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The physical phenomena monitored by sensor networks, for example, forest temperature or water

contamination, usually yield sensed data that are strongly correlated in space. With this in mind,

researchers have designed a large number of sensor network protocols and algorithms that attempt

to exploit such correlations.

There is an increasing need to synthetically generate large traces of spatially correlated data

representing a wide range of conditions to carefully study the performance of these algorithms. Fur-

ther, a mathematical model for generating synthetic traces would provide guidelines for designing

more efficient algorithms. These reasons motivate us to obtain a simple and accurate model of

spatially correlated sensor network data.

The proposed model is Markovian in nature and can capture correlation in data irrespective of

the node density, the number of source nodes, or the topology. We describe a rigorous mathematical

procedure and a simple practical method to extract the model parameters from real traces. We

also show how to efficiently generate synthetic traces on a given topology using these parameters.

The correctness of the model is verified by statistically comparing synthetic and real data. Further,

the model is validated by comparing the performance of algorithms whose behavior depends on the

degree of spatial correlation in data, under real and synthetic traces. The real traces are obtained

from remote sensing data, publicly available sensor data, and sensor networks that we deploy.

We show that the proposed model is more general and accurate than the commonly used jointly

Gaussian model. Finally, we create tools that can be easily used by researchers to synthetically

generate traces of any size and degree of correlation.

Categories and Subject Descriptors: C.4 [Performance of Systems]—Modeling techniques; I.6.5

[Simulation and Modeling]: Model Development—Modeling methodologies

General Terms: Performance

Additional Key Words and Phrases: Spatial correlation, modeling of physical environment, wireless

sensor networks, generating synthetic data

1. INTRODUCTION

The wireless sensor networks of the near future are envisioned to consist of
a large number of inexpensive wireless nodes. These nodes will operate under
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significant power constraints, which precludes them from using large transmis-
sion ranges. This, together with the low cost of individual sensors, implies that
sensors will be densely deployed. As a result, it is expected that a high degree
of spatial correlation will exist in the sensor network data. Many algorithms
have been proposed that exploit this correlation. For example, spatial correla-
tion has been used in data aggregation and routing algorithms [Goel and Estrin
2003; Pattem et al. 2004; Intanagonwiwat et al. 2002; Krishnamachari et al.
2002], data storage and querying [Deshpande et al. 2004; Ganesan et al. 2002,
2003; Faruque and Helmy 2004], sensor selection [Doherty and Pister 2004;
Cristescu and Vetterli 2005], MAC protocol design [Vuran and Akyildiz 2006],
data compression and encoding [Chou et al. 2002], and calibration [Whitehouse
and Culler 2002].

The evaluation of protocols that are sensitive to the spatial features of input
data requires data representing a wide range of realistic conditions. However,
since very few real systems have been deployed, there is hardly any experimen-
tal data available to test the proposed algorithms. As a result, sensor network
researchers make different assumptions when generating data inputs to eval-
uate systems; some assume the data to be jointly Gaussian with the correlation
being a function of the distance [Deshpande et al. 2004; Cristescu and Vetterli
2005; Vuran and Akyildiz 2006], some assume that the data follows the diffu-
sion property [Faruque and Helmy 2004], and some assume a function for the
joint entropy of the data [Pattem et al. 2004]. Other researchers propose the
use of environmental monitoring data obtained from remote sensing [Ganesan
et al. 2002], however the granularity of these data sets does not match the
expected granularity of sensor networks’ data.

Another model that can be used to model data dependencies in sensor net-
works data is the Markov random field (MRF) model [Li 2001]. MRFs were
proposed in image processing to model dependent random variables such as
image pixels and correlated features. But the MRF model requires a descrip-
tion of the joint statistics of the data. Using such a model in its generality is
quite cumbersome and, in practice, very hard to track analytically.

The goal of this article is to come up with a parsimonious mathematical
model that can capture spatial correlation of any degree, irrespective of the
granularity, density, number of source nodes, or topology. We want the model to
be simpler than existing complicated models for two dimensional correlations,
like the MRF model, and yet to accurately represent reality. To keep it simple,
we want our model parameters to depend only on the first order statistic and
the second order moments. It should be noted that a jointly Gaussian model
is completely defined by the first and the second order moments and hence is
pretty tractable. But, it is not a very accurate model as shown in Yu et al. [2004].
On the other hand, we will show that our model, despite being defined by the
first order statistic and second order moments, captures the spatial correlation
characteristics of sensor network data.

There are many benefits from such a model. First, it will provide a procedure
to synthetically generate sensor networks data without first having to collect
real traces. By varying the model parameters, one can create traces with various
degrees of correlation, thus enabling a meticulous study of the performance of
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proposed algorithms. Second, it will enable different researchers to evaluate dif-
ferent algorithms using a common trace generation method, which in turn, will
make comparisons between different algorithms meaningful. In other words,
the model can serve as a benchmark. Third, since the model is analytically
tractable, it can be used to analyze and bound the performance of algorithms.
Thus, it can provide guidelines for designing optimal algorithms. Fourth, it can
be used to generate large synthetic traces having the same correlation structure
as an input real trace.

The model proposed in this article is a special case of Markov random fields
but is much simpler and yet pretty accurate. It is similar in flavor to the model
proposed in Psounis et al. [2004] to capture temporal correlation in web traces.
A rigorous mathematical procedure and a simple practical method to extract the
model parameters from real traces is provided. A method to efficiently generate
synthetic traces on a given topology using these parameters is also described,
and publicly available trace generation tools are created. Further, it is shown
that the jointly Gaussian model, which is commonly used for spatially correlated
data [Vuran and Akyildiz 2006; Cristescu and Vetterli 2005; Marco et al. 2003;
Deshpande et al. 2004], is a subcase of our more general and more accurate
model.

The model is verified by comparing the statistics of the real traces and
the corresponding synthetic traces. Since the proposed model will be used to
evaluate and compare different algorithms, which exploit spatial correlation
in data, the model is validated by comparing the performance of such algo-
rithms. We use two well known algorithms, DIMENSIONS [Ganesan et al.
2002] and CC-MAC [Vuran and Akyildiz 2006] for this purpose. We use publicly
available remote sensing traces, publicly available sensor network traces, and
traces collected from sensor networks that we deploy. The internode distance
for remote sensing data is hundreds of meters while for the traces collected
using a sensor network, this distance is of the order of a few meters. These
traces verify that the proposed model is valid irrespective of the granularity of
data.

The article is organized as follows. Section 2 introduces the variogram, which
is a handy metric to characterize spatial correlation in data. Section 2.2 studies
the correlation structure of a real trace using variograms to come up with an
intuition about the structure of the model. The model is formally presented
in Section 3, followed by a mathematically rigorous procedure, and a simple,
practical method to infer the model parameters in Section 4. The correctness of
the model is verified by comparing the statistics of the original and synthetic
traces in Section 5.2. In Section 5.3, the accuracy of the model is validated by
comparing the performance of various algorithms in terms of the relationship
between the real and the corresponding synthetic, traces. Section 6 discusses
related work to put our contributions in context. In this section, we also show
that our model is more general than the jointly Gaussian model (which is the
most popular model in the sensor network community). In Section 7, we revisit
our chief assumptions in an effort to understand how general is our proposed
model. Finally, Section 8 describes the trace-generation tools and Section 9
concludes the work.
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2. VARIOGRAM: A STATISTIC TO MEASURE CORRELATION IN DATA

A statistic often used to characterize spatial correlation in data is the variogram
[Yu et al. 2003; Rahimi et al. 2004; Kargupta et al. 2003]. Given a two dimen-
sional stationary process V (x, y), the variogram (also called semivariance) is
defined as

γ (r1, r2) = 1

2
E[(V (x, y) − V (x + r1, y + r2))2]. (1)

For isotropic random processes [Olea 1999] the variogram depends only on
the distance r = √

r2
1 + r2

2 between two nodes (as opposed to anisotropic processes

in which the variogram depends on both distance and direction).1 In this case,
if (xr , yr ) denotes a point that is r distance away from (x, y),

γ (r) = 1

2
E[(V (x, y) − V (xr , yr ))2], (2)

where (x − xr )2 + ( y − yr )2 = r2.
For a set of samples v(xi, yi) i = 1, 2, . . . on a regular grid, γ (r) can be esti-

mated as follows:

∧
γ (r) = 1

2m(r)

m(r)∑
1

[v(xi, yi) − v(x j , y j )]
2, (3)

where m(r) is the number of points at a distance r within each other—the sum
is over all points for which (xi − x j )

2 + ( yi − y j )
2 = r2.

A straightforward method to estimate the variogram for a set of samples on
an irregular grid consists of the following steps: (i) for every pair of samples,
compute the distance between them and the squared difference between their
data values, (ii) make a scatter plot of the variogram values against the distance,
and (iii) curve fit the scatter plot to obtain an estimate of the variogram.

A more statistically robust method, traditionally used in Geostatistics [Olea
1999; Goovaerts 1997; Cressie 1993] consists of the following steps: (i) as before,
for every pair of samples, compute the distance between them and the squared
difference between their data values, (ii) divide the entire range of distance into
discrete intervals with an interval size being equal to the average distance to the
nearest neighbor, (iii) assign each of the pair of samples to one of the distance
intervals and compute the average variance in each interval by dividing the
sum of the squared-differences between data values by the total number of
pairs lying in that distance interval, and (iv) assign the average variance to
the midpoint of each interval and curve fit these points to one of the standard
variogram models used in Geostatistics.2

In this article, we will use the second method to estimate the variogram from
the experimental traces.

1Unless otherwise stated, we will use the Euclidean distance to measure distances between two

points.
2Appendix A.2 presents the commonly used standard variogram models.

ACM Transactions on Sensor Networks, Vol. 2, No. 4, November 2006.



470 • A. Jindal and K. Psounis

Fig. 1. Variogram and covariance plots for a trace generated by assuming a jointly Gaussian model

for the spatial data.

2.1 Relationship Between the Variogram and the Covariance

Another very commonly used statistic to measure correlation in data is the
covariance [Cristescu and Vetterli 2005; Marco et al. 2003; Cristescu et al. 2004].
For a two dimensional isotropic stationary process V (x, y), the covariance is
defined as

C(r) = E[(V (x, y) − μ)(V (xr , yr ) − μ)],

where (xr , yr ) denotes a point r distance away from (x, y) and μ = E[V (x, y)].
Since both the variogram and the covariance are measures of correlation in

data, we derive the relationship between them and verify that both of them can
be used interchangeably. From Equation (2),

γ (r) = 1

2
E[(V (x, y) − V (xr , yr ))2]

= 1

2
E[((V (x, y) − μ) − (V (xr , yr ) − μ))2] ⇒ γ (r) = σ 2

V − C(r), (4)

where σ 2
V = E[(V (x, y) − μ)2] is the variance of the process V (x, y).

Equation (4) implies that a lower (higher) value of the variogram implies a
higher (lower) value of the covariance and correlation. Figure 1 plots the vari-
ogram and the covariance for a trace generated by assuming a jointly Gaussian
model for the spatial data.

A characteristic of the variogram which can be inferred from the plot is that it
levels off (becomes parallel to the x-axis) at a distance beyond which the covari-
ance or the correlation between the samples go to zero. Further, the constant
value to which the variogram saturates is equal to the variance of the process.
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Fig. 2. Linear Topology. The data value at node i is given by Vi .

Fig. 3. (a) Variogram for an iid process. (b) Variogram for a process that follows the diffusion law

(λ = 0.1). (c) Variogram of the experimental data at a time snapshot. The x-axis is in units of

distance.

Since both metrics can be used interchangeably, in this article we will only
present variogram plots.

2.2 Analysis of Data Using Variograms

In this section, we analyze the correlation structure of different spatial pro-
cesses and propose a simple model for each of them. More specifically, we present
a model for independent data and for data following the diffusion law. We then
look at the correlation structure of a real experimental trace and propose a
model to capture the spatial correlation in this data. This model combines the
two previous models. Using variograms, we show that the proposed model is
able to capture the correlation in data.

The models in this section assume a linear topology as shown in Figure 2.
The data value at node i is given by Vi.

2.2.1 Independent Data. If a process is independent and identically dis-
tributed (iid), its variance will not change with distance and the variogram
should be a straight line parallel to the x-axis. Figure 3(a) shows the variogram
for an iid process with the underlying random variable being Gaussian with
mean 0 and standard deviation equal to 10.

A model for the data values that captures the statistical properties of inde-
pendent data is given by,

Vi = Y ,

where Y is a normal random variable with mean 0 and standard deviation
equal to 10. The variogram for this model can be easily evaluated as follows,

γ (r) = 1

2
E[(Vr − V0)2] = σ 2

Y = 100,

which is in accordance with Figure 3(a).
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2.2.2 Diffusion Model. When the phenomenon under observation is being
emitted from a single source it usually follows the diffusion property with dis-
tance: f (r) ∝ 1

rλ where f (r) is the magnitude of the event’s effect at a distance
r from the source and λ is the diffusion parameter that depends on the phys-
ical phenomenon. Figure 3(b) shows the variogram for a process following the
diffusion law, with λ = 0.1.

For small λ (λ ∼ 0.1), a model to populate the data values is given by,

Vi = Vi−1 + Z ,

where Z is a random variable with mean 0 and variance σ 2
z . The variogram for

this model can be evaluated as,

γ (r) = 1

2
E[(Vr − V0)2] = 1

2
E[(Vr−1 − V0 + Z )2] = 1

2
E[(Vr−2 − V0 + Z + Z )2]

= 1

2
E[(V0 − V0 + Z + Z . . . + Z )2] = 1

2
rσ 2

z ,

which is in accordance with Figure 3(b) for σ 2
z = 12. (The slope of the linear

variogram, with respect to r, from the model is 1
2
σ 2

z and equating it with the

slope in Figure 3(b) yields σ 2
z = 12.)

2.2.3 A Real Data Trace. The process under observation seldom has a sin-
gle source and the presence of multiple sources will require us to calculate a
phasor sum of data values at a node. For atmospheric data such as tempera-
ture, precipitation and humidity, it is not even possible to define a source. The
data values at nodes close to each other will be correlated, while for large r the
process will start looking like an iid process. As an example, the variogram at a
time snapshot of the S-Pol radar data is shown in Figure 3(c). The S-Pol radar
data trace is a humidity data trace obtained from remote sensing studies. A full
description of the trace is provided in Section 5.1.

It is observed from the plot that as the distance grows from zero the spatial
correlation decreases. Also, for distances larger than 60, the correlation is quite
small. The correlation structure looks like that of the diffusion model for smaller
distances while it looks like that of independent data for large values of distance.
Hence, we propose a model for this data that combines both of the previous
models. The data value at a node Vi is derived either from Vi−1 or from a
random variable Y .

Vi =
{

Vi−1 + Z with probability α

Y with probability 1 − α.

We refer to this model as Model 1.
After some simple calculations similar to the ones above, the variogram of

Model 1 can be expressed by the following recursive equation,

γ (r) = αγ (r − 1) + 2ασ 2
z ,

and γ (1) = 2ασ 2
z . The variogram of Model 1 with α = 0.945 and σ 2

z = 26.4 is
shown in Figure 3. Note that the variogram does not depend on the statistics
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of Y . Y only affects the first order statistics of Vi ’s and does not affect the
correlation structure.

Though Model 1 is able to capture the trends, it is not a very good match.
So, we increase the depth of data dependency in Model 1 to come up with the
following model:

Vi =

⎧⎪⎨
⎪⎩

Vi−1 + Z with probability α1

Vi−2 + Z with probability α2

Y with probability 1 − α1 − α2.

Now, the data value at node Vi is derived either from Vi−1, or from Vi−2,
or from a random variable Y . We refer to this model as Model 2. The var-
iogram of Model 2 for α1 = 0.48, α2 = 0.47 and σ 2

z = 26.3 is plotted in
Figure 3(c).

Figure 3(c) shows that Model 2 is able to capture the correlation character-
istics of the data.

Remark. The reason that Model 2 is accurate in capturing the character-
istics of the S-Pol radar data trace is intuitively the following: In real traces,
the data values of nearby nodes are usually correlated and close to each other,
but not identical, whereas the data values of far-away nodes are independent
and can differ a lot. The dependence of Vi over Vi−1 and Vi−2 captures the
correlation between the values of nearby nodes. The random variable Z in-
troduces small deviations between the values of nearby nodes, since they are
close to each other but not identical. And, the random variable Y introduces
in an independent manner, new data values that can differ a lot from prior
values.

In this section, we proposed simple models for very specific correlation struc-
tures (independent data, diffusion law with a small λ, and one snapshot of the
S-Pol radar data trace). In the next section, we will generalize the simple mod-
els used for the S-Pol radar data trace, so that any given correlation structure
can be modeled. Our general model will follow the same principles as Model 2.
A node will either derive its data value from one of the nearby nodes plus a
small deviation, or from an independent random variable. This approach, as
we will show, will accurately capture the correlation characteristics of a wide
range of spatially correlated data.

3. MODEL FOR AN IRREGULAR GRID

In this section we introduce our model for capturing the statistical properties of
sensor networks data. For ease of notation, we use polar coordinates to define
node locations. We assume that nodes are distributed in a disk of unit radius.
Let V (r, θ ) be the data value at node (r, θ ) inside the unit radius disk. We as-
sume that V (r, θ ) is a stationary isotropic process that has a unique first order
distribution denoted by fV (v).

Without loss of generality and to simplify exposition, we assume that we
want to generate the data value at the origin. We propose the following model
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to do so:

V (0, 0) = I(U=T )Y + I(U=H)

∫
θ

∫
r
(V (r, θ ) + Z )

δ(R = r)drδ(� = θ | R = r)rdθ , (5)

where:

(a) U represents a coin, which when it lands heads (H), with probability 1 − β,
the origin’s data value is obtained from neighboring nodes, and when it
lands tails (T), with probability β, it is obtained from a random variable Y .
(IA denotes an indicator function that equals one when event A occurs and
equals zero otherwise.)

(b) Y and Z are random variables independent of each other as well as V , with
pdf ’s fY ( y) and f Z (z) respectively. Y models the situation where the origin’s
data value is not obtained from neighboring nodes, Z captures the small
differences between neighboring data values, and both of them determine
the distribution of V ( fV (v)).

(c) R is a random variable with pdf α(r). When R = r, the origin’s data value
is obtained from locations at distance r from the origin. α(r)dr is the prob-
ability of this event. α(r) is a parameter of our model. (δ(R = r) denotes a
δ-function of R that is non-zero when R = r.)

(d) � is a random variable with pdf f�(θ ). When � = θ | R = r, the origin’s data
value is obtained from locations at angle θ given that their distance from
the origin is r. f�|R(θ | r)rdθ is the probability of this event. We assume
that θ is uniformly distributed between angles θ1 and θ2. Thus,

f�|R(θ | r) =
{

1
(θ2−θ1)r θ1 < θ < θ2

0 otherwise
.

Given the above, the cdf of V (0, 0) can be expressed as follows,

P (V (0, 0) ≤ v) = β P (Y ≤ v) + (1 − β)∫
θ

∫
r

P (V (r, θ ) + Z ≤ v)
α(r)

(θ2 − θ1)r
rdrdθ. (6)

Equations (5) and (6) simply say that the probability that the data value at a
node is directly derived from a node lying in the shaded region A in Figure 4 is

α(r)
(θ2−θ1)r rdrdθ . α(r)dr is the probability that a node’s data value is derived from

any node at a distance r away from it. The number of nodes r distance away
and lying in an arc of (θ2 − θ1) is proportional to (θ2 − θ1)r. Now, given that the
node’s data value is derived from a node r distance away, the probability that
it is derived from a node in an arc of dθ is rdθ

(θ2−θ1)r .

The parameters of the model are α(r), β, fY ( y), and f Z (z). The values of θ1

and θ2 depend on the method used to populate data. We will explain their role
in more detail in Section 3.1.

Since correlation is a function of distance only (as the process is isotropic),
α is a function of only r and not θ . α(r) will be a decreasing function of r as the
correlation between nodes decreases as their distance increases. Throughout
this article, we assume that α(r) is zero for r ≥ rmax for some value of rmax.
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Fig. 4. The probability that the data value at (0, 0) is derived from a node in region A is α(r)
(θ2−θ1)r .

Fig. 5. Two methods to populate data. (a) Semi Circular Dependence: The data value at node

(0, 0) can be directly derived from any node lying in the semi circular region. (b) Quarter Circular

Dependence: The data value at node (0, 0) can be directly derived from any node lying in the quarter

circular region.

Now, since the pdf ’s should integrate out to 1, we get the following equation,∫ rmax

0

∫ θ2

θ1

α(r)

(θ2 − θ1)r
rdrdθ = 1 ⇒

∫ rmax

0

α(r) = 1. (7)

3.1 Instantiation of the Model

In a real life scenario, the exact node locations determined through some lo-
cation distribution will be given as an input and the user should be able to
generate data values at these nodes using the model. In this section we de-
scribe how to generate the data using an instantiation of the model.

Before we proceed, we look at how the values of θ1 and θ2 affect the population
of data. A couple of examples are given in Figure 5. The first method corresponds
to population of data using a semi circular data dependence while the second
method corresponds to a quarter circular data dependence. Quarter circular
data dependence implies that a node’s data value can be directly derived from
only those nodes that lie in the shaded region R, which is quarter of a circle
centered at the node. The values of θ1 and θ2 are π and 3π

2
for quarter circular

dependence and π and 2π respectively for semi circular dependence. Which
method to choose will depend on the physical phenomenon being modeled. The
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Fig. 6. An example topology.

default data population method in the rest of the article is going to be the
quarter circular data dependence (θ1 = π and θ2 = 3π

2
).

As an example, consider the node locations given by Figure 6. Let the node
location of node i be (ri, θi), 0 ≤ i ≤ 11, and let the data values at these nodes be
denoted by V (ri, θi). The instantiation of the model for node (0, 0) for a quarter
circular data dependence is as follows:

V (0, 0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V (r1, θ1) + Z with probability c α(r01)
r01

V (r2, θ2) + Z with probability c α(r02)
r02

V (r3, θ3) + Z with probability c α(r03)
r03

V (r4, θ4) + Z with probability c α(r04)
r04

Y with probability cβ,

(8)

where r0 j denotes the distance between nodes (0, 0) and (r j , θ j ), and c is a
scaling constant, which is present to make the sum of probabilities go to one.

Equation 8 assumes that the data values at nodes lying in the data depen-
dence region of V (0, 0) have already been populated. Thus, an order of popu-
lating data has been implicitly assumed. A valid ordering to populate data will
ensure that when a data value at a node is populated, the data value at all the
nodes lying in its data dependence region have already been populated. Note
that this implies that a full circular data dependence (θ1 = 0 and θ2 = 2π )
cannot be used for populating data. Also, before starting to populate the data,
we randomly initialize the values that are within the data dependence region
of the first node we populate.

Remark. Note that Equation (8) implies that the proposed model is Marko-
vian. To see this, assume a valid order for populating the data. Then, if the
state is defined to be a vector of data values at nodes that lie in the dependence
area of any node whose value has not yet been populated, the Markovian prop-
erty holds as we populate the node values one by one because the next state
depends only on the previous one. The dependence between the two states is
characterized by the model parameters.

3.2 Instantiation of the Model on a Grid Topology

Though the instantiation on a grid topology can be constructed in a manner
similar to the previous section, the inherent regularity in the topology allows
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us to simplify the exposition. So, we devote this section to constructing the
model on grid topologies. A more comprehensive treatment of the model on grid
topologies can be found in Jindal and Psounis [2004].

For ease of notation we use Cartesian coordinates to define node locations.3

First we describe why a grid topology simplifies the exposition. Since the dis-
tance to the nearest node is the same for every node and is equal to the size of the
grid, the L1 or Manhattan distance is a meaningful way to measure distances
between two nodes. The L1 distance between two nodes (x1, y1) and (x2, y2) is
given by r = |x1 − x2| + | y1 − y2|. Thus, the distances between nodes on a grid
are in multiples of the grid size. This simplifies the model structure since the
variogram as well as α(r) can now be viewed as discrete functions of distance. In
this article, we denote a discrete function f as f [x] and a continuous function
as f (x).

Let the data value at node (x, y) be given by V (x, y). Let N [r] denote the
number of nodes at a distance r from (x, y). Let Vr denote the data value at a
node that is r distance away from (x, y), and V k

r denote the data value at the
kth node (1 ≤ k ≤ N [r]) at a distance r from (x, y). Following is the model for
generating the data values,

V (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V 1
1 + Z with probability cα[1]

N [1]

...

V N [1]
1 + Z with probability cα[1]

N [1]

V 1
2 + Z with probability cα[2]

N [2]

...

V N [2]
2 + Z with probability cα[2]

N [2]

...

V 1
rmax−1 + Z with probability cα[rmax−1]

N [rmax−1]

...

V N [rmax−1]
rmax−1 + Z with probability cα[rmax−1]

N [rmax−1]

Y with probability cβ,

(9)

where c is a scaling constant present to make the probabilities sum to one.
This equation simply says that the probability that V (x, y) is derived from

the value of any node that is r distance away from (x, y) is α[r]. Further, the
probability that V (x, y) is derived from the value of a particular such node is
α[r]
N [r]

. The value of N [r] will depend on whether the data is populated using a
semi circular dependence (N [r] = 2r) or a quarter circular dependence (N [r] =
r + 1).

3For ease of notation, whenever we are dealing with irregular grids, we will assume a polar coor-

dinate system while whenever we deal with grid topologies, we assume Cartesian coordinates.
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Fig. 7. (a) Effect on the correlation structure of the data when β is varied, keeping all the other

parameters constant. (b) Effect on the correlation structure of the data when rmax is varied, keeping

all the other parameters constant. (c) Effect on the correlation structure of the data when σz is

varied, keeping all the other parameters constant. The x-axis is in units of distance.

3.3 How the Model Parameters Affect Correlation

The presence of many parameters in the model gives us great flexibility to model
different spatial processes. In this section, we study how different parameters
affect the correlation properties of the generated data.

We use the simple linear topology shown in Figure 2. Synthetic traces
are generated using the model under a 20000 node scenario. We assume
Y ∼ N (0, 10) and Z ∼ N (0, σz ).

3.3.1 Effect of β. Since β governs the probability with which a node will
choose a random value independent of every other node, it is expected that a
lower value of β will lead to a higher value of correlation. Also, a variation in
β will change the distribution of V . The exact relationship between the two is
derived in Appendix A.3.

Figure 7(a) plots the variogram for traces generated using different values
of β. The other parameters are: rmax = 2, α(r) = λ2−r for 0 < r < rmax and 0
otherwise, and σz = 3. Any decreasing function of r can serve as α(r). We choose
one of these for these case studies.

The plots show that as the value of β decreases, not only does the distance
at which the variogram levels off (the distance beyond which the nodes are
uncorrelated) increase, but also the y-value to which it levels off, increases.

Figure 8 shows the actual data values for a sample of the topology for two
values of β. For β = 0.95, the data values look pretty random, implying low
spatial correlation in data while for β = 0.05, the data values at close by nodes
show high correlation.

3.3.2 Effect of rmax. If the distance between the nodes is more than rmax,
then they cannot be directly derived from each other. Hence, we expect that
increasing rmax will increase the distance at which the variogram levels off.

Figure 7(b) plots the variogram for traces generated using different values
of rmax. The other parameters are: α(r) = λ2−r for 0 < r < rmax and 0 otherwise,
β = 0.4 and σz = 4. A look at the variograms tells us that correlation between
the data values is independent of the value of rmax.

This observation is contrary to our initial intuition and hence requires a more
detailed explanation. We take this opportunity to highlight a key characteristic
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Fig. 8. The actual data values for a sample of the topology for two values of β. β = 0.95 corresponds

to very low correlation, while β = 0.05 corresponds to very high correlation.

of our model. If node 2 is derived from node 1, and node 3 is derived from node
2, then node 1 and node 3 will show a strong correlation also. So, even if rmax

is small, when β is small, nodes having distances much larger than rmax will
have high correlation. Thus, we infer that the distance at which the variogram
levels off depends primarily on β.

3.3.3 Effect of σz . Finally, we study whether changing f Z (z) will affect the
correlation in data. We had assumed f Z (z) to be N (0, σz ). Traces for different
values of σz are generated and their variograms are plotted in Figure 7(c). The
other parameters are: rmax = 2, α(r) = λ2−r for 0 < r < rmax and 0 otherwise,
and β = 0.4.

It can be easily seen from the plots that σz does not affect the correlation
structure of the data, though it has a significant effect on the distribution of
V . The value which the variogram saturates to, which is the variance of V ,
increases as σz increases.

Remark. When one generates traces and uses them to evaluate the perfor-
mance of an algorithm for different correlation structures, it is useful to have
a single tunable parameter whose value determines the level of correlation in
data. For our model, this tunable parameter is β. Traces with different correla-
tion structures can be generated by tuning β from 0 to 1 and the performance
of the algorithm can be plotted against β.

4. INFERRING MODEL PARAMETERS

In this section, we present techniques for inferring model parameters from real
traces. This section shows that the model parameters can be inferred from the
first order statistics and second order moments of the trace.
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Fig. 9. Distribution of V − V1 for samples from a time snapshot of the S-Pol radar data where V1

values are sampled at nodes at a unit distance away from V .

The model parameters to be inferred are α(r), β, fY ( y), rmax and f Z (z). With-
out loss of generality, from now onwards we will assume that Z is a normal
random variable with zero mean and standard deviation σ = σz . The S-Pol
radar data justifies our assumption. In particular, Figure 9 shows the distri-
bution of V − V1, where V1 represents the sample values at nodes at a unit
distance away from V . It is evident from the plot that this distribution can
be very closely approximated by a Gaussian distribution. Note that the dis-
tribution of Z need not necessarily be Gaussian; any other distribution will
not affect the model, though the analysis presented in this section will be
modified.

Remark. If Z is not Gaussian, then the model parameters cannot be deter-
mined from just the first order statistics and the second order moments; they
will depend on higher order statistics also. Since all the real traces we studied
were accurately modelled with a Gaussian Z , we do not discuss the model for
a non-Gaussian Z in this article.

In Section 4.1, we state the relationship between fV (v), fY ( y), and σz . Note
that fV (v) can be easily estimated by its empirical distribution. Then, in Sec-
tion 4.2 we present a rigorous procedure to infer α(r), β, rmax, and σz from a real
trace. But, this procedure involves solving integral equations of the first kind
[Kanwal 1997; Porter and Stirling 1990] and hence, it is not always possible to
obtain a closed form expression for the model parameters. Further, even though
several numerical techniques exist in the literature to solve integral equations
with no closed form solutions, integral equations of the first kind are inherently
ill posed problems [Kythe and Puri 2002]. As a result, their solutions are gen-
erally unstable and prone to large errors. Motivated by this, in Section 4.3 we
describe a procedure to infer the model parameters for data values on nodes on
a grid topology, and then, in Section 4.4 we present a simple, practical method
that uses the grid topology solution to infer the model parameters on any
topology.
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4.1 Relationship Between the Distributions of V, Y and Z

LEMMA 4.1. V = Y + L where L is a random variable with a characteristic
function given by

�L( jω) = β

1 − (1 − β)e[ −σz 2ω2

2
]
. (10)

PROOF. See Appendix A.3.

The distribution of Y , fY ( y), can be inferred from Lemma 4.1. The following
subsections present procedures to infer the rest of the model parameters.

4.2 A Rigorous Procedure to Infer the Model Parameters

In this section, we present a rigorous method to infer the rest of the model
parameters, α(r), β, σz , and rmax. To infer these parameters, we first compute
the variogram γ (r) using the model, and then equate it with its estimate

∧
γ (r)

obtained from the real trace.
Using Equation (2),

γ (r) = 1

2

∫ 2π

0

1

2π
E[(V (0, 0) − V (r, θ ))2]dθ

= 1

2
(1 − β)

∫ 2π

0

1

2π

∫ rmax

0

∫ θ2

θ1

E[(V (r ′, θ ′) + Z − V (r, θ ))2]
α(r ′)

θ2 − θ1

dr′dθ ′dθ

+ 1

2

∫ 2π

0

β

2π
E[(Y − V (r, θ))2]dθ. (11)

The term E[(V (r ′, θ ′) + Z − V (r, θ ))2] in this equation can be expanded as,

E[(V (r ′, θ ′) + Z − V (r, θ ))2] = E[(V (r ′, θ ′) − V (r, θ ))2] + E[Z 2]

= 2γ (
√

r2 + r ′2 − 2rr ′ cos(θ − θ ′)) + σ 2
z .

The second term in Equation (11) E[(Y − V (r, θ ))2] is equal to E[L2]. Using

Equation (10), E[L2] is evaluated to be
(1−β)σ 2

z
β

.

Substituting all of the above in Equation (11),

γ (r) = (1 − β)σ 2
z + (1 − β)

∫ rmax

0

∫ θ2

θ1

∫ 2π

0

1

2π

α(r ′)
θ2 − θ1

γ (
√

r2 + r ′2 − 2rr ′ cos(θ − θ ′))dθdθ ′dr′
. (12)

Equation (12) gives the relationship between the variogram and the model
parameters α(r), β, σz , and rmax. Substituting γ (r) with its estimate

∧
γ (r)

in Equation (12) gives us an integral equation of the first kind [Kanwal
1997; Porter and Stirling 1990], which along with the boundary conditions∫ rmax

0
α(r)dr = 1 and α(rmax) = 0, form a system of equations with one unknown

function α(r) and three unknown constants β, σz , and rmax. Solving these equa-
tions gives us the model parameters. After obtaining σz and β, fY ( y) is obtained
through Equation (25).

In Equation (12), the unknown function α(r) is inside an integral. In gen-
eral, it is not possible to find closed form solutions for α(r) for every variogram
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function. In the next section, we assume a specific variogram function that
corresponds to a covariance function commonly used in the sensor networks
literature, and solve for α(r).

4.2.1 Case Study. In this section, we will the find model parameters for a
trace having the following variogram,

γ (r) = c(1 − e−λr2

) 0 < r < R ′ , (13)

where R ′ is determined by the area in which the nodes are distributed and λ is
a parameter that governs how fast the correlation decays.

The corresponding covariance is C(r) = ce−λr2

, which is a very commonly
assumed correlation structure for spatially correlated data in the sensor net-
works literature, see, for example, Cristescu and Vetterli [2005] and Marco
et al. [2003]. Note that these papers also assume the data to be jointly Gaus-
sian, whereas we don’t make any such assumption here. Actually, the jointly
Gaussian scenario is a subcase of our model, as discussed in Section 6.

To find the model parameters, we have to solve the following integral equa-
tion:

c(1 − e−λr2

) = (1 − β)

∫ rmax

0

∫ θ2

θ1

∫ 2π

0

1

2π

α(r ′)
θ2 − θ1

c
(
1 − e−λ(r2+r ′2−2rr ′ cos(θ−θ ′)))dθdθ ′dr′ + (1 − β)σ 2

z . (14)

Before venturing into the solution of this equation, we first integrate out θ

and θ ′, ∫ θ2

θ1

∫ 2π

0

1

2π

1

θ2 − θ1

c
(
1 − e−λr2

e−λr ′2
e2λrr ′ cos(θ−θ ′)))dθdθ ′. (15)

To obtain a closed form approximation for the model parameters, we assume
that 2λrr ′ < 1 and hence, by neglecting the square terms and beyond, the last
term in this equation can be approximated by,

e2λr r′ cos(θ−θ ′)) = 1 + 2λrr ′ cos(θ − θ ′).

We assume the semi circular data dependence to populate data, hence θ1 = π

and θ2 = 2π . With this approximation, Equation (15) reduces to c(1−e−λr2

e−λr ′2
).

Substituting in Equation (14),

c(1 − e−λr2

) = c(1 − β)

∫ rmax

0

α(r ′)
(
1 − e−λr2

e−λr ′2)
dr′ + (1 − β)σ z

2. (16)

Using the method described in Kanwal [1997] to solve for integral equations,
we determine that α(r) has the form a + be−λr2

, where a and b are constants
to be determined by the boundary conditions

∫ rmax

0
α(r)dr = 1 and α(rmax) = 0.

Solving them yields b = (
√

πErf (
√

λrmax)

2
√

λ
− rmaxe−λr2

max )−1 and a = −be−λr2
max , where

Erf (x) is the error function defined as Erf (x) = 2√
π

∫ x
0

e−t2

dt.
Now substituting α(r) = a + be−λr2

in Equation (16) gives β = 1 − 4
√

λ√
π

(2aErf (
√

λrmax) + √
2b Erf (

√
2λrmax))−1 and σ 2

z = cβ
1−β

.

We still need to determine the value of rmax. Any value of rmax would do,
as long as the resulting β is between 0 and 1, since it is a probability, and the
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Fig. 10. (a) α(r) obtained after solving the Integral Equation 14. (b) The given variogram γ (r) =
10(1 − e−λr2

) and the variogram of a synthetic trace generated using the parameters derived in

Section 4.2.1.

resulting α(r) is positive for all r, since it is a pdf. In this example, we choose the
largest rmax value that satisfies both constraints. In particular, we start with
rmax = R ′, and keep on reducing its value until we obtain a positive value of β.

For R ′ = 10, λ = 1
200

, and c = 10, the model parameters turn out to be, rmax =
2, β = 0.0152, and σ 2

z = 0.4. The corresponding α(r) is plotted in Figure 10(a).
To verify that these parameters capture the correlation characteristics,

we plot the variogram of Equation (13) and the variogram of a synthetic
trace generated using these parameters, in Figure 10. Both the curves match
closely.

4.3 Inferring Model Parameters for the Grid Topology

As discussed in Section 3.2, the grid topology simplifies the exposition because
both the variogram and the model parameters are now discrete functions of
distance. The mathematical procedure to infer model parameters on a grid is
similar to the one described in Section 4.2, but now since all the functions are
discrete instead of continuous, the integrals will be replaced by sums.

For a grid topology, Equation (11) is rewritten as,

γ [r] = 1

2

4r∑
i=1

1

4r
E

[(
X − X i

r

)2] = 1

2

4r∑
i=1

1

4r

rmax−1∑
j=1

N [ j ]∑
k=1

α[ j ]

N [ j ]
E

[(
X k

j + Z − X i
r

)2] + 1

2

4r∑
i=1

1

4r
βE

[(
Y − X i

r

)2]
, (17)

where, because α[rmax] = 0, the second sum is up to rmax − 1 only.
As seen in Figure 11, the number of nodes at a distance r away are equal to

4r, and the first sum is to be taken over all nodes at a distance r away, so the
first sum is over 4r nodes.
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Fig. 11. Grid topology.

Using similar expansions as in Section 4.2, Equation (17) reduces to,

γ [r] = (1 − β)σ 2
z + 1

4r

4r∑
i=1

rmax−1∑
j=1

N [ j ]∑
k=1

α[ j ]

N [ j ]
γ [dri jk ], (18)

where dri jk denotes the distance between the nodes X i
r and X k

j .
Equating

∧
γ [r] = γ [r] for 1 ≤ i ≤ rmax gives rmax equations. These equations,

along with the equation β +∑rmax−1
i=1 α[i] = 1, form a system of rmax +1 nonlinear

equations with rmax + 1 unknowns, the α[r]’s, β, and σ 2
z .

The above nonlinear system can be easily converted to a linear system by a
change of variables.

1. Substitute c0 = (1 − β)σ 2
z in Equation (18) to get a system of rmax linear

equations with rmax variables, the α[r]’s, and c0.

2. After solving this linear system, Equation β + ∑rmax−1
i=1 α[i] = 1 is used to

obtain β.

3. Given the values of c0 and β, get the value of σ 2
z = c0

1−β
.

After solving the above system, fY ( y) can be obtained through Equation
(25). This procedure implicitly assumes that the value of rmax is known. Thus
we need a method to determine the value of rmax.

As a starting point, we choose a very large value for rmax. In theory, over-
estimating rmax, which results in a larger system, would still find the correct
parameters. However, in practice, larger rmax values lead to more rounding and
statistical errors, hence to small negative α[r]’s in the solution of the nonlinear
system. A solution to this is to start from an overestimated rmax, and lower its
value until all the α[r]’s are positive.

We illustrate the procedure through an example in Section 5.
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4.4 A Simple Method to Infer the Model Parameters for an Irregular Topology

In this section we present a simpler procedure than the one presented in Section
4.2 to infer the model parameters for any given topology. The rigorous procedure
requires solving integral equations of the first kind and hence, it is not always
possible to get a closed form expression for the model parameter. So, we present
a practical simpler method, which uses the discrete model to infer the model
parameters and the continuous model to populate the data, and generate traces.

1. The first step is to obtain a discretized variogram, which corresponds to the
continuous variogram sampled at multiples of the average nearest neighbor
distance. The second method described in Section 2 is used to obtain an esti-
mate of the continuous variogram. Recall that one of the standard variogram
models is fitted to the variogram samples to get the continuous variogram.
This variogram is then sampled at multiples of the average nearest neighbor
distance to get the discretized variogram.

2. The second step is to use the method described in Section 4.3 to obtain a dis-
crete version α[r] of α(r), which corresponds to the continuous α(r) sampled
at multiples of the average neighbor distance.

3. Finally, the α[r]’s are interpolated or curve fitted and then scaled to obtain
the continuous α(r). The scaling is carried out to ensure

∫ rmax

0
α(r)dr = 1.

4. After obtaining the model parameters, we use the model described in Section
3 to generate synthetic traces.

We illustrate the procedure using an example, in Section 5.
This procedure formulates the problem in continuous domain, converts it to

the discrete domain by sampling, solves it in the discrete domain and transforms
the solution back to the continuous domain by interpolation. Intuitively, this
procedure is very similar to several signal processing techniques, for example
using the FFT to find the Fourier transform of a continuous signal. Obviously,
as in the signal processing techniques, the distance between the two neigh-
boring samples (which is the average nearest neighbor distance for the given
procedure) has an important role to play. The larger the number of samples
in an area, the smaller the average nearest-neighbor distance, and the more
accurate is the estimation of the model parameters.

5. MODEL VERIFICATION AND VALIDATION

In this section, the model parameters for experimental traces are inferred using
the method described in Section 4. Then these model parameters are used to
generate synthetic traces. We verify our model by comparing the variograms of
the original experimental traces and the corresponding synthetic traces, and
then we validate it by comparing the performance of algorithms which exploit
spatial correlation, against both of the traces.

5.1 Data Set Description

In this section, we describe the different experimental traces we use to ver-
ify and validate our model. The first two traces we use, the Precipitation
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Data Set [Widmann and Bretherton, http://tao.atmos.washington.edu/data-
sets/widmann.] and the S-Pol Radar Data Set4 were obtained from remote
sensing studies and have been used in the sensor networks literature as exper-
imental traces to evaluate algorithm performance; see, for example, Yu et al.
[2003], Pattem et al. [2004], and Ganesan et al. [2002].

5.1.1 Precipitation Data Set. This data set consists of the daily rainfall
precipitation for the Pacific Northwest from 1949–1994. The final measurement
points in the data set formed a regular grid of 50 km × 50 km regions over the
region under study. We select a subset of data that has no missing values.
Specifically, each snapshot of data is a 8 × 8 spatial grid data with a 50 km
resolution.

5.1.2 S-Pol Radar Data Set. The resampled S-Pol radar data, provided
by NCAR, records the intensity of reflectivity of atmosphere in dBZ, where Z
is proportional to the returned power for a particular radar and a particular
range. The original data were recorded in the polar coordinate system. Samples
were taken at every 0.7 degrees in azimuth and 1008 sample locations (approx-
imately 150 meters between neighboring samples) in range, resulting in a total
of 500 × 1008 samples for each 360 degree azimuthal sweep. They were con-
verted to the Cartesian grid using the nearest neighboring resampling method
[Venables and Ripley 2002]. In this article, we have selected a 64 × 64 spatial
subset of the original data and 259 time snapshots across 2 days in May 2002.

The distance between the sensing nodes for these traces is hundreds of me-
ters which is not representative of actual sensor networks in which the inter
sensor distance is a few meters. The only publicly available sensor network
traces which the authors are aware of, are the SHM Trace [Paek et al. 2005]
and Intel Lab Data [int 2004].

5.1.3 SHM Trace. One of the real world experiments where real sensor
network traces have been collected after deploying a sensor network is reported
in Paek et al. [2005]. A 14 MicaZ node sensor network was deployed in a large
seismic test structure used by civil engineers to study structural health moni-
toring (SHM). Accelerometers on the sensors collected vibration samples from
the structure and send them to a base station using a data acquisition system
called Wisden. We use a time snapshot of this trace to verify and validate our
model.

5.1.4 Intel Lab Data. Another real world experiment where real sensor
network traces have been collected was performed in Intel Berkeley Research
Lab [int 2004]. 54 sensors measuring temperature were deployed in a lab. We
use a time snapshot of this trace to verify and validate our model.

Due to the lack of the publicly available traces, we collected our own traces
using MICA2 motes with MTS310CA sensor boards attached to them. We used

4S-Pol radar data were collected during the IHOP 2002 project (http://www.atd.ucar.edu/rtf/

projects/ihop 2002/spol/). S-Pol is fielded by the Atmospheric Technology Division of the National

Center for Atmospheric Research. We acknowledge NCAR and its sponsor, the National Science

Foundation, for provision of the S-Pol data set.
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the light sensors on the sensor board to take light intensity measurements.
Two traces in two differently lighted environments were collected using these
motes.

5.1.5 Trace 1. 44 sensor nodes are deployed in a 34 × 64 foot square area.
The location of each node is randomly chosen according to a uniform location
distribution. We use a master mote to send a message to every mote. When a
sensor node receives the message, it samples the light intensity of the envi-
ronment. Thus all sensors take the readings at the same time. Thus, we get a
spatially correlated trace of 44 samples.

The experiment is performed in an outdoor environment under strong sun-
light with a few nodes in a shaded area caused by the presence of trees in the
environment. Thus, the readings of the sensors will be close to each other, but
the readings from the sensors in the shaded area will be lower than those in
direct sunlight.

5.1.6 Trace 2. 30 sensor nodes are deployed in a 4 × 21 foot square area.
The location of each node is randomly chosen according to a uniform location
distribution. As before, all sensors take readings at the same time when they
receive a message from the master mote.

The experiment is performed in an indoor environment with just one light
source. This corresponds to a single source scenario where the readings go
on decreasing as the distance from the light source increases. So, the sen-
sors far away from the light source have much lower readings than the sen-
sors closer to the light source. This generates a strongly correlated data
trace.

These 6 traces allow us to validate our model for different network densities,
from an average nearest sensor-distance of tens of kilometers to hundreds of
meters to a few meters. Note that the S-Pol radar data trace is the only trace
that has 1000s of spatial samples. The rest of the traces are not very large, due to
the difficulty in deploying very large sensor networks. Hence, the results of the
S-Pol radar data trace are particularly important due to their high statistical
significance.

5.2 Model Verification

5.2.1 Precipitation Data Set. We choose a snapshot in time of the precipi-
tation data as the experimental data trace. The estimated variogram is plotted
in Figure 12(b). We use this trace as an example to illustrate the procedure of
Section 4.3.

First, assume the value of rmax to be 2. The corresponding system of equations
are:

γ [1] = σ 2
z (1 − β) + 1

4

[
α[1]

2
(2γ [2] + 2γ [2] + 2γ [2])

]

γ [2] = σ 2
z (1 − β) + 1

8

[
α[1]

2
((2γ [1]) + 4(γ [1] + γ [3]) + 3(2γ [3]))

]
.
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Fig. 12. Precipitation data trace: (a) Comparison of the distribution of the original and synthetic

traces. (b) Comparison of the variogram of the original and synthetic traces.

Substituting c0 = σ 2
z (1 − β) reduces this to the following linear system,

γ [1] = c0 + 1

4
3α[1]γ [2]

γ [2] = c0 + 1

8
α[1](5γ [3] + 3γ [1]).

Solving this system yields α[1] = 0.9245, β = 0.0755, and σz = 10.08. It can be
verified that choosing rmax = 3 will result in some α[r]’s being negative.

Using these parameters we generate a synthetic counterpart of the original
trace. Then we compare the statistics of both the traces. Figure 12(a) shows
the distribution of the two traces, and Figure 12(b) shows their respective var-
iograms. Both the distribution and variograms match closely.

5.2.2 S-Pol Radar Data Set. We choose a snapshot in time of the S-Pol
Radar data as the experimental data trace. Since the underlying topology is a
grid, the parameters of the model for the trace are inferred using the method
described in Section 4.3. Figure 13(a) presents the values of α[r], β and σz

inferred from the trace. Using these parameters, we generate a synthetic coun-
terpart of the original trace. Then, we compare the statistics of both the traces.
Figure 13(b) shows the distribution of the two traces and Figure 13(c) shows
their respective variograms. Both the distribution and the variogram of the two
traces match closely.

5.2.3 Trace 1. Since the underlying topology for the rest of the three traces
is not a grid topology, the method described in Section 4.4 will be used to infer
the model parameters. We illustrate the procedure step by step by using Trace 1
as an example.

1. First, the variogram has to be estimated from the given trace. The second
method described in Section 2 is used to estimate the variogram. We fitted
several standard variograms on to it [Olea 1999; Goovaerts 1997] and re-
tained the following spherical variogram, since it yields the minimum square
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Fig. 13. S-Pol Radar data trace: (a) α[r] for the trace (rmax = 4, β = 0.22 and σz = 3.29). (b)

Comparison of the distribution of the original and synthetic traces. (c) Comparison of the variogram

of the original and synthetic traces.

Fig. 14. Trace 1: (a) α(r), which was obtained by curve fitting α[r]’s. (b) Comparison of the dis-

tribution of the original and synthetic traces. (c) Comparison of the variogram of the original and

synthetic traces.

error among all of them:

γ (r) =
{

c0 + c
(

3
2

r
a − 1

2

( r
a

)3)
, 0 ≤ r ≤ a

c0 + c, a ≤ r,
(19)

where c0 = 90, c = 170 and a = 9.

2. The next step is to infer the model parameters using the discrete model. The
model parameters obtained are rmax = 2, α[1] = 0.6484, β = 0.3516, and
σz = 8.5451.

3. The discrete α[r]’s are curve fitted and then scaled to obtain α(r). The result-
ing α(r) is plotted in Figure 14(a). We fit a linear curve onto α[r]’s because
we have only two known values of α(r).

After inferring the model parameters from the estimated variogram, we gen-
erate a synthetic trace on the same sensor node locations as the original trace.
We compare the distribution of the traces in Figure 14(b) and their variograms
in Figure 14(c). Both the distribution and the variograms match closely.

5.2.4 Trace 2. The variogram of the second trace is best estimated by the
power semivariogram model (Equation (20)) with parameters c0 = 14500, ω = 2
and c = 450.

γ (r) = c0 + crω. (20)
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Fig. 15. Comparison of the variogram of the original and the synthetic traces: (a) Trace 2. (b) SHM

Trace. (c) Intel Lab Data.

We use the estimated variogram to obtain the model parameters and then
generate a synthetic trace on the same sensor node locations as the original
trace. We plot the variograms of both the traces in Figure 15(a). Once again,
the variograms match closely.

5.2.5 SHM Trace. The variogram of the SHM trace is best estimated by the
spherical semivariogram model (Equation (19)) with parameters c0 = 6000, c =
10000, and a = 2.7. We use the estimated variogram to obtain the model pa-
rameters and then generate a synthetic trace on the same sensor node locations
as the original trace. We plot the variograms of both the traces in Figure 15(b).
Once again, the variograms match closely.

5.2.6 Intel Lab Data. The variogram of the Intel Lab Data is best esti-
mated by the power semivariogram model (Equation (20)) with parameters
c0 = 0.44, ω = 2.5, and c = 0.04. We use the estimated variogram to obtain
the model parameters and then generate a synthetic trace on the same sensor
node locations as the original trace. We plot the variograms of both the traces
in Figure 15(c). Once again, the variograms match closely.

5.3 Model Validation

The proposed model will be used to compare and evaluate different algorithms
that exploit the presence of spatial correlation in data. To validate that our
model can be used to evaluate the performance of different algorithms, we
run two of these algorithms on both the original and the synthetic traces and
compare the performance.

Among the many such algorithms mentioned in the introduction, we selected
DIMENSIONS [Ganesan et al. 2002] and CC-MAC [Vuran and Akyildiz 2006] to
evaluate our model. We did not choose any of the algorithms that use entropies
because we do not have enough time snapshots of sensor data traces to calculate
the joint entropies. We went for algorithms whose evaluation metrics depended
chiefly on the nature of correlation in data. The algorithms, along with the
comparisons, are discussed below.

5.3.1 DIMENSIONS. This is a data storage and querying algorithm.
It proposes wavelet based multiresolution summarization and drill down
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Fig. 16. Comparison of the performance of DIMENSIONS on original and synthetic traces.

(a) Error vs query termination level. (b) Error at query termination level 1 at different snapshots.

(c) Error at query termination level 2 at different snapshots. (d) Error at query termination level 3

at different snapshots.

querying. Summaries are generated in a multiresolution manner, correspond-
ing to different spatial scales. Queries on such data are posed in a drill
down manner, that is, they are first processed on coarse, highly compressed
summaries corresponding to larger spatial volumes. The approximate results
obtained are then used to focus on regions in the network that are most likely
to contain relevant information. A variety of queries can be posed on the
data set; we present the performance results for the query average(X ). The
evaluation metric used is the query error, which is defined as QueryError =
(QueryResponseOverDimensions − ActualValue)/ActualValue. In the DIMEN-
SIONS hierarchy, each lower level stores twice the amount of data as the
higher level. Therefore, as the query processing proceeds down the hierarchy,
gaining access to more detailed information, the query error should drop down
gradually.

We run DIMENSIONS on the S-Pol radar data trace only because the rest
of the traces do not have sufficient spatial samples. We first choose a snapshot
in time of the S-Pol radar data as the experimental data trace. After inferring
the parameters of the model for the original trace, we generate a synthetic
counterpart of the original trace. Figure 16(a) shows the result of running
DIMENSIONS on both traces. It is evident that the two plots match very well.
To confirm the observation, we then infer the model parameters for different
snapshots in time and run DIMENSIONS on both the original and synthetic
traces. Figures 16(b)–16(d) show the comparison for different query termina-
tion levels. It is obvious that the performance of the algorithm for both the
traces is similar. Thus we conclude that the synthetic data is able to capture
the spatial correlation in the original data.

5.3.2 CC-MAC. The underlying idea behind CC-MAC is that due to the
presence of spatial correlation between sensor observations, it is not necessary
for every node to transmit its data. Among a cluster of sensor nodes, one of
them can act as representative of all the other nodes. We refer to the node that
sends information to the sink as the representative node of the cluster. Thus,
a smaller number of sensor measurements are adequate to communicate the
event features to the sink within a certain acceptable error.
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Fig. 17. Comparison of the performance of CC-MAC on original and synthetic traces. Variation of

error with d . (a) S-Pol Radar Data Trace. (b) Precipitation Data Trace. (c) Trace 1. (d) Trace 2. (e)

SHM Trace (f) Intel Lab Data.

In our simulations, we assumed the cluster structure to be a square of side
d . Among all the nodes within this square, the representative node is selected
randomly. Only one node in the cluster (the representative node) will transmit
its data to the sink. The larger the value of d , the smaller is the number of
nodes transmitting data to the sink, and hence the error is larger. We plot the
average error against the value of d for the original as well as the synthetic
trace for S-Pol Radar data trace, Precipitation Data Trace, Trace 1, Trace 2, the
SHM trace, and the Intel Lab Data in Figures 17(a)–17f respectively. It is easy
to see from the plots that the performance of the algorithm for both the traces
is similar, as the plots match closely.

From these plots, we conclude that the proposed model is able to capture the
spatial correlation in sensor network data.

6. RELATED WORK

6.1 Interpolation Techniques

Yu et al. [2003] proposed using interpolation techniques to estimate data at
unmonitored locations and then using this estimated data to generate data
at irregular topologies. These techniques find application in converting a real
trace to a more fine grained trace (having more sensor nodes in the same area).
On the other hand, in this work we propose a mathematical model that can be
used to generate synthetic traces without a real trace. Modifying the parameter
β allows a user to generate traces having different correlations. It can also be

ACM Transactions on Sensor Networks, Vol. 2, No. 4, November 2006.



Modeling Spatially Correlated Data in Sensor Networks • 493

used to convert a real trace to a more fine grained trace as well as converting
a real trace to bigger trace while retaining its granularity (having more nodes
in a bigger area while preserving the density).

6.2 Markov Random Fields (MRFs)

Markov random fields [Li 2001] are used in image processing and computer
vision to model dependent random variables such as image pixels and correlated
features. The Markov random field model is defined using the joint statistics
of the correlated variables. Appendix A.1 provides a brief description of the
MRF model. The MRF model provides an alternative but complicated model
for sensor network data.

The objective of a modeller is to come up with the simplest possible model
that is an accurate representation of reality. Using the most general model is too
cumbersome in practice, and it is a bad idea to make a model more complicated
without adding any more accuracy.

While our model was driven by the intuition obtained after studying the
correlation characteristics of real data without using the general MRF theory,
it is a special case of MRF with much fewer parameters than the general MRF
model. Moreover, it is completely defined by the first order statistic and the
second order moments of the process. Hence, unlike the MRF model, it is easily
tractable by analysis.

6.3 Jointly Gaussian Model

The most commonly used model for sensor network data is the jointly Gaussian
model [Vuran and Akyildiz 2006; Cristescu and Vetterli 2005; Marco et al. 2003;
Deshpande et al. 2004]. The primary reasons for this choice are ease of use and
analytical tractability, rather than accuracy [Yu et al. 2004].

Our model is more general and more realistic than the jointly Gaussian
model. Actually, it is easy to argue that the jointly Gaussian model is a special
case of the proposed model. The joint pdf of jointly Gaussian random variables
is completely defined by the covariance matrix. Each covariance matrix corre-
sponds to a unique variogram and each variogram corresponds to a unique α(r),
rmax, σz and β. fV (v) is Gaussian and fY ( y) can be inferred from Equation (25).

The chief limitation of the jointly Gaussian model is that it forces the joint
pdf ’s of the data values to be jointly Gaussian, while in most of the experimental
traces discussed in Section 5, even the first order distribution is not Gaussian.
(The S-Pol Radar data trace is an exception, as seen in Figure 13(b).) The pro-
posed model has no such restrictions: through a proper choice of fY ( y) and
f Z (z), any first order distribution function of data values can be modeled, and
through a proper choice of α(r) and β, any correlation structure can be modeled.

We now evaluate how appropriate is the jointly Gaussian model for the S-Pol
radar data trace whose first order distribution is Gaussian. To determine the
accuracy of the model, we plot the joint pdf V and V1, where V1 represents the
data value at nodes at a unit distance away from V . Figures 18(a)–18(c) show
fV ,V1

(v, v1) for the original trace, a synthetic trace generated using the proposed
model, and a synthetic trace generated assuming data to be jointly Gaussian.
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Fig. 18. FV ,V1
(v, v1) for the (a) Original Trace. (b) Synthetic trace generated using the proposed

model. (c) Synthetic trace generated using the jointly Gaussian model.

The covariance matrix of the jointly Gaussian trace is constructed such that the
variogram of the synthetic trace is the same as that of the original trace. The
joint pdf ’s of the original trace and the trace generated using the proposed model
are similar, but they are very different from the joint pdf of the trace generated
using the jointly Gaussian model. We use the Jensen-Shannon divergence [Lee
1999] to quantitatively measure how close two distributions are.5 The smaller
is its value, the more similar are the two distributions. The Jensen-Shannon
divergence between the joint pdf of the original trace and the synthetic trace
generated using the proposed model is 0.04 while, between the joint pdf of the
original trace and the trace generated using the jointly Gaussian model, it is
equal to 0.15.

While the proposed model is more accurate than the jointly Gaussian one, it
is clearly more complicated.

Based on the previous discussion, since the jointly Gaussian model is more
tractable, it should be used to predict trends and get some quick intuition into
the behavior of an algorithm. But to do a more thorough and realistic study,
through analysis or simulations, a more realistic model such as the proposed
model should be used. It is important to point out that trace-driven simulations
are the best choice for simulating an algorithm, but in the absence of large
sensor network data traces, the proposed model can act as a close substitute.

7. DISCUSSION: CHIEF ASSUMPTIONS OF THE PROPOSED MODEL AND
THEIR IMPLICATIONS

In this section, we discuss how accurate and general is the proposed model. We
restate our chief assumptions and discuss their physical meaning allowing us
to comment on the model’s generality.

The first and the most important assumption we make is the Markovian
nature of the model (see remark in Section 3.1). This makes sense intuitively
since it implies that the data value at a node is derived from other correlated
nodes whose data values have already been derived. But it is not always the case
that a given spatial process will be Markovian. For example, processes that are
governed by diffusion equations that use fractional derivatives [Liu et al. 2004]
are non-Markovian. For such a scenario, even a much more complicated model

5See Appendix A.4 for a detailed description of Jensen-Shannon divergence.

ACM Transactions on Sensor Networks, Vol. 2, No. 4, November 2006.



Modeling Spatially Correlated Data in Sensor Networks • 495

like Markov random field will fail to capture the correlation characteristics of
the data.

It is to be noted that there is no assumption that only nodes that are close to
each other will be correlated. If some strange application results in nodes that
are close to each other being uncorrelated but nodes far away being correlated,
then the model will not fail. For this application, α(r) will not be a decreasing
function but will reach a maximum around the distance at which the nodes
show maximum correlation.

The second assumption we make is that the correlation depends only on the
distance between the nodes, not the direction. The good fit between the statistics
of the original and the synthetic traces validates this assumption. Note that
throwing away this assumption only makes the model more complicated. Now,
α will no longer be just a function of the distance, it will depend on the direction
also.

The third assumption we make is that the data values are derived from a
stationary process. If some application results in two or more regions separated
by boundaries, and within each region, the data values follow a different pro-
cess, our model will not be able to capture these boundaries; although it will
model the correlation in data within each region. A Markov random field model
can be used for this scenario as it can specify different conditional probabilities
for each region.

The model makes no assumption on the granularity of the data, network
density, the topology, or the number of source nodes.

8. TOOLS TO GENERATE LARGE SYNTHETIC TRACES

In this section we describe four tools that we have created to help researchers
generate synthetic traces of any size and degree of correlation. These tools can
be downloaded from http://www-scf.usc.edu/∼apoorvaj.

—generateLargeTraceFromSmall and generateLargeTraceFromIrregular will
create large synthetic traces having the same correlation structure as the
input real data trace on a grid topology, and irregular topologies respectively.
It takes the real data trace and the dimensions of the output synthetic trace
as its input. It also requires the user to specify the data dependence pattern.
The user can choose either of the methods described in Section 3.1.

—generateSyntheticTraces and generateSyntheticTracesOnIrregular will cre-
ate large synthetic traces representing a wide range of conditions by tweak-
ing the model parameters on a grid topology, and irregular topologies, respec-
tively. It takes the model parameters, rmax, α(r), β, σz , and fV (v), the location
of the nodes, and the data dependence pattern, as its input.

Data collected from a testbed having a few sensor nodes is not sufficient to
evaluate protocols. The first two tools can generate a large trace having similar
correlation properties as the real trace, and hence, help researchers to evaluate
protocols with real data. The last two tools will enable researchers to evaluate
their protocols with data having varied correlation structures. Hence, these four
tools will help researchers to evaluate their protocols with data representing a
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wide range of realistic conditions without the need of actual dense deployment
of sensor nodes.

9. CONCLUSIONS AND FUTURE WORK

In this article, we have proposed a mathematical model to capture the spatial
correlation in sensor network data. This model can generate synthetic traces
representing a wide range of conditions and exhibiting any degree of correlation.
We also described a mathematical procedure and a simple, practical, method
to infer the model parameters from a real trace. These model parameters are
then used to generate synthetic traces having similar correlation properties as
the real trace.

We verified our model by showing that the statistics of the synthetic trace
is similar to the real trace. We validated our model by showing that the per-
formance of sensor network algorithms exploiting spatial correlation is similar
for both traces. For this purpose, we used the sensor network data storage and
querying algorithm DIMENSIONS, and the Spatial Correlation-based Collab-
orative Medium Access Control algorithm CC-MAC. The real traces we have
used for model verification and validation have network densities ranging from
tens of kilometers to a few meters. Finally, we have created four tools to en-
able researchers to generate data representing real world scenarios and a wide
range of conditions.

The next step is to extend the framework to model spatio-temporal corre-
lations in data. This is useful since most of the algorithms try to exploit both
spatial and temporal correlation in data simultaneously.

APPENDIX

A.1 Markov Random Fields

Markov Random Fields (MRFs) have been used in Image Processing and Com-
puter Vision to model dependencies between random variables [Li 2001]. The
concept of MRFs is a generalization of Markov processes that are widely used
in sequence analysis. An MRF is defined on a domain of space rather than time.
This section gives a brief introduction to the MRF model.

Let F = F1, . . . Fm be a family of random variables defined on the set S, in
which each random variable Fi takes a value fi in L. The family F is called a
random field. For a discrete label set L, the probability that random variable
Fi takes the value fi is denoted by P ( fi) and the joint probability is denoted
by P ( f ) = P (F1 = f1, F2 = f2, . . . Fm = fm). For a continuous L, we have
probability density functions p( fi) and p( f ).

F is said to be a Markov random field on S with respect to a neighborhood
system N if and only if the following two conditions are satisfied:

PF ( f ) > 0, ∀ f ∈ F positivity (21)

P ( fi | fS−{i}) = P ( fi | Ni) Markovianity, (22)

where S − {i} is the set difference, fS−{i} denotes the set of labels at the sites in
S − {i}, and fNi = {

fi′ | i′ ∈ Ni
}

stands for the set of labels at the sites
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neighboring i. The positivity is assumed for some technical reasons and can
usually be satisfied in practice. The Markovianity depicts the local characteris-
tics of F . In MRFs, only neighboring labels have direct interactions with each
other.

There are two approaches for specifying an MRF, either in terms of the con-
ditional probabilities P ( fi | fNi ), or in terms of the joint probability P ( f ). This
modeling approach has the definition of the neighborhood system, N , and the
joint pdf ’s as parameters.

The model proposed in this article is a special case of an MRF and requires
much fewer parameters for a complete description of the model. The parameter
rmax defines the neighborhood system, and the parameters Y , Z , αi ’s, and β

define the conditional probability P ( fi | fNi ).

A.2 Standard Variogram Models

When estimating a variogram, it is a common practice to fit one of the standard
variogram models to the trace. This section presents the five most common
variogram models used in Geostatistics [Olea 1999; Goovaerts 1997].

(i) Nugget effect model:

γ (r) =
{

0 r = 0
1 otherwise.

(ii) Spherical model with range a:

γ (r) =
{

c0 + c
(

3r
2a − 1

2

( r
a

)3
)

r ≤ a
c0 + c otherwise.

(iii) Exponential model with practical range a:

γ (r) = c0 + c
(
1 − e

−3r
a

)
.

(iv) Gaussian model with practical range a:

γ (r) = c0 + c
(
1 − e

−3r2

a2

)
.

(v) Power model:

γ (r) = c0 + crω,

where ω is a parameter of the model.

A.3 Relationship Between the Distributions of V, Y, and Z

In this section, we prove Lemma 4.1.
From Equation (6) we get,

fV (v) = (1 − β) fV +Z (v) + β fY (v). (23)

Using characteristic functions, and since V and Z are independent, Equation
(23) can be rewritten as,

�V ( jω) = (1 − β)�V ( jω)�Z ( jω) + β�Y ( jω). (24)
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Since Z is a zero mean normal random variable, its characteristic function

is given by e[ −σz 2ω2

2
]. Equation (24) finally reduces to

�V ( jω) = β

1 − (1 − β)e[ −σz 2ω2

2
]
�Y ( jω). (25)

For mathematical convenience, we define a new random variable having a
characteristic function given by

�L( jω) = β

1 − (1 − β)e[ −σz 2ω2

2
]
.

Equation (25) can now be rewritten as

V = Y + L.

A.4 Jensen-Shannon Divergence: A Metric to Measure How Similar Two
Distributions Are

Jensen-Shannon divergence [Lee 1999] is a useful measure of the distance be-
tween two distributions. Let qV (v) and rV (v) denote two probability density
functions of the random variable V . Let avgq,r

V (v) = 1
2

(
qV (v) + rV (v)

)
denote the

average distribution of q and r. Then the Jensen Shannon divergence, JS(q, r)
is defined as

JS(q,r) = 1

2
[D(q‖avgq,r) + D(r‖avgq,r)].

The function D is the KL divergence [Cover and Thomas 1991], which measures
the average inefficiency in using one distribution to code for another, and is
defined as

D(q(v)‖avgq,r(v)) =
∑

v

q(v)log
(

q(v)

avgq,r(v)

)
.
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