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Abstract

A number of web cache-related algorithms, such as replacement and prefetching policies, rely on specific charac-

teristics present in the sequence of requests for efficient performance. Further, there is an increasing need to synthet-

ically generate long traces of web requests for studying the performance of algorithms and systems related to the web.

These reasons motivate us to obtain a simple and accurate model of web request traces.

Our Markovian model precisely captures the degrees to which temporal correlations and document popularity

influence web trace requests. We describe a mathematical procedure to extract the model parameters from real traces

and generate synthetic traces using these parameters. This procedure is verified by standard statistical analysis. We also

validate the model by comparing the hit ratios for real traces and their synthetic counterparts under various caching

algorithms.

As an important by-product, the model provides guidelines for designing efficient replacement algorithms. We

obtain optimal algorithms given the parameters of the model. We also introduce a spectrum of practicable, high-

performance algorithms that adapt to the degree of temporal correlation present in the request sequence, and discuss

related implementation concerns.
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1. Introduction

The use of web caches for reducing network

traffic and download latency has rendered them an

important component of the Internet infrastruc-
ture. Algorithms devised for web caches need to

take advantage of specific characteristics present in

the request sequence for efficient performance. For

example, cache replacement policies exploit the
ed.
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temporal locality between successive requests

during eviction times. 1 Prefetching policies take

advantage of correlations present in inter-docu-

ment requests (see [23], for example). Since algo-

rithm design relies on the features inherent in

HTTP request sequences, it is important to obtain
a simple and accurate model of such sequences.

This allows one to understand the impact of var-

ious characteristics like temporal correlations and

document popularity on the performance of the

cache, and guides the design of better algorithms. 2

Broadly, there are three key features of web

traffic that we wish to model. They are: (i) tem-

poral correlations––this captures the likelihood of
requesting a document in the near future, given

that it has been currently requested, (ii) long-term

document popularity––this captures the probabil-

ity that a document is likely to be requested

relative to other documents, and (iii) spatial (inter-

document) correlations––this models the chance

that document j will be requested next, given that

document i has been requested now. In this work
we focus on the relationship between temporal

correlations and popularity as it relates to

designing cache replacement schemes, and only

briefly discuss spatial correlations. For the same

reason, we also initially ignore other attributes of a

document, such as its size.

Our approach simultaneously models both

temporal correlations and document popularity.
Temporal correlations are captured using a Mar-

kov model for the request sequence. We do not

assume specific parameters for the Markov chain,

instead we infer them from the real traces we wish

to model. Similarly, we also infer the distribution
1 Temporal locality was first introduced in the context of

program behavior. Despite extensive studies, it is usually

loosely defined. For now, we adopt the following definition

found in many studies, e.g. [24]: a sequence of requests exhibits

temporal locality if an object just referenced has high proba-

bility of being referenced in the near future. In Section 2.2 we

make this precise.
2 Temporal correlations and variable document popularities

are known to be the two causes of locality, see, for example [16].

A sequence of requests exhibits temporal correlation if the

document requested at time n depends on the documents

requested at previous times. In Section 2.2 we elaborate more

on these notions and show how they are related.
of the long-term popularity from the traces. Fur-

ther, our approach can easily model document

popularities that change slowly over time, a phe-

nomenon recently observed in traces [21].

Observations about the characteristics of web

trace sequences have influenced the design of
document replacement schemes. For example, the

least recently used (LRU) algorithm is known to

exploit temporal correlations present in the request

sequence [31]. On the other hand, the least fre-

quently used (LFU) algorithm exploits long-term

document popularity to achieve high hit rates.

Indeed, it is easy to see that when request se-

quences are independent and identically distrib-
uted, LFU achieves the highest hit rates 3 [12].

Real web request sequences, however, are

influenced both by temporal correlations and

document popularity. This observation and clever

heuristics have led to the proposal of replacement

algorithms which combine features of both LRU

and LFU [2,8,10,17,18,20]. Our model adds to this

body of work in three ways: (a) it allows us to
quantify the degree to which real traces are influ-

enced by temporal correlations and document

popularity, (b) it allows us to explore extreme

cases by considering traces with different mixtures

of temporal correlation and document popularity,

and (c) this, in turn, points to a way of designing

algorithms that trade-off correlations and popu-

larity.
Traditionally, the performance of algorithms is

studied using competitive analysis. Another ap-

proach is to probabilistically analyze the behavior

of algorithms under realistic input. In the case of

replacement algorithms, due to the difficulty in

taking into account temporal correlations in an

analytically tractable manner, these studies are

usually done under the assumption of an inde-
pendence reference model (e.g. [6,32]). Our model

allows to analytically study the performance of

eviction schemes under request sequences that ex-

hibit correlations.

Another contribution of our work is for

designing good workload generation tools. An
3 This result holds under the assumption that all documents

are of the same size.
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important challenge for these tools is to capture

temporal correlations present in web request tra-

ces. This is commonly done using the LRU stack

model (LRUSM) [30]. One issue with the LRUSM

is that each document in the generated sequence of

requests has an equal long-term probability of
being requested [27], which is incompatible with

the Zipfian long-term popularity observed in real

traces. To solve this problem, researchers have to

use various heuristics (see, for example [4,7,11]).

Our model provides a rigorous and simple way to

incorporate any long-term popularity distribution

for the documents. Further, the LRUSM works

with stack distances, whereas our model works
directly with document requests, and hence it is a

more natural tool for generating request se-

quences.

It has been observed that in addition to tem-

poral correlation and long-term popularity, other

attributes of a document, such as its size and the

cost of fetching it from the origin-server, play an

important role in the performance of web
replacement schemes. Since the focus of this work

is on the trade-off between temporal correlations

and popularity, we initially ignore these other

attributes. Later, we comment on how to incor-

porate these parameters in designing good evic-

tion schemes. As a final comment, we limit our

discussion to static documents and do not con-

sider documents that change dynamically over
time.

The paper is organized as follows. Section 2

introduces the model whose parameters are ex-

tracted from real traces. We then generate syn-

thetic traces and verify that they exhibit the desired

statistical properties. Further, we validate the

model by comparing the hit rates for real traces

and their synthetic counterparts under various
caching algorithms. Based on the trace model, in

Section 3 we formulate the problem of obtaining

an optimal algorithm with respect to hit rate as a

Markov decision process, and obtain an online

replacement algorithm that is optimal conditioned

on the state of the Markov process. This algo-

rithm, however, relies on knowledge of trace

characteristics and it is hard to use in practice.
Thus, we introduce c-LRU, a class of practicable

replacement policies parameterized by c with LRU
and LFU obtained for extreme values of c, and
study its performance. Finally, we address imple-

mentation issues related to c-LRU, like taking into

account its data structure requirement and the

variability in document sizes.

1.1. Related work

There have been many attempts to model a se-

quence of web requests. The simplest approach is

to assume an independent reference model, i.e, to

assume that the next request is independent of all

previous requests (e.g. [6,32]). Web traces are

known to exhibit strong temporal locality, that is,
the probability of requesting a document in the

near future is high if this document has been re-

cently requested. This property is not incompatible

with the independent reference model. For exam-

ple, the authors in [6] showed that under the

independent reference model, the Zipfian nature of

the long-term popularity of documents creates

temporal locality similar to that observed in real
traces.

A more careful study of real traces revealed that

long-term popularity alone does not suffice to fully

capture the temporal locality exhibited by real

traces, the request sequence needs to be correlated

in time (see [16], or [18]). In other words, temporal

locality emerges from two distinct phenomena: the

Zipfian popularity of documents and the temporal
correlation between requests.

Hence, there is a need to characterize and

quantify the degree of correlation in a sequence of

web requests, and to devise a correlated reference

model that can be used to synthetically generate

traces.

The need for a correlated reference model made

researchers consider the well known LRU stack
model (LRUSM) [30]. This model is obtained by

maintaining the documents in a stack in increasing

order of time since the last reference to the docu-

ment. The position in which a document is found

upon a request is termed the stack distance of that

reference. The distribution of stack distances is an

indicator of temporal locality because the stack

distance measures the number of (unique) inter-
vening references between references to the same

document.
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However, the LRUSM requires that each doc-

ument in the generated sequence of requests has an

equal long-term probability of being requested

[27], which is incompatible with the Zipfian long-

term popularity observed in web traces. In essence,

the LRUSM fails to model varying document
popularities. To deal with this problem, research-

ers have used various heuristics when using the

LRUSM to synthetically generate sequences of

web requests. Three such heuristics are described

in [4,7,11]. The idea of the first heuristic is to move

to the top of the stack a document that sits close to

the position of the requested document with some

appropriate probability, rather than always mov-
ing the requested document. The idea behind the

other two heuristics is to factor out the effects of

non-uniform popularity by normalizing the stack

distance. The above ideas work well in practice

when generating synthetic traces. However, there

is no theoretical proof that the LRUSM together

with the proposed heuristics yields request se-

quences with the desired statistical properties.
Further, since these approaches are based on the

LRUSM, they don�t clearly distinguish how pop-

ularity and correlation affect locality.

A simpler task from obtaining a model to syn-

thesize web request sequences is that of charac-

terizing the degree of correlation in a given trace.

Many studies have used the stack distance to

capture and characterize temporal locality, and
then correlation (see, for example [1,11,21]). These

early studies succeed in characterizing locality but

are less successful with correlation. The reason is

that, as already mentioned, the LRUSM cannot

distinguish the causes of locality, and hence cor-

relation, directly. (This is also noted in a more

recent work of the authors of one of the above

papers [14].)
To this end, researchers attempted to charac-

terize correlation using the distribution of the in-

ter-reference distance [14,16]. 4 However, while
4 Note that the stack distance measures the number of unique

intervening references between references to the same docu-

ment, while the inter-reference distance measures the total

number of intervening references between references to the

same document.
inter-reference distance is a good measure of

locality, it is not a good metric for correlation.

Indeed, as also observed by the authors of the

papers above, the distribution of inter-reference

distances does not differ sizeably between an ori-

ginal trace and a randomly permuted version of it,
because it is heavily affected by the popularity of

documents. To sidestep this issue, the authors in

[16] worked with the distribution of the inter-ref-

erence distance of equally popular documents, and

the authors in [14] with the coefficient of variation

obtained from the inter-reference distance of every

unique reference of a trace. Both works devise a

metric that expresses the degree of correlation in a
trace with a single number. However, these metrics

cannot answer questions of the type ‘‘how fast

temporal correlations die?’’, and are based on a

measure, the inter-reference distance, that is

somewhat inappropriate.

In our work we take a new approach towards

the problem of modeling correlations in web races.

Our goal is to devise a mathematically rigorous
model that can be used to synthetically generate

traces of arbitrary correlation and popularity. At

the same time, we want to use the model to char-

acterize and quantify temporal correlations in a

precise manner and at various levels of detail.

Essential elements of our approach is a Markov

model that captures correlations, and the estima-

tion from real traces of the probability that the nth
request in a trace is the same with the ðn� iÞth
request. As it is shown in Sections 2.2 and 2.3, our

model can generate traces of arbitrary correlation

and popularity using a mathematically rigorous

procedure, while its parameters characterize

locality, correlation, and popularity at various

levels of detail and in a precise manner.
2. The model

In this section we introduce our model for

capturing long-term document popularity and

short-term temporal correlation in web request

sequences.

Index all documents in decreasing order of
popularity. Let pi be the probability of requesting

the ith most popular document. We shall call the
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probability distribution fpig the distribution of the

long-term popularity of the documents. In prac-

tice, fpig is known to be Zipf-like [6]; i.e., P ½Yn ¼ i�
¼ pi / 1=ih, 0 < h < 1.

Let Xn be the document requested at time nP 1

(time is slotted, one request per slot), and Yn,
nP 1, be a sequence of random variables that are

independent and identically distributed according

to fpig. We propose the following model for web

requests for n > h:

Xn ¼

Xn�1 with probability a1;
Xn�2 w:p: a2;

..

.

Xn�h w:p: ah;
Yn w:p: b;

8>>>>><
>>>>>:

where

bþ
Xh
i¼1

ai ¼ 1: ð1Þ

In the model we keep a history of the hmost recent

requests to capture short-term (temporal) corre-
lations. Yn injects documents that may or may not

have been recently requested and captures long-

term (document) popularity. The probability that

document i is going to be requested at time n, given
that it was not requested in the last h requests is

simply bpi. The probability that document i is

going to be requested at time n, given that it was

requested only once in the last h requests at time
n� j (16 j6 h), equals aj þ bpi. In general,

P ðXn ¼ i jXn�1; . . . ;Xn�hÞ

¼ bpi þ
Xh
j¼1

aj1ðXn�j¼iÞ: ð2Þ

For mathematical convenience, another way to

interpret the model is the following. At each time

slot, toss an hþ 1-sided, biased coin to decide the
value of Xn. Let Tn be a random variable indicating

the outcome of the toss at time n > h. Then,

P ðTn ¼ jÞ ¼ aj for 16 j6 h and P ðTn ¼ hþ 1Þ ¼ b.
Using this notation, the model is described by the

following equation:

Xn ¼
Xh
j¼1

Xn�j1ðTn¼jÞ þ Yn1ðTn¼hþ1Þ: ð3Þ
The parameters of the model are the history win-

dow h, the ai�s, the b, and the pi�s. Let Xn ¼
ðXn;Xn�1; . . . ;Xn�hþ1Þ and �i ¼ ði1; i2; . . . ; ihÞ be a

vector of h requested documents. Since

PðXnþ1 ¼ �ijXn;Xn�1; . . .Þ ¼ PðXnþ1 ¼ �ijXnÞ, Xn is a
Markov chain or equivalent Xn is an hth-order
Markov chain. The Xn, also Xn, has a unique sta-

tionary distribution since its state space is finite

and it is irreducible and aperiodic (for b > 0).

In stationarity, Xn is distributed like Yn. To see

this, use Eq. (3) to get

PðXn ¼ iÞ ¼
Xh
j¼1

aj � P ðXn�j ¼ iÞ þ b � P ðYn ¼ iÞ:

ð4Þ
Now, in stationarity, Xn equals in distribution

some random variable X . Therefore, P ðXn ¼ iÞ ¼
PðXn�j ¼ iÞ ¼ PðX ¼ iÞ for all j ¼ 1; . . . ; h, and we

get

PðX ¼ iÞ � 1

 
�
Xh
j¼1

aj

!
¼ b � P ðY1 ¼ iÞ

for all i. Since 1�
Ph

j¼1 aj ¼ b, X has the same

distribution as Y1 (recall that Yn is i.i.d.).

2.1. Inferring model parameters

In this section we present techniques for infer-

ring the parameters of the model, and use these

techniques to obtain the parameters from real

traces.

We infer fpig from its empirical distribution; i.e.

set pi to equal the sample frequency of document i
in the trace.

Inferring the ai�s and b is more involved. Let R
be the number of requests in the trace. Suppose,

for now, that a suitable value of the history

parameter, h, has been chosen. (We present a

procedure for determining h at the end of this

section.) Let Ci, 16 i6 h be a counter that counts

how many times the nth request, h < n6R, is the
same with the ðn� iÞth request. Denote by ci,
16 i6 h, the ratio Ci=ðR� hÞ. In other words

ci ¼
PR

n¼hþ1 1ðXn¼Xn�iÞ

R� h
for 16 i6 h:



5 In theory, c0j ¼
P

p2j for all i. Since there is some positive

correlation between consecutive requests of the original trace,

ci P
P

p2j for some i. Hence, since the ci �s are decreasing, there
is an index ih, such that cih <

P
p2j while ci P

P
p2j for i < ih.

This index is the overestimated history that we use.
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If the piece of real trace was indeed generated by

the proposed Markov chain model, then for

16 i6 h,

ci � P ðXn ¼ Xn�iÞ

¼
Xh
j¼1

PðXn�i ¼ Xn�j; Tn ¼ jÞ

þ P ðXn�i ¼ Yn; Tn ¼ hþ 1Þ

¼
Xh
j¼1

PðXn�i ¼ Xn�jÞP ðTn ¼ jÞ

þ P ðXn�i ¼ YnÞP ðTn ¼ hþ 1Þ

¼ ai þ
Xh

j¼1;j 6¼i

cji�jjaj þ bP ðXn�i ¼ YnÞ:

Using the independence of Yn and Xn�i, and the

fact that Xn�i is distributed like Yn in stationarity,
P ðYn ¼ Xn�iÞ ¼

P
j P ðYn ¼ j jXn�i ¼ jÞP ðXn�i ¼ jÞ ¼P

j p
2
j for all 16 i6 h. Hence,

ci ¼ ai þ
Xh

j¼1;j 6¼i

cji�jjaj þ b
X
j:pj 6¼0

p2j : ð5Þ

Eq. (5), for 16 i6 h, together with Eq. (1) form a

linear system of hþ 1 equations with hþ 1 un-

knowns that can be solved to calculate ai�s and b.
Use Eq. (1) to substitute b with 1�

Ph
i¼1 ai in Eq.

(5). Then, the ai�s are computed by solving the

linear system A � a ¼ B where a ¼ ðaiÞ is a 1� h
vector, B ¼ ðci �

P
j p

2
j Þ is a 1� h vector, and A is

an h� h matrix given by the following expression:

A ¼

1�
P

p2j c1 �
P

p2j c2 �
P

p2j . . . ch�1 �
P

p2j
c1 �

P
p2j 1�

P
p2j c1 �

P
p2j . . . ch�2 �

P
p2j

c2 �
P

p2j c1 �
P

p2j 1�
P

p2j . . . ch�3 �
P

p2j
..
. . .

. ..
.

ch�1 �
P

p2j ch�2 �
P

p2j ch�3 �
P

p2j . . . 1�
P

p2j

0
BBBBBB@

1
CCCCCCA
:

Once the ai�s are determined, b is computed from

Eq. (1).

What remains is a procedure for determining the

proper history h. In theory, overestimating h, which
results in a larger matrix, would still find the correct
ai�s and history (ai ¼ 0 for all i > h). However, in

practice, larger history leads to more rounding and

statistical errors, hence to small negative ai�s in the

solution of the linear system. A solution to this is to

start from an overestimated history, and lower its

value until all the ai�s are positive.
This procedure terminates faster, the closer the

overestimated history is to the actual history. To

determine an overestimated history we execute the

following steps: (i) we start with a large value of h,
traverse the trace, and compute the ci�s, (ii) ran-

domly permute the trace to cancel any short-term
correlations, traverse the permuted trace, and

compute the corresponding normalized counters,

denoted by ci�s, and (iii) output as an overesti-

mated history the number of ci�s that are larger

than the average value of the ci�s.
5

2.2. Locality, correlation, and popularity

A word on the connection between temporal

locality, temporal correlation, and document

popularity is in order. We start with stating the

usual definition for temporal locality: a sequence

of requests is said to exhibit temporal locality if

recently requested documents have high probabil-

ity of being requested in the near future [24]. This

definition is intuitive but can be interpreted in
many ways. To avoid confusion, we will use as a

metric of temporal locality the distribution of in-

ter-reference distance. In particular, if Xn is the

document requested at time n, define diðkÞ as fol-

lows:

diðkÞ ¼ PðXnþk ¼ i;Xnþj 6¼ i

for j ¼ 1; . . . ; k � 1 jXn ¼ iÞ;

that is, diðkÞ is the probability that document i is
going to be requested again after k requests, given

that it has just been requested. Also, denote by

dðkÞ the average over all documents, i.e.,

dðkÞ ¼
X
i

pidiðkÞ:

Notice that previous studies have used dðkÞ to

measure the degree of locality in traces, e.g. [6,21],

but only under the (unrealistic) assumption of an

independent reference model.
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Fig. 1. ai�s for the original trace (h ¼ 1000, b ¼ 0:708).
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A sequence of requests with no locality is

created by the independent reference model

when all documents have the same probability of

being requested. In this case, if N is the total

number of documents, it is easy to see that diðkÞ ¼
dðkÞ ¼ ð1=NÞ 1� 1=Nð Þk�1

. For large N , this is
roughly equal to 1=N and does not depend

on k.
The independent reference model together with

a skewed distribution yields some degree of local-

ity. This was shown in [6] for the case of a Zipfian

distribution. In particular. it was shown that

dðkÞ � 1=ðk lnNÞ. Since dðkÞ decreases linearly

with the distance k, documents have on average
larger probability of being requested sooner than

later. (Notice that under the independent reference

model, diðkÞ is simply equal to P (Xnþk ¼ i;Xnþj 6¼ i
for j ¼ 1; . . . ; k � 1).)

In most real traces including web request

streams, temporal locality emerges from two dis-

tinct phenomena: the popularity of documents and

the (temporal) correlation between requests. Be-
fore we proceed to show how correlations induce

locality, let us rigorously define the concept of

temporal correlation: a sequence of requests is said

to exhibit temporal correlation if the probability of

requesting a particular document at time n de-

pends on the documents requested at previous

times. Usually, traces exhibit short-term, positive

temporal correlation, that is, the probability of
requesting a document in the future given that the

document is recently requested, is higher than it

would be if the document was not recently re-

quested. This is equivalent to stating that P ðXn ¼
k jXn�i ¼ kÞ > P ðXn ¼ k jXn�i 6¼ kÞ for ‘‘small’’ i. 6

Notice that if requests are independent, the above

probabilities are equal and there is no temporal

correlation in the trace.
Our correlated reference model clearly distin-

guishes the two causes of locality. To see this,

consider Eq. (4). Document i is requested next,

either because it was recently requested, i.e. due to

correlation, or because it is popular. The effect of

correlation in locality is expressed by the ai�s, while
6 In the context of our model, a ‘‘small’’ i is one that is less

than or equal to the history h.
the effect of popularity is expressed by b. The sum
of the ai�s, or equivalently, 1� b, is a simple
quantity that characterizes the degree of correla-

tion in the trace. The values of the ai�s are a more

detailed measure of correlation: they describe how

correlation dies with distance (see Fig. 1).

To precisely show how correlation affects

locality under our correlated reference model it is

useful to compute dðkÞ. Without loss of generality,

assume that correlations exist only for a distance
of one and hence h ¼ 1. Then, dið1Þ ¼ P ðXnþ1 ¼
i jXn ¼ iÞ ¼ bpi þ a1, and dð1Þ ¼

P
i piðbpi þ a1Þ ¼

b
P

i p
2
i þ a1. From this expression it is clear that

locality is caused by popularity, the first term, and

by correlation, the second term. Further, notice

that
P

i p
2
i minimized for a uniform distribution,

and maximized for the deterministic case, i.e. when

pi ¼ 1 for a specific i and zero otherwise. Hence,
the more skewed the popularity distribution, the

larger its effect to locality.

It is interesting to compare dð1Þ with dð1Þ0, the
corresponding probability under the independent

reference model. First, note that dðkÞ0 ¼
P

i pið1�
piÞk�1

. Now, since dð1Þ0 ¼
P

i p
2
i and bpi þ a1 > pi,

it follows that dð1Þ > dð1Þ0 which means that, as

expected, correlation increases locality.
One can compute diðkÞ and dðkÞ for larger values

of k in a similar fashion. For example, dið2Þ ¼
PðXnþ2 ¼ i;Xnþ1 6¼ i jXn ¼ iÞ ¼ bpið1 � bpi � a1Þ ¼
b2pið1� piÞ. Hence, dð2Þ ¼

P
i pib

2pið1� piÞ ¼ b2�



Table 1

b values for various histories

h b b̂

500 0.789 0.787

1000 0.708 0.707

2000 0.616 0.617
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Fig. 2. âi�s for the synthetic counterpart of the original trace

(h ¼ 1000, b̂ ¼ 0:707).
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dð2Þ0, where dð2Þ0 is the corresponding probability

under the independent reference model.

2.3. Generating synthetic traces

The model can be used to generate synthetic
traces of arbitrary popularity and correlation. We

show this by inferring the parameters h, ai, b and pi
from a real trace, and using the model to generate

a synthetic trace exhibiting the same statistical

characteristics. We experiment with daily proxy

cache traces from the National Laboratory for

Applied Network Research (NLANR) [22] re-

corded from September 1999 to July 2003. The
length of the traces varies from 300000 to 700000

requests. The traces are from three different sites,

the PA, the SD and the RTF site. 7

Using the procedure described above, the

proper history for most of the traces is computed

to be around 5000. We also experiment with

shorter histories, namely 500, 1000, 2000 and 3000.

In the rest of this section we present results from
one trace only, since there are no differences in the

results obtained from the various traces.

Fig. 1 presents the ai�s and b inferred from the

trace for h ¼ 1000. Notice that the ai�s are rapidly

decreasing. Therefore, using a history that is

smaller than the one obtained through the proce-

dure above, suffices to capture the most essential

short-term correlations. The rapid decrease of the
values of the ai�s also implies that long-term cor-

relations are very weak.

To determine whether the synthetic traces

exhibit the same long-term popularities and short-

term temporal correlations with their real coun-

terparts, we perform the following procedure: (i)

we verify that they possess the same history with

the real traces, (ii) infer the rest of the model
parameters from the synthetic traces, denoted by

âi. b̂, and p̂i, and (iii) compare these parameters to

the parameters inferred from the real traces.

In Table 1, we compare the values of b as ob-

tained from the real and the corresponding syn-

thetic trace. The values of b match very well for all
7 NLANR traces are a collection of traces from many sites.

We use these sites because they have relatively long traces.
histories shown. Fig. 2 plots the âi�s for the syn-

thetic trace that is generated using the parameters

of the real trace.

By comparing Figs. 1 and 2, it is evident that

the plots match very well. 8 Note that generating

longer synthetic traces will only improve the
matching between the model parameters. We also

generated synthetic traces of length half of that of

the original trace, and the matching was quite

good again.

In Fig. 3 we plot the a0is of the real trace in

logarithmic scale. The values of ai roughly follow a

power law with h ¼ 0:46. We will use this obser-

vation to generate a0i�s for simulation purposes.
As expected, for popular documents pi � p̂i as it

is shown in Fig. 4. However, this is not the case for
8 If ai�s and âi�s are plotted in the same plot, the plots are

nearly indistinguishable with small differences only in the

oscillations.
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9 It is easy to see that the number of occurrences of the

special identifier will be very close to the total number of one-
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very unpopular documents since estimating the pi�s
of such documents from the sample frequencies is

not accurate. The insufficient statistics for

unpopular documents, and in particular one-tim-

ers, lead us to treat them in a special manner. We
will first elaborate on the problems associated with

one-timers, and then, we will describe one solution

to circumvent these problems.

The first issue with unpopular documents is a

well-known problem of statistics, often referred to

as the problem of estimating the number of classes

[15] or distinct values [9] in a population. In the
context of web traces, the problem is that when a

trace is not long enough, there are many unpop-

ular documents that are not present in the trace. If

one uses the sample frequencies to generate a trace

with the same length as the original, there will be

fewer one-timers in the generated trace than in the
original. This is because the pool of available one-

timers, from where the i.i.d. sequence Yn takes

values, is a lot smaller than in reality. To fix this

problem we need to estimate the actual number of

unpopular documents available to the users from

which the trace is recorded.

The second issue with unpopular documents is

the following. Recall that in stationarity Xn is
distributed like Yn. However, since the available

real traces are short, the statistics for unpopular

documents are far from their stationary values,

and the correlations inherent in the model force

unpopular documents to be more popular. The

problem is well exemplified with one-timers: Sup-

pose a one-timer, say document j, is requested

during the generation of a synthetic trace. Then,
based on the model, the probability of requesting

document j again in the next h time slots equals

1 �Ph
i¼1ðbð1 � pjÞ þ ð1 � bÞð1 � aiÞÞ � 1 �Ph

i¼1 �
ð1 � aiÞ �

Pi
i¼1 ai ¼ 1 � b. Hence, since this

probability is positive, documents that appear only

once in the real trace may appear more than once

in the synthetic trace.

We solve these problems as follows: whenever a
one-timer is requested during the generation of a

synthetic trace, we record a special identifier in-

stead of the identifier corresponding to the docu-

ment. After the trace is generated, we parse it and

replace all the occurrences of the special identifier

with one-timers. 9
2.3.1. Model validation

A word on model validation is in order. The

proposed model captures two important properties

of web request streams: (i) the Zipfian nature of

long-term popularity, and, (ii) the short-term
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temporal correlations. There are other properties

that are not captured, e.g. inter-document corre-

lations.

To validate the model, we should investigate if

it captures all the important properties of request

streams for a given application. In this work we
use web caching as our application. Hence, we

should compare the hit rates achieved by real

traces and their corresponding synthetic traces,

under various cache replacement schemes. Table 2

compares the hit rates for six traces under LRU

and LFU. (We use online LFU; i.e. the popularity/

frequency of a document at time t is inferred from

the requests that occurred at times t0 6 t.) In every
experiment the cache size is set to 5% of the total

number of distinct requests in each trace. For the

first five traces this is around 13,000, and for the

last, longer trace, it equals 19,400. As it is evident

from the table, the hit rates are close for all traces.

(Please refer to Table 5 of Section 3.3 for statistical

characteristics of the used traces and exact cache

sizes. Note that we do not take different document
sizes into account here. Section 3.4 addresses this

issue.) In Section 3.3, we compare the hit rates

under more sophisticated eviction schemes, after a

thorough discussion on cache replacement policies

that takes place in Section 3.
2.4. Extensions of the basic model

In this section we show how one can extend the

proposed model to capture more properties of a

request sequence. First, we briefly comment on

how to take into account inter-document correla-

tions. Further, we show how to extend the model

to capture different degrees of temporal correla-
Table 2

Hit rates comparison for real and synthetic traces under LRU and L

Trace LRU

Date Site HR (real) (%) H

May 21st, 2001 PA 32.2 3

May 23rd, 2001 PA 31.7 3

January 19th, 2002 PA 30.7 3

January 20th, 2002 PA 32.7 3

July 10th, 2003 SD 29.3 2

July 10th, 2003 RTP 34.2 3
tions for each document, and work with document

popularities that change slowly over time.

A simple way to model inter-document corre-

lations is to associate with each document i a set of

neighboring documents Ni ¼ fj1; j2; . . .g that are

strongly correlated with i. Let jNij denote the
cardinality of that set. Further, assume that all

pairs of neighbors exhibit the same degree of inter-

document correlation, and that these correlations

die after one time slot. Then, it is straightforward

to extend the basic model as follows:

Xn ¼

Xn�1 with probability a1;
Xn�2 w:p: a2;

..

.

Xn�h w:p: ah;
Yn w:p: b1;
Zn w:p: b2;

8>>>>>>><
>>>>>>>:

where a1 þ � � � þ ah þ b1 þ b2 ¼ 1, Zn ¼ jk w.p.
1=jNXn�1

j for all k ¼ 1; . . . ; jNXn�1
j, and NXn�1

¼
fj1; j2; . . . ; jjNXn�1

jg is the set of neighbors of the

document requested at time n� 1. Notice that

even this simplistic way to account for inter-doc-

ument correlations requires us to identify a set of

neighbors for each document, which can be quite

burdensome in practice.

Recall from Eq. (2) that the ai�s are the same for
all documents. We generalize this by assuming that

the probability of requesting document i, given the

last h requests, equals

P ðXn ¼ i jXn�1; . . . ;Xn�hÞ ¼ bipi þ
Xh
j¼1

aj;i1ðXn�j¼iÞ;

where a1;i þ � � � þ ah;i þ bi ¼ 1 for all i. If docu-

ment i1 is more popular than document i2, then
FU

LFU

R (synthetic) (%) HR (real) (%) HR (synthetic) (%)

2.1 29.4 29.1

1.4 28.5 28.1

1.1 28.9 28.7

2.4 31.1 30.8

9.2 25.2 25.0

4.2 32.5 32.4
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aj;i1 may be larger than aj;i2 for some j�s. In par-

ticular, the aj;i�s corresponding to one-timers are

equal to zero for all j. Thus, the issue with the

basic model where one-timers appear more fre-

quently in generated traces than in original ones
due to correlations, is resolved. Notice that this

extension requires to keep track of h parameters

for each document, which is also burdensome in

practice.

In the interest of simplicity and tractability, we

do not study further these extensions to the basic

model. The closeness of the hit rates for real and

synthetic traces under various replacement schemes
(Tables 2, 6, and 7) justify this decision.

Finally, note that our model can work with

document popularities that change slowly over

time, a phenomenon recently observed in traces

[21]. All that is needed is to allow the distribution

of Yn to change slowly over time during the gen-

eration of a synthetic trace.
10 The Markov chain (Z
r
n;Xn) is aperiodic for b > 0 hence it

has a stationary distribution.
11 In case of a miss, Xn 6¼ Zr

n;i for all i, 16 i6K, and there are

K þ 1 documents out of which one should be evicted. In case of

a hit. the action is null.
3. Caching algorithms

As mentioned previously, researchers have

proposed various caching algorithms that exploit

both short-term temporal correlations and long-

term popularity. Despite the good performance

of these algorithms, the precise trade-offs between
temporal correlations and popularity are not

well-understood. Using the request model intro-

duced in Section 2 we can shed light on these

trade-offs, formulate the problem of obtaining an

optimal algorithm with respect to hit rate as a

Markov decision process, and obtain an online

replacement algorithm that is optimal condi-

tioned on the state of the Markov process. We
also introduce c-LRU, a class of practicable

replacement policies parameterized by c, 0 <
c6 1, with LRU and LFU obtained for extreme

values of c. When c is properly chosen, the per-

formance of c-LRU is close to the performance

of the optimal policy.

3.1. Optimal replacement policies

We start by introducing some notation and

terminology. Let K be the size of the cache. Fix a
replacement policy r. Let Z
r
n be a random vector

with the K elements Zr
n;i, i ¼ 1; . . . ;K, each of

which holds the document at the ith position of the

cache at time n.
Let Hr

n be a random variable equal to 1 if

there is a hit at time n, and zero otherwise. The
long-term hit rate of a replacement policy r
equals

HRr
, lim

N!1

PN
n¼1 H

r
n

N
:

The Hr
n is a function of Z

r
n and Xn. Since Z

r
n depends

only on the process Xn, and Xn is stationary and

ergodic, the ergodic theorem [13] states that
PN
n¼1 H

r
n

N
�!a:s: EðHr

1Þ ¼ PðHr
1 ¼ 1Þ: ð6Þ
Recall that Xn ¼ ðXn; . . . ;Xn�hþ1Þ. It is easy to see

that ðZr
n;XnÞ is a Markov chain with a finite state

space S. Denote by pr
s the stationary probability

of being at state s 2 S. 10 Then

HRr ¼ð6ÞP ðHr
n ¼ 1Þ ¼

X
s2S

pr
sP ðHr

n ¼ 1 j sÞ: ð7Þ

A replacement policy r� is optimal with respect to

hit rate if it maximizes the stationary probability

PðHr
n ¼ 1) over all policies r. Finding r� is the

object of the theory of Markov Decision Processes

[26,29]. Using the vocabulary of this field, the

Markov chain ðZr
n;XnÞ is observed to be in a par-

ticular state sn at time n. After observation of the

state, an action must be chosen: which document
to evict from the cache in case of a miss. 11 Based

on the state sn and the action chosen, a reward

Rðsn; rÞ ¼ P ðHr
nþ1 ¼ 1 j snÞ is earned and the prob-

ability distribution for the next state is determined.

The action for every state is dictated by a sta-

tionary policy r. The problem of interest is to

determine the policy that maximizes the average



Table 3

Hit rate comparison for LocalOpt, LRU, and LFU under

various values of b

b ¼ 0:5 (%) b ¼ 0:75 (%) b ¼ 0:95 (%)
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reward over an infinite time horizon,

limN!1 Eðð1=NÞ
PN

i¼1 Rðsi; rÞÞ. It is easy to see by

inter-changing the limit and the expectation, 12

and using ergodicity, that the average reward is

identical to the long-term hit rate. Hence,

r� ¼ argmaxr½HRr�

¼ argmaxr lim
N!1

E
1

N

XN
i¼1

Rðsi; rÞ
 !" #

:

The theory of Markov Decision Processes provides

a mathematical framework to identify optimal

policies. However, usually only numerical solu-

tions are possible. Furthermore, in many problems

including the one we study, the computational

requirements to obtain a numerical solution are

overwhelming, because the number of states and/
or policies is very large. In such situations, sub-

optimal approximate solutions are derived [5].

Investigating optimality along these lines is out of

the scope of this work. Instead, we set for a weaker

optimality criterion, namely we wish to identify the

policy r that maximizes the reward Rðs; rÞ for all

states s 2 S. This policy is, by definition, optimal

with respect to the hit rate conditioned on the
current state. In particular, it maximizes

P ðHr
n ¼ 1 j sÞ in Eq. (7) for all s but does not nec-

essarily maximize P ðHr
n ¼ 1Þ.

An optimal algorithm. Suppose the cache is full.

A new request arrives, and the cache must evict one

out of the K þ 1 documents. Order the documents

in the cache according to their probability of being

requested at the next request time, given the last h
requests. Call by LocalOpt, the algorithm which

evicts the document with the smallest probability of

being requested at the next iteration. LocalOpt

maximizes PðHr
n ¼ 1 j sÞ for all s by definition.

The probability of requesting document i at the
next request time, given the last h requests, is given

by Eq. (2) for all i. We assume that LocalOpt ei-

ther knows the pi�s, ai�s and b, or uses the ideas of
Section 2.1 to estimate them. Thus, the algorithm

can identify the document to evict at each eviction

time. In the rest of the section we use LocalOpt as

a benchmark for other algorithms.
12 This is justified by the bounded convergence theorem [13].
How much better is LocalOpt than LRU and

LFU? In particular, we are interested in compar-

ing the hit rates of LocalOpt, LRU, and LFU

under various request sequences with different

temporal correlation characteristics. Thus, we use

our model to generate such sequences.
We generate request sequences consisting of 5

million requests, drawn from a pool of 10000

documents whose popularity distribution is Zipf-

like with parameter 0.5. We set h to 100, b to 0.5,

0.75 and 0.95, and assign to ai�s the rest of the

probability according to a Zipf-like distribution

with parameter 0.5. The cache size is set to 1000.

A relatively small value of b indicates a request
sequence where short-term correlations are more

significant as compared to a request sequence with

a larger b. Thus, smaller values of b correspond to

larger hit rates.

Table 3 shows the hit rate of LocalOpt, LRU,

and LFU. When b is relatively small, LRU�s per-
formance is quite good (the hit rate of LRU is at

least 1� b) while LFU�s performance is bad. This
is expected since the primary characteristic of the

request sequence is the strong short-term correla-

tions. On the other hand, when b is relatively

large, LFU�s performance is close to that of Lo-

calOpt, while LRU�s performance is bad. There-

fore, both LRU and LFU fail to adapt to the

degree of short-term correlation versus long-term

popularity.

3.2. The c-LRU class of replacement policies

Given a trace, which algorithm performs better

depends on the degree of temporal correlation

versus popularity. LocalOpt adapts to the degree

of correlation, but requires the knowledge of ai�s
and b which is hard to compute in practice. This
motivates us to introduce c-LRU, a class of
LocalOpt 65.34 47.98 34.09

LRU 59.01 38.55 22.20

LFU 34.00 32.23 31.23
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Fig. 5. How documents move in a cache that uses c-LRU.

Table 4

Hit rate for c-LRU and other schemes using the same param-

eters as in Table 3

b ¼ 0:5

(%)

b ¼ 0:75

(%)

b ¼ 0:95

(%)

LocalOpt 65.34 47.98 34.09

c�-LRU 62.81 45.61 32.25

c-LRU c ¼ h=kð Þ 61.77 44.87 31.86

GD-F 61.77 44.00 29.05

LRU 59.01 38.55 22.20

LFU 34.00 32.23 31.23
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practicable replacement policies parameterized by

c with LRU and LFU obtained for extreme values

of c, that also adapts to the degree of correlation in

a trace.

c-LRU algorithm. Consider the following vari-
ation of LRU: whenever a page is requested,

instead of moving the page to the top of the

linked-list move it half way up. More generally,

whenever a page is requested move it up by a

fraction c, 0 < c6 1. This is how c-LRU performs.

In particular, name the positions in the cache

1; 2; . . . ;K moving from bottom to top, as illus-

trated in Fig. 5. If the requested page is not in the
cache, then insert it at position cK. Else, if it is

currently at position pos, move it up to position

posþ dcðK � posÞe. 13

How well does c-LRU perform? Table 4 shows

the hit rate of c-LRU for the same parameters as

in Table 3. The entries of Table 3 are repeated for

comparison. It follows from this table that c-LRU

performs closely to LocalOpt for all values of b. In
Table 4 we show the performance of c-LRU for

c ¼ h=K and for the optimal c, i.e., the c value that
maximizes hit rate, denoted by c�. We note that the
13 In a different context, the authors in [3] introduce POSðkÞ,
another parameterized algorithm that performs Transpose [28]

in the k topmost positions of the cache, and LRU in the rest of

the positions. POSðkÞ has the same behavior with c-LRU for the

two extreme values of k and c. However, it behaves very

differently from c-LRU for intermediate values of k and c, and
has worse performance. The problem with POSðkÞ is that it

requires an impractically large period of time to gather popular

documents at the top of the cache.
performance of c-LRU for c ¼ h=K is close to the
performance of c�-LRU. Later in this section we

discuss this issue in more detail.

The closeness in the performance of c-LRU

and LocalOpt, for a large range of b values, can

be intuitively explained by the documents that

they cache. LocalOpt retains two classes of

documents: (i) recently accessed documents, be-

cause their probability of being requested is high
due to the ai�s, and (ii) very popular documents,

because their probability of being requested is

large due to bpi. c-LRU also retains these two

classes of documents; the former in the lower

part of the cache, and the later in the upper part

of the cache.

As mentioned in the introduction, researchers

have proposed a number of algorithms that
combine features of both LRU and LFU. LFU-

DA [2] is one such algorithm that does not take

document sizes into account. Hence, it is inter-

esting to compare its performance with that of

LocalOpt and c-LRU, which also ignore docu-

ment sizes. LFU-DA associates each document

in the cache with a value, called eviction value,

and evicts the document with the minimum such
value. Whenever there is a request for a docu-

ment i, the new eviction value for that document

is set to fi ¼ minðfj : j in cacheÞ þ Fi, where Fi is
the number of times the document has been

requested since it entered the cache. Because of

the close connection of this algorithm to an

earlier algorithm called GD-Size [8], an alterna-

tive name for it is GD-F, and this is the one we
use here.

Table 4 also shows the performance of GD-F.

As it is evident from the table, GD-F also manages
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to adapt to the degree of short-term (temporal)

correlation versus long-term (document) popular-

ity. Its performance is slightly worse than that of

c-LRU, and the larger the value of b, the worse

GD-F does relatively to LocalOpt and c-LRU.
3.2.1. Extreme values of c
Let K be the size of the cache. Then, 1=K 6

c6 1. For c ¼ 1 c-LRU coincides with LRU by

definition. We will show that for c ¼ 1=K, c-LRU

closely resembles LFU in stationarity.

When 1=K-LRU is used, 14 documents that get

requested while in the cache swap positions with the

ones that are above them, and documents that get
requested while being outside the cache swap posi-

tion with the document at the bottom of the cache.

Let the total population of documents in the

universe be N . Index the documents in decreasing

order of their popularity. Denote by Sn the cache

occupancy just prior to the nth request. Sn is a

Markov chain. Depending on the eviction scheme

used, this chain may have up to N
K

� �
K! states,

corresponding to all possible orderings of all pos-

sible K-tuples of the N documents.

Call by Offline-LFU the algorithm which knows

the overall popularity of the documents in advance

and always keeps the most popular documents in

the cache. For long request sequences, the empir-

ical distribution that LFU uses is quite close to the

actual distribution, and LFU and Offline-LFU
have nearly the same behavior. When Offline-LFU

is used, Sn ¼ ð1; 2; . . . ;KÞ for all n. We will analyze

1=K-LRU and show that this is the highest prob-

ability state of the corresponding Markov chain,

and that most of the other states have significantly

lower probability.

Let 1=K-LRU be the eviction scheme used. In

this case, Sn is time-reversible 15 [19] and it is easy
to find the steady-state distribution in closed-form.

Denote by pði1;i2;...;ikÞ the steady state probability of

state i ¼ ði1; i2; . . . ; iKÞ, i.e., document i1 occupies
14 1=K-LRU is analogous to Transpose [28], which is an

algorithm for list search.
15 When c is larger than 1=K the corresponding Markov

chain is not time-reversible.
position 1 in the cache, i2 occupies position 2 in the

cache and so on. Further, denote by Pij the tran-

sition probability from state i to state j. One may

verify that the condition

piPij ¼ pjPji ð8Þ
is satisfied by the stationary distribution

pði1;i2;...;iK Þ ¼ C � pKi1p
K�1
i2

� � � piK ; ð9Þ

where C is a normalizing constant. For example, if

pi ¼ pð1;2;...;K�1;KÞ and pj ¼ pð1;2;...;K�1;Kþ1Þ, then

Pij ¼ pKþ1 and Pji ¼ pK , and Eq. (8) holds.

Since the pi�s are decreasing as i increases, the
highest probability state is ð1; 2; . . . ;KÞ. Also, since

pi�s are Zipf-like distributed, the probability of the

states where unpopular documents reside in the
cache is very low.
3.2.2. On the optimal value of c
It is interesting to further investigate the

behavior of c-LRU as c varies from 1=K to 1. Let

c� denote the optimal value of c with respect to hit

rate given the history h, ai�s, b, pi�s, and the cache

size K. We first argue that c� 6 h=K.
To see this, name the positions in the cache

1; 2; . . . ;K moving from bottom to top. Recall that

Zn;i is a random variable indicating the document

occupying position i at time n. Also, recall that in

stationarity the hit rate of a replacement policy

equals P ðHn ¼ 1Þ ¼
PK

i¼i PðXn ¼ Zn;iÞ, where Hn

equals 1 if there is a hit at time n and zero other-

wise, and Xn represents the document requested at
time n.

If cKP h then all documents stay in the cache

for at least h time slots, after their last request

before they leave the cache. Since ahþi ¼ 0 for all

iP 1, these replacement policies take full advan-

tage of short-term temporal correlation. Thus,

P ðHn ¼ 1Þ ¼
Ph

j¼1 aj þ b
PK

i¼1 P ðYn ¼ Zn;iÞ where

Yn, nP 1, is independent and identically distrib-
uted according to fpig.

The sum
PK

i¼1 P ðYn ¼ Zn;iÞ is maximized by Off-

line LFU, since Offline LFU places in the cache the

K most popular documents. Also, the more popular

documents a replacement policy places in the cache,

the larger this sum is. Now, the smaller the value of
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Fig. 6. Hit rate of c-LRU as a function of c under the second

synthetic trace ðb ¼ 0:75Þ of Table 3. h
k ¼ 0:1.

Table 5

Trace characteristics and cache size

Trace Total Distinct Cache
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c, the more popular are the documents in the

cache. 16 Thus, this sum is larger for cK ¼ h than

for cK > h, and the same is true for the hit rate.

Very small values of c suffer from very large

mixing times of the corresponding Markov chains.

In practice, this means that it takes too much time

for the cache to be populated with the most pop-

ular documents in the upper part of the cache. We
choose to use c values close to h=K since we find

their performance to be close to optimal, see for

example Table 4, and the corresponding mixing

times to be small.

Fig. 6 plots the hit rate of c-LRU under the

second synthetic trace used in Table 3 ðb ¼ 0:75Þ,
as a function of c. For c ¼ 1 the hit rate equals that

of LRU, and for small c it is close to LFU�s hit
rate. Also, the maximum hit rate is achieved for a

value of c less than h=K while for c ¼ h=K the

performance is very close to optimal.

3.3. Performance under real traces

In this section we study the performance of c-
LRU under real web traces from NLANR [22]. We
16 We do not have a formal proof for this statement.

Intuitively, larger values of c cause larger perturbations

whenever unpopular documents are requested. This intuition

is verified by simulations, see for example Fig. 6.
also compare the hit rate obtained for real traces

and their synthetic counterparts under various

algorithms, to investigate whether the request

model captures the essential properties of real

traces as they relate to web caching.

We present results from six traces from three
different sites, recorded in May 2001, January 2002

and July 2003. For the generation of the synthetic

traces we use the procedure presented in Section 2.

The history is set to 1000, and the parameters ai�s,
b, and pi�s are inferred from the traces. The cache

size is set to 5% of the total number of distinct

requests in each trace, and the value of c is set to

0.1 which is close to h=K in all the simulations.
Finally, the cache is warmed up in all simulations.

We don�t take document size into account for now.

Section 3.4 addresses this issue.

Table 5 reports the total requests and total

distinct requests of each of the traces, as well as the

cache size used in each case.

Table 6 presents the hit rates of LocalOpt,

c-LRU, GD-F, LRU and LFU under the two May
traces and their synthetic counterparts. Tables 7

and 8 present the same quantities for the January

and July traces. As expected, LocalOpt is superior

to all other algorithms. Also, c-LRU is competitive

against GD-F, LRU and LFU, while GD-F is

better than LRU and LFU. Results are similar for

all the other daily NLANR traces that we tried.

The hit rates obtained for the real traces and
their synthetic counterparts are close. LocalOpt

performs better under synthetic traces since it is

designed to exploit the statistical characteristics

that the synthetic traces exactly possess. The small

differences in the hit rates are likely to be due to (i)

the insufficient statistics for the unpopular docu-

ments, (ii) the inter-document correlations present
requests requests size

May 21st, 2001, PA 558826 275136 13500

May 23rd, 2001, PA 508980 261480 13000

January 19th, 2002, PA 512458 256486 12800

January 20th, 2002, PA 507827 238785 11900

July 10th, 2003, SD 434604 265674 13200

July 10th, 2003, RTP 681383 387828 19400



Table 7

Hit rates under January 2002 traces and their synthetic coun-

terparts

Scheme January 19th, 2002,

PA

January 20th, 2002,

PA

HR (real)

(%)

HR (syn-

thetic) (%)

HR (real)

(%)

HR (syn-

thetic) (%)

LocalOpt 37.8 41.2 39.6 42.5

c-LRU 34.9 36.5 36.6 37.7

GD-F 32.3 32.4 34.4 34.5

LRU 30.7 31.1 32.7 32.4

LFU 28.9 28.7 31.1 30.8

Table 8

Hit rates under July 2003 traces and their synthetic counter-

parts

Scheme July 10th, 2003, SD July 10th, 2003, RTP

HR (real)

(%)

HR (syn-

thetic) (%)

HR (real)

(%)

HR (syn-

thetic) (%)

LocalOpt 33.4 35.5 39.3 41.2

c-LRU 31.8 33.3 37.1 39.0

GD-F 30.3 30.2 34.6 34.6

LRU 29.3 29.2 34.2 34.2

LFU 25.2 25.0 32.5 32.4

Table 6

Hit rates under May 2001 traces and their synthetic counter-

parts

Scheme May 21st, 2001, PA May 23rd, 2001, PA

HR (real)

(%)

HR (syn-

thetic) (%)

HR (real)

(%)

HR (syn-

thetic) (%)

LocalOpt 37.8 41.1 38.8 40.2

c-LRU 35.3 36.6 35.1 36.1

GD-F 33.3 34.4 33.0 34.2

LRU 32.2 32.1 31.7 31.4

LFU 29.4 29.1 28.5 28.1

17 Taking into account the size of a document independently

of its popularity is justified by the evidence that there is no

correlation between them [7].
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in the real traces that are not modeled, and (iii) the

fact that the values of the ai�s are the same for all

the documents (see Section 2.4 for a related dis-

cussion). These modeling decisions do not intro-
ducing significant inaccuracies, yet they simplify

the model substantially.

3.4. Implementation concerns

To be able to use c-LRU in practice, we must

address some implementation concerns. First, the
size of the documents should be taken into con-

sideration. It is straightforward to extend c-LRU

to take size into account, by making c depend on

the document size. Let cðSÞ-LRU be such an

extension where S denotes size and cðSÞ is a

decreasing function of S. 17

We use a specific function cðSÞ and calculate the

performance of cðSÞ-LRU using real traces. The

goal is to show that cðSÞ-LRU is competitive

against other high performance replacement

schemes that take into account the size and the

frequency of use in their eviction decision, in

addition to recency of use.

We avoid doing an elaborate design of cðSÞ, or
optimizing its design. For S ¼ 30 KB, cðSÞ is set to
0.1. (We use 0.1 as the typical c value. This value

works well for all the conducted simulations, since

the performance of c-LRU under real traces is

good for a wide range of c values around h=K.) To
penalize large documents, as S grows from 30KB to

250 KB, c drops quadratically to 0.05. Documents

larger than 250KB are never cached. As S decreases
from 30KB to 1KB, c increases linearly to 0.2 and

retains this value for smaller document sizes.

We compare cðSÞ-LRU to various variants/

extensions of the Greedy-Dual-Size (GD-Size)

algorithm [8]. In particular, we compare it to

Greedy-Dual-Size-Frequency-Connection (GD-

SFC), Greedy-Dual-Size-Frequency (GD-SF), and

Greedy-Dual-Frequency (GD-F, or alternatively,
LFU-DA [2]). These algorithms associate each

document in the cache with a value, called eviction

value, and evict the document with the minimum

such value. Whenever there is a request for a

document i, the new eviction value for that docu-

ment is set to

fi ¼ minðfj: j in cacheÞ þ Gi;

Gi equals ðCi � FiÞ=Si for GD-SFC, Fi=Si for GD-

SF, and Fi for GD-F, where Ci is an estimate of the

latency for connecting to the corresponding server

computed in the same manner as in [33], Fi is the
number of times the document has been requested
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since it entered the cache, and Si is the document

size. Note that the quantity minðFj: j in cacheÞ is

increasing in time and is used to take into account

the recentness of a document. Indeed, whenever a

document is accessed, its eviction value is in-
creased by the currently minimum eviction value.

Thus, the most recently used documents tend to

have larger eviction values.

The traces we use are taken from (NLANR)

[22]. We only present results from a daily trace of

length 500,000, since there are no significant dif-

ferences in the results obtained from the various

traces. We only simulate requests with a known
reply size.

The performance criteria used are three:

ii(i) the hit rate (HR), which is the fraction of cli-

ent-requested URLs returned by the proxy

cache,

i(ii) the byte hit rate (BHR), which is the fraction

of client requested bytes returned by the
proxy cache, and

(iii) the latency reduction (LR). which is the

reduction of the waiting time of the user from

the time the request is made till the time the

document is received (download latency),

over the sum of all download latencies.

For each trace, the HR, the BHR and the LR
are calculated for a cache of infinite size. Then,

they are calculated for a cache of size 0.5%. 5%,

10%, and 20% of the maximum size required to

avoid any evictions. This size is around 2GB.

Fig. 7 presents the ratio of the HR of cðSÞ-
LRU, GD-SFC, GD-SF, and GD-F over the HR

achieved by an infinite size cache. The figure also

presents the HR of LRU. The performance of
cðSÞ-LRU, GD-SFC, and GD-SF are pretty close,

while GD-F and LRU do worse.

Fig. 8 presents the ratio of the BHR of cðSÞ-
LRU, GD-SFC, GD-SF, and GD-F over the BHR

achieved by an infinite size cache. The figure also

presents the BHR of LRU. The performance of

cðSÞ-LRU is superior to the performance of GD-

SFC and GD-SF for small cache sizes. This is
expected since these schemes have a strong bias

against large documents even when these docu-

ments are popular. (The sizeably worse perfor-
mance of GD-SFC for small cache sizes is due to

its bias against some large, popular documents

whose connection-latency is very small.) On the

other had, GD-F is quite close to cðSÞ-LRU since
it does not penalize large documents.

Fig. 9 presents the ratio of LR of cðSÞ-LRU,

GD-SFC, GD-SF, and GD-F over the LR

achieved by an infinite cache. The figure also pre-

sents the LR of LRU. The performance of the

schemes is close, with cðSÞ-LRU, GD-SFC, and

GD-SF doing a bit better than the rest.

GD-SF is known to perform quite well with
respect to HR, while GD-F is known to perform

quite well with respect to BHR. Figs. 7 and 8 show
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that this is indeed the case, and more importantly,

show that c-LRU performs competitively with

respect to both HR and BHR.

The difference in the performance of the five

schemes decreases rapidly as the relative cache size

increases. Indeed, it has been observed that for very

large caches, the performance of different replace-
ment schemes is similar [8,25]. The model introduced

in Section 2 provides the following explanation for

this phenomenon: (i) due to the Zipf-like distribution

of the popularity of web documents, the fraction of

documents that corresponds to most of the hits is

small enough to fit in the cache, and (ii) due to the

rapid decrease of temporal correlations (Fig. 3),

large caches store documents long enough to fully
exploit these correlations.

Another implementation concern is the data

structure required to implement c-LRU. LRU uses

a linked list to maintain the order of the docu-

ments in the cache. However, using a simple linked

list for c-LRU is not efficient. Indeed, linked lists

are efficient when insertion and deletion operations

take place at the top and the tail of the list only. In
c-LRU it is required to perform insertions at

arbitrary places, which has complexity Oðlog nÞ. 18

To maintain constant-time complexity, we propose
18 Note that algorithms like GD-SFC, GD-SF, and GD-F

also have a complexity of Oðlog nÞ [8].
to only allow insertions to happen at predefined

positions properly distributed along the length of

the list. Each list entry will have a pointer pointing

to the predefined position that the entry should

jump to, if it is accessed. It is easy to see that

whenever a jump takes place, only two of these
pointers need to be updated.

The focus of this work is on the modeling of

web trace correlations. The c-LRU algorithm

serves to illustrate the implications of these cor-

relations on designing replacement policies. Since

it is not our goal to fully investigate the perfor-

mance of c-LRU as a replacement scheme in

practice, we refrain from further discussion on
cðSÞ-LRU with predefined insertion positions.
4. Conclusions

In this paper we have proposed a model that

precisely captures the degrees to which temporal

correlations and document popularity influence
web trace requests. We also described a mathe-

matical procedure to extract the parameters of the

model from real traces. The model was used to

generate synthetic traces of arbitrary length

exhibiting any degree of correlation, and provide

guidelines for designing efficient replacement

algorithms.

We formulated the problem of obtaining an
optimal replacement algorithm with respect to hit

rate as a Markov decision process, and obtained

an online replacement algorithm that is optimal

conditioning on the state of the Markov process.

We also introduced c-LRU, a class of practicable

replacement policies parameterized by c with LRU

and LFU obtained for extreme values of c. Finally,
we showed that c-LRU performs close to the
optimal policy, under any degree of temporal

correlation present in the request sequence, and

extended the algorithm to take into account doc-

uments of varying sizes.
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