 martingale (MG)
n=23 n=6 n=29 n=3 n=6 n=9]
70| 0.0558 8.0505-° 4.6629 ] 5 12 16 W = exp(02,,)
[T . .
——2 =7 =8 | n=2 n=/ n<=6 wheref will be chosen so thab'(W,,,41|W,,,) = W,,. Since
50| 0.1354 1.86787° 953687 %] 4 13 18
50 || 0.0350 8.3933 1 7 - EW41|Win) = E(exp(0Zm41)|Zm)
70 0.0025 - - 11 - -
50 |[3.1553 7 - - 16 - - =FE(exp(0(Zm + 1 — Ap)|Zm)
= Wm " eXp(e) ) E(exp(_eAnl))
TABLE Il we obtain that must satisfy the equation
COMPARISON OFOPTIMUM VALUES OF M FOR VARIOUS [N AND 72, E(exp(—QAm)) _ eXp(—Q).

CALCULATED FROM MG APPROXIMATION (M®°, M *) AND FROM MC (M ")

SinceA,, is binomially distributed with parameteié — A/ and

N Me°, MT AM* .
AR : p = /100, B(exp(—84,.)) = (p - exp(—6) + 1 — p)N M.

S0 1 1]13 1 2 Therefore, we require th&tsolve the equation

10 0 0 1|26 2 3

12][05 1 239 3 4 (N — M) -In(1—-p(1—exp(—9))) =-6. (3)
L1

n=5 | n=10 | T Since there is no general closed-form solution to the above
(2ol 0 0 2[55 5 5] 1 equation, using a Taylor's approximation for(1 — z) and
H I ————— ; exp(x) and keeping terms up ##, we obtain
[30] 22 2 4]103 9 9| I 2 1
6= - . 4

= = e p(l=p) <p (N_M)> )
[40]]30 38 5[13.8 12 12]18.7 15 16]] LetZ = min{m > 0: Z,, <0or Z,, = M + 1}. ThenT is
L1 — = = a bounded stopping time and we can use the Optional Stopping

50 0 0 4143 13 13]208 18 I8 Time Theorem [6] to obtain
6048 5 71209 18 19| - - -
- - - E(Wy) = E(Wr).

Let Zo = 0. ThenWy = 1 and thus

Elexp(6Z7)) =1
shows, it is quite accurate over a large range of valugé ahd = E(exp(0Z7)1(z;=m+1)) < 1
n.

Let M* = arg min{mo(M)} be the optimal value al/. As = exp(6(M +1)) - P(Zr =M +1)<1

remarked earlier, even though the form of the transition matrix, = P(X7p =0) < exp(—6(M +1)). (5)
Ty, allows one to write down an expression fey(M ), this

expression does not allow one to calculafé. Thus, we have  From (5), to minimize the probability of error, it suffices to
to numerically solve (1), computey (M) for all M < N/2, maximizef(M) - (M + 1) over M. Using (4) and elementary

and read off\* for various values ofV andn, as in Table I. algebra, we conclude that the optimal value is given by

This table is_t(_) be read as foII(_)WS. Suppd\ﬁe_: _30 an(_jn = M° =N — /(N +1)100/n. (6)
4%. Then minimum value of is 0.0732 and it is achieved at
M* = 4. Some comments about the approximations we have made in

Even though there is no exact closed-form solution froffi€ above derivation are in order. We have dropped the term
which one might calculat@Z*, we can derive an approximate£(exp(671)1(z,<0)) to obtain the bound in inequality (5).

closed-form SOIlj't'On using elementary martingale theo-ry [6]-67he symbolsA andV denote the minimum and maximum operations, re-
Recall thatX,, is the number of useless documents in thepectively.
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n=20 n=10

150 350 V. TRACE DRIVEN SIMULATIONS
300 : . . .
250 We present simulations using web traces to study the perfor-
100 200 mance of our algorithm under real traffic. In particular, we ap-
= v ES , proximate deterministic cache replacement schemes using our
50 ‘ 100 , . randomized algorithm, and compare their performances. Re-
50 , call that any cache replacement algorithm is characterized by a
T T T e s o o = = Utility function that determines the suitability of a page for evic-
N N tion. The main issues we wish to understand are the following.
n=5 n=2

» How good is the performance of the randomized algorithm
according to realistic metrics like hit rate and latency? It
is important to understand this because we have analyzed
performance using the frequency of eviction from desig-
nated percentile bins as a metric. This metric has a strong
positive correlation with realistic metrics but does not di-
rectly determine them.

190 » Our analysis in the previous sections assumes that docu-

ments retained in memory are not accessed between iter-

Fig. 4. Comparison of tTrle number of sar’gples required to achieve the same  gtions. Clearly, in practice, this assumption can only hold

probability of error with (") and without () memory. with a high probability at best. We show that this is indeed

the case and determine the probability that a sample re-

This term is not negligible, in general. However, it is negligible  tained in memory is accessed between iterations.

% 300

0 20 40 60
N N’

for positive 8, and Zr sufficiently negative, which holds » How long do the best eviction candidates stay in the cache?
for reasonably large values & x n. When the term is not If this time is very long (on average), then the randomized
negligible, the approximation fa¥/¢ in (6) can differ from the scheme would waste space on “dead” items that can only
true optimum by 1 or 2. be removed by a cache flush.

In Table I, we compare the results for the optimélobtained  Of the three items listed above, the first is clearly the most
by: 1) (6), denoted by/?; 2) numerically solving (3) fof and  important and the other two are of lesser interest. Accordingly,
then using the bound in (5), denoted b§"; and 3) by the MC  the bulk of the section is devoted to the first question and the
model, denoted by *. This table is to be read as follows. Forother two are addressed toward the end.
example, suppos® = 40 andn = 6, the optimalM equals:

1) M° = 13.8;2) M* = 12; and 3) M~ = 12. Note thatM” A Deterministic Replacement Algorithms
andM T are very close td/* unless the number of samples is . . S
We shall approximate the following two deterministic algo-

very close to the number of bins. éithms: 1) LRU and 2) GD-Hyb, which is a combination of the

So far we have derived an approximate closed-form expres-. . . . .
sion for A/*. Here we comment on the performance improvec—gD'Slze [4] and the Hybrid [19] algorithms. LRU is chosen be-

ment when a memory af/* is used. We have mentioned thaFause it is the standard cache replacement algorithm. GD-Hyb

introducing memory leads to an exponential improvement "ﬁpresents the class c_)f new algqr|thm_s, W.h'Ch base their docu-
ment replacement policy on multiple criteria (recentness of use,

performance. A direct way of verifying this is to compare the. .
number of samples needed to achieve a certain performaﬁ'(,zee of document, cost of fetching documents, and frequency of

with and without memory. In particular, fix an and, for each use). We briefly describe the details of the deterministic algo-

N > 0, compute the minimum probability of error obtain—rItth mentioned above.

able using the optimal valu&/* of memory. Then compute the 1) LRU: The util_ity function assigns to each document the
number of samples needed to achieve the same probability of Most recent time that the document was accessed.
error without memory. Denote by* and N the number of 2) Hybrid[19]: The ut|I|ty_funct|onf assigns eviction values
samples needed to obtain the same error probability with and 0 documents according to the formula
without memory, respectively. Fig. 4 plof$* versusN® for
four different values of, as the error probability varies. f= <L + %) Jalie /8

There is no closed-form expression for the curves in Fig. 4. B
However, one can obtain an upper bound@has follows. One
of the events that will lead to an error is when all tNe— A
fresh samples of all the consecutive+ 1 iterations will be bad
samples. ThuSP.or > (1 — n/100)(N =M+ or NO <
(N — M)-(M +1). In adifferent context, Shah and Prabhakar
[15] proved thatN® > (N — M — (M/2)) - (M + 1).

whereL is an estimate of the latency for connecting with
the corresponding serveR is an estimate of the band-
width between the proxy cache and the corresponding
server,F' is the number of times the document has been
requested since it entered the cache (frequency of fse),
is the size of the document, andd;, W, are weights.

. . , Hybrid evicts the document with the smallest valuef of
"Note that? is positive when the number of sampl&s— M are more than

the number of bing00/n, andZ+ becomes more negative the more and better
samples we have. 8In the simulations we use the same weights as in [19].
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3) GD-Size[4]: Whenever there is a request for a docu- TABLE Il
ment, the utility functionf adds the reciprocal of the TRACE WORKLOAD CHARACTERISTICS
document’s size to the currently minimum eviction valu Traces Total requests _ unique requests  one-timers 0
among all the documents in the cache, and assigns Virginia 54434 27395 20603 0.59
. Boston 104496 34178 22157 0.69
result to the document. Thus, the eviction value for do RTaNR daily 395205 167863 122066 0.49
ument: is given by NLANR weekly 2876105 1012831 658319 0.72

fi = min(f; : j in cachg + Si
i best utility function. Instead, we propose a low-cost, high-per-

Note that the quantitynin(f;: j in cachg is increasing formance, robust algorithm that treats all the different utility
in time and it is used to take into account the recentnefictions in a unified way.
of a document. Indeed, since whenever a document is ac-
cessed its eviction value is increased by the currently mip- \Web Traces
imum eviction value, the most recently used documents
tent to have larger eviction values. GD-Size evicts ttﬁ
document with the smallest value §f

4) GD-Hybuses the utility function of Hybrid in place of the
quantity1/S in the utility function of GD-Size. Thus, its
utility function is as follows:

The traces we use are taken from Virginia University, Boston

niversity, and National Laboratory for Applied Network Re-

search (NLANR). In particular, we have the following traces.

« The Virginia [18] trace consists of every URL request ap-
pearing on the Computer Science Department backbone
of Virginia University with a client inside the department,

f = min(f) + ', where naming any server in the world. The trace was recorded
) W, W for a 37 day period in September and October 1995. There
= <L + F) F2/S. are no latency data on that trace thus it can not be used to

) ) evaluate RGD-Hyb.

We shall refer to the randomized versions of LRU and . The Boston [5] trace consists of all HTTP requests origi-
GD-Hyb as RLRU and RGD-Hyb respectively. Note that the  ating from 32 workstations. It was collected in February
RGD-Hyb algorithm uses thmin( f) among the samples, and 1995 and contains latency data.
not the globainin( f) among all documents in the cache. « The NLANR [21] traces consist of two sets, one daily

So far we have described the utility functions of some de- 506 and a weekly trace. The daily trace was recorded
terministic replacement algorithms. Next, we comment on the 4 23¢q of September 2000, while the weekly trace was

implementation requirements of those schemes. o collected from the 22nd to the 28th of September 2000,
LRU can be implemented with a linked list that maintains g4t of them contain latency data.

the order in which the cached documents were accessed so fe\We only simulate requests with a known reply size. Table Il

This i he “monotonicity” property of i ility func- .
tions' ;hdel;ee\tgrtae docgmgr?t ig gcczfsiz t)i/t ?S ttr?eurtn(:}slt :Jecce rE:Hesents the workload characteristics of the traces, namely the
’ ' al number of requests, the number of unique requests, the

used. Thus, it should be inserted at the bottom of the list and tﬁ?

least recently used document always resides at the top of the .&mber of one-timers, and a popularity-paramateresuliing

However, most algorithms, including those that have the b gcg'm fitting t_he populgrit-ydifstribution of the documents of each
performance, lack the monotonicity property and they requiFéjlce to a Zipf-like distribution?

to search all documents to find which to evict. To reduce com-
putation overhead, they must use a priority queue to drop the
search cost t®(log K), whereK is the number of documents The performance criteria used are:

in the cache. In particular, Hybrid, GD-Size, and GD-Hyb must 1) the hit rate (HR), which is the fraction of client-requested

Results

use a priority queue. . URL's returned by the proxy cache;
The authors of [13] propose an algorithm called Lowest Rel- 2) the byte hit rate (BHR), which is the fraction of client
ative Value (LRV). This algorithm uses a utility function that is requested bytes returned by the proxy cache;

based on statistical parameters collected by the server. By sep3) the latency reduction (LR), which is the reduction of
arating the cached documents into different queues according the waiting time of the user from the time the request
to the number of times they are accessed, or their relative size, s made till the time the document is fetched to the ter-
and by taking into account within a queue only time locality, the minal (download latency), over the sum of all download
algorithm maintains the monotonicity property of LRudthin latencies.
a queue. LRV evicts the best among the documents residing ator each trace, HR, BHR, and LR are calculated for a cache
the head of these queues. Thus, the scheme can be implemegtesfinite size, that is a cache large enough to avoid any evic-
with a constant number of linked lists, and finds an eviction caflons. Then, they are calculated for a cache of size 0.5%, 5%,
didate in constant time. However, its performance is inferior to
algorithms like GD-Size [4]. Also, the cost of maintaining all 9NI__ANRtrace‘s consist of daily and weekly traces of many sites; the one we
these linked lists is still high. usedis the PA site. o
. . 19 et p; be the probability of requesting thith most popular document of a

.The best Cach.e replagement a!gonthm is in essence the fh&. In practice{p;} is known to be Zipf-like [2], i.e.p; < 1/i?, wheref is

with the best utility function. In this paper we do not seek thie popularity parameter of the trace.
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TABLE IV Virginia Trace
ABSOLUTE VALUES OF HR, BHR,AND LR FOR THE FOUR TRACES FOR go{ : :
AN INFINITE SizE CACHE
80t : e :
Traces HR BHR RL AT e
Virginia 42.40% 32.57% - P R S RIS
Boston 54.38% 36.05% 33.72% g 7
NLANR daily | 24.74% 16.00% 13.91% £
NLANR weekly | 31.13% 17.50% 23.28% § 80
% non-random(LRU)=solid
S random(N=30,M=5)=cross
— & 501 - +-random(N=8;M=2)=circl
100r | Virginia Trace :ngg$(N=3,M=1;=zliracn$ond
random{RR)=square
40t
90f
it g
8o 9 2 4 6 8 10 12 14 16 18 20

% relative cache size

701
Fig. 6. BHR comparison between LRU and RLRU.

60

% relative hit rate

non-random(LRU)=solid:
random(N=30,M=5)=cross :
random(N=8,M=2)=circle;- -t
random(N=3,M=1)=diaménd : :
random(RR)=square

Boston Trace

50 - 100

a0k S
5 951

L ! L L 1 L '

30O 2 4 [} 8 10 12 14 16 18 20
% relative cache size g g0+
. . £ :

Fig. 5. HR comparison between LRU and RLRU. 2 non-raridom(GD-Hyb)=solid
% random(N=30,M=5)=cross
o; 85k - X random(N=8 M=2)=circle -

10%, and 20% of the minimum size required to avoid any evic YA oo S =siarmond

tions. This size is 500 MB, 900 MB, 2 GB, and 20 GB, for ° =

Virginia, Boston, daily NLANR, and weekly NLANR traces, 80F o

respectively. Table IV shows the absolute values of HR, BHR 6

and LR for the four traces, for an infinite size cache. Notice tha
the HR of the NLNAR traces is lower than the HR of the other 5% % % v 12 15 6 85 20
traces, since NLANR caches are second-level cathes. % relative cache size
All the traces give similar results. Below, we show the
performance of RLRU using the Virginia trace, then preseﬁlg- 7
simulation results using the Boston trace and examine the
performance RGD-Hyb, and finally evaluate both RLRU angR, over the HR achieved by an infinite cache. As expected,
RGD-Hyb using the longer and more recent NLANR traces. the more the samples the better the approximation of GD-Hyb
We examine how well the randomized algorithm can approky RGD-Hyb. The performance curve of RGD-Hyb f§r= 8
imate LRU, using the Virginia trace. Fig. 5 presents the ratio ghdM =2is very close to the performance curve of GD_Hyb
the HR of LRU, RLRU, and RR over the HR achieved by an infor ;¥ = 30 and A/ = 5 the curves almost coincide. Note that
finite cache, using the Virginia trace. As expected, the more tfige Boston trace has low correlation among the requests and, as
samples the better the approximation of LRU by RLRU. Notg result, RR performs relatively well.
that NV = 8 andM = 2 are enough to make RLRU perform Fig. 8 presents the ratio of LR achieved by GD-Hyb,
almost as good as LRU, and evah= 3, M = 1 give good re- RGD-Hyb, and RR, over the LR achieved by an infinite cache.
sults. F|g 6 pl‘esents the ratio of the BHR of LRU, RLRU, anﬁ is again the case that values dfand M as low as 8 and 2’
RR, over the BHR achieved by an infinite cache. Note again th@spectiveb/’ are enough for RGD_Hyb to perform very close to
N = 8andM = 2 are enough to make RLRU perform aImost;D_Hyb_
as good as LRU. _ _ The traces we used so far are taken from universities, and they
Next, we examine how well the randomized algorithm cagre relatively small and old. Next, we present the results from
approximate GD-Hyb. We present results from the Boston tragge daily NLANR trace. Our goal is twofold: to evaluate the
Fig. 7 presents the ratio of the HR of GD-Hyb, RGD-Hyb, anghndomized algorithm under more recent and larger traces, and
11First-level caches exploit most of the temporal locality in web-request s@-xamine the performance of RLRU and RGD'Hyb in the same
guences. trace.

HR comparison between GD-Hyb and RGD-Hyb.
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Fig. 8. LR comparison between GD-Hyb and RGD-Hyb. Fig. 10. HR comparison between GD-Hyb and RGD-Hyb.
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Fig. 9. HR comparison between LRU and RLRU. Fig. 11. LR comparison between LRU and RLRU.

Figs. 9 and 10 present the ratio of HR of various schem@so terms in its utility functiort? Despite that fact, GD-Hyb
over the HR achieved by an infinite cache. The former figuggerforms better than LRU does with respect to RL, since LRU
compares LRU to RLRU, and the later GD-Hyb to RGD-Hyldoes not take into account any latency information.

In Fig. 9, RLRU nearly matches LRU fa¥ andM as smallas  The last trace from which we present results is the weekly
8 and 2, respectively. In Fig. 10 RGD-Hyb requires 30 samplBE ANR trace. This trace consists of roughly 3 million requests
and a memory of 5 to approximate very close GD-Hyb, baind thus approximates reality better. Cache size is now an issue.
its performance is superior to LRU. Indeed GD-Hyb achieves particular, 20% of the maximum size required to avoid any
around 100% of the infinite cache performance while LRWvictions corresponds to 4GB.

achieves below 90%. Note that this trace has a lot moreFigs. 13 and 14 present the ratio of HR of various schemes
correlation on its requests than the Boston trace since RR\&r the HR achieved by an infinite cache. The former figure
performance is 15% worse than that of GD-Hyb. compares LRU to RLRU, and the later GD-Hyb to RGD-Hyb.

Figs. 11 and 12 present the ratio of RL of various schem8&ince these figures are similar to Figs. 9 and 10, the performance
over the RL achieved by an infinite cache. The former figuref the randomized algorithm appears to be unaffected by the
compares LRU to RLRU, and the later GD-Hyb to RGD-Hyltrace size. Note that the difference in the performance of LRU
In Fig. 11 RLRU nearly matches LRU fa¥ andM as small and GD-Hyb is not significant for a relative cache size of 20%,
as 3 and 1, respectively. In Fig. 12 RGD-Hyb performs slightlyut for smaller cache sizes like 10% and 5% it is.
better than GD-Hyb. This somewhat unexpected resultis causegs_ o -

. L. . . ince all the deterministic cache replacement schemes rely on heuristics to
because GD-Hyb makes some suboptimal eviction dec's'onsp%ljict future requests, their eviction decision may be suboptimal. Thus, ran-
that particular trace that could be removed by fine-tuning thiemized approximations of these algorithms may occasionally perform better.
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. ) Fig. 15. BHR comparison between LRU and RLRU.
Fig. 13. HR comparison between LRU and RLRU.

of references. It achieves that by dynamically adapting to the

Figs. 15 and 16 present the ratio of BHR of various schemésgree of temporal correlation of the web request streams. GD*
over the BHR achieved by an infinite cache. The former figumrequires a priority queue to be efficiently implemented and thus
compares LRU to RLRU, and the later GD-Hyb to RGD-Hyhit is a good candidate to be approximated by our randomized
The randomized algorithm works well with respect to BHR alsalgorithm.

Note that RGD-Hyb performs slightly better than GD-Hyb does From the figures above, it is evident that the randomized ver-
for smaller cache sizes and, more importantly, LRU perfornssons of the schemes can perform competitively with very small
better than GD-Hyb does. This somewhat unexpected resulhismber of samples and memory. One would expect to require
caused because GD-Hyb makes relatively poor choices in tenrmgre samples and memory to get such good performance. How-
of BHR by design, since it has a strong bias against large sizeer, since all the online cache replacement schemes rely on
documents even when these documents are popular. This sulbmpristics to predict future requests, itis not necessary to exactly
timal performance of GD-Hyb is inherited from SIZE [18] andnimic their behavior in order to achieve high performance. In-
Hybrid [19] and could be removed by fine-tuning. All the threstead, it usually suffices to evict a document that it is within a
schemes trade in HR for BHR. reasonable distance from the least useful document.

Recently, an algorithm called GreedyDual* (GD*) has been There are two more issues to be addressed. First, we wish
proposed [7] that achieves superior lRd BHR when com- to estimate the probability that documents retained in memory
pared to other web cache replacement policies. This algorittare accessed between iterations. This event very much depends
is a generalization of GD-Size. GD* adjusts the relative wortbn the request patterns and is hard to analyze exactly. Instead,
of long-term popularity versus short-term temporal correlatiome use the simulations to estimate the probability of occurring.
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100r Weekly NLANR Trace - o ~ which the cached documents were accessed. High performance
' ‘ : algorithms like GD-Hyb require a priority queue to be im-
plemented efficiently. Thus, for every insertion, they perform
®r O(log K') operations, wherdy is the number of documents
_ _ iy SN N : in the cache. The size of a typical web cache today is tens

g 9O L o T of GBs. Since the average size of web documents is close

= : ; : : : to 10 KB, K is typically many millions [20]. These schemes

- T VPO U SIS OO perform an insertion operation at every access time, since

£ T ; f f L ©  even at hit times the utility value of the document changes

5 non-random(GD-Hyb)=solid . -

2 random(N=30 M=B)=cross - . and the document should be reinserted at a new position.

° 80 -random(N=8,M=2)=circle;--------- -2 . . . . ..
random(N=3M=1)=diamond ; The implementation savings due to the randomized eviction
random{fR)-square .+ scheme are the following. First, the randomized scheme saves

75 memory resources from not maintaining a data structure for
: : eviction purposes. However, the parameters used by the utility
70 - : s ; i : : ; i i function, like the frequency and recency of use, still need to be
0 2 4 6 8 10 12 14 16 18 20 . . .
o relative cache size stored in order to be available when the document is chosen as a
sample. Thus, for every document, there will be a corresponding
Fig. 16. BHR comparison between GD-Hyb and RGD-Hyb. object in RAM holding its utility parameters.

Second, the proposed randomized algorithm draws about

Thus, we change the eviction value of a document retained R fresh samples per eviction time, instead of performing

memory whenever it is accessed between iterations, which ges msertlor.\ and one deletion operanpn n a pr|or.|ty queue
teriorates its value as an eviction candidate. Also, we do not difz" 2ccess time. A sample can be easily obtained in constant
tain a new, potentially better, sample. Despite this, we find thiff’® by randomly choosing one of the objects that hold the
the performance is not degraded. The reason for this is that §ity parameters of the documents, or one of the entries of
policy for retaining samples in memory, deliberately chooses tHe¢ hash table US?d to access the dOCUWfrénTi'lus,.dr-awmg
best eviction candidates. Therefore, the probability that they da&dom samples is cheaper than updating a priority queue.
accessed is very small. In particular, it is less than®i@ our ~ Suppose the HR is around 50%. Then, there is one miss in
simulations. every two accesses. Assuming there is no correlation between
Second, we wish to verify that the randomized versions of tige size of a document and its popularity [3], every miss causes
schemes do not produce dead documents. Due to the sampliRgverage one eviction. Thus, priority queue updates take place
procedure, the number of sampling times that a document is fiwice as often as random sampling. For higher hit rates the CPU
chosen follows a geometric distribution with parameter roughavings increase further, for example, for hit rates close to 75%,
equal toV over the total number of documents in the cacheriority queue updates take place four times as often as random
This is around 1/100 in our simulations. Hence, the probabiligamplingt4
that the best ones are never chosen is zero. And the best ondsnally, the randomized algorithm does not need to recompute
are chosen once every 100 sampling times or so. the utility value of a cached document every time it is accessed.
It performs this operation only with the samples obtained at
eviction times if their utility value is not up to date. However,
VI. IMPLEMENTATION ISSUES as a consequence, whenever RGD-Hyb computes utility values,
In the previous sections, we established that a small numti>t pses the m‘”.i”?“m utility value among the sampl_es ins.tead
of samples, six fresh and two carried from one iteration to i the global minimum among all documents. The §|mulat|ons
next, is sufficient for the randomized algorithm to have goo'(rJ] Section V take this |'nto account and show that it causes no
performance. In this section, we discuss in detail the implemé‘ﬁe_rfo.rmance degradatloq. . : :
tation savings by using the randomized algorithm. This work focuses on implementation savings with re_spect
There are two main operations that a web cache hast?oCPU and memory resources. In some systems, the disk I/0O

i . .. resources are more important. Eviction schemes in such systems
support; access to arbitrary cached documents and eviction of. : . )
. ically aim to reduce the number of and the time taken by disk
relatively useless documents to make room for new documents.

reads/writes, and ignore parameters like the recency of use of a
State-of-the-art web caches access documents through a h gﬁ ind Ignore p S Y .
. . . ocument. Using the ideas presented in this paper it is possible
table [20], which has constant time lookups. Also, this hash tahle . o
(%take such parameters into account at a minimal overhead, and

is stored in .the RAM [20]’ W.h'Ch ensures that any.docum.e us increase the hit rate without trading off disk 1/O resources.
can be obtained in a single disk read. Thus, accessing arbitrary

cached documents is done very efficiently. This operation is or-
thogonal to the eviction scheme used. ) o . _ _ _
Different eviction schemes have different implementatiop, .- >2mpling is done without accessing the disk. It is only after the best
. . . . sample is identified that the corresponding document is accessed on the
requirements. As previously discussed, LRU can be implgsk in order to be evicted.

mented with a linked list that maintains the temporal order in14HRs up to 70% are quite common [7], [13].
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VII. CONCLUSION

a—
4

a5

-

Motivated by the need to reduce the complexity of date
structures required by good document replacement schem + &
proposed in the literature, we have introduced a randomize
algorithm that requires no data structure. This saves both tt
memory used up by the data structure and the processing pow
needed to update it. M-l e -t nn et H-U 0 BET BN DA

Being randomized, the performance of our algorithm depenc.. == e 2 wel S—E
crucially on the quality of the samples it obtains. We obser |

L. . . \ﬁeg. 17. Possible cases of buffer occupancies for Lemma 1.
that retaining the best unused samples from one iteration to

the next improves the quality of the samples and leads to ?BOA — BOy — 1. Therefore, the only cases to consider are
dramatic improvement in performance. An analysis of the 8he ones shown in Fig. 17 '

gorithm_ provides_insights about its features. and_ a formula for , , inspection of the four cases shows that for each common
determining the right parameters for approximating the perfoa(?rivalathe values o (a) are given by 1) = 1,2)d" = —1
mance of any deterministic replacement scheme as closely;as, _ , .4 4)7" — 1. Thus, under Cases 1 13 A 0,

desired. Trace-driven simulations show that a small number d the only troublesome case is 2. Note, however, that every
ifstance of Case 2 srecededdy at least one instance of Case

IS S““'C'ef‘t for a good performanc_e. . 1. Therefore, the negative values of Case 2 are offset by the
We believe that the idea of using memory to improve tl&?

) g : ) . - Jositive values of Case 1 and it follows that'(¢) > 0 for all
quality of samples in iterative randomized algorithms is

a—
L =
=
o
o

[ ]
general interest, possibly applicable in other situations.
Proof of Lemma 2
APPENDIX We need to show
1
Proof of Lemma 1 tlim —(D(t, A(M — 1)) —2D(t, A\(M))
Convexity follows from showing that the second derivative of +D(t, \(M 4+1))) >0 (8)

the cumulative number of drops is nonnegative: o _ _
by considering three systems with the same buffer sizes and
A D(t, M —1) — 2D(t, M) + D(t, M +1) > 0, arrival rat.es that drop I_inearly with/.
forall> 0. (7 In particular, the arrival processesy; 1, Aps, and Apr41
orallz > 0. (7) to these systems are binomially distributed with average rates

Essentially, this reduces to comparing the cumulative number)bch 1) = MM +1)+(2n/100), (M) )‘(M+1)+”/100’
. andA(M + 1) = (N — M — 1)n/100 respectively. Note that
drops up to time, D(¢, M — 1), D(¢, M), andD(¢, M + 1), . :
’ . the processed ;_; and Ay, stochastically dominate Apy 1.
from systems with buffer sized/ — 1, M, andM + 1, re- : : .
Thus, we can use a coupling argument [8] to categorize arrivals

spectively. The three systems have identical arrival processes
as follows.

and start with empty buffers at time 0. In the proof, we in- )
duce on each arrival, since these are common to all three sysl) CommonAn arrival occurs at all three systems. Common
arrivals are Binomially distributed with average raié—

tems, and hence this is equivalent to inducing over time. De-
M — 1)n/100.

fine d’(«a) to be the instantaneous difference in drops caused by . : )
2) Single An arrival occurs only at the system with buffer

the common arrivak which occurs at time,. ThenD”(t) = ] : - -
S, d"(a) size M — 1. Single arrivals are Bernoulli(n/100).
a: t, <t )

7 3) Double An arrival occurs at the two systems with
buffer sizesM — 1 and M and there is no arrival at the

D// (t)

Todeterminel”’ (), consider the situation depicted in Fig. 1
The three buffers are placed next to each other, in increasing X i :
order of size. The shaded boxes in the figure represent occu-  SyStem with buffer sizé/ + 1. Double arrivals are also
pied buffer spaces and the white boxes represent empty buffer Bermnoulli(n/100). _ ' _
spaces. If all three buffers have empty spaces, then no drops wilPefine d”(a) to be the instantaneous difference in
occur. Thus, it suffices to consider cases where at least onélffps caused by arrival which occurs at timet,. Then,
the buffers is full. D(t, MM — 1)) — 2D(t, (M) + D(t, A(M + 1)) =

We claim that there are only four possible cases to consider: 1, < @ (a). If all three buffers have empty spaces, then no
where atleast one buffer is full, and these are depicted in Fig. #/0Ps will occur. Thus, it suffices to consider cases where at
The following general observation, whose proof is inductivééast one of the buffers is full.
easily verifies the claim. Consider any two systethand B~ Let BO(M — 1), BO(M), andBO(M + 1) be the buffer
with buffer sizesB4 andBy = B + 1, respectively. Suppose 0ccupancy of a buffer with average arrival raté/ —1), A(M),
thatA andB have identical arrival processes and there is exacg;d)\(M + 1), respectively. Note that for any timeBO(M —
one departure from each nonempty system in each time sfbt= BO(M) > BO(M +1). There are three cases to consider
Then the buffer occupancies of systetnand B, denoted by 1sp processy stochastically dominates iff P(Y < z) < P(X < ) for
BO, andBOg respectively, will always satisfipO 4, = BOg  all «.
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-1 A AEd+] AiBT=1) A A B+l Ri-10 A ACBE-1 Assertion 1implies
'Il ¥ ¥ ¥ ¥ ¥ r ¥ +

(SAND) = (CAl) + (DA1) + (SD).
Assertion 2 implies

(DAND) + (DA1) = (CA2) + (DD).

I
I
| ' ' Using the above two equations and Assertion 3, we obtain
| (CA1) + (DAL) + (SA1) > (CA2) 9

- e P and thus the negative effect of common arrivals in Case 2 is can-
S B celled out by the positive effect of common, single, and double

arrivals in Case 1. [ |
Fig. 18. Possible cases when the buffer sizes are the same.

Proof of Lemma 3

as shown in Fig. 18. Lef be the common buffer size. Case 1is We need to show

characterized bpO(M —1)—BO(M) > 0,BOM-1)=C, .. 1

Case 2 b)BO(M)—(BO(J\/}Jrl) >( 0,)BO(M) =( C, arzd Case A% t (D(t, M =1, \(M — 1)) = 2D(t, M, A(M)

3byBOM +1) =C. +D#, M +1, \(M+1))) >0 (10)
In Case 1¢"(a) = 1forcommon, single, and double arrivals

In Case 2¢”(a) equals 1 for single arrivals, andl for double .

and common arrivals. In Case®/(«) equals 1 for single, 0 and and average ratéegM_— 1), A(M) andA(M +1), respectively.

common, and-1 for double arrivals. Since single and doubld-€t D(M, A(M)) = D(M) = lim; o0 D(t, M, A(M))/%.

arrivals are identically distributed, as— oo their &’s cancel ~ Lemma 2 implies

out in Cases 2 and 3_. Thu_s, it sufficgs to show that the negatilﬁM 1, MM — 1)) — 2D(M — 1, A(M))

effect of common arrivals in Case 2 is cancelled out by the pos-

itive effect of common, single, and double arrivals in Case 1. +D(M —1, (M +1)) 2 0. (11)
We say a single departure takes plac&®(M — 1) = 1, We need to show

BO(M) = 0, BO(M + 1) = 0, and a there is a departure.

We say a double departure takes placB®(M — 1) = 1, DM =1, M(M — 1)) — 2D(M, A\(M))

BO(M) =1, BO(M + 1) =0, and there is a departure. +D(M+1, \(M+1))>20. (12)

Assertion 1: BO(M — 1) — BO(M) changes at most by one , )
per arrival or departuré30O(M — 1) — BO(M ) is increased by  BY 2dding and subtractingD(M — 1, A(M)) and D(M —

one, if and only if a single arrival is not droppeBO(M — L, )‘_(M +1)) in (12) and using (11), it is easy to see that it
1) — BO(M) is decreased by one, if and only if a common or guffices to show
double arrival com(es i)n Case( 1, or t)here is a single departureZ(D(M — 1, A(M)) — D(M, \(M)))

Assertion 2: BO(M)— BO(M +1) changes at most by one
per arrival or departureBO(M) — BO(M + 1) is increased = DIM =1, MM +1)) = DM +1, (M + 1)).
by one, if and only a double arrival is not dropped, or a double By adding and subtractinB(M, A(M+1)) in the right-hand
arrival comes in Case BO(M)— BO(M +1) is decreased by side of this equation, it is easy to see that it suffices to show
one, if and only if a common arrival comes in Case 2, or there
is a double departure. D(M =1, \(M)) = D(M, X\(M))

For an arrival or a departure eventd, let > D(M — 1, A(M + 1)) — D(M, \(M + 1)) (13)
(4) 2 lim,_. #(A[0, t])/t be the number of times the 4.4
event takes place in the intenjal ¢] divided byt ast — co.

Using this notation, let

by considering three systems of buffer sidés-1, M andM +1

D(M — 1, \(M +1)) — D(M, \(M + 1))

($D) 2 (single departufe > D(M, (M +1)) = D(M + 1, \(M +1)). (14)

(DD) 2 (double departune Lemma 1 implies that (14) holds. To see why (13) holds, cat-
(SAND) 2 (single arrival not dropped egc_)rize arrivals to basic arrivals with ra)t(a]\/{ +1)and excess
(DAND) A {double arrival not droppéd arrivals with rate\(l_\/[) - )\(_M+ 1), and notice tha_t there is no
A Lo way for excess arrivals to increas¥ M, A\(M)), without also
(SAL) = (single arrival in Case)1 . .
A o increasingD(M — 1, A(M)). ]
(DA1) = (double arrival in Case)l
(CAL) % (common arrival in Case)1 ACKNOWLEDGMENT
(CA2) = (common arrival in Case)2

The authors thank D. Engler for conversations about cache
Assertion 3:(SD) < (DD), (SAND) = (DAND), replacementschemes and A. J. Ganesh for helpful discussions
(SA1) = (DA1). regarding the determination of the optimal valueléf
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